Document Type







The notions of Betti numbers and of Bass numbers of a finite module N over a local ring R are extended to modules that are only assumed to be finite over S, for some local homomorphism phi: R -> S. Various techniques are developed to study the new invariants and to establish their basic properties. In several cases they are computed in closed form. Applications go in several directions. One is to identify new classes of finite R-modules whose classical Betti numbers or Bass numbers have extremal growth. Another is to transfer ring theoretical properties between R and S in situations where S may have infinite flat dimension over R. A third is to obtain criteria for a ring equipped with a `contracting' endomorphism - such as the Frobenius endomorphism - to be regular or complete intersection; these results represent broad generalizations of Kunz's characterization of regularity in prime characteristic.

Additional Information

This manuscript if from, for more information see


Harvested from

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.