Conference Editor

Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer

Keywords:

Large-eddy simulation, convective heat transfer, urban canopy model

Location

Syracuse, NY

Event Website

http://ibpc2018.org/

Start Date

25-9-2018 1:30 PM

End Date

25-9-2018 3:00 PM

Description

The urban street canyon has been widely recognized as a basic surface unit in urban micrometeorological studies. Urban canopy models (UCMs), which quantify the exchange of energy and momentum between the urban surface and the overlying atmosphere, often adopt this type of street canyon representation as the fundamental surface element. Since UCMs can be coupled to regional-scale weather and climate models such as the Weather Forecast and Research Model (WRF), parametrizations of the surface momentum and scalar fluxes in UCM are of paramount importance. However, many current single-layer UCMs rely on empirical relations that were obtained over 80 years ago and often invoke the exponential wind profile derived from the existing literature for vegetation canopy. In this study, we conducted wallmodeled large-eddy simulations (LES) to study the forced (very weak buoyancy) convective heat transfer over idealized two-dimensional street canyons. It shows that the transfer efficiency computed following commonly applied resistance formulations can be one order of magnitude lower than LES results. The main reasons for the deviation include inaccurate wind speed parameterization and the use of a log-law based formulation for turbulent heat exchange between canyon air and the flow above.

Comments

If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.

DOI

https://doi.org/10.14305/ibpc.2018.ms-5.04

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

COinS
 
Sep 25th, 1:30 PM Sep 25th, 3:00 PM

Improving the representation of convective heat transfer in an urban canopy model

Syracuse, NY

The urban street canyon has been widely recognized as a basic surface unit in urban micrometeorological studies. Urban canopy models (UCMs), which quantify the exchange of energy and momentum between the urban surface and the overlying atmosphere, often adopt this type of street canyon representation as the fundamental surface element. Since UCMs can be coupled to regional-scale weather and climate models such as the Weather Forecast and Research Model (WRF), parametrizations of the surface momentum and scalar fluxes in UCM are of paramount importance. However, many current single-layer UCMs rely on empirical relations that were obtained over 80 years ago and often invoke the exponential wind profile derived from the existing literature for vegetation canopy. In this study, we conducted wallmodeled large-eddy simulations (LES) to study the forced (very weak buoyancy) convective heat transfer over idealized two-dimensional street canyons. It shows that the transfer efficiency computed following commonly applied resistance formulations can be one order of magnitude lower than LES results. The main reasons for the deviation include inaccurate wind speed parameterization and the use of a log-law based formulation for turbulent heat exchange between canyon air and the flow above.

https://surface.syr.edu/ibpc/2018/MS5/4

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.