Conference Editor

Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer

Keywords:

Low energy dwellings, passive design, energy performance, multi-objective optimizations.

Location

Syracuse, NY

Event Website

http://ibpc2018.org/

Start Date

24-9-2018 10:30 AM

End Date

24-9-2018 12:00 PM

Description

At present, most developed countries attempt to highly diminish the energy consumption of buildings towards nearly zero-energy performances. This study assesses passive design strategies by means of multi-objective optimizations with genetic algorithms, aiming to minimize the heating and cooling demand of typical single-family dwellings in Chile. The results show that the thermal transmittance and airtightness of the whole building envelope should be highly improved from the current limiting values in all assessed locations. Complementarily, strategies for managing overheating would be crucial for avoiding to shift the heating demand into cooling. With this regard, the use of thermal mass, natural ventilation and shading devices in the east and west façades would be highly determining for achieving a balance between the two conflicting objectives throughout climatic zones in Chile.

Comments

If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.

DOI

https://doi.org/10.14305/ibpc.2018.ms-1.04

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

COinS
 
Sep 24th, 10:30 AM Sep 24th, 12:00 PM

Optimal passive design strategies for nearly zero-energy dwellings in different Chilean climates using multi-objective genetic algorithms

Syracuse, NY

At present, most developed countries attempt to highly diminish the energy consumption of buildings towards nearly zero-energy performances. This study assesses passive design strategies by means of multi-objective optimizations with genetic algorithms, aiming to minimize the heating and cooling demand of typical single-family dwellings in Chile. The results show that the thermal transmittance and airtightness of the whole building envelope should be highly improved from the current limiting values in all assessed locations. Complementarily, strategies for managing overheating would be crucial for avoiding to shift the heating demand into cooling. With this regard, the use of thermal mass, natural ventilation and shading devices in the east and west façades would be highly determining for achieving a balance between the two conflicting objectives throughout climatic zones in Chile.

https://surface.syr.edu/ibpc/2018/MS1/4

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.