Date of Award

May 2016

Degree Type


Degree Name

Doctor of Philosophy (PhD)




Timothy M. Korter


Computational Chemistry, Density Functional Theory, Spectroscopy, Terahertz, Theoretical Chemistry, X-ray Diffraction

Subject Categories

Physical Sciences and Mathematics


It is not possible to study almost any physical system without considering intermolecular forces (IMFs), no matter how insignificant they may appear relative to other energetic factors. Countless studies have shown that IMFs are responsible for governing a wide variety of physical properties, but often the atomic-origins of such interactions elude experimental detection. A considerable amount of work throughout the course of this research was therefore placed on using quantum mechanical simulations, specifically density functional theory (DFT), to calculate the electronic properties of solid-materials. The goal of these calculations was a better understanding of the precise origins of interatomic energies, down to the single-electron level. Furthermore, experimental X-ray diffraction and terahertz spectroscopy were both utilized because they are able to broadly probe the potential energy surfaces of molecular crystals, enhancing the theoretical data. Combining DFT calculations with experimental measurements enabled in-depth studies into the nature of specific non-covalent interactions, with results that were often unexpected based on conventional descriptions of IMFs. Overall, this work represents a significant advancement in understanding how subtle changes in characteristics like orbital occupation or electron density can have profound effects on bulk properties, highlighting the fragile relationship that exists between the numerous energetic parameters occurring within condensed phase systems.


Open Access