Date of Award

May 2016

Degree Type


Degree Name

Doctor of Philosophy (PhD)


School of Information Studies


Jian Qin


mesoscopic network analysis, network analysis, scientific collaboration, temporal networks

Subject Categories

Social and Behavioral Sciences


How is the rise in team science and the emergence of the research group as the fundamental unit of organization of science affecting scientists’ opportunities to collaborate? Are the majority of scientists becoming dependent on a select subset of their peers to organize the intergroup collaborations that are becoming the norm in science? This dissertation set out to explore the evolving nature of scientists’ interdependence in team-based research environments. The research was motivated by the desire to reconcile emerging views on the organization of scientific collaboration with the theoretical and methodological tendencies to think about and study scientists as autonomous actors who negotiate collaboration in a dyadic manner. Complex Adaptive Social Systems served as the framework for understanding the dynamics involved in the formation of collaborative relationships. Temporal network analysis at the mesoscopic level was used to study the collaboration dynamics of a specific research community, in this case the genomic research community emerging around GenBank, the international nucleotide sequence databank. The investigation into the dynamics of the mesoscopic layer of a scientific collaboration networked revealed the following—(1) there is a prominent half-life to collaborative relationships; (2) the half-life can be used to construct weighted decay networks for extracting the group structure influencing collaboration; (3) scientists across all levels of status are becoming increasingly interdependent, with the qualification that interdependence is highly asymmetrical, and (4) the group structure is increasingly influential on the collaborative interactions of scientists. The results from this study advance theoretical and empirical understanding of scientific collaboration in team-based research environments and methodological approaches to studying temporal networks at the mesoscopic level. The findings also have implications for policy researchers interested in the career cycles of scientists and the maintenance and building of scientific capacity in research areas of national interest.


Open Access