Design and implementation of a low-power SOI CMOS receiver

Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Electrical Engineering and Computer Science


Ercument Arvas


CMOS, Silicon on insulator, Deep space, Wireless communications

Subject Categories

Aerospace Engineering | Electrical and Computer Engineering | Engineering


There is a strong demand for wireless communications in civilian and military applications, and space explorations. This work attempts to implement a low-power, high-performance fully-integrated receiver for deep space communications using Silicon on Insulator (SOI) CMOS technology. Design and implementation of a UHF low-IF receiver front-end in a 0.35-μm SOI CMOS technology are presented. Problems and challenges in implementing a highly integrated receiver at UHF are identified. Low-IF architecture, suitable for low-power design, has been adopted to mitigate the noise at the baseband. Design issues of the receiver building blocks including single-ended and differential LNA's, passive and active mixers, and variable gain/bandwidth complex filters are discussed. The receiver is designed to have a variable conversion gain of more than 100 dB with a 70 dB image rejection and a power dissipation of 45 mW from a 2.5-V supply. Design and measured performance of the LNA's, and the mixer are presented. Measurement results of RF front-end blocks including a single-ended LNA, a differential LNA, and a double-balanced mixer demonstrate the low power realizability of RF front-end circuits in SOI CMOS technology. We also report on the design and simulation of the image-rejecting complex IF filter and the full receiver circuit. Gain, noise, and linearity performance of the receiver components prove the viability of fully integrated low-power receivers in SOI CMOS technology.


Surface provides description only. Full text is available to ProQuest subscribers. Ask your Librarian for assistance.