Date of Award

5-2012

Degree Type

Dissertation

Embargo Date

8-20-2012

Degree Name

Doctor of Philosophy (PhD)

Department

Physics

Advisor(s)

Mark J. Bowick

Keywords

elasticity, electrostatics, geometry, liquid droplet, soft matter, solution

Subject Categories

Physics

Comments

This thesis explores geometric aspects of soft matter systems. The topics covered fall into three categories: (i) geometric frustrations, including the interplay of geometry and topological defects in two dimensional systems, and the frustration of a planar sheet attached to a curved surface; (ii) geometries of liquid droplets, including the curvature driven instabilities of toroidal liquid droplets and the self-propulsion of droplets on a spatially varying surface topography; (iii) the study of the electric double layer structure around charged spherical interfaces by a geometric method. In (i), we study the crystalline order on capillary bridges with varying Gaussian curvature. Energy requires the appearance of topological defects on the surface, which are natural spots for biological activity and chemical functionalization. We further study how liquid crystalline order deforms ┬░exible structured vesicles. In particular we find faceted tetrahedral vesicle as the ground state, which may lead to the design of supra-molecular structures with tetrahedral symmetry and new classes of nano-carriers. Furthermore, by a simple paper model we explore the geometric frustration on a planar sheet when brought to a negative curvature surface in a designed elasto-capillary system. In (ii), motivated by the idea of realizing crystalline order on a stable toroidal droplet and a beautiful experiment on toroidal droplets, we study the Rayleigh instability and the shrinking instability of thin and fat toroidal droplets, where the toroidal geometry plays an essential role. In (iii), by a geometric mapping we construct an approximate analytic spherical solution to the nonlinear Poisson-Boltzmann equation, and identify the applicability regime of the solution. The derived geometric solution enables further analytical study of spherical electrostatic systems such as colloidal suspensions.

Access

Open Access

Included in

Physics Commons

Share

COinS