Document Type




Embargo Period





Let R be a commutative noetherian local ring. A finitely generated R-module C is semidualizing if it is self-orthogonal and satisfies the condition HomR(C,C) \cong R. We prove that a Cohen-Macaulay ring R with dualizing module D admits a semidualizing module C satisfying R\ncong C \ncong D if and only if it is a homomorphic image of a Gorenstein ring in which the defining ideal decomposes in a cohomologically independent way. This expands on a well-known result of Foxby, Reiten and Sharp saying that R admits a dualizing module if and only if R is Cohen-Macaulay and a homomorphic image of a local Gorenstein ring.

Additional Information

This manuscript is from, for more information look at


Harvested from

Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.