Laboratory simulations of chemical reactions on dust grains in the interstellar medium

Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)




Gianfranco Vidali


Dust, Interstellar medium, Hydrogen, Carbon dioxide

Subject Categories

Astrophysics and Astronomy | Physical Sciences and Mathematics | Physics


Dust grains exert a major influence upon the chemical composition of the interstellar medium: photoelectrons emitted from the dust grains are the primary energy source for heating interstellar gas, dust grains in dense molecular clouds can accumulate layers of frozen interstellar gases that participate in solid phase chemical reactions, and the most abundant molecule in the Universe, molecular hydrogen, primarily forms from hydrogen atoms adsorbed onto grain surfaces. Molecular hydrogen influences the evolution of molecular clouds by acting as a coolant during the gravitational collapse of the cloud and serving as a precursor for the formation of many molecular species. A complete description of molecular hydrogen formation in molecular clouds requires an understanding of the efficiency of hydrogen atom recombination on ice surfaces. Observations of interstellar carbon dioxide ice have the potential for serving as a diagnostic sign of the evolution of interstellar ice layers but require a satisfactory explanation of the formation mechanisms of interstellar CO 2 .

This work describes a series of investigations that were designed to study the properties of interstellar dust grains and to obtain and analyze data for astrophysically important chemical reactions. We measured the recombination efficiency of H atoms on the surface of amorphous H 2 O ices and measured the kinetics of H 2 formation and desorption on different morphologies of ice substrate. We demonstrated that the hydrogen atom recombination kinetics depend upon the morphology of the ice layer and that the recombination efficiency is consistent with observations of molecular clouds. We also demonstrated that CO and O can be trapped within an amorphous H 2 O ice layer at temperatures greater than their sublimation temperatures and that the reaction CO (ads) + O (ads) [arrow right] CO 2,(ads) can produce appreciable amounts of CO2 within an interstellar ice layer in the absence of ultraviolet or cosmic-ray irradiation of the ice mantles. Extensions of these experimental techniques for future investigations of chemistry on the surfaces of interstellar dust grain analogues are also discussed.


Surface provides description only. Full text is available to ProQuest subscribers. Ask your Librarian for assistance.