Document Type





High Performance Fortran, HPF, mixed task computations, data-parallel computations, coordination library, Message Passing Interface, MPI




Computer Sciences


The data-parallel language High Performance Fortran (HPF) does not allow efficient expression of mixed task/data-parallel computations or the coupling of separately compiled data-parallel modules. In this paper, we show how these common parallel program structures can be represented, with only minor extensions to the HPF model, by using a coordination library based on the Message Passing Interface (MPI). This library allows data-parallel tasks to exchange distributed data structures using calls to simple communication functions. We present microbenchmark results that characterize the performance of this library and that quantify the impact of optimizations that allow reuse of communication schedules in common situations. In addition, results from two-dimensional FFT, convolution, and multiblock programs demonstrate that the HPF/MPI library can provide performance superior to that of pure HPF. We conclude that this synergistic combination of two parallel programming standards represents a useful approach to task parallelism in a data-parallel framework, increasing the range of problems addressable in HPF without requiring complex compiler technology.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.