Conference Editor

Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer

Location

Syracuse, NY

Event Website

http://ibpc2018.org/

Start Date

25-9-2018 3:15 PM

End Date

25-9-2018 5:00 PM

Description

In view of growing concerns on climate change and temperature extremes, there is a need to explore novel methods that provide thermal comfort in architecture. Latent heat thermal energy storage with phase change materials (PCM) has been widely researched in last decades in the field of energy technology and proved beneficial for reduction and shifting of the thermal loads and improving the overall thermal storage capacity of building components. Although a variety of PCM containments have been investigated for indoor cooling applications, the examples of exposed, design-oriented macro-encapsulations are rare. This paper presents a study of visible, suspended ceiling encapsulations for passive cooling, made of glass and novel bio-based PCM. The aim is to provide an overview of correlations between basic containment geometries and their thermal behavior that serves as a base for the further design of custom-made PCM macro-encapsulations. An experimental set-up of test boxes is developed for thermal cycling and a comparative analysis of the thermal performance of varied PCM encapsulation geometries. The study concludes that the containments with the large exchange surface and the small thickness offer an optimal material distribution for the temperature reduction in the box. Based on experimental results, suggestions are made on further formal strategies for the design of cooling elements for local thermal regulation.

Comments

If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.

DOI

https://doi.org/10.14305/ibpc.2018.ps18

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

COinS
 
Sep 25th, 3:15 PM Sep 25th, 5:00 PM

Experimental Investigation of the Impact of PCM Containment on Indoor Temperature Variations

Syracuse, NY

In view of growing concerns on climate change and temperature extremes, there is a need to explore novel methods that provide thermal comfort in architecture. Latent heat thermal energy storage with phase change materials (PCM) has been widely researched in last decades in the field of energy technology and proved beneficial for reduction and shifting of the thermal loads and improving the overall thermal storage capacity of building components. Although a variety of PCM containments have been investigated for indoor cooling applications, the examples of exposed, design-oriented macro-encapsulations are rare. This paper presents a study of visible, suspended ceiling encapsulations for passive cooling, made of glass and novel bio-based PCM. The aim is to provide an overview of correlations between basic containment geometries and their thermal behavior that serves as a base for the further design of custom-made PCM macro-encapsulations. An experimental set-up of test boxes is developed for thermal cycling and a comparative analysis of the thermal performance of varied PCM encapsulation geometries. The study concludes that the containments with the large exchange surface and the small thickness offer an optimal material distribution for the temperature reduction in the box. Based on experimental results, suggestions are made on further formal strategies for the design of cooling elements for local thermal regulation.

https://surface.syr.edu/ibpc/2018/posters/18

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.