Conference Editor

Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer

Keywords:

Practical identifiability, Parameter estimation, Model calibration, Lumped models

Location

Syracuse, NY

Event Website

http://ibpc2018.org/

Start Date

26-9-2018 10:30 AM

End Date

26-9-2018 12:00 PM

Description

Identifying building envelope thermal properties from the calibration of a lumped model raises identifiability issues. Not only needs the simplified model to be structurally identifiable, i.e. deliver unique estimates after calibration, but also the data used might not be informative enough to result in either or both accurate estimates and physically interpretable values. This could particularly be the case when data is extracted from non intrusive in situ measurements, in the sense not disturbing potential occupancy. In this frame, this paper develops a method to investigate the physical interpretation of the parameters of lumped models through a numerical tests procedure. Each test runs a simulation of a comprehensive thermal model of a building, with variations in thermal resistance properties of the envelope. Each simulation delivers data used to calibrate a lumped model. The parameters of the lumped model are then physically interpretable if their value vary according to the variations of the comprehensive model. The overall test procedure is applied to the study of a 2R2C model. Results show that the calibration of this model delivers robust calibration results for all parameters but one and also shows satisfactory robustness of the estimation of the overall thermal resistance. This paper concludes that the numerical test procedure does allow to evaluate practical identifiability of lumped models, and will in future work be used to examine more complex lumped models

Comments

If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.

DOI

https://doi.org/10.14305/ibpc.2018.ms-7.03

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

COinS
 
Sep 26th, 10:30 AM Sep 26th, 12:00 PM

Evaluation of the physical interpretability of calibrated building model parameters

Syracuse, NY

Identifying building envelope thermal properties from the calibration of a lumped model raises identifiability issues. Not only needs the simplified model to be structurally identifiable, i.e. deliver unique estimates after calibration, but also the data used might not be informative enough to result in either or both accurate estimates and physically interpretable values. This could particularly be the case when data is extracted from non intrusive in situ measurements, in the sense not disturbing potential occupancy. In this frame, this paper develops a method to investigate the physical interpretation of the parameters of lumped models through a numerical tests procedure. Each test runs a simulation of a comprehensive thermal model of a building, with variations in thermal resistance properties of the envelope. Each simulation delivers data used to calibrate a lumped model. The parameters of the lumped model are then physically interpretable if their value vary according to the variations of the comprehensive model. The overall test procedure is applied to the study of a 2R2C model. Results show that the calibration of this model delivers robust calibration results for all parameters but one and also shows satisfactory robustness of the estimation of the overall thermal resistance. This paper concludes that the numerical test procedure does allow to evaluate practical identifiability of lumped models, and will in future work be used to examine more complex lumped models

https://surface.syr.edu/ibpc/2018/MS7/3

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.