Conference Editor

Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer

Keywords:

Night Cooling, Building Energy Modelling, Genetic Algorithms, Neural Networks and Optimization.

Location

Syracuse, NY

Event Website

http://ibpc2018.org/

Start Date

25-9-2018 1:30 PM

End Date

25-9-2018 3:00 PM

Description

This paper investigates if it is possible to optimize night cooling control setpoints and ventilation schedule regarding energy consumption and indoor climate. A retail store, located in Gothenburg, was used as a case study. The investigation was done by numerical modelling and simulations. It started with development and calibration of a building energy model for the store with data collected from the field. Afterwards, the calibrated model was used in the optimization of the night cooling. Initially, a genetic algorithm was applied to find the global minimum of the problem and further refined with a local search algorithm. The optimization speed was increased by neural networks, as they can approximate results faster than the building energy model. The study suggests that the cooling and fan energy consumption can be reduced by 16% in the studied facility, compared to the currently used trial-and-error schemes. The project concludes that the use of logged control data in combination with genetic algorithms and neural networks are an efficient way for both calibration and optimization of building energy models. The industry moves towards an increase of available logged control data. As such, it is important to be able to properly utilize the data, for improving the accuracy of building energy simulations and improving the results.

Comments

If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.

DOI

https://doi.org/10.14305/ibpc.2018.ms-6.05

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

COinS
 
Sep 25th, 1:30 PM Sep 25th, 3:00 PM

Optimization of Night Cooling of Commercial Premises Using Genetic Algorithms and Neural Networks

Syracuse, NY

This paper investigates if it is possible to optimize night cooling control setpoints and ventilation schedule regarding energy consumption and indoor climate. A retail store, located in Gothenburg, was used as a case study. The investigation was done by numerical modelling and simulations. It started with development and calibration of a building energy model for the store with data collected from the field. Afterwards, the calibrated model was used in the optimization of the night cooling. Initially, a genetic algorithm was applied to find the global minimum of the problem and further refined with a local search algorithm. The optimization speed was increased by neural networks, as they can approximate results faster than the building energy model. The study suggests that the cooling and fan energy consumption can be reduced by 16% in the studied facility, compared to the currently used trial-and-error schemes. The project concludes that the use of logged control data in combination with genetic algorithms and neural networks are an efficient way for both calibration and optimization of building energy models. The industry moves towards an increase of available logged control data. As such, it is important to be able to properly utilize the data, for improving the accuracy of building energy simulations and improving the results.

https://surface.syr.edu/ibpc/2018/MS6/5

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.