Conference Editor

Jianshun Zhang; Edward Bogucz; Cliff Davidson; Elizabeth Krietmeyer

Keywords:

Phase change humidity control material, HAMT, Enthalpy method, Energy consumption

Location

Syracuse, NY

Event Website

http://ibpc2018.org/

Start Date

24-9-2018 1:30 PM

End Date

24-9-2018 3:00 PM

Description

Phase change humidity control material (PCHCM) is a new kind of composite made of high performance PCM microcapsules and diatomite. The PCHCM composite can moderate the hygrothermal variations by absorbing or releasing both heat and moisture and significantly reduce the peak/valley values of indoor temperature and relative humidity. In this paper, a novel model is developed to evaluate the energy performance of office buildings with PCHCM. The model is validated by a series of experiments, and then applied to investigate the effect of PCHCM on energy consumption in different typical climates worldwide (i.e. Beijing, Paris, Atlanta, and Guangzhou). Results show that high values of energy efficiencies can be obtained in the climates which characterized by a wide amplitude of temperature and humidity difference all day along (Paris and Atlanta). Noteworthy, the highest potential energy saving rate could be up to 19.57% for the office building in Paris.

Comments

If you are experiencing accessibility issues with this item, please contact the Accessibility and Inclusion Librarian through lib-accessibility@syr.edu with your name, SU NetID, the SURFACE link, title of record, and author & and reason for request.

DOI

https://doi.org/10.14305/ibpc.2018.be-4.02

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

COinS
 
Sep 24th, 1:30 PM Sep 24th, 3:00 PM

Evaluation of the impact of phase change humidity control material on energy performance of office buildings

Syracuse, NY

Phase change humidity control material (PCHCM) is a new kind of composite made of high performance PCM microcapsules and diatomite. The PCHCM composite can moderate the hygrothermal variations by absorbing or releasing both heat and moisture and significantly reduce the peak/valley values of indoor temperature and relative humidity. In this paper, a novel model is developed to evaluate the energy performance of office buildings with PCHCM. The model is validated by a series of experiments, and then applied to investigate the effect of PCHCM on energy consumption in different typical climates worldwide (i.e. Beijing, Paris, Atlanta, and Guangzhou). Results show that high values of energy efficiencies can be obtained in the climates which characterized by a wide amplitude of temperature and humidity difference all day along (Paris and Atlanta). Noteworthy, the highest potential energy saving rate could be up to 19.57% for the office building in Paris.

https://surface.syr.edu/ibpc/2018/BE4/2

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.