Date of Award

May 2018

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Electrical Engineering and Computer Science


Jian Tang


Incentive Mechanism, Mobile Crowdsensing Systems, Resource Allocation, Scheduling, Spatiotemporal Modeling, Wireless Networks

Subject Categories



We envision that in the near future, just as Infrastructure-as-a-Service (IaaS), radios and radio resources in a wireless network can also be provisioned as a service to Mobile Virtual Network Operators (MVNOs), which we refer to as Radio-as-a-Service (RaaS). In this thesis, we present a novel auction-based model to enable fair pricing and fair resource allocation according to real-time needs of MVNOs for RaaS. Based on the proposed model, we study the auction mechanism design with the objective of maximizing social welfare. We present an Integer Linear Programming (ILP) and Vickrey-Clarke-Groves (VCG) based auction mechanism for obtaining optimal social welfare. To reduce time complexity, we present a polynomial-time greedy mechanism for the RaaS auction. Both methods have been formally shown to be truthful and individually rational.

Meanwhile, wireless networks have become more and more advanced and complicated, which are generating a large amount of runtime system statistics. In this thesis, we also propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. We present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training.

Mobile wireless networks have become an essential part in wireless networking with the prevalence of mobile device usage. Most mobile devices have powerful sensing capabilities. We consider a general-purpose Mobile CrowdSensing(MCS) system, which is a multi-application multi-task system that supports a large variety of sensing applications.

In this thesis, we also study the quality of the recruited crowd for MCS, i.e., quality of services/data each individual mobile user and the whole crowd are potentially capable of providing. Moreover, to improve flexibility and effectiveness, we consider fine-grained MCS, in which each sensing task is divided into multiple subtasks and a mobile user may make contributions to multiple subtasks. More specifically, we first introduce mathematical models for characterizing the quality of a recruited crowd for different sensing applications. Based on these models, we present a novel auction formulation for quality-aware and fine- grained MCS, which minimizes the expected expenditure subject to the quality requirement of each subtask. Then we discuss how to achieve the optimal expected expenditure, and present a practical incentive mechanism to solve the auction problem, which is shown to have the desirable properties of truthfulness, individual rationality and computational efficiency.

In a MCS system, a sensing task is dispatched to many smartphones for data collections; in the meanwhile, a smartphone undertakes many different sensing tasks that demand data from various sensors. In this thesis, we also consider the problem of scheduling different sensing tasks assigned to a smartphone with the objective of minimizing sensing energy consumption while ensuring Quality of SenSing (QoSS). First, we consider a simple case in which each sensing task only requests data from a single sensor. We formally define the corresponding problem as the Minimum Energy Single-sensor task Scheduling (MESS) problem and present a polynomial-time optimal algorithm to solve it. Furthermore, we address a more general case in which some sensing tasks request multiple sensors to re- port their measurements simultaneously. We present an Integer Linear Programming (ILP) formulation as well as two effective polynomial-time heuristic algorithms, for the corresponding Minimum Energy Multi-sensor task Scheduling (MEMS) problem.

Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods.


Open Access

Included in

Engineering Commons