ABSTRACT

In this golden era of multi-messenger astronomy, with highly sensitive telescopes de-
tecting spectacular transients almost nightly, a whole new window is now wide open to
study the universe on all timescales. Typically, these events are generated from the total
or partial destruction of an astrophysical object and emit electromagnetic waves of all
different wavelengths, neutrinos and gravitational waves—carrying important physics that
was previously inaccessible. Therefore, it is of utmost importance to take advantage of
this tremendous progress in observation with analytic and simulation tools to explain the
physics of exotic astrophysical events. This thesis aims to do so by studying the hydro-
dynamics of some of the most exotic high-energy astrophysical phenomena, ranging from
tidal disruption events, shock physics, accretion, and gravitational wave emission from
core collapse supernovae, and dynamic stability of the giant planetary atmosphere. We
have developed novel analytical tools, primarily using classical hydrodynamics and gen-
eral relativity, and have utilized computational techniques (numerical and simulations).
Our study on giant planets shows how the presence of a solid core can save the planet
from being unstable when due to ionization it is expected to be, and thus solves a puzzle
in the “core-accretion” theory of giant planet formation. We have presented a general rel-
ativistic modification for the accretion solution on a neutron star through stalled shock,
which is useful in understanding weak or failed supernovae and can potentially impact
the much-discussed standing accretion shock instability—which we restudied and in the
process uncovered a new variant impacting the explosion mechanism and gravitational-
wave signature. We have also studied the oscillation modes of a nascent proto-neutron
star to show how they can contribute to the gravitational wave signature emitted. Our
study of deep-tidal disruption events (events in which stars approach black holes closely)

refutes the widely speculated possibility of nuclear detonation arising in such events.
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Chapter 1

Introduction

mavTa per (everything flows)

Heraclitus

The universe is vast; the length scale starts with the Planck length at ~ 1073?cm and
goes all the way to ~ 10%°cm-the size of the observable universe. While on earth we are
used to dealing with energies of the order of joules (10~ "ergs), a supernova releases energy
of the order 10** joules! Similarly, in space astronomy the temperatures that we deal with
run from a few degrees above absolute zero, with particles moving very slowly, to billions
of degrees Celsius, with particles moving with velocities close to the speed of light. High-
energy astrophysics studies the dynamic, energetic, and often violent physical processes
operating in the extreme universe. Therefore, supernovae, neutron stars, pulsars, active
galactic nucleus (AGN), and black holes are the typical protagonists in the story of
high-energy astrophysics. Some other major players are stellar winds, jets crushing their
way through the Interstellar or Intergalactic medium (ISM or IGM), and accretion disks
around compact bodies that come in a wide range of length scales [6].

Typically events where an astrophysical object suffers either partial or total destruc-
tion (e.g. Supernovae-the spectacular explosion in the violent death of massive stars,
Tidal Disruption Events—where stars are crushed by supermassive black holes) or events
where a compact object accretes stellar material-emit electromagnetic waves of all dif-
ferent wavelengths, neutrinos, and gravitational waves. With telescopes (e.g., Swift [7],
Chandra [8] , James Web Space Telescope (JWST) [9], XMM-Newton [10]) picking spec-
tacular electromagnetic transients (astrophysical events that last from fractions of a sec-
ond to weeks or years) almost nightly, a whole new window is now wide open to study the
universe on all timescales. Moreover, with the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [11, 12] and it’s sister facilities VIRGO [13], KAGRA [14] and the

prospect of third-generation detectors as Cosmic Explorer [15] and Einstein Telescope



[16] coming online in near future the universe is now glowing in gravitational waves too,
marking the dawn of a new era of multi-messenger astrophysics. This reality necessarily
places the arena of high-energy processes at the very heart of modern astrophysics [17].
Now stars are gaseous bodies, powered by central nuclear engines. ISM and IGM are also
composed of gases. Therefore, we are dealing with fluids here, things that flow. Compact
objects like neutron stars and white dwarfs are also modeled with fluids with a stiffer
equation of state.

Matter is discontinuous if it is fine-grained. But when all we care about is long-
wavelength (low-frequency) dynamics of a many-body system, as in most astrophysical
scenarios, we can instead opt for a coarse-grained description. Fluid dynamics is such
a effective description suitable for studying the dynamics of continuous and deformable
media such as gases, liquids, and plasma [18]. One describes such a medium by specifying
the velocity field ¥ = ¢(r,t), and two independent thermodynamic properties, most
commonly the pressure p = p(7,t) and the mass density p = p(r,t), at every point
in space and time in a region [19]. The validity of such a description depends upon
two basic length-scale associated with such many-body systems. The first of these two
length scales is the microscopic mean free path, A.,yision—the mean distance traveled by
individual particles between molecular collisions. This length-scale determines the rate at
which any generic disturbances imposed on the fluid relaxes through molecular collisions.
The other important length-scale is the length scale L over which bulk fluid properties
such as mass density p (or temperature) change through collective motion of the fluid.
Hence, this length scale increases as the length scale associated with the disturbances,
i.e. L ~ Agisturbance The fluid description is valid in the limit A.oision << L ~ Agisturbance
[20].

To describe the dynamics of fluid bodies, one typically associates the stress tensor
with the body as IL;; := pv,v; + pd;; + 1L, p = p(p, &) is the equation of state, and 011,
the gradient term. Fluids with ¢II;; = 0 are ideal fluids and in this thesis we will deal only
with such fluids. The relative importance between the remaining two terms in II;; can be
weighted by defining the Mach number Ma := v/cs where the sound speed ¢ : (Op/dp) |s,
s being the specific entropy (entropy per unit mass). Flows with Ma ~ 1 are compressible;
on the other hand, flows with Ma << 1 are incompressible. The fluids encountered in
astrophysics are mostly compressible and will be the subject matter of this. In most cases,
the viscosity is subdominant and can be safely neglected (accretion disks being the major
exclusion). Astronomical objects are often self-gravitating; therefore, in astrophysical
fluid dynamics gravitation is utterly important (the same with the magnetic field, in
cases); whereas in terrestrial/engineering fluid dynamics these effects are often neglected

[21]. For example, a very common scenario in astrophysics is when materials accelerate



and attain supersonic velocity under the gravitational influence of a central body (and
eventually get accreted onto it); then, because of the high compressibility, strong shock
fronts are often formed, as we will explore in greater detail in this thesis. When gravitation
is dealt with in Newtonian theory, the resulting theory is called hydrodynamics or gas
dynamics and relativistic hydrodynamics when relativity is used[19]. The equations of
hydrodynamics, which are conservation statements of mass, momentum, and energy, are
reviewed in Chapter 2 of this thesis.

The equations of hydrodynamics for systems in states far from equilibrium are no-
toriously hard to solve, the chief complaint being the inherent non-linearity. Although
the advent of computational power enables us to solve for nonlinear systems that were
unthinkable a decade ago, still the use of perturbation techniques continues to remain
powerful in providing useful insights into system behavior. The strategy is to first de-
scribe some sort of equilibrium for the system and then to perturb the equilibrium ever
so slightly so that one can get away by neglecting the non-linearity as much as possible.
We will present a rough sketch of this algorithm known as linear perturbation theory in
Chapter 2. Although it sounds like a good fairy tale that a fluid remains steady; the typ-
ical steady state considered, specifically, in stellar astrophysics, is a state with 9/0t = 0
everywhere inside the fluid body. Now, if we apply small perturbations to this configu-
ration and find that they grow over time, we say that the configuration is unstable with
respect to those perturbations. On the other hand, if we find those perturbations becom-
ing weaker and weaker and eventually dying out over time or the perturbations cause the
configuration to oscillate with time, then the configuration is stable in response to those
perturbations. We can thus define instabilities as mechanism that initiate processes of en-
ergy exchange (“energy release”). They feed off free energy in the system and ultimately
makes “great things happen”. A Few famous instabilities in astrophysics are the Kelvin-
Helmholtz instability, which is caused by stellar jets moving at high speed with respect
to the ambient medium [22], the gravitational (Jeans) instability, which is thought to be
responsible for formation of giant planets and stars [23], the various thermal instabilities
that play a key role in determining the temperature structure of ISM in the galaxy [24]
and the one that will appear throughout this thesis in this thesis arises in the context of
core-collapse supernovae, the “standing accretion shock instabilies (SASI)”[25, 26, 27].

The next major focus of this thesis is accretion—the phenomenon of the fall of mat-
ter (fluid) onto some compact body. The absence of angular momentum of the falling
material will lead to a spherically symmetric accretion, and the presence of sufficient an-
gular momentum leads to the formation of an accretion disc [28]. Accretion is attractive
to astrophysicists— because of the rich physics involved and to astronomers— because a

significant fraction of the total rest mass energy of the material accrued transforms into



radiation making it the prime target for their observation.

Core-collapse supernovae are the places where hydrodynamics, stability, and accretion
play major role in the overall physics and will constitute a major portion of this thesis.
When a massive star (with mass 2> 8 M) exhausts all its nuclear fuel reserve and collapses
under its own weight, the sea of electrons, stripped out of the atoms due to the extreme
temperature and density at the core, momentarily resists the gravitational collapse. But
in such a dense environment, the protons capture electrons to produce neutrons, and the
collapse carries on until the neutrons can supply enough degeneracy pressure to reestablish
equilibrium again. This moment is proclaimed by the bounce of the proto-neutron star
(PNS) (of typical size ~ 10 Km) that launches a shock in the ambient stellar medium.
This shock wave passes through the overlaying infalling stellar envelope, ionizing it, losing
energy in the process, and stalls at a distance of ~ 100 — 150 Km. In various phases of
the procedure mentioned above detectable electromagnetic, gravitational, and neutrino
signals are emitted, making core-collapse supernovae the prototypical multi-messenger
source [29)].

In Chapter 4, we present novel relativistic accretion solutions that match the boundary
conditions at the location of the stalled shock and the surface of the compact object.
In the model, we have considered the Schwarzschild geometry to model gravity around
the accreting neutron star and treated the ambient stellar material as pressureless dust
and the post-shock fluid as a v = 4/3 polytrope. In this setting, we first derive the
extent of discontinuities in fluid properties (e.g. velocity, density, and pressure) across
the shock. Similarly to previous work carried out in the Newtonian limit, we find that
the gas ‘settles’ interior to the stalled shock [30, 25]; in the relativistic regime analyzed
here, the velocity asymptotically approaches zero near the Schwarzschild radius. These
solutions can represent accretion on a material surface if the radius of the compact object
is outside of its event horizon, such as a neutron star; we also discuss the possibility that
these solutions can approximately represent the accretion of gas on a newly formed black
hole following a core-collapse event. Hence, they provide novel generalizations to earlier
work and highlight the importance of general relativity, which becomes essential when
the shock is pushed to very small radii (as in failed or nearly failed scenarios). We point
out that these solutions are different from the relativistic generalizations of the Bondi
accretion solution [31] as the latter ones do not account for the presence of a pre-existing
shock. A significant fraction of the kinetic energy of the free-falling fluid is transformed
into its internal energy when it passes through an existing strong shock. This effect
cannot be considered as a small perturbation on top of a pure free-fall solution.

Despite efforts since the 1950s, the question of “What causes the stalled shock to revive



and ultimately give rise to the explosion?” continues to remain unanswered. Hydrody-
namic instability, specifically the SASI discovered in the early 2000’s showed promise of
explaining that question and created some stir in the community [25, 26, 32, 33, 34, 35].
In present days the neutrino mechanism—where the emitted neutrinos deposit enough
energy behind the shock to revive it is favored by most over SASI. Nevertheless, the
community agrees on the fact that SASI contributes to the asymmetric explosion seen in
supernovae by aiding the neutrino mechanism by enhancing the neutrino heating area.
Our analysis of SASI in Chapter 6 takes a fresh look at SASI and, in addition to recon-
firming the traditional attributes, we also find a new set of unstable modes in the ¢ = 2
eigenmode spectra. The oscillation frequency corresponding to the maximally unstable
mode (among those unstable modes) is strikingly similar to the frequency associated with
the free-fall time of the PNS | which is high, while SASI is traditionally associated with
relatively low-frequency oscillations. We claim that these unstable modes will soon add
up and cascade into other unstable modes. Then the non-linear coupling between various
unstable modes can create turbulent motion in the cavity between the shock front and
the neutron star, fueling the asymmetric explosion [36, 37, 38].

In Chapter 5 we do asteroseismology-the study of oscillation modes of stars—neutron
star in our case. By modeling the neutron star as a fluid body with appropriate equation
of state, we perturb the configuration and work with the linear terms. We first work in
the Cowling approximation [39]-without perturbing the space-time metric and eventually
relax the approximation. By adopting numerical methods, we solve the perturbation
equations and obtain the frequencies corresponding to the various oscillation modes of
the PNS. The fundamental mode (f-mode) of the oscillations found by this method is
then shown to be the dominant supplier of power in the gravitational wave signature
obtained in the state-of-the-art supernovae simulations [2, 40]. Now what might cause
the neutron star to oscillate? We discuss the possibility that the aforementioned [ = 2
unstable modes may act as the hammer to set the neutron star bell ringing? The following
observation bolster our argument: although the f-modes of oscillation of the neutron star
contribute in the gravitational waves; other modes of oscillations (e.g. the pressure modes
(p-mode), the gravity modes (g-mode)) do not! A resonance between the SASI cavity
and the neutron star oscillation explains this— only the f-mode frequencies line up with
the SASI unstable modes and hence are activated, not the others!

Chapter 3 analyzes the hydrodynamics of a giant planetary atmosphere with a solid
core. There are a couple of theories explaining the formation of giant planets. The “gravi-
tational instability” models describe the formation as a result of gravitational instabilities
in the protoplanetary disc [23, 41]. On the other hand, the “core accretion” paradigm ad-

vocates the gradual formation of a solid core and then run-away gas accretion by it from



the disc [42, 43]. During this run-away gas accretion phase, the material heats up and
gets ionized. This can lead the adiabatic index, =, of the gas to fall below 4/3-a limiting
value known as the “Chandrasekhar limit” due to the famous work of Chandrasekhar
showing any spherical polytropic structure becoming dynamically unstable when the adi-
abatic index falls below 4/3 [44]. We claim that the presence of the solid core would
impact the naive Chandrasekhar limit which should not be invoked here. Rather, we
map out a region in the plane of adiabatic index - normalized radius of the core (to the
radius of the planet) for different normalized core mass (to the total mass of the planet),
where the configuration is unstable. The core is shown to essentially provide stability for
the configuration, which remains stable even when the adiabatic index v falls well below
4/3. Our result solves a mystery in the formation process of giant planets.

In conjunction with analytic methods to attack hydrodynamics in astrophysical sce-
narios, simulation tools are becoming more and more indispensable now-a-day (for very
valid reasons that will be exemplified) to simulate the fluid flow in various high-energy
astrophysical events; one such premise is the “tidal disruption events (TDEs)”: events
where stars reaching close proximity to supermassive black holes get either partially or
completely teared apart in the tidal field of a black hole. There are strong theoretical
and observational evidence that nearly every galaxy in the universe hosts at least one
supermassive black hole (SMBH) at its center [45, 46, 47, 48, 49] as a scientific fact.
Virtually all of these behemoths are surrounded by a star cluster, the members of which
interact with each other and with the SMBH through random gravitational encounters
[50]. Such interactions occasionally fetch a star so close to the black hole that the tidal
force it experiences in the tidal field of the hole causes either partial or full disruption of
the star.

Theoretical prediction of TDEs, mainly proposed as a possible mechanism to explain
active galactic nuclei (AGN), dates back to the 1970s [51, 52, 53, 54, 55]. Although those
efforts were not successful in explaining AGN'’s; the idea of disruption of stars by black
holes thrived. Solid theoretical groundworks were laid down by the 1990s to explain
the specifics of such processes and possible signatures arising from them [56, 57, 58, 59,
60, 61]. The first observational TDE candidate, detected in X-rays, emerged in the late
1990s [62, 63, 64] and since then multiple TDE candidates have also been detected in
other wavebands, including radio, optical, UV and hard X-rays [65, 66, 67, 68, 69, 70].
The number of definitive detections now exceeds 50 in relatively quick time and this
accelerating trend in detection is expected to continue with current (e.g. Chandra, Swift,
SRG/eROSITA) and upcoming high cadence wide-field all sky surveys (e.g. SKA, LSST ,
Einstein probe) (see [71] for a detailed review of the observational status). In addition to

being a very intricate physical phenomenon to be scrutinized in its own right, the wider



astrophysics community continues to utilize TDEs as valuable tools to dig into several
other areas of their interests, for example, physics of compact objects [72, 73, 74, 75], black
hole demographics [76, 77, 78], galaxy formation and mergers [79, 80|, stellar dynamics in
otherwise quiescent galactic center [81], and accretion physics [82, 83]. All these intriguing
physics interests, in addition to the aforementioned progress in observation, have triggered
a new generation of analytic and semi-analytic works supplemented well with a plethora
of simulation-based works [84, 85, 86, 87, 88, 89, 90, 91, 92, 5, 93] to venture into different
stages of TDE evolution under various conditions [94, 95, 96, 97, 98, 99] and this trend
is expected to continue in coming decades. These studies have utilized a rich profusion
of analytic, numerical, and simulation techniques while incorporating the appropriate
stellar and gravity models. Naturally, main-sequence stars are thought to predominantly
participate in TDEs. Hence, the polytropic stellar models and to account for the radiative
diffusive processes present in a sunlike star more realistically, a variant of the polytropic
models— Eddington’s standard models [100] are the two leading stellar models utilized in
the TDE literature [57, 3, 4, 101, 5]. Depending upon the context and accuracy desired,
the Newtonian and/or General Relativistic (GR) prescription has been adopted to treat
gravity of such processes (around the hole and the self-gravity of the star) [102, 5].
Simulation techniques have played an important role in TDE research since the early
days. These simulations have adapted Lagrangian smoothed particle hydrodynamics
(SPH) [103] or Eulerian adaptive mesh refinement (AMR) [104] methods. Very recently,
a fusion between the two methods, arbitrary Lagrangian-Eulerian (also known as moving-
mesh scheme) is also being tried [105].

In the description of canonical TDESs, typically a one-solar-mass star is considered to
approach a supermassive black hole from infinity; a schematic of the process is presented
in Figure 1. The orbit of such a star is parabolic [85, 106]. The nature of such tidal
interactions and the signatures that arise from them largely depend on how close to the
black hole the star reaches. An implicit measure of this closeness is the “penetration
factor”, 8 = r/r,, where r, :== R, (M, /M*)l/ ®_ the tidal radius, is roughly the distance at
which the tidal force exerted by the black hole on the star, trying to disrupt it, becomes
equal to the self-gravity of the star, which holds it gravitationally, and r,, is the point of
closest approach between the two bodies [51]. TDEs with a low value of 5 (8 < 1) are
inherently different from those having high-5 value (5 > 1) both in the qualitative and
quantitative sense [107, 91]. While in 8 < 1 events, the tides cannot completely destroy
the star; in events with § >> 1, the tidal force engulfs the self-gravity of the star and it
suffers serious tidal compression.

The first significant understanding of this tidal compression suffered by a star in

course of a TDE came from [108]; although in that work they only considered low-/3



Figure 1: A cartoon to visualize the canonical tidal disruption process. The “penetration
factor” is defined as 8 = r¢/rp, the ratio of the tidal radius to the pericenter distance, as
defined in the text.



(8 ~ 1) encounters, in which just the stellar envelope is affected, not the core. They
reported that the star suffers from tidal compression until it reaches the pericenter (the
closest approach), after which it rebounds, which leads to ejection of stellar material in all
directions. In particular, [108] identified ejection in orthogonal directions to the orbital
plane as a possibility, contrasting major previous works of that time, which advocated the
idea that the stellar material disperses only in directions lying within the orbital plane (the
so-called “toothpaste-tube effect”; see, for example, [109, 110]). Following the same line
of reasoning as in [108], [4], in a series of papers, we examined the tidal compression that
arises in moderate (5 < f < 15) to more deep plunging (15 < # < 30) encounters, where
not only the envelope but also the core of the star is affected [57, 3, 111, 4]. They argued
that the compression the star suffers within the orbital plane, in the direction orthogonal
to the line connecting the center of the star to the hole, gets approximately canceled
by the stretching it suffers, towards the center of the black hole. Thus, they concluded
that the overall compression, i.e. rise in the central density of the star, is largely due
to the compression suffered in the orthogonal out of plane direction. To quantitatively
estimate the extent of the tidal compression suffered by the star as it passes through ~ the
pericenter, [4] approximated the star to retain its hydrostatic equilibrium until it reaches
the tidal sphere. To analyze the perturbed configuration, they proposed considering
a linear relationship between the perturbed and the original position of particular fluid
elements. Such approximations, packaged under the name the affine star model - enabled
them to analyze the TDE dynamics by dealing with only a finite number of internal
degrees of freedom of the star. Then, they asserted that at the point of maximum
compression, all the internal energy of the compressed gas comes from the transformation
of its kinetic energy gained by falling freely in the gravitational field of the hole. In
other words, at the point of maximum compression, they equate the thermal pressure
of the gas to the ram pressure of the freely infalling gas. Furthermore, adopting the
polytropic equation of state p o< p?, p the gas pressure, p the density and v the adiabatic
index of the stellar material, they found that the maximum density varies according to
Pmaz < 2071 in moderately penetrating encounters (roughly, 5 < 4 < 15). Then, they
confirmed, the same scaling continues to hold for the run of maximum density with the
change in penetration factor, even in deeply penetrating tidal encounters having £ values
of roughly § > 15 ). As a possible ramification of this sharp rise in central density and
correspondingly temperature, they proposed the possibility of igniting a thermonuclear
runaway in the core of the star in these deep TDEs.

Almost immediate criticism of [4]’s work came from [58], who argued that the dis-
ruption of the stellar envelope will be followed by formation of a shock and that will

prematurely stop the adiabatic compression. Through smoothed particle hydrodynamics



(SPH) simulations, they reinforced their claim, by showing the maximum density to fol-
low a much shallower g-scaling. Similarly, they found a factor of 2 — 3 below the increase
in the maximum temperature than that mediated by the 5% scaling as predicted by [4].
Since then, there have been a multitude of analytic and simulation works trying to resolve
this apparent dispute: some confirming and some disagreeing with their prediction. An
unanimous answer to the question of the maximum density and temperature reached at
the stellar center and, as a consequence, of how probable a thermonuclear detonation of
the stellar core in deep TDEs-remains eluding.

Recently, [5] have launched a new investigation into this by proposing a hydrodynam-
ical model to trace the evolutionary pathway of the star during the process of a deep
tidal interaction. The model incorporates all the valid assumptions of the affine-star
model of [4], while rectifying and refines some of its core physics. [5]’s model retains the
same elegance of only dealing with a finite number of independent degrees of freedom
of the affine-star model while identifying the affine approximation with the first-order
terms in an infinite series solution to the fluid equations. Next, they question the use
of globally conserved quantities in order to determine the temporal evolution of the con-
nections (between current and initial Lagrangian coordinates) in [4]’s work. [5] rightfully
identify, such use of globally conserved quantities brings in contributions from parts of
the star, where the very assumption of linear relationship between initial and perturbed
fluid coordinates itself is not valid. They note that although the affine assumption works
well in modeling the density variation at the stellar core, it inevitably fails to do so in
the rarefied outer envelope. Thus, the use of conserved quantities, derived by integrating
over the whole volume (which includes the envelope) is guilty of collecting contributions
from regions where the assumption goes wrong. It is worth noting that [4] too were
aware of this fact that, in the envelope of the star, the fundamental assumption of their
model breaks down, but failed to acknowledge the fact that the use of globally conserved
quantities was bringing undue contributions in their formalism from the envelope, where
the affine assumption fails. To rectify this, [5] resort to using fluid equations in their
differential form and then equate the leading-order terms in the initial Lagrangian coor-
dinates. This allows them to relate fluid quantities locally, making the formalism now
self-consistent with the assumptions of the affine-model. Another refinement of the [4]’s
work is accomplished while deriving the expression for the maximum density in the [5]’s
work. Instead of equating the thermal pressure of the fluid with the ram pressure of the
infalling fluid as done by [4], [5] equate the thermal pressure of the compressed gas with
the pressure gradient, rightfully pointing out that it is not the pressure itself but the
pressure gradient that is responsible for stopping compression.

These modifications result in a maximum density scaling of ppee o< 8%+, much
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shallower than the scaling of ppq. o< 320~ obtained by [4]. [5] apply their techniques
to analyze TDEs that range from a variety of stellar models, including the omnipresent
standard polytropic models and also, in cases, the Eddington standard model (with the
polytropic index I" = 4/3 and the adiabatic index  ~ 5/3), which is a crude but rea-
sonable representation of radiative stars [100]. [5]’s results ! differ significantly from that
of [4)’s. For stars modeled by the standard model, [4] found that the normalized central
density varies as 0.22/3% in the large-3 (8 = 20) regime, while [5] concludes that the same
scaling goes as 5.4 x 107333, The improved logical consistency of [5]’s model and the
dramatic difference in the large-5 (8 2 20) scaling of the maximum density and temper-
ature resulting from that allude us to launch a follow-up investigation. In Chapter 7, we
present an estimate of the maximum density and thus the extent of compression experi-
enced by a sun-like star, modeled with the Eddington standard model, in the course of a
deep disruption process (5 >> 1) through high-resolution SPH simulations. We simulate
encounters in the range of = 2 — 10 and analyze the results to obtain the maximum
density achieved. We conclude that the compression we find is mild compared to [4] in
the range of our investigation, and nuclear detonation is highly unlikely to arise from

such an event.

see Figure. 18 of [5], which shows that the results obtained for standard model stars
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Chapter 2

Preliminaries

2.1 Eulerian and Lagangian view-points

Before we write the fluid equations, we introduce two different viewpoints adopted in
typical discussion in fluid dynamics—the Fulerian and Lagrangian viewpoints. In the
Eulerian viewpoints, one chooses to describe the variations of fluid properties at a fized
point in space; hence the Fulerian time derivatives would simply be the partial differential
operator, d/0t. On the other hand, from the Lagrangian point of view one chooses to
describe how the fluid properties of an infinitesimal bit of fluid change over time as one
rides on it. The Lagrangian time-derivative is then

2.2 Fluid equations: conservation laws

The equations of hydrodynamics are respectively-the continuity that describes the con-
servation of mass density, the Navier-Stokes equation that describes the conservation of
momentum density and the energy equation that describes conservation of energy. We
consider a fluid with following stress tensor, 1I;; := pv;v; + pd;; + 611, the pressure
p = p(p, &) as a function of the density p and energy & is the equation of state, and
0ll;; the gradient term. Fluids with ¢II;; = 0 are ideal fluids and in this thesis we will
deal only with such fluids. 7 := pt¢’ denotes the momentum density of the fluid and the
energy current j€ is defined as j¢ := (p+ &).Y. The conservation laws are surmised as the

equations of hydrodynamics and are as follows:

1. Conservation of mass: the continuity equation

p _

% V.7 (2.2)
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Equation (2.2) is a simple statement that says that the mass cannot be created or

destroyed.

2. Conservation of momentum: the Navier-Stokes equations

8 T
ot

this is essentially a rewrite of Newton’s second law of motion.

3. Conservation of energy
o€ -
— =-V.j¢ 2.4
5 = V- (2.4)

Invoking the first laws of thermodynamic,

d€ = Tds — pd (%) (2.5)

Taking the time-derivative of this equation and upon utilizing the continuity equa-

tion we obtain,

d& ds p
“ =72 _Lyy 2.6
i = Lar VY (26)
which implies,
7% g (2.7)
dt '

the Lagrangian derivative used here is to signify the fact that the statement says,
specific entropy of a gas parcel is conserved along its path of motion. Although we
emphasize the fact that this is only true for regions of smooth flow, as we will show,

the discontinuities in the flow (shocks) do not conserve entropy.

2.3 Shocks

Under normal conditions, fluid parcels along their path of motion conserve entropy, and
the conservation of energy equation implies conservation of entropy. But there are condi-
tions under which this is not true and the fluid element experiences an abrupt change in
entropy (and other associated properties), resulting in a shock wave. One way to under-
stand a shock wave is to think of a very strong sound wave. Because the wave is strong,
the temperature at the top of the wave would be significantly higher than in the valley.
The phase speed being proportional to the temperature, the top of the wave moves faster
than the valley; hence the top part outruns the valley and a pile-up effect occurs in the
direction of propagation. Therefore, the wave will steepen like waves on the beach and
form a discontinuity, a shock. In principle, every sound wave is expected to form shocks,
but those shocks are very weak. For example, the shock wave resulting from an explosion

expands spherically, loses its strength, and eventually becomes just a sound wave. People
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on the ground hear sonic booms, the weakening shock wave resulting from supersonic
airplanes. The presence of a shock in a medium is described by jump conditions— which
state the amount of discontinuity in the properties of the fluid after passing through a
shock wave [112].

2.4 Linear Perturbation theory

The program of linear perturbation theory is well described by this quote from Ledoux
[113]: “Essentially, two approaches exist for the discussion of the stability of a system.
We can apply a small perturbation to it, so small that, in the equations that govern the
evolution of this perturbation, we can content ourselves with keeping only the terms of
the first degree in this perturbation. The equations so obtained are said to be linearized
and their solution describes the behavior of the perturbation. ”

As an example of the basic ideas involved, here we outline the method by applying

this method to describe the adiabatic oscillation modes of a star.

2.4.1 Hydrostatic equilibrium

Although, in practice, a static configuration of a fluid body is impossible to achieve,
nevertheless, a quasi-static state is assumed—where the macroscopic motion of the fluid
element is negligible, that is, v = 0, /9t = 0 on any fluid properties.

Under this condition, the continuity and energy (entropy) equation is trivially satis-
fied. The star is assumed to be in layer-by-layer hydro-static equilibrium between the gas

pressure and the self-gravity. Hence, the momentum equation reads,

10p )0,
S 2.8
por or (28)
Here, ¢ is the gravitational potential to be solved from the Poisson equation,
V3¢ = 4nGp (2.9)
For a spherically symmetric star the above two equations are combined into,
10 (1?09
—— | ——— | = —4nG 2.10
r2 or ( p 37’) P (2.10)

This equation describes the hydro-static structure of a spherically symmetric star. Now to
solve the equation we need to specify an equation of state, which we take to be polytropic,
asp=Kp',v=1+ % being the adiabatic index of the gas. It is convenient to switch to

the following dimensionless quantities,

r=af, p=pb" (2.11)
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Here, ao? = %54% is some fixed length scale, p. being the central density. This
definitions put Equation (2.10) into the following dimensionless form:
10 00
—— (&= | =0 (2.12)
§20¢6 \7 ¢

The above equation is known as the “Lane-Emden” equation and admits numerical
solutions and is being displayed in Figure 2 for a range of values of the adiabatic index,
~. Now this immediately gives us to solve for the density profiles of the star as shown in

Figure 3.

2.4.2 Linear adiabatic wave eqution (LAWE)

In this section, we will analyze what happens to the hydrostatic structure of the star if
we apply small perturbations to it. We choose to work in Lagrangian framework, where
the continuity equation is written as,
i(ém) =0, (2.13)
dt
where dm = pdV, the mass contained in a spherically symmetric thin shell of §V. Now
the continuity equation becomes,

d

E(przdr) =0, (2.14)
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At an initial time, when the fluid elements under consideration was at a location rg, the

density is given by some initial density profile pg, i.e. p(r,t = 0) = po(ro). Hence,
p(r, t)r2dr = po(ro)ridro, (2.15)

which immediately gives, the time-dependent solution for the density as,

o(r,1) = polto) (—) (g—) (2.16)

Now, we perturb the fluid configuration ever so slightly from its initial configuration as,
r(ro,t) = 1o+ ri(ro,t) (2.17)

Plugging in this definition in Equation (2.16),

p(r,) = polro) (1 - iai[]) Lo (2.18)

This is solution for the density in the linear order of the perturbed position of the La-
grangian fluid elements. Keeping terms only the linear order in perturbation equation

yields,
1 0
p1 = —Popa—m[ﬂ%ﬁ] (2.19)
0
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Similarly to linear order the momentum equation, (2.10) becomes,

d%ry L (Op pr . Or1\ Opo Gmy(ro)
-1 (AL L) 20 R0 2.20
ot? LS <8T0 < i Jro ) Org re n (220)
Linearization of the equation of state implies,
p1 = po(ro) - (2.21)
Po

In Equation (2.19)-(2.21) we have three unknowns p;,p; and r; and we do algebraic

manipulation to reduce them into a single equation in ry:

827”1
v L[ri] =0, (2.22)
this equation is known as the linear adiabatic wave equation (LAWE). Here the operator
is given by,
10 [vpo O 1opy (Ory 11 0 2Gmyg(ro)
L=—— — | =55 — 2.23
p Org { 2 g arylrorl| + poOrg \Org 12 71¢drg rora] | + re o (229)

the initial density and pressure profile of the star are respectively po(ro), po(ro) and

mo(ro)is the initial mass profile given by,

o
mo(ro) = 47?/ poradro) (2.24)
0

To numerically solve Equation (2.23), we normalize the variables to have numbers in the

range of 0 to ~ 1 by adopting the following re-definitions:

po = pego(&o), Po = pcho(&o), o = oo, T = /4nGp.t (2.25)

This transforms the LAWE into the following dimensionless form:

26 7—10[% 1 :i%(%_ia )
or2 [ g9 0% 53 0, [5051] v g0 0& \0& fg 9&, [5051]

o
+§g (/0 go(fo)fgdfo> 51] =0

At 7 = 0, we seed perturbations into the star by giving it some non-zero velocity that

(2.26)

may depend on where we are within the star. We define this initial velocity profile in the
star as

Vo(&o) = 8_571 7=0- (2.27)

Now we Laplace transform Equation (2.26) by adopting following definition of a quantity
s
LIf (&, )] = f(&0,0) / f(&,7) exp —oTdr (2.28)
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This gives,
0’61 — L&) = Vo(%), (2.29)
where
 4=10 Th — 110k (06 10
el = 9o 350{ 850[50&}] Y 90 9% (afo a50[&)51])

(2.30)

o
+52_8 (/0 90(50)536%0) &1

2.4.3 Eigenmodes

To illustrate the power of this method let’s consider the initial velocity profile of the star
is
Vo(&o) = VE.(&), (2.31)

where V' is a constant with value << 1 and the function F,, satisfies,
LB, = —02E,, (2.32)

and are called the eigenfunctions with eigenfrequencies o,. Physically, we expect the
perturbation to the density to remain non-divergent; hence we demand that the eigen-

function would satisfy E,(&) = 0 and since the eigenvalue equation is linear we can

always rewrite Equation 2.32 by dividing it by 2E= leo=0 and define some new function

0%o
E, = E, 8E" ¢=0- Hence we now have the following eigen system,

L|E,] = —02E,, E,(0) =0, %kozo =1, (2.33)
D80
with
£l = g 0& {53 &0 & n]} Y 9o 0% <5§0 € & 2, n]) (2.30)

o
+§% (/0 90(50)58d50> E

In Figure 4, we present the first 5 eigenfunctions by numerically solving the eigensys-

tem (2.33) for a v = 5/3 polytrope.

2.5 Smoothed Particle Hydrodynamics (SPH)

Smoothed particle hydrodynamics (SPH) is a particle-based Lagrangian method to solve

the equations of hydrodynamics [114, 115]. But as Price points out, SPH aims to answer
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Figure 4: The first 5 eigenfunctions of a v = 5/3 polytrope.

the question: “How does one compute the density from an arbitrary distribution of point-
mass particles?” [116]. SPH calculates the density (and other fluid properties) using a
weighted summation over nearby particles, give by,

A(7) = &A%W (17 = 7], k) (2.35)

(2

Figure 5 illustrates the concept of a smoothing kernel W, which has dimensions of inverse

volume and A is a scale parameter that determines the fall-off of W as a function of particle
spacing. Although the early SPH implementations used to employ a constant resolution
length h, now-a-days the smoothing length is set in an adaptive way, for example, making
h proportional to the density. Since the density itself is a function of the smoothing
length, through iterative summation one simultaneously obtains the mutually dependent
h(r) and p(r) [117, 118, 115]. The gradient operator reads,

VzAl = pZE]mJ (F + _2J) VFZW (||T’ - TZ'HQ, h) (236)
( J

This allows one to implement the fluid equations in the following way:

dv 1 - p)” >
=—-Vp+g, p=B — ] -1 2.37
dt p pPrg. P ((po ( )

The SPH simulation cycle operates broadly in this three steps:
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Figure 5: Schematic view of the SPH convolution using a smoothing kernel W in 2D
space. The [y distance between the two points ¢ around which the kernel is centered and

the other particle j is shown. This figure is adapted from [1]

1. For each particle 7, it computes p; as p; = X;m; W (||77 — 7|2, h)
2. For each particle i, it computes Vp;

3. Integrates in Euler step:
U Uy + AltCh7
Vg1 =0 —
e dt’ (2.38)

Tyl = Tt + Aty

To ensure numerical stability SPH uses the Courant-Friedrichs-Lewy (CFL) condition,C' =

Umaz At

M S Chuae ~ 1 to calculate the allowed time step in explicit time integrations.



Chapter 3

Stability of giant planetary

atmosphere with a solid core

One of the ways by which giant planets are thought to form is through “core accretion”
(CAY; e.g., [42, 122, 123, 124, 125, 126]), a sequential process whereby the planet is
assembled from a solid core that builds a surrounding, gaseous envelope through accretion
from a protoplanetary disc. Quantitative studies of the CA model show that it proceeds
via two or three evolutionary phases [127]. In the first phase planetesimals form [128,
129, 130, 131] and then grow into larger rocky cores by the accretion of pebbles and/or
other planetesimals and growing cores [132, 133, 134, 135, 136]. In the second phase the
core accretes a low mass (relative to the core) gas envelope from the circumstellar disc
by radiative cooling on the Kelvin-Helmholtz (KH) timescale, which causes the envelope
to contract and permits further gaseous accretion [137, 138]. Initially, the KH timescale
increases as the envelope grows in mass, and thus the evolution is slow. The recycling
of gas between the disc and the bound envelope, a three-dimensional effect that is not
captured in classical models, may modify the cooling timescale at this stage [139, 140,
141]. If and when the atmospheric mass becomes comparable to that of the core, the self-
gravity of the gas envelope becomes significant, and the KH timescale decreases. This
transition leads to the third phase of rapid “runaway growth” of the gas envelope, which
(in classical one-dimensional models) begins as a more rapid, but still hydrostatic, KH
contraction (e.g., [126, 142]. The end of runaway growth again involves hydrodynamics,
as the growing planet carves a gap in the disk, which lowers gas accretion and eventually

sets the final planet mass [143, 144, 145].

!The other paradigm for giant-planet formation is through instabilities in the protoplanetary disk —
the “disc instability” model (e.g., [41, 119, 23]). We will cast our discussion within the framework of the
CA model, but many of our conclusions would also apply to the disk instability model. See [120, 121]

for discussions of these models.
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Qualitative and potentially observable changes to the giant planet formation process
would occur if, at any point, the planet became dynamically unstable. This is in principle
possible if the effective adiabatic index of the gaseous envelope, which we denote as
7, drops below a critical value. [44] demonstrated that for a gaseous, self-gravitating
spherical body, dynamical instability to radial perturbations occurs if v < 4/3. This
result has well-studied implications for the stability of massive stars, which are dominated
by radiation pressure and hence have v &~ 4/3, but it can also come into play for cooler,
gas pressure dominated bodies. As a gas envelope contracts and its temperature rises,
molecular hydrogen first dissociates, and is then ionized. These two transitions can reduce
the adiabatic index from 7/5 (appropriate to a diatomic molecular gas) to values near
unity [146]. In the star formation context is has long been suggested that this drop in
adiabatic index as gas heats up leads to dynamical instability and collapse [147], and it is
natural to ask whether the same phenomenon can occur in planet formation. Early work
on core accretion noted that the existence of low v regions could bring proto-planets close
to dynamical instability [122], which could lead to pulsations [148]. More recently, [145]
speculated that the presence of v < 4/3 regions in enough of the planet might accelerate
planet formation. We emphasize that this potential dynamical instability is distinct from
the established effect that dissociation has in reducing gas accretion rates during the slow,
hydrostatic phase [149].

The key difference between the structure of a star and that of a forming giant planet
is that the latter possesses a rocky or icy core that is much less compressible than the
gaseous envelope. It is thus inaccurate to treat the entire planet as a single adiabatic
gas, and Chandrasekhar’s simple v < 4/3 criterion for instability need not apply. A more
realistic — though still highly idealized — model is to treat the planet as having a gaseous
envelope of fixed adiabatic index, that is truncated radially at a finite inner core radius.
Our goal in this work is to calculate a modified Chandrasekhar-like stability criterion for
this model system, which will depend on the size and mass of the rocky core. We consider
the outer radius of the planet embedded in the disc to be less than the smaller of the Hill
radius or the Bondi radius, and ignore any non-radial perturbation from the stellar tidal
force.

In Section 3.1.1 we describe the model and write down the fluid equations that govern
the evolution of the planetary envelope in the presence of the massive core, and in Section
3.1.2 we present hydrostatic solutions to these equations in the limit that the envelope
can be modeled as polytropic. In Section 3.2 we derive the equations that describe the
response of the envelope to radial perturbations and we delimit the region of instability
as a function of the core properties. We discuss the implications of our findings and

directions for future work in Section 7.3.
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Figure 6: A qualitative illustration of our model of a giant planet, which is a spherical
object that consists of a core of radius R, and mass M. and a compressible envelope that
extends from R, to R. The envelope has a mass of M., such that the total mass of the

planet is M. + M, and the relative mass of the core is u = M./(M, + M,).

3.1 Atmospheric model

We model a giant planet as a spherical object that consists of an incompressible core of
radius R. and a compressible envelope that extends from R, to R, outside of which the
density is zero (see Figure 6). As we noted in Section ??, the processes of ionization
and molecular dissociation that occur within the envelope imply that energy can be
transferred from one species to another. Instead of modeling these processes explicitly,
we treat the gas as adiabatic with an effective adiabatic index that — owing to these
processes — can be less than 4/3. In this way, we do not account for the time dependence
that accompanies these non-ideal processes, but instead gain some understanding as to
the combined effects of the smaller adiabatic index and the presence of the incompressible

core on the hydrodynamic stability of the envelope.

3.1.1 Fluid equations

With this set of assumptions, the hydrodynamical evolution of the envelope is governed
by the continuity of mass, radial momentum, and entropy, the conservation laws for which

read respectively:

dp 10

— [ 2 pu—

5 2o, (r’pv) =0, (3.1)
ov ov 1dp  GM. GM
at e T T T T e (32)

0 P 0 P\
g In (/ﬂ) + Vo, In (/ﬂ) = 0. (3.3)
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Here p is the gas density within the envelope, v is the radial velocity, r is spherical radius
from the origin, p is the gas pressure, and ~ is the adiabatic index. On the right-hand
side of Equation (3.2) we accounted for the gravitational presence of the core that has

mass M., and

M = / 4rr?p dr (3.4)
is the total atmospheric mass contained within radius r. It is mathematically convenient
to write the continuity equation (3.1) in terms of M, which is (upon using Equation (3.4)
to write p in terms of M):

oM oM
E + UW =0. (35)

While we did not write it explicitly, all of the fluid variables are functions of both spherical
radius r and time ¢; we do not consider angular perturbations here.

We anticipate finding solutions to Equations (3.2) — (3.5) that are hydrostatic, such
that the radial velocity v and time dependence are identically zero, on top of which we
impose perturbations that induce radial motion and temporal evolution. The solutions for
the fluid variables are therefore characterized by the existence of a surface R(t) that, when
the perturbations are small and the motions are subsonic, is approximately independent
of time and separates the planetary interior from the ambient gas (which is assumed to
have a negligible impact on the dynamics of the envelope). In our model we neglect
accretion from the surrounding, protoplanetary disc, and hence the total mass of the
planet M. 4+ M, is conserved, where M, is the core mass and M, is the total mass of the
gaseous envelope. The characteristic speed within the envelope is governed by the sound
speed c¢s, which — owing to the approximately hydrostatic nature of the envelope — is
comparable to the freefall speed, or ¢; ~ /G (M, + M,) /R. The characteristic timescale

that parameterizes the temporal evolution of the planet is then the sound crossing time,

being R/c, ~ R¥?/\/G (M. + M,).
Given these considerations, we analyze the fluid equations in terms of the following

(dimensionless) space-like and time-like variables:

§= 0 (3.6)
1 G(M. + M.)
ar == ( T) dt. (3.7)

We further non-dimensionalize the mass coordinate by defining

M = M.m(&,7), (3.8)
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from which it follows that

M, 1 0m M,

P = e Ot 47TR39(5,T)7 (3.9)

where
1 Om

S
Similarly, we non-dimensionalize the pressure p and the radial velocity v by introducing
the functions h and f, defined via

9(&,7) (3.10)

GM.( M.+ M,
p= () e,

(3.11)
B G(M. + M.,)
v = ( T) f(€77_)

We can now write the hydrodynamic equations (3.2), (3.3) and (3.5) in dimensionless
form by introducing these coordinate transformations. To further simplify the resulting
equations, we maintain that the fluid motions are subsonic, such that the dimensionless
function f satisfies f < 1 and OR/0t < ¢s. In this limit, we can also linearize the
hydrodynamic equations in the assumed-small quantities f and 1/¢sx OR/0t, such that we
keep only leading-order terms in these quantities and omit any non-linear contributions.

Doing so yields the following three dimensionless, fluid equations:

E"‘(f—vﬁ)a—g =0, (3.12)
af 10h 1 m
L= - 1
TG hE-U-nT (3.13)
0 h 0 h
—In|— —4 — —In(— ) =0. 14
i () vy 0 (v g () <0 (3.14)
Here we defined
M.
as the ratio of the mass of the core to the total mass of the planet, and
OR (G (M, + M)\ "
= (2 Tc T TTe) 1
v ( - ) (3.16)

is the ratio of the velocity of the surface of the envelope to the escape speed.
In the absence of conduction, the surface of the planet is a contact discontinuity that
separates the planetary interior from the ambient gas, across which the pressure and fluid

velocity (in the comoving frame of the contact discontinuity) are continuous. We further
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reduce the parameter space of our solutions by assuming that the ambient gas does not
play a dominant role in providing further pressure confinement of the planetary envelope,
and therefore the ambient pressure is set to zero. With these assumptions, the boundary
condition on the fluid velocity at the surface is

OR
U(S = 177—) = E

In addition, the pressure perturbation at the surface must vanish to smoothly match

fE=171)=V. (3.17)

onto the surrounding medium, and if the planet is subject to only radial perturbations,
the fluid velocity at the core radius must be zero. In the next two sections, we seek
solutions to the above set of equations that satisfy these boundary conditions by treating
the envelope as a hydrostatic medium with small, time-dependent perturbations, where

“small” implies that the radial velocity is subsonic. As such, we write

h(f, T) = hO(g) + h’l(ga T)? (318)
9(&,7) = 90(&) + 91(€,7), (3.19)
f(&7)= 1&g T) (3.20)
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with subscript-0 quantities representing the unperturbed, hydrostatic solutions and subscript-

1 quantities the perturbations. Note that, because the background upon which we impose
such perturbations is hydrostatic, there is no zeroth-order velocity (i.e., fo is absent from
the above expressions). Below we will also work with the functions mq and m;, which

are directly related to go and g; via Equation (3.10).

3.1.2 Hydrostatic Solutions

The hydrostatic solutions to Equations (3.12) - (3.14) are independent of time and possess
no radial velocity, meaning that V' = 0 and f, = 0. In this case, the continuity and
entropy equations are trivially satisfied, and the radial momentum equation yields the

dimensionless equation of hydrostatic balance that relate the subscript-0 functions:

10hy _ i_(l_ )20
woe e Hier

To close this system, we need a relationship between the hydrostatic pressure and the

(3.21)

density, for which we adopt a polytropic equation of state and let

ho = K()gg, (322)



where K is the dimensionless specific entropy of the atmospheric gas. The equation for

v 0 16m0 71 . % mo
ﬁ“%[(?%) ]—‘?‘““”?2' 529

Note that, if the first term on the right-hand side of this equation were absent, this would

mg is then

just be the Lane-Emden equation written in terms of the enclosed mass my. When p # 0,
the first term represents the gravitational contribution from the core.

We can numerically solve Equation (3.23) by following the procedure outlined in
[150]: the solutions to this equation must satisfy the requirement that the total mass of
the envelope be equal to M., so that mg(1) = 1. We can therefore expand the function
mg in powers of (1 — &) and equate like powers on the left and right sides of Equation
(3.23); this results in the following, leading-order approximation to mg near the surface

of the planet:

I Yt e D
mo(¢) =1 v (7 Ko) S

x {1 . <Z:i’) (1 —g)} . (3.24)

This expression can be used to evaluate mo(§ ~ 1) and dmy/d€(€ ~ 1), which can be used
as boundary conditions to integrate Equation (3.23) inward for a given, dimensionless
specific entropy Ky. When the polytropic envelope is assumed to extend to the geometric
center of the planet, K is fixed by requiring that the enclosed mass equal zero at the
origin. For a given +, there is then a unique value of Ky for which the density terminates
at the surface (§ ~ 1) and the enclosed mass equals zero at the origin, which is just
the usual solution to the Lane-Emden equation (e.g., [151, 152]). This value of Kj can
be determined iteratively through a brute-force, trial-and-error method in which one
successively changes the value of K until the boundary condition near the origin is
satisfied (see the discussion in Section 2 of [150]).

For our application here, however, the existence of an incompressible core of relative
mass 1 modifies the solution from the usual, Lane-Emden function. In particular, if we
let the core have some associated, relative radius & (i.e., & is the radius of the core, R.,
divided by the total radius of the planet R), then the total enclosed mass of the envelope
must instead be zero at . In addition to the relative mass of the core u, there is thus
an additional, free parameter contained in these solutions, which is the inner radius &,
(presumed greater than zero) at which the core terminates and the envelope begins. The
solutions to Equation (3.23) are therefore determined by three parameters, being the core

mass u, core radius &, and adiabatic index ~; once these three parameters are fixed, the
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Figure 7: Left: The unperturbed and dimensionless density go as a function of radius
for the relative core masses p shown in the legend and a polytropic index v = 1.3 and
a core radius of £ = 0.05. Middle: Identical to the left panel but with fixed v = 1.3
and p = 0.05 and the inner radii shown in the legend. Right: Identical to the left panel
but with fixed p = 0.05, fixed & = 0.05, and variable adiabatic indices as shown in the

legend.
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Figure 8: Top-left panel: The lowest-order eigenfunctions as a function of the dimension-
less radius for the polytropic index v = 1.3 and core radius &, = 0.05 for different values

of the fractional core mass p shown in the legend.

value of K that satisfies the inner boundary condition (mg(&.) = 0) can be determined
by — as for the standard Lane-Emden equation described above — iteratively looping over
Ky in a trial-and-error manner.

In principle, the solutions for the envelope extend asymptotically close to & = 1
where the density is exactly zero and the mass satisfies m = 1. However, the envelope
becomes extremely tenuous near the surface once v nears unity — the case of interest

1/(y=1) (e.g.

In practice and to avoid any

here — owing to the fact that the density declines approximately as o< (1 — &)
for v = 1.1, the density reaches ~ 1071 at & = 0.9).
numerical artifacts associated with initializing the integration of Equation (3.23) too
close to the surface, we integrate Equation (3.23) from the location where leading-order
solution for the unperturbed density (i.e., using Equation 3.24) satisfies gy = 1078, and
outside of this location we replace the numerically obtained solution with the leading-
order, series expansion given in Equation (3.24). We have verified that increasing or

decreasing the threshold, lower limit on the density that sets the outer boundary does
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Figure 9: The square of the lowest-order eigenvalue as a function of the adiabatic index,
~. The left panel corresponds to a core mass of u = 0.05, while in the right panel we set
w=0.1.

not noticeably change the hydrostatic solution or the eigenmodes (see below). Examples
of the hydrostatic solutions are shown in Figure (7). To isolate the impact of the relative
core mass (u), radius (&), and polytropic index () on the hydrostatic solutions, we
fix all but one parameter for each of the plots. The left panel of Figure (7) shows five
different solutions for the dimensionless density go (on a logarithmic scale) as a function
of the normalized spherical radius variable &, obtained by setting the adiabatic index
v = 1.3, the dimensionless core radius £, = 0.05 and varying the fractional core mass
i, successively for each curve. Comparing these five curves (as we move from g = 0.9
to u = 0.05) we observe two contrasting behaviors: the configuration that receives the
highest contribution from core to its total mass (u = 0.9), is the densest configuration
near the core (£ ~ &.) and as we move toward the outer edge (£ ~ 1) its density ranks
to be the least dense one. This is due to the fact that the gravitational field is more
centrally concentrated for a larger core mass, and all the material piles up near the inner
boundary.

In the middle panel of this figure we show solutions obtained by varying the size of
the core (successively as we move from one curve to the next) while maintaining v = 1.3
and pu = 0.05. We see that the envelope is denser on average, for a more voluminous
core. This trend is expected because as the core grows in size, it leaves less space to be
occupied by the envelope that — for the same p — contains the same mass, resulting in an
increase in density.

In the right panel of this figure we vary the adiabatic index + while maintaining a fixed
dimensionless core radius &. = 0.05 and fractional core mass p = 0.05. We see the same
contrasting behavior between regions near the inner and outer boundaries. We notice the
most compressible envelope (the one with the smallest adiabatic index v = 1.15), ranks

to be the densest, closer to the core (£ &~ &.), and the least dense near the outer edge of
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the planet (£ ~ 1). This behavior occurs because the increased compressibility of the gas
causes more matter to pile up near the core.

The non-dimensionalized equations we derived demonstrate that hydrostatic solutions
to the fluid equations in the absence of an entropy gradient are manifestly scale-free; this
is exploited in the standard analysis of the Lane-Emden equation by defining

S Y (3.25)

v — 147Gp.

where K is the adiabatic constant related to the central pressure p. and density p. as ;’—?.
The surface of the planet then occurs at some fixed number times «. However, it is a
choice to work in coordinates normalized by « and the central properties of the planet,
and we can instead — as we have done here — choose to work with a radial coordinate
that is relative to the surface and the average properties of the planet. In this case
the dimensionless entropy variable K, that ensures the regularity of the solutions at the
center of the planet is a function of the adiabatic index, and here it is also a function of
the core mass and radius. Owing to the self-similarity of the equations, the same solution
is valid for any choice of physical planet radius R provided that the radius is scaled by
R, the pressure is scaled by M/R™*, and the density by M/R™3.

3.2 Perturbation Analysis

3.2.1 Eigenmode Equations

With the polytropic solution as the unperturbed state, the perturbation equations are

omy omg
8f1 g1 8h0 1 8h1 ma
or goE Tgoe T Ma 327
0 | h Y391 _
2 {ho " } V(4 —3y) = 0. (3.28)

Note that, in the last of these expressions, the Brunt-Vaisala frequency is identically zero
— and the solutions are therefore buoyantly neutral — because of the isentropic nature of
the envelope. We can now take the Laplace transform of Equations (3.26)—(3.28), where

the Laplace transform of f; is

fl(f,a) = /_OO fi(&,T)exp (—oT)dr (3.29)

and similarly for all other fluid variables. We can understand the linear response of

the envelope to a given perturbation by letting there be, for example, an initial, non-zero
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velocity with some underlying radial dependence; this function then appears on the right-
hand side of the Laplace-transform of Equation (3.27) and serves to initialize the motion
of the gas. The resulting response is then able to be written as a sum over the eigenmodes
of the set of Laplace-transformed equations, where the eigenmodes are solutions to this
set of equations that possess eigenvalues. The eigenvalues are complex numbers that we
denote o, where the perturbations to the fluid variables diverge as simple poles in the
complex plane. Importantly, even though the coefficients in such an eigenmode expansion
depend on the nature of the initial perturbation, the fact that the fluid variables diverge
at the eigenvalues implies that the eigenmodes themselves do not (see [150] for explicit
expressions for the coefficents). Defining fo=Hi / V as the ratio of the perturbation to the
fluid velocity to the perturbation to the surface velocity and taking the limit as ¢ — oy, a
single, second-order equation for fn can be derived by combining the Laplace-transformed

equations; the equation is

o L[ L0 [(cgyom] (100
Tt t s[go Al ROR 3 | Rl
1— 8m0

e - f)S2 o (3.30)

The fluid velocity must be continuous across the surface of the planet, which gives the

first boundary condition on the eigenfunction (cf. Equation 3.17)

fle=1=1, (3.31)
We also demand that the solutions for the eigenmodes be non-trivial and expandable
about the surface; taking the leading-order terms in the series expansion of Equation
(3.30) then shows that the derivative of f, satisfies
0 fu 1
O _1 (c2+2(v-2)). (3.32)
€ |
Finally, the fluid velocity must be equal to zero at £. owing to the incompressible nature

of the core, which gives the additional boundary condition

fal&) =0. (3.33)

This third boundary condition determines the eigenvalues o0,,, as we start with some initial
guess for the eigenvalue, integrate equation (3.30) inward from a point near the surface
(¢ ~ 1) using boundary conditions (3.31) and (3.32) with this guess, and determine
the value of fn(ﬁc). We then perturb the guess for o, calculate the new function and
the corresponding residual of fn(gc), and continue to iterate on the value of ¢, until we

satisfy the third boundary condition fn(fc) = 0. The set of eigenvalues o, then delimit
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v=13,6=005| ~=13, =005 |p=0.05 & =005

I Ky o? & Ky o? 7y K o?

0.110.202 | -1.20 | 0.05 | 0.190 | 0.03 | 1.4 | 0.136 | -1.93

0310238 |-481] 03 | 0.108 |-4.80]| 1.33 | 0.168 | -0.95

0.510.263 | -5.86 | 0.5 | 0.0633 |-6.48 | 1.25 | 0.246 | 3.11

0.710.282-623| 0.7 | 0.0303 |-10.0| 1.2 | 0.333 | -8.89

0910298 | -642 | 0.9 | 0.00683 | -27.7 | 1.15 | 0.439 | -40.9

Table 1: The square of the lowest-order eigenvalue o7 and the auxiliary variable K for

each of the configurations shown in Figure (7).
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Figure 10: The curve that delimits where 0? = 0 in the v — &, plane that separates the
stable and unstable behavior. The left panel fixes ¢ = 0.05 and the shaded region denotes

where the solutions are unstable, while the right panel varies the core mass.

the solutions that satisfy the boundary conditions near the surface of the planet and at
the inner core. Since Equation (3.30) is in the form of a Hermitian operator equation
(e.g., [153]), the eigenvalue squares o2, are purely real, and the corresponding solutions
vary as o< exp (o7). Thus, if 02 < 0, the solutions are stable and oscillate in time, whereas
if 02 > 0 the envelope is unstable and small perturbations grow exponentially rapidly
with time. The lowest-order mode fl has no zero crossings, and each higher-order mode
has one more zero crossing than the previous one.

As for the hydrostatic solutions, we set the outer boundary (at which we evaluate the
boundary conditions 3.31 and 3.32) at the location within the hydrostatic envelope at
which the dimensionless, unperturbed density satisfies gy = 1078, We have verified that
changing this small parameter by an order of magnitude (increasing or decreasing) has no
effect on the eigenvalues or the eigenfunctions. To further mitigate any numerical errors,

in practice in the eigenmode equation (3.30) we replace any derivatives of mg higher
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Figure 11: The 0? = 0 curve separating stable and unstable behavior. We have simulated
three model planetary configurations having similar properties to the gas-giants in our
solar system: Jupiter(Blue), Saturn(Green), Neptune(Orange). The model parameters

are shown in legends.



than the first with the lower-order values that result from the equation of hydrostatic
equilibrium (3.23).

3.2.2 Solutions

In Figure 8 we present the lowest-order eigenfunction for the hydrostatic solutions pre-
sented in Figure 7; the eigenvalues that characterize these solutions are given in Table 3
(along with other properties of the hydrostatic envelope). We see from this figure that,
as the eigenvalue appropriate to the lowest-order mode becomes increasingly negative,
the eigenfunction decreases more rapidly from the surface of the envelope (which can
be seen directly from the boundary condition on the derivative of f, in Equation 3.32).
This feature is a familiar property of the p-modes of linearly stable stars (e.g., [153]),
and illustrates that the majority of the power of these modes resides in the outer layers
of the planetary envelope. Thus, a solution that is characterized by only very negative
eigenvalues responds to a homologous initial velocity perturbation (i.e., such that the
initial velocity profile is oc £) by oscillating violently and stochastically — albeit stably
and sinusoidally in time — in its outermost extremities (see the end of Section 3.1 of [150]
for further discussion).

On the other hand, as the lowest-order eigenvalue becomes less negative, the eigen-
function is better approximated by a linear function of £ that extends from the core to
the planet radius. Indeed, if ¥ = 4/3 and the inner boundary extends to the origin, then
an exact solution to Equation (3.30) and the boundary conditions (3.31)-(3.33) is f, = &
with o2 = 0, which is just the familiar Chandrasekhar limit. Thus, a linear initial ve-
locity perturbation for this specific case retains its linear profile, and the entire envelope
expands or contracts homologously with time. As the square of the eigenvalue becomes
positive, the leading-order eigenfunction attains a relative maximum in the interior of
the envelope. This feature illustrates that a contraction of the envelope results in the
acceleration of the fluid in the interior of the planet, which increases the gravitational
potential and further accelerates contraction, resulting in a runaway collapse of the gas
that proceeds exponentially rapidly with time. In the opposite scenario of an initial ex-
pansion, the very slow decline of the pressure results in the outward acceleration of the

envelope.

3.2.3 Region of Instability

It is clear from Figure 8 and Table 3 that, in addition to the singular case of the Chan-

2

drasekhar instability where 0* = 0 for §, = p = 0 and v = 4/3, there is a region of

parameter space within which the leading-order eigenvalue is positive and the envelope
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is dynamically unstable to radial perturbations. Qualitatively we expect that as the adi-
abatic index softens, the envelope should become more susceptible to instability, as the
increase in the gas pressure is less pronounced (and less able to resist the increase in
self-gravity) for an initial, radial contraction; an analogous argument for the existence of
the instability exploits the less rapid decline in the pressure for an initial expansion of the
envelope. Eventually, for a fixed core mass and radius, we expect this Chandrasekhar-like
instability to arise once the adiabatic index crosses a sufficiently small, threshold value.
To support this prediction, Figure 9 shows the square of the leading-order eigenvalue as
a function of v for a fixed core mass (u = 0.05 for the left panel and p = 0.1 for the right
panel). Each curve in this figure is for a different value of the core radius &., with the
core radii appropriate to each curve given in the legend. We observe from the left panel
that as we go to smaller values of v, the leading-order eigenvalue becomes less negative,
and provided that the core radius satisfies & < 0.06, crosses 0 = 0 and the envelope
becomes unstable. This zero crossing represents the generalization of the Chandrasekhar
limit to a envelope that possesses a core (modeled as incompressible) in its interior.

For finite (i.e., non-zero) &. and p, the v at which the envelope transitions from stable
to unstable in going from large to small v is always less than v = 4/3 (e.g., for & =
1= 0.05, from Figure 9 the adiabatic index that separates stable and unstable envelopes
is v ~ 1.3). This finding demonstrates that the effect of an incompressible core in the
planetary interior is to stabilize the envelope against the Chandrasekhar-like instability.
This stabilizing influence arises from the fact that, because it is incompressible, there
is no change in the gravitational potential associated with the core when we impose
a perturbation to the planet. Thus, the destabilizing increase in self-gravity is always
lessened in comparison to a core-less envelope, implying that the critical v that yields
an unstable envelope must be less than the one that characterizes an envelope without a
solid core.

Interestingly, Figure 9 also shows that the leading-order eigenvalue does not increase
monotonically as the adiabatic index decreases, and instead there is a most unstable
envelope that is characterized by a largest o?. As « continues to decrease below this
most-unstable value, the square of the eigenvalue starts to decline, and crosses below
zero to yield stable solutions once +y is sufficiently small. Moreover, for values of the core
radius that are large enough, the envelope never becomes unstable, even for very small
values of v, which disagrees with our naive expectation that sufficiently small adiabatic
indices should give rise to an unstable envelope.

This behavior arises because as 7 decreases, all of the mass of the envelope becomes
increasingly concentrated near the core, as can be seen from the right-most panel of

Figure 7. However, since the fluid cannot penetrate the planetary core, any perturbation
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to such an envelope cannot result in a large change in the distribution of its mass and its
corresponding gravitational potential (i.e., the eigenfunction satisfies fl (&) = 0, hence
the vast majority of the mass is not displaced when acted upon by any perturbation,
and the resulting change in the gravitational potential — proportional to the change in
the mass interior to radius r — is likewise small). Therefore, for sufficiently small -, the
envelope can effectively be considered a non-self-gravitating fluid with the entirety of the
planetary mass located at the edge of the core; since the change in the self-gravity of
this configuration must be effectively zero for any physical perturbation that does not
displace the core, such an envelope cannot exhibit any Chandrasekhar-like instability.
The shaded region in the left-hand panel of Figure 10 shows the range of adiabatic
indices within which the envelope is unstable as a function of the inner radius &. when
i = 0.05, and the curve that encloses this region delimits the combination of v and &, —
for a fixed p — at which the eigenvalue crosses the o = 0 instability threshold. As the
inner radius decreases, a larger range of adiabatic indices is unstable. The right-hand
panel of this figure shows a set of such curves (within each of which the envelope is
unstable) for a range of core masses. As the core mass increases, the envelope becomes
stable to a larger range of inner radii, which arises from the fact that the perturbation
to the self-gravity of the planet declines as more of the planetary mass is contributed by
the incompressible core. To show our results in explicit astrophysical units, we map out
the instability region in Figure 11 for planetary parameters (the parameters shown in

legends) similar to those appropriate to the gas giants in our solar system.

3.2.4 Non-radial perturbations

We consider the analysis of non-radial perturbations to be beyond the scope of this work,
but it may be useful to outline some of the considerations. To study angular perturbations
with rigor, one can treat the solutions we obtained due to radial perturbations as the
radial component of a total solution of the form f(&,0,¢,7) = f.(§)Y;™(0,¢)exp(oT)
[150], where Y;*(0,¢)(¢ =0,1,2,..;m = —{,—¢ +1,....£ — 1,) is a spherical harmonic;
the angular dependence of non-radial velocities can be written as derivatives of spherical
harmonics (e.g., [154, 153]). In general, the surfaces will neither move uniformly nor
oscillate in and out regularly because the displacement of a typical mass element from
its unperturbed state is not radial. Thus, the motion can be complicated, for example,
some regions of the surface expanding and some other region contracting at the same
instant of time. In non-radial oscillations gravity is also a restoring force, implying that
the spectrum will have both gravity (g-mode) and pressure (p-mode) eigenmodes (unless
the envelope is modeled as a pure polytrope, in which case the vanishing of the entropy

gradient removes the presence of g-modes). The detail of these considerations demand
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separate study and will be analyzed in future works. We also ignored the gravitational
presence of the host star here, and hence the tidal force — which will contribute an ¢ = 2

perturbation to the envelope — was not accounted for in our analysis.

3.3 Summary and Implications

The formation of giant planets generically involves regions where hydrogen becomes dis-
sociated and then ionized, leading to a reduction in the average adiabatic index of the
envelope. In this work, we analyzed the stability (to radial perturbations) of hydrostatic
solutions for a class of models, composed of an incompressible core and a polytropic en-
velope, that capture to leading-order how a reduced ~ affects planetary stability. We
demonstrated that the presence of a core within a planetary interior supplies a net sta-
bilizing effect, relative to the usual Chandresekhar criterion of v = 4/3 that is calculated
for polytropic gaseous spheres with no central mass. The stabilizing effect of the incom-
pressible solid core is due to the fact that the core-occupied region does not contribute to
the self-gravity variations, while the pressure remains approximately the same compared
to the core-less configuration. Stability depends upon the core-to-total-planet mass ratio
i, the core radius relative to the planetary radius . = r./R, and the adiabatic index
v. As shown in Figure 10, depending upon the values of these parameters the core can
either fully stabilize the envelope, or lead to a strip of unstable v values whose upper
boundary lies below the classical value of v = 4/3.

Our model considers a single, effective adiabatic index for the entire envelope, though
the motivating physics for treating small values of the adiabatic index — partial ionization
and dissociation — implies that should, more physically, change as a function of radius and
time. A radially varying adiabatic index implies that the background state is no longer
polytropic, and buoyancy terms will modify the eigenvalues. In Section 3.4 we derive
the eigenvalue equation that accounts for the effects of a time-dependent (perturbed)
adiabatic index, and demonstrate that such effects can be quite important in determining
the stability of a planetary envelope. We have also adopted inner boundary conditions
for the envelope that correspond to a strictly incompressible core. In reality, rocky cores
are compressible (e.g., [155]) and may not have a sharp boundary [156, 157], and this
finite compressibility becomes increasingly important as the majority of the gas piles up
near the core surface (as occurs for the small-y solutions and that eventually inhibits
the formation of the Chandrasekhar-like instability). When the core is compressible, its
stabilizing influence on the envelope lessens, as more mass is able to penetrate deeper
into the interior of the planet and increase the perturbation to self-gravity (which is

ultimately responsible for generating the instability). At the outer envelope boundary,
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we have ignored any effects that the ambient disc gas might have on either the stability
of the envelope to radial perturbations, or to the generation of Kelvin-Helmholtz-like
interface instabilities alongside the Chandrasekhar-like instability analyzed here.

The possibility of dynamical instability in the envelope of planets that form via core
accretion is distinct from the existence of a maximum (or “critical”) core mass within
that theory. Generically, in core accretion, solutions to the planetary structure exhibit
a maximum in a plot of core mass versus total mass [122, 41, 124, 127, 158]. This class
of solution is derived by matching the interior structure to background disc conditions
at the Bondi or Hill radius, in contrast to the zero-pressure outer boundary conditions
considered here. [158] included detailed structure calculations (with energy transport by
both radiation and mixing length theory convection), as well as a detailed disc model
to specify how planet envelope conditions vary with disc radius. They noted that the
core instability — which occurs in steady state calculations — would not directly cause
dynamical collapse, but would instead give an enhanced rate of cooling and Kelvin-
Helmholtz contraction, as in the time-dependent structure calculations of [126] and as
noted in the introduction. Simpler adiabatic models of the “core accretion instability”
show that it does depend on the adiabatic index e.g.[159], but there is no straightforward
reason to expect that the two types of instability would show similar trends or thresholds
in ~.

The outcome of a Chandrasekhar-like dynamical instability, were it to occur in a
forming giant planet, cannot be addressed in linear theory. It appears likely, however,
that any nascent collapse would change the interior density and temperature sufficiently
as to restore a stable value of 7. As a consequence, we expect the maximum degree
of radial compression of the envelope to be bounded, and gas that initially collapses
will rebound and exhibit a large-scale oscillation. In principle, this could lead to the
formation of an outward-propagating shock wave at some depth in the interior of the
planetary envelope. Depending on its strength, this shock could then eject a fraction of
the planetary envelope. Alternatively, the planet could exhibit “breathing modes,” or
large-amplitude oscillations, formed analogously to the oscillations of classical Cepheids
[148].

Our model does not include the accretion of material onto the core or the gaseous
envelope. Accounting for the accretion of mass onto the core, and the corresponding loss
of mass from the envelope, could be relatively simply accomplished by changing the inner
boundary condition from f;(£.) = 0 to some non-zero value. The change in the envelope
mass then comes out of the continuity equation self-consistently by integrating from &,
to & and imposing a non-zero fi(&.), and there would then be an additional perturbation

that arises from the time-dependent mass of the core (which arises from the finite flux at
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the core radius) that appears in the momentum equation. This change in the boundary
condition would likely serve to further stabilize the envelope, as self-gravitating mass is
lost to the core, the time dependence of which serves as a source term in the equations
(and hence doesn’t affect the eigenvalues). Alternatively, one could simply impose a time-
dependent core mass and neglect the complicating issue of self-consistently accounting
for the flux from the envelope. In this case the eigenvalues are unaltered as the time-
dependent core mass is just a source term in the equations.

Allowing for accretion onto the planet from the surrounding disc is not as straightfor-
ward because our hydrostatic solutions terminate at a radius where the density is zero.
To maintain a finite mass flux at the surface would therefore require an infinite velocity
there, which, in addition to being obviously non-physical, cannot be done self-consistently
in our model where the velocity is considered a perturbation. One would therefore need
to change the background solution such that either the gaseuos envelope extends out
indefinitely, or that the envelope terminates at a location with finite density and that is
not a contact discontinuity (to permit accretion). A natural way to do the latter would
be to join the envelope onto an accretion shock, meaning that the hydrostatic nature
of the envelope would only be approximate?. Doing the former could be possible if the
adiabatic index is small enough (e.g., v = 1.2 in the core-less case leads to an envelope
of infinite radius), though the eigenvalues describing the perturbations to such a system
would be continuous, further complicating the analysis. In either case the problem differs
substantially from the one considered here, and the eigenvalues would likewise be quite
different. For example, a non-zero initial velocity gradient in the unperturbed solution
leads to complex eigenvalues because the operator equation is no longer Hermitian (e.g.,
[160]).

Our stability maps — or more refined versions of them that included some of the
neglected effects discussed above — would need to be combined with planetary evolution
models to fully assess whether dynamical instability occurs during giant planet formation.
It is immediately obvious, however, that the formation of a Jupiter-like planet via a
standard core accretion channel is rendered highly stable by the presence of its core. The
diversity of proto-planetary interior structures that can be formed, whether by standard
core accretion, its variants, or via gravitational instability, is broad. It remains possible
that the evolutionary tracks of some giant proto-planets cross into the instability strip

that we have defined, leading to potentially observable time-dependent dynamics.

2There is a time-steady, self-similar solution that does this and that has been studied in the context

of neutron star accretion; see [30, 25].
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3.4 Varying adiabatic index

When the adiabatic index of the fluid is non-uniform and variable in time, the entropy
equation takes a slightly different form that incorporates derivatives of the adiabatic

index. In particular, if we start with the gas-energy equation in spherical symmetry,

de 0,
E + (6 —i—p) ﬁ& [T’ U] = 07 (334)
where d/dt = 0/0t+v0/0r is the advective derivative, then using the continuity equation

turns this into

de d
%—(e—i-p)alnp:(). (3.35)
We now define
_ L (3.36)
e = - 1p, )

and let 7 (the adiabatic index) vary with both space and time. Then the previous equation
becomes, after some algebraic rearranging,

d 1 »p dy
—In|———| +Inp— =0. 3.37
dtn[7—1p7]+npdt (3:37)

We now introduce the non-dimensionalized density, pressure, and velocity as we did

in Section 3.1.1 and we perturb the variables about a background, hydrostatic state. We

also allow variation in the adiabatic index and therefore write

¥ =(&) + (1), (3.38)

Since the continuity and momentum equations are unaltered, the linearized versions of
these equations are also unchanged from those found in Section 3.2 (specifically Equations
3.26 and 3.27). The linearized entropy equation is recovered by inserting our definitions
for the velocity, density, and pressure into Equation (6.5), changing variables to 7 and &,

and maintaining first-order terms. The result is

0 l@_ %gl] +f(1 Oho 70 990 0%)

ot Lho 9o gf;laf go O 1 385% (3.39)
—(4=37)V = (% —3 11190)5 +(f - Vf)ﬁg-

We notice now the entropy equation is indeed modified accommodating the variability
of the adiabatic index 7. The Equation 3.39 collapses into Equation (3.28) when the
gradient of entropy vanishes.We can now take Laplace transformation of our perturbed

equations and combine them into a single, second-order equation for fi; upon dividing
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by V — the Laplace transform of the velocity of the surface relative to the escape speed

— this equation for the eigenmodes is

9 7 1 8h0 8m0
P2+ oo = D (€= % )+
hoa Gmo . aTTLO
9085(952@ i) 5) - i)

ERINCYE (P _2ohomy
90 06 [f< o () - (5% as))*
1 o0 1 Oy

Without an additional expression that relates the perturbation to the adiabatic index

to the other fluid variables, which could, for example, come from a microphysical model,
we cannot make further progress on Equation (3.40). However, in general we expect
changes in the adiabatic index to be most sensitive to changes in the gas temperature; if we
therefore assume that the fractional change in the adiabatic index, =, /7o, is proportional
to the fractional change in the temperature, T} /Tj, then we can use our definitions of
the fluid quantities to construct an additional relationship among 4; and the Laplace-
transformed (dimensionless) fluid variables. The result is that the eigenmode equation is
no longer Hermitian, and hence the eigenvalue squares o2 are no longer (in general) purely
real. Time-dependent changes in the adiabatic index of the fluid can therefore generate
distinct instabilities in the planetary interior, as is derived (much) more rigorously in [154].
We also see that, in the area of interest here where 7, is close to one, the importance of
time-dependent changes to the adiabatic index is amplified by the factor of 1/(7y — 1)
on the right-hand side of Equation (3.40). Changes to the adiabatic index can be quite

important for understanding the generic stability of a giant-planet envelope.
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Chapter 4

General relativistic settling solutions
in the context of a core-collapse

supernovae

At the end of the life of a massive star, where it has exhausted its supply of nuclear fuel,
the core collapses ~ dynamically under its own self-gravity. The process of inverse-£ decay
during the collapse removes electron pressure, further destabilizing the core and producing
an abundance of neutrons; this de-leptonized, collapsing core is the proto-neutron star
(PNS). The PNS “bounces” due to the nucleon-nucleon interaction potential (that is, the
equation of state of the nuclear material stiffens) and launches an outward-propagating
shock wave. The shock dissociates heavy nuclei as it propagates outward, loses energy,
and eventually stalls under the ram pressure of the infalling envelope [161, 162, 163, 164,
165, 166].

Some mechanism revives the shock and yields the powerful and luminous explosion
that is the supernova. This “supernova problem,” being the stall and eventual revival (in
successful explosions) of the shock wave launched by the bounce of the PNS, has eluded
a conclusive theoretical explanation for decades. Two likely mechanisms for accelerating
the stalled shock are the neutrino mechanism [164, 167, 168, 169, 170, 171] and the
standing accretion shock instability [25, 26, 32, 172, 173]. The neutrino mechanism, first
laid out in the 1960s [161, 174] and revived in the mid-1980s by works such as [164, 175],
propose that some fraction of the neutrino flux radiated from the nascent neutron star is
absorbed by the abundant free neutrons and protons in the post-shock layer; the energy
and momentum deposited by the absorbed neutrinos then revives the stalled shock. The
standing accretion shock instability arises from the fact that some of the large-angle (i.e.,
small spherical harmonic number /), oscillatory modes of the accretion shock can be

dynamically unstable, the instability drives the shock outward leading to an asymmetric

42



explosion [25]. Subsequent work (e.g., [176]) has shown that hydrodynamic instabilities
can aid the neutrino mechanism if not independently capable of driving the explosion.

Independent of the mechanism responsible for reviving the shock, it has been found to
stall in many numerical calculations. Newtonian solutions describing the velocity, density,
and pressure of the post-shock gas were found by [177, 178, 30]. In these solutions, the
gas “settles” and the velocity of the fluid approaches zero asymptotically close to the
origin for sufficiently small values of the adiabatic index (see the left panel of Figure 15
below). [25] obtained these solutions in the adiabatic limit ([30] included the effects of
cooling) and analyzed their response to angular perturbations. These solutions and the
numerical work of [25] were in the Newtonian limit, and the gravitational field around
the central compact object (PNS) was described as a Newtonian point mass.

However, for a neutron star with mass M (~ 1.4M) and radius R (~ 10 km), the
gravitational radius is GM/(Rc*) ~ 0.2, and the free-fall speed of the shock radius at
Ry, ~ 100 km is \/m ~ (.2 c. Relativistic effects therefore introduce order-unity
corrections to the behavior of the gas within the shock and will non-trivially modify
the Newtonian settling solutions. [179] expanded the classic work of [180] on spherically
symmetric accretion by incorporating the effects of general relativity in the Schwarzschild
metric (see also [181] who expanded [179])’s work to non adiabatic equations of state).
Bondi accretion (and its relativistic generalization) does not account for the existence of a
shock!. When the freely falling fluid passes through an existing strong shock, a substantial
fraction of its kinetic energy is converted into internal energy — an effect that cannot be
considered a small perturbation on top of a pure freefall solution. Subsequent work (e.g.,
[182, 183, 184, 185]) has also explored similar topics. However, the generalization of the
[177], adiabatic settling solution through an existing standing shock to the Schwarzschild
metric incorporating the appropriate jump conditions — for which there are exact solutions
(as we show below) — does not appear to have been detailed in the literature (but see
[186]).

Here, we present and analyze the relativistic generalization of adiabatic settling so-
lutions for the post-standing accretion shock flow that were studied numerically in [25].
In Section 4.1.2 we describe the model and write down the fluid equations. The ambient
fluid — assumed to be freely falling and effectively pressureless — is analyzed in Section
4.1.3, and we give the relativistic jump conditions in Section 4.1.4. Stationary solutions

to the fluid equations that satisfy the relativistic jump conditions and are adiabatic are

1[181] briefly discuss the possibility of a shock transition in the critical flow, which is different from
the flow through an existing shock. It is also worth noting that those same authors used special rela-
tivistic shock jump conditions, which are inconsistent with the Schwarzschild background (see Equations
4.12,4.13, and 4.14 below).
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presented in Section 4.2, where we also discuss the variation of the solutions with the
shock radius (effectively the ambient velocity at the location of the shock), the variation
with the adiabatic index and the behavior of the flow near the horizon. We present the
physical interpretation of these solutions in Section 4.3, discuss the implications of our

findings, and identify directions for future work in Section 4.4.

4.1 Equations

4.1.1 Metric

We assume that there is a compact object (without spin) that dominates the gravitational
field of the infalling fluid. With these assumptions, the metric describing the spacetime

is given by the Schwarzschild metric:

ds® = g, dxtdz”

oM oM\ ! (4.1)
_ (1 _ _) it 4 (1 _ _) 0 1 240,
T

r

where M is the mass of the compact object. We have adopted the Einstein summation
convention (as we will throughout the remainder of the work) so that repeated upper and

lower indices imply summation, and we have let G = c = 1.

4.1.2 Fluid Equations

We let the accreting gas — which has passed through the standing shock — be a relativistic
perfect fluid with total energy €', pressure p’ and rest-mass density p’. For simplicity, we
assume that the gas is adiabatic, with ¢’ = p’/(y — 1) and ~ the adiabatic index. With

U* the four-velocity of the fluid, the energy-momentum tensor is [187]
T = <,0’ + #p') UrUY 4 p'g™. (4.2)
Energy-momentum conservation is expressed as
Vv, T" =0 (4.3)

where V, is the covariant derivative. Conservation of mass (or particle number) is

V0T =0, (4.4)

and from Equation (4.1) we have the conservation of the norm of the four-velocity:

U U" = —1. (4.5)
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It is useful to work with the time and space-like projections of Equation (4.3) [187,
160]. Taking the contraction of Equation (4.3) with U, yields

UMV e’ = — (¢ + p)V U™ (4.6)

We now introduce the projection tensor I1° = UPU, + g2, which projects the components
of Equation (4.3) onto the 3-space orthogonal to U*; contracting Equation (4.3) with the

projection tensor then gives the momentum equations,

(" +pHurv,U” +11"V p' = 0. (4.7)

One can also re-express the energy equation in the following convenient form using the
continuity Equation (4.4),
Urv,S' =0, (4.8)

where S = In(p'/p'"). This equation demonstrates that S’, which we interpret as the
entropy of the gas, is a conserved Lagrangian quantity in adiabatic regions of the flow.
Since we assume that the flow is spherically symmetric and irrotational, there are only
two components of the four-velocity that are related by Equation (4.5); we will refer to

the radial component of the four-velocity by U.

4.1.3 Ambient Fluid

Pressure support is lost from the core, and a rarefaction wave travels through the overlying
stellar envelope, which causes shells of material at successively larger radii to fall inward.
If the density and pressure of the ambient medium fall off as power-laws with distance
from the core, one can show that there exists a self-similar solution to the fluid equations
that describes the propagation of the rarefaction wave and the fluid interior to the wave
[188]; the wave travels at the local sound speed, and the gas pressure of the fluid interior
to the wave is much lower than the ram pressure. Therefore, the infalling gas can be
treated effectively as pressureless. We denote the four-velocity of the ambient fluid by

U, = (U, U,,0,0). The radial momentum equation, Equation (4.7) gives

oU, M
UaW - _7"_2 (49)

Integrating the above equation and assuming that the gas is weakly bound, so the binding

energy is ~ 0, then gives

U, = —] —. (4.10)

The time-steady solution to the continuity equation (4.4) is then
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Figure 12: The ratio between the post-shock fluid velocity to the ambient fluid velocity
(Us/U,) at the location of the shock as a function of the ambient fluid velocity, U,, in
both the Newtonian and General Relativistic settings for v = 4/3. Note that U, is the
freefall speed at the shock normalized by the speed of light, and hence the relativistic
solution approaches the non-relativistic one when U, < 1; in the Newtonian limit, the

entire problem is self-similar and U, can be set to one without loss of generality.

, B r>—3/2 4
— 7. (= 7 11
A (4.1)

where R is the shock radius and p, is the density of the ambient gas at » = R + € in the
limit that e — 0.

4.1.4 Jump Conditions

In the adiabatic limit the energy, mass, and momentum fluxes must be conserved across
the shock, which give the strong-shock jump conditions — assuming the ambient gas
pressure is negligible — in the lab frame (which equals the rest frame of the shock by

assumption):

péUs = p;Uay (412)
(p; + %p;) Us\/l — (Ua)2 + (Us>2 = ,O,aUa, (413)
(v o) @2 + (4= WP = 0 (4.14)

The subscript “s” indicates that these are the properties of the post-shock fluid at the
shock radius.
Equations (4.12), (4.13) and (4.14) can be combined into the following cubic ? to be

2This equation reduces to the special relativistic jump conditions obtained in [160] (Equation 23
therein with U, = U, and U, = U,).
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solved for Us:

VUL + U2y = Un”)US + (=14 UF 497 = U2

(4.15)
+ ((1 = U, + 2Uay — 2U3y — Uy +9°) = 0.

Figure 12 shows the ratio Us/U, resulting from Equation (4.15) as a function of the
ambient four-velocity. We see that the ratio is nearly equal to its Newtonian value
(~ 0.14) for U, < 0.2, but as the ambient velocity becomes more relativistic, the ratio

deviates significantly from the Newtonian value.

4.1.5 Bernoulli, mass, and entropy conservation equations

Combining Equations (4.4) and (4.6) yields the conservation of the radial energy flux,

N 2 2M .
O+4L£)(L_—+W>:E (4.16)
=1/ r

We use the continuity Equation (4.4) to express the density of the post-shock fluid in
terms of the four-velocity as
rp'U = M, (4.17)

while entropy conservation gives

p=K()". (4.18)

With these results, we can write Equation (4.16) as

. 2
M\ 2M :
(1 + %K(@> ) (1 -+ U2) =F. (4.19)

Equation (4.19) is the relativistic generalization of the Bernoulli equation, to which it

manifestly reduces in the limit that the velocity is small (see Equation 4 in [25]).

4.2 General Relativistic Accreting Solutions

4.2.1 Impact of varying the ambient fluid velocity

Here, we discuss the effects of varying the velocity of the ambient fluid, U,, while keeping
7 fixed at 4/3. Given the fluid velocity U,, we can calculate the entropy K = p'/(p')*/?,
the radial energy flux F and the radial mass flux M by using the jump conditions and
we can then solve Equation (4.19) numerically for the post-shock fluid velocity U(r). We

can then calculate the fluid three-velocity as seen by an observer who is stationary with
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respect to the compact object and who employs locally flat coordinates (this coordinate

frame will be represented with ‘hats’) as

o1 U
Ut Ut1—2M/r (1 —2M/r+U?)Y/?’

Uf:

(4.20)

where in the last equality we used Equation (4.5). For a neutron star of mass 3 Mg
and radius® 10km, the solutions for the post-shock fluid four-velocity, three-velocity,
density and pressure are presented respectively in the top-left, top-right, bottom-left and
bottom-right panels in Figure 13; the ambient four-velocity — which implicitly establishes
the physical location of the shock since the mass of the neutron star is set — for each curve
is shown in the legend. In Figure 13, the radial coordinate is in km, while in Figure 14 it
is normalized by the shock radius. In Figure 13, the location of the neutron star surface is
shown with a black dashed line, and the location of the shock, appropriate to the specific
ambient velocity, is shown by the respective colored dashed line. In Figure 14 we show
the three-velocity as a function of /R, in which case the shock is always at /R = 1,
represented by a black dashed line, while the neutron star surface now takes different /R
values and is shown with colored dashed lines. Figure 14 demonstrates that the relativistic
solutions are not self-similar — each curve displays qualitatively different behavior as
a function of the ambient velocity, whereas the Newtonian limit (shown by the black
curve) is independent of this quantity once it is scaled out of the solution. Both of these
figures show that the relativistic solutions approximately equal the Newtonian solution
in the limit that the ambient speed is non-relativistic, which is not surprising. However,
substantial deviations arise when the ambient speed reaches substantial fractions of the
speed of light, and this is especially true deep in the interior of the flow where relativistic

gravity is yet more important.

4.2.2 Impact of varying the adiabatic index

In addition to the magnitude of the infall velocity (relative to the speed of light), the
solutions for the post-shock fluid variables depend on the adiabatic index of the gas. The
v = 4/3 adiabatic fluid is likely a reasonable approximation of the radiation-pressure
dominated post-shock fluid accreting onto a neutron star [178, 30] over the expected
temperature and density ranges [191]. Although in our model we neglected non-ideal

effects (e.g., neutrino cooling), these can be roughly captured by using a softer equation

3We use 10 km for the neutron star radius for concreteness and simplicity, though [189] and [190] find
that causality arguments require that the neutron star radius satisfy R > 2.823G'M/c?, which is closer
to 12.5 km for M = 3My. If we used 12.5 km, the maximum speed able to be achieved by the infalling
fluid — obtained when the shock radius is comparable to the neutron star radius — would be ~ 84% c

instead of ~ 90% c, as shown in Figure 13.
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Figure 13: The normalized fluid velocity (the radial component of four-velocity in the
top-left and the three-velocity as seen by local static observer in the top-right), comoving
density (bottom-left), and comoving pressure (bottom-right) for the ambient speeds (at
the location of the shock) shown in the legends as functions of radius (in km). Here we
set the neutron star mass to be 3 M, to convert to physical units. The black dashed line
indicates the surface of the neutron star whereas the colored dashed lines indicate the
location of the stalled shock appropriate to the respective ambient velocity. Newtonian

limits are given by the dashed curves in each panel.
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Figure 14: The normalized three-velocity as seen by a static and locally flat observer for
the ambient speeds (at the location of the shock) shown in the legend as functions of
normalized radial coordinate by the shock radius (r/R); the black dashed line at r/R = 1
indicates the fixed location of the shock in this coordinate and the colored dashed lines
indicate the location of the neutron star surface, assumed to be at 10 km. The Newtonian
solution, which is self-similar (i.e., it does not depend on v,), is shown by the solid black

curve.

of state, i.e., reducing the value of the adiabatic index. While it is difficult to see how
they are physically relevant, we also analyze the v = 5/3 monoatomic ideal gas and one
or two cases with even higher adiabatic indices, primarily to compare with [25].

The left panel of Figure 15 illustrates the absolute value of the velocity as a function of
distance behind the shock in the Newtonian limit for the adiabatic indices in the legend.
The solid curves show the solution to the Bernoulli equation in the non-relativistic limit
(i.e., Equation 4.19 when the rest-mass energy far outweighs the internal energy and
GM/(rc*) < 1; see also Equation 4 in [25]), while the dashed curves give the asymptotic

scaling near the origin’

u 4~ v—1\" = T\ 2
@_(72—1(7“)) (R> ' 2y

This scaling can be derived from Equation (4.19) in the Newtonian limit and assuming

that the internal energy far outweighs the kinetic energy near the origin, which is a valid
assumption when v < 5/3.

Equation (4.21) also shows, and the left panel of Figure 15 verifies that the velocity
declines in absolute magnitude as one approaches the origin for v < 1.5, while the gas
accelerates (in terms of the magnitude of the velocity) for v > 1.5; we believe that the

value of 7. = 1.522 quoted in [25] that differentiates between these two limits is in error

4We have arbitrarily scaled the analytic, asymptotic solutions by a factor of 0.9 so that they can be

distinguished from the exact solutions in this figure.
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— it is only for 7 = 1.5 that the velocity approaches a finite value (i.e., neither zero
nor infinite) near the origin. For v = 5/3 the velocity satisfies U/U, = 0.25(r/R)~"/?
and scales exactly with the freefall speed, as also found in [25]. For v > 5/3, Equation
(4.21) predicts that the fluid speed increases in a manner that exceeds the freefall scaling
as the gas approaches the origin. However, this is not consistent with the assumption
that the kinetic energy remains sub-dominant to the thermal energy, upon which the
assumption Equation (4.21) is based. Instead, the blue curve in the left panel of Figure 15
demonstrates that this super-freefall acceleration is only maintained for a finite distance
beneath the shock, and that the solutions terminate at a sonic point (i.e., the derivative
of the velocity diverges at radius of r/R ~ 0.14 for v = 1.75, and solutions do not exist
for radii smaller than this value). While this behavior is interesting from an academic
standpoint, it is difficult to see how such stiff equations of state could be realized in
nature, and hence we do not consider these solutions further here.

In the right panel of Figure 15, we present the solution to the relativistic Bernoulli
equation (Equation 4.19) by solid curves, where the adiabatic index appropriate to each
curve is given in the legend. We set the ambient fluid velocity to 0.2¢ for all solutions as a
fiducial value. The dashed curves represent the corresponding Newtonian solutions. We
see that the fluid “settles” at the event horizon, instead of conforming (approximately)
to power-laws near the origin, as is the case in the Newtonian approximation. The
Newtonian solutions display qualitatively different behavior above and below v = 1.5,
as illustrated in the left panel of Figure 3, with the gas decelerating (accelerating) for
v < 1.5 (v > 1.5); on the other hand, the relativistic solutions all decelerate and settle as
we approach the horizon, even though they closely match the Newtonian solutions near
the shock. The asymptotic scaling of these solutions near the horizon is presented in the

next subsection.

4.2.3 Asymptotic behavior of the general relativistic solutions near the hori-

zon

The neutron star surface — where the fluid must physically stop — is always outside of the
horizon, but it is instructive to discuss the extreme limit where the neutron star surface
approaches the horizon. The fluid variables as measured by an observer in the comoving
and locally flat frame either approach zero (velocity) or diverge (density and pressure)
near the Schwarzschild radius, and it is straightforward to show from Equations (4.17),
(6.5), and (4.19) that the rates at which they do so are

oM\ 2D
U (1 _ —) , (4.22)
T
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Figure 15: Left: The Newtonian solution for the fluid velocity as a function of radius
normalized by the shock radius for the adiabatic indices in the legend; the solid curves
show the numerical solution from the Bernoulli equation in the Newtonian limit, while
the dashed curves give the analytic, asymptotic scalings, arbitrarily offset by a factor of
0.9 so that they can be differentiated from the exact solutions when r/R < 1. Right:
The fluid velocity derived from the relativistic Bernoulli equation (solid curves) and the
Newtonian Bernoulli equation (dashed curves) for an ambient velocity of U, = 0.2 and
the adiabatic indices in the legend. The two solutions agree well near the shock front but

disagree strongly near the horizon, which occurs at r/R = 0.04 in this case.

1
M\ 76T
P (1 — —) : (4.23)
r
and
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p o (1 - —) : (4.24)
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Thus, in the general relativistic solutions presented here, the fluid velocity “settles” as
in the Newtonian regime. However, instead of settling near the origin, the fluid velocity
approaches zero near the event horizon. Similarly, the density and pressure diverge at

5-—3 (5—37)
small radii, but instead of following p o "1 and p X T 1 as they do in the

non-relativistic regime, they diverge as simple (and smaller) powers of 1 — 2M/r.

Due to the presence of the strong shock, the fluid loses most of of its kinetic energy
(gains equivalent thermal energy) and hence inevitably comes to rest interior to the
shock. As it approaches the horizon it sees an unbounded gravitational field and can
therefore only decelerate by developing an infinite pressure gradient as the event horizon
is approached. We turn to the implications of these findings in the next section and our

corresponding physical interpretations.
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4.3 Physical Interpretation

The settling solutions obtained by [177], [178] and [25] in the Newtonian limit possess the
feature that the velocity settles, or approaches zero, near the origin, which coincides with
the location of the compact object in the Newtonian point-mass limit. This feature seems
to imply that the Newtonian settling solutions describe the accretion of material onto the
surface of an object and that these solutions apply to an accreting neutron star during the
initial, stalled phase of the bounce shock, or at later times when weakly bound material
falls back from the expulsion of the envelope in a successful explosion (e.g., [178]). The
pressure and density of the gas also rise dramatically near the origin in the Newtonian
settling solutions, which suggests that the pressure of the gas as it is brought to a halt
at the surface of the neutron star provides the force that decelerates the flow.

However, while the velocity of the Newtonian solution approaches zero near the origin,
the mass flux remains finite, as it must by virtue of the time-steady nature of the accretion
through the shock. Similarly, the energy flux is conserved throughout the domain, and is
given by the kinetic energy flux across the shock. Both of these quantities must effectively
vanish at the surface of the neutron star where the velocity is (again, effectively) zero and
the density and pressure retain finite values. Thus, if the solutions here are to describe
accretion onto a neutron star (or any object with a “surface” at which the equation of
state stiffens substantially), then the mass flux should not contribute substantially to the
mass of the compact object, and there should be a mechanism for removing the incident
energy flux. In core-collapse supernovae, both of these conditions are approximately
upheld over the freefall time from the shock (i.e., conditions are roughly time-steady):
the mass accumulated near the surface is small compared to the mass of the star, and
neutrino losses from a very thin layer near the surface negate the incoming energy flux.
Thus, the relativistic solutions here should apply to accretion onto a neutron star and
become particularly relevant for scenarios in which the shock is pushed to small radii (see
the additional discussion in Section 4.4 below).

In failed supernovae, the continued accretion onto the neutron star eventually pushes it
over the TOV-limit, and the star collapses dynamically to a black hole [192, 193, 194, 169,
195, 196]. When the star collapses, an inward velocity must develop near the surface, and
the pressure gradient must fall below the value necessary to retain hydrostatic balance.
Thus, the solutions analyzed here cannot describe the entirety of the flow structure near
the horizon when the black hole forms, which is also not expected because of the highly
time-dependent nature of the interior of the flow as the core starts to collapse (i.e., the
assumption of steady flow is clearly violated at this point). It is then possible that the

shock is not supported by the reduced pressure in the interior and is correspondingly
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swallowed by the black hole.

On the other hand, it seems possible that the adiabatic increase in the pressure of the
gas as it nears the horizon (as evidenced from Figure 13 above) is sufficient to support the
shock for at least a finite time, even though the divergence of the pressure is not physical
(the true location of the horizon must increase to accommodate the large increase in the
density predicted by our solutions, which would result in non-divergent values of fluid
variables at the horizon). One could analyze the effects of imposing a more negative
velocity at an inner radius (mimicking the effects of a true horizon) on the flow by using
linear perturbation analysis [197], similar to what was done in [25] (though they used a
smaller velocity, which caused the outward motion of the shock). The fading mass supply
from the overlying envelope as less-dense regions of the progenitor are swallowed also
implies that the ram pressure should be less capable of stifling the shock, which could
allow the shock to remain quasi-stationary even in the absence of the strong pressure
gradient in the interior that is predicted by the solutions here.

For these solutions to arise physically (i.e., in a setting in which the assumptions made
here are relaxed), a steady-state must be reached by the flow. In general, this will take
on the order of a sound-crossing time from the shock, which for a shock radius of R = 150
km and neutron star mass of M = 2My, is ~ R*?/v/GM ~ 3.5 ms. If the neutron star
collapses to a black hole on a timescale that is shorter than this, then these solutions will
not be realized and the flow will be better approximated by pure freefall (e.g., Figure 7
of [196]).

4.4 Summary

In this work we analyzed the adiabatic accretion of gas through a stalled shock by mod-
eling the gravitational presence of the compact body with the Schwarzschild geometry.
The strong-gravitational effects (i.e., the inclusion of general relativity) is especially im-
portant in the case of weak or failed supernovae, where the shock wave launched by the
bounce of the proto-neutron star could stall at much smaller, more relativistic radii, and
during which a black hole forms. The black hole can continue to accrete at least as long
as there remains supply from the host star, and we suggest that the solutions outlined
here should also apply in this phase, i.e., while the black hole accretes through the stalled
shock.

For a neutron star mass of 1.4M and a shock radius of 100 km, the freefall speed
at the shock satisfies  ~ 0.2 and the differences between the relativistic and Newtonian
solutions are at the level of ~ 10 % (see the red curves in Figure 2). However, for

failed supernovae (in which the shock is not revived), the shock can be pushed to smaller
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radii and the mass of the neutron star increases to near the TOV limit (maximum mass
limit for neuron stars < 3M, for most equations of state). For example, [194] find that
the shock can stall at radii as small as 20 km; with a neutron star mass of 3M, the
freefall speed at this radius satisfies 2 ~ 0.66, and relativistic effects become much more
important (see the green and orange curves in Figure 2). Once the star exceeds the TOV
limit, the mass increases to even larger values, while the shock can be compressed to even
smaller radii, which necessitates the usage of our solution over the Newtonian one.

Relativistic effects will change the stability criteria and the corresponding growth
of the standing accretion shock instability (SASI) (e.g., [25, 27, 198, 199]), and these
effects can be important because the growth rate of the SASI has been found to be small
(i.e., the e-folding time of the instability is many freefall times). For example, [32] find
from their one- and two-dimensional simulations that the growth rate of SASI is between
~ (0.1 — 0.22) in units of the freefall time (i.e., the instability grows as ~ e(0:170-22)7,
where 7 is time relative to the freefall time; see their Figure 2). Their results agree well
with those obtained analytically by [30]. [27] and [200] too find similar, small growth
rates. Small changes in the background state can therefore change the stability of the
system, and the solutions here present one such instance in which small changes arise
from physical (relativistic) considerations.

Our solutions also have implications for gravitational wave signals from core-collapse
supernovae. For example, [2] discuss the possibility that material that falls through the
shock can impact the nascent neutron star and generate detectable gravitational wave
signatures. Relativistic effects will modify the properties of the fluid as it rains down onto
the neutron star surface, which could lead to pronounced differences in the gravitational
wave signal owing to the fact that the neutron star radius is only marginally greater than
the Schwarzschild radius.

In this work we assumed spherically symmetric, irrotational flow. If the progenitor
does not contain a large reservoir of bulk angular momentum (which is likely, because
stellar winds will carry away a substantial amount of angular momentum over the lifetime
of the star), then angular momentum is important during the late stages of infall; this
is because it is only in the outer envelope of the progenitor where random, convective
motions can yield a specific angular momentum that exceeds the innermost stable circular
oribit (ISCO) value [201]. If the progenitor does have significant net angular momentum,
the gas can circularize outside of the ISCO and rotation can be dynamically important.
The disc-like structure that forms in this case is likely optically and geometrically thick
owing to the extremely high accretion rates, and we can integrate the equations over
the scale height of the disc to obtain height-averaged Euler equations. The resulting

disc solutions would be analogous to the advection-dominated accretion flow solutions of

25



[202] and the adiabatic inflow-outflow solutions of [203], but with the added constraint
of satisfying the boundary conditions at a shock. We defer further investigation of this
possibility to future work.

We assumed that the post-shock fluid is adiabatic and that the time-steady nature of
the flow then ensures that the gas is isentropic. The gas is expected to be nearly isentropic
because the fluid in the gain region is convectively unstable [175, 204, 205]. [178] justifies
the adiabatic assumption by noting that neutrino losses become important in a very thin
layer near the surface of the accreting body, and thus the post-shock flow is effectively
adiabatic over most of its volume. [206] notes the neutrino cooling is not likely to result
in a significant entropy gradient across the flow in the post-shock region. Furthermore,
in his 3D simulations, he finds that mixing at the onset of convection and SASI largely
reduce any entropy gradient. Nevertheless, some simulations in lower dimensions (2D) do
find a more substantial entropy gradient, e.g., [207]. Interestingly, however, the numerical
solutions of [207] appear to agree fairly well with the analytic solutions presented here.
For example, in Figure 8 of [207], the density is shown to increase by ~ 6 orders of
magnitude going from the location of the shock at ~ 200km to the origin, which agrees
with what we find analytically (see the purple curve in the bottom left panel of Figure
13). The neutrino cooling in the thin layer acts effectively as a global sink on the energy,
which balances the influx of energy from the material falling through the shock and allows
the system to reach a steady state (i.e., the shock stalls). [178] also shows the ratio of

thermal pressure to radiation pressure is

. 0.4
Pth M
~002— 4.25
Prad (MG)) ( )

for M = (0.01 — 100) M, yr—" [191, 178] reinforcing the adiabatic claim further.

The time-steady nature of the solutions presented here requires specific ambient den-
sity and velocity profiles. More realistically, the mass infall rate will decline with time
and the density profile of the accreting gas will change nontrivially as a consequence of
the shells of nuclear ash in the progenitor star. The reduction in the mass supply rate
and the ram pressure of the envelope then likely results in the outward motion of the
stalled shock. We will analyze the consequences of a time-varying infall rate through a

perturbative approach in future work.
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Chapter 5

Asteroseismology on a proto-neutron

star

Core-collapse supernovae are possible sources of gravitational-waves that could be de-
tected by the proposed third-generation interferometric detectors, such as the Cosmic
Explorer [208, 209] and the Einstein Telescope. These observatories will be able to detect
a supernova within 100 kpc, which includes the Milky Way galaxy and its satellites [210].
The estimated rate of supernovae for a galaxy the size of Milky Way is 1-3 per century
211, 212, 213).

A number of studies have characterized the gravitational wave signal from the collapse
and explosion of the core of a massive star [214, 215, 216, 217, 218, 219, 220, 221, 222, 223].
After decades of improvement in the numerical techniques, we are now much better able
to account for the complex hydrodynamics in multi-dimensions, the neutrino interactions,
and the hydrodynamical instabilities [224, 225, 226, 227, 228].

This rich and complex physics gives rise to a complex gravitational-wave signal, which
in the time domain represents the stochastic nature of matter movements within the star.
There is a sharp negative peak in the signal at the time of core bounce, and its amplitude
depends on the rotation rate of the core of the progenitor. This is followed by the
post-bounce oscillations of the core, that extend for 6-10 ms after the bounce, with an
amplitude that depends interestingly on the rotation rate of the core of the progenitor
star and its equation of state [229]. The end of post-bounce oscillations mark the onset of
“prompt convection” due to the dynamical imposition of a negative entropy gradient as
the shock stalls. Starting from ~150 ms after the core bounce, there is a strong, stochastic
signal. Moreover, an asymmetrical explosion is accompanied by a growing offset in the
mean strain from zero due to “memory”[230, 231, 232].

Even though the signal is highly stochastic in the time domain, the time-frequency

spectrogram of the gravitational-wave signal reveals that most of the power lies in a

57



narrow track in the time-frequency plane. Linear perturbation analysis of the proto-
neutron star shows that this frequency corresponds to the quadrupolar f—mode of the
proto-neutron star [222, 223], which starts approximately 100 — 400 ms after the core
bounce. These oscillations are excited by the downflows of matter accreted onto the
proto-neutron star [216, 222].

Previously, Ref. [233] measured the frequencies associated with the g-mode oscilla-
tions of the proto-neutron star using the time-frequency spectrograms of the gravitational-
wave strains obtained from simulations. Using frequency measurement and universal rela-
tions, they obtain measurement of the ratio Mpys/R3xg of the proto-neutron star, where
Mpys is the mass and Rpysg is the radius of the proto-neutron star. Ref. [234] develop
a phenomenological model of the gravitational-wave signal associated with the dominant
mode and use the spectrogram of the strain to measure f-mode frequency evolution and
energy. They use Bayesian parameter estimation to measure their model parameters,
and then obtain frequencies and energies associated with the mode from the posteriors.
More recently, Ref. [235] extended the work of Ref. [233] of measuring the f/g mode
frequencies of the proto-neutron stars using the strains of 3D and 2D simulations. They
use a network of current, and future, detectors to perform a coherent analysis of the
detected signal.

In this work, we develop a model-independent method to measure the f—mode fre-
quencies and the energy emitted in gravitational radiation of the proto-neutron star os-
cillations by analysing the spectrograms of the gravitational-wave strains obtained from
state-of-the art three-dimensional core-collapse supernovae simulations.

Section 5.1 describes the numerical simulations used in this work, and describes the
linear perturbation analysis used to determine the f—mode oscillation frequencies. In
Section 5.3 we describe our method to construct the short-time Fourier transform and
the spectrogram of the gravitational wave signal obtained from the simulations. In Section

5.4, we describe our main results from the analysis.

5.1 Simulations

In our analysis, we used the data obtained from two- and three-dimensional core-collapse
supernovae simulations performed with the neutrino-radiation hydrodynamics code FOR-
NAX [236, 237, 238]. The progenitors used in the simulations were calculated by Refs.
[239] and [240]. Further details of the simulations can be found in Refs. [222, 225, 223].

We tabulate the models we consider in our works in Table 2. We show the mass of
the progenitor, the equation of state of the proto-neutron star used in the simulations,

and the core-rotation rate in columns 3, 4, and 5 of the table. We also indicate whether
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the the shock is revived and the star explodes within the time of the simulation. For the
three-dimensional simulation models, We use a wide range of progenitors with the ZAMS
(Zero-Age Main Sequence) mass ranging from 9M; — 60M,. We use SFHo equation of
state, and all but the 13M,, 14M,, and 15M, explode within the time of the simulation.
For the two-dimensional simulations with core rotation at the time of core bounce, we
use a 15M progenitor. We have a total of 14 models with rotation rates ranging from
0.0 rad/sec —6.14 rad/sec. We also include 9 two-dimensional simulations with zero core

rotation.

5.2 Linear Perturbation Analysis

In this section, we outline the method of the linear perturbation analysis of the angle-
averaged data of the proto-neutron star profile (i.e. integrated over the solid angle 2).
The proto-neutron star is to be modeled with the energy-momentum tensor of a perfect
fluid.

T,, = pHu'u" + Pg,,, (5.1)

where p denotes the rest-mass density, P the pressure, u* the fluid 4-velocity and H :=
(1 + e+ P/p) the specific enthalpy, € the specific internal energy. Under the assumption
of spherical symmetry ', the space-time metric g, in isotropic coordinates , using the (3
+ 1) foliation, can be written as [241, 242 224, e.g] ,

ds® = g datde” = —aPdt* + ¢ fi;da'do’ (5.2)

where « is the lapse function and the metric for spatial slices is approximated to be
conformally related to the flat metric d;; with a conformal factor ¢*, set to 1 in all
simulations of Table 2.

We now perform perturbation analysis on top of this conformally-flat background
by linearizing the equations of general relativistic hydrodynamics. In general, the three
components of the Lagrangian fluid displacement field, &(r,t) = 7 + §9é + 5%3 repre-
senting the perturbation, can be resolved in terms of three scalar functions by virtue of
the Helmholtz decomposition theorem. If one assumes that the radial component of the
fluid vorticity equation vanishes at all points of the star, that is, (V x &), = 0, then one
can show that the three components of ¢ can now instead be resolved in terms of only two
scalar functions. We now decompose these two scalar functions into purely radial func-

tions (1,.(r),n.(r)) supplemented with the spherical harmonics Y, and mode frequency

!The asymmetries are small enough and hence the angle-averaged background can well be approxi-

mated as spherically symmetric.
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Progenitor mass . ) Core rotation | Explosion
Label Equation of state
(M) rate (rad/sec) | Status
s9-3D 9 SFHo - Yes
s$10-3D 10 SFHo - Yes
Three-dimensional s11-3D 11 SFHo - Yes
simulations
s12-3D 12 SFHo - Yes
s13-3D 13 SFHo - No
s14-3D 14 SFHo - No
515-3D 15 SFHo - No
s17-3D 17 SFHo - Yes
s18-3D 18 SFHo - Yes
$19-3D 19 SFHo - Yes
520-3D 20 SFHo - Yes
$25-3D 25 SFHo - Yes
s60-3D 60 SFHo - Yes
0.0strain 15 SFHo 0.0 No
0.05strain 15 SFHo 0.05 No
Two-dimensional
simulations 0.1strain 15 SFHo 0.1 No
with
core rotation 0.2strain 15 SFHo 0.2 No
0.25strain 15 SFHo 0.25 No
0.3strain 15 SFHo 0.3 No
0.4strain 15 SFHo 0.4 No
0.5strain 15 SFHo 0.5 No
0.75strain 15 SFHo 0.75 No
1.0strain 15 SFHo 1.0 No
2.0strain 15 SFHo 2.0 No
pi.strain 15 SFHo 3.14 Yes
4.0strain 15 SFHo 4.0 No
5.0strain 15 SFHo 5.0 No
2pi.strain 15 SFHo 6.28 No
M10-LS220 10 LS220 - No
M10-DD2 10 DD2 - No
Two-dimensional
simulations M10-SFHo 10 SFHo - Yes
without
core rotation M13-SFHo 13 SFHo - No
M19-SFHo 19 SFHo - Yes
gw-s11-2D 11 SFHo - No
gw-s19-2D 19 SFHo - No
gw-s25-2D 25 SFHo - No
gw-s60-2D 60 SFHo - No

Table 2: The table summarizes the details of the simulations, including the progenitor
mass, equation of state, initial core rotation, and explosion status within the simulated

time interval.
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Here, any time dependence of the background state is assumed to be very small compared
to the eigen value (i.e. the time derivative of any quantity f, 0f /0t << f/o). If o is
real, the system is neutrally stable (i.e. the modes are oscillatory in nature). As the
background metric is assumed to be conformally flat, the perturbation of the metric is
accomplished by perturbing the lapse function. Decomposing the perturbation to the

lapse function in purely radial and spherical harmonics yields
Sa = 06(r)Yye "t (5.4)

We define f, = 9,(0a/a); together with da it represents the perturbation in the gravity
sector. The timescale associated with neutrino heating and nuclear dissociation is typi-

cally >> 1/0, hence the perturbations to the fluid properties to be adiabatic in nature,

1mply1ng,
aiaaic—]l}CS—_ ) .
9 diabat Il 9.5

¢ the relativistic sound speed in the fluid, and I'y the adiabatic index. Now the equations
of general-relativistic hydrodynamics together with the 00 component of the Einstein

equation can be linearized to obtain the following system of equations:
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and

0,04 = faor — GG (5.6)

In Equations 6.37-6.40, we have collected the combination pha=21* as ¢, G is the

radial component of gravitational acceleration G := —d,Ina, N is the relativistic Brunt-

s Qb LE)TP_(‘?TG
N = (n P ol (51

Vaisala frequency,
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and L is the relativistic Lamb shift,

- z_jcg—“l s (5.5)
The system of equations 6.37-6.40 can be solved by incorporating appropriate boundary
conditions: at the outer boundary, set at the radial coordinate where the density p =
10'%/cm™ we consider the Lagrangian pressure to vanish and at the inner boundary
(i.e. r = 0 ) use the regularity condition of [243]. Mathematically, this reads, at the outer
boundary,

H .
qo’n, — P2 5a +0,.Pn, =0 (5.9)
a
and at the inner boundary,

-1
Tr = ;7& xr

777"|r:0 - ’r]L|T:0 =0

By discretizing the derivatives by means of trapezoidal rules, we can start integrating the
set of equations 6.37-6.40 by inverting the 4 x 4 coefficient matrix at every step to solve for
(s M1y fas 5&) and then using the bisection method to uniquely determine the solutions
by satisfying the outer boundary condition Eq. 6.55. The eigenvalue corresponding to
the unique solution thus obtained gives the frequency of oscillation as o/27. The lowest
frequency oscillation mode is the fundamental oscillation mode (f-mode), with zero radial
nodes. We find the f-mode starts few hundred ms after the core bounce for the simulations
in Table 2 which confirms similar findings in [222]. The f mode thus obtained is then laid
on the spectrogram and is found to contribute significantly to the strength of the GW
signal after ~ 400 ms. As noted in [222], the higher-order g- or p-modes are not found

to be excited in these simulations.

5.3 Spectrogram Analysis

In this section, we describe the construction of the spectrogram of the gravitational-wave
strain signal. We use the spectrogram to measure the properties of the fundamental
quadrupolar f—mode oscillations of the protoneutron star. In particular, we are in-
terested in measuring the frequency of the oscillations and the energy emitted in the
gravitational-wave radiation. The analysis described here is for the fiducial case when
the detector noise is not present. In the later sections we will discuss the effect of detec-
tor noise in the extraction of the features from the spectrogram and compare it with the

output from the analysis described here.
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Following [244, 245, 246, 221], the gravitational-wave strain hgT for a for a source at

a distance D can be written as

VoD dt’
where ¢;; is the time derivative of the mass quadrupole tensor Q;; = [d*zp(z;z; —

(5.10)

%r25,-j). The strain amplitudes of the two polarizations, h, and hy, can be obtained in
the slow-motion limit from the linear combinations of the second time derivatives of the
components of the transverse traceless mass quadrupole tensor Q;;. The polarization

strains as observed along the line of sight (6, ¢) are given by

G [(dge  dqye
M =D ( - dt )’ (5:11)
B 2G dq@¢

Here, the time derivatives of the mass quadrupole in spherical coordinates, in terms of

those in Cartesian coordinates, are given by
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The total energy emitted in gravitational waves is given by [246]

Eow = —/ Z {ddg”} (5.13)

which, in terms of gravitational-wave strain is given by
AD? dh.,. dhy \?
Eow = dt dS)
o 167rG/ / ( )+<dt)
AD? dh.. dhy \?
dt
1G l(dt)+(dt) ’

where the second approximation holds true if the strains are assumed to be nearly in-

(5.14)

Q

dependent of line of observation and the integral over the solid angle gives a factor of
4.
To compute the energy spectra of the gravitational wave signal we use the spectrogram

of the signal
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where h is the short-time Fourier transform, defined as

h(f) = /_ TR H(E = m)e it (5.16)

oo

and H(t — 7)) is the Hann window with offset time 7;, indexed by [. A window
function is applied to each segment to ensure that we don’t get Gibb’s junk when we take
the Fourier transform of the segment. Equation 5.15 gives the energy per unit Hertz for
a time-frequency block centered at time 7; and frequency f. Thus, a spectrogram is the
transformation of the short-time Fourier transform to represent the power content in a
time-frequency block.

In practice, gravitational-wave strain h is a discrete function of time, obtained either
from simulations, or via observations made by a gravitational-wave detector. In order
to take the Fourier transform of the time-domain strain data, h; = hy(t;), it must be
evenly sampled at time intervals of At = t;,1 —t; seconds, Vj. The sampling rate, or
sampling frequency is given by fs = 1/At. The data from the simulations is unevenly
sampled since the size of each time step in the simulations is governed by the micro- and
macro-physics at the time.

We re-sample the data at sampling rates ranging from 16, 384 Hz to 2,097,152 Hz in
powers of two and interpolate using one of the two interpolation schemes: linear inter-
polation and cubic spline interpolation. We then compute the energy using discretized
versions of equations 5.11, 5.12 and 5.14, where now h(t) = h(t;). We compute the third
order time derivative of the the quadruple moment from the second order derivative using
the central difference method. Fig. 16 shows the energies on the left ordinate for the model
$19-3D computed via the two interpolation methods at various sampling rates. We see
that the energy values converge with increasing sampling rate. The dashed curves show
the difference between the energy values obtained between two consecutive sampling rates
(shown on the right ordinate). This plot gives us a range of energy estimations for data
sampled at different frequencies. We choose to use the Cubic spline interpolation and
a sampling rate of 16,384 Hz (or equivalently, sampling interval of At = 6.1035 x 107>
seconds) since its is computationally less expensive and is a more realistic choice with
regards to the sampling rate used by current and proposed gravitational-wave detectors.

In the next subsection we describe the construction of the short-time Fourier transform
of the discretely-sampled signal, and measurement of the frequencies associated with the
f—mode from the time-frequency representation. For this purpose, we use 50% overlap
of Hann-windowed time-segments, since this configuration does not affect the amplitude
of the signal.

In order to compute the short-time Fourier transform of the data, we need to divide

the data into segments of equal length, say of Ty, = Ny At seconds, and multiply each
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of these segments with a window function before we take its Fourier transform. There
are a variety of windows available for this purpose [247]. In this study, we use the Hann
window. We need to ensure that each data point of the waveform is equally weighted
when we consider the sums of the windowed waveform segments. This presents a problem
at the ends of the waveform, since Hann window starts from (or tapers to) zero. The
solution is to first taper both ends of the waveform to zero, and then zero-pad the entire
waveform on both ends by multiples of Ny, points. Zero-padding the waveform does not
change the total power content in the signal since we are only adding zeros to the ends
of the data. We use the window size of Ty = 40 ms. For tapering, we use the 1024
data points at both ends of the waveform and apply a half cosine window. We zero-pad
both ends of the tapered waveform by Ny, = 655 points. For constructing the short-
time Fourier transform of the signal, we use 50% overlap between two consecutive time
segments that get multiplied by the Hann window.

The top panel of Fig. 17 shows the gravitational-wave strain data of the plus polar-
ization as a function of time after core bounce for the simulation s19-3D in blue. This
three-dimensional simulation uses a progenitor with ZAMS mass of 19M. The equation
of state used in the simulation is SFHo. The top panel shows evenly-sampled data in
blue, and the data with both ends tapered for construction of the short-time Fourier
transform is shown in orange. The bottom panel shows the short-time Fourier transform
of the strain. The horizontal axis shows the time after bounce, the vertical axis shows
the frequency. The color bar shows the modulus of the Fourier amplitude. We see the
prompt convection signal after ~ 50 ms after the core bounce. The prompt convection
phase is followed by the ~ 50 ms long quiescent phase. After this, the dominant part
of the signal starts with frequency growing from ~ 500 Hz to ~ 1000 Hz 0.6 sec after
core bounce. This signal is caused by matter accreting on the proto-neutron star and
exciting its modes, including the f—mode. The f—mode frequencies obtained by the
linear perturbation analysis are shown as red crosses in the bottom panel. The vertical
orange line shows the time ¢ty = 200ms after the core bounce. The two orange parabolic
curves define the frequency range within which the algorithm of [40] looks for the peak

in the spectra.

5.4 Results

In this work, we have constructed the short-time Fourier transform of these signals to
extract the f—mode frequencies. We then construct a spectrogram of the signal in a way
that provides equal weights in power to all the data points of the signal. By performing

linear perturbation analysis, we have shown that the f—mode frequency tracks down
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the dominant component seen in the spectrogram of the gravitational wave strain. The
vertical orange line in Fig. 17 shows the time ¢ty = 200 ms after the core bounce. From
the linear perturbation analysis we know that the f—mode starts around this time. We
define a plausible range of the f—mode frequencies shown by the two orange quadratic
curves in Fig. 17. This information is then used in the algorithm of [40] to measure the
frequencies and energies of the gravitational strain merged into the detector noise. They
find that the energy associated with the f—mode oscillations typically increases with the
progenitor mass. The energy also depends on the delayed explosion times and the success
of explosion. Simulations having higher shock stall times before the onset of explosion
emit more gravitational-wave radiation since the oscillations are excited for a longer time.
Additionally, the energy of the f—mode also increases monotonically with the rotation
rate of the core, up to a certain value of core rotation rate. Centrifugal forces dominate
for faster core rotations, and cease the activation of the oscillations of the proto-neutron
star.

Measurement of the frequencies and energies of the f—mode oscillations can provide
us more information about the mechanism of the supernova explosion. We can also infer

the central density of the proto-neutron star and the turbulence energy within the system.
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Figure 16: The figure shows the energy (in 1078 M c?) obtained for the simulation s19-3D
as a function of the sampling rate used to resample the data from the simulations. The
solid blue curve represent the case when Cubic interpolation is used whereas the orange
curve shows the case when Linear interpolation is used. The corresponding dashed curves
show the difference between energy values obtained for a particular sampling frequency
and the one lower. We can see that the values converge as the sampling frequency is

increased.
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Figure 17: The figure shows the strain (top) and its spectrogram (bottom) of the 3D
simulation s19-3D. The strain data has been uniformly sampled at 16,384 Hz. The ends
have been tapered to zero by applying half cosine windows to the first and last 1024
points of the data. Then, the data are zero-padded by 0.04 seconds on either end. The
spectrogram of this signal is shown on the bottom panel. The f—mode frequencies,
obtained from linear perturbation analysis, start at 200ms and go from 500 Hz to 1000
Hz at 0.6 seconds after the core bounce, and are shown as red crosses in the bottom
panel. The vertical orange line shows the time ¢y = 200 ms after the core bounce. The
two orange parabolic curves define the frequency range within which the algorithm looks

for the peak in the spectra.
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Chapter 6

Standing Accretion Shock Instability

Accretion shocks are a ubiquitous phenomenon in astrophysics. They arise naturally in
scenarios where compact objects (neutron stars, white dwarfs, and black holes) accrete
material, typically from normal companion stars or accretion discs. Core collapse super-
novae (CCSNe) are arguably the best example in which accretion shocks play a dominant
role in the overall physics of the system if not dictating it. CCSNe results in the death
of certain massive stars (2 8 My). At the end of their life, after their fuel reserves have
been exhausted, the core of many of these stars becomes dynamically unstable and col-
lapses. The collapse proceeds until the equation of state of the nascent neutron-rich
inner core—of a typical mass of 1.4Mg and size of 10 km (proto-neutron star, PNS
hereafter) stiffens sufficiently to stop further collapse. The onset of that moment, the
so-called bounce of the PNS is proclaimed through the launch of a shock wave into the
ambient stellar envelope. The shock propagates outward, loses energy by disassociating
and ionizing the ambient material, and stalls at a radial distance of ~ 100 km, as seen
in numerous analytic and numerical studies [161, 163, 167], for a recent review, see [248].
The overlaying ambient stellar material keeps passing through the standing shock, gets
compressed, slows down, and the thermal energy increases by the same amount of kinetic
energy it loses and is accreted by the neutron star. The mechanism that revives this
stalled shock, which would then power the energetic explosion seen in successful super-
nova events, remains illusive, while there are two viable proposals. The favored of this
two, the neutrino mechanism, first proposed in the mid-1960s, argues that some fraction
of the total neutrino flux radiated from the PNS deposits sufficient energy and momen-
tum on the stalled shock to revive it [161, 164]. The other plausible mechanism emerged
onto the scene in the early 2000s when some of the large-angle oscillation modes of the
stalled shock were found to be strongly unstable in response to spherically asymmetric
perturbations [25, 26, 32, 249, 250, 251]. This newly discovered hydrodynamic instability

became known as the standing accretion shock instability (SASI) and is the main focus
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of the present article.

However, the study of the hydrodynamics of spherical accretion onto compact objects
has a rich history and was first initiated by [31] and subsequently advanced by [177, 179,
252], among others. A specific variety of the general problem, the study of spherical
accretion onto compact objects—matched to a standing shock-specific to CCSNe gained
momentum with the work of [253, 178, 254, 30]. In a major work, [L78] achieved self-
similar solutions for the post-bounce adiabatic fallback of stellar gas considering the mass
flux approaching zero in the limit when the radius goes to zero. Then, these solutions
became rightfully known as the “settling solutions”. Subsequently, [30] (HC92 hereafter)
modified these solutions considering the presence of a surface with a nonzero radius and
nonadiabatic processes. They were focusing on a supernova remnant on timescales of
hours to days, when the neutrino radiation carries away the gravitational energy through
the envelope bounded by the shock wave, necessitating the need of modeling such a
radiative process by means of a cooling function. The extra free parameters related to
the cooling function in their problem allowed them to keep the shock standing at fixed
location that they calculated in an iterative way. They studied the stability properties of
their solutions analytically in linear perturbation theory for different values of adiabatic
index and different strengths of cooling (by changing the form of the cooling function).

The stability of these solutions (i.e., settling solutions with cooling functions) has been
studied by [30] and [34] analytically in perturbation theory and [26] (BMO06, hereafter)
in numerical simulations. The details of all these major works are presented in Table
3. The summary being that almost all the studies find the radial modes of oscillations
to be stable; while some large-angle oscillations are found to be unstable. The ¢ = 1
modes are the most unstable and epitomize the low-frequency instability— SASI. [34] has
another interesting feature to add: They found that the real parts of the eigen modes
(characterizing the growth of instabilities and termed growth rate) were found to oscillate
as plotted against the complex part (charectering the radial osicllation of the modes and
termed oscillation period), very clearly visible when the number of well-defined modes is
large (see their Figure 7). We note that the particular study of [25] (BMO03, hereafter),
which revamped SASI, presented the result of the numerical stability analysis of the
original “settling solutions” (i.e. without any cooling function) but, as summarized in
Table 3, to date there has been no analytic stability analysis performed on
them. In this work, we set out to do so and find some interesting results; specifically,
we discover oscillations in the [ = 2 eigenmode spectra, similar to the finding of [34] for
¢ = 1 modes. We find a range of unstable modes—the maximum oscillation frequency
(corresponding to the imaginary part of the eigen modes) of these modes is strikingly

similar to the frequency associated with the free-fall time of the PNS, whereas SASI is
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traditionally associated with relatively low-frequency oscillations. This makes us think
whether these unstable ¢ = 2 mode oscillations of the SASI cavity seed the fundamental
mode (f-mode) oscillations of the neutron star seen in the gravitational wave signal of
[2, 255, 256, 257, 258].

The mechanism driving SASI is yet unknown, and we are oblivious to it as well.
One of the leading mechanisms is the “advective-acoustic mechanism” put forward by
[34] identifies a loop of entropic and acoustic waves in the subsonic region between the
shock and the accreting body as the source of this instability which was first presented
to explain the isothermal flow accelerated towards a black hole [259, 33]. In this, the
shock front generates an entropic wave that propagates inward, causing a pressure wave
in the post-shock medium, which in turn propagates outward and completes the loop by
creating further amplified entropic waves [260, 34, 35, 261, 262]. The other explanation,
the “acoustic mechanism” —advocated by [32, 249] proposes that the instability is driven
by acoustic waves generated from the oscillation modes of proto-neutron star excited by
the infalling accretion plumes. In this model, the protoneutron star essentially transforms
the gravitational energy into a sound wave and drives the SASI engine [249, 263]. Some
studies have tried to settle the roles of each mechanism to power SASI, but it is wise to
conclude that the issue is far from settled [264].

Despite uncertainty about its origin, SASI continues to be the subject of intense re-
search. It is true that the initial hype with SASI to generate an asymmetric explosion
has faded, but it is accepted that although SASI might not be able to generate the explo-
sion independently, it plays a significant role in aiding the neutrino heating mechanism
[176, 265]. Moreover, SASI activity was shown to generate gravitational waves that are
speculated to be in the detectable band of the next generation gravitational wave detector
[266, 267, 268], affect the emitted neutrino signatures [269, 270], possibly link the birth
properties (i.e. spin, kick, and magnetic field) of pulsars [251, 271] and excites different
oscillation modes of the protoneutron star [272, 273]. Hence, to date, SASI has always
received significant attention from the supernovae community in numerous analytic and
simulation works over the past decade [274, 275, 276, 277, 278, 279, 280, 206, 281, 282].
The results to be presented here promise that SASI has more to offer.

6.1 Background Flow and linearized equations

We assume that the infalling ~ pressureless fluid passes through a radiation-dominated
shock. We neglect the radiative losses below the shock; which is a very good approxima-
tion over most of its volume, the neutrino losses become important in a thin layer very

close to the surface of the neutron star [178]. Therefore we characterize the post-shock
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Study | Method Cooling l ¥ Stability Notes
[178] | Analytic | not included n/a 4/3 Stability analysis not performed
5/3 unstable both the growth rates and oscillation period are sensitive to cooling
0
4/3 | mildly unstable both the growth rates and oscillation period are almost independent to cooling
unstable Rgnock/ Rpns 2 2; growth rate slower than radial oscillations
HC92 | Analytic included 1
stable Rgpock/ Rpng < 2
5/3
2 stable
higher stable
0 stable
BMO03 | Simulation | not included 4/3 growth of instabilities slows down with smaller value of
1,2 unstable
unstable Rgnoc/ Rens > 20
BMO06 | Simulation included 0
4/3 stable Rhock/Rpxs < 20 unstable
1, 2 and higher unstable
[34] Analytic included qualitatively similar to BM06; quantitatively the growth rate and oscillation period they found showed ~ 30% discrepancies.

Table 3: Summary of some of the major previous work investigating SASI.

flow by a single adiabatic index -, and the gas is isentropic such that p/p? is constant

1 We let the fluid be nearly spherically symmetric, so that the predominant dependence

of the fluid variables is on the spherical radius r and the - and ¢-components of the

velocity are small. Considering the gravitational field of the neutron star described by

the Newtonian potential ® = —GM/r, where M is the mass of the neutron star, we write

the fluid equations in spherical coordinates by keeping only the linear terms in 6 and ¢

as
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T e (6:2)
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ot v T =0 (6:3)
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ot T or * r rsinf pdo 0 (6.4)
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In Equation (6.5) we identify, S = In (p/p?) as the entropy of the gas, which is a conserved

Lagrangian quantity in adiabatic process.

'We can nevertheless mimic radiative losses by considering softer equation of state, i.e. smaller values

of the adiabatic index ~y




6.1.1 Shock jump conditions

The overlying stellar envelope is assumed to freefall into the center of the star in a time-

steady manner; the ambient velocity therefore satisfies

o, GM 2GM
b =Ty 2 Uy = —4/ — (6.6)

Here the subscript-a denotes the fact that this velocity profile is appropriate to the

ambient gas. The solution to the continuity equation is then

0 r\ 2

— [Tvaa] =0 = p=/po <—> . (6.7)
T To

Here py and ry are some scale density and radius, respectively.

In spherical coordinates, the equation describing the surface of the shock is

f=r—R(0,¢)=0. (6.8)

Here R(0, ¢) is the shock radius as a function of spherical angles # and ¢. The unit vector

normal to the shock front is then

Vi 1 {1’ 10R 1 aR}_ (69)
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In the co-moving frame of the shock the flux of mass, momentum, and energy must be

conserved across the shock front; this gives the following three “jump conditions”:

p11~}1 = ,02172, (610)
p10; = paU3 + Pa, (6.11)
1 1
S = g L P2 (6.12)
2 2 v —1p;

Here tilde’s denote the fact that we are in the co-moving frame of the shock, and hence

OR OR
U0 =V — —, Uy =1y — — 1
U1 =10 o’ V2 = V2 o’ (6 3)
where % is the shock speed. Solving the above three algebraic relationships gives
2 OR -1
Vg = ——— 7 vy, (6.14)
y+10t ~v+1
2 R\’
_ _ 6.15
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At the location of the shock we therefore have

v (R) = %% + %va(R), (6.17)

) = () (1) - %—Jf) (619
plR) = (), (6.19)

vo(R) = —% (% + va(R)> %g—?, (6.20)
vg(R) = —% (% + va(R)) Rslinég_j (6.21)

Now, we re-scale all the fluid quantities of interest, that is, (v,,vg, v4), p, and p to dimen-
sionless variables (f,, f1), g, and h respectively . Similarly, instead of working with the
radial coordinate r and the time coordinate t, we choose to work with dimensionless vari-
ables £ and 7, respectively. One of the main motivations behind all these re-definitions
is to take advantage of the self-similarity property that the fluid equations enjoy. We
would like to point out that to define £ in Equation (6.22) we have normalized the radial
coordinate r by the instantaneous shock location R(t) in the perturbed flow and not by

the unperturbed shock location Ry(t) 3

. This means that the shock will always be at
¢ = 1, whereas the fixed location of the neutron star surface will correspond to &, a
value that will change when the shock moves. The dimensionless time-like variable 7, on

the other hand, is a measure of time in the unit of the dynamical timescale of the star.

dr vV2GM

T e }%. (6.22)
\/ 2 e myi0.0), (6.23)
o= 2G fiE ) g Y (6.24)
2GM 1 aYg"
vy = & 95 (6.25)
R\ 32
o= (—) g€ 7)Y (0, 0). (6.26)
G —3/2
=20 (2) .o, (6:27

2By mapping the functions ve and vy to a single function f| we implicitly assume the radial component

of the vorticity equation to be identically zero at all points of the star [283].
3This is following [30].
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Then (again to leading order) the fluid equations become
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6.1.2 Background Soluion

Let the shock be stationary such that % = 0R/0t =0, and let the #- and ¢-components
of the velocity be zero. Additionally, assume that all fluid variables depend only on the
spherical radius r, and we will denote all fluid variables with a subscript 0. Then the

fluid equations become

0 dfo 1 dho 1 d ho
0 — =———, —=In{—= ] =0 6.33
(95 [5 fogo] , Jo d§ % d§ 252, dé n gg ) ( )
and the boundary conditions are
v—1 v+1 2
1)=———, 1) = ——, ho(l) = ——. 6.34
Jo(1) | go(1) ~—1 o(1) vl ( )
The solution to the above gives the following, algebraic equation to be solved for f.:
1, 2y (y=1\"/-1\"" 1
— — ——=0. 6.35
S () (@) = (639

We numerically solve that equation subject to the jump conditions Equation 6.34 and
recover the “settling solutions” of [30, 25] for radiation-dominated v = 4/3 fluid. We
present them in Figure 18, which also illustrates the behavior of these solutions as we
vary the adiabatic index 7. As 7 decreases, the velocity (the modulus of which is shown
in the left panel) more rapidly approaches zero as we move near the origin. This aspect
of the solutions arises from the fact that the pressure (shown in the right panel) rises
more rapidly toward the origin as the equation of state softens, the gradient of which is
more capable of stopping the infall. The corresponding densities are shown in the middle

panel.
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Figure 18: The modulus of the dimensionless, radial velocity (f;, left), the dimensionless

density (g, middle), and the dimensionless pressure (h, right) as functions of £ = r/R.

6.1.3 Linearized Equations for general /

We perturb these background solutions by placing a rigid, spherically symmetric bound-
ary in the interior of the flow that represents the surface of the neutron star. Physically
we expect this location to coincide with where the density increases to the point that neu-
tron degeneracy pressure and the repulsive nuclear force substantially stiffen the equation
of state. We expect the sudden placement of this “wall” in the interior of the post-shock
flow to generate an instantaneous response of the fluid and, in general, time-dependent

and spherically asymmetric variations of the fluid variables

fi(&,7) = fo(§) + f1(&, m)Y{" (0
0

@), 9(67) = 90(8)
+ 16, 7)Y"(0,0), h(&, T) = ho(§)

+hi(§, 7)Y (0, 0),
R(&,7) = Ro (1 +a(r)Y,"(6,¢)) (6.36)

where subscript-0 functions are solutions to the background standing accretion shock
problem, that is, those shown in Figure 18, subscript-1 functions (and «) are perturbations
on top of these and Y;"(6, ¢) is a spherical harmonic of degree {¢, m}. Keeping only first-

order terms in the fluid equations yields the following perturbation equations:

dg, 0 0 0
% _ a_i‘ (;go + ﬂ) + 5%6_5 €% (fogr + g0f1)]

_ 900401y 20, (6.37)

£
6f1 O 8f0 1 8h1 51 ahg .
E__( f0+§a€> ag [fofl] 08_5_%8_5_07 (6.38)
% afL a 8h0 Sa h() ].h1 o
o7 + fo—5— € + ffOfJ_ 70 OF 25 7 + - f =0, (6.39)
O Thi ¢ Oal hl Y91 |
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The boundary conditions at the shock are

2 O«
(1) = P (6.41)
2 oo dop
hi(1) = — (287 T p) , (6.42)
_ oy +1dp
e p— (6.44)
1 = 7_{_104. .

Now, we take the Laplace transformation of various perturbations ( fl, g1, ill, and &),

where the Laplace transformation is defined as

= /0 (€, P)edr. (6.45)

The Laplace-transformed equations are:

og1 — o (3904‘58—?) +é6% [52 (gof1+f0§1>] ~
/ ?"“zu +1)=0, (6.46)
_ 0fo . 10h  §10hy
Ufl—UOé( Jo+¢& 5) —g[fofl} 08—5—%8—5—07 (6.47)
oh ba h 1h

afi+ fo afg - 5foh O; 8; 2? gs + gg; =0, (6.48)

b G| 1 hl VG|

with the following boundary conditions,
- Q000 ~ 200 ~ doo
1) = 1)=— o(1) = ,
gn(l) =0

The eigenvalues are specific values of the quantity o, in general, complex, to be labeled
as 0,, are locations in the complex plane where the perturbation of the shock radius and

the fluid variables diverge as a simple pole [150]. Next, we define

f

Qzlkm

(6.51)

and similarly for the other variables. The perturbation equations (6.46)-(6.49) now trans-

form into:
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3 ago 1 0 ~
OGn — < go+§ 5) 20t [5 <g0fn+fogn>}
- f?’%(lﬂ):o, (6.52)
dfo 1 0hy  GuOho
ofu— ( fo+&5- o€ ) T [fofn] W OE g OE 0, (6.53)
hn g\ 1 O b Ga| _

o <h0 % > 50 (5 3’Y>+foa€ [ho gO] =0, (6.54)

- 200 =~ 2 - 4o
@) = 7Jrljan(l) = —ﬁ,hn(l) = 7+1,gn(1) = 0. (6.55)

6.1.4 Neutron star Boundary conditions

We now have three equations, the Laplace-transformed fluid equations, and four un-
knowns ( fi, 1, h1, and o). To solve the system, we need a fourth boundary condition.
For this boundary condition, we assume that very close to the surface of the neutron star
the fluid velocity maintains its steady-state value. This condition is inspired by [284],
where steady-state solutions are considered to continue beneath the neutrino sphere. This
condition is expressed in Equation (6.59). Note that by imposing this boundary condition
in the interior, we excite perturbations in the interior of the flow — establishing a wall in
the interior of the self-similar solutions causes the shock to respond. We let the radius of
the neutron star be Ryg, which stays fixed in Eulerian space. We then have our fourth

boundary condition

o(Rws) = | 250 (fo (%) h (%7)) _

Therefore,
Rxs\ Rxs
Jo (7) Jo ( Ro (1 —04))

where {ng = Rns/ Ro is the ratio of the neutron star radius to the stationary shock radius.

2GM Rns
o fo < Ro ) . (6.56)

~ fo(&ns) — fo (Ens) Ensa,  (6.57)

s, ) = 30+ sl 69)). (6:5%)
Hence,

fuléxs) = %fo(st) + Ens S (Exs) (6.59)
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6.1.5 Background Flow With Cooling Functions

Inclusion of the cooling function modifies the radial momentum and entropy equation.
We write down those two modified equations with the inclusion of a cooling function of

the form £ oc p?~2p® below:

ov, ov, 1@_ GM L

ot —H}rEij@r_ r? +pvr

: (6.60)

9, 0 _ L
ot Ur@r_pvr‘

We employ the coordinate transformation of Equations (6.22) - (6.27) and obtain

(6.61)

0

0_£ [f2f090} =0, fo

dfo 1 dhg 1 Ba-1
Fo, 280 _ |k he
i g de  2e2 M Mo

d hO B—aya—1
—In|—=| =K he 6.62
T n (gg) 290 0 ( )

Here, K, Ky are two parameters arising from the proportionality factor used for the

cooling factor and different normalization used in Equation (6.60) and (6.61).

6.2 Numerical determination of eigenfrequencies

We numerically solve the eigensystem (6.52) - (6.54) following way: by making a guess for
the value of o we start to integrate the above-mentioned system of equations inward from
the location of the shock (¢ = 1) with the boundary condition of Equation (6.55). Then we
calculate the value of fn(fns) and plug this value into the fourth boundary condition (i.e.
Equation (6.59)). We continue iterating the procedure by perturbing the value of o until
we find specific values of o, to be denoted by o,, for which the calculated fn(fns) satisfies
the fourth boundary condition of Equation (6.59). Therefore, the set of eigenvalues o,
corresponds to those solutions that satisfy the boundary conditions at the location of the
shock and at the surface of the neutron star. As the eigensystem (6.52) - (6.54) is not
Hermitian, the eigenvalues o, are complex, which we will express with o, = o, + i0;.
Due to the way we define the Laplace transformation in Equation (6.45) here, the real
part o, dictates the stability of the solutions; o, < 0 corresponds to stable solutions,
while ¢, > 0 gives unstable solutions. Although we are working in dimensionless units,
the absolute value of o, determines how fast/slow the perturbations grow in time, and
hence we will call this the “growth rate” associated with the instability. On the other
hand, o; which we label as the “oscillation frequency”, is roughly a measure of the radial

nodes of eigenfunctions. In Table 4 we tabulate the eigenvalues corresponding to some
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V4 o, o; 14 o, o; 14 o, o, 14 o, o;
—0.201762 | —2.55373 x 107¢ 0.0671051 | 0.315556 —0.0665241 | 0.332979 —0.142767 | 1.04364
—0.266972 0.896751 0.0806943 | 2.28559 0.00535425 | 7.96419 —0.0852871 | 3.03898

0] —0.312219 3.26877 1 0.01575 15.103 | 2| 0.0444954 | 21.1379 | 3 | —0.0197038 | 10.6595
—0.31561 4.68161 —0.0582782 | 24.6993 0.00375948 | 25.7686 0.0248765 | 23.8486
—0.316168 6.58475 —0.0700799 | 31.0231 —0.024543 | 34.3314 0.0353329 | 30.796

Table 4: The real and imaginary parts of eigenvalues corresponding to few representative

eigenmodes of solutions specified by £. We have set v = 4/3 and &,, = 0.1 for these

results.

02 04 0.6 0.8 1.0 02 04 0.6 0.8 1.0
3 3
Figure 19: The real (left) and imaginary (right) parts of f, for the first five radial (I = 0)
eigenmodes with v = 4/3 and &g = 0.1.

representative eigenmodes for different values of £ with m = 0 4. Unless otherwise stated,

the following results are obtained by setting v = 4/3 and &,; = 0.1 .

6.2.1 (=0, the radial modes

As can be seen from Table 4 and left panel of Figure 20, the real parts of the eigenvalues
(0,) corresponding to ¢ = 0 motion are all negative and hence all the radial modes
of oscillations are stable. We plot the real (imaginary) component of the radial
component of the post-shock fluid velocity corresponding to the five representative ¢ = 0

eigenvalues presented in Table 4 in the left (right) panel of Figure 19.

6.2.2 Non-radial modes: Oscillation in the eigenspectrum

A striking feature of this particular problem is that we find that the growth rate (o)
oscillates when plotted against the oscillation frequency (o;), for all non-radial modes

of oscillations, as we already point out that this phenomenon was first observed in the

4As we are assuming a spherically symmetric background, the results are independent of the choice

of polar axis for the coordinate system, hence do not depend on the azimuthal order m
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Figure 20: Left:The growth rate o, against the oscillation frequency o; for different
values of ¢ as shown by the legends. Right: The real and imaginary parts of the first
order perturbation to the post-shock fluid radial velocity corresponding to the maximally

unstable mode with ¢ = 2.

[34] although only for the ¢ = 1 modes (see their Figure 7). We show the oscillating
eigenspectrum for £ =1 — 4 in Figure 20, where we have calculated many closely spaced

discrete modes and joined them with a continuous line.

6.2.3 (=1, the classic SASI at low oscillation frequency

As discussed above, in all major previous SASI studies, the ¢ = 1 oscillation modes are
found to be the unstable; in-fact they are found to be the most unstable non radial modes.
We also find the modes to be unstable for smaller values of the oscillation frequency o,
but they become stable for a sufficiently large value of o; (o; 2 20, in Figure 20). The

maximum growth rate is found to be ~ 0.08, which is the highest compared to other

high-/ unstable modes. These are indeed signatures of classic SASI.

6.2.4 (=2, the surprise?

Now, the ¢ = 2 comes with real surprise. In Figure 20 we see that although the solutions
are stable at low values (0; < 2) of the oscillation frequency, there is range of oscil-
lation frequencies (5 < 0; < 35, in Figure 20 ) which the solutions are unstable.This
timescale associated with these frequencies are surprisingly very close to the
frequency associated with the dynamical timescale of the neutron star (which
is ¢, in this dimensionless unit we are using). This is one of our main results.
The growth rates corresponding to these unstable modes are smaller compared to the
unstable modes of ¢ = 1, for example, the maximum growth rate for ¢ = 2 we find is
~ 0.04, a factor of 2 reduced. The maximum instability also occurs at a large value of

the oscillation frequency, i.e., at g; ~ 20. In the right panel of Figure 20, we present the
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Figure 21: Left: ¢ = 2 eigen spectrum while the adiabatic index 7 is being varied while
keeping &, fixed at 0.1. Right: ¢ = 2 eigen spectrum, while the neutron star radius, &,
is varied while the adiabatic index 7 is kept fixed at 4/3.

real and imaginary components of the radial component of the post-shock fluid velocity
corresponding to the maximally unstable mode. This mode oscillates wildly, and we see
that, in contrast to the stable modes, here, any small perturbation that originated at
the shock location amplifies significantly as it reaches the surface of the neutron star.
This finding has previously unexplored implications for gravitational wave emission in

CCSNes, which will be presented in Section 6.4.

6.2.4.1 Impact of Varying the Adiabatic index

In this subsection, we discuss the effect of changing the adiabatic index v of the post-
shock fluid while keeping the neutron star radius &, fixed at 0.1. We present the results
of this effort in the left panel of Figure 21. We see that as the value of v decreases
from 4/3 to 1.3, the shape of the eigenspectra remains similar but the whole
curve shifts down (toward the negative Y- axis) and for v = 1.25, the X- axis
is almost tangent to the maximum of the curve; implying that this instability
disappears if v reduces any further. We note that reducing ~ is an effective
way of mimicking radiative losses. In their numerical simulation[25] also find
that the instability weakens with a reduction v value; this can be manifested
by the following two considerations: if SASI arises due to some sort of vortical-
accoustic feedback cycle [259, 33, 34], then neutrino cooling might dampen the
feedback mechanism by dampening the pressure waves, or neutrino cooling
can simply drive the shock away from the conditions leading to the instability
by reducing the post-shock volume [25]. On the contrary, increases in the

value of v strengthen the instability, as is evident from the v = 1.4 curve.
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6.2.4.2 Impact of Changing the Neutron Star Radius

In the right panel of Figure 21, for a v = 4/3 post-shock fluid we vary the value of
the neutron star radius and hence the value of &,s. As can be seen, for an extended
shock envelope (that is, low value of &, the strength of the instability decreases (that
is, magnitude of o,.) while the instability shifts right to the X-axis, that is, the instability
appears at a very high value of ¢;. On the contrary, as the size of the shocked envelope
decreases, the magnitude of the instability increases, the band of frequencies over which
the instability lives shortens, and the location of the maximum instability moves towards

progressively lower values of o,.

6.2.4.3 Impact of Cooling function

To mimic the neutrino cooling mechanism in the context of core collapse, major SASI
investigation studies have incorporated a parameterized cooling function of the form
L oc pP=p [30, 26, 261], where o and 3 are two parameters determining the cooling
strength. In [26] two different choices for the cooling function have been discussed, one
with @« = 3/2,8 = 5/2 (a« — f < 0) and the other with « = 6,8 =1 (« — 8 > 0).
With o — 5 < 0 the cooling efficiency increases as the gas cools down, and the other way
around for a« — 8 > 0. The inclusion of the cooling function modifies the background
flow as a result of the modification of the radial momentum and entropy equation. These
modified equations are given in Section 6.1.5. The background flow obtained by solving
Equation (6.33) for the boundary condition (6.34). The solutions obtained for the two
cooling functions mentioned above are presented alongside the original settling solutions
in the left panel of Figure 22. We see that the velocity profiles are similar in the outer
parts of the flow, but differ in the inner part. This is further clear when one looks at
the first derivatives of the flow in the right panel of Figure 22. We see that while the
a = 3/2,8 = 5/2 cooling causes the flow to decelerate near the accretor surface, the

a = 6,8 =1 causes the flow to accelerate.

6.2.5 (>2

In Figure 20, we see for ¢ > 2 while the eigenspectra continues to display similar oscillating
characteristic shown by the ¢ = 2 modes; the instability is weakened and onset of any

such instability moves towards higher values of o,.
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Figure 22: The modulus of the dimensionless, radial velocity (f;, left), the dimensionless
density (g, middle), and the dimensionless pressure (h, right) as functions of £ = r/R.
With oo < 8 (a > ) the gas reaches the surface of the accretor in finite (infinite) time.
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Figure 23: The modulus of the dimensionless, radial velocity (f;, left), the dimensionless
density (g, middle), and the dimensionless pressure (h, right) as functions of £ = r/R.
Cooling with o < 8 (o > ) boosts (weakens) the instability, which agrees well when we

examined the same effect by varying the adiabatic index, ~.



6.3 Implications for explodability

The unstable ¢ = 2 modes described here in the linear regime will grow and couple with
each other. Moreover, as the oscillation timescale of the most unstable modes matches
closely with the dynamical timescale of the neutron star, the unstable SASI modes will
soon start ringing the oscillation of the neutron star. According to the addition rules of
the spherical harmonics when the ¢ = 2 modes couple, the power is divided into parts
among lower order ¢ = (0 modes, higher order ¢ = 4 modes, and ¢ = 2 modes. This process
would soon cascade and provide power to all the other non-radial and radial modes. Once
the amplitudes of these unstable oscillations grow, the process would delegate to the non-
linear regime, and there would be coupling between different modes. Therefore, the cavity
would soon undergo a turbulent motion. This turbulent motion further interacts with
the shock and completes a feedback loop and a dramatic increase in the total turbulent

energy in the cavity, where the turbulent energy is usually defined as:
1 -
By = 5,0\51)]2 (6.63)

where dv; denotes the difference in the fluid velocity and the angle-averaged radial velocity
of the flow [285, 186]. As shown by [36], this turbulent energy is more valuable than the
thermal energy of the fluid to overcome the ram pressure of the infalling gas. [285] show
the effective pressure support due to turbulent motion is 50% larger than the thermal
pressure, and hence this added pressure support can cause an increase of the shock radius
up to 25% [286]. Therefore, the variations in the shock radius caused by SASI would
lead to radial entropy gradients from which turbulent convection will be further improved
[249, 287]. Therefore, the ratio of turbulent energy to the thermal energy plays a crucial

role in the asymmetric explosion seen in successful supernova explosions [36, 37, 38].

6.4 Implications for Gravitational Waves

Recently [258]([2]) have presented gravitational wave (GW) signal obtained from a set
of three- (two)-dimensional multigroup neutrino radiation hydrodynamic simulations of
CCSNe and [40] has discussed the measurability of this signal by third-generation gravi-
tational wave detectors. The stellar progenitors they consider range from 9 — 60M,, and
are listed in Table 2. A summary of the simulation settings can be found in Section 5.1
of this thesis and further details can be found in [258, 2]. The simulation data specifies
the fluid properties of interests to describe the progenitor from 0.1285 s before the core
bounce to 1.2155s, in an interval of 0.0010s. The radial extension under inspection that
extends from 25000.4 cm to 1.99021 x 10° cm is divided into 678 discrete points. The

radial point where the density falls below 101 gm/cm? is taken to be the surface of the
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Figure 24: Data obtained from a 2-D simulation of a 10M, progenitor of [2]. Top-Left:
The oscillatory eigenspectrum of ¢ = 2 modes at ¢ = 0.6155s with {yg = Rys/R =
0.394389 and Ypean = 1.38631 is calculated over the radial extent. Top-Right: The
identification of the unstable modes with lowest, highest and the most unstable mode
on the spectrogram. Bottom-Left: the strain times distance of GW, h D, bottom-right:
the time-frequency representation (that is, spectrogram) of the strain signal. The pink
line indicates the f-mode evolution obtained in asteroseismology, the black line with
dots indicates the unstable SASI modes with the highest frequency, the black line with
diamonds indicates the unstable SASI modes with the lowest frequency, and the black

line with the squares on it indicates the unstable modes with maximum instability.
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neutron star. On the other hand, the location of discontinuity in the velocity profile
denotes the location of the shock. From this data, at each instant of time we calculate
the value of &, as the ratio of the neutron star radius and the shock radius and v,eqn is
the mean of the adiabatic index values v specified at each radial point. This two data
enables us to compute the range of [ = 2 unstable SASI modes at each instant of time. To
illustrate this procedure, in the top-left panel of Figure 24 we present the oscillation in the
¢ = 2 eigenspectrum calculated for the 10M, progenitor at 0.6155 s after the core bounce.
Using the simulated data, we calculate {yg := Rys/R = 0.394389 and vyean = 1.38631
over the radial extent of the envelope at that instant. We then immediately find the fre-
quency where the unstable region starts and the frequency where the unstable region ends
along with the frequency corresponding to the mode that shows the maximum instability
(with Max(o,)): These three frequencies are then mapped onto the spectrogram with
black dots, diamonds, and squares, respectively. The specific algorithm used to generate
the spectrogram is described in Section 5.3 of this thesis. By repeating this procedure
for the entire duration of the data, we connect the points with lines and overlay them
on the spectrogram in the bottom right panel of Figure 24. The fundamental modes of
oscillations of the PNS as calculated in perturbation theory following [2, 258, 255] are
also overlaid on the diagram in pink. We see that a few hundred milliseconds of core
bounce, the GW signal is dominated by [ = 2 oscillation modes of the PNS confirming
the finding of [2] (see also [255] who run an independent set of simulations but make sim-
ilar findings) and these frequencies match well with the frequencies of the most unstable
¢ =2 SASI modes. Therefore, we sense a strong possibility that the unstable [ = 2 modes
of the SASI oscillations act as a hammer to ring the PNS like a bell. This explains the
fact that we do not see other oscillation modes of the PNS such as g-modes or p-modes
(obtained in asteroseismology) that contribute to the gravitational wave signal, since only
the f—mode frequencies match and hence are excited by the unstable SASI modes. The

time-domain strain (times distance) GW signal is presented in the bottom right panel.

6.5 Summary

In this work, we have attempted to perform a linear perturbation analysis on the famous
“settling solutions” —used famously as the background state for the work of [25] revamping

SASI. Our major findings are:

1. We first confirm the traditional finding of SASI literature by finding unstable ¢ = 1
modes at low-oscillation frequency compared to the frequency associated with the
dynamic timescale of the accretor. The growth rate of these modes is highest in

comparison to the other high-¢ unstable modes.
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2. We find an oscillation in the eigenspectrum of the £ = 2 modes. A whole range of
modes are found to be unstable, whose frequencies are high and very close to the

frequency associated with the dynamical timescale of the neutron star.

3. We have examined the effect of cooling on these unstable modes-first by considering
the low value of the adiabatic index 7 and then incorporating two different cooling

functions. As the cooling efficiency increases, the instability weakens.

4. The unstable modes that we find would couple with each other and with the oscil-
lation modes of the neutron star, owing to being similar to the frequency associated
with the dynamical timescale of the neutron star. This cascade effect will strengthen
the turbulence in the SASI cavity and contribute to the ultimate revitalization of
the shock.

5. The gravitational wave seen in state-of-art Supernovae simulations carry the sig-
nature of fundamental oscillation of the neutron star. We discuss the possibility of
ringing the neutron star at the first place by the unstable ¢ = 2 SASI modes that

we present here.

The next step in extending our present analysis is to carry out perturbation analysis
on the general relativistic extension of the Newtonian settling solutions presented in
Chapter 4. The other avenue would be to investigate the origin of this instability. The
WKB approximation near the surface of the neutron star might hint into the origin and

will be explored in the future.
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Chapter 7

Star crushed by black hole

Tidal disruption events occur when a star gets so close to a supermassive black hole
(SMBH) that the tides imparted by the latter tear the star apart [51, 52, 53, 110, 54,
55]. The observation of these events has received an impetus in the last decade, and
current (e.g., Chandra, Swift, SRG/eROSITA) and upcoming high-cadence wide-field
all-sky surveys (e.g. SKA, LSST, Einstein probe) promise an exciting time ahead (see
[288] for a detailed review of the observational status).

The outcome of a TDE depends largely on how close the star comes to the SMBH,
which is implicitly defined via § = ry/r,, where 1, = R, (M, /M*)l/ ® the tidal radius, is
roughly the distance at which the SMBH tidal force equals the self-gravity of the star of
radius R, and mass M,, and 7, is the point of closest approach between the two bodies
[51]. Events with 8 < 1 are partial TDEs, where a fraction of the star survives the
encounter intact [84, 107, 160, 90]. In contrast, in events with 5 > 1 — “deep TDEs” —
the gravity of the SMBH overwhelms the self-gravity of the star and the star is compressed
by the vertical component of the tidal field of the SMBH [289, 290, 291, 292, 89, 93]. The
degree of tidal compression suffered by a star in deep TDEs has been studied by, e.g.,
109, 110, 108, 57, 3, 111, 4, 290, 293, 294].

[57, hereafter CL82] and [3, hereafter CL83] found that as the S of the encounter
increases, the star experiences an increasing degree of adiabatic compression and its
density increases to a maximum value pp., at roughly the time it reaches the pericenter.
For radiative stars modeled with the Eddington standard model (e.g., [100]), in events
with 8 2 5 they claimed ppax/pe = 0.2233, where p, is the original, central stellar density.
From Figure 13 of [4, LC86, hereafter]|, for a 3 M, standard-model star, the central density
(temperature) increases by a factor of ~ 50 (10) for 5 =5 and ~ 500 (50) when 5 = 10.
As a consequence of this sharp increase in central density and temperature, these authors
predicted that in 5 = 5 encounters the energy released from the triple-a process ignites

helium-burning reactions, which was supported by [295, 296, 297] and even a second
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burst of nuclear energy release was postulated [298]. Almost immediate criticism of the
work of Carter and Luminet came from [58], who used numerical techniques to refute the
possibility of helium detonation as they found significantly milder compression. Despite
many efforts, to date the degree of tidal compression in deep TDEs — and therefore the
possibility of thermonuclear ignition — has not reached a consensus [289, 290, 294].

Recently, [92] and [5, hereafter CN22] analyzed the deep TDE regime using analytical
and numerical methods, focusing mainly on a v = 5/3 polytrope, and found that the 3°
scaling is generally not followed. However, they briefly considered a standard-model star
analytically and concluded that these stars also do not adhere to the above scaling. To
further understand the compression experienced by a radiative star during a deep tidal
encounter, here we numerically analyze the maximum central density and temperature
achieved by a Sun-like star modeled with the Eddington standard model during a deep
TDE.

In Section 7.1 we recapitulate the analytical analysis of CN22 adapted for standard-
model stars. In Section 7.2 we present the results of numerical simulations, and we make
comparisons to, and demonstrate excellent agreement with, the analytical model; we also
analyze the convergence of the simulations with respect to particle number and briefly
consider the effects of general relativity. We summarize and conclude in Section 7.3.

In Section 7.1 we recapitulate the analytical analysis of CN22 adapted for standard-
model stars. In Section 7.2 we present the results of numerical simulations, and we make
comparisons to, and demonstrate excellent agreement with, the analytical model; we also
analyze the convergence of the simulations with respect to particle number and briefly

consider the effects of general relativity. We summarize and conclude in Section 7.3.

7.1 Analytic Estimates

In the present analysis, we consider a star of mass M, = 1M, and radii R, = 1R,
(vielding avearage density, p, = 3M, /7T R2) as a spherical cloud of classical perfect gas
and radiation. To model such radiative stars, the Eddington standard model is a natural
choice, and we choose a model with a polytropic index I' = 4/3 (such that the pressure,
p, is related to the density, p according to p oc p'') and an adiabatic index v = 5/3 (the
ratio between the specific heats). We assume the star to be in hydro-static equilibrium
far away from the hole, i.e. the gas pressure perfectly balances the self-gravity at infinity.
This assumption allows us to talk about a well-defined geometric center of the star,
and we denote the density and the pressure at that center point of the star as p. and
pe respectively. The ratio of the core density to the average density of such a star is

pe/px = 54.2. We combine the central density and pressure, p. and p. to define the
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Figure 25: The integrated column density at the time when the center of mass of the star
reaches pericenter. The value of 3 is shown in the top-left of each panel. The left panels
show the distribution of stellar material in the orbital plane, and the corresponding right
panels show the view perpendicular to that plane. In the convention we adopt, both
the initial =,y coordinate of the center of mass of the star starts with negative values,
and arrives the pericenter with a positive z-coordinate value and y = 0. Thus, any
fluid element with a positive (negative) y-value has already (not yet) passed through its
pericenter. Increasing [ clearly leads to an increase in the flattening, or “crushing” of

the star, into the orbital plane near pericenter.
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following star-specific length scale «, to be used in normalization of the length scale in

the problem as
5 O6yp. 1
o =
pe 4nGp,

(7.1)

where G is the Newton’s Gravitational constant.

We assume a star starting its journey from infinity with zero energy; the orbit of such
a star is parabolic. To describe the tidal interaction between the black hole and the star,
we adhere the “tidal-approximation” - which implies any internal, intra-body dynamics
governed by hydro dynamical processes operating on Tj,; ~ (Rf / GMsm)l/ 2 << the
orbital time scale, T,,5 ~ (r3)/G M, when the size of the star R, << the separation
distance between the center of mass of the star and the black hole, r.. This approximation
considerably simplifies the calculation [299]. To analyze the tidal compression the star
suffers, it suffices to focus only on the out-of-plane vertical compression while ignoring
the compression the star suffers in the other two orthogonal in-plane directions, as they
approximately nullify each other. We choose to work in a body-centered coordinate
system whose origin coincides with the center of mass of the star. Due to the fact that

the star is in parabolic orbit, the equation for the center-of-mass distance r. is [300],

5 - —0 (7.2)

2
re Te

1(87"6)2 GM,r, GM,
5 +

where 1, = r;/[3, is the distance of closest approach (i.e. pericenter distance). We would

like to introduce a natural time-scale 7 in this problem, defining it as

or GM,
i 7.3
ot 2r3 (73)
The solution of Equation 7.2 can then be expressed as
re = 7, cosh®(7) (7.4)

We assume a linear relationship between the perturbed and the original height of a
particular fluid element, where the connection term only depends on the time coordinate

and not on the spatial co-ordinates,
z=H(T)z (7.5)

Physically this means that we are assuming that the compression of the star is homolo-
gous. In a more realistic situation, this relationship should be thought of as the leading-
order term in a power series expansion of the appropriate relation between the current

and the original Lagrangian fluid position [4, 5]. In this one-dimensional out-of-plane
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motion, the integrated mass to any position z above the plane is a conserved quantity in

Lagrangian sense and hence,

ple.r) = 20 = a7 = g5 la/H () (7.)
, po being the density profile of the original configuration. Owing to our spherically
symmetric approximation with a well-defined maximum density at the center, we can
express the original density at any location within the star in terms of that central

density.

«

m@@zmﬁ—%i%+0k%+@ﬂ> (7.7

where sq is the cylindrical radial co-ordinate (i.e. distance from the vertical axes). Now,

substituting Equation 7.7 into Equation 7.6 we get

LD ss+2 )\ pe st + 23
plz,7) = Py, (1 T = ") 1- o (7.8)

To further facilitate our calculation, we choose to introduce a new dimensionless variable

Uug as,
20
= — 7.9
Uo o (7.9)
we rewrite Equation 7.8 in terms of ug,
p(z,7) = Hp(cT) (1= (s§ +ug)), where s := % (7.10)

We are not considering any source of energy injection or extraction in this process; the

compression can be considered adiabatic, which implies,

p(z,7) = So(z0)p” (7.11)
where Sy(zp) is the entropy profile, - - a natural adiabatic invariant. Thus the pressure
to the leading order is

p(2,7) = peH ™7 (1= 7(sf +up)) (7.12)
The internal gravitational potential of the star ®, is to be solved for from the Poisson
equation,
V20 = 47Gp. (7.13)
In spherical polar coordinate the solution of which reads
Gm(r,t fix
O(t,r) = Gm(r,?) - 47TG/ p(r' t)dr' (7.14)
r T

where m(t,r) is defined as

m(t,r) = 4m /OT p(r', t)dr! (7.15)
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In case of spherically symmetric stars in high-5 encounter, where the pressure of the gas
overwhelms the self gravity; instead of the full expression for the density p as in Equation
7.8, we use the leading order term (i.e. p ~ p./H) in Equations 7.14 and 7.15. Doing so
yields ,

o= 47erca2H_1% +CO(R,) (7.16)

where C(R,) is a constant term expressed in terms of the radii of the star and r =
Vs?+ 22 , the radial distance of the fluid element from the center of mass of the star. The
equation of motion for such a fluid element located at a height z above orbital plane at
time t is the z-component of the momentum equation, which reads
2

e (7.17)
We can substitute the expressions for r.,p,® as in Equation 7.4, 7.12, 7.16 and the
definitions of 7, z, ug as in Equation 7.3, 7.5, 7.9 in Equation 7.17 and equate the leading

order terms in ug to arrive,

2 pe

LIH] — —=(H —1)cosh®(1) =0 (7.18)
5% pe
where the operator L is
5—8—2—3ta h( )2—1—2 (7.19)
-~ or? T e ‘

The last two terms in Equation 7.18 after the dynamical term (i.e. L[H]) come from
the contribution of gas-pressure and self gravity respectively. We note, in a model where
self-gravity and gas-pressure is neglected (i.e. the gas free-falls in the tidal field), the

governing equation of motion is
L[H] =0, L is the same operator as expressed in Equation 7.19. (7.20)

Following [56, 293], we further assume that the star retains its hydro-static equilibrium
until reaching the tidal radius; one can write the following closed-form solution for Equa-
tion 7.20,
z 1—2y/F—1sinh7— sinh?(7)
2 8

subject to the initial conditions z(7;) = 2o and 2(7;) = 0, where z is the initial height

= H(r) (7.21)

of the fluid element orthogonal to the orbital plane and 7, = — arcsinh (v/§ — 1) is the
time when the center of mass reaches the tidal radius. On the other hand, to solve
Equation (7.18), we must resort to numerical techniques. We do so by adopting the
initial conditions H(7 — —o0) = 1 and H (7 — —o0) = 0; again the star is assumed to
maintain its hydro-static balance until it reaches the tidal radius.

We present the solutions, i.e. H as a function of the time coordinate 7, obtained for

the range of § = 2 — 10 values, as shown by the legends, in the left panel of Figure 26.
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Solid lines are the solutions obtained including pressure and self-gravity (i.e., solutions of
Equation 7.18) and in dashed lines are the solutions when the gas free-falls in the tidal
field (i.e., solutions of Equation 7.20). The pressureless solution goes to zero at a time
of sinh (7..) = /B — v/B — 1, which can be calculated from Equation 7.21 and the plot
confirms that. We note that the self-gravity and pressure become significant in modifying
the solution H, much earlier times in comparison to the time when the star would be
compressed to zero height, i.e. H = 0 in the free-fall case. And as [ increases, the
solution considering self-gravity and pressure starts to depart from the free-fall solutions
at much earlier times; the amount of departure also increases. In the right panel of Figure
26, we show the density of the geometric center of the star normalized by the original
density of the same point as a function of time normalized by the dynamical time of the
star. We see that as [ increases, the maximum density achieved increases and occurs at
an earlier time (after the moment ¢ = 0 when the center of much reaches the pericenter).

In Figure 27, we highlight the run of the maximum density (left) and maximum
temperature (right) achieved during the tidal compression process in the geometric center
of the star, normalized to its original value, with the run of the penetration factor . The
temperature is calculated assuming that the gas pressure dominates over the radiation
pressure and thus can be well approximated as T" o p/p. The blue dashed line, in
each panel, shows the large-3 (8 = 20) behavior which we find to scale as o< 3% for
the maximum density and oc % for the maximum temperature. Although [3] predicted
similar scalings, and we present their prediction with the black dashed lines on our plot;
the proportionality factor that we find here is much smaller than what they predicted.
For this I' = 4/3,7 = 5/3 model, in the scaling relation of the maximum density and
temperature with /3, the proportionality factors in [3]’s works are respectively ~ 41 times
and ~ 12 times larger than the factors we find here. This reduction of the proportionality
factors is a direct consequence of the consideration of gas pressure; its clear that the
gradient in gas pressure is able to counter the compression when the gas pressure becomes
only a fraction of the free-fall ram pressure.

As a check of the above mentioned claim about the gas pressure, in the left panel
of Figure 28 we display the ratio of the gas pressure to the ram pressure (calculated as
the density x velocity?) of the freely falling fluid. We notice that for high 3, the ratio
approaches nearly a constant at the time of maximum compression and this constant is
much smaller than 1. Next, in the right panel, we illustrate the velocity at the surface of
the star calculated as

0z
T ot

(% *
cosh®7 dr

normalized to the escape velocity on the surface, V, = (a/R,)\/GM,/2R,, as a function
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Figure 26: Left:The Solution for H, considering gas pressure and self gravity (solid curves)
along with the solutions obtained when the gas free-falls in the tidal field (dashed curves).
This shows that the self-gravity and pressure of the gas starts to play significant roles to
counter the compression at much earlier times than when the star would be compressed
to zero height (H = 0) in the free-fall case (i.e this time is to be read when the dashed
curves goes vertical). Right: The ratio of the central density normalized to its original
value as a function of time normalized by the dynamical time of the star. As 3 increases,
the time of the maximum density achieved approaches 0, the time when the center of

mass reaches the pericenter and the compression increases significantly.

of time, t. The velocity starts and remains negative approximately until the center of
mass reaches the pericenter. At the pericenter, the velocity reaches its minimum with
a value v ~ —25V, agreeing with the free-fall solutions of [293]. The gas pressure then
succeeds in reversing the compression, brings it to zero, and then increases to a positive

maximum of v ~ 25V, before decaying again.

7.2 Numerical simulations

7.2.1 Simulation setup

Here we present the results of numerical simulations of disruptions of Sun-like stars
modeled with the Eddington standard model. We use the smoothed-particle hydrody-
namics (SPH) code PHANTOM [301], which has been widely used for studying TDEs
[85, 86, 90, 92, 302].

The Eddington standard model is implemented in our code in the following way: a dis-
crete radial grid is constructed with a large number of sufficiently close points extending
from the center of the star to the surface. We then assign to these points the appropri-
ate density and pressure that are obtained by numerically integrating the Lane-Emden

equation. The configuration is then “relaxed” in isolation (i.e., without the gravitational

96



97

- 1000F 7]
" - -
0% 143, 9=503 P — I'=4/3,y=5/3 .-
_ - [ 2 -~
1000k - 54 x 1074 .- 100 0.038 .-
[ 0'22’33 ---- 03782

0.1- 7 E
50

NS}
wnl
—_
(=}
[\
=}
w
(=}
[}
Wl
_
(=}
[ ]
(=}

Figure 27: The maximum central density (temperature) normalized to the original density
(temperature) at the center as a function of the penetration factor, 5 in the left (right)
panel. The blue dashed lines indicate the large-3 behavior of our solution while the black

dashed lines indicate the corresponding scalings predicted by [3].
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Figure 28: Left: The ratio of gas pressure to the ram pressure of the freely falling fluid as
a function of time normalized by the dynamical time of the star. The ratio being much
smaller to 1 indicates the fact that the gas pressure succeeds in resisting the compression
much before it becomes comparable to the ram pressure. Right: The velocity of the
fluid element normalized to the escape velocity as the function of time normalized to the

dynamical time of the star.
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Figure 29: The central density normalized to its original value as a function of time nor-

malized by the dynamical time of the star. The different curves are appropriate to the
in the legend, with solid (dashed) curves resulting from the numerical simulations (ana-
lytic model). The magnitude of the compression and time of the maximum compression

agrees reasonably well between the SPH and analytic results.

field of the black hole) for ten sound crossing times to remove numerical perturbations.
The center of mass of the relaxed star is then placed at a distance of 5r; from the black
hole, so that all particles move with the center of mass, which is on a parabolic orbit with
pericenter distance r, = /5. The self-gravity and viscosity switches are implemented
through standard routines (see [92]). We simulate encounters with 2 < § < 10 in integer

steps.

7.2.2 Simulation Results

In the left (right) panel of Figure 25, we present the integrated column density as seen in
the orbital plane (out of the orbital plane), when the center of mass of the star reaches the
pericenter. The [ of the encounter is shown in the top left of each panel. The pericenter
is in the x-direction, the x — y plane is the orbital plane, and the y — z plane is orthogonal
to the orbital plane. As seen in the figure, the star suffers a significant distortion in the
process, and as (3 increases, it is compressed vertically into a small fraction of its original
volume.

Figure 29 shows the central density normalized to its original value as a function of
time normalized by the dynamical time of the star. Solid curves result from simulations,
whereas dashed curves are the corresponding analytic predictions. As [ increases, the
magnitude of the maximum density achieved (that is, the height of the peak) during the
encounter increases and the time at which the maximum density is achieved approaches
zero. It is clear that the analytical and numerical results agree well with their prediction
of the maximum density. The disagreement at other times is due to the fact that the

homologous model presented here ignores both the in-plane stretching and nonlinear
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Figure 30: The maximum value of the central stellar density (left) and temperature
(right) as a function of § normalized by their initial values. The dashed curves represent
the scalings derived by [4] (olive) and [5] (teal), the solid, teal curves are from the analytic

model (also in [5]), and the solid, orange curves are from the numerical simulations.
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Figure 31: The ratio of the maximum to the original density at the geometric center of
the star as a function of 5. The different solid curves are obtained by varying the spatial
resolution, with the corresponding number of particles shown in the legend. The analytic

prediction is shown by the dashed curve.
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(i.e., non-homologous) effects, which approximately negate one another as concerns the
maximum density. We also note that the star spends a very short fraction of its dynamical
time near the maximum density (and correspondingly near the maximum temperature).

In Figure 30 we show the maximum density (left) and temperature (right) against
£ obtained from the simulations alongside the corresponding analytic prediction. For
small values of § the in-plane stretching is significant, and therefore the homologous
model presented in Section 7.1, which ignores any in-plane dynamics, does not account
for the decrease in density and overestimates the numerical value; overall, however, the
agreement between the analytic model and numerical solution is good. In each panel
the 3% fit to the large-/3 behavior of our results is shown with a teal dashed curve and
that of the LC86 with an olive dashed curve. In the [ range of our investigation, we
find that neither the maximum central density nor the maximum temperature follow
any power-law scaling, in contrast to the prediction of LC86 (who claimed the 3% scaling
appears for § 2 5). We tabulate the maximum density and temperature as obtained from
the simulations, along with their predicted values from Section 7.1 (and the homologous
model of CN22) and LC86, in Table 5 for the full § range of our investigation. For § =1
and 2, the in-plane stretching in the numerical simulation offsets the compression out of
the plane, resulting in a monotonic decline in both the central density and temperature;
hence these values are identically equal to 1.

By extrapolating our simulation (or analytic) results, one could argue that the oc 53
scaling would hold at a much higher value of 3, on the order of § ~ 20, and with a
much smaller proportionality factor than that of LC86. However, the analytical model
here is at the homologous level and does not permit the formation of shocks, and while
the agreement between the analytical model and the numerical simulations for 5 < 10
suggests that shocks are not important over this g range, they likely do become important
for larger . For example, CN22 demonstrated that, for a v = 5/3 polytrope, the
maximum density never actually conforms to the 3% scaling (in any 3 range) because
a (weak) shock reaches the midplane prior to maximum adiabatic compression above
£ ~ 10. A similar effect almost certainly occurs for this type of star as well, and hence
it is likely inaccurate to extrapolate the homologous prediction and conclude that the /33
scaling is eventually followed.

We tested the numerical accuracy of our results using three different resolutions, cor-
responding to 10°, 106 and 107 SPH particles, which are shown in Figure 31 alongside the
analytical results. It is clear that the simulations agree well with one another and the an-
alytical results for small 5, but disagree somewhat at large 5 where the higher-resolution
simulations predict a greater degree of compression. Nonetheless, it is apparent from this

figure that the relative change in pyax/pe is a decreasing function of resolution, with the
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pIIlaX/pC Tmax/Tc
B SPH (IM) LC8 CN22 SPH (IM) LC86 CN22

2 1 1.76 1.10 1 1.48  1.07
3 1 5.94 1.33 1 3.33 1.2
4 1.24 14.08 1.71 1.16 2.92 143
) 1.83 27.5 2.25 1.50 9.25 1.72
6 2.65 4752 2.94 1.91 13.32  2.05
7 3.68 75.46  3.84 2.38 18.13  2.45
8 5.00 112.64 4.94 2.74 23.68  2.90
9 6.48 160.38  6.29 3.29 29.97 341
10 8.18 220. 791 4.01 37. 3.97

Table 5: The maximum central density and temperature, normalized to their original
values, obtained from the SPH simulations, predicted by LC86, and predicted by CN22
for the § range analyzed here. For f§ = 1 and 2, the density and temperature at the
center of the star monotonically decline with time in the numerical simulations, hence

their values of identically 1 from the simulations.
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B N,=10° N, =10° % change N, =10" % change
T puae/pe=33 37 12.1 3.8 2.7
8 4.2 5.0 19.1 5.6 12
9 5.1 6.5 27.5 7.3 12.3
10 6.2 8.2 32.3 9.6 17.1

Table 6: For the § given in the first column, the maximum central density relative
to its original value is given in columns 2, 3, and 5 for 10°, 10° and 10" SPH particles,
respectively. The relative error between successive resolutions, calculated as the difference
between the higher and lower-resolution values normalized by the higher-resolution result,

is shown in the fourth and sixth column.

specific values given in Table 6 (the % change columns are calculated as the difference
between the higher and lower-resolution values normalized to the high-resolution value).
We therefore conclude that while the results have not definitively converged at 107 par-
ticles for 5 = 8, they are converging, and the amount of compression experienced by the
star is an order of magnitude smaller than that predicted in previous works. We also note
that a similar trend was found in [92], where even at 108 particles the results were not
yet converged for § 2 8 (though they showed clear evidence that they were converging;
see Figure 17 of [5]). Finally, while there is some disagreement between the 107-particle
runs and the homologous prediction for 5 2 8, [5] have shown that incorporating non-
homologous terms in the analytical solution can bring these two into better agreement

(see Figure 17 of [5] for a demonstration of this in the case of a convective star).

7.2.3 Effects of General Relativity

The analysis of Section 7.1 and the simulations presented so far have been performed
in Newtonian gravity. This made the analysis simpler and the corresponding simula-
tions computationally inexpensive. Furthermore, a Newtonian background has histori-
cally been preferred in almost all previous work investigating extreme tidal compression,
specifically in CL82,83, LC86 and CN22 with which we compare our results.

However, the pericenter distance of the star in units of gravitational radii for a 10%M,
black hole is r, >~ 47/, and thus by = 10 is very close to the direct capture radius (4
gravitational radii). Thus, general relativistic effects can modify the evolution of the com-
pressing star nontrivially and, as argued in CN22, could increase the maximum-achieved
density owing to the stronger tidal field of the black hole. To investigate this possibility,

we performed general relativistic simulations in the (fixed-metric) Schwarzschild geometry
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using the SPH algorithm described in [303]. The relativistic simulations were primarily
performed using 10® SPH particles for 3 = 5—10 !, though an additional simulation with
107 particles was performed for 3 = 7 to assess the convergence of the results.

The general relativistic results compared to the Newtonian values are shown by the
brown curve in Figure 31. Compared to the green curve in this figure (which is at the
same resolution), we see that general relativistic effects tend to increase the amount of
compression by a factor of < 1.5. Interestingly, the relative change in the maximum-
achieved density does not appear to be as pronounced for § = 10, which could be due
to the fact that the direct capture radius for this configuration coincides with g ~ 11.8.
As the star nears the direct capture radius the tidal shear — responsible for reducing the
density of the material — diverges, and one might therefore suspect that the overall degree
of compression is reduced as the direct capture limit is reached. However, we make this
interpretation with caution owing to the lack of complete convergence of the solutions for
this value of S.

Figure 32 shows the central density as a function of coordinate time for the N, = 10°
Newtonian, N, = 10° relativistic, and N, = 107 relativistic simulations for 3 = 7. Con-
sistent with Figure 31, the maximum density attained in the relativistic simulations is
< 1.5 times the Newtonian value. Additionally, the time at which the star is maxi-
mally compressed is slightly delayed (note that the horizontal axis is coordinate time
relative to when the Newtonian, point-particle orbit would reach pericenter), and the
overall duration of the compression (i.e., the amount of time that the star spends near its
maximum-achieved density) is prolonged 2 in the general relativistic solutions compared
to the Newtonian one. Both of these effects arise from relativistic time dilation. It is
also evident that the results of the relativistic simulations with 106 and 107 SPH particles

agree extremely well with one another.

7.3 Summary

To analyze the amount of tidal compression of a radiative, solar-like star (modeled with
the Eddington standard model) during a tidal disruption event, we used an analytic
model originally proposed by [5] that accounts for both the self-gravity and the pressure
of the star during its tidal encounter with the black hole (Section 7.1). We then relaxed

INote that we are still defining 8 by 8 = ry/ Tp, where 7, is the true pericenter distance the star would
reach if it were a point particle in the relativistic gravitational field of the SMBH. We do not, in contrast,
fix the angular momentum of the star to its Newtonian value and define ¢* = 2GM,r;,, which would
generally yield a smaller, true pericenter distance in the relativistic gravitational field of the SMBH; see
[304].

2We thank Emilio Tejeda for pointing out this latter feature of the relativistic solutions.
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Figure 32: The ratio of maximum central density to the original central density against
the dynamic time of the star with 8 = 7. The resolution and gravity are specified by the
legend (solid-blue and dotted-orange use the Schwarzschild metric for the gravitational
field of the SMBH). The compression is stronger (by a factor of < 1.5) with relativistic
effects included, and the time of maximum compression occurs later in comparison to the
Newtonian case; the latter effect arises from time dilation (note that the horizontal axis
is coordinate time, i.e., time as measured by an observer at infinity) normalized by the

dynamic time of the star.

the assumptions made within that model by performing three-dimensional simulations
of deep TDEs that satisfied 2 < g < 10, where 5 = r¢/r, with r, the stellar pericenter
distance and r; the canonical tidal radius, verified the numerical accuracy of our results by
varying the spatial resolution, and performed additional simulations in the Schwarzschild
metric to assess the importance of general relativity (Section 7.2). We showed that
the two methods — analytical and numerical — agree very well in their predictions for
the maximum density and temperature reached during the disruption, and we therefore

conclude that

1. The maximum density and temperature achieved by the star during its compression
are significantly reduced (by over an order of magnitude for the density and nearly
an order of magnitude for the temperature by 5 = 10) compared to the predictions
of [57], [3], [111], [4] (see Figure 30).

2. Shocks are not important in this range of 3, and therefore are not responsible for

the lower degree of compression, although they are likely important for sufficiently
large B (5 2 10; cf. [5]).

3. The predicted scaling ppa. oc 8 [57, 290, 293] is not realized over this range of
B, and is lik ely not ever followed because of the eventual importance of shocks in

reversing the compression of the star prior to reaching its maximum adiabatic value

(see [5]).
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4. General relativity modestly increases the maximum degree of compression of the
star (by a factor of < 1.5; see Figures 31 and 32 and note that the general relativistic
solutions are at 10° particles), and also induces a lag in the time at which the
maximum compression occurs and the amount of time the star spends at increased
density and temperature increases (according to an observer at infinity) as a result

of time dilation.

5. The high temperatures and densities needed to ignite the triple-av process in the
core of the star are not reached by g = 10, as the maximum temperature attained
at this 3 is Tmax ~ 4 X 107 for an initial central temperature of 10" K (see right
panel of Figure 30), and in general we expect the nuclear energy released to be
minimal because of the small amount of time spent near maximum compression (see
Figure 29). Nevertheless, this modest degree of compression could still be important
for augmenting the importance of self-gravity in the compressing star and thus
determining the critical § at which the star is completely destroyed, particularly

for more massive stars where the critical g is 2 3 [305, 306].



Chapter 8
Conclusions

In this present era of multi-messenger astrophysics, routine observations—in electromag-
netic, gravitational waves, or neutrions—are providing clues to unveil physics of the ex-
treme universe. We need to take this opportunity to complement this tremendous progress
and, at the same time, to trigger new observations by developing novel analytic and com-
putational methods. This thesis aims to do this by studying the hydrodynamics in a few
of the most intriguing astrophysical settings.

The formation of giant planets like gas giants in our own solar system is still not
fully understood [307] and the results presented in this thesis point out the role of the
solid core in stabilizing the configuration. This result complements the “core accretion”
paradigm of giant planet formation, where during the rapid gas accretion phase, regions
of the hydrogen envelope dissociate and ionize, which causes reduction in the adiabatic
index of the gas. Naively, due to Chandrasekhar, one might expect the structure to
become unstable; but we show that the addition of the solid core saves the structure from
becoming dynamically unstable. The scope of the present work can be enhanced if used
in conjunction with planetary evolutionary model; still it is very obvious from our results
how a solid core dynamically stabilizes a Jupiter-like planet.

Core-collapse supernovae are considered one of the most promising multi-messenger
sources [308]. In core-collapse supernovae all four fundamental forces are at work, and
hence the understanding of the physics should enrich our understanding of fundamental
physics, for example, how dense matter operates in extreme situations. Yet, at present
we do not have a full understanding of the explosion mechanism. The present thesis
studies core-collapse supernovae from a few different perspectives. By highlighting the
importance of general relativity and the presence of a hard surface (such as the proto-
neutron star), we provide a novel accretion solution through standing shock. These
solutions clearly depict the orders of magnitude correction to the “settling solutions”

obtained in Newtonian settings. Our results are important in the case of weak and failed
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supernovae where the shock is pushed to smaller radii making use of general relativity
indispensable. These solutions will impact the standing accretion shock instability (SASI)
and because even the stable modes have very small eigen values, a modification in the
background solution might make modes that were stable in Newtonian settings unstable
with relativistic considerations. Future studies should target this. For this thesis, we
have revisited the traditional SASI analysis with Newtonian background solutions and
obtained some results that are not found in the traditional analysis. We see a range of [ = 2
modes that are unstable whose frequencies go well with the dynamic timescale of neutron
stars. These modes are never discussed in the traditional discussion of SASI, where
SASI modes are always linked with low-frequency oscillations. The unstable modes can
propagate in a cascade effect, and the eventual non-linear coupling between such unstable
modes leads to strong turbulence, which in turn would aid the asymmetric explosion seen
in supernovae [37, 38]. This thesis also studies the oscillation modes of neutron stars in
perturbation theory and shows that the fundamental frequencies associated with neutron
star oscillations supply a significant portion of the energy emitted as gravitational waves
seen in state-of-the-art supernovae simulations [40, 2]. The frequency corresponding to
the maximally unstable mode (among the newly found unstable [ = 2 modes) of the SASIT
cavity oscillations matches well with the fundamental mode frequencies of the neutron
star. Therefore, the SASI cavity might also be the hammer ringing the neutron star as a
bell. The absence of other modes of oscillations of the neutron star such as the p-modes
or g-modes in the gravitational wave bolsters our claim.

The advent of advanced computational methods enables us to make decisive comments
on many disputed claims. In this thesis, we have presented such a dispute and (hopefully)
provided a resolution. In the 1980s it was shown by Luminet & Carter through analytic
work that a radiative star entering deep inside the tidal sphere of the supermassive black
hole suffer such extreme tidal compression that the stellar core undergoes thermonuclear
detonation [57, 3]. This conclusion has been doubted almost immediately as Bicknell et
al. through a smoothed particle hydrodynamics simulation showed that the compression
such a star would undergo in reality is much lower [58]. They ran their simulation with
~ 2500 SPH particles. This issue of whether thermonuclear detonation of a radiative star
in deeply penetrating tidal disruption events is possible or not has been debated for the
last four decades without any consensus. In this thesis, we have run high-resolution SPH
simulations and shown that to resolve such instances soundly one needs ~ 10M SPH
particles (an ~ 10* order increase from [58])! Our results show few order of magnitude
lesser compression than what was predicted; we have also run a set of general-relativistic
simulations to show that even relativistic considerations does not increase the extent of

compression by much, and therefore, we conclude any possibility of nuclear detonation is
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highly unlikely in deep-TDEs.

This thesis portrays the role of hydrodynamics, stability, and accretion in a few exotic
high-energy astrophysical scenarios. Our work will trigger further investigations, obser-
vations, and we anticipate that the precise knowledge thus developed will enhance our
understanding of giant planet formation, the explosion mechanism of massive stars, and

deeply penetrating tidal disruption events.
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