
ABSTRACT

Neutron stars are astrophysical laboratories to study extremely dense matter. The

exact composition of the interior of a neutron star is yet unknown. However, recent

observational and theoretical developments have provided crucial constraints on the

properties of dense matter in neutron stars. In this thesis, we describe how we can use

the astrophysical signals from neutron stars to measure their physical properties. We

can use these measurements to determine the structure and composition of neutron

star. We focus on two phases of the neutron star’s life and the astrophysical signals

associated with it. First, we look at gravitational wave signals from core-collapse

supernovae—the birthplace of neutron stars. We analyze the gravitational-wave sig-

nals obtained from three-dimensional simulations of core-collapse and calculate the

detection prospects of these signals by the proposed next-generation detectors, such

as Cosmic Explorer. We find that Cosmic Explorer can detect a supernova signal in

the Milky Way galaxy. We analyze the first ∼ 10 ms of the gravitational-wave signal

from core-collapse, where the signal is non-stochastic and primarily depends on the

core rotation rate and its equation of state. We use data from numerical simulations of

collapsing stars with rapidly rotating cores and develop a mapping between the phys-

ical parameters and the waveform morphology. We analyze the stochastic part of the

signal, which is primarily generated due to the oscillations of the proto-neutron star.

We develop a novel method to generate time-frequency spectrograms and we use them

to measure the frequencies and energy associated with the quadrupolar f−mode os-

cillations of the proto-neutron star. Lastly, we determine the reproducibility of Riley

et al. results, in which the authors analyze the X-ray data from NICER to measure

the mass and radius of PSR J0030+0451 using X-ray pulse profile modeling. We

find that using the data and software artifacts provided, we can not only reproduce

their results but can extend them as well. Measuring the mass and radius of pulsar

constrains its equation of state, and consequently its internal composition.
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Chapter 1

Introduction

Neutron stars are among the densest objects in the universe, second only to black

holes. They offer a unique window into the physics of extreme regimes that are

not well understood yet, and conditions that cannot be reproduced in terrestrial

laboratories. The densities in the core of neutron stars can reach up to ten times the

nuclear saturation density (ρ = 2.8× 1014g/cm3) [4, 5, 6, 7, 8, 9]. A way to probe the

physics of these extreme conditions is by measuring the properties of neutrons stars

using the astrophysical signals that they generate.

The exact internal composition of a neutron star is not yet known. We know that

they are mostly made of neutrons, because of the inverse beta decay process during

a core-collapse supernova—the birthplace of neutron stars. However, the densities at

the core of the star are extremely high, and we do not have a full understanding of

the kind of matter that could exist in such conditions. The core can be comprised

mostly of neutrons with a fraction of protons, or it could host exotic particles like

hyperons, deconfined quarks, etc [10, 11]. The interactions between these particles

scale up on a larger scale as the relationship between pressure and densities, i.e. the

“cold” equation of state [12]. This relationship describes the behavior of cold, dense

matter, that comprises the old, isolated neutron stars, and neutron stars in binary

systems before they come close to their companions. When the neutron stars are

born, or when they are in a binary system and merge with their companion object,

the conditions are hot and dynamic and one has to take into account the temperature,

in addition to the pressure and density, to describe the “hot” equation of state of dense

matter.
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Given a pressure-density relationship, and the Tolman–Oppenheimer–Volkoff rel-

ativistic stellar structure equation [13, 14], one can map out the relationship between

the mass and the radius of the neutron star. The uncertainties in the composition of

the neutron star and the inter-particle forces results in a range of models that describe

the pressure-density-temperature relations, and consequently, a range of mass-radius

relationships.

Since neutron stars are highly compact objects, we have to take into account rela-

tivistic effects when we model them. We can utilize this property of the neutron stars

to measure their physical properties. For example, we can use the gravitational-waves

from neutron stars (from a newly formed proto-neutron star, or from binary neutron

star mergers) to measure its mass and radius. Using observations and theoretical

models, we can constrain the plausible regions in the mass-radius plane. Backtrack-

ing, we can do the same for equations of state represented in the pressure-density

plane, and hence constrain the type of particles residing in the core of a neutron star

[15, 16, 17].

In this thesis, we investigate methods to measure the physical properties of neutron

stars using astrophysical observations. First, we focus on the proto-neutron star phase

of a neutron star during its birth in a core-collapse supernova. In particular, we focus

on gravitational-wave radiation from a supernova, during which the primary source of

the radiation is the proto-neutron star oscillations. Gravitational-waves and neutrinos

are the only possible observational windows to extract the physics from proto-neutron

stars, since the stellar material enveloping them is opaque to electromagnetic waves.

Using such signals, we demonstrate that not only can we measure the properties of

the proto-neutron star, but we can also shed more light on the supernova mechanism.

Secondly, we measure the mass and radius of an old, cold neutron star by analyzing the

X-ray emission from its surface. In this phase, the neutron star has cooled off due to

neutrino emission and has become stable, unlike the proto-neutron star phase where it

was hot and dynamic. We can measure various physical properties of the neutron star

using both kind of measurements. In particular, measurements of mass and radius

of neutron stars can constrain the possible equations of state, and consequently their

structure and inner composition.
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1.0.1 Gravitational waves

The Advanced LIGO [18] and Virgo [19] observatories are set to begin their fourth

observing run in the summer of 2023 to detect gravitational waves from mergers

of compact object binaries [20]. These binaries can be comprised of stellar-mass

black holes or neutron stars. During the first three observing runs, the observa-

tories reported a total of 52 confident detections [21, 18, 22, 23, 24, 25], including

the first direct observation of gravitational waves from a binary black hole merger,

GW150914 [26], and a direct detection of gravitational waves from a binary neutron

star merger, GW170817 [27]. The latter event was also observed across the electro-

magnetic spectrum - from gamma-rays to radio [28]. The total catalog of signals

includes those from two binary neutron stars, two neutron star-black hole, and a sig-

nal from a binary system with the light compact object object either the lowest mass

black hole or one of the highest mass neutron star. With all these observations, the

era of gravitational-wave astronomy has just begun, and we will be able to answer a

plethora of long-standing physics questions using it.

Gravitational waves were one of the earliest predictions of the Theory of General

Relativity. If one considers the case where the spectime metric can be approximated

as gµν = ηµν + hµν , where ηµν is the flat, Minkowski spacetime metric and hµν is a

small perturbation on it, then in the transverse-traceless gauge, Einstein’s equations

become a wave equation for hµν . If a system has time-varying quadrupole moment

Iµν , then it will generate gravitational waves. Specifically, the expression is:

hµν =
2G

Dc4
Ïµν , (1.1)

where D is the distance between the source of gravitational radiation and the observer.

Since the factor 2G
c4

= 1.6 × 10−44 kg−1 m−1s2 is strikingly small, the factor Ïµν
D

has

to be tremendously large to obtain measureable values of h. Astrophysical sources,

primarily involving compact objects, provide large values of Ïµν , such that even though

the distances D are also huge, the values of h are measureable. For example, a binary

neutron star system of stars of mass 1.4M⊙ and of radius 11 km each will produce

Ïµν ≈ 1045kg m2s−2. Such a source will generate gravitational waves that would be

≈ 10−21 at a distance of 1 Mpc. In order to detect such a signal, one has to be able

to measure extremely small changes in distances when the gravitational-wave passes

by.
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Gravitational-wave observatories are kilometer-scale Michelson interferometers with

Fabry-Perot cavities in each of their arms. As a gravitational-wave passes through

the detector, it stretches and squeezes the spacetime, distorting the armlengths of

the interferometer. This results in a phase difference over time in each of the arms.

The detectors measure the signal amplitude in the terms of the strain h, which is a

dimensionless quantity given by

h =
∆L

L
, (1.2)

where L is the arm length of of the detectors when there is no gravitational-wave

passing through it, and ∆L is the change in arm length induced by the signal.

The sensitivity of the detectors is dependent on various noise sources. These in-

clude the seismic noise (which is dominant at low frequencies, ≲ 10 Hz), thermal

noise (contributes majorly at frequencies ≈ 10− 100 Hz), and quantum noise (dom-

inant at frequencies ≳ 200 Hz) [29]. Advanced LIGO is most sensitive in the band

15− 1000 Hz. From equation 1.2, we can see that larger armlengths would result in

larger ∆L for the same signal waveform strain amplitude. Hence, Advanced LIGO is

4 km long. Future detectors, such as the Cosmic Explorer [30] in United States and

Einstein Telescope [31] in Europe are planned to have 40km and 10 km armlengths,

respectively. They will be almost an order of magnitude more sensitive than the

current detectors, making the nearby sources much louder, and further away sources

detectable.

1.0.2 Core-collapse supernovae

When the core of a massive star (8M⊙ ≲ M ≲ 130M⊙ when it becomes a main

sequence star) exceeds its Chandrashekhar mass, it begins to undergo gravitational

collapse [32, 33, 34, 35]. The compression of the core leads the material to nuclear

densities, and the nuclear equation of state stiffens, which results in the core bounce.

This creates a shock wave that propagates outwards and plows through the outer

envelope of the star, causing an explosion and leaving behind a compact remnant

[36]. The core collapse and subsequent bounce can power supernova explosions that

radiate light, neutrinos, and gravitational waves (see e.g. Refs. [37, 38, 39, 40]

and references therein). Electromagnetic waves generated deep within the star get

absorbed by the material around them. We only receive the electromagnetic signals
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from the outer edges of the star. The gravitational waves and neutrinos, on the

other hand, are generated within the core and travel unhindered through the stellar

envelope, carrying information about the structure and dynamics of the inner parts

of the star.

The outgoing shock initially stalls, primarily because it loses its energy to disso-

ciate heavy nuclei as it propagates outwards. It also faces the ram pressure of the

infalling material. The primary focus of supernova theorists and simulations for the

past few decades has been to explain how this shock eventually revives and blows

up the star. The currently accepted hypothesis is that a fraction of neutrinos that

are produced in the proto-neutron star get trapped in the gain region–the region just

behind the shock. Turbulence has been shown to be the key to revive the shock. The

trapped neutrinos heat up the gain region to generate enough turbulence to revive

the shock [33, 41].

The neutrino-heating mechanism is consistent with the observations and theoret-

ical predictions of explosion statistics, energies and other observables. The majority

of the gravitational binding energy in a supernova, over 99% (∼ 1053 ergs), is dis-

charged through neutrinos. To restart the stalled shock, the neutrino-heating mech-

anism needs just a small fraction of this energy to connect with the matter inside the

collapsing star via the weak force.

Core-collapse supernovae are crucial to understand because they are one of the

primary sources of heavy elements in the universe [42]. They also influence the inter-

stellar medium, can emit cosmic rays, and are the source of the cosmic relic neutrino

background [43]. Supernova physics is a complex blend of gravity, hydrodynamical

instabilities, neutrino interactions, radiation dynamics in multi-dimensions.

Gravitational waves from Core-Collapse Supernovae

Galactic core collapse supernovae are one of the potential sources of gravitational

waves that can be detected by the next-generation gravitational-wave detectors [44,

45, 46]. This kind of detection is particularly interesting because the gravitational-

wave signal is accompanied by neutrino signal and possibly by electromagnetic obser-

vations. The range of detection of core collapse supernovae for aLIGO type detectors

is around 10 kpc for optimally oriented sources, while for the third-generation detec-

tors it goes as far as 70 kpc. The estimated event rate for core-collapse supernovae
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in a galaxy the size of the Milky Way is 1-3 per century [47, 48, 49, 50]. If the

third-generation detectors detect such an event in the galaxy, the signal-to-noise ra-

tio (SNR) will be high enough to extract very interesting physics (such as the equation

of state, rotation rate, central density, etc. of the protoneutron star) out of the ob-

served data. In Chapter 2 we discuss the detection prospects of gravitational-waves

from supernovae for the next-generation gravitational-wave detectors.

The gravitational-wave signal of core-collapse supernovae comprises of three phases

- the core bounce and the immediate postbounce oscillations of the protoneutron star

(5 − 10 ms), prompt convection phase (10 − 50 ms), and the the neutrino convec-

tion/explosion phase (≳ 100 ms). Due to the neutrino convection in and above the

protoneutron star, and fallback accretion onto it, the latter phase is stochastic in na-

ture. However, the core bounce and postbounce phases are non stochastic and contain

vital information about the physical parameters such as the angular momentum of

the core and nuclear equation of state. Most of the work in the past three decades

was focused on the bounce and the postbounce phases for a rapidly rotating core of

a massive star [51, 52, 53]. However, our current understanding of stellar evolution

and estimates of rotation rates of pulsars suggest that the cores of massive stars will

be slowly rotating by the end of their lives owing to angular momentum transport

to the stellar envelope and eventually to stellar winds [54, 55]. They will also be

weakly differentially rotating due to angular momentum redistribution because of

strong magnetic torques [56, 57]. Rotation rate of the core is an important quantity

to measure as it provides crucial insight into the rotation rates of the first generation

compact objects formed as an aftermath of the core-collapse. In Chapter 3 we focus

on the first ∼ 10 ms of the gravitational-wave signal from core-collapse to measure

the rotation-rate and the equation of state of the protoneutron star.

During the neutrino convection phase, the primary source of gravitational-waves

are the proto-neutron star oscillations. These oscillations are thought to be caused

by the infalling, accreting matter on the proto-neutron star. The stochasticity of the

signal in the time domain renders it very difficult to be modeled in the same vein

as a gravitational-wave signal from compact binary coalescence. However, if we look

at the short-time Fourier transform of the signal, we see a distinct track starting at

∼ 200 ms after the core bounce at ∼ 500 Hz, and grows to ∼ 1000 Hz 500 ms after
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the core bounce. Linear perturbation analysis of the simulation data for the proto-

neutron star reveals that this track is associated with the fundamental l = 2 f−mode

oscillations of the protoneutron star. An f−mode, or fundamental mode oscillation is

a subclass of gravity modes—modes of oscillations in which buoyancy is the restoring

force.

In Chapter 4 we analyze the stochastic phase gravitational-wave signal (t−tbounce ≳
0.4 seconds) to measure the frequencies and energies associated with the fundamental

f−mode oscillations of the proto-neutron star. Measurement of these quantities help

in inferring the central densities of the proto-neutron star, and may shed more light

on the supernova mechanism.

1.0.3 Millisecond pulsars and X-ray pulse profile modeling

Pulsars are rotating neutron stars that have period of rotation that ranges from a

few milliseconds to a few seconds. They emit radiation that an observer can see at

regular intervals as the pulsar is rotating [58, 59]. In particular, the neutron star’s

surface has “hotspots” - regions of higher temperature than the ambient temperature

that emit X-rays. These surface emissions provide us a way to to probe the interior

composition of the neutron star. The X-rays emitted from the surface travel through

the exterior spacetime of the neutron star. Since the pulsar is rotating, they also get

rotationally deformed—redshifted when the hotspot is going away from the observer

as the pulsar rotates, whereas blueshifted when the hotspot is appearing again. Given

a mechanism of how this radiation is produced on the surface and the ray propagation

of the radiation through the spacetime, one can model the pulsed signal that can be

detected by a distant observer [60]. One can parameterize this model incorporating

the mass, radius, rotation rate, etc. Using a likelihood function, one can then perform

a Bayesian analysis to determine the model parameters that describe the posterior.

In 2018, NASA’s Neutron star Interior Composition Explorer (NICER) observed

X-rays from a galactic pulsar PSR J0030+0451, which is at a distance of ∼ 0.33 kpc

and has a period of rotation of 4.89ms. Riley et al. reported Bayesian parameter

measurements of the mass and the radius, among other parameters, and found that

mass of the pulsar is 1.34+0.15
−0.16M⊙ and the radius is 12.71+1.14

−1.19km, where the errors

depict the 68% credible interval. In Chapter 5, we explore the reproducibility of Riley

et. al. [61] analysis, given the data, software, and documentation provided to the
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public. We also extend and modify their original analysis to test its robustness to the

priors used in the analysis.

We discuss the conclusions drawn from these studies in Chapter 6.
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Chapter 2

Detection prospects of

gravitational-waves from

Core-collapse supernovae

2.1 Introduction

The Advanced LIGO [62] and VIRGO [63] gravitational-wave detectors observed sig-

nals from the coalescence of over ten binary black holes (BBH) and one binary neu-

tron star merger (BNS) [64, 65, 66, 67, 68, 69] by the end of their second science

run. Core-collapse supernovae (CCSNe) are a potential astrophysical source of gravi-

tational waves that could be detected by interferometric detectors. The gravitational

waves are generated deep in the star, at the collapsing core, and are emitted un-

touched by the outer envelopes. They contain vital information about the interior of

the star and about the core-collapse process, which is not present in the electromag-

netic counterpart of the emitted radiation. We can infer various physical parameters

such as the nuclear equation of state, rotation rate, pulsation frequencies, etc. from

the gravitational wave signal of a CCSNe once it has been detected [70, 71, 72]. How-

ever, gravitational waves from CCSNe are yet to be observed [73, 74]. The inferred

sensitivity of the aLIGO-VIRGO network to detect CCSNe ranges from a few kilo-

parsecs (kpc) to a few megaparsecs (Mpc) [75]. The range of a few megaparsecs in

[75] corresponds to extreme emission models which assume properties of stars which

are unlikely to occur in astrophysical scenarios. The smaller sensitive range of a few
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kiloparsecs to CCSNe along with low CCSNe rates within galaxies leads to a low

gravitational-wave detection probability from CCSNe [76, 77, 78, 79, 80].

The gravitational radiation from CCSNe depends on a complex interplay of general

relativity, magneto-hydrodynamics, nuclear, and particle physics. The burst signal,

therefore, does not have a simple model, and we have to use numerical simulations

to understand its structure. Numerical simulations also help in understanding the

frequency content of the gravitational wave signal which is crucial in determining the

parameters to tune future detectors towards supernovae.

The three-dimensional (3D) simulations of core-collapse supernovae reveal that

their gravitational-wave signatures are broadband with frequencies ranging from a few

hertz to a few thousand hertz. The time-changing quadrupole moment of the emitted

neutrinos occupies the few Hertz to ten Hertz range, while the higher frequencies

are associated with the prompt convection and rotational bounce phase, the proto-

neutron-star (PNS) ringing phase, and turbulent motions. [81] and [82] demonstrated

that the excitation of the fundamental g- and f-modes of the PNS can be a dominant

component and that much of the gravitational wave energy emitted is associated with

such PNS oscillations [83, 84]. The frequency ramp with time after the bounce of the

latter is a characteristic signature of CCSNe and will reveal the inner dynamics of

the residual PNS core and supernova phenomenon once detected. There now exist

in the literature numerous 3D CCSNe models that map out the gravitational-wave

signatures expected from CCSNe [85, 86, 87, 88, 80, 89]. For this study, we focus on

the extensive suite of 3D waveforms found in [80].

In our work, we optimize the design prospects of a third-generation Cosmic-

Explorer-like detector to detect gravitational wave signals from CCSNe and discuss

the astrophysical consequences. We focus on the prospects for detection of non-

rotating or slowly rotating stars since they are likely to be astrophysically more likely

[90]. We first review the detection ranges for the second-generation detectors. A

significant amount of power is emitted by CCSNe within the gravitational-wave fre-

quency range 500 Hz to 1500 Hz. Therefore, in order to improve the sensitivity of

gravitational wave detectors to CCSNe, we need to tune the detector parameters to

increase the sensitivity in this bandwidth. With the present models of likely grav-

itational wave emission from CCSNe [80], we find that the detectable range with a

supernovae-optimized Cosmic-Explorer-like third generation detector is still only up
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to a hundred kiloparsecs. The detector range is therefore limited to CCSNe that

occur within our galaxy. The corresponding event rate is approximately two per

century [91, 92, 93, 94, 95]. However, the supernovae-optimized detector would im-

prove the signal-to-noise ratio (SNR) for the galactic sources by approximately 25%

as compared to the Cosmic-Explorer. For completeness, we also discuss the strain

requirements in a detector to achieve CCSNe event rates of the order of one per year.

To this end, we address the fundamental sources of noise that limit our sensitivity to

achieve this desired strain.
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2.2 Gravitational waves from CCSNe

Fig. 1 shows the spectrograms of the waveforms obtained from the simulation for the

19M⊙ progenitor. The left column shows the spectrogram of the waveform from the

3D simulation, while the right column shows the spectrogram of the waveform from

the 2D simulation. The red vertical dashed line in the right column represents the

simulation time of the 3D waveform. For simulations of the same ZAMS mass, both

the 2D waveforms and the 3D waveforms show similar behavior in the time-frequency

plane. We can see the prompt convection signal for the first ∼ 10 milliseconds after

the core bounce, followed by the characteristic g/f-mode ring up of the proto-neutron

star (PNS) increasing in frequency [104]. For the 2D waveforms, the frequency ranges

from ∼ 20 Hz to ∼ 2000 Hz. The g/f-mode signal of the PNS starts around 200

milliseconds after the core bounce at a frequency of ∼ 500 Hz, and 1 sec after the

core bounce reaches ∼ 1500 Hz. For the waveforms obtained from the 3D simulations,

the frequency ranges up to ∼ 1000 Hz. This is because the 3D simulations end earlier

(0.4− 1.0 sec after core bounce).
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Figure 1: Spectrograms of gravitational-wave waveforms from 3D (left column) and

2D (right column) simulations of 19M⊙ progenitor. The number on the top left corner

each plot with white background is the distance for which these GW signals have an

optimal SNR of 8. For the 2D simulations, we recalculate this distance (shown on

red background) by truncating the waveform at the end-time of the corresponding

3D simulation. The red vertical dashed line shows the truncation time.
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We calculate the optimal distance (or the detection distance for optimally-oriented

sources) for each of these waveforms, as defined below [105]:

dopt =
σ

ρ∗
=

1

ρ∗

[
2

∫ fhigh

flow

df
h̃(f)h̃∗(f)

Sh(f)

] 1
2

(2.1)

where Sh(f) is the power spectral density (PSD) of the detector, ρ∗ = 8 is the

signal-to-noise ratio for an optimal matched filter (optimal SNR) and the limits over

the integral are defined by flow and fhigh. We note that for unmodeled searched

like CCSNe, matched filter searches is not applicable. Instead, Coherent WaveBurst

searches (CWB) or incoherent transient searches (Omicron) are implemented to search

for CCSNe in aLIGO-VIRGO strain data [106, 107, 108, 109]. There is mismatch

which leads to loss of SNR when one moves from modeled match-filter searches to

unmodeled transient wavelet burst searches [110]. The use of optimal SNR in the

paper presents an optimistic scenario without any of these losses. We set the lower

frequency cutoff, flow = 10 Hz and use aLIGOZeroDetHighPower [111] as PSD for

aLIGO to compute the optimal distances for all the waveforms, which are shown in

Table 2. For aLIGO, the average distances for waveforms from 3D simulations are

∼ 8 kpc, while the average distances for corresponding 2D numerical simulations are

∼ 35.5 kpc. The 3D simulations have shorter times with respect to the 2D simulations,

so we truncate the 2D simulations at the same corresponding times to compare the

optimal distances. In doing so, the average optimal distance for the waveforms from

the 2D simulations is ∼ 30 kpc. We find that the 2D waveforms are, on an average,

∼ 4 times louder than the 3D waveforms. Therefore, we will only use the waveforms

from 3D simulations to tune the third generation detectors for CCSNe and calculate

ranges.

Table 2 also shows the optimal signal-to-noise (SNR) σ2 of the waveforms in two

frequency bandwidths : 10Hz - 450Hz and 450Hz - 2000Hz. These σ2 values have been

calculated using a flat PSD (see section §2.5), so that we can infer the distribution of

the frequency content of the waveforms without being biased by the noise curves of

any detector. We can verify from the spectrograms that almost all of the frequency

content is below 2000 Hz. We find that the ratio of σ2 in the range 10Hz - 450Hz to

that in range 450Hz - 2000Hz is ∼ 0.2 for 3D simulations while for 2D simulations it

is ∼ 0.1. This implies that ∼ 80% of the content of the waveforms is in the frequency
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range 450Hz - 2000Hz. This is crucial since in Secs §2.3 and §2.4, we tune the detector
parameters to increase the sensitivity in this frequency range.

In section §2.3, we define a phenomenological CCSNe waveform which is derived

from the 3D numerical waveforms. We maximize the range of the phenomenological

supernovae waveform (see Fig. 2) with a third-generation Cosmic-Explorer-like de-

tector. We use GWINC to estimate the noise floor for different detector parameters

[112]. The maximized range achieved can then be translated into the corresponding

event rate of CCSNe, as summarized in table 1 (assuming a 100% detector duty-cycle).

We use the waveforms from [80] to compare the ranges of different waveforms

of CCSNe using the Einstein Telescope (ET), the Cosmic Explorer (CE) and the

Supernovae-Optimized detector (SN-Opt). In section 2.5, we invert the problem to

calculate the strain requirements of a hypothetical detector to achieve an event rate

of the order of one in two years or in the terms of distances – has a range of the order

of 10 Mpc for gravitational-wave signals from CCSNe. Lastly, we consider in section

§2.5 detector configurations beyond the third-generation detectors (Hypothetical) and

find the ranges for different numerical waveforms of CCSNe.

2.3 Defining a Representative Supernovae Gravitational-Wave

Waveform

To maximize the detectable range for CCSNe in a given detector configuration, we

need a reference CCSNe waveform that captures the broad features of supernovae

waveform. The reference waveform must have the strain amplitude and spectral

features similar to any supernovae waveform. We use the waveforms from the 3D

simulations of core-collapse [113, 80] to generate a phenomenological model that cap-

tures the broad range of features of core-collapse supernovae waveform. We generate

the phenomenological waveform to average out the power emission features from dif-

ferent numerical waveforms so that features in any one of the waveforms do not affect

the results of the study. Thereby, the phenomenological waveform provides a model-

independent approach.

We construct the phenomenological waveform by a sum of sine-Gaussian bursts. A

sine-Gaussian can be defined with three parameters, the central frequency fo, the qual-

ity factor or the sharpness of the peak Q and the amplitude scale ho. The frequency
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domain representation of a sine-Gaussian can be expressed with these parameters as

s̃(f) =
ho
4
√
π

Q

fo
e
− (f−fo)

2Q2

4f2 (2.2)

The different frequencies are used to model different spectral features of the core-

collapse waveform. We choose central frequencies f i
o for sine-Gaussian using the

numerical waveforms from 3D simulations of core-collapse. We choose, by hand, five

distinct central frequencies f i
o which correspond to peak emission in the numerical

waveforms. We limit ourselves to five distinct values of frequencies in order to avoid

over-fitting the sine-Gaussian phenomenological waveform to the numerical wave-

forms. We note that the supernovae waveforms have emission at higher frequencies

but they are much lower in amplitude. Therefore, for the purposes of optimization,

we limit ourselves to an upper limit of 2kHz in the phenomenological waveform.

To build the phenomenological waveform, we divide the frequency domain into

four bins ranging from – 10 Hz to 250 Hz, 250 Hz to 500 Hz, 500 Hz to 1 kHz and

1 kHz to 2 kHz. For each of the chosen central frequencies f i
o, the quality factor Qi

and the amplitude hio are chosen so as to minimize the error in the normalized power

in the four different bins of frequencies above. The error in the normalized power in

each bin is then added in quadrature for different waveforms and is given by

∆e =

√√√√ 1

N − 1

N∑
i

(Model
fhigh
flow

− NR
fhigh
flow

)2 (2.3)

This approach gives us a simple but robust gravitational waveform, free from the

parameter degeneracies but capturing the features of gravitational wave radiation

from CCSNe. We will use this to perform optimization and maximize the range for

this waveform and thus for CCSNe. The errors in the different frequency bins ranging

from 10Hz to 250Hz, 250Hz to 500Hz, 500Hz to 1kHz and 1kHz to 2kHz is 3%, 9%, 2%

and 19% respectively. The higher error in the last frequency bin is by the construction

of the phenomenological waveform and is added to incorporate the features persistent

in the 2D waveforms which show higher emissions in this frequency range discussed

in section §2.2. Fig. 2 shows the phenomenological waveform constructed. We

incorporate this waveform as a reference supernovae signal within GWINC [112]. The

ranges, horizon, and reach for the phenomenological waveform can then be calculated

by solving for distance D which would rescale the waveform in equation 2.2 as 1/D.
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Figure 2: The figure shows the phenomenological waveform used as a representative

for gravitational wave emission from CCSNe. The waveform is constructed by using

five sine-Gaussian bursts with different central frequencies fo = 95, 175, 525, 950

and 1500 Hz. The quality factor and the amplitude at each central frequency are

then derived by minimizing the normalized power emitted in four different bins of

frequency from 10 Hz to 250 Hz, 250 Hz to 500 Hz, 500 Hz to 1000 Hz and 1000 Hz to

2000 Hz. The overall amplitude of the phenomenological waveform is not calculated

by the fit and can be rescaled. We are interested in the broad features in frequency in

different waveforms which is effectively captured in the phenomenological waveform.

In each of the subsequent sections, we go back to each of the numerical waveforms

and recompute the ranges achieved with all the different detector designs considered

in our study.

2.4 Optimizing SN detectability for 3G detectors

We use the phenomenological gravitational-wave waveform for CCSNe to explore de-

tector configurations that optimize the Cosmic Explorer detector’s sensitivity to CC-

SNe. To avoid overemphasis on any particular frequency chosen in the phenomeno-

logical waveform, we down weight narrow-band configurations during the process of

optimization. We also avoid narrow-band designs so that the optimized detector’s
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sensitivity to BNS is greater then 1 Gpc. We will explore the narrow-band configu-

rations with a different approach discussed in section §2.4.3

2.4.1 Broadband configuration tuned for Supernovae

Quantum noise is the predominant source of noise which limits the performance of the

gravitational-wave detector. Radiation pressure noise limits the detector sensitivity

at low frequencies and shot noise limits sensitivity at high frequencies [62, 63, 114].

In our study, we use the design parameters of Cosmic Explorer [115] as the starting

point. For the purposes of optimization, we choose the Cosmic Explorer rather than

the Einstein Telescope as the former has a better noise performance at frequencies

which are relevant to CCSNe. We optimize over the length of the signal recycling

cavity (Lsrc) and the transmissivity of the signal recycling mirror (Tsrm) to maximize

the CCSNe detection range. The quantum resonant sidebands can be tuned with

these parameters and we exploit this behavior for supernovae tuning similar to the

approach used by Buonanno et al. [116] and Martynov et al. [117].

We also study, the effect of the length of the arm cavity (Larm) on supernovae

sensitivity. We use Markov Chain Monte Carlo sampling [118] and particle swarm

optimization [119] to search the parameter space and maximize the range for the phe-

nomenological waveform for a broadband detector. During the process of maximizing

the range, we down-weight the narrow-band configurations with two constraints for

sample points. First, the reflectivity of the signal recycling cavity Tsrm > 0.01. Sec-

ond, the given detector configuration must have a optimal distance for binary neutron

stars systems (m1 = m2 = 1.4 M⊙ and s1z = s2z = 0) to be greater than 1 Gpc. By

doing so, we ensure that the detector’s sensitivity is not lost for compact binaries.

The strain sensitivity improves as the square root of the arm length of the detector

as long as the gravitational-wave frequency (Ω) is much less than the free spectral

range (fFSR) of the Fabry-Perot cavity. The strain sensitivity of the detector does

not always improve by scaling the detector as other fundamental sources of noise also

change by scaling the length of the detector [120]. As the gravitational wave spectrum

of supernovae has some power in a few kilohertz range, we allow the arm length to

vary independently similar to the analysis by [121, 117]. Our simulations indicated

the optimal length to be close to 40 km, the upper bound value allowed for the length

parameter. As a result, we set the length of the arm cavity to 40 km. For a 40 km
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arm length, the fFSR is 3750 Hz. The sensitivity of the detector is limited by the

fFSR, any further increase in the length of the arms will reduce the fFSR, resulting in

the loss in sensitivity to CCSNe, where the gravitational wave spectrum persists up

to a few kilohertz.

The optimal supernovae zero-detuned detector’s noise budget is shown in Fig. 3.

We find a longer signal recycling with a length of 180 m compared to 55m for Cosmic

Explorer along with a transmissivity of the signal recycling cavity changed to 0.015

improved the detector’s sensitivity by improving the quantum noise floor at higher

frequencies. The loss in sensitivity around 3 kHz is due to the FSR of the arm cavity.

The dip at 4 kHz corresponds to the pole of the signal recycling cavity.

We also consider the effects of detuning the signal recycling cavity. We find

detuning the signal recycling cavity with active compensation with the squeezing

phase can be used to actively tune the third generation detectors in narrow bins of

frequency without losing 15 dB of squeezing. It has been proposed that detuning the

ground-based detectors can be useful in testing the general theory of relativity [3]

with a joint operation with LISA [122]. We will consider the applicability of these

configurations to see if they provide any improvements for CCSNe in section §2.4.2.
The optimization over the length of the signal recycling cavity and the transitivity

of the signal recycling mirror to maximize the supernovae range with the phenomeno-

logical waveform in Fig. 2 leads to an improvement of approximately 30% in the

range of CCSNe as compared to the Cosmic Explorer design. However, extending

the range from a 70 kpc to 95 kpc does not add any galaxies in our local universe.

The optimized supernovae detector does not increase the detection rate as compared

to the Cosmic Explorer. For the sources at a fixed distance, this corresponds to

approximately 25% improvement in SNR.

The Fig. 4 compares the broadband configuration of a zero detuned 40 km de-

tector optimized for CCSNe signals with the design of the Cosmic Explorer, both

configurations have a 15dB squeezing. We improve on the sensitivity in the frequency

range from 450 Hz to 1550 Hz at the cost of a loss in sensitivity from 10 Hz to 450 Hz.

This results in a 15% loss in range for BNS. However, it still provides higher sensi-

tivity for the post-merger signals based on the predicted frequencies of interest for

post-merger oscillations [66, 16, 123, 124]. The table 3 summarizes the parameters

and their corresponding ranges towards different gravitational-wave sources. One
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advantage offered by the supernovae optimized configuration is robustness. With-

out any squeezing, the supernovae optimized detector has a range extending to the

LMC, whereas the range of the phenomenological SN waveform with Cosmic Explorer

without squeezing is 32 kpc.

Next, we use the noise curves of aLIGO, Cosmic Explorer, Einstein Telescope

and Supernovae optimized detector configurations to compute the ranges for the 3D

waveforms As stated earlier, the 3D waveforms are representative of astrophysically

abundant stars which are not rapidly rotating and the corresponding gravitational

wave strain emitted is small. Figure 5 summarizes the ranges of different waveforms

based on their ZAMS mass. We see that the sensitivity of the third-generation of

gravitational-wave detectors to CCSNe is limited to sources within our galaxy. From

the event rates of CCSNe summarized in table 1, we find the corresponding event

rate of observation of gravitational waves from CCSNe (assuming a 100 % detector

duty-cycle) is approximately one in fifty years.

2.4.2 Detuning a large signal recycling cavity for narrow-band configura-

tions

A significant GW signal from CCSNe lies in the frequency band from 500 Hz to

1500 Hz. The power emitted at different frequencies may vary depending on the

astrophysical features of the star - mass, rotation speed, equation of state, etc [125,

126, 113, 80, 127, 128, 85].

In this section, we do not change the detector parameters’ such as the transitivity

or the length of the signal recycling cavity. This is because these parameters cannot

be changed once the detector design is laid out. However, one can detune the signal

recycling cavity to maximize sensitivity in a narrow band of frequencies [129, 130].

This response from detuning the signal recycling cavity arises from the two sidebands

resonances in quantum noise [116, 114]. We consider the detuning of the signal

recycling cavity at different frequencies.

We maintain the frequency dependent squeezing of 15 dB. We achieve 15 dB

squeezing in a detuned signal recycling cavity without losing the injected squeezing

by actively changing the squeezing angle in accordance with the amount of detuning.

Thus, detuning the signal recycling cavity along with actively changing the squeezing

angle can be used to switch from a broadband zero-detuned detector to a narrow band
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detector with greater sensitivity for some frequencies determined by the magnitude

of detuning. We perform another tier of optimization in which we actively vary the

amount of detuning and the squeezing angle. We limit the amount of detuning in the

range from −π/5 to π/5 and the squeezing phase is tuned in between −π to π. To

optimize the detector response at frequencies of 40 Hz, 100 Hz, 400 Hz and 1200 Hz,

we inject a sine-Gaussian at each frequency and then maximize the range for this

injected signal by varying only the detuning and squeezing angle for the supernovae

optimized detector.

We find that detuning the signal can improve the sensitivity of the detector in

narrow bins of frequency below 400 Hz. We do not achieve improvements in sensitiv-

ity at higher frequencies therefore, we do not improve the range for different models

by detuning the detector. There are no improvements in the optimal SNR values

for a source at a fixed distance. In summary, detuning the signal recycling cavity

is not useful for improving the Cosmic-Explorer-like detector’s sensitivity to CCSNe.

Instead, detuning the signal recycling cavity at higher frequency degrades the sensi-

tivity of the broadband supernovae-optimized detector. The corresponding results of

detuning the signal recycling cavity are summarized in Fig. 6.

2.4.3 Narrow-band Configurations tuned for Supernovae

The parameters of the broadband supernovae-optimized detector were computed in

section §2.4.1 with two constraints. We will in this section relax those constraints

and consider narrow-band detector configurations to maximize the range for CCSNe.

The phenomenological waveform we developed cannot be used for narrow-band op-

timization as the fit was performed to match the power of the 3D waveforms over a

broad frequency bandwidth. Therefore, we find narrow-band configurations using a

different technique.

The length of the signal recycling cavity can be changed to tune the resonant

frequency of arising from the coupling of the signal recycling cavity with the arms of

the interferometer [131, 116]. The bandwidth of the resonance at a frequency ωr is

given by

B =
cTsrm

4Lsrc

(2.4)

where Tsrm is the transmissivity of the signal recycling mirror and Lsrc is the length
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of the signal recycling cavity. We choose the length of the signal recycling cavity at

150m, 300m and 750m are such that the resonant frequency ωr is at 1000 Hz, 750 Hz

and 500 Hz respectively. The equation 2.4 is then inverted for bandwidth ranging

from 250 Hz to 1600 Hz and the corresponding values of the transmissivity of the

signal recycling mirror are calculated.

We find that a narrow-bandwidth of 250 Hz significantly affects the sensitivity

of the detector towards CCSNe. This is expected as we have stated earlier that the

frequency spectrum of gravitational wave emission from CCSNe is broadband. The

range of improvements achieved by narrow-band detectors at 500 Hz, 750 Hz and

1000 Hz with a bandwidth of 250 Hz are also varying from waveform to waveform and

therefore is not model independent 7. When the bandwidth is increased to 1600 Hz

the range improves for the 750 Hz narrow-band detector for some of the waveforms as

shown in Fig. 7. The Lsrc = 300m and Tsrm = 0.0064 give this narrow-band detector

configuration. The mean improvement in optimal SNR with the 750 Hz narrow-band

and 1600 Hz bandwidth detector is approximately 10 % with respect to the supernovae

optimized broadband detector. However, we caution that the improvement from

narrow banding is not the same across all the 3D numerical waveforms. Moreover, this

comes at the cost of significant loss of sensitivity below 400 Hz and above 1100 Hz. The

range for BNS drops to 3 Gpc (z=0.9) compared to 3.7 Gpc (z=1.1) for supernovae-

optimized Cosmic Explorer and 4.3 Gpc (z=1.4) with respect to the Cosmic Explorer.

2.5 Challenges in building a CCSNe Detector to achieve Higher

Event rates

In section §2.4.1, we find an optimized third-generation broadband gravitational wave

detector for a CCSNe signal has the range only to a few hundred kilo-parsec for the

3D numerical waveforms of CCSNe.

We now address the question of what are the strain requirements for a gravitational-

wave detector to be able to detect CCSNe with an event rate of 0.5 per year. From

the table 1, we see that this “Hypothetical CCSNe detector” must have a range of

O(10 Mpc) for CCSNe to achieve an event rate of 0.5 per year. Moreover, for a

single detector, we need a signal to noise ratio (SNR) of 8 to define the detection of a

signal against the background. Using the two constraints above we can calculate the
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minimum strain sensitivity required to achieve an event rate of 0.5 per year for the

waveforms from 3D numerical simulations. The optimal distance for the numerical

waveforms can be calculated by equation 2.1. The limits over the integral are defined

by flow and fhigh. To find the strain requirements for the different waveforms we

assume a flat PSD over a broadband range of frequency ranging from flow and fhigh.

We consider two scenarios which are summarized in the figures 8. First, we vary the

upper limit of the frequency integrated – fHigh with the lower limit of integration is

held constant at 10 Hz. The second scenario where the upper limit of integration is

constant at 2 kHz and we vary the lower frequency limit flow. We find the minimum

strain sensitivity required for the gravitational-wave detector to detect the CCSNe

with an event rate of 0.5 per year is 3×10−27 Hz−1/2 over a frequency range of 100 Hz

to 1500 Hz.

Thus, we need a detector with sensitivity approximately a hundred times better

than the Cosmic Explorer design to detect CCSNe with an event rate of 0.5 per

year. In the next section §2.5, we will summarize the noise limitations of the third

generation detectors and consider design parameters for gravitational-wave detectors

beyond the scope of the third-generation to determine the technological hurdles to

overcome in order to ever observe gravitational signals from CCSNe more frequently.

It is evident from Fig. 3 that the sensitivity is limited by the quantum noise

in the broad range of frequencies. The standard quantum noise limit is dependent

primarily on the length of the arm cavities, the test masses and the power of the

input laser [132]. The length of the arm cavities cannot be increased any further as

the fFSR would significantly affect the performance of the detector at the frequencies

of interest. As a result, we set the length of the Hypothetical detectors to 40 kms.

Increasing the power of the input laser is the one possibility to reduce quantum noise.

We assume an input laser power of 500W. At high frequencies, the quantum noise in

the detector manifests itself as shot noise and is limited by photon number arriving

at the photo-detector. To see the best we can achieve, we set the photo-detection

efficiency of the photo-detector in Hypothetical to 1 (from 0.96 for CE design). For

the same reason, we also set the optical and squeezing injection losses in the detector

to zero.

The coating thermal noise and the residual gas noise are the next limiting factor

in the system. We reduce the substrate absorption by an order of magnitude from
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CE design. Lastly, as the frequency range of interest is from 100Hz we can sacrifice

the sensitivity at lower frequencies. Thus, we can reduce the masses of the mirrors

as we are interested in improving the shot noise characteristics of the detector, at

the cost of higher radiation pressure noise. In this setup we optimize over the length

of the signal recycling cavity Lsrc, the transmissivity of the signal recycling mirror

Tsrm, the transmissivity of the input test mass Titm and the scale mass parameter to

change the masses of the mirror. The optimization over these parameters is aimed at

maximizing the range for the representative supernovae waveform, we will reference

this optimized detector as Hypothetical-1.

The quantum noise limit in a dual-recycled Fabry-Perot interferometer also de-

pends on the gain of the power recycling cavity [116, 114]. We will in another inde-

pendent optimization also tune the transmissivity of the power recycling mirror Tprm

along with the above parameters. We define this supernovae-optimized detector as

Hypothetical-2. The table 3 summarizes the optimal parameters of different detectors.

Fig. 9 shows the noise budget of the Supernovae optimized Hypothetical detectors.

We see that the residual is the limiting source of the noise. Removing the residual

gas noise improves the noise floor of the detector by a factor of two in the wide range

of frequencies of interest, see Fig. 9. After removing the residual gas noise, we are

limited in sensitivity by quantum noise over the broad range of frequencies.

The strain sensitivity achieved after removing the residual gas noise is 5×10−26Hz−1/2.

The improvements in photo-detection efficiency, the input laser power, substrate coat-

ings and minimization of optical losses are not sufficient to achieve a strain sensitivity

of the order of 3× 10−27 Hz−1/2 required to detect CCSNe with an event rate of one

in two years (see section §2.5).
Lastly, we revisit the numerical waveforms of core-collapse supernovae to see the

ranges achieved by the Hypothetical supernovae-optimized detector designs. We find

for the 3D waveforms from numerical simulations have a mean distance of 800 kpc,

see Fig. 10. Thus, with beyond the third generation detector designs, we would be

able to observe core-collapse supernovae from Andromeda. The corresponding event

rate is of the order of one in twenty years. The event rate calculation assumes a 100%

duty cycle of the detector. The observation rate of gravitational waves from CCSNe

is low even for gravitational-wave detectors beyond the scope of the third-generation

detectors.
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Figure 3: The figure summarizes the noise budget of the supernovae-optimized de-

tector for a gravitational-wave signal with a 45 degrees tilt with respect to the arm

cavities [1]. Over the broad range of frequencies of interest, 500 Hz to 1500 Hz, the

sensitivity is limited by quantum noise. The dip in sensitivity at 4 kHz corresponds

to the pole of the signal recycling cavity.
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Figure 4: The figure summarizes the sky-averaged and orientation-averaged power

spectral density of Cosmic Explorer and supernovae-tuned detector [2]. We see that

the Cosmic Explorer has a better noise floor from 10 Hz to 450 Hz. The supernovae-

tuned detector has improved sensitivity over the range from 450 Hz to 1600 Hz.

The numerical waveforms of CCSNe suggest that a significant amount of power is

emitted in this range. The optimization for CCSNe improves the range from 70 kpc

to 95 kpc for CCSNe. However, this range improvement does not add any new

galaxies. Therefore, the event rate does not change with the improved sensitivity and

we are limited to sources within our galaxy.
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Figure 5: The figure summarizes the distance of the 3D waveforms for different sec-

ond and third-generation gravitational wave detectors. We see for second-generation

advanced LIGO detector that the optimal distances for the 3D numerical waveforms

are limited to 10kpc. The optimal distance is so small enough that we are not sen-

sitive to all the galactic supernovae. All the third-generation detectors have optimal

distance such that each detector is sensitive enough to detect gravitational waves

from galactic CCSNe. However, as evident from the plot above, for a source at a

fixed distance, the ET will have the lower SNR as compared to Cosmic Explorer.

The supernovae-optimized detector provides approximately a 25% improvement in

the SNR as compared to Cosmic Explorer.
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Figure 6: We explore the possibility of detuning the signal recycling cavity to improve

the sensitivity towards CCSNe. We find that detuning can be used to improve sen-

sitivity in narrow bins of frequency below 400 Hz. This could, therefore, be used to

study the ring-down modes of binary black-holes systems in collaboration with eLISA

[3]. However, for improvements to the range of CCSNe, this technique isn’t useful.
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Figure 7: The figure summarizes the optimal distance of the different 3D waveforms

for narrow-band detectors at frequencies 500 Hz, 750 Hz and 1000 Hz. The hollow

circles denote the narrow-band detectors with a bandwidth of 250 Hz while the filled

circles denote the bandwidth of 1600 Hz. The optimal distances from the broad-

band supernovae-optimized detector are represented as stars. We see tighter narrow-

banding with a bandwidth of 250 Hz degrades the performance of the detector. The

wider bandwidth of 1600 Hz around the 750 Hz narrow-band detector improves the

optimal distances for most of the numerical waveforms.
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Figure 8: Considering toy detector with a flat PSD of 3×10−27 Hz−1/2 in range 10 Hz

to fHigh (above) and flow to 2 kHz (below), the figure summarizes the range with

the corresponding sensitivity and numerical waveform CCSNe corresponding to their

ZAMS mass. We see a broadband detector with a strain sensitivity of 3×10−27 Hz−1/2

from 200 Hz to 1.5 kHz is desired to achieve the ranges that would correspond to an

observed event rate of one per year for gravitational-waves from CCSNe.



33

Figure 9: The figure above summarizes the noise budgets for the Hypothetical detector

configurations. We see from the figure on the top that the detector’s sensitivity is

limited by residual gas noise. Therefore, we reduce the residual gas pressure by

a factor of ten from CE design. The plot in the middle and bottom plots show

optimization results without changing the transmittance of the power recycling cavity

and with active changes in the transmittance of the power recycling cavity. Thereby,

changing the gain of the power recycling cavity and the finesse of the detector. We

will refer to the two detector configurations as Hypothetical-1 and Hypothetical-2

respectively.
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Figure 10: The plot shows with extreme technological upgrades to the third-

generation detectors discussed in section §2.5, we optimal distances for the CCSNe

is limited to 1Mpc. The event rate for the observation of gravitational waves from

CCSNe is still low but improves to one in twenty years.
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2.6 Conclusion

We have shown that it is possible to tune a Cosmic Explorer detector to increase the

range to CCSNe by approximately 25%. This range improvement does not translate

to an increase in detection rate due to the inhomogeneity of the local universe. There-

fore, even optimized third-generation gravitational-wave detectors will be limited to

CCSNe sources within our galaxy and the Magellanic Clouds. Assuming the detec-

tors have a duty-cycle of 100% the corresponding event rate of CCSNe is one in fifty

years. Incorporating the detector downtime and duty-cycle would further decrease

the event rate of observed gravitational-wave signals from CCSNe.

However, if such an event were to occur, the broadband supernovae-optimized

detector would improve the SNR by of sources by 25%. This improvement would

facilitate help understand the properties of the progenitor star in the rare event

of CCSNe observation. The supernovae-optimized detector has a slightly reduced

sensitivity to the inspiral of neutron stars, but the high-frequency improvements would

benefit the study of post-merger signatures and the late-time behavior of the inspiral.

We find that a gravitational-wave detector would require a strain sensitivity of the

order of 3×10−27 Hz−1/2, over a frequency range from 100 Hz to 1500 Hz in order to

guarantee a high rate of CCSNe detection. At this strain sensitivity, as per the current

estimates of the BNS background, the stochastic background from BNS mergers would

contribute as the fundamental sources of noise [133]. This along with technological

challenges discussed in section §2.5 poses significant hurdles in achieving an event

rate of one per year for the observation of gravitational-waves from CCSNe based

on the present models and knowledge of gravitational-wave emission from CCSNe.

The technological requirements for these upgrades are beyond the requirements for

the third-generation detector. With drastic improvements of an input laser power of

500 W and a photo-detection efficiency of 1, an order of magnitude improvement in the

residual gas noise and coating noise from the Cosmic Explorer design, and assuming

minimal optical losses in Hypothetical detectors. We find that after optimizing these

detector configurations to maximize for the supernovae range the range extends to

Andromeda for some of the CCSNe numerical waveforms. The event rate achieved

with such a hypothetical detector is one in twenty years.
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Chapter 3

Measuring rotation rate and

equation of state of the

protoneutron star

3.1 Introduction

When the core of a massive star exceeds its Chandrasekhar mass, it begins to undergo

gravitational collapse [134, 33, 34, 35]. The core-collapse and subsequent bounce can

power a supernovae explosion that radiates light, neutrinos, and gravitational waves

(see e.g. Refs. [37, 38, 39, 40] and references therein). Gravitational waves generated

during the supernovae travel unhindered through the stellar envelope, carrying infor-

mation about the structure and dynamics of the collapsing star. Advanced LIGO will

be able to detect core-collapse supernovae out to 50 kpc if the cores are rapidly rotat-

ing and the explosion is magnetorotationally driven, and to 5 kpc if the explosion is

neutrino driven [44, 45]. Cosmic Explorer, a proposed third-generation detector will

be able to observe neutrino driven explosion signals out to a few hundred kiloparsecs

[46], and the magnetorotationally driven explosion signals out to 2 Mpc. The esti-

mated event rate for core-collapse supernovae in the Milky Way is 1-3 per century

[47, 48, 49, 50]. While the probability of observing a signal within the reach of these

detectors is low, if the information about the supernova can be extracted from the

gravitational waves, it would shed new light on the physical processes of core-collapse.

Significant advances have been made over the last two decades in the simulation
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of core-collapse supernovae (see e.g. Refs. [135, 136] and references therein). Abdika-

malov et al. [52] performed 132 simulations in which they studied the dependence of

the gravitational-wave signal at the core bounce and postbounce on the rotational

properties of the progenitor core. They quantify rotation of the core by the ratio of

the rotational kinetic energy and the gravitational potential energy β = T/|W | and
find that the gravitational-wave strain amplitude at the bounce primarily depends

on β, while the degree of differential rotation only becomes relevant for cores with

β ≳ 0.08. They use two equations of state (LS220 and HShen) and explore the dif-

ference between the waveforms associated with the two equations of state. Richers

et al. [51] used the progenitor star identical to Ref. [52] in their simulations. They

investigated the dependence of the gravitational-wave signal on the nuclear equation

of state. They performed a total of 1764 simulations exploring 18 equations of state

and 98 rotation profiles (varying β and differential rotation). They confirm that the

gravitational-wave signal at the bounce is most sensitive to β, while the postbounce

oscillations depends on the equation of state, which manifests itself through the char-

acteristic frequency of the oscillations, fpeak.

Abdikamalov et al. attempted to determine if gravitational-wave observations

could be used to extract physical information about the core rotation. They con-

structed a template bank of waveforms spanning the range of rotation rates in their

simulations, projected signals against this bank, and found that a signal observed

at 10 kpc by Advanced LIGO could be used to constrain β to within 20% when

β ≳ 0.05. Heng introduced the idea of using principal component analysis to model

a set of supernovae waveforms, rather than using the waveforms themselves as a tem-

plate bank [137]. Previous studies have used principal component analysis to infer

the core-collapse explosion mechanism [138, 139, 140, 141].

Edwards et al. [142] used a principal component basis of the Abdikamalov et al.

waveform catalog and Bayesian parameter estimation [143] to determine if the core

rotation β could be extracted from the observation of a signal. Using a linear model,

they fit the posterior means of the principal component coefficients to the known

values of the physical parameter. Then they sample from the posterior predictive

t-distribution to make probabilistic statements about β estimation. They test their

method on signals observed in Advanced LIGO with a signal-to-noise ratio of 20

and are able to recover signals with β = 0.02 with β = 0.05 ± 0.03, improving the
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accuracy of measurement to β = 0.05± 0.04 for signals with β = 0.05, with average

90% credible interval widths of 0.06.

In this paper, we use the waveform catalog of Richers et al. to determine how accu-

rately Advanced LIGO and the proposed third-generation detector Cosmic Explorer

could extract information about the nuclear equation of state and the progenitor

core rotation rate from observations of core-collapse supernovae. Since the progen-

itor cores of supernovae are expected to be rotating relatively slowly (core rotation

periods ≳ 30 s) [56, 55, 57], we focus on the waveforms in the Richers et al. set with

0 ≤ β < 0.07. We use a total of 659 waveforms spanning 13 nuclear equations of state.

We use principal component analysis to construct a model that captures the features

of the Richers et al. catalog and construct a map between the parameters measured

by the principal component model and the physical parameters of the waveform fpeak

and β. We use Monte Carlo methods to perform Bayesian parameter estimation to

measure the posterior probability distribution of the principal component model pa-

rameters and the constructed map to transform these into the posterior probability

distributions of the physical parameters.

We find that for sources with β ≥ 0.02 at a distance of 8 kpc, β can be estimated

with a 90% credible interval of 0.004 for Advanced LIGO, and 0.0008 for Cosmic

Explorer detectors. The precision of measurement for signal sources at 48.5 kpc

observed in Cosmic Explorer deteriorates to 90% credible interval of 0.003. We can

constrain fpeak for sources within the Milky Way galaxy to with 90% credible interval

of 5 Hz for detections in the third-generation detectors, if the β for the signal is more

than 0.02, thus allowing us to constrain the nuclear equation of state.

This paper is organized as follows: In Sec. 3.2 we describe the the construction

of a principal component basis set using the Richers et al. waveforms from which we

withhold a random sample of 10% to test our method. In Sec. 3.3 we describe the

construction of the map between the parameters of the principal component model

and the physical waveform. In Sec. 3.4 we describe our Bayesian parameter estimation

methods, and in Sec. 3.5 we present the results of the methods using simulated signals

in Advanced LIGO and Cosmic Explorer. In Sec 3.6 we summarize our findings and

discuss directions for future work.
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3.2 Principal Component Analysis

Principal component analysis extracts the dominant features from a set of waveforms

as linearly independent principal components [137]. In this study, we use singular

value decomposition to compute the principal components. A set of discretely and

evenly sampled-in-time waveforms can be written as the columns of a matrix D which

can be written as

D = UΣV T , (3.1)

where the matrices U and V contain the orthonormal eigenvectors of DDT and DTD,

respectively, and the diagonal matrix Σ contains the eigenvalues of DDT . The or-

thonormal vectors in the matrix U are the principal components, and are sorted in

decreasing order of the size of the square root of the eigenvalues. Hence, the first

principal component describes the most dominant feature in the set of waveforms. If

we have N waveforms in the catalog D, then U contains N principal components.

By constructing a principal component decomposition of the catalog, we attempt to

construct a set of basis vectors that captures the features of signals that lie in the

space spanned by the waveform catalog, without requiring modelling every possible

core-collapse in the catalog space. The principal component analysis provides us with

a semianalytic model for core-collapse waveforms, given by

H ≈
N∑
j=1

αjUj, (3.2)

where the αj are the coefficients of the signal H expressed in terms of the basis

vectors Uj. We can use Bayesian parameter estimation to construct posterior proba-

bility densities on the model parameters αj and hence the gravitational-wave signal

H. However, there are two challenges to directly implementing this approach. First,

the number of waveforms used to construct the principal component analysis N must

be large enough to accurately explore the features in the catalog (typically of order

102–103 waveforms), but this N may be significantly larger than the number of basis

vectors needed to capture the essential features of the waveforms. Second, the mea-

sured αj are parameters of the basis vectors and are not directly related to physical

parameters of the waveforms. As suggested in previous works, we address these chal-

lenges in two ways. Since the principal component analysis tells us which basis vectors
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capture the dominant features of the catalog, we can construct an approximation to

each waveform h as a linear combination of a subset of the principal components

h =
k∑

j=1

αjUj. (3.3)

where k < N . Here, we use two approaches to choose the value of k; we study the

overlap between the original waveforms in the catalog and approximations to these

waveforms using a subset of basis vectors. If the overlap is unity, then the approximate

decomposition exactly reproduces the original waveforms. We use the overlap method

to make an initial choice of the number of basis vectors k and then perform parameter

estimation to confirm that the choice is sufficient; that is statistical error dominates

over the systematic error that arises from choosing k < N . Finally, we determine

which of the αi are needed to extract the physical parameters β and fpeak and use

the catalog to construct the maps β(αi) and fpeak(αi).

To construct the basis set, we use the axisymmetric general-relativistic hydrody-

namic simulations from Richers et al. that span 18 different equations of state and

98 rotation profiles [51]. They use a 12M⊙ nonrotating progenitor (model s12WH07

from [144]) in the CoCoNuT code [145, 146] once for each of the 18 equations of state.

Richers et al. imposed a rotation profile on the progenitor according to the cylindrical

rotation law [147]:

Ω (r) = Ω0

[
1 +

( r
A

)2
]−1

, (3.4)

where A (measured in km) depicts the measure of degree of differential rotation, Ω0

is the maximum initial rotation rate, and r is the distance from the rotational axis

in km.

We exclude the prompt convection part of the waveforms when building the prin-

cipal component basis set. This part of the signal is highly stochastic in nature

making it challenging to model with principal component analysis. However, the

prompt convection phase is retained in the waveforms that are used as signals to test

our method. Richers et al. suggest that information on the progenitor core rotation

and the equation of state can be extracted from the core bounce and the postbounce

oscillations of the protoneutron star. We therefore use the criteria proposed by Rich-

ers et al. to truncate the waveform 6 ms after the third zero-crossing of the strain

waveform after the bounce. We resample the waveforms to 16 384 Hz and ensure that
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the length of all waveforms is 1 s by zero padding them with the core bounce aligned

at t = 0.5 s for all the waveforms. In our analysis, we only use the plus polarization

of the waveforms.

The general morphology of the waveforms can be seen in Fig. 11. Prior to the

core bounce, the strain increases slowly. It decreases rapidly through the bounce to a

local minimum. The depth of the local minimum increases with the rotation rate of

the inner core at the time of the bounce. This phase is followed by the postbounce

ringdown oscillations of the newly formed protoneutron star, which lasts ∼ 6 ms.

The characteristic frequency of these oscillations depends on the equation of state of

the inner core. The top panel of Fig. 11 shows the waveforms for SFHx equation of

state and the rotation rates of the inner core between β = 0.02 and 0.06. We can see

that the depth of the first local minimum immediately after the core bounce increases

with the rotation rate. However, the postbounce oscillations have almost the same

frequency irrespective of the rotation rate. The bottom panel shows us the waveforms

for Ω = 2.50 rad/sec and the precollapse differential rotation rate A = 467 km for

various equations of state listed in Table 4. We can note that the depth of the first

local minimum is nearly the same for waveforms with different equation of state since

the rotation rate is the same while the postbounce oscillation frequency is different

for different equations of state.

In order to focus on slowly rotating progenitor cores, we restrict the catalog to the

set of simulations with β < 0.07. We also exclude simulations whose equation of state

is ruled out by observations of GW170817 [27, 148, 149], giving us 659 waveforms

in total. We select 60 waveforms at random from this set and reserve them for

testing our methods; these test signals are not included in the construction of either

the principal component decomposition or the map between principal component

parameters and physical parameters. We construct a principal component basis set

from the remaining 599 waveforms. We do not consider the affects of the pre-collapse

differential core rotation since Refs. [52] and [51] show that the waveforms for slowly

rotating cores are only very weakly dependent on the differential rotation profile.

Therefore we consider parameterization of the catalog only by β, regardless of the

differential rotation. Figure 12 shows the values of β and fpeak of the simulations used

to construct the principal component analysis and map (crosses) and and the signals

reserved to test our method (dots).
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Figure 13 shows the reconstruction of each of the 599 waveforms using the prin-

cipal component basis set. The horizontal axis represents the number of principal

components k used to generate the waveform by Eq. 3.3 and the vertical axis rep-

resents the overlap between the original catalog waveform H and the approximate

reconstructed waveform h for each value of k, where the overlap between is defined

as [150]:

⟨H|h⟩ = 4R
∫ ∞

0

h̃(f)H̃(f)

Sn(f)
dx, (3.5)

where H̃(f) and h̃(f) are the Fourier transforms of the waveforms and Sn(f) is

the power spectral density of the Cosmic Explorer (CE1) detector noise. This figure

shows that by using the first 50 of the 599 principal components, we are able to recon-

struct the all 599 original waveforms with more than 90% overlap. However, we find

that using 50 basis vectors in the Bayesian parameter estimation is computationally

expensive and note that if only 15 basis vectors are used, 96% of the waveforms are

reconstructed with an overlap greater than 90%. In Fig. 12 the catalog waveforms for

which 15 basis vectors are sufficient to reconstruct the overlap to ≥ 90% are shown

with blue crosses and the catalog waveforms that fail this criteria are shown with

green crosses. We see that all the waveforms that require more than fifteen principal

components to reproduce the waveform with at least 90% overlap lie in the region of

slowest core rotation β. These are the waveforms for which it is most challenging to

extract β and fpeak [51]. However, we still include these waveforms in our analysis.

Previous studies have used principal component analysis to construct a gravitational-

waveform model for rotating core-collapse supernovae that is used for Bayesian recon-

struction of the signal observed in the detector. Röver et al. [143] also used overlaps

between the original waveforms and the waveforms generated through a subset of

principal component basis to determine the number of basis vectors to be used in

their waveform model. They used 128 waveform simulations from Dimmelmeier et al.

[53] to construct their basis set and used 10 basis vectors. Edwards et al. [142] used

a constrained optimization approach to select the number of basis vectors in their

study. They used 132 waveforms in the Abdikamalov et al. catalog [52] to construct

their basis set and used the first 14 of the basis vectors in their model.
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3.3 Mapping to physical parameters

Having constructed a principal component model and determined that fifteen basis

vectors are adequate to capture the essential features of the catalog space, we con-

struct a map between the unphysical parameters of our model αj and the physical

parameters of interest β and fpeak. The ratio of the rotational kinetic energy to the

gravitational potential energy of the inner core β, is a robust way of quantifying the

rotation rate of the inner core [52, 51]. β is a time dependent quantity that evolves

during the core-collapse event. In our work we quantify the rotation rate of the core

of the progenitor with β at the time of the core bounce.

Fig. 14 shows the values of the coefficients of the first four principal components

αi (i = 1, 2, 3, 4) as a function of the rotation rate β for the waveforms in the catalog.

We see that α1 is the parameter most strongly correlated with β, exhibiting a roughly

linear dependence across the catalog space. The increase in the spread of points in α1

as β increases is caused by waveforms with similar values of β but different equations

of state; the change in equation of state weakly affects the map between the two

parameters. The correlation between the other three model parameters and β is not

as obvious. We use the data shown in Fig. 14 to construct a map β(α1, . . . , αk), where

k ≤ 8.

To construct the map using just the first model parameter β(α1), we use the least

square fit for a straight line, obtaining the slope 0.0326 and the intercept 0.0007.

If we want to incorporate more than one model parameters to construct the map,

we use interpolation to find β(A) for an arbitrary point A = (α1, . . . , αn) with 2 ≤
n ≤ 8 using the known values of β and (α1, . . . , αn). This interpolation is performed

using the linear method of scipy.interpolate.griddata which finds the convex

hull of A, which consists of the nearest n + 1 neighbours of A that contain A:

A1, . . . ,An+1, for which the β values are known. A can be written as a weighted

average of A1, . . . ,An+1:

A =
n+1∑
i=1

γiAi, (3.6)

where γi > 0 and
∑
γi = 1. The map for an arbitrary point is then generated using
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the linear interpolation with the γis as the weights in the interpolation:

β (A) ≈
n+1∑
i=1

γiβ (Ai) . (3.7)

The interpolation fails if A does not lie within a convex hull of points with known

values of β. Finding the convex hull of A becomes increasingly computationally ex-

pensive as the number of model parameters (and hence, the number of dimensions)

used in the interpolation increases. To determine how many model parameters should

be used in the map to construct a robust and sufficiently accurate map, we perform

the following test. We first note that since our waveform catalog is large, the omis-

sion of one waveform from the construction of the principal component basis does

not significantly change the principal component decomposition. Given this, we can

exclude a waveform from the principal component analysis, construct the interpola-

tion function using the remaining waveforms, and use this interpolating function to

estimate the known value of β for the waveform excluded from our algorithm. We

repeat this procedure for each of the waveforms in the catalog used to construct the

principal component basis and the interpolation function. Note that we do not use

the 10% of the catalog reserved for astrophysical testing here, as we reserve those

waveforms for use until our method is fully tuned.

The outcome of this test is shown in Fig. 15. The horizontal axis shows the number

of model parameters used to construct the map β(α1, . . . , αk) for k ≤ 8. The median

error in reconstructing β from each of these maps for the waveforms in the catalog is

plotted on the vertical axis. The failure rate of interpolation corresponding to each

map is also shown. We see that as the number of model parameters used to construct

the map increases, the interpolation error decreases. Maps that use interpolation

with two or more model parameters have significantly less error as compared to the

map β(α1) constructed using the least square fit. Hence we do not use the map β(α1)

in our analysis. However, with increasing number of model parameters, the failure

rate for interpolation also increases. The interpolation fails for more than 80% of the

cases when we use eight model parameters. The failure rate of the map constructed

by using nine model parameters or more is even higher and we do not consider that in

our analysis. We also note that the error in reconstruction of β using the interpolation

increases as β increases. This can be attributed to the fact that that the volume of

parameter space sampled is sparser as β increases.
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We use the maps β(α1, ..., αk) with k ≤ 8 to translate the posteriors obtained

for the model parameters from the Bayesian inference of simulated signals to the

posteriors on β. We constrain the samples to be in the convex hull of the first

two model parameters, as shown in Fig. 16 in order to successfully interpolate using

the first three parameters. We first use the map constructed by using eight model

parameters, which would result in some samples in the posteriors getting rejected

because of the failure in interpolation. We then use the map formed by seven model

parameters for the samples for which the interpolation failed previously, and repeat

the procedure with maps constructed using fewer model parameters for the samples

for which interpolation fails. Eventually, all the remaining samples are successfully

interpolated by using the map β(α1, α2, α3). Constraining the samples within the

convex hull using four parameters or higher is computationally expensive. A much

more robust map can be constructed by using machine learning and by populating

the parameter space with more simulations. We leave the construction and testing of

that map for future work.

The postbounce oscillation frequency fpeak is the l = 2 f−mode peak frequency of

the protoneutron star after the core bounce [151, 152]. Richers et al. observed that

for simulations with 0.02 ≤ β ≤ 0.06, fpeak for a given nuclear equation of state is

independent of the value of β (see Fig. 12), with the softer equations of state having

a higher postbounce oscillation frequency. We use this relation between fpeak and

the equation of state, shown in Table 4, to infer the equation of state dependence on

fpeak. To measure fpeak, in our analysis, we the method of Richers et al. We first

isolate the postbounce oscillation from the earlier bounce and the later convection

phases of the waveform by taking the Fourier transform of the waveform up to the end

of the bounce phase tbe (taken to be the third zero crossing after the core bounce)

and, separately, the Fourier transform of the waveform up to tbe + 6 ms, in order

to include a few cycles of the postbounce oscillations and isolate them from the

convective phase. The Fourier transform of the waveform up to the bounce phase

is subtracted from the Fourier transform that includes postbounce oscillations and

the largest spectral feature within the window 600 - 1075 Hz is fpeak. As found by

Richers et al., for slowly rotating cores with β ≤ 0.02 this method to extract fpeak

is unreliable since the protoneutron star oscillations are only weakly excited. For

β ≥ 0.06, centrifugal forces start affecting the postbounce oscillations and the fpeak
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Equation fpeak fpeak

of State Mean value Standard deviation

[Hz] [Hz]

SFHo 772.1 5.6

SFHx 768.9 6.2

LS180 728.4 6.4

HSIUF 724.2 8.4

LS220 723.7 6.4

GShenFSU2.1 723.2 11.1

GShenFSU1.7 721.1 10.3

LS375 709.1 8.1

HSTMA 704.1 5.7

HSFSG 702.1 7.9

HSDD2 701.6 8.3

BHBLP 699.7 8.6

BHBL 699.7 8.2

Table 4: The mean and standard deviation of the fpeak values of the waveforms used

to form the principal component basis belonging to a particular equation of state with

0.02 ≤ β ≤ 0.06.



48

value depends on differential rotation in addition to the equation of state.

In our analysis, we measure fpeak of a signal observed in a detector by applying the

method of Richers et al. to the waveform reconstructed by our Bayesian parameter

estimation. For each sample in our posterior probability distribution, we construct

the approximate signal given by Eq. 3.3 using all 15 measured principal component

parameters. We then determine the postbounce oscillation frequency using the the

approximate posterior waveform. Evaluating fpeak for all the samples gives a posterior

probability distribution for fpeak. Comparing the posterior with Table 4 enables us

to rule out the equations of state inconsistent with the signal waveform. In this

way gravitational waves from core-collapse provide us a different regime than binary

neutron star mergers to study the nuclear equation of state.

3.4 Parameter Estimation

By combining the methods described above with Bayesian parameter estimation [153,

154] we can estimate the posterior probability distributions for the physical parame-

ters of astrophysical signals. Our Bayesian parameter estimation samples the proba-

bility of the modeled parameter values given a model and set of detectors’ data using

Markov Chain Monte Carlo methods. We calculate the posterior probability den-

sity function, p(ϑ⃗|d⃗(t), H), for the set of parameters ϑ⃗ for the gravitational-waveform

model, H, given the gravitational-wave data from the detectors d⃗(t)

p(ϑ⃗|d⃗(t), H) =
p(d⃗(t)|ϑ⃗, H)p(ϑ⃗|H)

p(d⃗(t)|H)
, (3.8)

where p(ϑ⃗|H) is the prior—the assumed knowledge of the distributions for the pa-

rameters ϑ⃗ describing the signal, before considering the data. p(d⃗(t)|ϑ⃗, H) is the

likelihood—the probability of obtaining the data d⃗(t) given the model H with param-

eters ϑ⃗. We use the Gaussian likelihood in this analysis, which is given by [155]:

p(d⃗(t)|ϑ⃗, H) = exp

[
−1

2

N∑
i=1

⟨ñi(f)|ñi(f)⟩

]

= exp

[
−1

2

N∑
i=1

⟨d̃i(f)− s̃(f, ϑ)|d̃i(f)− s̃(f, ϑ)⟩

]
(3.9)
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where N is the number of detectors (in our case, N = 1), and d̃i(f) and ñi(f) are the

Fourier transforms of the data and the noise in the detector. We sample the posterior

probability distribution using stochastic sampling methods. Our choice of sampler

in PyCBC Inference [156] is guided by the fact that the default parallel tempered

MCMC sampler emcee pt [157, 158, 159] can experience problems converging for

signals with signal-to-noise ratios greater than 100. To address this, we use the

dynamic nested sampling package Dynesty [160, 161, 162] which provides posterior

probability distributions for all the signals explored here. For signals with very high

signal-to-noise ratio, the detector noise becomes negligible and so it is possible to

obtain a point estimate of the signal parameters by directly computing the inner

product between the signal and the basis vectors. By performing this spot-check for

the high signal-to-noise ratio signals, we find that these point estimates agree with

the posteriors obtained by the Dynesty sampler.

In our analysis, we assume that any gravitational-wave signal from a core-collapse

supernova will be accompanied by a neutrino signal detected by neutrino observato-

ries such as IceCube [163], Super-Kamiokande [164] or DUNE [165]. The neutrino

observations can estimate the time of the core bounce to within 3−4 ms [166, 38, 167].

Our analysis only considers the core bounce and the next 5−7 ms, and we use assume

that information from the neutrino observations can provide a narrow prior of 8 ms

for the time of the bounce. We also assume that the distance and sky location to the

source are known and we do not include them in the parameter estimation.

We use PyCBC Inference [156] to obtain posteriors for the coefficients of the first

fifteen principal components of the waveform catalog. We use uniform priors for all

the fifteen coefficients as shown in Table 5, in addition to the constraint that the

samples are restricted with the convex hull formed by the point cloud of the first

three model parameters for the waveforms in the catalog. Using the map discussed

in section 3.3 and the methods to extract fpeak values, we translate the posteriors on

the coefficients to posteriors on β and fpeak.

3.5 Results

We test our method using the 60 signal waveforms reserved from above. Each wave-

form, consisting of the core-collapse, postbounce oscillation, and prompt convection
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Parameter Lower bound on prior Upper bound on prior

α1 0.0 10.5

α2 -5.0 3.55

α3 -2.0 2.0

α4 -1.5 2.0

α5 -1.0 1.75

α6 -0.85 1.05

α7 -0.75 1.5

α8 -0.75 0.75

α9 -0.75 0.75

α10 -0.75 0.75

α11 -0.75 0.75

α12 -0.75 0.75

α13 -0.75 0.75

α14 -0.75 0.75

α15 -0.75 0.75

tbounce(GPS time) 1126259469.517 1126259469.525

Table 5: Upper and lower bounds on the uniform priors used for the model parameters

αi and tbounce in Bayesian parameter estimation. The values for αi were chosen based

on the range of values obtained from the construction of principal component basis

set. tbounce has a uniform prior width of 8ms. All signals are aligned such that the

bounce is at tGPS = 1126259469.5 + 0.02125 where 0.02125 is the light travel time

between the center of the Earth and the detectors. Note that an additional constraint

on the priors is to restrict the samples with the convex hull formed by the first three

model parameters of the waveforms in the catalog (see Sec. 3.3).
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phases, is used to create a simulated observation by adding it to Gaussian noise col-

ored to the strain sensitivity of the Advanced LIGO detectors and the third-generation

detectors: Cosmic Explorer 1 (CE1), and Cosmic Explorer 2 (CE2). Cosmic Explorer

is the proposed third generation detector which is planned to begin observing in 2030s

[168]. The first stage of the observatory, Cosmic Explorer 1, is the scaling up of the

Advanced LIGO technologies to an interferometer with 40 km arm length. The sec-

ond stage of the observatory, Cosmic Explorer 2, will be an upgrade on the core optics

of Cosmic Explorer 1 by using cryogenic technologies and new mirror substrates. The

predicted noise power spectral densities of the three detectors used in this study are

shown in Fig. 17. We place the sources at distances corresponding to the center of the

Milky Way galaxy (8 kpc), far edge of the Milky Way from the Earth (23 kpc), the

Large Magellanic Cloud (48.5 kpc), and out to 242 kpc to capture the dwarf satellite

galaxies of the Milky Way in the local group. In addition, we place the sources at

the distances of 40.5 kpc and at 115 kpc. The sources are assumed to be optimally

oriented for the detector. The signal-to-noise ratio of the signal waveforms and its

variation with β is plotted in Fig. 18. We do not perform the analysis if the sim-

ulated signal has a signal-to-noise ratio less than 8 (shown as purple points in the

figure). We note that more sensitive interferometers are able to detect more number

of signals with low β. Advanced LIGO is not able to detect any sources at 115 kpc or

beyond. It is also unable to detect the sources with β < 0.02 at 40.5 kpc and beyond.

The signal-to-noise ratios and detection ranges in our study are consistent with those

obtained for comparable signals in previous core-collapse supernovae search studies

[45, 44].

We summarize our results in Tables 6, 7. We measure the median values and the

90% credible intervals from the posteriors obtained from MCMC for β and fpeak. The

width of 90% credible intervals show how precisely we can measure the parameters.

90% credible interval of fpeak is useful to determine the equations of state consistent

with the signal, using Table 4. The mean of the median values provides an estimate

of the accuracy of the measurement of the parameters. We present our results by

classifying the signals in two sets: β < 0.02, and β ≥ 0.02.
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Figure 11: Gravitational wave strain assuming the distance to the progenitor of 10 kpc

as function of time for bounce and postbounce oscillation phases of a core-collapse

process. The waveforms are zero buffered to make them 1 second long, and the time

of bounce is aligned at 0.5 seconds for all the waveforms. The top panel shows the

waveforms for the SFHx equation of state with varying rotation rates between β = 0.02

and β = 0.06. The strain amplitude at the bounce increases with increasing β, while

the postbounce oscillation frequency remains almost the same for all the waveforms

corresponding to a given equation of state. Bottom panel shows the waveforms for

Ω = 2.50 rad/sec and A = 467 km for the equations of state listed in Table 4. The

bounce amplitude remains almost the same for the waveforms with the same core

rotation rate, while the postbounce oscillation frequency varies for different equations

of state.
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Figure 12: Frequency of postbounce oscillations is plotted on the vertical axis against

β of the waveforms on the horizontal axis. The crosses represent the waveforms that

are used to build the principal component basis. This also includes the green crosses,

showing the waveforms that are affected the most by only considering 15 principal

components and not more. The simulations that use the SFHx equation of state are

shown in brown crosses. The fpeak value for a given equation of state is independent

of β for 0.02 ≤ β ≤ 0.06. The dashed lines represent the average fpeak values of the

waveforms of a given equation of state in this range, also given in Tab. 4.The orange

dots represent the parameter values of the waveforms that are used as astrophysical

signals in this study.
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Figure 13: The plot shows how well can a given number of principal components

(plotted on the horizontal axis) reconstruct the original waveform. We quantify this

by computing the overlap between the original waveform and the reconstructed wave-

form, and show it on the vertical axis. Each of the waveforms is represented by a

grey line, and the mean overlap of all the waveforms as a function of number of basis

vectors used for construction is represented by the red line.
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Figure 14: The coefficients of the first four principal components as a function of β.

The coefficient of the first principle component, α1 (shown in blue) is most strongly

correlated with β, exhibiting a roughly linear relation. The correlation between the

other three coefficients and β can be seen to be weaker. The values of the coefficients

spread as β increases because of different equations of state used in simulation of the

waveforms.
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Figure 15: For each waveform in the catalog, a principal component basis set is

constructed using all remaining waveforms. Using this basis set, β(α1, . . . , αk) maps

are constructed using interpolation with the first k = 2, . . . , 8 model parameters, and

β of the excluded waveform is estimated using these maps. Least square fit for a

straight line is used while using just the first model parameter to construct the map

β(α1). The median error in reconstructing β through various maps and the respective

failure rate in interpolation are plotted on the vertical axes. Using more number of

model parameters reduces the error in interpolation, however increases the number

of times the interpolation fails.
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Figure 16: The α2 (vertical axis) vs α1 (horizontal axis) parameter plane for the

waveforms in the catalog. The colorbar shows the β corresponding to each of the

waveforms. The two dimensional convex hull of the all the points is shown by the

dashed black line. Interpolation fails for a point outside the convex hull. We can

construct a three dimensional convex hull if we also incorporate α3. We constrain our

MCMC samples to be within the three dimensional convex hull.
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Figure 18: The vertical axis shows the signal-to-noise ratios of waveforms used as

astrophysical signals. The horizontal axis shows the β of the core progenitor at

bounce. These sources are assumed to be at distances of 8.1 kpc, 23 kpc, 40.5 kpc,

48.5 kpc, 115 kpc, and 242 kpc and the signals are observed in the Cosmic Explorer 1

(CE1), Cosmic Explorer 2 (CE2), and Advanced LIGO (aLIGO) gravitational wave

detectors. We ignore the waveforms with signal-to-noise ratios below 8 (shown as

purple dots) and do not perform parameter estimation on them.
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The mean width of the 90% credible interval for β for signals sources at the center

of the Milky Way with β = 0.04 is 0.004 when observed in Advanced LIGO, improving

to a width of 0.0008 if observed in Cosmic Explorer detectors. For sources at 48.5

kpc it increases to 0.02 for Advanced LIGO detections and 0.003 for Cosmic Explorer

detections. We note that the width of the 90% credible intervals increases as the

source distance increases. In addition to that, as the value of β of the injected signal

increases the 90% credible interval width also increase, even though the signal-to-

noise ratio also increases. As discussed in Sec. 3.3, this is because the coefficients

for known values of β used to construct the map become sparse for higher values of

β and the interpolation suffers. On an average, the 90% credible interval width for

signals observed in Cosmic Explorer 1 is 1.5 times that of the signals observed in

Cosmic Explorer 2. Fig. 19 shows the 90% credible interval width of the posteriors

of β as a function of the injected value of β for all the signals. For the sources at

a given distance observed in a particular detector, the 90% credible interval does

not vary significantly across the range of injected values of β. For some signals

with β < 0.02, the signal-to-noise ratio is less than 8, and hence we do not perform

parameter estimation on them.

For signals sources at a distance of 23 kpc with β < 0.02 observed in Cosmic

Explorer 1, we estimate β with an error of 21%. This increases to 24% for Cosmic

Explorer 2. For signal sources at 23 kpc with β > 0.02, we can estimate β with

6% error for Cosmic Explorer detectors. The error increases as the source distance

increases. Fig. 20 shows the α1 and α2 posteriors obtained for the signal with β =

0.0299 at a distance of 23 kpc observed in Cosmic Explorer 1 (blue) and Cosmic

Explorer 2 (orange). Since the signal is observed with higher signal-to-noise ratio in

Cosmic Explorer 2 than in Cosmic Explorer 1, the posteriors obtained for the former

are smaller in area. However, the point with α1 and α2 values corresponding to the

signal (shown as the red star) is within the 90% credible region of both posteriors.

When these posteriors are translated to the posteriors of β, using the map discussed

in Sec. 3.3, the difference between the median value of β obtained and the β of the

injected signal is higher for Cosmic Explorer 2 than that for Cosmic Explorer 1. Such

error is introduced for several signals and leads to lower overall error for Cosmic

Explorer 1 than its upgraded counterpart. For Advanced LIGO, β is measured with

an error of 9%.
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Figure 19: The 90% credible interval width of the posteriors obtained for β as a

function of the β of the injected signal waveform. We note that the signals observed

in Cosmic Explorer 1 (blue) and Cosmic Explorer 2 (orange) are measured an order of

magnitude more precisely than the signals in Advanced LIGO (shown in green). On

an average, the 90% credible interval width for signals observed in Cosmic Explorer

1 is 1.5 times that of the signals observed in Cosmic Explorer 2.

For signals with β ≥ 0.02 observed in the third generation detectors, we can

measure fpeak with an mean error of upto 3%. The average 90% credible intervals

obtained for fpeak for such signals within the galaxy is 5 Hz. Estimating fpeak with

such precision restricts the possible equations of state consistent with the fpeak values,

specially for signals with 0.02 ≤ β ≤ 0.06. We obtain an average 90% credible

intervals for fpeak of 7 Hz for signals at the center of Milky way observed in Advanced

LIGO noise, with a systematic error of 4%. For sources that are further away, the

average 90% credible interval are more that 35 Hz. The systematic error is larger

that the range spanned by the mean fpeak values of various equations of state listed

in Table 4 and we conclude that third-generation gravitational-wave detectors are

required to extract nuclear physics from core-collapse supernovae. The method to

extract fpeak for any waveform with a corresponding β ≤ 0.02 is unreliable, and

hence we get large systematic errors and 90% credible intervals for such signals. We

include these results for completeness.
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Figure 20: The α1 and α2 posteriors obtained for the signal with β = 0.0299 at

23 kpc observed in Cosmic Explorer 1 (shown in blue) and Cosmic Explorer 2 (shown

in orange). The (α1, α2) point corresponding to the injected signal (shown as the red

star) is within the 90% contour region of both posteriors. The 90% contour region for

the posterior of signal observed in Cosmic Explorer 2 is smaller than that of Cosmic

Explorer1 because the signal has higher signal-to-noise ratio in the former. However,

when these posteriors are transformed into the posteriors of β, the error in median

values of β is larger for Cosmic Explorer 2 than Cosmic Explorer 1.

3.6 Conclusion

Practical implementation of Bayesian inference relies on the existence of parame-

terised gravitational-waveform models that are inexpensive to compute. Such mod-

els, with parametrization for the core rotation rate and the postbounce oscillation

frequency, do not exist for complete core-collapse supernovae waveforms due to the

complexity of the physics involved. In this paper, we address this problem for the

first two phases of core-collapse signals, namely the core bounce and the postbounce

oscillations. We use principal component analysis to create a parameterised model

that extracts the most common features of the bounce signal onto the principal com-

ponents. We construct a map between the physical parameters and the model pa-

rameters (principal components and their coefficients). We use Bayesian inference to

measure the coefficients of the first fifteen principal components for a signal observed



65

in gravitational-wave detectors, and use the inverse of the aforementioned map to

obtain posteriors of the physical parameters. In particular, we obtain posterior prob-

ability distributions for the ratio of rotational kinetic energy to the potential energy

of the core at bounce (β) and the peak frequency of the post bounce oscillations of

the protoneutron star (fpeak).

β depicts the rotation rate of the inner core of the star at the core bounce. We find

the relationship between the model parameters and β by interpolating known values

of β from the hyper-volume formed by the model parameters. fpeak encodes useful

information about the nuclear equation of state, and tells us about the behaviour of

hot, dense nuclear matter in the core of the star. We can successfully measure fpeak

for waveforms with β ≥ 0.02, however the method to extract it fails for waveforms of

extremely slowly rotating cores.

For signals with β ≥ 0.02 at a distance of 8 kpc detected in Advanced LIGO,

β can be estimated with a 90% credible interval of 0.004 for Advanced LIGO, and

0.0008 for Cosmic Explorer detectors. The width of the 90% credible interval for β

increases to 0.002 (0.003) for sources at 23 kpc (48.5 kpc). On an average, the 90%

credible interval for β for signals observed in Cosmic Explorer 1 is 1.5 times larger

than that for signals observed in Cosmic Explorer 2. We can also estimate fpeak to

within ∼ 6 Hz for signals sources upto the distance of 48.5 kpc with β ≥ 0.02 observed

in the third-generation detectors. Using the posteriors on fpeak, we can successfully

rule out the nuclear equations of state that are inconsistent with the signal. The

error in measuring fpeak for the signals observed in Advanced LIGO is 4% with an

average 90% credible interval width of 6 Hz for sources at the center of the Milky Way.

For sources that are further away, the 90% credible interval width increases to more

than 20 Hz. We conclude that third-generation detectors are required to constrain

the nuclear equation of state from gravitational-wave observations of core-collapse

supernovae.

Previous studies have used principal component analysis in Bayesian reconstruc-

tion of the signal observed in the detectors [143, 169] or to infer the core-collapse

explosion mechanism [138, 139, 140, 141]. Edwards et al [142] used principal compo-

nent analysis to measure β for signals observed in Advanced LIGO with signal-to-noise

ratio 20, and obtained the 90% confidence interval width of 0.06. We demonstrate
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a method that uses principal component analysis in Bayesian estimation of physi-

cal parameters β and fpeak, and to find the dependence of gravitational-waveform

morphology on these physical parameters. For a signal comparable to the ones in

Edwards et al. study, our method yields a confidence interval of 0.02, which is three

times smaller than that found by Edwards et al.

A more robust map between the model parameters and β can be constructed my

populating the model parameter space and using machine learning. We leave the

construction of this map and analysis of signals observed in Einstein telescope for

future work.
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Chapter 4

Measuring the properties of

f−mode oscillations of a

protoneutron star by third

generation gravitational-wave

detectors

4.1 Introduction

The core of a massive star (M ≥ 8M⊙) collapses due to gravity upon achieving the ef-

fective Chandrasekhar mass of a massive-star progenitor [134, 37, 40]. The inner part

of the core collapses to nuclear densities to form a proto-neutron star. A shockwave

is created at the boundary of the protoneutron star and propagates outwards. The

shock is initially stopped in its progress outward as a fraction of the kinetic energy of

the shock is used to dissociate the heavy nuclei. A fraction of neutrinos produced in

the proto-neutron star are trapped behind the shock. This heats up the the shocked

region and enhances the turbulent convection, which revives the stalled shock [33].

The joint observation of the photons, neutrinos, and gravitational waves emitted dur-

ing this process can help reveal the mechanism by which the shock is revived and a

neutron star is born.

Core-collapse supernovae are possible sources of gravitational-waves that could
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be detected by the proposed third-generation interferometric detectors, such as the

Cosmic Explorer [168, 30] and the Einstein Telescope. These observatories will be

able to detect a supernova within 100 kpc, which includes the Milky Way galaxy and

its satellites [46]. The estimated rate of supernovae for a galaxy the size of Milky

Way is 1-3 per century [91, 48, 97].

A number of studies have characterized the gravitational wave signal from the

collapse and explosion of the core of a massive star [170, 171, 172, 151, 173, 174, 139,

86, 175, 176]. After decades of improvement in the numerical techniques, we are now

much better able to account for the complex hydrodynamics in multi-dimensions, the

neutrino interactions, and the hydrodynamical instabilities [177, 136, 178, 179, 39].

This rich and complex physics gives rise to a complex gravitational-wave signal,

which in the time domain represents the stochastic nature of matter movements within

the star. There is a sharp negative peak in the signal at the time of core bounce,

and its amplitude depends on the rotation rate of the core of the progenitor. This

is followed by the post-bounce oscillations of the core, that extend for 6-10 ms after

the bounce, with an amplitude that depends interestingly on the rotation rate of the

core of the progenitor star and its equation of state [51]. The end of post-bounce

oscillations mark the onset of “prompt convection” due to the dynamical imposition

of a negative entropy gradient as the shock stalls. Starting from ∼150 ms after

the core bounce, there is a strong, stochastic signal. Moreover, an asymmetrical

explosion is accompanied by a growing offset in the mean strain from zero due to

“memory”[180, 181, 182].

Even though the signal is highly stochastic in the time domain, the time-frequency

spectrogram of the gravitational-wave signal reveals that most of the power lies in a

narrow track in the time-frequency plane. Linear perturbation analysis of the proto-

neutron star shows that this frequency corresponds to the quadrupolar f−mode of

the proto-neutron star [175, 176], which start approximately 100 − 400 ms after the

core bounce. These oscillations are excited by the downflows of matter accreted onto

the proto-neutron star [172, 175].

Previously, Ref. [183] measured the frequencies associated with the g-mode os-

cillations of the proto-neutron star using the time-frequency spectrograms of the

gravitational-wave strains obtained from simulations. Using the frequency measure-

ment and universal relations, they obtain measurement of the ratio MPNS/R
2
PNS of
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the proto-neutron star, where MPNS is the mass and RPNS is the radius of the proto-

neutron star. Ref. [184] develop a phenomenological model of the gravitational-wave

signal associated with the dominant mode and use the spectrogram of the strain to

measure f-mode frequency evolution and energy. They use Bayesian parameter esti-

mation to measure their model parameters and then obtain frequencies and energies

associated with the mode from the posteriors. More recently, Ref. [185] extended

the work of Ref. [183] of measuring the f/g mode frequencies of the proto-neutron

stars using the strains of 3D and 2D simulations. They use a network of current, and

future, detectors to perform a coherent analysis of the detected signal.

Here, we develop a model-independent method to measure the f−mode frequen-

cies and the energy emitted in gravitational radiation of the proto-neutron star oscil-

lations by analysing the spectrograms of the gravitational-wave strains obtained from

state-of-the art three-dimensional core-collapse supernovae simulations. We develop a

novel method of generating time-frequency spectrograms that can be used to reliably

measure power in a given track on the spectrogram. We inject the strain obtained

through the simulations into several instances of simulated detector noise to measure

the frequencies and energies. We vary the distance of the source to test this method

for signals with various signal-to-noise ratios. We find that, from simulated obser-

vations using the third-generation gravitational-wave detectors, while we can detect

the signal out to distances of ≈ 100 kpc, we can measure the frequencies and the

energies associated with the f−mode oscillations to within 20% error from sources

within ≈ 10 kpc distance.

Section 4.2 describes the numerical simulations used in this work, and describes

the linear perturbation analysis used to determine the f−mode oscillation frequencies.

In Section 4.3 we describe our method to construct the short-time Fourier transform

and the spectrogram of the gravitational-wave signal obtained from the simulations.

In Section 4.4, we describe our main results from the analysis. We summarize our

findings in Section 4.5.
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4.2 Simulations

In our analysis we used the data obtained from two- and three-dimensional core-

collapse supernovae simulations performed with the neutrino-radiation hydrodynam-

ics code FORNAX [186, 187, 188]. The progenitors used in the simulations were

calculated by Refs. [189] and [190]. Further details of the simulations can be found

in Refs. [175, 136, 176].

We tabulate the models we consider in our works in Tables 8,9,10. We show

the mass of the progenitor, the equation of state of the proto-neutron star used

in the simulations, and the core-rotation rate in columns 3, 4, and 5 of the table.

We also indicate whether the the shock is revived and the star explodes within the

time of the simulation. For the three-dimensional simulation models, We use a wide

range of progenitors with the ZAMS (Zero-Age Main Sequence) mass ranging from

9M⊙−60M⊙. We use SFHo equation of state, and all but the 13M⊙, 14M⊙, and 15M⊙

explode within the time of the simulation. For the two-dimensional simulations with

core rotation at the time of core bounce, we use a 15M⊙ progenitor. We have a total

of 14 models with rotation rates ranging from 0.0 rad/sec −6.14 rad/sec. We also

include 9 two-dimensional simulations with zero core rotation.

The last three columns show the optimal distances for every simulation, for Ad-

vanced LIGO [191], Einstein Telescope [31], and Cosmic Explorer[30]. Optimal dis-

tance of a source, for a given detector is defined as the distance at which the signal-

to-noise ratio of the optimally-oriented source is equal to eight. It is calculated as,

dopt =
1

ρopt

[
2

∫ fhigh

flow

df
h̃(f)h̃∗(f)

Sn(f)

]
, (4.1)

where ρopt = 8 is the signal-to-noise ratio of an optimal detection, h̃(f) is the strain

signal in the Fourier domain, and Sn(f) is the power spectral density of the detector

noise. For Advanced LIGO, we use the aLIGOZeroDetHighPower [111] power spectral

density, with flow = 10 Hz. The average of the optimal distances of the waveforms

from three-dimensional simulations for Advanced LIGO is 8 kpc. Hence, we can detect

a signal coming from the center of the galaxy if it is loud enough. The next generation

detectors, Einstein Telescope and Cosmic Explorer, can detect signals coming from

the Milky Way galaxy and its satellite galaxies. Their detection range is large enough

to cover the entire Milky way but not large enough to reach the nearest galaxy,
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Andromeda, which is at 770 kpc. The gravitational-wave signals from core-collapse

supernovae observed by the third-generation detectors will have large signal-to-noise

ratio.
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4.2.1 Linear Perturbation Analysis

In this section, we outline the method of the linear perturbation analysis of the angle-

averaged data of the proto-neutron star profile (i.e. integrated over the solid angle

Ω). The proto-neutron star is to be modeled with the energy-momentum tensor of a

perfect fluid.

Tµν = ρHuµuν + Pgµν , (4.2)

where ρ denotes the rest-mass density, P the pressure, uµ the fluid 4-velocity andH :=

(1+ϵ+P/ρ) the specific enthalpy, ϵ the specific internal energy. Under the assumption

of spherical symmetry 1, the space-time metric gµν in isotropic coordinates, using the

(3 + 1) foliation, can be written as [192, 167, 177, e.g] ,

ds2 = gµνdx
µdxν = −α2dt2 + ψ4fijdx

idxj (4.3)

where α is the lapse function and the metric for spatial slices is approximated to be

conformally related to the flat metric δij with a conformal factor ψ4, set to 1 in all

simulations of Tables 8,9,10.

We now perform perturbation analysis on top of this conformally-flat background

by linearizing the equations of general relativistic hydrodynamics. In general, the

three components of the Lagrangian fluid displacement field, ξ(r, t) ≡ ξrr̂ + ξθθ̂ +

ξϕϕ̂ representing the perturbation, can be resolved in terms of three scalar functions

by virtue of the Helmholtz decomposition theorem. If one assumes that the radial

component of the fluid vorticity equation vanishes at all points of the star, that is,

(∇× ξ)r = 0, then one can show that the three components of ξ can now instead be

resolved in terms of only two scalar functions. We now decompose these two scalar

functions into purely radial functions (ηr(r), η⊥(r)) supplemented with the spherical

harmonics Ylm and mode frequency σ as

ξr = ηrYlme
−iσt,

ξθ = η⊥
1

r2
∂θYlme

−iσt,

ξϕ = η⊥
1

(r sin θ)2
∂ϕYlme

−iσt.

(4.4)

1The asymmetries are small enough and hence the angle-averaged background can well be ap-

proximated as spherically symmetric.
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Here, any time dependence of the background state is assumed to be very small

compared to the eigen value (i.e. the time derivative of any quantity f, ∂f/∂t <<

f/σ). If σ is real, the system is neutrally stable (i.e. the modes are oscillatory in

nature). As the background metric is assumed to be conformally flat, the perturbation

of the metric is accomplished by perturbing the lapse function. Decomposing the

perturbation to the lapse function in purely radial and spherical harmonics yields

δα = δα̂(r)Ylme
−iσt. (4.5)

We define fα ≡ ∂r(δ̂α/α); together with δ̂α it represents the perturbation in the grav-

ity sector. The timescale associated with neutrino heating and nuclear dissociation

is typically >> 1/σ, hence the perturbations to the fluid properties to be adiabatic

in nature, implying,
∂P

∂ρ
|adiabatic = Hc2s =

P

ρ
Γ1, (4.6)

cs the relativistic sound speed in the fluid, and Γ1 the adiabatic index. Now the

equations of general-relativistic hydrodynamics together with the 00 component of

the Einstein equation can be linearized to obtain the following system of equations:

∂rηr +

[
2

r
+

1

Γ1

∂rP

P
+ 6

∂rψ

ψ

]
ηr +

ψ4

α2c2s

(
σ2 − L2

)
η⊥ − 1

αc2s
δα̂ = 0, (4.7)

∂rη⊥ −
(
1− N 2

σ2

)
ηr +

[
∂r ln q − G̃

(
1 +

1

c2s

)]
η⊥ − 1

αG̃

N 2

σ2
δα̂ = 0, (4.8)

∂rfα + 4π

[
∂rρ−

ρ

PΓ1

∂rP

]
ηr −

4πρ

PΓ1

qσ2η⊥ +

[
4πρ2h

PΓ1α
− 1

α

l(l + 1)

r2

]
δα̂ = 0, (4.9)

and

∂rδα̂ = fαα− G̃δα̂. (4.10)

In Equations 4.7-4.10, we have collected the combination ρhα−2ψ4 as q, G̃ is the

radial component of gravitational acceleration G̃ := −∂r lnα, N is the relativistic

Brunt-Väisälä frequency,

N 2 =
αδrα

ψ4

(
1

Γ1

∂rP

P
− ∂re

ρH

)
(4.11)
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and L is the relativistic Lamb shift,

L2 =
α2

ψ4
c2s
l(l + 1)

r2
(4.12)

The system of equations 4.7-4.10 can be solved by incorporating appropriate boundary

conditions: at the outer boundary, set at the radial coordinate where the density

ρ = 1010g/cm−3 we consider the Lagrangian pressure to vanish and at the inner

boundary (i.e. r = 0 ) use the regularity condition of [193]. Mathematically, this

reads, at the outer boundary,

qσ2η⊥ − ρH

α
δ̂α + ∂rPηr = 0 (4.13)

and at the inner boundary,

ηr =
l

r
η⊥ ∝ rl−1

ηr|r=0 = η⊥|r=0 = 0

By discretizing the derivatives by means of trapezoidal rules, we can start integrating

the set of equations 4.7-4.10 by inverting the 4× 4 coefficient matrix at every step to

solve for (ηr, η⊥, fα, δ̂α) and then using the bisection method to uniquely determine

the solutions by satisfying the outer boundary condition Eq. 4.13. The eigenvalue

corresponding to the unique solution thus obtained gives the frequency of oscillation

as σ/2π. The lowest frequency oscillation mode is the fundamental oscillation mode

(f-mode), with zero radial nodes. We find the f-mode starts few hundred ms after

the core bounce for the simulations in Tables 8,9,10 which confirms similar findings

in [175]. The f mode thus obtained is then laid on the spectrogram and is found to

contribute significantly to the strength of the GW signal after ∼ 400 ms. As noted in

[175], the higher-order g- or p-modes are not found to be excited in these simulations.

4.3 Spectrogram Analysis

In this section, we describe the construction of the spectrogram of the gravitational-

wave strain signal. We use the spectrogram to measure the properties of the funda-

mental quadrupolar f−mode oscillations of the protoneutron star. In particular, we

are interested in measuring the frequency of the oscillations and the energy emitted



78

in the gravitational-wave radiation. The analysis described here is for the fiducial

case when the detector noise is not present. In the later sections we will discuss the

effect of detector noise in the extraction of the features from the spectrogram and

compare it with the output from the analysis described here.

Following [194, 195, 196, 86], the gravitational-wave strain hTT
ij for a for a source

at a distance D can be written as

hTT
ij =

2G

c4D

dqij
dt

, (4.14)

where qij is the time derivative of the mass quadrupole tensor Qij =
∫
d3xρ(xixj −

1
3
r2δij). The strain amplitudes of the two polarizations, h+ and h×, can be obtained

in the slow-motion limit from the linear combinations of the second time derivatives

of the components of the transverse traceless mass quadrupole tensor Qij. The po-

larization strains as observed along the line of sight (θ, ϕ) are given by

h+ =
G

c4D

(
dqθθ
dt

− dqϕϕ
dt

)
, (4.15)

h× =
2G

c4D

(
dqθϕ
dt

)
. (4.16)

Here, the time derivatives of the mass quadrupole in spherical coordinates, in terms

of those in Cartesian coordinates, are given by

qθθ = (qxx cos
2 ϕ+ qyy sin

2 ϕ+ 2qxy sinϕ cosϕ) cos
2 θ

+ qzz sin
2 θ − 2(qxz cosϕ+ qyz sinϕ) sin θ cos θ, (4.17)

qϕϕ = qxx sin
2 ϕ + qyy cos

2 ϕ − qxy sinϕ cosϕ, (4.18)

qθθ = (qxx − qyy) cos θ sinϕ cosϕ+

qxy cos θ(cos
2 ϕ− sin2 ϕ)

+ qxz sin θ sinϕ− qyz sin θ cosϕ. (4.19)

The total energy emitted in gravitational waves is given by [196]

EGW =
c3

5G

∫ t

0

∑
ij

[
d3Qij

dt3

]2
dt, (4.20)
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which, in terms of gravitational-wave strain is given by

EGW =
c3D2

16πG

∫ t

0

dt

∫
4π

dΩ

[(
dh+
dt

)2

+

(
dh×
dt

)2
]

≈ c3D2

4G

∫ t

0

dt

[(
dh+
dt

)2

+

(
dh×
dt

)2
]
,

(4.21)

where the second approximation holds true if the strains are assumed to be nearly

independent of line of observation and the integral over the solid angle gives a factor

of 4π. The variation in the amplitudes of the strain for different points of observation

are 10−15% [197]. For two-dimensional simulations without progenitor core rotation,

the approximation does not hold, and we use equations 3-6 in Morozova et al [175]

to compute the energy from gravitational-wave strain h+.

Ground-based interferometers will detect a linear combination of the strain polar-

izations,

s(t) = seff(t) + n(t), (4.22)

where n is the noise in the detector, and effective strain from the astrophysical source

is given by,

seff = F+h+ + F×h×. (4.23)

Here, F+ and F× are the antenna pattern functions of an interferometric detector,

and they depend on the sky location (Right ascension, Declination) of the source at a

given time, and its polarization angle with respect to the detector arms. The energy

estimation from an observation is then given by

EGW ;eff ≈ c3D2

4G

∫ t

0

dt

(
dseff
dt

)2

, (4.24)

which would be ≈ 0.5 times the energy calculated using both the polarizations indi-

vidually (i.e. from Equation 4.21).

To compute the energy spectra of the gravitational wave signal we use the spec-

trogram of the signal

dE⋆
GW

df
=
c3D2

4G
(2πf)2

[
(h̃+)

2 + (h̃×)
2
]

≈ c3D2

2G
(2πf)2 [s̃eff ]

2 ,

(4.25)
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where h̃ is the short-time Fourier transform, defined as

h̃(f) =

∫ ∞

−∞
h(t)H(t− τl)e

−2πiftdt, (4.26)

and H(t − τl) is the Hann window with offset time τl, indexed by l. A window

function is applied to each segment to ensure that we don’t get Gibb’s junk when

we take the Fourier transform of the segment. Equation 4.25 gives the energy per

unit Hertz for a time-frequency block centered at time τl and frequency f . Thus, a

spectrogram is the transformation of the short-time Fourier transform to represent

the power content in a time-frequency block.

In practice, gravitational-wave strain h is a discrete function of time, obtained

either from simulations, or via observations made by a gravitational-wave detector.

In order to take the Fourier transform of the time-domain strain data, hj ≡ h+(tj), it

must be evenly sampled at time intervals of ∆t = tj+1− tj seconds, ∀j. The sampling

rate, or sampling frequency is given by fs = 1/∆t. The data from the simulations is

unevenly sampled since the size of each time step in the simulations is governed by

the micro- and macro-physics at the time.

We re-sample the data at sampling rates ranging from 16, 384 Hz to 2, 097, 152

Hz in powers of two and interpolate using one of the two interpolation schemes: lin-

ear interpolation and cubic spline interpolation. We then compute the energy using

discretized versions of equations 4.15, 4.16 and 4.21, where now h(t) ≡ h(tj). We

compute the third order time derivative of the the quadruple moment from the sec-

ond order derivative using the central difference method. Fig. 21 shows the energies

on the left ordinate for the model s19-3D computed via the two interpolation meth-

ods at various sampling rates. We see that the energy values converge with increasing

sampling rate. The dashed curves show the difference between the energy values ob-

tained between two consecutive sampling rates (shown on the right ordinate). This

plot gives us a range of energy estimations for data sampled at different frequencies.

We choose to use the Cubic spline interpolation and a sampling rate of 16, 384 Hz

(or equivalently, sampling interval of ∆t = 6.1035× 10−5 seconds) since its is compu-

tationally less expensive and is a more realistic choice with regards to the sampling

rate used by current and proposed gravitational-wave detectors.

In the next subsection we describe the construction of the short-time Fourier
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transform of the discretely-sampled signal, and measurement of the frequencies asso-

ciated with the f−mode from the time-frequency representation. For this purpose,

we use 50% overlap of Hann-windowed time-segments, since this configuration does

not affect the amplitude of the signal. In the subsection that follows, we discuss the

construction of spectrogram that can be used to measure the energy associated with

the f−mode oscillations. For this, we use 66.65% overlap between two consecutive

Hann-windowed segments since this configuration provides equal weights across all

the point in the signal for power calculation.

4.3.1 f−mode frequency measurement

In order to compute the short-time Fourier transform of the data, we need to divide

the data into segments of equal length, say of TW = NW∆t seconds, and multiply

each of these segments with a window function before we take its Fourier transform.

There are a variety of windows available for this purpose [198]. In this study, we

use the Hann window. We need to ensure that each data point of the waveform is

equally weighted when we consider the sums of the windowed waveform segments.

This presents a problem at the ends of the waveform, since Hann window starts from

(or tapers to) zero. The solution is to first taper both ends of the waveform to zero,

and then zero-pad the entire waveform on both ends by multiples of NW points.

Zero-padding the waveform does not change the total power content in the signal

since we are only adding zeros to the ends of the data. We use the window size of

TW = 40 ms. For tapering, we use the 1024 data points at both ends of the waveform

and apply a half cosine window. We zero-pad both ends of the tapered waveform by

NW = 655 points. For constructing the short-time Fourier transform of the signal,

we use 50% overlap between two consecutive time segments that get multiplied by

the Hann window.

The top panel of Fig. 22 shows the gravitational-wave strain data of the plus

polarization as a function of time after core bounce for the simulation s19-3D in

blue. This three-dimensional simulation uses a progenitor with ZAMS mass of 19M⊙.

The equation of state used in the simulation is SFHo. The top panel shows evenly-

sampled data in blue, and the data with both ends tapered for construction of the

short-time Fourier transform is shown in orange. The bottom panel shows the short-

time Fourier transform of the strain. The horizontal axis shows the time after bounce,
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the vertical axis shows the frequency. The color bar shows the modulus of the Fourier

amplitude. We see the prompt convection signal after ∼ 50 ms after the core bounce.

The prompt convection phase is followed by the ∼ 50 ms long quiescent phase. After

this, the dominant part of the signal starts with frequency growing from ∼ 500 Hz

to ∼ 1000 Hz 0.6 sec after core bounce. This signal is caused by matter accreting on

the proto-neutron star and exciting its modes, including the f−mode. The f−mode

frequencies obtained by the linear perturbation analysis are shown as red crosses in

the bottom panel.

We measure the frequency evolution of the dominant track in the short time

Fourier transform. To measure the frequencies, we use the following procedure. We

start by analyzing the spectrogram data after t0 seconds. The vertical orange line

in Fig. 22 shows the time t0 = 200 ms after the core bounce. From the linear

perturbation analysis we know that the f−mode starts around this time. We define a

plausible range of the f−mode frequencies shown by the two orange quadratic curves

in Fig. 23. The quadratic parameters for the lower frequency bound are a = −700, b =

1800, c = 10 and for the upper frequency bound are a = −600, b = 2500, c = 400 used

in the formula f(t) = at2 + bt + c. For each time segment after t0, we find the

highest value of the energy spectrum within the frequency range constrained by the

two orange curves. We model the frequency evolution of the f−mode as the quadratic

function, and use a robust least-squares fit of the maxima in the STFT for each time

slice using the soft-l1 loss function to get the parameters {a, b, c} of the quadratic

function.

4.3.2 Energy measurement

We are interested in computing the power in each of the time-frequency blocks in

the spectrogram associated with the f−mode frequencies. To ensure that we can

do this correctly, we first compare the power in the entire signal evaluated using

the Equation 4.21 (using the time-domain representation of the signal) and via the

spectrogram (adding up power in all the time-frequency blocks). However, when we

construct the spectrogram, multiplying a data segment with a window function alters

the amplitude, and hence, the power, of the signal. To mitigate this problem, we

make two consecutive segments of the data overlap by a fixed amount of TO seconds.

We also want to ensure that the relative weighing is the same for all the data points
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across different segments. The relative weighing of the data for power calculation is

obtained by summing the square of the window values at each data point. That is,

for the point j, the weighing will be given by
∑

lH
2(j∆t−τl). We want this quantity

to be constant across the the entire signal. For the first half of the first window, and

the second half of the last window, the relative weighing does not matter since we are

zero-padding the ends of the waveform.

Trethewey (2002) [199] show that one cannot simultaneously obtain equal weighing

of all data points, and compute the correct power. For Hann windows, one obtains

the correct value of average power of the entire signal if consecutive segments overlap

by 62.5%. However, in this case, there is variation in the relative weighing of the data

points, resulting in amplification of power in certain data segments, whereas reduction

in others. This would mean large errors in power estimates within individual time

segments, specially if the data are stochastic in nature, like the gravitational-wave

strain from a supernova. If two consecutive segments overlap by 66.65%, all the points

are equally weighed, but the power calculation is amplified by a factor of 1.125, across

all segments. However, we can compute the power with 66.65% overlap, and scale it

down by the relevant factor to obtain the correct value of power.

Assuming 66.65% overlap between segments, the time-difference between the start

of two consecutive segments is TH = TW−TO seconds, such that 100×TO/TW = 66.65.

We multiply each segment by a Hann window H(tj − τl), where τl is the time offset

of the center of the segment from the start of the signal. The length of the Hann

window is equal to the length of the segment. We take the discrete Fourier transform

of each segment of the windowed data hjH(tj − τl) using scipy.fftpack.fft, given

by

ỹk,τl =

NW−1∑
j=0

hjH(tj − τl)e
2πijk/NW . (4.27)

The discrete form of Equations 4.25, 4.26 is given by

∆EGW

∆f
(fk, τj) ∼

D2c3

2G
(2πfk)

2∆t2|ỹk,τj |2, (4.28)

where we have a factor of 2 instead of 4 in the denominator to account for the power

in the negative frequencies. To normalize the effect of the window function, we use
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the window normalizatoin factor from Heinzel et al (2002) [198],

S2

NW

=
1

NW

Nw−1∑
j=0

H2(tj). (4.29)

Using this normalization, Equation 4.28 becomes

∆EGW

∆f
(fk, τj) =

D2c3

2G
(2πfk)

2∆t2|ỹk,τj |2
[
NW

S2

]
. (4.30)

The total Energy can then be written as

EGW =
∑
k

∑
l

∆EGW

∆f
(fk, τj)∆f

[
TH
TW

]
=

∑
k

∑
l

D2c3

2G
(2πfk)

2∆t2|ỹk,τj |2∆f
[
NWTH
S2TW

]
,

(4.31)

where the quantity
[
TH

TW

]
is introduced to account for the fact that two consecutive

segments overlap by TO seconds. The factor
[
TH

TW

]
corrects for this double-counting

and represents the correct fraction of the energy in the time segment. in the final

equation, the factor
[
NWTH

S2TW

]
for 66.65% overlap is equal to 1.125, the same factor

from Trethewey (2000) [199].

Now, we can verify if the energy values obtained from the spectrogram (Equation

4.31) agree with those obtained using the Equation 4.21. We find that the energy

values agree within the error range due to interpolation.

Once we have verified that the energies obtained from the time-frequency data

agree with those obtained by the time domain data, we can compute the energy

associated with a given time-frequency track. In particular, we can compute the

energy associated with the f−mode oscillation of the protoneutron star.

The top panel in Fig. 23 shows the frequency evolution of the f−mode obtained

from the spectrogram. For each time-segment, we assume the width of the f−mode

track to be 6∆f (3∆f above the spectral peak associated with the f−mode fre-

quencies, and 3∆f below it). This width is represented as the two white curves

encompassing the peak frequency curve shown in red. We can add up the energy

values for all the time-frequency blocks within the width obtained. Doing this for all

the time segments after t = t0 will give us the time evolution of the energy associated

with the f−mode.
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The bottom panel of Fig. 23 shows the cumulative energy as a function of time for

the simulation s19-3D. The blue curve shows the cumulative energies obtained from

the time-domain data (Equation 4.21) and the orange curve shows the cumulative

energies obtained by adding up energy values for all time-frequency blocks in the

spectrogram. We can see that both match very well. The green curve shows the

cumulative energy of the f−mode as a function of time measured by adding the

energy values in time-frequency blocks only corresponding to the f−mode (i.e. within

the two white curves in top panel of Fig. 23). The energy obtained in the f−mode is

≈ 20− 40% of the energy from the entire signal. We also compute the energy values

obtained from the effective strain observed by a detector and its spectrogram (i.e.

from Equation 4.24). We show these energies (multiplied by a factor of 2) in purple

and red color in the bottom panel.

We test this method for toy signals of the form h(t) = A(t) sin(2πft), as well

as the solutions for the differential equations for driven simple-harmonic oscillator

(for details on this model see Ref. [200]). We find that we get ≈ 20% error in the

measurement of the power from the spectrogram as compared to the measurement

directly from the time domain signal. The error is higher when stochasticity of the

amplitude increases.

4.4 Results

In this section, we describe the results of using the above method for measuring the

properties of the f−mode for gravitational-wave strains from various simulations.

The left panel of Fig. 24 shows the frequency evolution of the f−mode measured

from short-time Fourier transform for the three-dimensional simulations. Since the

simulations are for a short duration, we start the measurement of the f−mode fre-

quencies (and consequently, the energy) from 200 ms after the core bounce. However,

this procedure makes the frequency measurement noisy for the time interval 200−400

ms after the core bounce since f−mode oscillations are not the most energetic con-

tributors to the gravitational-wave signal. The peak of the Fourier transform may not

lie on the frequencies associated with the f−mode. One can see that the frequencies

at 200 ms lie in the range between 500 Hz - 600 Hz. 600 ms after the core bounce,

the frequencies can increase up to 1100 Hz - 1250 Hz. Again, there is no monotonous
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dependence of the frequencies with the progenitor mass.

The right panel of Fig. 24 shows the energy in the f−mode track obtained from the

spectrogram of the gravitational-wave signal, divided by the time when the f−mode

oscillations are active (i.e. 200 ms to end of simulations). Typically, the higher mass

progenitors produce a stronger gravitational-wave signal, and hence the power in the

f−mode oscillation track is higher for higher progenitor mass. If we look at Fig. 2

of Ref [136], which describes the time evolution of the shock radius of the same pro-

genitors that we use in this study, we find that delayed explosion time also correlates

with increased energy emission in the gravitational wave signal. For example, the

power measured in f−mode for simulations with progenitor masses 10, 19, and 25M⊙

is higher in comparison to other simulations, and the shock expansion associated

with the explosion is also delayed. For the progenitors with no explosion during the

simulation time, we measure low power in the f−mode from the gravitational-wave

signal.

Fig. 25 shows the frequency evolution on the left panel and the power in f−mode

oscillations from the gravitational-wave signal as a function of the core rotation rate

on the right panel for simulations with non-zero core rotation. We find that both

the frequency evolution and the power of the f−mode oscillations depend on the

core rotation rate. Mild core rotation (0 - 0.75 rad/sec) increases the quadrupole

moment and hence the power in gravitational-wave radiation. Increasing the core

rotation rate increases the centrifugal support on the accreting matter that excites

the proto-neutron star oscillations, resulting in reduced power in the oscillations.

The frequencies are also affected and we can see two distinct groups of the frequency

tracks. For the core rotation rates of 0− 0.5 rad/sec, where the centrifugal forces are

not affecting the f−mode oscillations, we see we see similar time dependence for the

frequencies as for the simulations with no core rotation — they rise from ≈ 850−900

Hz at 400 ms after the core bounce to ≈ 1700 Hz at 1 second after the core bounce. As

the core rotation rate increases, the frequencies decrease, as is seen in the simulations

with 0.75 rad/sec and 1.0 rad/sec core rotation rates. Further, for the higher rotation

rates (greater than 1.0 rad/sec), the centrifugal forces are large and the frequencies

decrease - starting from ≈ 600 − 800 Hz at 400 ms after the core bounce to ≈ 1200

Hz at 1 second after the core bounce.

The left panel of Fig. 26 shows the interpolated f−mode frequency evolution
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measured from the short-time Fourier transforms of the simulations listed in the figure.

These are two-dimensional simulations with progenitors having zero core rotation rate

at the core bounce. We assume that the f−mode starts at ∼ 400 ms after the core

bounce. There is no monotonic trend with respect to the mass of the progenitor star

for the frequency evolution of the f−mode oscillations. There is also no monotonic

dependence on the equation of state used in the simulation. The stiffest equation of

state, DD2, used for the simulation M10-DD2 produces the smallest frequencies (for

times ∼ 600 ms after the core bounce). Whereas, the softest equation of state, SFHo,

used for simulation M10-SFHo, produces frequencies lower than a relatively stiffer

equation of state LS220. This has been already discussed in Morozova et al. [175],

where the authors obtained the frequency evolution from linear perturbation analysis

of the proto-neutron star. Here we verify the frequency evolution by measuring the

frequencies from the short-time Fourier transform. The right panel of Figure 26 shows

the power in the f−mode track obtained from the spectrogram of the gravitational-

wave signal. Again we see that the higher mass progenitors typically have higher

power in the f−mode oscillation track. The results of energy measurement for all the

waveforms are summarized in Tables 11, 12.

We also repeat the analysis on the spectrogram of signals embedded in simulated

detector noise. We assume the source distances to range from 1 kpc to 60 kpc. For

each distance, we inject the signal in 10000 instances of detector noise. To generate the

simulated noise instances, we use the designed power spectral density for Advanced

LIGO and the proposed third generation detectors, Cosmic Explorer and Einstein

Telescope.

We assume that the time of core bounce will be measured by the neutrino detectors

such as ICECUBE[201], Super-Kamiokande [164], and DUNE [165] to within 4 ms

[167, 166, 38]. We measure the f−mode frequencies 200 ms after the time of core

bounce. We also assume that the distance to the progenitor is known a priori, so

that when we measure the energy in the f−mode via the spectrogram, we can scale it

(by the square of the distance) to obtain the energy in gravitational-waves associated

with the f−mode.

For closer sources, the signal is strong and the noise does not affect the f−mode
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Label
EGW (10−8M⊙c

2)

Time

Domain
Spectrogram

Fractional
Error

f−mode
energy

s9-3D 0.0014 0.0015 7 % 0.0002

s10-3D 0.073 0.084 15 % 0.016

s11-3D 0.03 0.03 6 % 0.005

s12-3D 0.05 0.05 1 % 0.012

s13-3D 0.012 0.011 9 % 0.002

s14-3D 0.028 0.031 10 % 0.003

s15-3D 0.026 0.029 8 % 0.006

s17-3D 0.12 0.13 14 % 0.03

s18-3D 0.13 0.15 10 % 0.03

s19-3D 0.33 0.38 16 % 0.081

s20-3D 0.18 0.21 16 % 0.27

s25-3D 0.13 0.16 21 % 0.07

s60-3D 0.024 0.027 13 % 0.008

Table 11: In this table we show the energy in the gravitational-wave signal computed

from the time-domain representation of the signal (equation 4.21), and from the

spectrogram (equation 4.25) for three-dimensional simulations. We show the error in

measurement of the energy from the spectrogram of the signal. In the last column,

we show the energy measured from the spectrogram in the track associated with the

f−mode oscillations.
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Label
EGW (10−8M⊙c

2)

Time

Domain
Spectrogram

Fractional
Error

f−mode
energy

0.0strain 1.2 1.5 22 % 0.81

0.05strain 0.92 1.08 18 % 0.41

0.1strain 0.97 1.15 19 % 0.49

0.2strain 1.43 1.63 14 % 0.82

0.25strain 1.09 1.34 22 % 0.71

0.3strain 1.47 1.77 20 % 1.09

0.4strain 2.28 2.92 28 % 1.60

0.5strain 3.75 4.38 17 % 2.38

0.75strain 5.63 6.47 15 % 2.82

1.0strain 7.9 8.7 9.4 % 2.54

2.0strain 5.7 6.3 10 % 0.44

pi.strain 7.44 8.13 9.3 % 0.01

4.0strain 5.07 4.07 20 % 5e-4

5.0strain 2.41 2.56 6 % 5e-5

2pistrain 0.96 3.3 242 % 9e-8

M10-LS220 0.21 0.24 13 % 0.07

M10-DD2 0.16 0.17 11 % 0.04

M10-SFHo 1.57 1.86 19 % 0.43

M13-SFHo 0.93 1.09 17 % 0.47

M19-SFHo 5.27 6.80 29 % 2.12

gw-s11-2D 1.54 1.89 22 % 0.65

gw-s19-2D 1.47 1.74 18 % 0.69

gw-s25-2D 4.52 5.46 20 % 1.44

gw-s60-2D 4.14 5.48 32 % 2.49

Table 12: Same as Table 11 but for two-dimensional simulations.
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frequency measurement. As the source distance increases, the f−mode peaks are

picked more randomly. This is because the gravitational-wave strain amplitude from

the signal is dominated by the detector noise. Consequently, the least-square fit is

also affected.

In Figs. 27,28,29, we show the results of our analysis for the f−mode frequency and

energy measurement when the signal is embedded in detector noise. For each case,

we generate a short-time Fourier transform and measure the f−mode frequencies.

We then interpolate the measured frequencies, and compare them with those for the

case when the signal was not embedded in simulated detector noise. We do this by

computing the root-mean-squared error in the frequencies, given by

σf =

√√√√ 1

Nf

Nf∑
1

∆2
f . (4.32)

Here, ∆2
f = (fwith noise − fnoiseless)

2 and Nf is the number of time columns of the

f−mode. After measuring the f−mode frequencies, we use them to measure the

energy in the corresponding track on the spectrogram. Since this track now has

the gravitational-wave signal from a core-collapse as well as the detector noise, the

measurement will yield the energy in the sum of the two. This way, we can place

an upper bound on the energy in gravitational-wave radiation associated with the

f−mode.

In Figs. 27,28,29, on the left panels, we show error in frequency measurement

(σf ) on the vertical axis and distance to the source on the horizontal axis. The blue

curve shows the median of the inner product obtained from 10000 injections into

simulated Cosmic Explorer noise, whereas the green curve shows the same for the

Einstein Telescope. The fill represents the 90th quantile measurements of σf . We see

that as distance increases, σf also increases. we can measure the f−mode frequencies

to within 10% error for sources within the Milky Way galaxy.

The right panel shows the relative error in measurement of the energy in the

f−mode from the spectrogram based on the frequencies measured from the short-

time Fourier transform,

σE =
Ef−mode|noiseless − Ef−mode|with noise

Ef−mode|noiseless
. (4.33)

We find that we overestimate the energy by up to ≈ 20% for higher mass exploding
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models with source distances within the Milky Way galaxy.

In Fig. 30 we show the time evolution of the ratio ff−mode√
Gρc

for the three-dimensional

simulations, where ρc is the central density of the protoneutron star. We find that

the ratio linearly increases with time, and obtain the fit y = 0.23t+ 0.06 using linear

regression, where t is the time after bounce. The fit is shown in red in Fig. 30. Using

this fit, and the frequency evolution from the spectrogram of the strain measured in a

detector, we can measure ρc(t). In Fig. 31 the central density ρc(t) of the 19 M⊙ star

obtained from simulation is shown in red. We also measure ρc for the 10000 injections

of the signal associated with the model s19 − 3D in Cosmic Explorer, assuming the

source distance to be 10 kpc. Given the linear fit for ff−mode√
Gρc

and quadratic fits for

f(t), ρc(t) is a ∼ t2 function of time after bounce. We obtain ρc values for various

times and for various injection instances. The two-dimensional histogram for ρc is

shown in grey-scale, with the colormap normalized to the logarithm of counts in each

ρc − t bin. We can see from the plot that we can measure the central density of the

core of the star using the frequency evolution measured from the spectrogram.

4.5 Conclusion

Here, we have developed a model-independent method to measure the frequencies and

energies associated with the quadrupolar oscillations of a proto-neutron star. We use

gravitational-wave signals from two- and three-dimensional core-collapse simulations.

We construct the short-time Fourier transform of these signals to extract the

f−mode frequencies. We then construct a spectrogram of the signal in a way that

provides equal weights in power to all the data points of the signal.

We first test the energy measurement from the spectrogram of the signal by com-

paring it to the energy computed using the time-domain data. We find that the

total energy measured using the spectrogram is within 20% of the energy measured

using the time domain data. We then use the frequency evolution of the f−mode

measured via the short-time Fourier transform to extract the energy from the time-

frequency blocks associated with the f−mode oscillations using the spectrogram. We

find that the f−mode energies can be as high as 40% of the total energy emitted in

gravitational radiation during a core-collapse.
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We find that the energy associated with the f−mode oscillations typically in-

creases with the progenitor mass. The energy also depends on the delayed explosion

times and the success of explosion. Simulations having higher shock stall times before

the onset of explosion emit more gravitational-wave radiation since the oscillations

are excited for a longer time. Additionally, the energy of the f−mode also increases

monotonically with the rotation rate of the core, up to a certain value of core rotation

rate. Centrifugal forces dominate for faster core rotations, and cease the activation

of the oscillations of the proto-neutron star.

To understand how the detector noise will affect this analysis, we inject the

gravitational-wave signals into simulated Cosmic Explorer and Einstein telescope

noise and then extract the f−mode frequencies and measure the energies. We vary

the distance to the source, but limit it to within the Milky Way galaxy. We find

that for waveforms from three-dimensional simulations, we can measure the f−mode

frequencies for sources up to 20 kpc within an RMS error of 5 Hz, and the f−mode

energies within 20% fractional error, when the gravitational-wave signal is assumed to

be detected by a third-generation observatory. For waveforms from two-dimensional

simulations with core rotation, we can measure the frequencies for sources up to 20

kpc to within 2 Hz RMS error and energies to within 10% fractional error.

Measurement of the frequencies and energies of the f−mode oscillations can pro-

vide us more information about the mechanism of the supernova explosion. We can

also infer the central density of the proto-neutron star and the turbulence energy

within the system.
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Figure 21: The figure shows the energy (in 10−8M⊙c
2) obtained for the simulation

s19-3D as a function of the sampling rate used to resample the data from the sim-

ulations. The solid blue curve represent the case when Cubic interpolation is used

whereas the orange curve shows the case when Linear interpolation is used. The cor-

responding dashed curves show the difference between energy values obtained for a

particular sampling frequency and the one lower. We can see that the values converge

as the sampling frequency is increased.
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Figure 22: The figure shows the strain (top) and its spectrogram (bottom) of the 3D

simulation s19-3D. The strain data has been uniformly sampled at 16,384 Hz. The

ends have been tapered to zero by applying half cosine windows to the first and last

1024 points of the data. Then, the data are zero-padded by 0.04 seconds on either

end. The spectrogram of this signal is shown on the bottom panel. The f−mode

frequencies, obtained from linear perturbation analysis, start at 200ms and go from

500 Hz to 1000 Hz at 0.6 seconds after the core bounce, and are shown as red crosses

in the bottom panel. The vertical orange line shows the time t0 = 200 ms after

the core bounce. The two orange parabolic curves define the frequency range within

which the algorithm looks for the peak in the spectra.
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Figure 23: The top panel in the figure shows the spectrogram of the 3D simulation

s19-3D. The red curve shows the quadratic fit to the fundamental f−mode frequencies

measured by picking the frequencies corresponding to the peak in spectra and the two

white curves represent the width of the track. The energy of the mode is measured

by summing the energy of the time-frequency blocks within the white curves. The

blue, orange, and green curves in the bottom panel show the cumulative energy

measured from the time domain representation of the signal, its spectrogram, and

for the f−mode from the spectrogram, respectively, and summed for the individual

polarizations h+ and h×. The red, purple, and brown curves show two times the

energies for the same for the effective strain as observed in a interferometer.
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Figure 24: The figure shows the frequency evolution (left) and power (right) mea-

sured for the f−mode oscillations from the gravitational-wave strains of the three-

dimensional simulations. The frequency increases with time, owing to the shrinking of

the proto-neutron star. We find that the power in the gravitational-waves associated

with the f−mode oscillations generally increases as the progenitor mass increases.
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Figure 25: The figure shows the frequency evolution (left) and power (right) mea-

sured for the f−mode oscillations from the gravitational-wave strains of the two-

dimensional simulations with core rotation. The frequency increases with time, owing

to the shrinking of the proto-neutron star. We find that the power in the gravitational-

waves associated with the f−mode oscillations increases monotonically as the pro-

genitor core rotation rate increases, up till Ω = 0.75 rad/sec, and then decreases as

centrifugal forces dominate.
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Figure 26: The figure shows the frequency evolution (left) and power (right) mea-

sured for the f−mode oscillations from the gravitational-wave strains of the two-

dimensional simulations without core rotation. The frequency increases with time,

owing to the shrinking of the proto-neutron star. We find that the power in the

gravitational-waves associated with the f−mode oscillations generally increases as

the progenitor mass increases.
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Figure 27: The left panels of the figure show the root-mean-squared error in mea-

surement of frequency evolution of f-mode (σf ) for waveforms from three-dimensional

simulations. The right panel shows the error in measurement of energy in the f−mode

oscillations (σE). The orange line shows the median obtained from measurement in

10000 noise instances of Cosmic Explorer noise, with the fill representing the 90th

quantile. The blue curve represents the results for Einstein Telescope, and the green

curve for Advanced LIGO.
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Figure 28: The left panels of the figure show the root-mean-squared error in mea-

surement of frequency evolution of f-mode (σf ) for waveforms from two-dimensional

simulations with core rotation. The right panel shows the error in measurement of

energy in the f−mode oscillations (σE). The orange line shows the median obtained

from measurement in 10000 noise instances of Cosmic Explorer noise, with the fill

representing the 90th quantile. The blue curve represents the results for Einstein

Telescope, and the green curve for Advanced LIGO.



101

Figure 29: The left panels of the figure show the root-mean-squared error in mea-

surement of frequency evolution of f-mode (σf ) for waveforms from two-dimensional

simulations with zero core rotation. The right panel shows the error in measurement

of energy in the f−mode oscillations (σE). The orange line shows the median ob-

tained from measurement in 10000 noise instances of Cosmic Explorer noise, with the

fill representing the 90th quantile. The blue curve represents the results for Einstein

Telescope, and green curve for Advanced LIGO.
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Figure 30: ff−mode√
Gρc

as a function of time for the three-dimensional simulations, where

ρc is the central density of the protoneutron star. The frequencies are obtained from

linear perturbation analysis whereas the ρc values are obtained from the simulation

data. We obtain a linear fit ff−mode√
Gρc

= 0.23t + 0.06 (shown in red) using the data for

all the simulations.
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Figure 31: We plot the time evolution of ρc for the 19 M⊙ model in red, as obtained

from the three-dimensional simulation. We obtain ρc for each injection instance when

the source is assumed to be at 10 kpc and the signal is detected in Cosmic Explorer.

We plot the two-dimensional histogram for the ρinj(tb) where inj is the injection in-

stance and tb is the time after bounce. The counts for such histogram is shown on

the colorbar.
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Chapter 5

Reproducing the Results for

NICER Observation of

PSR J0030+0451

5.1 Introduction

Reproducibility of research—the ability to arrive at a consistent result given the same

raw data and original analysis method—is a critical element of scientific discovery.

Reproducibility provides the necessary level of trust in the published results and en-

ables researchers to build upon that work. Since more scientific studies are using

computation as a tool, reproducibility challenges arise from the computational point

of view—- especially the availability of data, software, the needed execution environ-

ment, and tools, as well as documentation used in the original analysis.

NICER is a payload onboard the International Space Station and the X-ray Timing

Instrument (XTI) is dedicated to observing X-rays from galactic pulsars [202]. Based

on NASA’s open science and open data policy, the data observed by NICER is released

to the public to advance scientific research. One of NICER’s aims is to measure the

masses and radii of neutron stars. These measurements constrain the neutron-star

equation of state, the relation between the pressure and density of the neutron star.

Measuring this equation of state requires a computationally-intensive analysis of the

NICER data. To fully understand and leverage the results of the equation of state

analyses, the astrophysics community needs to be able to reproduce and modify the
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original results so that they can: (i) check the robustness of the original result; (ii)

build new analyses using the original result, or (iii) extend the original analysis to

address new and different questions.

To measure the equation of state using PSR J0030+0451, Riley et al. developed

the analysis software X-PSI 1 (X-Ray Pulse Simulation and Inference) [203]. X-PSI

includes a Bayesian analysis framework to measure the pulsar’s mass and equatorial

radius (hence infer the equation of state) using the observed NICER data. We explore

whether the analysis of the pulsar PSR J0030+0451 by Riley et al. [61] can be

reproduced and modified to test the robustness of the result.

Miller et al. [204] has the same NICER observations of PSR J0030+0451 to

produce an independent analysis using different software, models, and methods to

measure the mass and radius of the pulsar. They arrived at measurements of mass

and radius of PSR J0030+0451 that were slightly different from, but consistent with,

the results of Riley et al. This is an example of replicability of research: using the

same data but different methods to arrive at a consistent result. The conclusion can

be drawn that the results are replicable; an analysis of the data leads to a consistent

mass and radius result for the pulsar. However, it does not verify that an external

entity could use the existing software stack created by Riley et al. to achieve the

same result, nor does it demonstrate that another group could modify or extend this

analysis.

Unlike our previous work on reproducing the detection of GW150914 by LIGO

[205], none of the authors of this reproducibility effort were involved in the original

analysis. This work is entirely based on the papers, data, software, and documentation

provided to the public by the authors of the original study by Riley et al. First, we

reproduce the results in Figure 19 of Riley et al., which shows the measurement of

the mass and the radius of the target pulsar obtained from the analysis. We note the

lessons learned and challenges we faced during the reproducibility process, as was done

in our previous works where we reproduced the images of the M87 black hole published

by the EHT collaboration [206, 207] and reproduced the detection of GW150914 [205].

We discuss the challenges encountered while acquiring the input data, installing and

using the software (including setting up the required dependencies and environment),

writing configuration files, job submission scripts, and post-processing the job output.

1https://github.com/xpsi-group/xpsi.git

https://github.com/xpsi-group/xpsi.git
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Ultimately, we were successfully able to reproduce the measurements done in the

original analysis.

Going beyond our previous work, after reproducing the original analysis, we

demonstrate that Riley et al. provides sufficient information to allow a third party

to modify the analysis in the new work. We use this functionality to test the robust-

ness of the methods to the prior probability distributions chosen for the Bayesian

analysis. Specifically, we expand the previous space on the pulsar radius from 16 km

to 25 km and change the sampler configuration for the Bayesian analysis. We find

that changing the upper limit of the prior does not change the posterior distribution

statistically significantly, demonstrating the result’s robustness to the choice of radius

prior. We increase the number of sampler points used to sample the posterior prob-

ability space from 1000 to 4000 and find that the posterior probability distribution

does not change, demonstrating the robustness of the analysis. As part of our work,

we repackage X-PSI and its software dependencies into a Docker container. This aids

in the portability of the data and the software and streamlines the reproduction of

the original analysis. The container is fully documented and contains the scripts for

the entire workflow used in our reanalysis, and is available at Docker Hub2.

This article is organized as follows. First, we describe the original analysis and

provide background information on measuring the mass and radius of neutron stars

from X-ray data. Then, we describe our effort to reproduce the analysis and note

the computational challenges. Finally, we summarize the lessons we learned when

reproducing the Riley et al. analysis and provide guidelines for improvement of the

reproducibility of such computationally intensive analyses.

5.2 Analysis Of PSR J0030+0451

Figure 32 shows a schematic overview of the analysis by Riley et al. including the

observation of the X-rays by NICER, modeling of the X-ray emission from the pulsar

surface, and estimation of the mass and radius of the pulsar using the observational

data and the models. The parts of analysis performed by Riley et al. using X-PSI

are shown as green boxes.

The mass and radius of the neutron star are imprinted on the X-rays emitted

2https://hub.docker.com/r/chaitanyaafle/nicer

https://hub.docker.com/r/chaitanyaafle/nicer
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by hot spots on the neutron star’s surface through the relativistic effect of their

propagation through the spacetime curvature induced by the star. The X-ray pulse

profile detected by a distant observer encodes the neutron star’s compactness, the

ratio of the star’s mass to its radius. NICER measures X-ray counts as a function of

time for a target pulsar, as illustrated in a box (1) of Figure 32. Since the photon

count profile of the signal is identical for each rotation of the pulsar, the signal can

be phase-folded into a single pulse profile, which gives photon count as a function

of the phase of the rotation of the pulsar, as shown in Figure 32 on the top right.

Creating a phase-folded data set is a pre-processing step performed by the NICER

instrument team and creates a derived data set used by subsequent analyses. This

data set, released using Zenodo, is the starting point for the Riley et al. analyses.

To measure the mass and radius of the star, a model H is created that describes

the X-ray emission from the hotspots and uses relativistic ray-tracing of the emitted

radiation to predict the pulse profile observed by a distant observer. The parameters

of this model are represented by θ⃗ and include the mass and radius of the neutron

star, the parameters describing the geometry of the hotspots, the distance to the

pulsar, the inclination angle of the axis of rotation to the line of view. In box (2) of

Figure 32, we show the geometry of the hotspots assumed for two models that we use

for reproducing the results from the original analysis.

For a given model H, Bayes’ theorem is used to infer the posterior probability

distribution of the model parameters given a realization of the observed data (box

(3) in Figure 32) according to

p(ϑ⃗|d⃗(t), H) =
p(d⃗(t)|ϑ⃗, H)p(ϑ⃗|H)

p(d⃗(t)|H)
. (5.1)

Here p(ϑ⃗|H) is the probability density of the parameters based on theory, assumptions,

or previous observations (the prior); p(d⃗(t)|ϑ⃗, H) is the joint probability distribution

as a function of parameters given fixed data (the likelihood); and p(d⃗(t)|H) is the

marginalized likelihood, also called evidence.

The goal of Riley et al. is to produce posterior probability measurements of the

mass, radius, and other model parameters for a given pulse-profile model and a set

of NICER observations of the pulsar J0030+0451. Box (4) in Figure 32 shows an

example schematic of a two-dimensional marginalized posterior of mass and radius.



108

Each parameter’s marginalized posterior probability distribution is obtained using

the MULTINEST [208] implementation of the nested sampling algorithm.

Riley et al. explored several hotspot geometry models to determine which model

was most favored. However, we only consider the two of the most likely used models

from their analysis and focus on the posterior probabilities for the parameters of

these models. To keep the scope of our work reasonable, we neglect models with

lower evidence values or higher complexity.

The hotspot geometry used in the most favoured model of Riley et al. involves

two hot regions on the pulsar’s surface. The first hotspot is a hot circular disk,

whereas the higher temperature in the second hot region lies in the arc-shaped re-

gion. This model is named ‘ST+PST’ (Single Temperature + Protruding Single

Temperature), shown in Figure 32. Using this model, Riley et al. found that the

mass of the pulsar PSR J0030+0451 is M = 1.34+0.15
−0.16 M⊙, and the equatorial radius

is Req = 12.71+1.14
−1.19 km. The bounds mentioned here are the 16% and 84% quantiles

from the posterior distribution obtained. The compactness M/Req is measured to

be 0.16+0.01
−0.01. In comparison, Miller et al. [204] measured the mass and radius to

be M = 1.44+0.15
−0.14 M⊙ and Req = 13.02+1.24

−1.06 km. The second Riley et al. model

we investigate is ‘ST+EST’ (Single Temperature + Eccentric Single temperature),

which differs from ST+PST in that the second hot region is an eccentric annular

ring. The model ST+EST gives larger radius and mass (Req = 13.89+1.14
−1.30 km and

M = 1.46+0.17
−0.18 M⊙, respectively).

5.3 Computational Considerations

The X-PSI code used by Riley et al. is an open-source code written primarily in

Python 2.7, with additional Cython support. As noted in our previous work, Python

code presents challenges in reproducibility due to its need for libraries that may not

be installed (or may be installed at a different version) on the platform where the

code is executed to reproduce an analysis. To address this, Riley et al. provided a

Python 2.7 Conda environment to install the code and its dependencies. Although

this does not isolate the code in the same was as containerization, it facilitates the

installation of X-PSI and necessary libraries at the correct version.
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The documentation provided by Riley et al. indicated that they used v0.1 of X-

PSI to infer the properties of PSR J0030+0451; this tagged code was made available

on GitHub and was straightforward to obtain and install. Riley et al. also released

a Zenodo repository3 that contains the phase-folded X-ray data from NICER used

as input to the analysis, the configuration files for X-PSI v0.1, the submit scripts

for the job, the output files of the job, and the files containing the posterior samples

for each analysis. This thorough release of data and configuration files makes it

possible to reproduce the original analysis, given sufficient computational resources.

The repository comes with a README.txt that briefly describes each file and its use.

For our analysis, we use the configuration files from the repository, changing the paths

to the input data and output files wherever necessary.

TheX-PSI analysis is computationally expensive. For example, obtaining marginal-

ized posteriors for the ST+PST Bayesian analysis took 42,453 wall clock hours (see

Table 2. from Riley et al.). The analysis involves O(108) likelihood evaluations each

taking O(1) second of evaluation time. The likelihood calculation involves simulating

hotspots on the star’s surface, ray tracing the radiation to include relativistic effects,

and creating an instance of the X-ray pulse that a distant observer would detect,

making likelihood evaluation the most expensive step. While running X-PSI on a

single compute node was straightforward, the likelihood evaluations must be executed

on multiple compute nodes in parallel to complete the analysis within a reasonable

time. To execute the analysis in parallel across multiple compute nodes, X-PSI uses

the Message Passing Interface (MPI) library.

To distribute the software and input data on each compute node, we used the

CERN Virtual Machine File System (CVMFS). This shared filesystem makes scientific

software easily available and accessible on HPC clusters. The software stack for

interprocess communication uses the mpi4py library [209] to create Python bindings

to MPI libraries written in C++ and installed as dynamic shared libraries. The object

code in these libraries executes the inter-process communication using system calls.

Our main reproducibility challenge was to produce a containerized version of X-PSI

that could execute the analysis using MPI across multiple (possibly heterogeneous)

compute nodes.

Following our previous experience, we created a Docker image containing the

3https://doi.org/10.5281/zenodo.5506838

https://doi.org/10.5281/zenodo.5506838
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complete X-PSI software stack for execution as a stand-alone image. Using a base

Debian Miniconda image4, we installed X-PSI and the required dependencies in it

using the files provided by Riley et al.. While the Docker container streamlines the

installation of X-PSI and its dependencies, it presents a problem of running the

analysis in parallel on multiple compute nodes as code running each docker container

running on a compute cluster needs to communicate with the other containers. While

this is possible, it is challenging without administrative control of the host machines.

Singularity provides a controlled, containerized environment with the advantage

that codes running in the image can access the network capabilities of the host. Unlike

Docker’s full virtual machine containerization, Singularity creates images that overlay

on the host machine. Therefore, if the host’s operating system is configured to allow

interprocess communication for MPI (as is common in cluster environments), it can

be used by code running in the Singularity image. For this to work, the Singularity

image must contain the exact version of the mpi4py and the MPI-shared libraries as

the host machine. To address this challenge, we used scripts by the Open Science

Grid team that convert Docker containers into Singularity images.

We use HTCondor as the job scheduler and the Syracuse University Gravitational-

wave Group (SUGWG) cluster for our analysis. This is a heterogeneous combina-

tion of Intel® Xeon® Gold 6248R @3.00GHz, E5-2660v2 @2.20GHz, E5-2698v3

@2.30GHz, X5650 @2.67GHz, X5550 @2.67GHz, E5-2620 0 @2.00GHz, and AMD

EPYC 7702P, EPYC 7543 processors). The cluster uses a CentOS operating system

configured to allow codes to use OpenMPI [210] implementation of MPI.

Since the Docker container (and hence the derived Singularity image) used to host

X-PSI has a Debian operating system, we made a copy of the OpenMPI shared li-

braries that are installed on the SUGWG compute nodes, deployed it in the container,

and configured the runtime linker so that the Python interpreter inside the container

could access these libraries. This ensures that the OpenMPI within the container has

identical paths and configurations to the host compute nodes. The analysis can then

be launched using the HTCondor job scheduler. HTCondor uses mpirun to execute

X-PSI from inside the Singularity container across multiple compute nodes. Figure

33 shows the schematic depicting the software setup.

4https://hub.docker.com/r/continuumio/miniconda

https://hub.docker.com/r/continuumio/miniconda
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5.4 Reproducing the J0030 Result

We reproduce the original analyses using the ST+PST and ST+EST models using the

above software setup. Additionally, we submit jobs using the ST+PST and ST+EST

models with broader radius priors than the original analyses. Table 13 shows the job

statistics and summary of results obtained for the analysis in Riley et al. and for

our work. We also show the information provided in the Zenodo release by Riley et

al.. The results from the data in the Zenodo repository and those in the publication

are different because Riley et al. post-processed the posterior samples (present in

the Zenodo repository) to re-evaluate the evidence. We do not repeat this post-

processing step since we do not have access to a working post-processing script used

by the original study’s authors.

Figure 34 shows the posteriors for the model ST+PST from the Zenodo repository

(results used by Riley et al.) in blue, from the reproducibility analysis in orange,

and for the analysis with the broader radius priors in green. Figure 35 shows when

the model ST+EST was used. The figures show one and two-dimensional marginal

posteriors for the mass M (in solar masses), the equatorial radius Req (in km), and

the compactnessM/Req (in solar mass/km) of the pulsar. The original and reanalysis

analysis involved 19 parameters (for ST+PST and ST+EST models). For brevity, we

show the posteriors for only three parameters, mass, radius, and compactness.

We find that we can reproduce the results from the original analyses. We get the

exact measurement for the three quantities of interest with the same 68 percentile

confidence interval. The minor differences in the posteriors are statistical, and one

expects this order of fluctuation after each repetition of the analysis. Since Markov

Chain Monte Carlo sampling is random, one cannot obtain identical reproduction

of the positions of the sample points. The samples exploring the posterior space

accumulate around the region with high probability. There would be some fluctuation

at the periphery of this distribution, which is reflected in the deviations in the 99%

contour lines, where the sampler population density is sparse. The inner 68% and

95% contour lines in the posterior from the reanalysis show much less deviation from

the posterior of the original analysis.

Moreover, the value for evidence we get for the reanalysis is close to the value

reported in the original paper. Again, there would be statistical fluctuation over
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repetition, and one would not expect the evidence to be precisely the same. The

values obtained are within the margin of fluctuation one would expect from run to

run.

Post-processing and plotting the output of the Bayesian analysis proved to be an

obstacle to the reproducibility of the original results. Although the Zenodo reposi-

tory had all the configuration files and submitted scripts to start the analysis, the

post-processing and plotting scripts were absent. These scripts are necessary to pro-

duce a figure that is identical to the figure that was published. The documentation

of X-PSI describes the post-processing module of the software. However, the docu-

mentation describes v0.5 of X-PSI, which is backward incompatible with v0.1 used

in the original analysis. We found that the post-processing module of X-PSI failed

to process the output files from MULTINEST. Instead, we used the post-processing

modules and scripts from PyCBC Inference [156]–a Python toolkit for Bayesian anal-

ysis of gravitational-wave signals–to plot all the posteriors. We converted the .dat

files produced by the MULTINEST sampler into PyCBC-readable .hdf files and used

the pycbc plot posterior script on these files. This emphasizes the importance of

releasing the set of all the executables used in the original analysis, including the

post-processing and the plotting scripts.

In addition to reproducing the original analyses, we also explore the effects of using

broader prior bounds for the radius. The original analysis put the upper bound at 16

km for the neutron star’s radius. We change it to 25 km and found that the posteriors

are unaffected. This test is useful for the model ST+EST, where the posteriors are

cut off at the upper bound of the prior. We aim to check if the posteriors were affected

if the prior base was increased. Since the posteriors do not change significantly, we

conclude that the data observed by the NICER instrument is informative and that

our choice of priors does not heavily influence the Bayesian analysis. The posteriors

for the analyses with broader radius priors for models ST+PST and ST+EST are

shown in green in Figures 34 and 35, respectively.

For the model ST+PST, we also perform an analysis with an increased number

of live points used by the sampler to sample the posterior probability distribution.

The original analysis used 1000 live points, and we increased it to 4000 live points

to check the robustness of the result to the sampler configuration. The posteriors do

not significantly change when the number of live points for the sampler increases.
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5.5 Lessons Learned

We compiled a list of challenges we encountered while reproducing the analysis and

noted the lessons learned. We discuss the guidelines to make computational analysis,

such as that done by Riley et al., reproducible. Table 14 lists whether the data,

software, and documentation components were available, incomplete, or unavailable

before our reproducibility study.
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Figure 32: Schematic showing how the mass and radius of PSR J0030+0451 can be

measured using X-ray data observed by NICER. The parts of the analysis done by

Riley et al. using X-PSI are shown as green boxes. X-PSI uses the data observed

by NICER (box 1 and the observed pulse profile), and the hotspot models that sim-

ulate the X-ray emission from the pulsar (box 2), to perform Bayesian parameter

estimation (box 3) and measure the posterior probabilities for mass and radius of the

target pulsar (box 4). The two examples of hotspot models shown in the figure are

‘ST+PST’ (Single Temperature + Protruding Single Temperature) and ‘ST+EST’

(Single Temperature + Eccentric Single temperature).
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Figure 33: Schematic showing the software components used in our workflow execu-

tion. We create a Docker image on the login node on the sugwg-condor cluster which

has the replica of the OpenMPI installation present on any of the compute nodes.

This Docker image is then pushed to Docker Hub cloud storage. CVMFS converts

the Docker container into a Singularity container and makes it available for use on

the cluster. We use the HTCondor job scheduler to deploy the Singularity containers

on the compute nodes, thus fulfilling the parallelization requirements of the analysis.
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Model
Results in

Riley et al.

Zenodo

release

Reproducibility

analysis

Broader

radius

priors

4000 live

points

ST+PST

lnZ -36368.28 -36366.65 -36365.52 -36365.24 -36364.39

Mass [M⊙] 1.34+0.15
−0.16 1.34+0.15

−0.15 1.34+0.16
−0.15 1.36+0.16

−0.16 1.35+0.16
−0.16

Eq. Radius [km] 12.71+1.14
−1.19 12.7+1.1

−1.2 12.8+1.2
−1.2 12.9+1.2

−1.2 12.9+1.3
−1.2

Z evaluations 78,343,018 78,343,018 157,814,515 139,593,698 589,513,174

Replacements 57,972 57,972 56,896 56,596 225,856

Posterior Samples 20,177 12,242 11,896 11,749 46,488

CPU hours 42,453 42,453 48,384 55,296 179,712

Number of cores 960 960 288 384 288

ST+EST

lnZ -36367.81 -36366.17 -36366.14 -36366.16 -

Mass [M⊙] 1.46+0.17
−0.18 1.46+0.17

−0.18 1.46+0.17
−0.17 1.47+0.19

−0.19 -

Eq. Radius [km] 13.89+1.14
−1.30 13.9+1.1

−1.3 13.8+1.2
−1.2 14+1.4

−1.4 -

Z evaluations 88,965,106 88,965,106 89,850,127 143,920,078 -

Replacements 53,149 53,149 53,098 52,358 -

Posterior Samples 20,177 12,242 10,944 10,828 -

CPU hours 61,210 61,210 48,384 55,296 -

Number of cores 960 960 288 480 -

Table 13: Summary of job statistics for the original analysis published by Riley et

al. in the Zenodo repository, and the reanalyses. We show the key results in the

first section of the models ST+PST and ST+EST for the Bayesian evidence (lnZ)

obtained from the analysis, and the measurement of mass and the equatorial radius

of the target pulsar. The results in Riley et al. are obtained after post-processing the

data they obtained from the job. The latter has been publicly released in the Zenodo

repository, so the computational details (CPU hours, number of cores) for these two

columns will be the same. In contrast, the evidence values and measurements of mass

and radius will differ.
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Figure 34: Comparison of posterior probability distributions for mass, radius, and

compactness of J0030 obtained by Riley et al. (blue), reproducing the analysis

(orange), and for the analysis with the broader radius priors (green), using the

hotspot model ST+PST. The corner plot shows the three parameters’ one and two-

dimensional marginal posteriors. The priors used for the re-analysis are the same as

in the original analysis.
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Figure 35: Comparison of posterior probability distributions for mass, radius, and

compactness of J0030 obtained by Riley et al. (blue), reproducing the analysis

(orange), and for the analysis with the broader radius priors (green), using the

hotspot model ST+EST. The corner plot shows the three parameters’ one and two-

dimensional marginal posteriors. The priors used for the re-analysis are the same as

in the original analysis.
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Input Data Availability. The raw data for the NICER observation of PSR J0030+451

was not made available by Riley et al. through their Zenodo repository. However,

processed data was included in the Zenodo release and had accompanying documen-

tation.

Software Availability. Riley et al. use X-PSI v0.1 to analyze PSR J0030+451

data. The code is open source and publicly available on GitHub.

Software Documentation. X-PSI comes with extensive, publicly-accessible

documentation. Since the framework of the code is modular, the documentation goes

over each module in depth, explaining the physics associated with it and providing

examples. However, the code and its documentation have evolved significantly since

they were used for the original analysis. The documentation during our reproducibil-

ity effort relates to X-PSI v0.5, whereas the original analysis used X-PSI v0.1.

Software Installation and Dependencies. The instructions for installation of

X-PSI include information about all the software dependencies. They also provide

.yml files that can be used to create a virtual environment with the basic dependencies

resolved. The installation manual has clear instructions for installing the sampler and

the parallelization software.

Configuration files. The Zenodo repository has all the configuration files used

by X-PSI to generate the hotspot models. The availability of the configuration files

was crucial to successfully reproducing the results. The configuration files shared in

the Zenodo repository streamline the setup of the jobs. Combined with the documen-

tation, modifying the original analysis and changing the sampler configuration and

the prior bounds for radius was easy.

Computational Resources The original analysis of Riley et al. used the Dutch

national SURFsara supercomputer Cartesius. As is common in attempts to reproduce

analyses, we did not have access to these computational resources or the original

environment used by Riley et al. To execute X-PSI on the large-scale resources

available to us, we had to adapt the X-PSI deployment to fit a different scheduler

and create an overlay container that could run on this cluster. By demonstrating

that this is possible, we show that it is possible to overcome access the barrier to

reproducibility presented by access to computing resources.

Post-processing Scripts. The unavailability of the post-processing scripts to

analyze the output data from the analysis and plot the posteriors made it unfeasible



121

for us to generate the same plot as the one present in the publication of the original

results. We had to use PyCBC software to plot the posterior distributions. Post-

processing scripts are a crucial part of the software workflow in reproducibility. The

scripts to process the raw data are also absent.

Output Data Availability. The Zenodo repository included the posterior out-

put files for all the analysis jobs performed by the original study’s authors. The

output files included all the files generated by the sampler MULTINEST, including the

posterior file and the history of all the sample points throughout the analysis. It also

includes the output of the jobs — including the job scheduler logs and error messages

generated by X-PSI during the analysis.

5.6 Conclusions

Conducting reproducible research is an essential step towards open science. In this

article, we described the procedure and challenges involved in reproducing the mea-

surement of mass and radius of the pulsar PSR J0030+451 from the X-ray data

observed by NICER.

Given the release of the Zenodo repository containing the data and the configu-

ration scripts used for the original analysis, we were able to reproduce the analysis

by Riley et al. to measure the mass and the radius of PSR J0030+451. The post-

processing scripts plot the posteriors using the output file produced by X-PSI is

absent. We could not use the code and its documentation to plot the posteriors as

shown in the original publication. Instead, after converting the output file to an

.hdf file, we used the post-processing module of PyCBC to plot the posteriors. This

highlights the importance of releasing the entire set of scripts, from data processing

to post-processing of the analysis output, to be released in a containerized format to

reproduce the analysis.

Apart from reproducing the measurement, we changed the prior probabilities of

the radius from the original analysis, increasing the upper bound from 16 km to 25 km.

Despite the broader range of possible radii from the prior, we get the exact posterior

distribution as the original analysis. We also increased the number of points used

by the sampler from 1000 to 4000 and found no significant change in the posterior

probability distribution.
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Our work also shows that that is possible to reproduce analyses that require

large-scale computational resources without access to the original hardware. This is

significant, as access to resources is often a major barrier to reproducibility. Scientists

wishing to reproduce findings might not have allocations on the original resources, or

the original resource may have been decommissioned. Using the Singularity overlay

container shows that executing MPI code across a heterogeneous cluster that uses a

different operating system than the original hardware is possible.

To aid future researchers who want to reproduce the analysis of PSR J0030+451

data, the Docker container created for our analysis is publicly available5. The specific

tag of the container used for the reproducibility analyses is ‘8d3b23d‘. The Dockerfile

is also available publicly on the GitHub repository accompanying this article 6. We

provide the post-processing script and the PyCBC installation required to produce

the posterior corner plots.

5https://hub.docker.com/r/chaitanyaafle/nicer
6https://github.com/sugwg/nicer-reproducibility-J0030

https://hub.docker.com/r/chaitanyaafle/nicer
https://github.com/sugwg/nicer-reproducibility-J0030
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Chapter 6

Conclusions

Neutron stars provide a unique opportunity for us to understand the behavior of dense

matter. In order to extract fundamental physics from these laboratories, we need to

observe and analyze the astrophysical signals from them. In this thesis, we discussed

methods to analyze gravitational-wave signals from core-collapse supernovae—the

birthplace of neutron stars, and X-rays from the surface of galactic pulsars. First, we

discussed how to optimize Cosmic Explorer, the next-generation gravitational-wave

detector, to maximize its range to detect core-collapse supernovae. Based on three-

dimensional simulations for core-collapse and the corresponding gravitational-wave

waveform emitted, the detection range for these waveforms is limited to within our

galaxy even in the era of third-generation detectors. The event rate is two super-

novae per century for the Milky Way. We find from the waveforms that, to detect

core-collapse supernovae with an event rate of one per year, the gravitational-wave

detectors need a strain sensitivity of 3×10−27 Hz−1/2 in a frequency range from 100 Hz

to 1500 Hz. We also explore detector configurations technologically beyond the scope

of third-generation detectors. We find with these improvements, the event rate for

gravitational-wave observations from supernovae is still low, but is improved to one

in twenty years. However, if detected by Cosmic Explorer in conjunction with the

electromagnetic and neutrino signals, the gravitational-wave signal from a supernova

will be spectacular and will be able to answer a host of fundamental physics questions.

We have investigated the ability of gravitational-wave observatories to extract the

properties of the collapsing progenitor from the gravitational waves radiated. We use

simulations of supernovae that explore a variety of progenitor core rotation rates and
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nuclear equations of state and examine the ability of current and future observatories

to determine these properties using gravitational-wave parameter estimation. We use

principal component analysis of the simulation catalog to determine the dominant

features of the waveforms and create a map between the measured properties of the

waveform and the physical properties of the progenitor star. We use Bayesian param-

eter inference and the parameter map to calculate posterior probabilities for the phys-

ical properties given a gravitational-wave observation. We demonstrate our method

on a random sample of the waveform catalog that was excluded from construction

of the principal component analysis and estimate the ratio of the progenitor’s core

rotational kinetic energy to potential energy (β) and the post bounce oscillation fre-

quency. For a supernova at the distance of the galactic center (8.1 kpc) with β = 0.02

our method can estimate β with a 90% credible interval of 0.004 for Advanced LIGO,

improving to 0.0008 for Cosmic Explorer, the proposed third-generation detector. We

demonstrate that if the core is rotating sufficiently rapidly for a signal source within

the Milky Way observed by Cosmic Explorer, our method can also extract the post

bounce oscillation frequency of the protoneutron star to a precision of within 5 Hz

(90% credible interval) allowing us to constrain the nuclear equation of state. For

a supernova at the distance of the Magellanic Clouds (48.5 kpc) Cosmic Explorer’s

ability to measure these parameters decreases slightly to 0.003 for rotation and 11 Hz

for the postbounce oscillation frequency (90% credible interval). Sources in Magel-

lanic Clouds with β < 0.02 will be too distant for Advanced LIGO to measure these

properties.

We have analyzed the gravitational-wave strain signals from two- and three-

dimensional simulations of core-collapse supernovae generated using the code Fornax,

including a subset of the two-dimensional simulations having non-zero core rotation

at the core bounce. A dominant source of time changing quadrupole moment is the

l = 2 fundamental mode (f− mode) oscillation of the proto-neutron star. From

the time-frequency spectrogram of the gravitational-wave strain we see that, start-

ing ∼ 400 ms after the core bounce, most of the power lies within a narrow track

that represents the frequency evolution of the f−mode oscillations. The f−mode

frequencies obtained from linear perturbation analysis of the angle-averaged profile

of the protoneutron star corroborate what we observe in the spectrograms of the

gravitational-wave signal. We explore the measurability of the f−mode frequency
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evolution of protoneutron star for a supernova signal observed in the third-generation

gravitational-wave detectors. Measurement of the frequency evolution can reveal in-

formation about the masses, radii, and densities of the proto-neutron stars. We find

that if the third generation detectors observe a supernova within 10 kpc, we can mea-

sure these frequencies to within ∼90% accuracy. We can also measure the energy

emitted in the fundamental f−mode using the spectrogram data of the strain signal.

We find that the energy in the f−mode can be measured to within 20% error for

signals observed by Cosmic Explorer using simulations with successful explosion, as-

suming source distances within 10 kpc. In the future, we plan to jointly analyze the

gravitational-wave signal with the neutrino signal from supernovae, since the primary

instigators for both is the accreting matter on the proto-neutron star. Similar analy-

sis of the time-frequency spectrograms can also be done for the postmerger signal of

a binary neutron star merger.

We reproduced the results of Riley et al., in which they reported Bayesian parame-

ter measurements of the mass and the star’s radius using pulse-profile modeling of the

X-ray data of the pulsar PSR J0030+0451 observed by NASA’s Neutron Star Interior

Composition Explorer (NICER) mission. We reproduce their result using the open-

source software X-PSI and publicly available data within expected statistical errors.

We note the challenges we faced in reproducing the results and demonstrate that the

analysis can be reproduced and reused in future works by changing the prior distri-

bution for the radius and the sampler configuration. We find no significant change

in the measurement of the mass and radius, demonstrating that the original result

is robust to these changes. Finally, we provide a containerized working environment

that facilitates third-party reproduction of the measurements of mass and radius of

PSR J0030+0451 using the NICER observations. This is the first step in creating a

joint electromagnetic—gravitational-wave analysis pipeline. In the future, we plan to

combine the X-ray data for PSR J0030+0451, PSR J0740+6620, and GW170817 to

provide joint, multi-messenger constraints on the neutron star equation of state.
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Renè Racine, and Peter B Stetson. The hubble constant and virgo cluster

distance from observations of cepheid variables. Nature, 371(6496):385, 1994.

[95] GA Tammann, W Loeffler, and A Schroeder. The galactic supernova rate. The

Astrophysical Journal Supplement Series, 92:487–493, 1994.



136

[96] Massimo Capaccioli, Massimo Della Valle, Mauro D’Onofrio, and Leonida

Rosino. Properties of the nova population in m31. The Astronomical Jour-

nal, 97:1622–1633, 1989.

[97] G. A. Tammann, W. Loeffler, and A. Schroeder. The Galactic supernova rate.

Astrophysical Journal, Supplement, 92:487–493, June 1994.

[98] Wendy L Freedman and Barry F Madore. An empirical test for the metallicity

sensitivity of the cepheid period-luminosity relation. The Astrophysical Journal,

365:186–194, 1990.

[99] S Mattila and WPS Meikle. Supernovae in the nuclear regions of starburst

galaxies. Monthly Notices of the Royal Astronomical Society, 324(2):325–342,

2001.

[100] M. T. Botticella, S. J. Smartt, R. C. Kennicutt, E. Cappellaro, M. Sereno, and

J. C. Lee. A comparison between star formation rate diagnostics and rate of

core collapse supernovae within 11 Mpc. Astron. and Astrophys., 537:A132, Jan

2012.

[101] S Mattila, Tomas Dahlén, Andreas Efstathiou, Erkki Kankare, Jens Melinder,
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[102] Matthew D Kistler, Hasan Yüksel, Shin’ichiro Ando, John F Beacom, and

Yoichiro Suzuki. Core-collapse astrophysics with a five-megaton neutrino de-

tector. Physical Review D, 83(12):123008, 2011.

[103] Sidney van den Bergh and Gustav A Tammann. Galactic and extragalactic

supernova rates. Annual Review of Astronomy and Astrophysics, 29(1):363–

407, 1991.

[104] Viktoriya Morozova, David Radice, Adam Burrows, and David Vartanyan. The

Gravitational Wave Signal from Core-collapse Supernovae. The Astrophysical

Journal, 861(1):10, jun 2018.



137

[105] Lee Samuel Finn and David F Chernoff. Observing binary inspiral in gravita-

tional radiation: One interferometer. Physical Review D, 47(6):2198, 1993.

[106] Benjamin P Abbott, R Abbott, TD Abbott, MR Abernathy, F Acernese, K Ack-

ley, C Adams, T Adams, P Addesso, RX Adhikari, et al. All-sky search for

short gravitational-wave bursts in the first advanced ligo run. Physical Review

D, 95(4):042003, 2017.

[107] S Klimenko, G Vedovato, M Drago, F Salemi, V Tiwari, GA Prodi, C Lazzaro,

K Ackley, S Tiwari, CF Da Silva, et al. Method for detection and reconstruction

of gravitational wave transients with networks of advanced detectors. Physical

Review D, 93(4):042004, 2016.

[108] Ryan Lynch, Salvatore Vitale, Reed Essick, Erik Katsavounidis, and Florent

Robinet. Information-theoretic approach to the gravitational-wave burst detec-

tion problem. Physical Review D, 95(10):104046, 2017.

[109] Warren G Anderson, Patrick R Brady, Jolien DE Creighton, and Eanna E

Flanagan. Excess power statistic for detection of burst sources of gravitational

radiation. Physical Review D, 63(4):042003, 2001.

[110] Benjamin P Abbott, R Abbott, TD Abbott, MR Abernathy, F Acernese,

K Ackley, C Adams, T Adams, P Addesso, RX Adhikari, et al. Observing

gravitational-wave transient gw150914 with minimal assumptions. Physical Re-

view D, 93(12):122004, 2016.

[111] LIGO Scientific Collaboration. LIGO Algorithm Library - LALSuite. free soft-

ware (GPL), 2018.

[112] The LIGO Scientific Collaboration. Gravitational Wave Interferometer Noise

Calculator.

[113] Adam Burrows, David Radice, and David Vartanyan. Three-dimensional su-

pernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars. Mon. Not.

Roy. Astron. Soc., 485(3):3153–3168, 2019.



138

[114] Alessandra Buonanno, Yanbei Chen, and Nergis Mavalvala. Quantum noise

in laser-interferometer gravitational-wave detectors with a heterodyne readout

scheme. Physical Review D, 67(12):122005, 2003.

[115] Benjamin P Abbott, R Abbott, T D Abbott, M R Abernathy, K Ackley,

C Adams, P Addesso, R X Adhikari, V B Adya, C Affeldt, and Others. Ex-

ploring the sensitivity of next generation gravitational wave detectors. Classical

and Quantum Gravity, 34(4):44001, 2017.

[116] Alessandra Buonanno and Yanbei Chen. Improving the sensitivity to

gravitational-wave sources by modifying the input-output optics of advanced

interferometers. Physical Review D, 69(10):102004, 2004.

[117] Denis Martynov, Haixing Miao, Huan Yang, Francisco Hernandez Vivanco, Eric

Thrane, Rory Smith, Paul Lasky, William E East, Rana Adhikari, Andreas

Bauswein, and Others. Exploring the sensitivity of gravitational wave detectors

to neutron star physics. arXiv preprint arXiv:1901.03885, 2019.

[118] W Keith Hastings. Monte carlo sampling methods using markov chains and

their applications. 1970.

[119] James Kennedy and Russell Eberhart. Particle swarm optimization. Proceedings

of ICNN’95 - International Conference on Neural Networks, pages 1942–1948,

1995.

[120] Sheila Dwyer, Daniel Sigg, Stefan W Ballmer, Lisa Barsotti, Nergis Maval-

vala, and Matthew Evans. Gravitational wave detector with cosmological reach.

Physical Review D, 91(8):082001, 2015.

[121] Haixing Miao, Huan Yang, and Denis Martynov. Towards the design of

gravitational-wave detectors for probing neutron-star physics. Phys. Rev. D,

98(4):44044, aug 2018.

[122] Karsten Danzmann, LISA Study Team, and Others. LISA: Laser interferometer

space antenna for gravitational wave measurements. Classical and Quantum

Gravity, 13(11A):A247, 1996.



139

[123] Sukanta Bose, Kabir Chakravarti, Luciano Rezzolla, BS Sathyaprakash, and

Kentaro Takami. Neutron-star radius from a population of binary neutron star

mergers. Physical review letters, 120(3):031102, 2018.

[124] Kentaro Takami, Luciano Rezzolla, and Luca Baiotti. Constraining the equa-

tion of state of neutron stars from binary mergers. Physical Review Letters,

113(9):091104, 2014.

[125] Harald Dimmelmeier, Christian D. Ott, Andreas Marek, and H.-Thomas Janka.

Gravitational wave burst signal from core collapse of rotating stars. Phys. Rev.

D, 78:064056, Sep 2008.

[126] A Burrows, L Dessart, E Livne, C.˜D. Ott, and J Murphy. Simulations of

Magnetically Driven Supernova and Hypernova Explosions in the Context of

Rapid Rotation. Astrophysical J., 664:416–434, jul 2007.

[127] A Heger, S E Woosley, and H C Spruit. Presupernova Evolution of Differentially

Rotating Massive Stars Including Magnetic Fields. The Astrophysical Journal,

626(1):350–363, jun 2005.

[128] A. Marek, H. T. Janka, and E. Müller. Equation-of-state dependent features

in shock-oscillation modulated neutrino and gravitational-wave signals from su-

pernovae. Astron. and Astrophys., 496(2):475–494, Mar 2009.

[129] Stefan Hild, Hartmut Grote, Martin Hewitson, Harald Lück, JR Smith,

KA Strain, Benno Willke, and Karsten Danzmann. Demonstration and com-

parison of tuned and detuned signal recycling in a large-scale gravitational wave

detector. Classical and Quantum Gravity, 24(6):1513, 2007.

[130] Robert Lawrence Ward. Length sensing and control of a prototype advanced

interferometric gravitational wave detector. PhD thesis, California Institute of

Technology, 2010.

[131] Brian J Meers. Recycling in laser-interferometric gravitational-wave detectors.

Physical Review D, 38(8):2317, 1988.

[132] Vladimir B Braginsky and F Ya Khalili. Quantum nondemolition measure-

ments: the route from toys to tools. Reviews of Modern Physics, 68(1):1, 1996.



140

[133] Benjamin P Abbott, R Abbott, TD Abbott, F Acernese, K Ackley, C Adams,

T Adams, P Addesso, RX Adhikari, VB Adya, et al. Gw170817: Implications

for the stochastic gravitational-wave background from compact binary coales-

cences. Physical review letters, 120(9):091101, 2018.

[134] H. A. Bethe. Supernova mechanisms. Rev. Mod. Phys., 62:801–866, 1990.

[135] H. Thomas Janka, Tobias Melson, and Alexander Summa. Physics of Core-

Collapse Supernovae in Three Dimensions: a Sneak Preview. Ann. Rev. Nucl.

Part. Sci., 66:341–375, 2016.

[136] Adam Burrows, David Radice, David Vartanyan, Hiroki Nagakura, M. Aaron

Skinner, and Joshua Dolence. The Overarching Framework of Core-Collapse

Supernova Explosions as Revealed by 3D Fornax Simulations. Mon. Not. Roy.

Astron. Soc., 491(2):2715–2735, 2020.

[137] Ik Siong Heng. Rotating stellar core-collapse waveform decomposition: A prin-

cipal component analysis approach. Class. Quant. Grav., 26:105005, 2009.

[138] J. Logue, Christian D. Ott, Ik Siong Heng, P. Kalmus, and James H.C. Scargill.

Inferring Core-Collapse Supernova Physics with Gravitational Waves. Phys.

Rev. D, 86:044023, 2012.

[139] Jade Powell, Sarah E. Gossan, Joshua Logue, and Ik Siong Heng. Inferring the

core-collapse supernova explosion mechanism with gravitational waves. Phys.

Rev. D, 94(12):123012, 2016.

[140] Jade Powell, Marek Szczepanczyk, and Ik Siong Heng. Inferring the core-

collapse supernova explosion mechanism with three-dimensional gravitational-

wave simulations. Phys. Rev., D96(12):123013, 2017.

[141] Vincent Roma, Jade Powell, Ik Siong Heng, and Ray Frey. Astrophysics with

core-collapse supernova gravitational wave signals in the next generation of

gravitational wave detectors. 2019.

[142] Matthew C. Edwards, Renate Meyer, and Nelson Christensen. Bayesian param-

eter estimation of core collapse supernovae using gravitational wave simulations.

Inverse Prob., 30:114008, 2014.



141

[143] Christian Rover, Marie-Anne Bizouard, Nelson Christensen, Harald Dim-

melmeier, Ik Siong Heng, and Renate Meyer. Bayesian reconstruction of grav-

itational wave burst signals from simulations of rotating stellar core collapse

and bounce. Phys. Rev., D80:102004, 2009.

[144] S. E. Woosley and Alexander Heger. Nucleosynthesis and Remnants in Massive

Stars of Solar Metallicity. Phys. Rept., 442:269–283, 2007.

[145] Harald Dimmelmeier, Jerome Novak, Jose A. Font, Jose M. Ibanez, and Ewald

Muller. ’Mariage des maillages’: A New numerical approach for 3D relativistic

core collapse simulations. Phys. Rev. D, 71:064023, 2005.

[146] Harald Dimmelmeier, Jose A. Font, and Ewald Muller. Relativistic simulations

of rotational core collapse. 2. Collapse dynamics and gravitational radiation.

Astron. Astrophys., 393:523–542, 2002.

[147] T. Zwerger and E. Mueller. Dynamics and gravitational wave signature of

axisymmetric rotational core collapse. Astron. Astrophys., 320:209–227, 1997.

[148] Soumi De, Christopher M. Biwer, Collin D. Capano, Alexander H. Nitz, and

Duncan A. Brown. Posterior samples of the parameters of binary black holes

from Advanced LIGO, Virgo’s second observing run. 2018.

[149] B.P. Abbott et al. GW170817: Measurements of neutron star radii and equation

of state. Phys. Rev. Lett., 121(16):161101, 2018.

[150] L A Wainstein and V D Zubakov. Extraction of signals from noise. Prentice-

Hall, Englewood Cliffs, NJ, 1962.

[151] Christian D. Ott, E. Abdikamalov, E. O’Connor, C. Reisswig, R. Haas,

P. Kalmus, S. Drasco, A. Burrows, and E. Schnetter. Correlated Gravitational

Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron

Core Collapse. Phys. Rev. D, 86:024026, 2012.

[152] Jim Fuller, Hannah Klion, Ernazar Abdikamalov, and Christian D. Ott. Su-

pernova Seismology: Gravitational Wave Signatures of Rapidly Rotating Core

Collapse. Mon. Not. Roy. Astron. Soc., 450(1):414–427, 2015.



142

[153] M. Bayes and M. Price. An Essay towards Solving a Problem in the Doctrine

of Chances. Philosophical Transactions (1683-1775), 1763.

[154] E. T. Jaynes. Probability Theory: The Logic of Science. CUP, 2003.

[155] L. A. Wainstein and V. D. Zubakov. Extraction of Signals from Noise. 1970.

[156] C. M. Biwer, Collin D. Capano, Soumi De, Miriam Cabero, Duncan A. Brown,

Alexander H. Nitz, and V. Raymond. PyCBC Inference: A Python-based pa-

rameter estimation toolkit for compact binary coalescence signals. Publ. Astron.

Soc. Pac., 131:024503, 2019.

[157] Daniel Foreman-Mackey, David W. Hogg, Dustin Lang, and Jonathan Good-

man. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac., 125:306–312,

2013.

[158] WD Vousden et al. 2016. https://github.com/willvousden/ptemcee.

[159] WD Vousden, Will M Farr, and Ilya Mandel. Dynamic temperature selection for

parallel tempering in markov chain monte carlo simulations. Monthly Notices

of the Royal Astronomical Society, 455(2):1919–1937, 2016.

[160] Joshua S. Speagle. DYNESTY: a dynamic nested sampling package for esti-

mating Bayesian posteriors and evidences. MNRAS, 493(3):3132–3158, April

2020.

[161] John Skilling. Nested Sampling. In Rainer Fischer, Roland Preuss, and Udo Von

Toussaint, editors, American Institute of Physics Conference Series, volume 735

of American Institute of Physics Conference Series, pages 395–405, November

2004.

[162] John Skilling. Nested sampling for general Bayesian computation. Bayesian

Analysis, 1(4):833–859, 2006.

[163] R. Abbasi et al. IceCube Sensitivity for Low-Energy Neutrinos from Nearby

Supernovae. Astron. Astrophys., 535:A109, 2011. [Erratum: Astron.Astrophys.

563, C1 (2014)].

https://github.com/willvousden/ptemcee


143

[164] M. Ikeda et al. Search for Supernova Neutrino Bursts at Super-Kamiokande.

Astrophys. J., 669:519–524, 2007.

[165] R. Acciarri et al. Long-Baseline Neutrino Facility (LBNF) and Deep Under-

ground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2:

The Physics Program for DUNE at LBNF. 12 2015.

[166] Takaaki Yokozawa, Mitsuhiro Asano, Tsubasa Kayano, Yudai Suwa, Nobuyuki

Kanda, Yusuke Koshio, and Mark R. Vagins. Probing the Rotation of Core-

collapse Supernova With a Concurrent Analysis of Gravitational Waves and

Neutrinos. Astrophys. J., 811(2):86, 2015.

[167] Irene Tamborra. Supernova Neutrinos: New Challenges and Future Directions.

J. Phys. Conf. Ser., 888(1):012040, 2017.

[168] David Reitze et al. Cosmic Explorer: The U.S. Contribution to Gravitational-

Wave Astronomy beyond LIGO. Bull. Am. Astron. Soc., 51:035, 2019.

[169] Sofia Suvorova, Jade Powell, and Andrew Melatos. Reconstructing Gravita-

tional Wave Core-Collapse Supernova Signals with Dynamic Time Warping.

Phys. Rev. D, 99(12):123012, 2019.

[170] E. Mueller and H.-T. Janka. Gravitational radiation from convective instabili-

ties in Type II supernova explosions. Astron. Astrophys., 317:140–163, January

1997.

[171] K. Kotake, S. Yamada, and K. Sato. Gravitational radiation from axisymmetric

rotational core collapse. Phys. Rev. D, 68(4):044023, August 2003.

[172] Jeremiah W. Murphy, Christian D. Ott, and Adam Burrows. A Model for

Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae.

Astrophys. J., 707:1173–1190, 2009.

[173] K. Hayama, T. Kuroda, K. Kotake, and T. Takiwaki. Coherent network analysis

of gravitational waves from three-dimensional core-collapse supernova models.

Phys. Rev. D, 92(12):122001, December 2015.



144

[174] K. N. Yakunin, A. Mezzacappa, P. Marronetti, S. Yoshida, S. W. Bruenn, W. R.

Hix, E. J. Lentz, O. E. Bronson Messer, J. A. Harris, E. Endeve, J. M. Blondin,

and E. J. Lingerfelt. Gravitational wave signatures of ab initio two-dimensional

core collapse supernova explosion models for 12 -25 M? stars. Phys. Rev. D,

92(8):084040, October 2015.

[175] Viktoriya Morozova, David Radice, Adam Burrows, and David Vartanyan.

The gravitational wave signal from core-collapse supernovae. Astrophys. J.,

861(1):10, 2018.

[176] David Radice, Viktoriya Morozova, Adam Burrows, David Vartanyan, and

Hiroki Nagakura. Characterizing the Gravitational Wave Signal from Core-

collapse Supernovae. Ap.J. Letters, 876(1):L9, May 2019.

[177] A. Burrows, D. Vartanyan, J. C. Dolence, M. A. Skinner, and D. Radice. Cru-

cial Physical Dependencies of the Core-Collapse Supernova Mechanism. Space

Science Revews, 214:33, February 2018.

[178] M. A. Skinner, J. C. Dolence, A. Burrows, D. Radice, and D. Vartanyan.

FORNAX: A Flexible Code for Multiphysics Astrophysical Simulations. Ap.J.

Suppl., 241:7, March 2019.

[179] Adam Burrows and David Vartanyan. Core-Collapse Supernova Explosion The-

ory. Nature, 589(7840):29–39, 2021.

[180] D. Christodoulou. Nonlinear nature of gravitation and gravitational wave ex-

periments. Phys. Rev. Lett., 67:1486–1489, 1991.

[181] Kip S. Thorne. Gravitational-wave bursts with memory: The Christodoulou

effect. Phys. Rev. D, 45(2):520–524, 1992.

[182] David Vartanyan and Adam Burrows. Gravitational Waves from Neutrino Emis-

sion Asymmetries in Core-collapse Supernovae. Astrophys. J., 901(2):108, 2020.

[183] Marie-Anne Bizouard, Patricio Maturana-Russel, Alejandro Torres-Forné, Mar-
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