Hellmann-Feynman Theorem in Thomas-Fermi and Related Theories

Jerry Goodisman
Syracuse University

Follow this and additional works at: https://surface.syr.edu/che

Part of the Chemistry Commons

Recommended Citation
Chemistry - Faculty Scholarship. 4.
https://surface.syr.edu/che/4

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Chemistry - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Hellmann-Feynman Theorem in Thomas-Fermi and Related Theories

Jerry Goodisman

Department of Chemistry, Syracuse University, Syracuse, New York 13210

(Received 21 November 1969)

The general Hellmann-Feynman theorem (derivative of energy with respect to a parameter
= expectation value of derivative of Hamiltonian) is proved for theories in which the electron
density is determined by making the energy functional stationary. Some simple applications
are given.

Recently, Teller\(^1\) and Balázs\(^6\) have given arguments showing that the various quantum-statistical
theories\(^3\) [Thomas-Fermi (TF), Thomas-Fermi-Dirac (TFD), Thomas-Fermi-Dirac-Gombas] cannot
give a stable molecule. [Sheldon's TFD calculations\(^4\) on \(N_2\) (the only true molecular calculations
using the exact theory) had previously led to instability.] Teller\(^1\) showed that the energy of a
molecular system in these theories will never be lower than the energy of the separated atoms;
Balázs\(^6\) showed that the forces on the nuclei always tend to dissociate the molecule. The equivalence
of these two points of view is part of the content of the Hellmann-Feynman theorem.\(^3,6\)

The theorem in its general form states that the change in the energy with a parameter appearing
in the Hamiltonian can be obtained from the expectation value of the derivative of the Hamiltonian
with respect to this parameter. For the usual quantum-mechanical situation, the exact energy is
the eigenvalue of a many-electron Hamiltonian, and expectation values are over a many-electron
wave function; in the quantum-statistical theories, the electron density is obtained from a nonlinear
equation, and there is no wave function. However, we note that a proof of the theorem can be based
on the variational principle.\(^6\) This suggests, for the statistical theories, a related proof of the
theorem.

We give a proof here for the general Hellmann-Feynman theorem which applies to a class of theories
including the quantum-statistical ones. We then mention some of the implications. We assume
that the energy is given as a functional \(E\) of the electron density \(\rho\). \(E\) may also depend on a
parameter \(P\). The density is determined by making the functional stationary to variations of \(\rho\),
with any auxiliary condition on \(\rho\) being taken into account by a Lagrange multiplier \(\lambda\):

\[
\delta [E(\rho, P) + \lambda A(\rho)] = 0.
\]

The density thus determined for a given \(P\) is denoted by \(\rho_P\) and the corresponding energy by
\(E_P = E(\rho_P, P)\). The energy derivative \(dE_P/dP\) has two parts, due to the explicit occurrence of \(P\) in
\(E\) and due to the dependence of \(\rho_P\) on \(P\). If, as is usually the case, \(P\) appears in an expectation value as \(\int F(\rho) f(\rho) d\tau\), the first part of \(dE_P/dP\) will be the expectation value of the derivative,
\(\int F'(\rho) f(\rho) d\tau\). The second part of \(dE_P/dP\) can be written
\(\lim (\delta F - 0)[E(\rho_P + \delta P, P) - E(\rho_P, P)]/\delta P\). But \(E(\rho_P, P)\) is stationary to any variation in \(\rho\)
which leaves \(A(\rho)\) invariant, so this second term vanishes. This proves our theorem. We now give
several illustrations of it.

If \(P\) is a nuclear charge, it appears as \(Pe^2/\tau^2 d\tau\), where \(\tau\) is the distance from the nucleus.
Then \(dE/dP\) is given by \(e^2/\tau^2 \rho(\tau) d\tau\), as may be shown by direct (but more complicated)
manipulation of the energy functional. If \(P\) is a nuclear coordinate, the theorem states that \(dE/dP\) is given
by \(\int (\partial V_{\text{elec}}/\partial P) \rho(\tau) d\tau\), where the derivative of the electron-nuclear potential energy operator
is taken with electronic coordinates held fixed. The equivalence of energy derivative and expectation value of
electrostatic force, referred to above,
follows when the electrons are fixed in a space-fixed coordinate system. For a diatomic, one may
use confocal ellipsoidal coordinates, in which interparticle distances are proportional to the inter-
nuclear distance R for fixed values of these coordinates. The volume element is explicitly propor-
tional to R^2, p to R^{-3}, the potential-energy operators to R^{-1}. Taking $P=R$, we note that the
potential-energy terms V are explicitly proportional to R^{-1} and the kinetic energy T (proportional
to $\int p^{3/2} d\tau$) to R^{-2}. Then our theorem gives

$$dE/dR = -R^{-1} V - 2R^{-1} T,$$

(2)

which is the virial theorem. This proof is well known for the quantum mechanical case. The atom
is the special case where one nuclear charge is zero; E then does not depend on R.

As a final example, the change in energy in going from the TF to the TFD theory is due to the
additional term $-\kappa_s \int p^{1/2} d\tau$ in the energy functional, with $\kappa_s \sim 0.74\, e^2$. The energy change could be estimated from the TF function without computing
the TFD function by considering E as a function of κ_s, with $\kappa_s = 0$ corresponding to TF and $\kappa_s \sim 0.74e^2$
to TFD. Imagine $E(\kappa_s)$ to be expanded in a power series about $\kappa_s = 0$. If the linear term suffices,
the energy change is $\kappa_s dE/d\kappa_s = -\kappa_s \int p^{1/2} d\tau$,
where ρ is the TF density. We obtain then

$$E_{TF} - E_{TF} = -0.383 Z^{1/2} \int \varphi^2 dxe^2/a_0,$$

(3)

where φ is the solution to the TF equation. Evaluating the integral numerically for the tabulated φ
gives 0.640, and the energy difference is $-0.232 \times Z^{1/2} e^2/a_0$, as compared to $-0.23 Z^{1/2} e^2/a_0$, as
calculated directly by Gombas [If the expansion of $E(\kappa_s)$ were made around $\kappa_s = 0.74e^2$ instead of 0,
the same reasoning would show the energy difference could be calculated from $\kappa_s \int p^{1/2} d\tau$ where ρ
is the TFD density.]

3P. Gombás, Die Statistische Theorie des Atoms und
6H. Hellmann, Einführung in die Quantenchemie
(Deuticke, Leipzig, 1937).
7Reference 3, p. 59.
8For example, A. C. Hurley in Molecular Orbitals in
Chemistry, Physics and Biology (Academic, New York,
9Reference 3, p. 90.

Padé Approximants and Inner Projections in the Brillouin-Wigner
Perturbation Scheme for He-like Ions*

G. L. Bendazzoli,† O. Goscinski, and G. Orlandi‡
Department of Quantum Chemistry, University of Uppsala, Uppsala, Sweden
(Received 26 January 1970)

The continued-fraction expansions in terms of Brillouin-Wigner perturbation energies are
evaluated for the He-like series. They show remarkable convergence and stability proper-
ties. Both Padé approximants and perturbation energies are computed with formulas derived
by the inner-projection technique.

INTRODUCTION

The Brillouin-Wigner (BW) perturbation series\(^1\) suffers from convergence problems which, in ad-
dition to computational difficulties, made its use relatively infrequent. Modifications of the
scheme, which cast it into a continued fraction expansion were made by Feenberg and others.\(^2\)–\(^4\)
It is possible to derive the bounding properties of the alternate energy approximants of Young et al.\(^3\)
by showing that they can be obtained by inner pro-
jections of the reaction operator in the way suggest-
ed by Löwdin,\(^5\) provided one chooses the linear manifold considered in a specific way.\(^6\) It can be
seen that the upper- and lower-bound approxi-
mants can be identified as Padé approximants\(^7\) to
the BW series.\(^6\) In the Rayleigh–Schrödinger (RS)
case, the analogous Padé approximants showed
remarkable convergence even though one could