Electron Densities for Homonuclear Diatomic Molecules from the Thomas-Fermi-Dirac Theory

Jerry Goodisman
Syracuse University, goodisma@syr.edu

Follow this and additional works at: http://surface.syr.edu/che

Part of the Chemistry Commons

Recommended Citation
http://surface.syr.edu/che/7

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Chemistry Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
DAMPING OF PLASMA OSCILLATIONS IN ATOMS

Electron Densities for Homonuclear Diatomic Molecules from the Thomas-Fermi-Dirac Theory

Jerry Goodisman
Department of Chemistry, Syracuse University, Syracuse, New York 13210

I. INTRODUCTION

Quantum-statistical theories such as the Thomas-Fermi-Dirac (TFD) theory lead to an integrodifferential equation for the electron density. Individual electrons are not treated, so the difficulty of the calculation is independent of the number of electrons, in contrast to the usual quantum-mechanical approaches. There was considerable interest in such calculations for atomic systems, but the success of self-consistent-field (SCF) calculations has led to a relative lack of interest in

\[W_f = \int d^3 x \left| \frac{\mathbf{E}}{W} \right|^2 \leq W. \] (30)

This integral is convergent and should be less than the true value of the energy. Therefore the value of \(\gamma \) calculated with \(W_f \) will be greater than the previous value by the factor \(W/W_f \). Although this factor could be quite large (its largest value was \(1.6 \times 10^3 \) for \(Z = 92 \) and \(\Omega = 2.756 \)), in no case was the value of \(\gamma/\omega \) above unity.

Fortunately, our conclusion depends only on the order of magnitude of \(\gamma/\omega \). It seems very unlikely that elimination of the sources of error noted would change \(\gamma/\omega \) by the orders of magnitude necessary to negate the conclusion that weakly damped plasma oscillations can exist in atoms.

ACKNOWLEDGMENTS

We are grateful to Dr. Herman Postma and Dr. Gareth Guest for the hospitality of the Thermonuclear Division of the Oak Ridge National Laboratory, where part of this work was done. We are grateful to Dr. Dieter Sigmar of ORNL for his valuable advice on computer calculations. We are grateful to Dr. Joseph A. Ball for a copy of his thesis.

N. V. Federenko, Zh. Tekhn. Fiz. 34, 1013 (1964); 34, 1624 (1964) [Sov. Phys. Tech. Phys. 9, 1248 (1965); 9, 1256 (1965)].

J. C. Slater, Phys. Rev. 36, 57 (1930).

TFD and related methods here. However, it appears now that, for molecules of even moderate size, SCF calculations will be too difficult for the near future. Thus, it seemed of interest to explore the usefulness of TFD calculations for molecules.

We here report some results for the simplest cases: homonuclear diatomics. We are interested in getting an idea of how accurate are the electron densities obtained, by comparing expectation values for various operators with SCF and experimental results. The calculation of the density is discussed in Sec. II, and the results for expectation values are given in Sec. III. From the atomic work, it is known that the attractive simplicity of the calculation is to be balanced against large inaccuracies in certain results due to breakdown of the assumptions of the theory very far from and very close to the nucleus. Many attempts have been made, and continue to be made, to alleviate this problem. A simple modification of the theory has led to great improvements in expectation values for atomic calculations. Its application to molecules is discussed in Sec. IV.

Previous molecular calculations seem to have been primarily concerned with the energy. The best TFD calculation for a molecular system known to us is that of Sheldon for N₂. Other work on diatomics used the Thomas-Fermi theory, wherein exchange is not included. Hund treated the Thomas-Fermi problem for N₂ and F₂ by a variational method, while Glazer and Reiss treated ICI and the CH bond of methane by a relaxation method like the one we use here, and computed dipole moments. The most complete work is that of Townsend and Handler, who solved the Thomas-Fermi equation for homonuclear diatomics by a relaxation procedure. It may be shown that, for the Thomas-Fermi theory, only one parameter need be specified (rather than both the nuclear charge Z and internuclear distance R). Thus, Townsend and Handler give a table of expectation values of operators entering the Hamiltonian for several values of this parameter. For a particular choice of Z, each corresponds to a different value of R, so that the energies for several different internuclear distances may be obtained.

The variation of energy with internuclear distance is of great interest in many of the above investigations. It now has been shown that these theories cannot lead to a bound molecule, so that the energy decreases monotonically with increasing R. Equivalently, the net force on a nucleus, which is calculable from the electron density, is always positive (repulsive). It is suggested that the theory is valid for the interaction of rare-gas atoms, which is purely repulsive. Calculations of forces and energies for such a case are given at the end of Sec. III.

II. TFD EQUATION FOR HOMONUCLEAR DIATOMICS

Our calculation follows essentially the method given by Sheldon. The coordinate system used, which takes advantage of the symmetry and general characteristics of the solution, is defined in terms of the usual cylindrical coordinates in Fig. 1. The nuclei are at 1 and 2, the internuclear distance R being equal to 2a. Instead of x and r one uses

$$\eta = \cos \theta_1 + \cos \theta_2,$$

$$\xi = (r_1^2 + r_2^2)^{-1/2}. \quad (1)$$

For the homonuclear case it suffices to consider

$$x > 0 \text{ or } 0 < \eta < 2.$$ \quad (2)

We go over to a system of units in which all distances are measured in units of a and the electronic charge and mass are unity. The TFD theory provides a relation between the potential V and the electron density \(\rho\) at each point in space. Sheldon introduces the function \(u\) such that \(u^2/\xi\) is proportional to \(V + (32\pi^2)^{-1}\). The density is given as

$$\rho = \left(1/3\pi^2a_0^3\right)[u/(a\xi)^{1/2} + 1]^3. \quad (3)$$

Equation (3), in conjunction with the Poisson equation which also relates \(V\) and \(\rho\), leads to a differential equation for \(u\). In the present coordinate system, it is

$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial}{\partial \eta} \left(\frac{\partial}{\partial \eta} \frac{\partial u}{\partial \eta}\right) + \left(\frac{\partial}{\partial \xi} \frac{\partial u}{\partial \xi}\right) = F. \quad (4)$$

Here, \(t = \ln(\xi)\) and

$$F = \frac{8}{3\pi^2 g^2 \xi^3} \left(1 + \frac{\eta}{(a\xi)^{1/2}}\right)^2, \quad u > \frac{1}{4} (a\xi)^{1/2} \quad (5a)$$

or

$$F = 0, \quad u < \frac{1}{4} (a\xi)^{1/2} \quad (5b)$$

where \(g\) is the metric, the volume element being

$$d\tau = g^{\xi} d\eta d\xi d\varphi. \quad (6)$$

(There is a discontinuity of the density which is a necessary consequence of the TFD theory.) Near a nucleus, the potential must approach the Coulombic potential, and this leads to the boundary condition

$$u = (22)^{1/2}\pi \text{ as } t \to -\infty. \quad (7)$$

The differential equation is treated by transforming it to a finite difference equation by the usual formulas. The grid of points in \(\eta\) is equally spaced from \(\eta = 0\) to \(\eta = 2\). The range of \(t\) and its definition
mean that equal spacing is not appropriate; the points go from \(t_0\) (negative enough so that the density for \(t = t_0\) may be taken as the TFD atomic density) to \(t_e\) such that \(t = t_e\) falls outside the surface of discontinuity of \(\rho_1\), which we denote as \(t_\epsilon(\eta)\).

Sheldon's approach is based on the differential equations, and our formulas agree with his except for one case, the first derivative of \(u^2\) with respect to \(t\). Letting \(k\) index the \(t\) points and \(i\) index the \(\eta\) points, we put

\[
\frac{\partial u^2}{\partial t} + \frac{u^2 - u_{i,k}^2}{\Delta t_{i,k}^{1/2}} = \frac{\Delta t_{i,k}^{1/2}}{(u_{i,k}^2 - u_{i,k-1}^2)} \frac{\Delta t_{i,k}^{1/2}}{(\Delta t_{i,k}^{1/2} + \Delta t_{i,k-1}^{1/2})}.
\]

(6)

Here, \(\Delta t_{i,k}^{1/2} = t_{i,k} - t_i\).

The finite difference equation for the point \((i,k)\) is

\[
\left(u_{i,k} - u_{i,k-1}\right) = \frac{\alpha_f}{(1/3)} \left(\frac{\partial f}{\partial u_1}\right) f.
\]

(7)

The solution is obtained by a relaxation method. We go over the grid of points, adjusting the value of \(u\) in each case according to

\[
\alpha_f = 1\left(\frac{1}{\Delta t_{i,k}^{1/2}}\right)
\]

(8)

repeating the process until the \(u\)'s no longer change.

When \(\alpha = 1\), the new value of \(u_{i,k}\) would make \(f = 0\) if \(f\) were linear in \(u_{i,k}\). Actually, the parameter \(\alpha\) may be chosen to optimize the rate of convergence of the method, and Sheldon's approach shows \(0 < \alpha < 2\) is permissible.

We start by putting \(u = \frac{1}{2}(a\xi^{1/2})\) for all points on \(t = t_0\). As the integration proceeds, we put \(u = \frac{1}{2}(a\xi^{1/2})\) whenever the corrected \(u_{i,k}\) from (7) falls below \(\frac{1}{2}(a\xi^{1/2})\). (In the computation of expectation values, discussed below, we put \(\alpha = 0\) for such points.) To satisfy the boundary condition (7), we use the fact that, close to a nucleus, the solution of the TFD equation becomes identical to that for the neutral atom of that nuclear charge. Thus, we set the values of \(u\) for the surface \(t = t_0\) using atomic TFD solutions at the outset.

The surface \(t_\epsilon(\eta)\) is not very well defined by this procedure. The error in the computed norm (see below) reflects this in part. Sheldon indicates how one may use this known error to correct other expectation values. It seems to us, however, that the solution to Eq. (4) is not uniquely specified with these boundary conditions \(\nu\) given for \(t = t_0\) and \(u = \frac{1}{2}(a\xi^{1/2})\) for \(t > t_0\), but that an infinite number of solutions exist, corresponding to a range of possible slopes \(\partial u/\partial t\) on \(t_0\). One really should impose continuity of the slope \(\partial u/\partial t\) at \(t_0\). We believe that the character of the solutions (assuming they behave like those for atoms) is what saves things, for an initial slope slightly too high leads to a solution which starts to rise rapidly before it can intersect

\[u = \frac{1}{2}(a\xi^{1/2})\],

while one which is slightly too low intersects \(u = \frac{1}{2}(a\xi^{1/2})\) too quickly to satisfy the normalization condition.

III. Expectation Values for Homonuclear Diatomics

We are interested in the expectation values of various functions of the coordinates. Letting \(F\) be such a function, we have

\[
\int F\rho d\tau = \sqrt{\pi} \int_0^\infty \rho d\eta \int_\theta^\infty d\xi \left(\xi^2 F' \rho\right)
\]

(9)

with integration now limited to the quadrant \(x > 0, y > 0\) of the plane in Fig. 1. The density is expressed in terms of \(u\) and the trapezoidal rule is used to carry out the integration. The integral over \(t\) is actually carried out from \(t = t_0\) and not \(t = -\infty\), with the contribution from \(t < t_0\) being evaluated separately using the atomic TFD function. Letting \(t_\epsilon\) be the maximum value of \(t\) for which \(\rho\) is nonzero \((t_0 = \text{should really depend on } \eta)\) and letting \(\Delta t_{i,k}^{1/2}\) and \(\Delta t_{i,k-1/2}\) be zero, the integral is approximated as

\[
\int F\rho d\tau = \frac{2\eta_\max^2}{3\pi} \sum_{i=0}^k \sum_{k=0}^{k_\max} \left(\Delta t_{i,k}^{1/2} + \Delta t_{i,k-1/2}\right)
\]

\[
\times \omega_{i,k} \left(\omega_{i,k+1} + 1\right) \omega_{i,k} \omega_{i,k+1} F_{i,k}.
\]

(15)

Here, \(y = (a\xi^{1/2})\).

We first discuss results for \(N_2\) at interatomic distances of 2.076 and 6 Bohr radii (the latter is close to the separated atom limit) and for \(F_2\) at 2.74\(\sigma_0\). The interatomic distances for the first and last are close to the experimental potential minima. We will be comparing expectation values with those from SCF calculations and, in some cases with the results of Sheldon and of Townsend and Handler.

Some molecular properties depend on the electron density are (a) the electron-nuclear attraction energy and diamagnetic shielding, which require \(\langle 1/r \rangle\); (b) the diamagnetic susceptibility and quadrupole moment, or \(\langle a^2 \xi^2 \rangle\) and \(\langle a^2 \xi^3 \rangle\); and (c) the Hellmann-Feynman force on the nuclei, which means \(\langle \cos \theta \xi^2/r_2 \rangle \) or \(-\langle \cos \theta \xi^2/r_2 \rangle\). Properties (a) and (c) depend on the behavior of the density near the nuclei, and (b) depends on its behavior at the periphery of the molecule. The Hellmann-Feynman force is notoriously difficult to calculate accurately,
even for quantum-mechanical densities. In addition to these expectation values, we calculate the normalization (1), which must be equal to the number of electrons for the exact solution, as a check on accuracy.

In Tables I–VI, we have added to the expected values calculated from the solution to (4) contributions for the density for \(r < r_0 \), using the atomic density. For the normalization, we must add

\[
2\sigma = 2 \int_0^\infty 4\pi r^2 dr \rho_{TFD} = 2Z \int_0^\infty x' dx
\]

\[
= 2Z \left[x_0 \psi'(x_0) - \psi(x_0) + 1 \right].
\]

(13)

Here, \(t_0 \) is negative enough so the surface \(t = t_0 \) consists of two circles around the nuclei of radius \(r_0 \); \(x \) is the dimensionless coordinate of the TFD theory and is given by

\[
x = r / \mu,
\]

(14)

with

\[
\mu = \frac{1}{3} \left(\frac{3\pi}{4} \right)^{1/3} (2Z)^{-1/3} a_0;
\]

and \(\psi \) is the solution to the usual atomic TFD equation. The contribution of this density to \(\langle r_1^2 + r_2^2 \rangle \) is

\[
2\sigma (2a)^{-1} + 2 \int_0^\infty 4\pi r^2 dr \rho_{TFD} r^{-1}
\]

\[
= \sigma / a + 2Z \mu^{-1} \int_0^\infty dx \psi''
\]

\[
= \sigma / a + 2Z \mu^{-1} [\psi'(x_0) - \psi'(0)].
\]

(15)

The first term is the contribution of density on one nucleus to the potential at the other. The second term here is actually much more important than the first and represents the contribution of density to the nucleus on which it is centered. The contribution to \(\langle r^2 \rangle \) is taken as zero, since the density lies on the internuclear axis, while the contribution to \(\langle x^2 \rangle \) is \(2\sigma \). If the density within \(t_0 \) can be considered spherically symmetric, its contribution to the Hellmann-Feynman force would be \(2\sigma / (2a) \); that is, the density centered on a nucleus exerts no force on that nucleus and behaves like a point charge with respect to the other.

Since the force is sensitive to the density near the nucleus, we thought it advisable to make some estimate of the effect of polarization here. The calculated expectation value \(f \),

\[
f = \langle r_1^2 \cos \theta_1 - r_2^2 \cos \theta_2 \rangle,
\]

(16)

should be increased by \(2(Z^2 a^2 - \frac{1}{4} f) \sigma / Z \), as shown in the Appendix.

In Table I we give results from our calculation and from Sheldon's \(^7\) at \(R = 2.076 a_0 \), and compare with what is obtained from an SCF calculation. \(^7\) The SCF calculation is actually for \(R = 2.038 a_0 \), but the errors in the present method are generally larger than the changes due to the altered \(R \). Just as for atoms, the expectation value \(\langle r_1^2 + r_2^2 \rangle \) is about \(\frac{1}{3} \) too high, due to the breakdown of the assumptions of TF and TFD near the nucleus (the density actually goes infinite there). It is this behavior that we will be able to correct in Sec. IV. Townsend and Handler's Table I allows us to compute the Thomas-Fermi result for this case: 54.5. The inclusion of exchange allows the electrons to cluster more closely about the nuclei, so the TFD result is even worse than the TF for this property. The incorrect behavior of the theory for large distances, as evidenced by the discontinuity in \(\rho \), tends to make expectation values like \(\langle \rho^2 \rangle \) and \(\langle \rho^4 \rangle \) too high. The errors in these for \(N_2 \) are less than might have been expected, but this may be a coincidence: Things are much worse for \(F_2 \) (see Table II). In fact one finds similar luck for \(Ar \) among the rare-gas atoms. It must also be noted that these expectation values are extremely sensitive to the location of the boundary \(t_0(\eta) \), and this is certainly not being calculated correctly by the present method as we

| Table I. \(N_2, R = 2.076 a_0 \) (all expectation values in atomic units). |
|---------------------------------|-----------------|-----------------|-----------------|
| Expectation value | This calculation| Sheldon | Nesbet* |
| \(\langle 1 \rangle \) | 14.026 | 13.89 | 14.000 (exact) |
| \(\langle r_1^2 + r_2^2 \rangle \) | 57.28 | 57.15 | 43.29 |
| \(\langle a^2 \rangle \) | 24.22 | \(\cdots \) | 23.60 |
| \(\langle a^4 \rangle \) | 18.55 | \(\cdots \) | 15.49 |
| \(\langle r_1^2 \cos \theta_1 - r_2^2 \cos \theta_2 \rangle \) | 3.00 | 2.93, 2.97\(^b\)| 3.25\(^c\) |

*Reference 7. These expectation values are actually for \(R = 2.068 a_0 \).

\(^b\)The expectation value was not directly calculated by Sheldon, but derived from other expectation values via the virial theorem (first result) or from the variation of kinetic energy with distance (second result).

\(^c\)This is not the expectation value from Nesbet's wave function, but is obtained from the fact that the electronic and nuclear contributions to the force must balance for the equilibrium nuclear configuration.
TABLE II. F_2, $R = 2.74 a_0$ (all expectation values in atomic units).

<table>
<thead>
<tr>
<th>Expectation value</th>
<th>This calculation</th>
<th>Wahl a</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle 1 \rangle</td>
<td>18,005</td>
<td>18,000 (exact)</td>
</tr>
<tr>
<td>\langle r_1^2 + r_2^2 \rangle</td>
<td>76,501</td>
<td>59.86 b</td>
</tr>
<tr>
<td>\langle a^2_x \rangle</td>
<td>45.27</td>
<td>39.66</td>
</tr>
<tr>
<td>\langle a^2_y \rangle</td>
<td>25.63</td>
<td>13.99</td>
</tr>
<tr>
<td>\langle r^2 \cos \theta_1 - r^2 \cos \theta_2 \rangle</td>
<td>2.28</td>
<td>2.40 c</td>
</tr>
</tbody>
</table>

aReference 9. This calculation is actually for $R = 2.680 a_0$.
cThis is not the expectation value from Wahl's wave function, but is obtained from the fact that electronic and nuclear contributions to the force must balance for the equilibrium nuclear configuration.

The situation for the electronic contribution to the molecular quadrupole moment may be even worse, since this depends on the difference of expectation values \langle a^2 x^2 \rangle - \frac{1}{2} \langle a^2 r^2 \rangle. It turns out that our results agree to about 6% for N_2 and F_2, but for some other cases the errors in the two quantities could as well add as cancel. But even a "good" value here is not enough since the molecular quadrupole moment is itself a difference between a nuclear and an electronic contribution. The nuclear contribution is $22 a^2$ (we are taking the molecular midpoint as origin throughout) and is rather close to the electronic contribution, so that we calculate in both cases quadrupole moments of the wrong sign as well as magnitude. A similar problem arises in the electronic force on a nucleus $\frac{1}{2}f$.

When this is subtracted from the force due to the other nucleus $Z/(2a)^2$ the errors of 10% or so in f become all important. One obtains a zero or positive force for all our three cases.

Sheldon,5 who remarked that the energy of the N_2 system increased monotonically as the internuclear separation decreased, explained it in terms of the rapidly rising kinetic energy. He suggested that the TFD theory actually describes the atoms as well as the molecule as closed-shell systems and so never gives rise to covalent bonding. Chem-

TABLE III. N_2, $R = 6.9 a_0$ (all expectation values in atomic units).

<table>
<thead>
<tr>
<th>Expectation value</th>
<th>This calculation</th>
<th>Sheldon</th>
<th>TFD atoms a</th>
<th>SCF atoms a</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle 1 \rangle</td>
<td>13.977</td>
<td>13.95</td>
<td>***</td>
<td>14 (exact)</td>
</tr>
<tr>
<td>\langle r_1^2 + r_2^2 \rangle</td>
<td>52.85</td>
<td>53.05</td>
<td>53.02</td>
<td>39.06</td>
</tr>
<tr>
<td>\langle a^2_x \rangle</td>
<td>125.88</td>
<td>125.88</td>
<td>68.32</td>
<td></td>
</tr>
<tr>
<td>\langle a^2_y \rangle</td>
<td>20.64</td>
<td>20.64</td>
<td>16.16</td>
<td></td>
</tr>
<tr>
<td>\langle r^2 \cos \theta_1 - r^2 \cos \theta_2 \rangle</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>

aAssuming noninteracting atoms, i.e., superposition of atomic densities. \langle r^{-1} \rangle for isolated TFD atoms is given by L. H. Thomas, J. Chem. Phys. 22, 1758 (1954).
bNot directly calculated (cf. preceding tables).
ical bonding is of course a periodic phenomenon, which strictly quantum-statistical theories cannot reproduce. Because of the scaling which is possible in the TF theory for a neutral homonuclear molecule (multiplication of Z by k and R by $k^{-1/3}$ multiplies the energy by $k^{7/3}$), the potential curves for all such molecules have the same shape. As was emphasized by Teller, if the molecule with nuclear charges Z_1, a minimum for $R = R_m$, scaling would produce a minimum at $R = (Z/2Z_1)^{1/3} R_m$ for the molecule with nuclear charges Z_2. The binding energy being multiplied by $(Z/2Z_1)^{1/3}$. It is probably just as well that no minima occur. The TFD results follow the TF results because, as observed by Sheldon, the change in exchange energy with R is of minor importance.

Several years after Sheldon’s calculations, Teller was able to show in general that the energy of a molecular system treated by the TF or TFD theory is never lower than the energy of the separated atoms. Subsequently, Balazs showed that any theory in which the electron density at a point is a function only of the electrostatic potential at that point makes the net force on a nucleus of a homonuclear diatomic molecule positive. (The Weiszäcker-type kinetic-energy correction makes the potential depend on derivatives of the density as well as the density. Balazs shows that type of theory leads to a net attractive force for sufficiently large inter-nuclear distance and hence to stable molecules. However, it still seems to us that any theory which takes no account of individual electrons must give similar behavior for N_2, F_2, and Ne_2 with respect to molecular binding.) The equivalence of the force and energy points of view is assured by the Hellmann-Feynman theorem.

An interesting approach was taken by Townsend and Keller, who corrected the TF energies of Townsend and Handler for exchange and for the breakdown of the statistical theories close to the nuclei by a method used for atoms by Scott. To correct for the poor behavior near the nuclei, it is noted that, since the potential seen by the electrons here is essentially the pure Coulombic potential of the nucleus, the correction to the energy should be about the same as for the situation where the inter-electronic repulsion is neglected. Thus, one computes, by TF and by quantum mechanics, the energy for the system differing from the one in question by the omission of the interelectronic repulsion terms from the Hamiltonian (the quantum-mechanical energy is simply a sum of scaled H_i energies). Then the difference $E_{TF} - E_{QM}$ is subtracted from the TF energy for the original system. The use of E_{QM} means some periodicity is introduced by the H^*_i shell structure, and Townsend and Keller report some slight binding at large R for Ar, N_2, and Na, but none for the rare gases. This is interesting in light of the fact that the behavior of the electrons at the periphery of the molecule, which normally is associated with chemical properties, is not corrected.

Another possibility is to use a Weiszäcker-type correction. Gombás has reported a binding energy of 10 eV for N_2 from such a calculation.

In any case, if the unmodified TFD or TF is to be used, only closed-shell systems should be treated. This could mean treating only the inner-shell electrons according to such a theory, or one can consider a highly polar diatomic to be composed of closed-shell ions. Then the exchange repulsion may be treated according to the TFD theory, while the potential energy automatically includes a term corresponding to the ionic Coulombic attraction, and the result is a potential curve with a minimum. This picture does not seem reasonable except for large R.

The question is whether it is really justified to apply the theory to the interaction of closed-shell systems. This may be tested by computation of the repulsive interaction potential between rare-gas atoms, a problem which has been investigated by Abrahamson and co-workers. They did not solve the TFD equation directly, but employed two variational principles which lead to upper and lower bounds for the energy in the TFD approximation when an approximation to the TFD density is inserted. When a superposition of atomic TFD densities was used, the mean of the upper and lower bounds could be shown to differ from the correct TFD energy by less than 4%. Below, we shall compute the TFD energy, as well as the force, directly from the solution to the TFD equation for the Ar-Ar system.

The total energy is a sum of electronic kinetic energy K, interelectronic repulsion I, exchange energy U (a negative contribution), nuclear-electronic attraction V_{ne}, and internuclear repulsion V_{ne}. V_{ne} is just the nuclear charge times $(r^2 1 + r^2 2)$, V_{ne} is Z^2/R,

$$K = \frac{1}{2} (3\pi^2)^{2/3} \int d\tau \rho^{5/3},$$

$$U = -\frac{1}{4} (3/\pi)^{1/3} \int d\tau \rho^{4/3},$$

where ρ is the electron density. To compute I, we write it as

$$I = \frac{1}{2} \int d\tau d\tau' \rho(\tau) \rho(\tau') |\vec{r}_1 - \vec{r}_2|^4

= -\frac{1}{2} \int d\tau \rho(\tau) \left(V_{\frac{Z}{r^3}} - \frac{Z}{r^3} \right),$$

since this is the interaction of the electron density with the electrostatic potential due to the other electrons only. In terms of u and in atomic units we have
TABLE IV. Ar-Ar (expectation values in atomic units).

<table>
<thead>
<tr>
<th>R</th>
<th>$1a_0$</th>
<th>$2a_0$</th>
<th>$3a_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>35.950</td>
<td>36.143</td>
<td>36.087</td>
</tr>
<tr>
<td>$-V_{\infty}$</td>
<td>3746.3</td>
<td>3477.5</td>
<td>3368.2</td>
</tr>
<tr>
<td>K</td>
<td>1402.9</td>
<td>1382.2</td>
<td>1378.0</td>
</tr>
<tr>
<td>I</td>
<td>743.8</td>
<td>624.2</td>
<td>573.4</td>
</tr>
<tr>
<td>$-U$</td>
<td>61.2</td>
<td>58.9</td>
<td>58.1</td>
</tr>
<tr>
<td>V_{∞}</td>
<td>324.00</td>
<td>162.00</td>
<td>108.00</td>
</tr>
<tr>
<td>f</td>
<td>29.15</td>
<td>8.72</td>
<td>4.00</td>
</tr>
<tr>
<td>$5K+3V+6I+4U$</td>
<td>-6.4</td>
<td>-6.9</td>
<td>-6.6</td>
</tr>
</tbody>
</table>

\[I = \frac{1}{2} \int d\tau \left(\frac{u^2}{2a_0^2} - \frac{1}{32\pi^2} \right) \rho - \frac{1}{2} V_{\infty}. \] \hspace{1cm} (19)

It is not necessarily necessary to compute all the expectation values directly, since Sheldon7 showed

\[5K+3V+6I+4U = -45\eta/32\pi^2, \] \hspace{1cm} (20)

where η is the integral of ρ over all space, theoretically 2π. Sheldon used (20) to determine I, but we employ it as a check on the expectation values and determine I from (19). From (17)–(19), it is easy to show that (20) holds for the contribution to the expectation values for $t>t_0$. The errors come from the atomic contributions, some of which are obtained by numerical integration and some from formulas like (15).

Table IV gives, for internuclear distances of 1, 2, and 3σ_0, the expectation values involved in the energy and the force. About 400 points were used in this calculation. The computed values of (20) are also given, as well as the computed values of η. We experimented with changing the numbers of integration points to estimate errors in the expectation values. While individual expectation values are good to a fraction of a percent, the errors in the energies are still large compared to what is of interest: the energy differences. The forces, energies, and energy differences are given in Table V. Abrahamson discussed a number of experimentally and theoretically determined interaction potentials for the Ar-Ar system (as well as for other pairs of rare-gas atoms), summarizing the results in Fig. 7 and Table II of his article. We take energy differences $E(2\sigma_0) - E(\sigma_0)$ and $E(3\sigma_0) - E(2\sigma_0)$ from his Table II, and slopes of dE/dR from his curve, which follows experimental results for this region of R. These are given in Table VI; unfortunately, only one significant figure could be read off for the slope.

Our energy differences and forces are consistent, as they must be for a correct solution to the TFD equation. There is a discrepancy with Abrahamson's results at larger R which is not too large to be accounted for by calculational errors on our part, as judged by the effect of changing the numbers of integration points. We conclude that accurate computation of relatively small energy differences is extremely difficult.

IV. MODIFIED CALCULATIONS

Many attempts have been made19,20 to alleviate the incorrect behavior of the TFD density for large and small distances from the nuclei, due to the breakdown of the assumptions of the theory here. We suggested21 that one could use a correct quantum-mechanical density close to a nucleus and join it to a density obtained from a quantum-statistical theory in other regions, thus avoiding the error due to use of the quantum-statistical approximations where they are poor. The poor behavior at large distance is left unchanged. The procedure is practical because the quantum-mechanical density near a nucleus of an atom is well represented by that of two noninteracting electrons moving in the nuclear Coulombic field. Physically, this is so because the Coulombic potential of the nucleus dominates all other interactions here. Thus, for the atomic case, we tried using such a density for $r<r_n$ (r is the distance from the nucleus) and a density obtained from TF or TFD for $r>r_n$.

For the TF case, we require continuity of the density ρ at r_n together with normalization and proper behavior at infinity. The first two conditions fixed the value and slope of the TF function at r_n, so that the TF differential equation could be integrated outward. For some choice of r_n, the solution went smoothly to zero as r went to infinity, which determined r_n. For TFD, the function does not extend to infinity, and the outer boundary condition can be fulfilled for a range of values of r_n. To fix the value of r_n, we demanded, in addition, continuity of

TABLE V. Ar-Ar: energies and forces (atomic units).

<table>
<thead>
<tr>
<th>R</th>
<th>$1a_0$</th>
<th>$2a_0$</th>
<th>$3a_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>-1336.8</td>
<td>-1367.0</td>
<td>-1366.9</td>
</tr>
<tr>
<td>Force</td>
<td>61.7</td>
<td>2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Energy difference</td>
<td>-30.2</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>Force, Ref. 18</td>
<td>60</td>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>Energy difference, Ref. 18</td>
<td>-38.4</td>
<td>-4.6</td>
<td></td>
</tr>
</tbody>
</table>
The resultant densities were a considerable improvement on those obtained from the unmodified theories with respect to expectation values like \(\langle r^3 \rangle \). Ashby and Holtzmann, in a paper appearing after ours was submitted, gave similar arguments and suggested a similar modification. They treated the nonrelativistic and relativistic TF problems for atoms. The radial density for \(r < r_0 \) was taken of hydrogenic form

\[
4\pi r^2 \rho = c r^2 e^{-\alpha r}, \tag{21}
\]

with \(\alpha \) and \(\beta \) two parameters to be determined. The chemical potential in the TF equation was allowed to vary in order to ensure normalization (we assumed it to be zero, the value for the unmodified theory). To determine the three parameters \(r_0, \alpha, \) and \(\beta \), a third condition was added to the continuity of \(\rho \) and \(dp/dr \) at \(r_0 \): the continuity of the kinetic-energy density at \(r_0 \). Here, the quantum-mechanical kinetic-energy density was \(- (\hbar^2/2m) \phi \nabla^2 \phi \) where the density \(\rho \) is equal to \(2|\phi|^2 \).

We now want to apply our method to the molecular TF problem. This means that we assume for the electron density

\[
\rho_A = 2(Z^2/\pi) e^{-2\alpha r} \text{ for } t < t_0, \tag{22}
\]

where \(Z \) is the nuclear charge and \(r \) the distance to the closer nucleus. \(\rho_A \) is simply the density due to two 1s electrons. We may note that the condition

\[
\left(\frac{dp}{dr} \right)_{r=r_0} = -2Z\rho(0),
\]

which must hold for the true quantum-mechanical density, is automatically satisfied by (22), but not by (21) if \(\beta \) is not equal to \(2Z \). In the TF calculations described in Sec. III, we set the values of \(u(t_0) \) in any case, so very little modification is required. Of course, \(t_0 \) must be small enough so the 1s density is a good approximation to the total atomic density here. This means that the radius of the circles corresponding to \(t = t_0 \) must be less than the first Bohr radius \(Z^{-1}a_0 \). When \(t_0 \) is determined by normalization (see below) this turns out to be the case.

We now obtain \(u(t_0) \) from Eq. (3) using \(\rho_A \):

\[
u(t_0) = (\alpha^2 \alpha)^{1/4} \left[(3\pi^2 \rho_A)^{1/3} - 1\right] \tag{23}
\]

and carry out the numerical integration over the rest of space. The joining point \(t_0 \) is fixed from the requirement that \(\langle 1 \rangle \) the electron density integrated over all space, be equal to \(2Z \). In the calculations of Sec. III. \(\langle 1 \rangle \) served as a check of the accuracy to which the differential equation is integrated. We use the same integration points for the modified calculations. Now closeness of \(\langle 1 \rangle \) to \(2Z \) reflects how accurately \(t_0 \) is chosen. We have determined it to two decimals. It may be noted that the continuity of the electron density, but not its radial derivative, is assured by our procedure. In fact, the slope seems to be close to continuous across \(t = t_0 \), just as for the unmodified case.

The results of the modified calculations are given in Table VI, for \(F_2 \) and \(N_2 \). It may be seen that there is a great improvement in \(\langle r^2 \rangle_{\nu} \) over the unmodified calculations. Ashby and Holtzmann report similar improvement in their method for \(\langle r^4 \rangle \). We conclude that this simple expedient markedly improves the density close to the nuclei. It should be noted that, while the error in \(\langle r^2 \rangle_{\nu} \) goes from \(\frac{1}{2} \) to a few percent, it is not simply a question of replacing a large contribution for \(t < t_0 \) by a small one. The density is modified for larger \(t \) as well, and we may expect other expectation values to be improved. Expectation values like \(\langle a^2 \rangle_{\nu} \) and \(\langle a^4 \rangle_{\nu} \) depend on the density far from the nuclei are little changed (in fact they get slightly worse). In the light of what we have said above about the problems with this method with respect to these expectation values, these results may not be significant. The electronic force is changed little from its previous values. The polarization contribution to \(f \) is again small.

APPENDIX: CORRECTION TO FORCE DUE TO POLARIZATION OF ATOMIC DENSITY

Consider a spherically symmetric electron density \(\rho(r) \), centered at a nucleus of charge \(Z \) and extending to a distance \(r_0 \) from the center. We suppose that the effect of an electric field \(E \) in the \(x \) direction can be represented as the displacement of \(\rho(r) \) off the center by a distance \(d \), so that it exerts a force on the nucleus in direction opposite to that exerted by \(E \). To find \(d \) as a function of \(E \), we minimize the expectation value of the energy. Since \(\rho \) is unchanged in size and shape and the kinetic-energy operator is invariant to a displacement of coordinates, we need consider only the change in potential energy. The displaced density is represented by \(\rho(|r-d|) \). The change in energy is

\[
\Delta \varepsilon = -\int[Z/\gamma \rho(|r-d|)]d\tau + E \int \gamma \rho(|r-d|)d\tau
\]
Annihilation of Positrons during Scattering

Margaret F. Fels
Chemistry Department, University of California, Los Angeles, California 90024

and

Marvin H. Mittleman
Physics Department, The City College of the City University of New York, New York 10031
(Received 20 January 1970)

The expression for the annihilation rate of positrons in scattering from atoms at an energy above the positronium (Ps) formation threshold is examined. A model describing the physical effects of annihilation is constructed and it is shown that no unexpected terms appear in the annihilation rate even when almost degenerate states of Ps are open channels. A previous calculation of positron-helium scattering is used to calculate the annihilation rate just above the Ps formation threshold where two competing effects complicate the expression. We conclude that the annihilation rate above threshold comes almost completely from the formation of real Ps.

I. INTRODUCTION

The annihilation of positrons during scattering by atoms is proportional to a contact interaction between the positron and each electron in the target. This interaction is small (of order α^2 or smaller)