Extension of Plurisubharmonic Functions with Growth Control

Dan Coman
Syracuse University

Vincent Guedj
Université Aix-Marseille 1

Ahmed Zeriahi
Université Paul Sabatier,

Follow this and additional works at: https://surface.syr.edu/mat

Part of the Mathematics Commons

Recommended Citation
Coman, Dan; Guedj, Vincent; and Zeriahi, Ahmed, "Extension of Plurisubharmonic Functions with Growth Control" (2010). Mathematics - Faculty Scholarship. 22.
https://surface.syr.edu/mat/22

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
EXTENSION OF PLURISUBHARMONIC FUNCTIONS WITH GROWTH CONTROL

DAN COMAN, VINCENT GUEDJ AND AHMED ZERIAHI

Abstract. Suppose that X is an analytic subvariety of a Stein manifold M and that φ is a plurisubharmonic (psh) function on X which is dominated by a continuous psh exhaustion function u of M. Given any number $c > 1$, we show that φ admits a psh extension to M which is dominated by cu on M.

We use this result to prove that any ω-psh function on a subvariety of the complex projective space is the restriction of a global ω-psh function, where ω is the Fubini-Study Kähler form.

Introduction

Let $X \subset \mathbb{C}^n$ be a (closed) analytic subvariety. In the case when X is smooth it is well known that a plurisubharmonic (psh) function on X extends to a psh function on \mathbb{C}^n [Sa] (see also [BL, Theorem 3.2]). Using different methods, Coltoiu generalized this result to the case when X is singular [Co, Proposition 2].

In this article we follow Coltoiu’s approach and show that it is possible to obtain extensions with global growth control:

Theorem A. Let X be an analytic subvariety of a Stein manifold M and let φ be a psh function on X. Assume that u is a continuous psh exhaustion function on M so that $\varphi(z) < u(z)$ for all $z \in X$. Then for every $c > 1$ there exists a psh function $\psi = \psi_e$ on M so that $\psi|_X = \varphi$ and $\psi(z) < c \max\{u(z), 0\}$ for all $z \in M$.

We recall that a function $\varphi : X \to (-\infty, +\infty)$ is called psh if $\varphi \not\equiv -\infty$ on X and if every point $z \in X$ has a neighborhood U in \mathbb{C}^n so that $\varphi = u|_U$ for some psh function u on U. We refer to [FN] and [D2, section 1] for a detailed discussion of this notion. We note here that if φ is not identically $-\infty$ on an irreducible component Y of X then φ is locally integrable on Y with respect to the area measure of Y. Let us stress that the more general notion of weakly psh function is not appropriate for the extension problem (see section 3).

We then look at a similar problem on a compact Kähler manifold V. Here psh functions have to be replaced by quasip plurisubharmonic (qpsh) ones. Given a Kähler form ω, we let

$$PSH(V, \omega) = \{\varphi \in L^1(V, [-\infty, +\infty)) : \varphi \text{ upper semicontinuous, } dd^c\varphi \geq -\omega\}$$

denote the set of ω-plurisubharmonic (ω-psh) functions. If $X \subset V$ is an analytic subvariety, we define similarly the class $PSH(X, \omega|_X)$ of ω-psh functions on X (see section 2 for precise definitions).

2000 Mathematics Subject Classification. Primary 32U05; Secondary: 32C25, 32Q15, 32Q28.
First author is supported by the NSF Grant DMS-0900934.
By restriction, \(\omega \)-psh functions on \(V \) yield \(\omega|_X \)-psh functions on \(X \). Assuming that \(\omega \) is a Hodge form, i.e. a Kähler form with integer cohomology class, our second result is that every \(\omega|_X \)-psh function on \(X \) arises in this way.

Theorem B. Let \(X \) be a subvariety of a projective manifold \(V \) equipped with a Hodge form \(\omega \). Then any \(\omega|_X \)-psh function on \(X \) is the restriction of an \(\omega \)-psh function on \(V \).

Note that in the assumptions of Theorem B there exists a positive holomorphic line bundle \(L \) on \(V \) whose first Chern class \(c_1(L) \) is represented by \(\omega \). In this case the \(\omega \)-psh functions are in one-to-one correspondence with the set of (singular) positive metrics of \(L \) (see [GZ]). Thus an alternate formulation of Theorem B is the following:

Theorem B’. Let \(X \) be a subvariety of a projective manifold \(V \) and \(L \) be an ample line bundle on \(V \). Then any (singular) positive metric of \(L|_X \) is the restriction of a (singular) positive metric of \(L \) on \(V \).

Recall that it is possible to regularize qpsh functions on \(\mathbb{P}^n \), since it is a homogeneous manifold. Hence Theorem B has the following immediate corollary:

Corollary C. Let \(X \) be a subvariety of a projective manifold \(V \) equipped with a Hodge form \(\omega \). If \(\varphi \in \text{PSH}(X, \omega|_X) \) then there exists a sequence of smooth functions \(\varphi_j \in \text{PSH}(V, \omega) \) which decrease pointwise on \(V \) so that \(\lim \varphi_j = \varphi \) on \(X \).

When \(X \) is smooth this regularization result is well known to hold even when the cohomology class of \(\omega \) is not integral (see [D3], [BK]).

Corollary C allows to show that the singular Kähler-Einstein currents constructed in [EGZ1] have continuous potentials, a result that has been obtained recently in [EGZ2] by completely different methods (see also [DZ] for partial results in this direction).

We prove Theorem A in section 1. The compact setting is considered in section 2, where Theorem B is derived from Theorem A. In section 3 we discuss the special situation when \(X \) is an algebraic subvariety of \(\mathbb{C}^n \). As an application of Theorem B, we give a characterization of those psh functions in the Lelong class \(\mathcal{L}(X) \) which admit an extension in the Lelong class \(\mathcal{L}(\mathbb{C}^n) \) (see section 3 for the necessary definitions). In particular, we give simple examples of algebraic curves \(X \subset \mathbb{C}^2 \) and of functions \(\eta \in \mathcal{L}(X) \) which do not have extensions in \(\mathcal{L}(\mathbb{C}^2) \).

1. **Proof of Theorem A**

The following proposition will allow us to reduce the proof of Theorem A to the case \(M = \mathbb{C}^n \). We include its short proof for the convenience of the reader.

Proposition 1.1. Let \(V \) be a complex submanifold of \(\mathbb{C}^N \) and \(u \) be a continuous psh exhaustion function on \(V \). Then there exists a continuous psh exhaustion function \(\tilde{u} \) on \(\mathbb{C}^N \) so that \(\tilde{u}|_V = u \).

Proof. The argument is very similar to the one of Sadullaev ([Sa], [BL, Theorem 3.2]). By [Si], there exists an open neighborhood \(W \) of \(V \) in \(\mathbb{C}^N \) and a holomorphic retraction \(r : W \to V \). We can find an open neighborhood \(U \) of \(V \) so that \(U \subset W \) and \(\| r(z) - z \| < 2 \) for every \(z \in U \). Indeed, if \(B(p,r) \) denotes the open ball in \(\mathbb{C}^N \) centered at \(p \) and of radius \(r \), then \(U_p = r^{-1}(B(p,1)) \cap B(p,1) \) is an open
neighborhood of \(p \in V \), and we let \(U = \bigcup_{p \in V} U_p \). Since \(u \) is a continuous psh exhaustion function on \(V \), it follows that the function \(u(r(z)) \) is continuous psh on \(U \) and \(\lim_{z \to U, \|z\| \to +\infty} u(r(z)) = +\infty \).

It is well known that there exist entire functions \(f_0, \ldots, f_N \), so that \(V = \{ z \in \mathbb{C}^N : f_k(z) = 0, 0 \leq k \leq N \} \) (see [Ch, p.63]). The function \(\rho = \log(\sum |f_k|^2) \) is psh on \(\mathbb{C}^N \) and \(V = \{ \rho = -\infty \} \).

Let \(D \) be an open set so that \(V \subset D \subset \overline{D} \subset U \). Since \(\rho \) is continuous on \(\mathbb{C}^N \setminus V \), we can find a convex increasing function \(\chi \) on \([0, +\infty)\) which verifies for every \(R \geq 0 \) the following two properties:

\[
\begin{align*}
(i) \quad & \chi(R) > R - \rho(z) \quad \text{for all } \|z\| = R, \\
(ii) \quad & \chi(R) > u(r(z)) - \rho(z) \quad \text{for all } \|z\| = R.
\end{align*}
\]

Then \(\tilde{u}(z) = \begin{cases}
\max\{u(r(z)), \chi(\|z\|) + \rho(z)\}, & \text{if } z \in D, \\
\chi(\|z\|) + \rho(z), & \text{if } z \in \mathbb{C}^N \setminus D,
\end{cases} \)
is a continuous psh exhaustion function on \(\mathbb{C}^N \) and \(\tilde{u} = u \) on \(V \).

Employing the methods of Coltoiu [Co] we now construct psh extensions with growth control over bounded sets in \(\mathbb{C}^n \).

Proposition 1.2. Let \(\chi \) be a psh function on a subvariety \(X \subset \mathbb{C}^n \) and let \(v \) be a continuous psh function on \(\mathbb{C}^n \) with \(\chi < v \) on \(X \). If \(R > 0 \), there exists a psh function \(\tilde{\chi} = \tilde{\chi}_R \) on \(\mathbb{C}^n \) so that \(\tilde{\chi}|_X = \chi \) and \(\tilde{\chi}(z) < v(z) \) for all \(z \in \mathbb{C}^n \) with \(\|z\| \leq R \).

Proof. We use a similar argument to the one in the proof of Proposition 2 in [Co]. Consider the subvariety \(A = (X \times \mathbb{C}) \cup (\mathbb{C}^n \times \{0\}) \subset \mathbb{C}^{n+1} \), and let
\[
D = \{(z, w) \in X \times \mathbb{C} : \log|w| + \chi(z) < 0\} \cup (\mathbb{C}^n \times \{0\}) \subset A.
\]

Since \(D \cap (X \times \mathbb{C}) \) is Runge in \(X \times \mathbb{C} \), it follows that \(D \) is Runge in \(A \). Let
\[
K = \{(z, w) \in \mathbb{C}^{n+1} : \rho(z, w) = \max\{\log^+(\|z\|/R), \log|w| + v(z)\} \leq 0\}.
\]

Since \(v \) is continuous, \(\rho \) is a continuous psh exhaustion function on \(\mathbb{C}^{n+1} \), so \(K \) is a polynomially convex compact set. As \(\chi < v \) on \(X \), we have \(K \cap A \subset D \). By [Co, Theorem 3] there exists a Runge domain \(\tilde{D} \subset \mathbb{C}^{n+1} \), with \(\tilde{D} \cap A = D \) and \(K \subset \tilde{D} \). Let \(\delta(z, w) \) denote the distance from \((z, w) \in \tilde{D}\) to \(\partial \tilde{D} \) in the \(w \)-direction. Since \(\tilde{D} \) is pseudoconvex, \(-\log \delta \) is psh on \(\tilde{D} \) (see e.g. [FS, Proposition 9.2]). Hence \(\tilde{\chi}(z) = -\log \delta(z, 0) \) is psh on \(\mathbb{C}^n \), as \(\mathbb{C}^n \times \{0\} \subset \tilde{D} \). Since \(\tilde{D} \cap A = D \), it follows that \(\tilde{\chi}|_X = \chi \). Moreover, \(K \subset \tilde{D} \) implies that \(\tilde{\chi}(z) < v(z) \) for all \(z \in \mathbb{C}^n \) with \(\|z\| \leq R \).

The proof of Theorem A proceeds like this. Given a partition
\[
\mathbb{C}^n = \bigcup\{m_{j-1} < u \leq m_j\},
\]
where \(m_j \not\nearrow +\infty \), we apply Proposition 1.2 inductively to construct an extension dominated in each “annulus” \(\{m_{j-1} < u \leq m_j\} \) by \(\gamma_j u \), where \(\gamma_j > 1 \) is an increasing sequence defined in terms of the \(m_j \)'s. Theorem A will follow by showing that it is possible to choose \(\{m_j\} \) rapidly increasing so that \(\lim \gamma_j \) is arbitrarily close to 1.

We fix next an increasing sequence \(\{m_j\}_{j \geq -1} \) so that
\[
m_{-1} = m_0 = 0 < m_1 < m_2 < \ldots, \{u < m_1\} \neq \emptyset, m_j \not\nearrow +\infty.
\]
Define inductively a sequence \(\{\gamma_j\}_{j \geq 0} \), as follows:

\[
\gamma_0 = 1, \quad \gamma_j(m_j - m_{j-1}) = \gamma_{j-1}(m_j - m_{j-2}) + 1 \quad \text{for} \quad j \geq 1.
\]

Clearly, \(\gamma_j > \gamma_{j-1} > 1 \) for all \(j > 1 \).

Proposition 1.3. Let \(X, \varphi, u \) be as in Theorem A with \(M = \mathbb{C}^n \), and let \(\{m_j\} \), \(\{\gamma_j\} \) be as above. There exists a psh function \(\psi \) on \(\mathbb{C}^n \) so that \(\psi|_X = \varphi \) and for all \(z \in \mathbb{C}^n \) we have

\[
\psi(z) < \left\{ \begin{array}{ll}
\gamma_j u(z), & \text{if } m_{j-1} < u(z) \leq m_j, \ j \geq 2, \\
\gamma_1 \max\{u(z), 0\}, & \text{if } u(z) \leq m_1.
\end{array} \right.
\]

Proof. We introduce the sets

\[
D_j = \{z \in \mathbb{C}^n : u(z) < m_j\}, \quad K_j = \{z \in \mathbb{C}^n : u(z) \leq m_j\}.
\]

Since \(u \) is a continuous psh exhaustion function, \(K_j \) is a compact set. Let

\[
\rho_j = \gamma_j \max\{u - m_{j-1}, 0\} - j, \ j \geq 0.
\]

Then \(\rho_j \) is psh on \(\mathbb{C}^n \) and (1) implies that

\[
(2) \quad \rho_j(z) = \rho_{j-1}(z) \text{ if } u(z) = m_j, \ j \geq 1.
\]

We claim that

\[
(3) \quad \rho_j(z) \geq u(z) \text{ if } z \in \mathbb{C}^n \setminus D_j, \ j \geq 0.
\]

Indeed, since \(\gamma_j \geq 1 \) and using (1) we obtain

\[
\rho_j(z) - u(z) = (\gamma_j - 1)u(z) - \gamma_j m_{j-1} - j \geq (\gamma_j - 1)m_j - \gamma_j m_{j-1} - j
\]

\[
= (\gamma_{j-1} - 1)m_j - \gamma_{j-1} m_{j-2} - j + 1
\]

\[
\geq (\gamma_{j-1} - 1)m_{j-1} - \gamma_{j-1} m_{j-2} - (j - 1).
\]

So \(x_j := (\gamma_j - 1)m_j - \gamma_j m_{j-1} - j \geq x_0 = 0 \), and (3) is proved.

Let \(\varphi_j = \max\{\varphi, -j\} \). We construct by induction on \(j \geq 1 \) a sequence of continuous psh functions \(\psi_j \) on \(\mathbb{C}^n \) with the following properties:

\[
(4) \quad \psi_j(z) > \varphi_j(z) \text{ for } z \in X, \quad \int_{X \cap K_{j-1}} (\psi_j - \varphi_j) < 2^{-j}.
\]

\[
(5) \quad \psi_j(z) \geq \rho_j(z) \text{ for } z \in D_j, \quad \psi_j(z) = \rho_j(z) \text{ for } z \in \mathbb{C}^n \setminus D_j.
\]

\[
(6) \quad \psi_j(z) < \psi_{j-1}(z) \text{ for } z \in K_{j-1}, \text{ where } \psi_0 = \rho_0 = \max\{u, 0\}.
\]

Here the integral in (4) is with respect to the area measure on each irreducible component, i.e.

\[
\int_{X \cap K} f := \sum \int_{Y \cap K} f \beta^{\text{dim}Y},
\]

where the sum is over all irreducible components \(Y \) of \(X \) which intersect \(K \) and \(\beta \) is the standard Kähler form on \(\mathbb{C}^n \). (Note that this is a finite sum.)

Assume that the function \(\psi_{j-1} \) is constructed with the desired properties. We construct \(\psi_j \) by applying Proposition 1.2 with \(\chi = \varphi_j \) and \(v = \psi_{j-1} \). (If \(j = 1 \), \(\psi_1 \) is constructed in the same way by applying Proposition 1.2 with \(\chi = \varphi_1 \) and \(v = \psi_0 \).) By (4), \(\varphi_j \leq \varphi_{j-1} < \psi_{j-1} \) on \(X \) (and for \(j = 1 \), clearly \(\varphi_1 < \psi_0 \) on \(X \)). Therefore Proposition 1.2 yields a psh function \(\tilde{\varphi}_j \) on \(\mathbb{C}^n \) so that \(\tilde{\varphi}_j|_X = \varphi_j \) and \(\tilde{\varphi}_j < \psi_{j-1} \) on \(K_j \). Using the standard regularization of \(\tilde{\varphi}_j \) and the dominated
convergence theorem (as \(\varphi_j \geq -j \)) we obtain a continuous psh function \(\tilde{\psi}_j \) on \(\mathbb{C}^n \) which verifies

\[
\tilde{\psi}_j(z) > \varphi_j(z) \quad \text{for} \quad z \in X, \quad \int_{X \cap K_j} (\tilde{\psi}_j - \varphi_j) < 2^{-j}.
\]

Moreover, since \(\psi_{j-1} \) is continuous, we can ensure by the Hartogs lemma that we also have \(\tilde{\psi}_j(z) < \psi_{j-1}(z) \) for \(z \in K_j \).

We now define

\[
\psi_j(z) = \begin{cases}
\max\{\tilde{\psi}_j(z), \rho_j(z)\}, & \text{if} \ z \in D_j, \\
\rho_j(z), & \text{if} \ z \in \mathbb{C}^n \setminus D_j.
\end{cases}
\]

By (5) and (2) we have \(\tilde{\psi}_j < \psi_{j-1} = \rho_{j-1} = \rho_j \) on \(\partial D_j \) (for \(j = 1 \), recall that \(\psi_0 = \rho_0 \) by definition). So \(\psi_j \) is a continuous psh function on \(\mathbb{C}^n \) which verifies (5).

On \(X \setminus D_j \) we have by (3) that \(\psi_j = \rho_j \geq u > \varphi_j \), while on \(X \cap D_j \), \(\psi_j \geq \tilde{\psi}_j > \varphi_j \).

Since \(\rho_j = -j \leq \varphi_j < \tilde{\psi}_j \) on \(X \cap K_{j-1} \), we see that \(\psi_j = \tilde{\psi}_j \) on \(X \cap K_{j-1} \) so

\[
\int_{X \cap K_{j-1}} (\psi_j - \varphi_j) \leq \int_{X \cap K_j} (\tilde{\psi}_j - \varphi_j) < 2^{-j}.
\]

Hence \(\psi_j \) verifies (4). Finally, we have by (5), \(\rho_j = -j < \rho_{j-1} \leq \psi_{j-1} \) on \(K_{j-1} \) (and for \(j = 1 \), \(\rho_1 = -1 < \psi_0 = 0 \) on \(K_0 \)). Since \(\psi_j < \psi_{j-1} \) on \(K_j \) we conclude that \(\psi_j < \psi_{j-1} \) on \(K_{j-1} \), so (6) is verified.

So we have constructed a sequence of continuous psh functions \(\psi_j \) on \(\mathbb{C}^n \) verifying properties (4)-(6). Since \(\bigcup_{j \geq 1} D_j = \mathbb{C}^n \), we have by (6) that the function

\[
\psi(z) = \lim_{j \to \infty} \psi_j(z)
\]

is well defined and psh on \(\mathbb{C}^n \). As \(\ldots < \psi_{j+2} < \psi_{j+1} < \psi_j \) on \(K_j \), it follows that \(\psi < \psi_j \) on \(K_j \).

Suppose now that \(z \in K_j \setminus D_{j-1} \), for some \(j \geq 2 \), so \(m_{j-1} \leq u(z) \leq m_j \). By the above construction and property (5), we have

\[
\tilde{\psi}_j(z) < \psi_{j-1}(z) = \rho_{j-1}(z) \implies \psi(z) < \psi_j(z) \leq \max\{\rho_{j-1}(z), \rho_j(z)\} \leq \gamma_j u(z).
\]

Similarly, for \(z \in K_1 \) we have

\[
\psi(z) < \psi_1(z) \leq \max\{\rho_0(z), \rho_1(z)\} \leq \gamma_1 \max\{u(z), 0\}.
\]

Hence \(\psi \) satisfies the desired global upper estimates on \(\mathbb{C}^n \).

Property (4) implies that \(\psi(z) \geq \varphi(z) \) for every \(z \in X \). Let \(K \) be a compact in \(\mathbb{C}^n \) and \(Y \) be an irreducible component of \(X \) so that \(\varphi|_Y \neq -\infty \). By (4) we have that for all \(j \) sufficiently large

\[
0 \leq \int_{Y \cap K} (\psi_j - \varphi) = \int_{Y \cap K} (\tilde{\psi}_j - \varphi) + \int_{Y \cap K} (\varphi - \varphi_j) \leq 2^{-j} + \int_{Y \cap K} (\varphi_j - \varphi).
\]

Hence by dominated convergence, \(\int_{Y \cap K} (\varphi - \varphi_j) = 0 \), which shows that \(\psi = \varphi \) on \(Y \).

Assume now that \(Y \) is an irreducible component of \(X \) so that \(\varphi|_Y \equiv -\infty \). Then using (4) and the monotone convergence theorem we conclude that

\[
\int_{Y \cap K} \psi = \lim_{j \to \infty} \int_{Y \cap K} \psi_j = \lim_{j \to \infty} \left(\int_{Y \cap K} (\psi_j - \varphi_j) + \int_{Y \cap K} \varphi_j \right) = -\infty,
\]

so \(\psi|_Y \equiv -\infty \). Therefore \(\psi = \varphi \) on \(X \), and the proof is finished. \(\square \)
Proof of Theorem A. We consider first the case \(M = \mathbb{C}^n \). Fix \(c > 1 \). We define inductively a sequence \(\{m_j\} \) with the following properties: \(m_{j-1} = m_0 = 0 < m_1 \), \(\{u < m_1\} \neq \emptyset \), and for \(j \geq 1 \), \(m_j > m_{j-1} \) is chosen large enough so that
\[
a_j = \frac{m_{j-1} - m_{j-2} + 1}{m_j - m_{j-1}} \leq \frac{\log c}{2^j}.
\]
Since \(\gamma_j \geq \gamma_0 = 1 \) we have by (1),
\[
\gamma_j(m_j - m_{j-1}) \leq \gamma_{j-1}(m_j - m_{j-2} + 1) \Rightarrow \gamma_j \leq \gamma_{j-1}(1 + a_j).
\]
Thus
\[
\gamma_j < \gamma = \prod_{j=1}^{\infty} (1 + a_j), \quad \log \gamma \leq \sum_{j=1}^{\infty} a_j \leq \log c.
\]

Let \(\psi = \psi_c \) be the psh extension of \(\varphi \) provided by Proposition 1.3 for this sequence \(\{m_j\} \). Then for every \(z \in \mathbb{C}^n \) we have
\[
\psi(z) < \gamma \max\{u(z), 0\} \leq c \max\{u(z), 0\}.
\]

Assume now that \(M \) is a Stein manifold of dimension \(n \). Then \(M \) can be properly embedded in \(\mathbb{C}^{2n+1} \), hence we may assume that \(M \) is a complex submanifold of \(\mathbb{C}^{2n+1} \) (see e.g. [Ho, Theorem 5.3.9]). Proposition 1.1 implies the existence of a continuous psh exhaustion function \(\tilde{u} \) on \(\mathbb{C}^{2n+1} \) so that \(\tilde{u} = u \) on \(M \). By what we already proved, given \(c > 0 \) there exists a psh function \(\tilde{\psi} \) on \(\mathbb{C}^{2n+1} \) which extends \(\varphi \) and such that \(\tilde{\psi} < c \max\{\tilde{u}, 0\} \) on \(\mathbb{C}^{2n+1} \). We let \(\psi = \tilde{\psi} |_M \). \(\square \)

We end this section by noting that some hypothesis on the growth of \(u \) is necessary in Theorem A. Indeed, suppose that \(X \) is a submanifold of \(\mathbb{C}^n \) for which there exists a non-constant negative psh function \(\varphi \) on \(X \). Then any psh extension of \(\varphi \) to \(\mathbb{C}^n \) cannot be bounded above. However, by Theorem A, given any \(\varepsilon > 0 \) there exists a psh function \(\psi = \psi_\varepsilon \) so that \(\psi |_X = \varphi \) and \(\psi(z) < \varepsilon \log^+ \|z\| \) on \(\mathbb{C}^n \).

2. Extension of Qpsh functions

Let \(V \) be a compact Kähler manifold equipped with a Kähler form \(\omega \). We let \(PSH(V, \omega) \) denote the set of \(\omega \)-psh functions on \(V \). These are upper semicontinuous functions \(\varphi \in L^1(V, [-\infty, +\infty)) \) such that \(\omega + dd^c \varphi \geq 0 \), where \(d = \partial + \bar{\partial} \) and \(d^c = \frac{1}{2\pi i}(\partial - \bar{\partial}) \). We refer the reader to [GZ] for basic properties of \(\omega \)-psh functions.

Let \(X \) be an analytic subvariety of \(V \). Recall that an upper semicontinuous function \(\varphi : X \to [-\infty, +\infty) \) is called \(\omega |_X \)-psh if \(\varphi \not\equiv -\infty \) on \(X \) and if there exist an open cover \(\{U_i\}_{i \in I} \) of \(X \) and psh functions \(\varphi_i, \rho_i \) defined on \(U_i \), where \(\rho_i \) is smooth and \(dd^c \rho_i = \omega \), so that \(\rho_i + \varphi = \varphi_i \) holds on \(X \cap U_i \), for every \(i \in I \). Moreover, \(\varphi \) is called strictly \(\omega |_X \)-psh if it is \((1-\varepsilon)\omega |_X \)-psh for some small \(\varepsilon > 0 \). The current \(\omega |_X + dd^c \varphi \) is then called a Kähler current on \(X \) (see [EGZ1, section 5.2]). We denote by \(PSH(X, \omega |_X) \), resp. \(PSH^+(X, \omega |_X) \), the class of \(\omega |_X \)-psh, resp. strictly \(\omega |_X \)-psh functions on \(X \).

Every \(\omega \)-psh function \(\varphi \) on \(V \) yields, by restriction, an \(\omega |_X \)-psh function \(\varphi |_X \) on \(X \), as soon as \(\varphi |_X \not\equiv -\infty \). The question we address here is whether this restriction operator is surjective. In other words, is there equality
\[
PSH(X, \omega |_X) \cong PSH(V, \omega |_X).
\]
2.1. **The smooth case.** We start with the elementary observation that smooth strictly ω-psh functions can easily be extended.

Proposition 2.1. Let V be a compact Kähler manifold equipped with a Kähler form ω, and let X be a complex submanifold of V. Then

$$PSH^+(X,\omega|_X) \cap C^\infty(X,\mathbb{R}) = (PSH^+(V,\omega) \cap C^\infty(V,\mathbb{R}))|_X.$$

We include a proof for the convenience of the reader, although this is probably part of the “folklore” (see e.g. [Sch] for the case where ω is a Hodge form).

Proof. Let $\varphi \in C^\infty(X,\mathbb{R})$ be such that $(1 - \varepsilon)\omega|_X + dd^c\varphi \geq 0$ on X, for some $\varepsilon > 0$. We first choose $\tilde{\varphi}$ to be any smooth extension of φ to V. Consider

$$\psi := \tilde{\varphi} + A\chi \text{dist}(\cdot, X)^2,$$

where χ is a test function supported in a small neighborhood of X and such that $\chi \equiv 1$ near X. Here dist is any Riemannian distance on V, for instance the distance associated to the Kähler metric ω. Then ψ is yet another smooth extension of φ to V, which now satisfies $(1 - \varepsilon/2)\omega + dd^c\psi \geq 0$ near X, if A is chosen large enough.

The function $\log(\text{dist}(\cdot, X)^2)$ is well defined andqpsh in a neighborhood of X. Let χ be a test function supported in this neighborhood so that $\chi \equiv 1$ near X. The function $u = \chi \log(\text{dist}(\cdot, X)^2)$ is $N\omega$-psh on V for a large integer N. Moreover, $\exp(u)$ is smooth and $X = \{u = -\infty\}$. Replacing ω by $N\omega$, φ by $N\varphi$, and ψ by $N\psi$, we may assume that $N = 1$. Set now

$$\psi_C := \frac{1}{2} \log \left[e^{2\psi} + e^{u+C} \right].$$

This again is a smooth extension of φ, and a straightforward computation yields

$$dd^c\psi_C \geq \frac{2e^{2\psi}(dd^c\psi + e^{u+C}dd^c u)}{2(e^{2\psi} + e^{u+C})}.$$

Hence

$$\left(1 - \frac{\varepsilon}{2}\right)\omega + dd^c\psi_C \geq \frac{2e^{2\psi}\left[(1 - \varepsilon)\omega + dd^c\psi\right] + (1 - \varepsilon)e^{u+C}\omega}{2(e^{2\psi} + e^{u+C})} \geq 0,$$

if C is chosen large enough.

This proof breaks down when φ is singular and hence a different approach is needed. We consider in the next section the particular case when ω is a Hodge form.

2.2. **Proof of Theorem B.** We assume here that ω is a Hodge form, i.e. that the cohomology class $\{\omega\}$ belongs to $H^2(V,\mathbb{Z})$ (more precisely to the image of $H^2(V,\mathbb{Z})$ in $H^2(V,\mathbb{R})$ under the mapping induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{R}$). We prove the following more precise version of Theorem B.

Theorem 2.2. Let X be a subvariety of a projective manifold V equipped with a Hodge form ω. If $\varphi \in PSH(X,\omega|_X)$ then given any constant $a > 0$ there exists $\psi \in PSH(V,\omega)$ so that $\psi|_X = \varphi$ and $\max_V \psi < \max_X \varphi + a$.

In the assumptions of Theorem 2.2 there exists a positive holomorphic line bundle \(L \) on \(V \) whose first Chern class \(c_1(L) \) is represented by \(\omega \). By Kodaira’s embedding theorem \(L \) is ample, hence for large \(k \) there exists an embedding \(\pi : V \hookrightarrow \mathbb{P}^n \) such that \(L^k = \pi^* \mathcal{O}(1) \).

Replacing \(\omega \) by \(k\omega \), \(\varphi \) by \(k\varphi \), we can assume that \(L = \mathcal{O}(1) \), \(V \) is an algebraic submanifold of the complex projective space \(\mathbb{P}^n \), and \(\omega = \omega_{FS} \mid_V \) is the Fubini-Study Kähler form. Hence \(X \) is an algebraic subvariety of \(\mathbb{P}^n \), and Theorem 2.2 follows if we show that \(\omega_{FS} \)-psh functions on \(X \) extend to \(\omega_{FS} \)-psh functions on \(\mathbb{P}^n \).

Therefore we assume in the sequel that \(X \subset V = \mathbb{P}^n \) and \(\omega \) is the Fubini-Study Kähler form on \(\mathbb{P}^n \). Let \([z_0 : \ldots : z_n]\) denote the homogeneous coordinates. Without loss of generality, we may assume that they are chosen so that no coordinate hyperplane \(\{z_j = 0\} \) contains any irreducible component of \(X \).

Let

\[
\theta(z) = \log \frac{\max\{|z_0|, \ldots, |z_n|\}}{\sqrt{|z_0|^2 + \cdots + |z_n|^2}}, \quad z = [z_0 : \ldots : z_n] \in \mathbb{P}^n.
\]

This is an \(\omega \)-psh function and for all \(z \in \mathbb{P}^n \),

\[-m \leq \theta(z) \leq 0, \quad \text{where} \quad m = \log \sqrt{n+1}.
\]

We start by noting that Theorem A yields special subextensions of \(\omega \)-psh functions on \(X \).

Lemma 2.3. Let \(\varepsilon \geq 0 \) and \(u \) be a continuous \((1 + \varepsilon)\omega\)-psh function on \(\mathbb{P}^n \) so that \(u(z) \leq 0 \) for all \(z \in \mathbb{P}^n \). If \(c > 1 \) and \(\varphi \) is an \(\omega \)-psh function on \(X \) so that \(\varphi < u \), then there exists a \(c\omega \)-psh function \(\psi \) on \(\mathbb{P}^n \) so that

\[
\frac{1}{c} \psi(z) \leq \frac{1}{1 + \varepsilon} u(z), \quad \forall z \in \mathbb{P}^n,
\]

and

\[
\psi(z) = \varphi(z) + (c - 1)\theta(z) + (c - 1) \min_{\zeta \in \mathbb{P}^n} u(\zeta), \quad \forall z \in X.
\]

Proof. Let

\[M = -\min_{\zeta \in \mathbb{P}^n} u(\zeta) \geq 0. \]

We work first in an affine chart \(\{z_j = 1\} \equiv \mathbb{C}^n \). Let \(X_j = X \cap \{z_j = 1\} \) and let \(\rho_j \geq 0 \) be the potential of \(\omega \) in this chart with \(\rho_j(0) = 0 \). Then \(\varphi + \rho_j \) is psh on \(X_j \) and since \(u \leq 0 \),

\[
\varphi + \rho_j + M < u + \rho_j + M \leq \frac{1}{1 + \varepsilon} u + \rho_j + M \quad \text{on} \quad X_j.
\]

Note that \((1 + \varepsilon)^{-1}u + \rho_j + M \geq 0\) is a continuous psh exhaustion function on \(\mathbb{C}^n \).

Theorem A yields a psh function \(\tilde{\psi} \) on \(\mathbb{C}^n \) so that

\[
\tilde{\psi} < \frac{c}{1 + \varepsilon} u + c\rho_j + cM \quad \text{on} \quad \mathbb{C}^n, \quad \tilde{\psi} = \varphi + \rho_j + M \quad \text{on} \quad X_j.
\]

The function \(\psi_j = \tilde{\psi} - c\rho_j - cM \) extends uniquely to a \(c\omega \)-psh function on \(\mathbb{P}^n \) which verifies

\[
\psi_j \leq \frac{c}{1 + \varepsilon} u \quad \text{on} \quad \mathbb{P}^n.
\]

Moreover on \(X \cap \{z_j = 1\} \) we have

\[
\psi_j = \varphi - (c - 1)\rho_j - (c - 1)M = \varphi + (c - 1)\theta_j - (c - 1)M,
\]
where
\[\theta_j(z) = \log \frac{|z_j|}{\sqrt{|z_0|^2 + \ldots + |z_n|^2}}. \]

Hence \(\psi_j = -\infty \) on \(X \cap \{z_j = 0\} \).

We finally let \(\psi = \max\{\psi_0, \ldots, \psi_n\} \). This is a \(c\omega \)-psh function on \(\mathbb{P}^n \) which verifies the desired conclusions, since \(\theta = \max\{\theta_0, \ldots, \theta_n\} \). \(\square \)

Proof of Theorem 2.2. Fix \(a > 0 \). Replacing \(\varphi \) by \(\varphi - \max_X \varphi - a \) we may assume that \(\max_X \varphi = -a \). We will show that there exists a sequence of smooth \(\omega \)-psh functions \(\varphi_j \) on \(\mathbb{P}^n \) which decrease pointwise on \(\mathbb{P}^n \) to a negative \(\omega \)-psh function \(\psi \) so that \(\psi = \varphi \) on \(X \).

Let \(X' \) be the union of the irreducible components \(W \) of \(X \) so that \(\varphi|_W \not\equiv -\infty \).

We first construct by induction on \(j \geq 1 \) a sequence of numbers \(\varepsilon_j \searrow 0 \) and a sequence of negative smooth \((1 + \varepsilon_j)\omega \)-psh functions \(\psi_j \) on \(\mathbb{P}^n \) so that for all \(j \geq 2 \)
\[\frac{\psi_j}{1 + \varepsilon_j} < \frac{\psi_{j-1}}{1 + \varepsilon_{j-1}} \text{ on } \mathbb{P}^n, \quad \psi_j > \varphi \text{ on } X, \quad \int_{X'} (\psi_j - \varphi) < \frac{1}{j}, \quad \int_W \psi_j < -j, \]

for every irreducible component \(W \) of \(X \) where \(\varphi|_W \equiv -\infty \). Here the integrals are with respect to the area measure on each irreducible component \(X_j \) of \(X \), i.e.
\[\int_X f := \sum_{X_j} \int_{X_j} f \omega_{\text{dim } X_j}. \]

Let \(\varepsilon_1 = 1, \psi_1 = 0 \), and assume that \(\varepsilon_{j-1}, \psi_{j-1} \), where \(j \geq 2 \), are constructed with the above properties. Since \(\varphi < \psi_{j-1}|_X \) and the latter is continuous on the compact set \(X \), we can find \(\delta > 0 \) so that \(\varphi < \psi_{j-1} - \delta \) on \(X \).

Let \(c > 1 \). By Lemma 2.3, there exists a \(c\omega \)-psh function \(\psi_c \) so that
\[\frac{\psi_c}{c} \leq \frac{\psi_{j-1} - \delta}{1 + \varepsilon_{j-1}} \text{ on } \mathbb{P}^n, \quad \psi_c = \varphi + (c-1)\theta - (c-1)M_{j-1} \text{ on } X, \]
where
\[M_{j-1} = \delta - \min_{\zeta \in \mathbb{P}^n} \psi_{j-1}(\zeta) \geq 0. \]

We canregularize \(\psi_c \) on \(\mathbb{P}^n \); there exists a sequence of smooth \(c\omega \)-psh functions decreasing to \(\psi_c \) on \(\mathbb{P}^n \). Therefore we can find a smooth \(c\omega \)-psh function \(\psi'_c \) on \(\mathbb{P}^n \) so that
\[\frac{\psi'_c}{c} < \frac{\psi_{j-1} - \delta}{1 + \varepsilon_{j-1}} \text{ on } \mathbb{P}^n, \quad \psi'_c > \varphi + (c-1)\theta - (c-1)M_{j-1} \geq \varphi - (c-1)(m + M_{j-1}) \text{ on } X. \]

By dominated, resp. monotone convergence, we can in addition ensure that
\[\int_{X'} (\psi'_c - \varphi) \leq \int_{X'} (\psi'_c - \varphi - (c-1)\theta + (c-1)M_{j-1}) < c - 1, \]
\[\int_W \psi'_c < -j - (c-1)(m + M_{j-1})|W|, \]
for every irreducible component \(W \) of \(X \) where \(\varphi|_W \equiv -\infty \). Here \(|W| \) denotes the (projective) area of \(W \).
Now let $\psi''_c = \psi'_c + (c - 1)(m + M_{j-1})$. Then on \mathbb{P}^n we have

$$
\frac{\psi''_c}{c} < \frac{\psi_{j-1} - \delta}{1 + \varepsilon_{j-1}} + \frac{(c - 1)(m + M_{j-1})}{c} < \frac{\psi_{j-1} - \delta}{1 + \varepsilon_{j-1}} - \frac{\delta}{4} + (c - 1)(m + M_{j-1}).
$$

Moreover, $\psi''_c > \varphi$ on X and

$$
\int_{X'} (\psi''_c - \varphi) = \int_{X'} (\psi'_c - \varphi) + (c - 1)(m + M_{j-1})|X'| < (c - 1)(1 + m|X'| + M_{j-1}|X'|),
$$

$$
\int_W \psi''_c = \int_W \psi'_c + (c - 1)(m + M_{j-1})|W| < -j,
$$

for every irreducible component W of X where $\varphi|_W \equiv -\infty$.

We take $c = 1 + \varepsilon_j$ and $\psi_j = \psi''_c$, where $\varepsilon_j > 0$ is so that

$$
\varepsilon_j < \varepsilon_{j-1}/2, \quad \varepsilon_j(m + M_{j-1}) < \frac{\delta}{4}, \quad \varepsilon_j(1 + m|X'| + M_{j-1}|X'|) < \frac{1}{j}.
$$

Then ε_j, ψ_j have the desired properties.

We conclude that $\varphi_j = (1 + \varepsilon_j)^{-1}\psi_j$ is a decreasing sequence of smooth negative ω-psh function on \mathbb{P}^n, so that $\varphi_j > (1 + \varepsilon_j)^{-1}\varphi > \varphi$ on X. Hence $\psi = \lim_{j \to \infty} \varphi_j$ is a negative ω-psh function on \mathbb{P}^n and $\psi \geq \varphi$ on X. Note that

$$
\int_{X'} (\varphi_j - \varphi) = \frac{1}{1 + \varepsilon_j} \int_{X'} (\psi_j - \varphi) - \frac{\varepsilon_j}{1 + \varepsilon_j} \int_{X'} \varphi < \frac{1}{j} - \frac{\varepsilon_j}{1 + \varepsilon_j} \int_{X'} \varphi,
$$

$$
\int_W \varphi_j = \frac{1}{1 + \varepsilon_j} \int_W \psi_j < -\frac{j}{2},
$$

for every irreducible component W of X where $\varphi|_W \equiv -\infty$. It follows that $\psi = \varphi$ on X and the proof of Theorem 2.2 is finished. \(\square\)

3. Algebraic subvarieties of \mathbb{C}^n

If X is an analytic subvariety of \mathbb{C}^n and γ is a positive number, we denote by $\mathcal{L}_\gamma(X)$ the Lelong class of psh functions φ on X which verify $\varphi(z) \leq \gamma \log^+ \|z\| + C$ for all $z \in X$, where C is a constant that depends on φ. We let $\mathcal{L}(X) = \mathcal{L}_1(X)$. By Theorem A, functions $\varphi \in \mathcal{L}(X)$ admit a psh extension in each class $\mathcal{L}_\gamma(\mathbb{C}^n)$, for every $\gamma > 1$. \(^1\)

We assume in the sequel that X is an algebraic variety of \mathbb{C}^n and address the question whether it is necessary to allow the arbitrarily small additional growth. More precisely, it is true that

$$
\mathcal{L}(X) \overset{?}{=} \mathcal{L}(\mathbb{C}^n)|_X,
$$

i.e. is every psh function with logarithmic growth on X the restriction of a globally defined psh function with logarithmic growth? We will give a criterion for this to hold, but show that in general this is not the case.

\(^1\)If X is algebraic this result is claimed in [BL, Proposition 3.3], but there is a gap in their proof.
3.1. Extension preserving the Lelong class. Consider the standard embedding
\[z \in \mathbb{C}^n \hookrightarrow [1 : z] \in \mathbb{P}^n, \]
where \([t : z]\) denote the homogeneous coordinates on \(\mathbb{P}^n\). Let \(\omega\) be the Fubini-Study Kähler form and let
\[\rho(t, z) = \log \sqrt{|t|^2 + \|z\|^2} \]
be its logarithmically homogeneous potential on \(\mathbb{C}^{n+1}\).

We denote by \(\overline{X}\) the closure of \(X\) in \(\mathbb{P}^n\), so \(\overline{X}\) is an algebraic subvariety of \(\mathbb{P}^n\).

It is well known that the class \(PSH(\mathbb{P}^n, \omega)\) is in one-to-one correspondence with the Lelong class \(\mathcal{L}(\mathbb{C}^n)\) (see [GZ]). Let us look at the connection between \(\omega\)-psh \(L\) functions on \(\overline{X}\) and the class \(\mathcal{L}(X)\).

The mapping
\[F_X : PSH(\overline{X}, \omega|_{\overline{X}}) \rightarrow \mathcal{L}(X), \quad (F_X \varphi)(z) = \rho(1, z) + \varphi([1 : z]), \]
is well defined and injective. However, it is in general not surjective, as shown by Examples 3.2 and 3.3 that follow.

Conversely, a function \(\eta \in \mathcal{L}(X)\) induces an upper semicontinuous function \(\tilde{\eta}\) on \(\overline{X}\) defined in the obvious way:

\[\tilde{\eta}(\overline{t : z}) = \begin{cases}
\eta(z) - \rho(1, z), & \text{if } t = 1, \; z \in X, \\
\limsup_{[1: \zeta] \to [0: z], \zeta \in X} (\eta(\zeta) - \rho(1, \zeta)), & \text{if } t = 0, \; [0 : z] \in \overline{X} \setminus X.
\end{cases} \]

The function \(\tilde{\eta}\) is in general only weakly \(\omega\)-psh on \(\overline{X}\), i.e., it is bounded above on \(\overline{X}\) and it is \(\omega|_{\overline{X}_r}\)-psh on the set \(\overline{X}_r\) of regular points of \(\overline{X}\). This notion is in direct analogy to that of weakly psh function on an analytic variety (see [D2, section 1]). We do not pursue it any further here.

Note that \(\eta \in F_X \left(PSH(\overline{X}, \omega|_{\overline{X}})\right)\) if and only if \(\tilde{\eta} \in PSH(\overline{X}, \omega|_{\overline{X}})\). The following simple characterization is a consequence of Theorem B.

Proposition 3.1. Let \(\eta \in \mathcal{L}(X)\). The following are equivalent:

(i) There exists \(\psi \in \mathcal{L}(\mathbb{C}^n)\) so that \(\tilde{\psi} = \eta\) on \(X\).

(ii) \(\tilde{\eta} \in PSH(\overline{X}, \omega|_{\overline{X}})\).

(iii) For every point \(a \in \overline{X} \setminus X\) the following holds: if \((X_j, a)\) are the irreducible components of the germ \((\overline{X}, a)\) then the value

\[\limsup_{X_j \ni [1: \zeta] \to a} (\eta(\zeta) - \rho(1, \zeta)) \]

is independent of \(j\).

In particular, if the germs \((\overline{X}, a)\) are irreducible for all points \(a \in \overline{X} \setminus X\) then \(\mathcal{L}(X) = \mathcal{L}(\mathbb{C}^n)|_X\).

Proof. Assume that (i) holds. It follows that \(\tilde{\eta} = \varphi|_{\overline{X}}\), where

\[\varphi([t : z]) := \begin{cases}
\psi(z) - \rho(1, z), & \text{if } t = 1, \\
\limsup_{[1: \zeta] \to [0: z]} (\psi(\zeta) - \rho(1, \zeta)), & \text{if } t = 0,
\end{cases} \]
is an \(\omega\)-psh function on \(\mathbb{P}^n\). Hence \(\tilde{\eta} \in PSH(\overline{X}, \omega|_{\overline{X}})\).
Conversely, if (ii) holds then by Theorem B there exists an ω-psh function ϕ on \(\mathbb{P}^n \) which extends \(\tilde{\eta} \). Hence \(\psi(z) = \rho(1, z) + \varphi([1 : z]) \) is an extension of \(\eta \) and \(\psi \in \mathcal{L}(\mathbb{C}^n) \).

The equivalence of (ii) and (iii) follows easily from [D2, Theorem 1.10]. \(\square \)

3.2. Explicit examples.

In view of section 3.1, it is easy to construct examples of algebraic curves \(X \subset \mathbb{C}^2 \) and functions in \(\mathcal{L}(X) \) which do not admit an extension in \(\mathcal{L}(\mathbb{C}^2) \). We write \(z = (x, y) \in \mathbb{C}^2 \).

Example 3.2. Let \(X = \{y = 0\} \cup \{y = 1\} \subset \mathbb{C}^2 \) and \(\eta \in \mathcal{L}(X) \), where
\[
\eta(z) = \begin{cases}
\rho(1, z), & \text{if } z = (x, 0), \\
\rho(1, z) + 1, & \text{if } z = (x, 1).
\end{cases}
\]

The function \(\tilde{\eta} \) is not ω-psh on \(\mathcal{X} = \{y = 0\} \cup \{y = t\} \), hence \(\eta \) does not have an extension in \(\mathcal{L}(\mathbb{C}^2) \). Indeed, the maximum principle is violated along \(\{y = 0\} \) near the point \(a = [0 : 1 : 0] \), since \(\tilde{\eta}([t : 1 : 0]) = 0 \) for \(t \neq 0 \), while \(\tilde{\eta}([t : 1 : 1]) = 1 \).

With a little more effort we can give an example as above where \(X \) is an irreducible curve. Let \(\mathbb{C}^* = \mathbb{C} \setminus \{0\} \).

Example 3.3. Let \(X \subset \mathbb{C}^2 \) be the irreducible cubic with equation \(xy = x^3 + 1 \). Then
\[
\mathcal{X} = \{[t : x : y] \in \mathbb{P}^2 : xyt = x^3 + t^3\}, \quad \mathcal{X} = X \cup \{a\}, \quad a = [0 : 0 : 1].
\]

The germ \((\mathcal{X}, a)\) has two irreducible components \(X_1, X_2 \), both are smooth at \(a \), \(X_1 \) being tangent to the line \(\{x = 0\} \), and \(X_2 \) to the line \(\{t = 0\} \).

Note that in fact \(X \subset \mathbb{C}^* \times \mathbb{C} \) is the graph of the rational function \(y = x^2 + x^{-1}, x \in \mathbb{C}^* \). If \((x, y) \in X \) and \(x \to 0 \) then \((x, y) \to a \) along \(X_1 \), while as \(x \to \infty \) then \((x, y) \to a \) along \(X_2 \). The function
\[
u(x, y) = \max \{-\log |x|, 2 \log |x| + 1\}
\]
is psh in \(\mathbb{C}^* \times \mathbb{C} \). It is easy to check that \(\eta := \nu|_X \in \mathcal{L}(X) \) and
\[
\limsup_{X_1 \ni [t : \zeta] \to a} (\eta(\zeta) - \rho(1, \zeta)) = 0, \quad \limsup_{X_2 \ni [t : \zeta] \to a} (\eta(\zeta) - \rho(1, \zeta)) = 1.
\]

Hence \(\eta \) does not admit an extension in \(\mathcal{L}(\mathbb{C}^2) \).

We conclude this section with an example of a cubic \(X \in \mathbb{C}^2 \) and a psh function on \(X \) of the form \(\eta = \log |P| \), where \(P \) is a polynomial, so that \(\eta \) admits a “transcendental” extension with exactly the same growth, but small additional growth is necessary if we look for an “algebraic” extension.

Proposition 3.4. Let \(X = \{x = y^3\} \) and \(\eta(x, y) = \log |1 + y| \), so \(\eta|_X \in \mathcal{L}_{\frac{1}{3}}(X) \).

Given \(k \geq 1 \), there is a polynomial \(Q_k(x, y) \) of degree \(k + 1 \) so that \(Q_k(y^k, y) = (y + 1)^{3k} \). In particular, \(\psi_k = \frac{1}{3k} \log |Q_k| \in \mathcal{L}_{(k+1)/3k}(\mathbb{C}^2) \) is an extension of \(\eta|_X \).

There exists no polynomial \(Q(x, y) \) of degree \(k \) so that \(Q(y^3, y) = (y + 1)^{3k} \). However, \(\eta|_X \) has an extension in \(\mathcal{L}_{\frac{1}{3}}(\mathbb{C}^2) \).

Proof. We construct \(Q_k \) by replacing \(y^3 \) by \(x \) in the polynomial
\[
(y + 1)^{3k} = \sum_{j=0}^{3k} \binom{3k}{j} y^j.
\]
Since \(j = 3[j/3] + r_j \), \(r_j \in \{ 0, 1, 2 \} \), it follows that

\[
Q_k(x, y) = \sum_{j=0}^{\lfloor 3k/3 \rfloor} \binom{3k}{j} x^{[j/3]} y^{r_j} = 3kx^{k-1}y^2 + \text{d.t.}.
\]

We now check that there is no polynomial \(Q(x, y) \) of degree \(k \) so that \(Q(y^3, y) = (y + 1)^{3k} \). Indeed, if \(Q(x, y) = \sum_{j+l \leq k} c_{jl}x^jy^l \) then

\[
Q(y^3, y) = c_{k0}y^{3k} + c_{k-1, 1}y^{3k-2} + \text{d.t.}
\]

does not contain the monomial \(y^{3k-1} \).

Note that \(\mathbb{X} = \{ xt^2 = y^3 \} = X \cup \{ a \} \), where \(a = [0 : 1 : 0] \), so the germ \((\mathbb{X}, a) \) is irreducible. Proposition 3.1 implies that \(\eta \big|_X \) has an extension in \(\mathcal{L}_{1/3}(\mathbb{C}^2) \). \(\square \)

We conclude with some remarks regarding our last example. If \(X \) is an algebraic subvariety of \(\mathbb{C}^n \) and \(f \) is a holomorphic function on \(X \), \(f \) is said to have polynomial growth if there is an integer \(N(f) \) and a constant \(A \) so that

\[
|f(z)| \leq A(1 + ||z||)^{N(f)}, \quad \forall z \in X.
\]

Then it is well known that there exists a polynomial \(P \) of degree at most \(N(f) + \varepsilon(X) \) so that \(P \big|_X = f \), where \(\varepsilon(X) > 0 \) is a constant depending only on \(X \) (see e.g. [Bj] and references therein). However, if \(\mathbb{X} \subset \mathbb{P}^N \) is irreducible at each of its points at infinity then by Proposition 3.1 the psh function \(\eta = N(f)^{-1}\log|f| \in \mathcal{L}(X) \) has a psh extension in the Lelong class \(\mathcal{L}(\mathbb{C}^n) \).

On the other hand, Demailly [D1] has shown that in the case of the transcendental curve \(X = \{ e^x + e^y = 1 \} \) any holomorphic function \(f \) on \(X \), of polynomial growth, has a polynomial extension of the same degree to \(\mathbb{C}^n \). Hence it is natural to ask if for this curve one has that \(\mathcal{L}(X) = \mathcal{L}(\mathbb{C}^n) \big|_X \).

References

D. Coman: dcoman@syr.edu, Department of Mathematics, Syracuse University, Syracuse, NY 13244-1150, USA

V. Guedj: guedj@cmi.univ-mrs.fr, Université Aix-Marseille 1, LATP, 13453 Marseille Cedex 13, FRANCE

A. Zeriahi: zeriahi@picard.ups-tlse.fr, Laboratoire Emile Picard, UMR 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, FRANCE