Oxygen Measurement via Phosphorescence: Reaction of Sodium Dithionite with Dissolved Oxygen

Zhimin Tao
State University of New York

Jerry Goodisman
Syracuse University

Abdul-Kader Souid
State University of New York

Follow this and additional works at: https://surface.syr.edu/che

Part of the [Chemistry Commons](https://surface.syr.edu/che)

Recommended Citation
https://surface.syr.edu/che/31

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in Chemistry Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
A homemade instrument for the measurement of oxygen concentration in aqueous solutions measures the decay rate of the phosphorescence of a Pd-porphyrin complex (phosphor) dissolved in the solution, which is flashed every 0.1 s with 630 nm light. The concentration of O_2 is a linear function of the decay rate. The instrument is used to study the reaction of dithionite (S_2O_4^{2-}) with O_2 at 25 °C and 37 °C. It is found that the ratio of dithionite to oxygen consumed in the reaction is 1.2 ± 0.2 at 25 °C and 1.7 ± 0.1 at 37 °C, suggesting a temperature-dependent stoichiometry. At both temperatures, the initial rate of O_2 consumption, −d[O_2]/dt, is found to be 1/2 order in S_2O_4^{2-} and first order in O_2. This finding is consistent with a previously proposed mechanism: S_2O_4^{2-} ↔ 2SO_2^{−} comes to a rapid equilibrium, and SO_2^{−} reacts with O_2 in the rate-determining step.

1. Introduction

Measurement of O_2 concentration is based on the quenching of the phosphorescence of Pd (II)-meso-tetra-(4-sulfonatophenyl)-tetrabenzoporphyrin (Pd phosphor) was introduced by Wilson and his co-workers. This method allows accurate and sensitive determination of [O_2] in biological systems. Using a homemade instrument, we recently used this method to monitor cellular respiration (mitochondrial O_2 consumption) under various conditions. The instrument records and analyzes the phosphorescence profile (emitted light intensity vs time) of the Pd phosphor, which is excited with a flash of 630 nm light. Since O_2 quenches the phosphorescence of this probe, the decay constant of emitted light depends linearly on [O_2].

The stoichiometry and kinetics of the reaction of dithionite with dissolved oxygen is studied here using this instrument, which we briefly describe below, as well as the analysis of experimental results. We then report our measurements of stoichiometry and rate constants for the reaction of sodium dithionite (Na_2S_2O_4) with dissolved O_2.

Sodium dithionite (Na_2S_2O_4), also known as sodium hydrosulfite or hyposulfite, has been reported to decompose in aqueous solutions. Under aerobic conditions, dithionite ion S_2O_4^{2−} reduces O_2 to the −2 oxidation state rapidly, producing bisulfite and/or bisulfate. The overall reaction is written as:

\[S_2O_4^{2−} + O_2 + H_2O \rightarrow HSO_3^{−} + HSO_4^{−} \]

(implying equal amounts of bisulfite and bisulfate are produced, as first reported). Two reactions are actually possible:

\[S_2O_4^{2−} + \frac{1}{2} O_2 + H_2O \rightarrow 2HSO_3^{−} \]

\[S_2O_4^{2−} + \frac{3}{2} O_2 + H_2O \rightarrow 2HSO_4^{−} \]

The ratio between bisulfite and bisulfate depends on the relative contributions of reactions 2 and 3. The initial steps of the reaction may involve eqs 4 and 5:

\[S_2O_4^{2−} ↔ 2SO_2^{−} \]

\[SO_2^{−} + O_2 \rightarrow \text{products} \]

with eq 5 being followed by a series of further reactions. Raman spectroscopy and X-ray studies on S_2O_4^{2−} suggested a planar D_{2h} structure, which has one S−S bond in the center and two S−O bonds with different lengths in each half-anion. This is consistent with eq 4, which shows dissociation of S_2O_4^{2−} into two units of SO_2^{−}. In addition, a mechanism for eq 5, which explained the equal amounts of bisulfite and bisulfate, was proposed by Rinker et al. The first step in eq 5 was

\[\bullet SO_2^{−} + O_2 \rightarrow SO_2^{−} + \bullet O_2^{−} \]

with several other radicals involved in subsequent steps. Nonetheless, there is no evidence for or against this mechanism.

Depending on which step is rate-determining in eqs 4 and 5, different kinetic schemes result. Some authors reported zero-order with O_2, implying the forward reaction in eq 4 is rate-determining; this also predicts the reaction to be first-order with respect to S_2O_4^{2−}. Other researchers claimed that the equilibrium in eq 4 is very rapid, and thus, eq 5 is the rate-controlling step; this predicts first-order kinetics with respect to O_2 and 1/2-order with respect to S_2O_4^{2−}. However, the rate-controlling...
step, like the ratio of bisulfate and bisulfite in the final products, may depend on temperature and relative amounts of $S_2O_4^{2-}$ and O_2.

Only a few studies13 of the reaction of $S_2O_4^{2-}$ with O_2 in solutions have been reported lately, and they do not address the mechanism. Most investigations considered in the spectroscopic absorbance of $S_2O_4^{2-}$ ($\lambda_{\text{max}} = 315$ nm). Here, we investigate the stoichiometry and kinetics of this reaction by tracking O_2 consumption using our O_2 analyzer. The results suggest the stoichiometry for the overall reaction is temperature-sensitive. The kinetics is shown to be 1/2-order with respect to $S_2O_4^{2-}$ and first-order with respect to O_2, showing that eq 5 is the rate-limiting step.

2. Experimental Section

2.1. Materials. Pd (II) complex of meso-tetra-(4-sulfonatophenyl)-tetranaphthorphyrin (Pd phosphor, sodium salt) was obtained from Porphyrin Products (Logan, UT). Pd phosphor solution (2.5 mg/mL = 2 mM) was prepared in dH$_2$O and stored at -20 °C in small aliquots. D(+)-glucose anhydrous (Cat # 346351, lot #D0003205) was purchased from Calbiochem (La Jolla, CA). Glucose oxidase (from Aspergillus niger; 1400 units/mL in 100 mM sodium acetate, pH 4.0) was purchased from Sigma-Aldrich (St. Louis, MO). Sodium dithionite (MW 174.11) was purchased from Fluka, U.K. Working solutions (0.5–1.0 M) were freshly made in dH$_2$O under argon shielding. Bovine serum albumin (BSA) was purchased from Sigma-Aldrich.

2.2. Instrument. An optical instrument was built to measure the phosphorescence of Pd phosphor.$^{1-4}$ The probe was excited by light pulses (10 per s) that peaked at 625 nm (OTL630A-5–10-66-E, Opto Technology, Inc., Wheeling, IL). Duration of a pulse was 50–100 ms. Emitted phosphorescence was isolated by a filter centered at 800 nm and passed through a Hamamatsu photomultiplier tube (# 928). Five microseconds after each flash, the resulting phosphorescence was digitized at a Hamamatsu photomultiplier tube (# 928). Five microseconds after each flash, the resulting phosphorescence was digitized at 1 MHz by the ultrahigh-speed PCI-DAS4020/12 Analog input board (Measurement Computing Corporation, Norton, MA). DASYlab (Measurement Computing Corporation, Norton, MA) was used for data acquisition.

Samples (final volume, 1.0 mL with dH$_2$O) containing 2 μM Pd-phosphor and 0.5% bovine fat-free albumin were placed in 1 mL glass vials. Serum albumin binds the Pd-phosphor molecules and protects them from external chemical disturbance, such as changes in pH. The vials were sealed and placed in the instrument for O_2 measurement. Mixing was accomplished with the aid of parylene-coated stirring bars.

2.3. Data Analysis. A typical phosphorescence intensity profile, for air-saturated dH$_2$O to which 200 μM $S_2O_4^{2-}$ has been added, is shown in Figure 1. Dithionite reacts rapidly with dissolved O_2 and, as shown below, 200 μM $S_2O_4^{2-}$ removes more than half of the O_2 in air-saturated water. The data were analyzed by a computing program (C++ language, Table 1) that calculated the phosphorescence lifetime (τ) and decay constant (1/\$\tau\$), from which $[O_2]$ can be determined using eq 7

$$\frac{1}{\tau} = \frac{1}{\tau_0} + k_q[O_2]$$

where the values of 1/\$\tau_0\$ (10087 ± 156 s$^{-1}$) and k_q (96.1 ± 1.2 μM$^{-1}$ s$^{-1}$) were established by calibration.5

In the phosphorescence profile shown in Figure 1, the flash goes on at $t = t_0 = 0.078548$ s, stays on with a constant intensity until $t = t_1 \approx 0.078626$ s, and then goes off, so that the flash duration is ~ 78 μs. Since phosphorescence is a first-order process, the phosphorescence intensity (I) is proportional to the number of phosphor molecules in the excited state. This population decays with time and is pumped by the flash at a constant rate k'. Thus, $I = 0$ for $t < t_0$, and

$$\frac{dI}{dt} = k' - \frac{I}{\tau}, \quad t_0 < t < t_1$$

which integrates to

$$I = k'\tau[1 - e^{-(t-t_0)/\tau}] \quad \text{for} \quad t > t_1 \quad \text{(lamp off)},$$

$$I = c e^{-(t-t_1)/\tau} \quad \text{for} \quad t < t_1$$

where c is the maximum intensity (at t_1); that is,

$$c = k'\tau[1 - e^{-(t_1-t_0)/\tau}]$$

The value of c is proportional to τ only if $t_1 - t_0 \gg \tau$. There are several ways of obtaining τ from an intensity profile like the one in Figure 2, and we compare them here.

Figure 1. Phosphorescence profile of dH$_2$O containing 2.0 μM Pd phosphor, 0.5% albumin, and 200 μM $S_2O_4^{2-}$. One can measure the lifetime τ from the area and peak height of the profile, by fitting the profile to the theoretical form (dashed line), or by fitting the decreasing part to an exponential (solid gray line).

From direct reading of the experimental intensities (solid dots), one finds $t_0 = 0.0785482$ s, $t_1 = 0.0786263$ s, maximum intensity $c = 3.00293$ arbitrary units, and total area under the curve,

$$A = \int_{t_0}^{t_1} I \, dt = k'\tau(t_1 - t_0) = 0.0003028 \text{ arbitrary units} \times s \quad \text{(by numerical integration)}.$$
0.0786150 s, maximum height $c = 2.84994$ arbitrary units, and peak area 0.0002714 arbitrary units (from integration of eqs 8 and 9 to $t = \infty$). Then $A/c = 9.523 \times 10^{-5}$ s, so that $\exp(\left(t_0 - t_1 \right)/\tau) = 1 - 0.90309$ and $\tau = 3.68 \times 10^{-5}$ s. The fitting process is much more tedious than direct measurement, and the quality of the fit (see Figure 2) is only fair, so that the value of τ is inaccurate.

Fortunately, a simpler and more accurate method is available: after locating the position of the maximum, one fits the decreasing part of the profile to an exponential function. The fit, shown as a solid gray line in Figure 1, gives $\tau = 4.71 \times 10^{-5}$ s, reasonably close to what is obtained by direct analysis of all the data. The exponential fit is more reliable; although it uses less of the data, it requires determination of only one parameter, the decay rate ($1/\tau$). This method is easily implemented in the computer program, and we therefore use the exponential fit to determine the value of τ.

Furthermore, we will always be comparing τ values after calibration. The sampling was done at 307 200 Hz. Since the lamp flashes every 0.1 s, the duration of the flash is 78 μs, and

\begin{table}
\centering
\begin{tabular}{|l|}
\hline
TABLE 1: C++ Language Program for Computing $1/\tau$
\hline
\end{tabular}
\end{table}
the decay time \(t \) is about 40 \(\mu \)s; the useful data from each flash involves fewer than 100 points, and >99.8% of the readings are zero and of no interest. The analysis program removes all zero or zero-like readings by setting a data-dropping threshold (e.g., 0.05), producing a sawtooth intensity-versus-time plot, composed of a number of profiles like that of Figure 1. It is necessary to find the maximum in each profile and fit the points after the maximum to an exponential function.

The possibility that the phosphor is affected by the dithionite or its oxidation products was also investigated, by measuring the glucose oxidase-catalyzed oxidation of glucose at 25 °C and 37 °C (Figure 2). The overall reaction of glucose (C\(_6\)H\(_{12}\)O\(_6\)) with O\(_2\) produces gluconic acid (C\(_6\)H\(_{12}\)O\(_7\)) and H\(_2\)O\(_2\).

\[
\text{glucose} + \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{gluconic acid} + \text{H}_2\text{O}_2
\]

The reaction mixtures (in dH\(_2\)O) contained 2 \(\mu \)M Pd phosphor, 0.5% albumin, and glucose oxidase (7.0 units/mL) with or without 1.0 mM dithionite. The solutions were stirred and equilibrated with air for 30 min. One milliliter of each solution was then placed in a sealed vial for [O\(_2\)] measurement at 25 °C (panel A) and 37 °C (panel B). O\(_2\) was consumed rapidly on injection of 45, 90, 135, 180, and 225 \(\mu \)M (final concentrations) d-glucose. Measured 1/\(t \) (in s\(^{-1}\)) decreased as [d-glucose] increased; the best linear fits are shown.

At 25 °C (Figure 2A), the slope without dithionite (circles) was \(-86.065 \pm 4.479 (r^2 > 0.99)\) and with dithionite (squares) \(-87.581 \pm 4.778 (r^2 > 0.99)\). At 37 °C (Figure 2B), the slope without dithionite (circles) was \(-134.72 \pm 16.19 (r^2 > 0.95)\) and with dithionite (squares) \(-132.13 \pm 3.99 (r^2 > 0.99)\). Thus, the effect of dithionite and its oxidation products on the Pd phosphor at 25 °C and 37 °C was negligible. The curves in the presence of dithionite were lower because of less dissolved O\(_2\) in these solutions.

3. Results and Discussion

3.1. Experimental Results. Figures 3 and 4 show representative plots of the reciprocal of the measured decay constant \(r \) (+ signs) obtained in successive measurements at 25 °C (Figure 3) and 37 °C (Figure 4). Each plot corresponds to an experiment in which dithionite was added to air-saturated water at the concentration shown in the plot label. Here, 1/\(r \) is plotted versus elapsed time. Since, according to eq 7, 1/\(r \) is a linear function of [O\(_2\)], these are essentially plots of [O\(_2\)] versus time. The rapid decline in [O\(_2\)] when S\(_2\)O\(_4^{2-}\) is injected is evident.

For each plot, the values of 1/\(t \) before and after the drop in [O\(_2\)], 1/\(t_b \) and 1/\(t_a \), were obtained by averaging 100–200 measurements. The value of 1/\(t_b \) should correspond to the oxygen concentration in air-saturated dH\(_2\)O, which is 267 \(\mu \)M at 25 °C and 225 \(\mu \)M at 37 °C.\(^{14}\) When [S\(_2\)O\(_4^{2-}\)] > 500 \(\mu \)M, the value of 1/\(t_a \) corresponds to total depletion of O\(_2\); that is 1/\(t_a \) = 1/\(t_b \). From the values of 1/\(t_b \) and 1/\(t_a \), we obtain information about the stoichiometry of the overall reaction (see below). From the shape of the experimental curve, we obtain information about the kinetics and rate constant of the reaction.

It can be seen, for instance, that the drop in 1/\(r \) is rapid and mostly linear, suggesting a reaction which is zero-order in O\(_2\). However, in many plots, one can also note a tail or rounding-off in the experimental data as 1/\(r \) approaches 1/\(t_b \), suggesting either that the plots are actually curved or that the rate-determining step is no longer zero-order when [O\(_2\)] drops below a certain level.

The solid lines in Figures 3 and 4 are fits of the experimental data to the four-parameter function

\[
\frac{1}{r} = \frac{1}{t_b} \quad t < t_b
\]

\[
\frac{1}{r} = \left(\frac{1}{t_a} + \frac{1}{t_b} - \frac{1}{t_b} \right) \exp[-C(t-t_b)] \quad t \geq t_b
\]

with the values of the parameters C and \(t_b \) found by minimizing the sum of the square deviations of eq 10 from experimentally measured 1/\(t \) at 1/\(t_b \) and 1/\(t_a \) having been previously determined.

One obtains a first-order rate constant for oxygen depletion by multiplying \(-d(1/\tau)/dt \) by \(k_q/\tau_q \), where \(k_q = 96.1 \text{ M}^{-1} \text{ s}^{-1} \). Further, one obtains the initial rate (or zero-order rate constant) from the value of \(-d(1/\tau)/dt \) at \(t = t_b \):

\[
r = \left(\frac{1}{t_b} - \frac{1}{t_a} \right) \frac{C}{k_q}
\]

We have also fitted (not shown) the experimental data to the four-parameter function,

\[
1/\tau = 1/\tau_b \quad t < t_b
\]

\[
1/\tau = (1/\tau_a - 1/\tau_b)(t_b - t) \quad t_b \leq t < t_a
\]

\[
1/\tau = 1/\tau_a \quad t > t_a
\]
From eq 12, the zero-order rate constant or reaction rate is

\[r = k_0 = \frac{1}{k_a} \left(\frac{1}{t_b} - \frac{1}{t_a} \right) \left(\frac{1}{t_a - t_b} \right) \]

(13)

The fit to eq 10 is somewhat better than the fit to eq 12 because eq 10 takes into account the curvature in the plots as 1/\(\rho \) approaches 1/\(\rho_a \).

3.2. Stoichiometry of the Reaction of S\(_2\)O\(_4\)\(^{2-}\) with O\(_2\). At 25 °C, 22 data sets with various concentrations of S\(_2\)O\(_4\)\(^{2-}\) below 1.0 mM were obtained. For some of them, the values of 1/\(\rho \) are plotted versus [S\(_2\)O\(_4\)\(^{2-}\)] in Figure 5A, where each error bar is the standard deviation for one determination of 1/\(\rho \). Figure 5B, similarly, shows the results of some of the measurements at 37 °C.

It is expected that [O\(_2\)] after S\(_2\)O\(_4\)\(^{2-}\) addition (obtained from \(\rho \)) will decrease linearly with \(d \) for \(d < s[O_2]_0 \), where \(s \) is the ratio of S\(_2\)O\(_4\)\(^{2-}\) consumed to [O\(_2\)] consumed, until \(d = s[O_2]_0 \). For [S\(_2\)O\(_4\)\(^{2-}\)] > [O\(_2\)], 1/\(\rho \) should equal 1/\(\rho_a \), since all of the oxygen has been reduced. The broken line in Figure 5A is the best fit of all 22 data points to the 3-parameter function

\[1/\rho = \alpha + \beta d, \quad d < \delta; \quad 1/\rho = \gamma, \quad d > \delta \]

(14)

where \(\alpha + \beta \delta = \gamma \). This best fit has \(\alpha = 28.844 \text{ s}^{-1} \), \(\beta = -54.0 \text{ s}^{-1} \mu \text{M}^{-1} \), \(\delta = 312.3 \mu \text{M} \), and \(\gamma = 11971 \text{ s}^{-1} \). Since [O\(_2\)] = 267.2 \(\mu \text{M} \), \(s = 1.167 \pm 0.201 \) (error from linear fit). This result is consistent with eq 1 but suggests that \(s \) may be slightly greater than 1.

A similar analysis was made of the 28 data sets from measurements at 37 °C with dithionite concentrations below 1.0 mM. The values of 1/\(\rho \) are plotted versus [S\(_2\)O\(_4\)\(^{2-}\)] in Figure 5B, where each error bar is the standard deviation for one determination of 1/\(\rho \). The dashed line in Figure 5B is the best fit to eq 14, using all 28 values of 1/\(\rho \). In this case, \(\alpha = 41745 \text{ s}^{-1} \), \(\beta = -80.4 \text{ s}^{-1} \mu \text{M}^{-1} \), \(\delta = 384.2 \mu \text{M} \), and \(\gamma = 10823 \text{ s}^{-1} \). Since [O\(_2\)] = 225.4 \(\mu \text{M} \), \(s = 1.705 \pm 0.134 \) (error from linear fit). This result is significantly different from what is implied by eq 1 and shows that eq 2 occurs more often than eq 3 at the higher temperature.

3.3. Kinetics of the Reaction of S\(_2\)O\(_4\)\(^{2-}\) with O\(_2\). In these experiments, S\(_2\)O\(_4\)\(^{2-}\) was added to a sample of air-saturated dH\(_2\)O containing Pd phosphor without interrupting the measurement of \(\rho \), and the measured values of 1/\(\rho \), which depends linearly on [O\(_2\)], were plotted versus \(t \). The data sets studied resemble those in Figures 3 and 4. The plots for 25 °C (Figure 3A,B) show a mostly linear decrease in 1/\(\rho \) from \(t = t_b \) to \(t = t_a \); that is, the decrease is initially linear and deviates from linearity for 1/\(\rho \) below about 15 000 s\(^{-1} \); according to eq 7, this corresponds to [O\(_2\)] < 40 \(\mu \text{M} \). In the plots for 37 °C (Figure 4A,B), the decrease is much faster, corresponding to faster rates at the higher temperature. Where d[O\(_2\)]/dt is independent of [O\(_2\)]...
(for $[O_2] > 40 \mu M$) the reaction is apparently zero-order with respect to O_2, where $-d[O_2]/dt$ decreases with $[O_2]$ (for $[O_2] < 40 \mu M$), the order of the reaction with respect to O_2 is apparently greater than 0. This is consistent with the mechanism of eqs 4 and 5: For higher $[O_2]$, eq 4, which is zero-order in $[O_2]$, is the rate-determining step; but for lower $[O_2]$, eq 5 becomes slower and rate-determining, and it is first-order in $[O_2]$. Creutz and Sutin6 found $d[O_2]/dt$ to follow zero-order kinetics “over at least 80% reaction” when $S_2O_4^{2-}$ was present in excess. It is also possible that the decrease is exponential, since an exponential is linear close to the origin.

In order to establish the order with respect to $S_2O_4^{2-}$ and to calculate rate constants, we compare the initial rates of reaction r for different $[S_2O_4^{2-}]$. These are calculated according to eq 11 or eq 13. Since the initial rate should be proportional to $[S_2O_4^{2-}]x[O_2]_0$ where x is the order of the reaction, x can be determined by linear regression on a plot of $\ln(r)$ versus $\ln[S_2O_4^{2-}]$.

Values of r determined from experiments at 25 °C are given in Table 2, and values determined at 37 °C are given in Table 3. Equations 10 and 11, the exponential fitting functions, were used to obtain these values. There was much more scatter in the initial reaction rates at higher T, because of insufficient time resolution in the values of $1/r$. In fact, little information is available when the value of $1/r$ drops from $1/r_0$ at time t to a value indistinguishable from $1/r_0 (O_2 \sim 0)$ at $t + \Delta t$ where Δt is the time between measurements. Since the standard deviation in $1/r$ is $\sim 10^3 \text{s}^{-1}$ and $1/r_0 - 1/r_0$ is $\sim 3 \times 10^4 \text{s}^{-1}$, this means

$$30 e^{-C\Delta t} < 1$$

or, with $\Delta t = 0.07 \text{s}$, $C > 49 \text{s}^{-1}$. Thus, values of r are of doubtful validity when

$$r > 3 \times 10^4 CI_{k_q} = 1.5 \times 10^4 \mu M \text{s}^{-1}$$

All the values of r in Tables 2 and 3 were used in the fitting; removing those greater than $1.5 \times 10^4 \mu M \text{s}^{-1}$ changes the results only slightly.

To find the order of the reaction with respect to $S_2O_4^{2-}$, we perform a linear regression of $\ln(r)$ versus $\ln[S_2O_4^{2-}]$, shown in Figure 6. For the 25 °C data, the slope is 0.59 ± 0.07, showing clearly that the reaction is 1/2-order with respect to $S_2O_4^{2-}$. This is expected if eq 4 is the rate-determining step. For 37 °C, the slope is 0.49 ± 0.09 (Figure 6), showing that

![Figure 4](image-url)
the rate-determining step is 1/2-order at the higher temperature as well. We have also calculated r values using eqs 12 and 13, corresponding to fits to a three-line function. Although the values of r are much higher than those in Tables 2 and 3, the slope of a plot of $\ln(r)$ versus $\ln([S_2O_4^{2-}])$ is still ~0.5.

3.4. Rate Constants. In summary, the initial rate of the oxygen-consumption reaction, in μM s$^{-1}$, is found to be equal to

$$-\frac{d[O_2]}{dr} = \exp(2.092 + 0.594 \ln[S_2O_4^{2-}]) \approx 17.8[S_2O_4^{2-}]^{1/2}$$

(15)
at 25 °C and

$$-\frac{d[O_2]}{dr} = \exp(5.124 + 0.493 \ln[S_2O_4^{2-}]) \approx 196.3[S_2O_4^{2-}]^{1/2}$$

(16)
at 37 °C, where $[S_2O_4^{2-}]$ is in μM. Assuming the reaction is first order in O$_2$ (see below) and using initial concentrations of O$_2$ of 267 μM at 25 °C and 225 μM at 37 °C, we calculate that the rate constants are 66.7 M$^{-1/2}$ s$^{-1}$ at 25 °C and 872 M$^{-1/2}$ s$^{-1}$ at 37 °C. The temperature dependence of the rate constant corresponds to an activation energy of

$$-R \frac{d \ln(k)}{d(1/T)} = \frac{2.571 R}{0.0001298} = 164.7 \text{ kJ/mol}$$

which should be related to the dissociation energy of $S_2O_4^{2-}$ into SO_2^{2-}. The S–S single-bond energy is 425 kJ/mol; therefore, the S–S bond in dithionite is highly destabilized.

Assuming eqs 4 and 5 are the only reactions contributing to oxygen consumption (note that in the scheme of Rinker et al., O$_2$ enters as a reactant in a later step as well), we may write the rate equations as follows. Letting k_1 and k_1 be the forward and reverse rate constants for reaction 4 and letting k_2 be the rate constant for reaction 5, we find the steady-state equation for the reactive intermediate SO_2^{2-} is

$$2k_1[S_2O_4^{2-}] - 2k_2[SO_2^{2-}]^2 - k_2[SO_2^{2-}][O_2] = 0$$

(17)

According to Creutz & Sutin, $k_1 \approx 2.5$ s$^{-1}$ at pH 8, 25 °C; $k_1 \approx 1.8 \times 10^9$ M$^{-1}$ s$^{-1}$ at pH 6.5, 25 °C; $k_2 > 10^8$ M$^{-1}$ s$^{-1}$ 25 °C. If, in our experiments, the second term in eq 17 were much smaller than the third, we would have

$$[SO_2^{2-}] \sim \frac{2k_1[S_2O_4^{2-}]}{k_2[O_2]}$$

and

$$-\frac{d[O_2]}{dr} = k_2[SO_2^{2-}][O_2] = 2k_1[S_2O_4^{2-}]$$

This predicts the order of the reaction with respect to $S_2O_4^{2-}$ incorrectly. Apparently, the second term in eq 17 is larger than...
the third, so that \(\text{SO}_2^{2-} \leftrightarrow 2 \text{SO}_3^{2-} \) comes to a rapid equilibrium and
\[
-\frac{d[\text{O}_2]}{dt} = k_2[\text{SO}_2][\text{O}_2] = k_2\sqrt{\frac{k_1}{k_{-1}}} [\text{SO}_2^{2-}]^{1/2}[\text{O}_2] \quad (18)
\]
which predicts the order with respect to dithionite correctly. If one accepts this, the order with respect to \(\text{O}_2 \) is 1, which is also consistent with our observations.

The effective rate constant derived from our results at 25 °C is 66.7 M\(^{-1/2}\) s\(^{-1}\), and this should be equal to \(k_2\sqrt{k_1/k_{-1}} \). It is impossible to use literature values for the rate constants here: the values of \(k_1 \) and \(k_{-1} \) reported by Creutz and Sutin,\(^{10} \) were measured at pH 8 and pH 6.5 respectively, while our measurements were at much lower pH. Our measured pH varied linearly with [\(\text{SO}_2^{2-} \)], being 3.61 ± 0.03 for 100 \(\mu \text{M} \) and 3.82 ± 0.10 for 10 \(\text{M} \). A value of 2.4 \(\times 10^6 \) M\(^{-1}\) s\(^{-1}\) was reported by Huie et al\(^{16} \) for
\[
\text{SO}_2^{2-} + \text{O}_2 \rightarrow \text{SO}_2 + 2 \text{O}_2^{-} \quad (19)
\]
at room temperature, pH = 1.0. It seems very likely that eq 19 is the first reaction in the series of reactions indicated by eq 5. Note that \(\text{SO}_2 \) in aqueous solution near neutral pH is equivalent to bisulfite, so that sulfite must be formed by subsequent reactions. For example, superoxide ion \(\text{O}_2^{-} \) (like \(\text{O}_2 \)) can oxidize S(iv) to S(v),\(^{13} \) which is easily oxidized to S(vi) (bisulfate).

4. Conclusions

From the above results, it can be seen that our instrument can be conveniently utilized to monitor rapid chemical reactions, by measuring the phosphorescence decay rate, 1/\(r \). Since 1/\(r \) is linearly dependent on [\(\text{O}_3 \)], measurement of 1/\(r \) gives [\(\text{O}_3 \)]\(^{1-4,18-23} \). The tail of each phosphorescence decay profile was fit to an exponential function to measure [\(\text{O}_2 \)]. Presently, phosphorescence profiles are obtained every 0.1 s (flash rate), making it feasible to monitor chemical reactions in which the oxygen concentration changes substantially in a few hundred milliseconds. Reactions 100 times faster could be tracked if the flash rate were increased to 1000 Hz.

We applied our \(\text{O}_2 \) analyzer to investigate the reaction of \(\text{S}_2\text{O}_4^{2-} \) with \(\text{O}_3 \), which apparently begins with the reactions of eqs 4 and 5. The stoichiometry study shows 1.2:1.0 (\(\text{S}_2\text{O}_4^{2-}/\text{O}_3 \)) at 25 °C (consistent with the results of other workers) and 1.6:1.0 at 37 °C. The variation may be due to different temperature dependences of the rates of the reaction steps which follow eq 5. The relative rates of these steps determine the overall stoichiometry and, equivalently, the relative amounts of bisulfate and bisulfite produced. The reaction of \(\text{SO}_2 \) with \(\text{O}_3 \) very probably produces \(\text{SO}_3 \) and \(\text{O}_2 \), and \(\text{SO}_2 \) in aqueous solution already yields \(\text{HSO}_3^- \). Subsequent reactions involve further oxidations by \(\text{O}_2 \) and \(\text{O}_3^- \).

The kinetics study shows that at both temperatures the oxygen depletion \(-d[\text{O}_2]/dt\) is \(1/2 \)-order in [\(\text{S}_2\text{O}_4^{2-} \)] and first-order in [\(\text{O}_3 \)]. This supports the suggestion of previous workers that conversion between \(\text{S}_2\text{O}_4^{2-} \) and \(\text{SO}_3^- \) (eq 4) reaches equilibrium rapidly, so that reaction 5 is rate-determining and is the main contributor to the depletion of oxygen.

Acknowledgment. This work is supported by a fund from the Paige’s Butterfly Run. We appreciate the contribution of Dr. Harvey Penefsky, who built the apparatus and allowed us to use it for these measurements. We also appreciate the contribution of Dr. Yu Zhang with the electronic circuit and of Mr. Shiliyang Xu with the computer language.

References and Notes

(15) Handbook of Chemistry and Physics; Chemical Rubber Publishing Co.; Table 9, p 38.
(22) Wilson, D. F.; Cerniglia, G. J. Cancer Res. 1992, 52, 3988.