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Abstract 
 
In this dissertation, I examine the link between technology standards and innovation in green 

energy technologies.  The first paper investigates the effects of compatibility standards on follow-

on innovation at the firm-level in smart grid technology. Using data on the adoption of standards 

in 19 OECD countries and weights that capture the unique composition of each firm’s country 

markets, we find that higher exposure to changes in standardization causes a decline in firms’ 

patenting activity. This negative effect is concentrated in large incumbents and is partially offset 

by an increase in the quality of inventions. This suggests a tradeoff in the effects of standards on 

the quantity versus the quality of innovation, which might occur because standards help focus 

inventive activity onto high-quality pathways.   

 

The second paper tests this technological focusing hypothesis more directly using an analysis of 

citations at the patent-level in three clean energy technologies: solar photovoltaic, wind turbines 

and smart grids.  I leverage variation in standard counts across different cohorts of patents and 

technologies to estimate how standards affect patent citations.  I find that standards cause an 

increase in patent citations, implying that they help inventors better utilize existing knowledge. 

Furthermore, when estimating the effects of standards across different quantiles of the patent 

quality distribution, I find that the increase in citations is concentrated in high-quality patents.  

 

The third paper explores how standards affect knowledge transfers between different domains 

of smart grids technology. I use patent citation data to identify inventions that are highly 

influential within the citation network. Using this subsample of influential patents, I garner 

qualitative insights about the field’s main knowledge trajectory. For example, influential patents 

appear to play an important role in transferring expertise across different sectors of smart grid 

technology. Findings from this exploratory analysis can help identify where important knowledge 

flows have occurred, with a view to informing future research on the causal effects of standards 

on knowledge transfers. 
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Introduction  
 

The world is falling behind on its commitments to limit global warming to no more than 1.5 

degrees Celsius above pre-industrial levels. Since the Paris Agreement was established, global 

emissions have continued to rise. The World Meteorological Organization now projects that 

global average temperatures will likely surpass the 1.5 degrees threshold for at least one year 

between now and 20271.  To have a realistic change of containing global warming to 1.5 degrees, 

some projections estimate that the transition to net-zero emissions will need to happen well 

before 2050, the target set by the Paris Agreement (Lamboll et al, 2023).  

Amidst this crisis, the pivotal role of policy in accelerating decarbonization transitions cannot be 

overstated. In the past decades, policy has played a crucial role in driving down the costs of wind 

and solar generation to levels below those of fossil fuel generation. The creation of markets for 

these technologies was largely achieved through demand-pull policies such as customer subsidies 

and feed-in-tariffs (Reichardt and Rogge, 2016; Nemet, 2019; Gerarden, 2023). Despite these 

advancements, innovation remains insufficient in many areas necessary to advance 

decarbonization goals. According to the International Energy Agency, half of the technologies 

needed to achieve net-zero are not yet market-ready. In the electricity sector, these include 

enabling technologies to enhance grid flexibility and support the large-scale integration of 

variable electricity generation (IEA, 2021).  

To advance the goals of the Paris Agreement, policies must address the dual externalities 

challenge causing an undersupply of R&D in green energy technologies (Popp, 2019). Market-

based demand-pull interventions can help mitigate environmental externalities, while supply-

side technology-push policies help address the public good nature of knowledge.  On the 

demand-side, studies show that carbon pricing policies are effective at stimulating green 

innovation among regulated firms (Calel and Dechezleprêtre, 2016), and more generally, that 

increases in fossil fuel prices induce clean innovation (Popp, 2002) and cause firms to switch from 

 
1 https://wmo.int/news/media-centre/global-temperatures-set-reach-new-records-next-five-years 

https://wmo.int/news/media-centre/global-temperatures-set-reach-new-records-next-five-years
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dirty to clean R&D (Aghion et al., 2016).  On the supply-side, interventions such as research grants 

and fiscal incentives for R&D are also critical to address knowledge spillovers in markets for green 

inventions. Overall, a balanced and comprehensive mix of different policy instruments is needed 

to tackle the dual externalities problem (Costantini, et al., 2017).   

Decision makers must also consider technology maturity when designing policy mixes to support 

green innovation. Broad-based price incentives are most effective for technologies nearing 

market-readiness, while technology-push instruments support innovation in earlier stages of the 

technology cycle (Johnstone et al., 2010).  Looking ahead, policymakers face the complex task of 

accelerating the adoption of mature renewable generation technologies, while continuing to 

support technology development in nascent areas that will be critical to achieve net-zero in the 

long-term. Designing effective green innovation policy therefore requires leveraging a mix of 

instruments to address market failures at different stages of the technology cycle (Popp et al., 

2024).  

In recent years, policymakers in the United States have expanded the range of tools they use to 

support green innovation to address a broader set of market failures that include coordination 

failures and financial frictions, particularly during the pilot and demonstration stages of the 

technology cycle (Armitage et al., 2024). My dissertation advances understanding of these 

coordination bottlenecks, particularly technological uncertainty about compatibility 

requirements, that arise in networked and interdisciplinary emerging technologies like smart 

grids. It sheds light on technological trajectories within this field and on the role of technology 

standards, a policy instrument2 largely overlooked in the green innovation literature, for 

addressing the above challenges. 

In the first chapter, I investigate the effects of compatibility standards on follow-on innovation 

using an analysis of patenting activity at the firm-level. Using data on the adoption of smart grids 

 
2 In the green energy sector, standardization efforts have principally been initiated by public policy mandates 
directed at national and regional standardization bodies. Therefore, I argue that standard can serve as a public policy 
tool, despite traditionally being perceived as industry-led because of their voluntary nature and the high level of 
expertise and participation they require from industry. 
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standards in 19 OECD countries and weights that capture the unique composition of each firm’s 

country markets, I estimate how exposure to changes in standardization affect firms’ follow-on 

patenting levels. I find that standards lower inventive activity on average, but my analysis reveals 

important heterogeneity between large incumbent firms, mostly responsible for this negative 

effect, and new players, who are more likely to enter the market for smart grids inventions after 

the introduction of standards. A possible explanation is that standards lower the cost of acquiring 

information about the industry’s best practices, helping new firms enter, while also providing 

valuable information to incumbents on where to focus their R&D efforts. In this case, the 

observed negative effect of standards is not necessarily a sign that standards are detrimental to 

innovation, but rather an artifact of technological focusing. Therefore, to understand more fully 

how standards affect follow-on inventions, we must look beyond their effects on patenting 

intensity to also consider how they alter the quality and direction of follow-on innovation.  

I begin to unpack these questions in the first paper by using patent citations as a proxy for patent 

quality. I re-estimate my firm-level model using a citation-weighted count of patents as the 

dependent variable. These counts place greater weight on highly cited patents. When estimating 

this model, I find a smaller negative coefficient. While the quality effect is too small to completely 

offset the negative effect on patenting intensity, these results highlight a trade-off in the effects 

of standards on the quantity versus the quality of innovation: standards cause firms to pursue 

fewer inventions, but to produce higher-quality innovation.  This may be because standards 

provide information that prompt firms to reallocate their R&D resources towards fewer, but 

more promising research directions.   

I unpack this technological focusing hypothesis more fully in the second paper through an analysis 

of citations at the patent-level.  The citation-weighted counts used for the firm-level analysis in 

the first chapter only provide a static snapshot of citations received within a 5-year window. 

Shifting the unit of analysis to the patent-level allows me to observe how standards alter patent 

citation trajectories over longer periods. I also expand the sample of patents to include solar 

photovoltaic and wind turbine technologies, in addition to smart grids inventions.  This allows me 

to utilize variation in standard counts and compare how standards affect knowledge utilization 
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and technological focusing across different types of technologies.  I find that standards increase 

patent citations, particularly in smart grids. Furthermore, when estimating the effects of 

standards across different quantiles of the patent quality distribution, I find that the increase in 

citations is concentrated in-quality patents. This pattern is most striking in solar PV technology. 

Together, these results provide evidence that standards help follow-on inventors identify and 

utilize a high-quality knowledge base, focusing knowledge accumulation onto high-quality paths.   

In the last chapter, I continue my investigation of how standards shape technological trajectories. 

An important part of supporting interoperability and the integration of complex interdisciplinary 

knowledge across a sector is ensuring that inventors who develop different components of a 

technology are learning from each other’s expertise. The last paper begins to explore how 

standards affect knowledge transfers across different domains of smart grids technology. I use 

patent citation data to identify inventions that are highly influential within the citation network. 

Using this subsample of influential patents, I garner qualitative insights about the field’s main 

knowledge trajectory. I find similarities with knowledge trajectories in other complex green 

energy technologies, like wind turbines. The core knowledge trajectory is diversified and evolves 

sequentially across different components.  Innovation in core components – i.e., the information 

and communication layers of the smart grid architecture that have been the focus of 

standardization – seem to have propelled new innovation in already established areas such as 

home energy management, as well as in new areas such as storage and microgrids integration. I 

also find that influential patents have distinctive features: they span multiple domains of smart 

grid technology and build on more original knowledge. These patents appear to play an important 

role in transferring expertise across different sectors of smart grid technology. Findings from this 

exploratory analysis can help identify where important knowledge flows have occurred within 

the network of smart grid inventions, with a view to informing future research modelling the 

causal effects of standards on these knowledge transfers.  

Finally, throughout this dissertation, I use data on standards and patents. There are 

measurement challenges associated with both. Those are well-acknowledged in extant literature, 

and I follow best available practice to measure standardization and innovation. Notably, 
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standards and patents vary greatly in the breath, type, and quality of the information they 

contain, which can introduce inconsistency in the unit of analysis, such as giving equal weight to 

patented inventions that vary in quality or giving equal weight to standard that vary in breath 

and complexity.  Below, I review these challenges and discuss the research decisions I made 

throughout the dissertation to manage these measurement issues. 

 

Patent data  

Patents grant intellectual property protection to the owner of an invention for a defined period 

within a given country jurisdiction. Patent assignees wishing to obtain intellectual property 

protection in multiple country markets must file for a patent in each country where they are 

seeking protection for their invention3. Through the Paris Convention, assignees are given priority 

to obtain protection for their invention in additional markets. If they file abroad within the 12-

month priority period, signatories of the Convention will honor the date of the first filing4. 

Therefore, when counting inventions filed in multiple markets, it is critical to count patents at the 

family-level, and it is common practice to use the earliest filing to date the invention (De 

Rassenfosse et al, 2014). I follow standard practice when measuring patenting intensity (i.e. 

counts of patents) at the firm-level in multinational firms in Chapter 1.   

 

Furthermore, the purpose of intellectual property (IP) protection is to exclude others from 

profiting commercially from an invention until the patent expires and this knowledge enters the 

public domain. This protection assures the IP owner that they will reap the benefits of any 

commercial success their invention achieves. It prevents others from using this knowledge 

without first entering into a licensing agreement with the IP owner. Since knowledge is non-

excludable and non-rivalrous (i.e. a public good), without institutions to protect it, spillovers 

could lead to an underinvestment in R&D. To address this market failure, intellectual property 

protection provides individuals and organizations with reassurance that they will have a 

temporary monopoly over the commercialization of their ideas. 

 
3 Or they may obtain protection across multiple markets through filing for a patent with the World Intellectual 
Property Organization (WIPO) or the European Patent Office (EPO). 
4 https://www.wipo.int/pct/en/texts/ro/ro166.html, consulted on 29 July 2024. 

https://www.wipo.int/pct/en/texts/ro/ro166.html
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Determining what constitutes novel knowledge is a central mandate of patent offices, as novelty 

is the main criteria for obtaining IP protection for an invention. Companies compete in a race to 

patent novel ideas and claim ownership over this space of technology. Working with patent data 

therefore requires understanding these competitive dynamics as well as the legal context within 

which patent data is recorded. While the patenting process occurs within a competitive market 

for ideas, knowledge nonetheless evolves in a cumulative way: different companies and 

individuals build upon the ideas of others. Patent citations provide a ‘paper trail’ that enables 

researchers to track the knowledge antecedents and descendants of inventions (Jaffe and De 

Rassenfosse, 2017; Jaffe and Trajtenberg, 1999). They differ from bibliometric citations, however, 

because they are recorded for legal reasons: the search for relevant prior art – areas of 

technology that are already protected and cannot be claimed - is part of assessing whether an 

invention is novel. In the United States, patent applicants are required to disclose prior relevant 

art, but they have no incentive to cite beyond what is directly relevant for defining the boundaries 

of the protected invention (Jaffe and De Rassenfosse, 2017). 

 

Beyond this novelty requirement, patents vary greatly in their characteristics such as scope, 

quality, and nature of the invention. Patent databases like PATSTAT contain rich information that 

enable researchers to discern between inventions varying in such characteristics. For example, 

the number of claims provide information on an invention’s breadth. Technology classes provide 

information about a patent’s sector of technology at a highly granular level. Titles, abstracts, and 

claims contain textual data that allow researchers to capture the content of these inventions, for 

example, using keywords, topic models, or manual coding. Frequently, researchers also use 

citations to proxy for patent quality since multiple studies have shown that citations correlate 

with various measures of commercial success (Jaffe and De Rassenfosse, 2017). Throughout my 

dissertation, I leverage these data to account for differences across patented inventions. In 

Chapter 1, I start with simple counts of patents. However, these give equal weight to all 

inventions that meet a minimal threshold of patent quality. To account for differences in patent 

quality, later in this chapter I use citation-weighted patent counts. However, within my firm-level 
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model it is not possible to control for other patent-level characteristics. I achieve this in Chapter 

2 using a patent-level model that enables me to account for various characteristics of patented 

inventions. I use citations as the dependent variable to capture how standards change knowledge 

utilization and innovation trajectories, since these data allow me to track the knowledge 

descendants of inventions. Chapter 3 delves deeper into the content of patented inventions. I 

use citations data to identify inventions that are central within the patent citation network and 

then examine the content of these inventions in depth by coding their abstracts manually.   

 

Standards data 

While patents enable firms to claim ownership over some areas of technology, standards in 

contrast can be seen as a ceasefire between competing firms when an industry needs to solve 

common problems.  Firms engage in standard development activities when they see value in 

cooperating to develop technical solutions for their industry - such as protocols, guidelines, 

product characteristics, etc. – which can help reduce technological uncertainty (Wiegmann et al., 

2017, 2022). The specific ways in which firms input into standardization decisions depend on the 

institutional configurations of different standard-setting organizations (SSOs) and standards-

development organizations (SDOs) (Baron and Spulber, 2018). 

Standards developed by these organizations are open, meaning that their ownership is not held 

by any single firm. Once released, they can be used by any firm in the industry. However, 

implementing standards sometimes requires using technology whose intellectual property is 

owned by a private entity. When a standard endorses a specific patented technology, 

standardization organizations have rules and processes to limit the market advantage granted to 

the owner of the IP, for example by defining the conditions under which the technology may be 

licensed out. Because these practices have important implications for market competition, this 

issue has garnered significant attention in the industrial organization literature (Chiao et al, 2007; 

Lerner and Tirole, 2014, 2015).  

Concerns about standards endorsing proprietary technology appear secondary in the context of 

my study, however. For example, I could not find declarations of standard-essential patents for 
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the smart grid standards included in my analysis. In this industry, standards focus on establishing 

guidelines to ensure interoperability between devices – such as defining wireless data 

transmission protocols and common information models - rather than endorsing patentable 

technological artefacts. Also, because these standards focus on finding solutions to ensure that 

devices are compatible with each other across the entire electrical grid, they are typically not 

specific to any sub-domain of smart grid technology. For this reason, in Chapter 1, my model 

treats all standards as relevant to all patented inventions. In Chapter 2, I broaden my sample to 

include solar PV and wind turbine technologies. This enables me to incorporate variation in 

standard counts across the three technologies. For the same reasons as before, in the case of 

interoperability standards, and because of data limitations in the case of other types of standards 

like measurement and quality standards observed in solar PV and wind5, I do not code standards 

at finer levels of granularity beyond the three technologies. 

Another measurement challenge concerns uniformity in the unit of analysis. Like patents, 

standards vary in their coverage, making it challenging to assess whether each unit is comparable 

in scope. To mitigate this challenge, though imperfectly, I count standards at the part level. This 

approach ensures that the breadth of a standard addressing a wide range of issues, through the 

addition of different parts, is more accurately represented in the count of its individual 

components. There are other advantages to counting standards at the part level. It enables me 

to exclude standard parts that are not directly relevant to a given technology. For example, 

standard IEC 61400 concerning wind turbines encompasses several parts. Some parts concern 

the design of turbine components like the gearbox and the tower, while other parts concern 

communications between turbines and the grid.  Counting at the part level allows me to assign 

the former to wind technology and the latter parts to smart grid technology. Furthermore, as 

technology matures and new technical challenges surface, standard development organizations 

sometimes incrementally add new parts to existing standards to resolve these emerging issues. 

 
5 I do not have access to sufficient textual data in the abstracts of standards documents (only abstracts are available 
freely in most cases) to code standards at a more granular level using keywords or topic models, such as identifying 
which standards are relevant to which sub-system of wind turbine technology or PV modules, like the power train 
or PV cell encapsulation. Also, at this level of granularity there might be insufficient variation in counts of standards 
and patents to estimate coefficients with precision.  
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Counting at the part level allows me to capture with greater precision when these renewed 

coordination efforts have occurred. Finally, to preserve uniformity in my unit of analysis, I only 

count first releases and exclude subsequent revisions. The initial release of a standard represents 

a significant coordination effort, whereas revisions are more akin to maintenance work to keep 

the standard up to date.  

Standards not only vary in scope, but also in the types of information they contain. Extant 

literature proposes various typologies to classify standards according to the functions they 

perform and the types of market failures they help redress: information, quality, variety 

reduction, interoperability, measurement, etc. (Swann, 2000; Tassey, 1999; DeVries, 1999; Blind 

and Gauch, 2009). Accounting for differences in types of standards is therefore important when 

studying the outcomes from standardization, as different types of standards might produce 

different outcomes. In Chapter 1, the standards included in my sample are of a single type: 

interoperability. Any conclusions and recommendations drawn from the results from this chapter 

are therefore only relevant to other interoperability standards. Chapter 2 incorporates greater 

variety in types of standards. However, because different technologies encounter distinct 

technical challenges, they tend to align with specific types of standards. For example, in wind 

many standards concern the integrity and safety of wind turbine structures and materials. In 

solar, most standards concern measurement and performance testing. Therefore, there is no 

need to further code standards by type, as these would be collinear with the technologies. The 

results from Chapter 2 should however be interpreted as reflecting the types of standards 

predominant in each technology, given their respective technical challenges.  
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Chapter 1 Do technology standards 
induce innovation in environmental 
technologies when coordination is 
important? 

 
Myriam Gregoire-Zawilski 
David Popp 
 
 
Abstract 

A next generation of innovation in enabling and complementary green energy technologies is 

needed to further accelerate the decarbonization of electricity systems. Few studies have 

investigated the policy determinants of innovation in this sector to glean insights on how 

governments may support the development and deployment of these technologies. Policies that 

were successful at supporting the first wave of renewables innovation may not be sufficient to 

produce similar results in the next wave of green innovation since those face higher coordination 

challenges. Using the case of smart grid technology, we investigate the effects of interoperability 

standards, an instrument that may facilitate coordination through establishing common 

technological frameworks, on inventive activity. Using firm-level analysis, we find that on average 

standards decrease firms' patenting activity. We further find that this negative effect is driven by 

firms with high patenting intensity, whereas standards enable the entry of new firms into the 

field. We further find suggestive evidence that standards improve innovation quality.

1.1  Introduction  

Many challenges remain to deploy low-carbon energy at a scale necessary to meet net-zero 

emission targets by 2050 (Popp et al., 2022). The past two decades witnessed a dramatic decline 

in the cost of solar and wind power generation. In many locations, these technologies are now 

cost-competitive with fossil fuel generation (IRENA, 2022). Despite these advances, renewable 

energy technologies have yet to be deployed vastly. Important bottlenecks stand in the way of 
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large-scale adoption because the electrical grid was not designed to accommodate a growing 

share of intermittent distributed generation. A new wave of green energy innovation that 

includes complementary technologies to enable the integration of renewables into the grid is 

needed for continued progress towards decarbonization (Popp et al., 2022).  

The International Energy Agency (IEA) estimates that half of the technologies needed to achieve 

net-zero goals by 2050 in highly polluting sectors such as heavy industry, transportation and 

electricity generation are in early stages of development (IEA, 2021). What is needed is not just 

more innovation, but advances in new sectors of green energy technology (Popp et al., 2022). 

One of these areas is smart grid technology. These have the potential to radically transform the 

model of the grid into a network that is decentralized, digitalized, leverages big data analytics 

and artificial intelligence to automate grid management decisions (Colak et al., 2016; Lopes et al., 

2020). Such features would be pivotal in enabling a suite of other flexibility tools - such as 

microgrids, vehicle to grid applications, and demand response – to enhance grid reliability and 

resilience (Martinot, 2016). 

Market failures, such as environmental externalities and knowledge spillovers, affect all types of 

green innovation (Popp, 2019). Smart grid technology development faces additional bottlenecks 

in the form of coordination dilemmas. Smart grid devices are networked technologies and must 

therefore be interoperable with each other (Brown et al., 2018). Policies that have been shown 

to promote patenting in solar and wind, such as R&D subsidies, consumer subsidies, carbon 

taxes/energy prices and emissions trading schemes, may not be sufficient to overcome the 

coordination challenges endemic to this next wave of green energy innovation.  

Despite being one of few instruments promoted by governments to support grid integration 

technologies, interoperability standards are under-studied in the literature on green innovation. 

These establish a common technological framework for industry to build complementary follow-

on technology. For example, specifying a connection-oriented transport layer for communication 

used on IP networks through standard EN 62056-4-7 may spur invention in smart meter 

technology. In this paper, we focus on the effect of standards on technology development in 

smart grids technologies. Investigation of the effects of standards on technology adoption and 
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commercialization in downstream product markets is left to future research. Related to 

technology development, we hypothesize that technology standards have competing effects on 

patenting levels and might increase patenting activity in some firms but reduce levels in other 

firms. Furthermore, we hypothesize that any reduction in patenting activity is the result of a 

trade-off between the quantity and the quality of innovation, through a focusing of research 

activity in areas consistent with the technological framework endorsed by the standard. On 

average, we find that interoperability standards decrease firms’ patenting activity. We further 

investigate heterogeneous effects and find that this negative effect is driven by firms with high 

patenting intensity, whereas we do not detect an effect for firms with low patenting intensity. 

We find that technology standards are associated with greater entry by firms without prior 

experience innovating in smart grids. We also provide preliminary evidence on the effect of 

standards on the quality of innovation. Together, these results suggest that standards provide 

know-how about accepted practices and technical specifications that would otherwise only be 

available to industry insiders.  They provide clarity that potentially benefits all firms, but 

particularly new players, who become more likely to enter this sector of innovation after 

standards are adopted. The role of standards in providing guidance on a common technological 

framework appear particularly critical in a sector of technology, like smart grids, where 

interoperability is a chief concern, and that requires recombining knowledge from diverse fields, 

and therefore attracting diverse firms. Furthermore, our results provide exploratory evidence 

that endorsing a common technological framework enables some firms to focus follow-on 

research activity in high-value areas.  

1.2 Motivation and context 

1.2.1 Scaling-up renewables: challenges for the electrical grid 

The integration of distributed renewable electricity generation poses novel challenges in the 

management of grid operations. Because intermittent sources are not as readily dispatchable as 

conventional electricity, matching the supply and demand for electricity requires improved 

flexibility (Martinot, 2016; NREL, 2015). The increased frequency and severity of weather shocks 

caused by climate change also aggravate grid stability challenges (Martinot, 2016; Palensky and 
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Kupzog, 2013; Stephens et al., 2013). The International Energy Agency estimates that hour-to-

hour grid flexibility needs will quadruple to achieve decarbonization by 2050 (IEA, 2021).   

Smart grid technologies will be instrumental for improving grid resilience in the face of these 

challenges (Brown et al., 2018). A smart grid could coordinate the activities of actors that 

participate in electricity markets, forecast the supply and demand for electricity, monitor grid 

conditions, detect faults and automate some grid management decisions (Brown et al., 2018; 

Palensky and Kupzog, 2013). Building a smarter grid implies developing and deploying hardware 

and software to collect and utilize more effectively granular power data (Colak et al., 2016; IEA, 

2022; Lopes et al., 2019). Smart grids encompass a range of technologies that include smart 

meters, remote and automated sensing, smart switching, phasor measurement units, 

hierarchical or distributed control architectures and various big data analytics and artificial 

intelligence applications (Brown et al., 2018; Palenski and Kupzog, 2013; Lee et al., 2017; Syed et 

al., 2020). These will be essential for hosting other grid flexibility tools such as grid-integrated 

smart vehicle charging, responsive load, distributed energy storage, and microgrid islanding 

(Martinot, 2016), making smart grids a pivotal technology for the energy transition.  

Large scale deployment of smart grid devices is needed to build a flexible and reliable electrical 

grid. Achieving this as power generation becomes increasingly decentralized requires 

coordinated investments by various actors participating in distributed electricity markets. 

Because smart grids are networked technologies, the usefulness of smart grid devices in 

collecting power data depends on whether these data can be exchanged and utilized by devices 

deployed at various locations on grid networks. These benefits can only be realized if smart grids 

technologies are compatible with one another with regards to wireless communication protocols, 

data architecture and data encryption protocols. The coordinated development and deployment 

of technologies sharing common protocols may in turn unlock important networks externalities 

(Katz and Shapiro, 1985). As more users adopt these technologies, more data will be exchanged, 

increasing the utility received by owners of smart grid devices. Coordination and reduced 
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uncertainty about which technical specifications are selected by the market could enable further 

development of follow-on smart grid inventions6.   

1.2.2  Interoperability standards in smart grids technologies 

These coordination dilemmas suggest that there is a role for policy to support technology 

development. Many of the policy tools that governments have incorporated in their renewable 

energy policy mix, such as taxes, R&D subsidies, cap-and-trade, and feed-in-tariffs help redress 

environmental externalities and knowledge spillovers market failures (Popp, 2019). However, 

they do not address the type of coordination dilemma described in the previous section. 

Interoperability challenges are ubiquitous in smart grids (Ho & O’Sullivan, 2017; Iqtiyanillham et 

al., 2017, Lin et al., 2013; Brown et al., 2018). In light of these challenges, some governments 

have assumed the role of a convener, promoting the development of interoperability standards 

for the smart grid in concert with industry. For example, with the Energy Independence and 

Security Act of 2007, the United States government mandated the National Institute of Standards 

and Technology (NIST) to develop such standards. With Mandates M/441(2009) and 

M/490(2011), the European Commission instructed its standard-setting organizations to develop 

standards for smart meters and cybersecurity. Similarly, Germany, Canada, Korea, and other 

OECD countries have issued roadmaps to signal their commitment to advancing international 

standardization efforts in this area (SCC, 2012; VDE/DKE, 2010; KSGI, 2010). While standards are 

omnipresent in modern economies, their effect on patenting has been largely understudied, let 

alone in the green energy innovation literature. Even in other sectors of technology, there is a 

paucity of empirical studies on the relationship between standards and innovation. Our study 

contributes to two literatures: the literature on green energy innovation and the literature on 

standards.        

 
6 Examples of smart grid technologies at different levels of maturity, including possible future applications, are 

included in Appendix A1. 
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1.3 Related literature  

1.3.1 Lessons from the literature on green energy innovation 

Supporting clean energy innovation at requisite levels for meeting net-zero goals by mid-century 

will require a mix of policy instruments to address multiple market failures that suppress 

innovation. Widely studied market failures resulting in an under-provision of green energy 

innovation include environmental externalities and knowledge spillovers (Popp, 2019). The 

literature however rarely discusses coordination failures, nor does it consider how technology 

standards may be integrated in the policy mix to support the development and adoption of 

technologies facing high interoperability challenges. Our study uses smart grids as a case, but our 

results and discussion are relevant to a broader set of emerging and complementary energy 

technologies facing similar interoperability challenges, such as electric vehicle charging and 

hydrogen production (Cammeraat et al, 2022).   

The green innovation literature classifies policy tools in two categories: policies that target the 

demand-side of innovation (demand-pull) and policies that target the supply-side of innovation 

(technology-push). Several studies find that pricing environmental externalities to expand market 

size for green energy technologies (e.g. demand-pull) triggers more innovation (Newell et al., 

1999; Popp, 2002; Verdolini and Galeotti, 2011; Crabb and Johnson, 2010; Aghion et al., 2016, 

Calel and Dechezleprêtre, 2016). On the supply side, governments commonly support inventive 

activity through R&D subsidies to compensate inventors for the public good nature of the 

knowledge they create (Veugelers, 2012; Costantini et al, 2017). However, this literature offers 

few insights about the coordination challenges discussed previously, for which technology 

standards present a possible solution.  

1.3.2  Lessons from the literature on standards and innovation 

While the literature on green innovation says little about the role of technology standards, their 

impact on innovation has been studied in other sectors. Standards, like patents, are a vehicle for 

codifying technical knowledge.  Firms use a combination of the two, along with scientific 

publishing, to disclose new knowledge (Blind et al., 2022). The National Institute of Standards 

and Technology defines a standard as: “A document that contains technical specifications or 
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other precise criteria to be used consistently as a rule, guideline, or definition of characteristics, 

to ensure that materials products, processes, personnel or services are competent and/or fit for 

their intended purposes(s)” (cited in Baron and Spulber, 2018, p.4). Unlike command-and-control 

regulation such as fuel economy standards, technology standards do not make compliance 

compulsory unless specified otherwise in legislation or regulation (Baron and Spulber, 2018).  

Instead, compliance arises because firms find value in observing these technical specifications 

and because standards perform important functions in markets. Different types of standards play 

different roles.  For example, information and quality standards help in redressing asymmetries 

of information, and variety reduction standards help with enabling economies of scale (Swann, 

2000; Tassey, 1999; DeVries, 1999).  Compatibility standards coordinate market actors to achieve 

product or component compatibility and realize network externalities (Swann, 2000; Tassey, 

1999; DeVries, 1999). It is these compatibility standards that are important for smart grids, and 

more generally for other complex manufactured products using networked technologies (Baron 

and Spulber, 2018). Given this, our study has implications for technology development in many 

areas facing high interoperability requirements, such as emerging information technologies like 

the Internet of Things and other networked green technologies, such as electric vehicle charging. 

The standards we study are set through a formal process in standard-setting organizations.  The 

importance of these organizations as venues for coordinating technology selection and 

development has grown in recent decades (Wiegmann et al, 2017; Baron and Spulber, 2018; 

Baron and Schmidt, 2019). Alongside this phenomenon, a core literature seeking to elucidate 

governance and decision-making patterns within these organizations has emerged (Chiao et al., 

2007; Lerner and Tirole, 2015; Leiponen, 2008; Simcoe, Graham and Feldman, 2009; Simcoe, 

2014; Bar and Leiponen, 2014; Kang and Bekker, 2015; Contreras, 2017; Wiegmann et al., 2022). 

It finds that standard-setting activities can help mitigate uncertainty (Aggarwal et al., 2011), 

shape expectations (Lerner and Tirole, 2015) and coordinate the implementation of new 

technological framework across an industry (Baron and Schmidt, 2019; Spulber 2008). As a result, 

most of the literature focusses on how firms strategically engage in these venues. Few large-N 

empirical studies investigate how standards conversely shape the inventive activities of firms in 
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follow-on technologies after a standard has been released, including in firms that did not partake 

in standardization activities. Limited evidence shows that standards have beneficial effects on 

the quality of innovation of complementor firms (Wen et al, 2022), and on macroeconomic 

outcomes (Baron and Schmidt, 2019). Our paper contributes insights to this important gap in the 

literature. In the next section, we further expand on mechanisms through which standards may 

affect the level and quality of ensuing patenting.  

1.4 Theory and hypotheses  

We investigate the effects of technology standards on patenting levels and quality. Smart grid 

technology is cross-sectoral: it recombines knowledge from various technology fields. The 

composition of firms engaging in R&D in this area is therefore diverse. Those include large 

electricity sector incumbents, diversified IT conglomerates and green energy start-ups. These 

firms bring diversified knowledge and experiences into the smart grid innovation space. In this 

context, standards may clarify and establish a technological framework for firms from different 

backgrounds to build on. In the face of this diversity, standards might focus inventive efforts in 

the more valuable and promising research areas, with differentiated effects across types of firms. 

We posit two competing conjectures for the effects of standards on patenting levels, discuss 

when each is most likely to hold, and present our expectations on the effect of standards on 

innovation quality.  

1.4.1  Effects of standards on patenting levels  

H1. Greater exposure to standards causes a decrease in firms’ patenting levels   

Standards establish a technological framework that clarifies industry conventions (Tassey, 2000), 

and illuminate paths of technology development worth pursuing.  As a result, they may remove 

incentives to test novel ideas that are not aligned with the endorsed conventions and focus 

research efforts on a narrower trajectory. As a result, fewer ideas may become worth pursuing.  
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H1.A. The negative effect of standards on patenting levels is strongest is large incumbent firms  

We further hypothesize that the negative effect of standards is strongest in large incumbent 

firms. Standards often formalize existing practice (Wiegmann et al., 2022). When this is the case, 

large industry incumbents are more likely to have already acquired tacit knowledge of those 

conventions through learning-by-doing and industry experience. They may therefore have 

already tested and patented their most promising ideas. By the time a technological framework 

gets endorsed in a standard, the remaining ideas these firms have left to try may have low 

expected marginal value and not deemed worth pursuing, especially when they are not 

compatible with the endorsed framework.  

H2. Greater exposure to standards causes an increase in firms’ patenting levels 

Conversely, standards make information about agreed-upon conventions explicit. This 

information contributes to reducing R&D uncertainty for inventors (Wen et al., 2022; Blind et al., 

2017; Blind et al., 2018, Blind, 2004). Standards also help disseminate this information more 

widely. This may help some firms learn about best practices and the endorsed technological 

framework (Tassey, 2000).  Both mechanisms would increase firms’ patenting levels. 

H2.A. The positive effect of standards on patenting levels is strongest is new entrants 

While the knowledge disseminated by the standard can be used by any firm, we expect that the 

positive effect on patenting will be strongest in new entrants because they do not possess field-

specific know-how otherwise acquired through industry experience. Therefore, the knowledge 

conveyed by standards may be most valuable to firms seeking guidance to enter this innovation 

space and who may bring in fresh ideas for new inventions complementary to the endorsed 

technological framework. 

1.4.2 Effects of standards on innovation quality 

H3. Greater exposure to standards increases patent quality 

H3 is an expansion of H1 and highlights possible tradeoffs between the effects of standards on 

the quantity and the quality of innovation. By focusing experimentation on a narrower trajectory, 
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standards may provide foundational knowledge that guides future experimentation and improve 

the quality of follow-on inventions.  For example, standards may provide information that help 

inventors focus their research efforts in the most promising areas and avoid less promising 

research avenues. Or it may be that when inventors focus their resources on fewer projects, the 

smaller number of outputs they yield are more rigorous. Following convention in the literature, 

we observe patent quality through their forward citations (Jaffe and de Rassenfosse, 2017).  

1.5 Empirical setting  

1.5.1  Identification of causal effects 

In the context of our study, most smart grids interoperability standards originated in 

international and regional standard-setting organizations (a list of standards included in our 

sample is available in Appendix A2) and were released at the country-level in different years. We 

leverage this variation in the timing of standards adoption across countries.7 To translate 

country-level counts of standard to the firm level, we follow state-of-the-art methods from the 

literature on green innovation and obtain time-invariant country weights for each firm, based on 

the location of their patenting activities in the pre-sample period (Noailly and Smeets, 2015, 

2022; Aghion et al., 2016; Lazkano et al., 2017; Rozendaal and Vollebergh, 2021). The weighted 

standard counts capture each firms’ unique exposure to standards and other country-level 

variables. Following extant literature, we argue that where firms seek IP protection is a good 

indication of which are their important markets: obtaining patents is costly and a firm would not 

seek protection in a country unless it intended to commercialize its products in that market 

(Aghion et al, 2016).  

These country weights allow to treat lagged values of our explanatory variables as plausibly 

exogenous:  no firm is influential enough to affect those variables in all the countries where it 

operates, yet it is reasonable to expect that a firm considers policy and economic conditions in 

its main markets when making R&D investment decisions.  This identification strategy has been 

 
7 In contrast, the initial release of a standard by an international or regional standardization body is captured by year 

fixed effects in our model. 
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increasingly used in recent years to study green innovation (Noailly and Smeets, 2015, 2022; 

Aghion et al., 2016; Lazkano et al., 2017; Rozendaal and Vollebergh, 2021).  

Also, using variation in the timing of country-level standards adoption further mitigates concerns 

of reverse causality. Technology endorsement by a standard has economic value and firms with 

large smart grid patent portfolios might seek to influence the standard-setting process to 

strategically position their inventions. This may in turn affect their inventive activities as well as 

the inventive activities of others. The likelihood that standards and patents are co-determined in 

the context of our study is low because the institutional rules and procedures for developing and 

voting on standards adoption in international standard-setting organizations do not allow direct 

participation by firms. To influence in their favor the drafting, comment-and-response and voting 

process in these international venues, firms would need to successfully influence a majority of 

member country organizations voting on the initial release of the international standard, which 

is unlikely. Furthermore, our identification of causal effects relies on variation in the timing of 

standard adoption at the country-level. For standards to be endogenously determined, firms 

would need to influence similar drafting, comment-and-response and voting processes occurring 

at the country-level across their different markets, which is highly unlikely. To further support 

this argument, we provide a more detailed description of the standard-setting process in these 

venues in Appendix A3.  

Furthermore, concerns about firms engaging strategically in the standard setting process is 

greatest when firms can benefit from having their patents declared essential to the 

implementation of a standard, as this would require that downstream technology users wishing 

to comply with the standard enter into licensing agreements with the owners of the standard-

essential patents (Lerner and Tirole, 2015).  In such cases, firms have incentives to position their 

proprietary technology as “essential”, and this may in turn affect their own and others’ patenting 

levels. However, concerns about such strategic behaviors being a threat to identification appear 

secondary in our study context: we could not find any declarations of standard-essential patents 

for the smart grid standards included in our sample. A possible explanation is that firms engage 

collaboratively rather than strategically in standard-setting in the smart grid space – and other 
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networked technologies facing high coordination issues - because they value the mutual benefits 

it provides, such as jointly shaping technology development, enabling information-sharing and 

legitimizing technical solutions. (see Wiegmann et al., 2022 who find evidence of this in the 

Internet of Things technology space).   

1.5.2 Estimation  

1.5.2.1 Dependent variable.  

Our dependent variable is a count of successful smart grid patent applications filed by firm i in 

year t. To measure inventive activity, we retrieve firms’ patents in technology classes that capture 

smart grids inventions related to electricity systems integration and efficiency, smart grids 

applications in buildings, information and communication technologies applications to smart 

grids, and smart grids applications for electricity end-users.  Appendix B1 presents the full list of 

patent classes used to identify smart grids inventions. To avoid double-counting inventions 

granted IP protection in multiple countries, we count patents at the family-level and use the 

application date in the priority country to assign the year. We use the application date as this is 

closest to when the R&D activity took place. Furthermore, we only count patent applications 

subsequently granted by at least one patent office, as we want to only consider inventions that 

meet a minimum threshold of quality and are more likely to spawn marketable products.8 

 

1.5.2.2 Model and explanatory variables.  

Since our dependent variable is a weighted count of granted patents filed by firm i in year t, we 

use Poisson regression to estimate the effects of our explanatory variables. We use this 

specification when estimating effects for the whole sample and heterogeneous effects for firms 

with high and low patenting intensity. When investigating the effects of standards on new 

 
8 Noailly and Smeets (2015) also use granted patents. Other recent papers, including Aghion et al. (2016), Lazkano et 

al. 2017), and Rozendaal and Vollebergh (2021) use triadic patents (e.g., patent applications filed at the USPTO, 

European Patent Office, and Japanese patent office) to eliminate low-quality patents.  We do not do that for two 

reasons.  First, because of differences in the electricity grid in North American and Europe, we observed examples 

where smart grid patents were filed in multiple North American or European countries, but not on the other continent.  

Second, we are interested in the effect of standards on new entrants.  New entrants will include smaller firms that may 

be less likely to file patent applications abroad. 
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entrants, we use a Zero-Inflated Poisson model.9 This model allows to decompose the effect into 

the extensive and intensive margins. Coefficients for the extensive margin show the probability 

that a firm will have zero patents. This more directly captures the concept of “entry”.  

Furthermore, smart grid innovation is an emerging area of technology and many new firms 

appear after the beginning of the sample period, which runs from 2000-2016. To account for this, 

we use an unbalanced panel that considers only the years in which each firm was active during 

this period.10   

We write our main model as follows:  

𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑖𝑡 = exp(𝛽0 + 𝛽1𝑆 𝑖𝑡−2 + 𝛽2𝑙𝑜𝑔 𝑅𝐺𝑖𝑡−2 + 𝛽3𝑙𝑜𝑔 𝑅𝑅𝑖𝑡−2 + 𝛽4 log 𝐾𝑆𝑖𝑡−2

+ 𝛽5 log  𝐾𝐺𝑖𝑡−2 + 𝛽6𝑙𝑜𝑔 𝐾𝐸𝑖𝑡−2 + 𝛽7𝑙𝑜𝑔 𝐾𝐼𝑖𝑡−2 + 𝛽8𝑙𝑜𝑔 𝐸𝑆𝑖𝑡−2

+ 𝛽9𝑙𝑜𝑔 𝐸𝐺𝑖𝑡−2 + 𝛽10𝑙𝑜𝑔 𝐸𝐸𝑖𝑡−2 + β11𝑙𝑜𝑔 𝐸𝐼𝑖𝑡−2 + β12𝑋 𝑖𝑡−2 + 𝑎𝑖 + 𝑦𝑡 + 𝑢𝑖𝑡 ) 

Here S is a count of new standards introduced in year t-2.11 We also control for the effects of 

other policies that affect firms’ R&D investment decisions. These variables are denoted as RG, 

government R&D budgets in grid-related technologies, and RR, government R&D budgets in 

renewables. Data for these two policy variables come from the International Energy Agency and 

are expressed in 2015 US dollars. KS represents a firm’s internal knowledge stock in smart grids 

technologies, KG is a firm’s internal knowledge stock in green innovation, KE is a firm’s internal 

knowledge stock in electricity, and KI is a firms’ internal knowledge stocks in information 

technologies. Internal knowledge stocks capture the firms’ accumulated experience in relevant 

sectors. Similarly, ES, EG, EE, and EI represent external knowledge stocks for these same 

technologies.  External knowledge stocks capture the knowledge firms are exposed to, based on 

 
9 We do not use the ZIP model for our estimation of effects on the full sample of firms and for the heterogeneity 

analysis because we gain little additional insights from the decomposition into the internal and external margins in 

these analysis at the cost of complicating our presentation and discussion of results. However, we present results for 

the ZIP model in appendix C4.   
10 To proxy for this we use the years in which the firm files for a patent for the first and the last time in relevant patent 

classes: green innovation, electricity generation, information technology, smart grids. Patent classes used to identify 
smart grid innovations are described in Table 1 of Appendix 1B1. Patent classes used to identify green, electricity 

generation and information technology innovations are described in Table 3 of Appendix 1B1.  
11 In our main specification, we use a count of new standards adopted in year t-2 rather than a stock of standards. 

However, in tables 1C.2.5.1, 1C.2.5.2 and 1C2.5.3 in the Appendix, we show that our results are robust to using a 

stock of standards as the explanatory variable, but coefficients are smaller. This implies that firms are more responsive 

to the introduction of new standards rather than to incremental changes in stocks.  
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the location of their inventors.12 Appendix B2 details how these knowledge stocks variables were 

constructed. We control for other time-varying factors likely to increase market demand for 

smart grid devices, and thus potentially increase patenting.  These variables are denoted as X and 

include income (GDP per capita expressed in 2015 US dollar), household electricity prices 

expressed in 2015 US dollars, the share of renewables in the electricity mix, and the growth in 

electricity consumption. The data sources for these are the OECD/IEA and the US Energy 

Information Administration. The latter two control variables proxy for other energy policies that 

have supported the deployment of renewables, pulling demand for enabling grid technologies.  

Also, faster growth in electricity consumption may strain existing transmission infrastructure, 

also increasing market demand for technologies for better managing electricity transmission. 

When these country-level control variables are weighted and translated to the firm level, they 

also vary over time and across firms. A detailed description of these variables can be found in 

Appendix B3. All these right-hand side variables are lagged by two years to avoid reverse 

causality, and our results are robust to using different lags (robustness checks are included in 

Appendix C2).  

Furthermore, we control for unobserved heterogeneity overtime by including year fixed effects, 

denoted as y. For example, year fixed effects control for general changes in the expected 

productivity of smart grids innovation over time, allowing our firm-specific standards variable to 

capture effects resulting from variation in standard adoption in different markets. 

Our estimation faces two additional challenges.  First, as the knowledge stocks are functions of 

lagged dependent variables, strict exogeneity does not hold.  In such cases, the standard Poisson 

fixed effects model produces biased results. To control for unobserved confounding firm 

attributes, we instead control for firms’ mean patenting activity in the pre-sample period, 

denoted as a.13  This approach captures firms’ baseline propensity to patent and is  commonly 

used to approximate firm fixed effects when the assumptions of the Poisson fixed effects model 

 
12 Appendix B7 details how patent families were assigned an originating country, based on the country of the 

inventor(s). 
13 To be consistent with the period used when building the policy weights, we go back to 1977 or the first year the 

firm was active when computing these yearly averages and use the same patent classes as we used to build the country 

weights. 
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are violated (e.g., Blundell et al., 1995; Noailly and Smeets, 2015, Rozendaal and Vollebergh 

2021).14  While our dependent variable only includes smart-grids patents, for this pre-sample 

mean we include a wider range of relevant technologies: green innovation, electricity generation, 

information technology and smart grids.  Using the pre-sample mean requires assuming that a 

firm’s innovative activity is stationary and follows an AR(1) process. As smart grids are an 

emerging technology experiencing much patent growth over our sample period, such an 

assumption would be unrealistic for smart grid patents themselves.  Instead, the pre-sample 

mean can be thought of as each firm’s overall propensity to innovate. Second, because of the 

novel nature of smart grid technology, our sample includes many new firms that were not actively 

patenting in the pre-sample period. To accommodate these firms when using the pre-sample 

mean, we include a dummy variable for firms with no patents in the pre-sample.   

1.5.3 Sample and data  

We combine data on standards from a novel database on technology standards with data on 

patents to investigate the effect of standards on patenting activity in a sample of 2,751 firms.  

1.5.3.1  Sample 

Our sample includes a mix of companies representative of the diversity of firms operating in 

global markets for smart grids technologies This group is comprised of large multinational 

conglomerates such as Panasonic, Toshiba and General Electric; information technologies firms 

such as IBM and Intel; traditional electricity sector players such as Asea Brown Boveri and 

Infineon, and clean technology firms that specialize in renewable energy, load management, or 

other grid services, such as Acciona, GridPoint, Voltalis and Solar City. The ten largest smart grids 

innovators in our sample period and countries, in order of importance, include: Panasonic, 

Mitsubishi, General Electric, Toshiba, Siemens, Hitachi, Asea Brown Boveri, Chugoku Electric 

Power, LG and Nippon Electric Corporation (See Appendix A4 for more information on these 

 
14 In appendix C3, we compare results from our main specification using this pre-sample mean estimator approach 
with results for a standards Poisson fixed effects models. Our results suggest that, in our study context, the Poisson 
fixed effects model produces biased coefficients, supporting our decision to use the pre-sample mean estimator in 
our main specification.  
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firms). Firms were selected into the sample when 1) they had at least one granted smart grid 

patent in the 19 OECD countries covered in our analysis15 during the period 2000-2016, and 2) 

their home country was one of these 19 countries (Appendix B5 details on how we assigned home 

countries to firms). We only include these 19 OECD countries due to limited data coverage for 

the standards and the electricity prices variables. Restricting our sample to firms whose home 

country is among these 19 countries also ensures that we are not leaving out important markets 

for those firms. Figure 1 shows that selecting firms based on these criteria does not compromise 

the representativeness of our sample. Most smart grids patents granted in these 19 OECD 

countries are assigned to our sample firms. Trends in smart grid patenting within our sample 

firms also tracks closely overall trends in patenting in these 19 countries, which also include 

inventions by non-firm inventors, such as universities and government laboratories not covered 

by our analysis.16 Figure 1 also shows that patenting declines after 2011 in our sample countries 

and firms, while global smart grid patents continue to grow beyond this point. Patents granted 

in China mostly account for the difference between global patents and patents covered in our 

sample, which we purposely excluded from our analysis given the notable differences between 

IP policy in China and OECD countries.  

 

 

 

 

 

 
15 Austria, Australia, Canada, Switzerland, Czech Republic, Germany, Denmark, Spain, Finland, France, United 

Kingdom, Italy, Japan, Korea, Netherlands, Norway, Sweden, Turkey and the United States. 
16 We exclude patents by applicants that are not firms, such as universities, government agencies and non-

governmental organizations because we cannot make the same assumptions about their global markets  as we make 

for private firms using our identification strategy, because the nature of the R&D conducted by these other actors may 

be different (e.g. more basic, early-stage research) and because they may respond to different policy incentives which 

we are not testing for with our model. Appendix B4 details how we cleaned firm names and retrieved their knowledge 

stocks in areas beyond smart grids.  
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Figure 1.1 Trends in smart grids patenting 

 

Notes: i) Country-level counts of patents were computed using the country of the inventor and weighted for the 
number of inventors on a patent. These counts only include granted patents, ii) After excluding patent assignees 
that are not firms, such as universities, government research laboratories and non-governmental research 
organizations, patenting in our sample firms and countries still follows the general trend observed in smart grid 
innovation. 

 

1.5.3.2  Standards data  

We find relevant standards in lists of smart grid standards published by the International 

Electrotechnical Commission (IEC), the European standardization organizations (CEN, CENELEC, 

ETSI), and the Smart Electric Power Alliance (SEPA). The full list of international standards 

included in our sample is included in Appendix A2. To identify country-level adoptions for these 

standards, we then use the Searle Centre on Law, Business and Economics’ database on 

Technology Standards and Standard Setting Organizations (SSO) and Schmidt and Steingress’ 
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algorithm (2022) for identifying standards harmonizations.17  We count standards at the part 

level: 1) to avoid including standard parts that are irrelevant; 2) to capture coordination efforts 

in the face of novel technical challenges as technology evolves.  Appendix A5 shows an example 

of an international standard whose different parts are added over time and adopted across 

countries in different years.    

1.5.3.3  Patent data 

We use patent data from the European Patent Office’s PATSTAT database. While we date patents 

using their first application date, our sample only includes granted patents.  Thus, our sample 

ends in 2016 to avoid truncation bias. To identify patents relevant for the smart grid, we rely on 

the Cooperative Patent Classification (CPC). We extract patents that belong to 4 areas of smart 

grid technology: 1) systems integration and efficiency, 2) use in buildings, 3) ICT applications to 

smart grids, and 4) end-user applications (see Appendix B1 for corresponding patent classes).  

1.5.4 Constructing weighted policy variables  

Several control variables are collected at the country level.  We follow state-of-the-art methods 

in the environmental innovation literature (e.g., Noailly and Smeets 2015, Aghion et al., 2016, 

Lazkano et al., 2017; Rozendaal and Vollebergh, 2021) and construct firm-specific weights based 

on the countries that they patent in during the pre-sample period (1977-1999).  Using the pre-

sample period makes the weights weakly exogenous, as they do not change in response to 

changes in policy in potential markets.  These time-invariant weights identify markets to which 

firms actively participate.  To account for market size, we weight each market by GDP0.35, using 

the average GDP for each country in the last five years of the pre-sample (Dechêzlepretre et al., 

2021, Rozendaal and Vollebergh 2021).18  Defining  𝑤𝑐𝑖
𝑃𝐴𝑇 as the share of firm i’s pre-sample 

patents filed in country c, the weight becomes: 

 
17 This algorithm fills in gaps in the reporting of equivalences across standards that arise because of different timing 

of standard releases, to ensure that our data on country-level accreditations of international standards is complete.  
18 Dechezlepretre et al. (2021) suggest the exponent of 0.35, saying that it fits estimates of the elasticity of exports to 

GDP of the home country found by Eaton, Kortum, and Kramarz (2011). We include robustness checks using an 

exponent of 1, as in Aghion et al. (2016), in Appendix C2. 
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𝑤𝑐𝑖 =
𝑤𝑐𝑖

𝑃𝐴𝑇𝐺𝐷𝑃𝑐
0.35

∑ 𝑤𝑐′𝑖
𝑃𝐴𝑇𝐺𝐷𝑃𝑐′

0.35
𝑐′≠𝑐

 

We build weights based on the share of pre-sample patents in relevant CPC classes filed in our 

19 sample countries, since we do not have complete data for our control variables for countries 

outside of these 19. This weighting scheme assumes that these variables take an average value 

in excluded markets. By including only firms whose home country is in the 19 countries in our 

sample, our sample firms have only limited exposure to other markets. When conditioning on 

home country, we achieve a minimum coverage of 93% of firms’ markets for 90% of the sample 

firms (descriptive statistics on country markets coverage for our sample firms are included in 

Appendix B6).   Because smart grids are an emerging technology, most firms have few smart-grid 

patents during the pre-sample period.  Thus, as we did when calculating the pre-sample mean 

for each company, we use patents in green innovation, electricity generation, or information 

technology (IT), as well as smart grid patents, when calculating the weights. 

Our data include 1,755 firms without pre-sample patents.  For these firms, we use a weighted 

average (based on total patents in relevant technology areas) of the weights from other firms 

located in the same country.  This assumes that firms from the same home country are likely to 

operate in similar markets – e.g., European firms are likely to patent within Europe and Canadian 

firms are likely to also patent in the U.S.  This assumption is more likely to apply to larger new 

firms that operate internationally.  WiTricity corporation is an example of such firms, an American 

company specializing in wireless electrical vehicle charging founded in 2007. In the period 

between 2006 and 2016, it produced 41 smart grids patented inventions. Because we have no 

pre-sample data for WiTricity, we assume that its main markets are the same as other American 

firms that patent in smart grids, on average. In Appendix C2 we show results for robustness 

checks that assume that the main market for these new firms is their home country.  Such an 

assumption is more likely to hold for smaller firms with less patenting activity. 

1.5.5  Descriptive statistics 

Finally, Table 1.1 shows descriptive statistics for the unweighted country-level variables, the firm-

level variables as well as country-level variables after weighting.   
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Table 1.1 Summary statistics 

  Count Mean SD Min Max 

Country-level variables            

Standards 323 4.07 7.07 0.00 97 

Standards (cumulative) 323 37.70 37.81 0.00 215 

RD&D renewables 323 6,928.16 27,038.30 0.46 187,898 

RD&D grid 323 3,129.54 12,999.40 0.00 87,114 

Household electricity prices 323 204.62 114.03 76.76 1,228.07 

Renewables share 323 0.30 0.26 0.01 1 

GDP per capita 323 41,386.57 10,043.86 11,891.63 68,787.47 

Growth electricity consumption 323 1.19 3.26 -6.85 22.41 

Firm-level variables           

Patent count 30628 1.74 12.16 0.00 650.00 

Internal stocks - smart grids 30628 1.65 8.51 0.00 234.47 

Internal stocks - green tech 30628 43.35 294.52 0.00 10,104.26 

Internal stocks - electricity 30628 168.16 1,065.04 0.00 34,488.09 

Internal stocks - ICTs 30628 281.41 1,723.34 0.00 41,705.38 

Pre-sample mean of patents 30628 31.13 197.94 0.00 3,310.04 

Country-level variables, weighted at the firm-level  

Standards 30628 5.72 3.92 0.00 33.97 

Standards (cumulative) 30628 48.77 30.23 0.00 141.96 

RD&D renewables 30628 16,974.02 28,507.93 13.13 187,898 

RD&D grid 30628 7,248.33 13,591.65 0.00 87,114 

Household electricity prices 30628 169.36 35.59 106.20 379.33 

Renewables share 30628 0.16 0.07 0.01 0.77 

GDP per capita 30628 45,841.91 4,741.09 24,860.99 57,459.40 

Growth electricity consumption 30628 0.79 2.32 -6.85 22.41 

External stocks - smart grids 30628 810.91 724.55 0.00 2,537.94 

External stocks - green tech 30628 32,160.91 22,099.83 27.79 86,991.48 

External stocks - electricity 30628 106,588.7 59,810.06 76.55 206,606.6 

External stocks - ICTs 30628 167,952.7 104,892 120.54 327,427.2 
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1.6 Results  

1.6.1  Main model: Poisson regression on full sample 

Table 1.2 shows results for our main Poisson model using a balanced and an unbalanced panel of 

firms.19 Results are consistent across the two models, but the negative effect of standards is 

slightly stronger in our preferred specification, the unbalanced model. In this model, we only 

include firms in the analysis in the years they are known to be active in patenting. We discuss 

results pertaining to five areas: (i) the effect of standards, (ii) the effects of other policy variables, 

(iii) the effects of internal knowledge stocks, (iv) the effects of external knowledge stocks, (v) 

other demand-pull factors.  

We find that standards reduce firm’s patenting levels by a magnitude of about 7.5% for each 

additional standard the firm is exposed to. This is consistent with our expectation that standards 

reduce incentives for firms to test out new ideas that are not compatible with the endorsed 

technological framework, but goes against the hypothesis that standards support inventive 

activity through diffusing information about industry conventions. 

Our heterogeneity analysis presented next further unpacks this to show that effects go in 

different directions for different groups of firms. Regarding the other policy variables, we detect 

no effect from government support to R&D in grid-related technologies, but find that an increase 

in government support to renewables R&D is associated with a decline in smart grid patenting. 

This indicates a tradeoff between the two sectors, possibly because firms active in both areas 

must chose to allocate R&D resources to one or the other.  Results for the internal knowledge 

stocks variables provide evidence of path-dependency in the R&D activities of firms. Firms with 

more smart grid experience are more likely to patent in smart grids. Firms that have experience 

in other areas of green innovation or in electricity also patent more in smart grids. This suggests 

that knowledge from these sectors is relevant for innovating in smart grids, a cross-sectoral area 

of technology. However, firms with more experience in information technologies have fewer 

smart grids patents. This is counter to expectations, given the importance of information 

 
19 In Table 1.2, we focus on the main results of interest in our study. Appendix 1C1 shows results for the full model. 
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technologies in smart grids applications. We expected that firms with a background in 

information technologies would bring foundational knowledge into smart grids field. It could be 

that IT firms are new entrants in the electricity sector, or that their activities in this space are 

marginal relative to their patent portfolios in other sectors.  Similar to our findings for the internal 

knowledge stocks, firms whose inventors are located in countries where more smart grid 

innovation takes place also are more likely to have higher patenting levels. This indicates that 

firms receive knowledge spillovers from other smart grid inventors.  External knowledge stocks 

in other green innovation sectors are associated with fewer patents. This result suggests similar 

tradeoffs as before between R&D in renewables and R&D in smart grids. We do not detect a 

statistically significant effect for the electricity and information technologies external stocks. 

Finally, an increase in the share of renewables in the electricity mix is associated with greater 

smart grids patenting activity. Greater renewables integration amplify grid management 

challenges and demand for these technologies, and also proxies for other renewable energy 

policies since much of the growth in renewable generation was policy driven during the time 

period covered in our analysis. 

1.6.2 Heterogeneous effects across firms 

We hypothesize that the direction of the effect of standards varies across firms, with standards 

increasing the entry of new innovators in this innovation space through providing information, 

but removing incentives to test out new ideas for large incumbents.  To test these hypotheses, 

we propose two approaches. 

First, we estimate our main model on a sub-sample of firms with high patenting intensity, and a 

sub-sample of firms with low patenting intensity. Estimating these models separately allows for 

all coefficients and intercepts to vary across the two groups. Because defining a cutoff between 

the two groups is arbitrary, we estimate these models for 3 different cutoffs: one at the median, 

one at 75th percentile of the distribution of firms’ patenting intensity, and one at the 90th 

percentile. We use these two groups to proxy for large industry incumbents and new entrants. 

In most cases, large firms are firms that have been active longer in this space and small firms are 

new entrants.   
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Table 1.2 Results from Poisson regressions 

  Unbalanced  Balanced  

      

Standards -0.045*** -0.037*** 

  (0.012) (0.011) 

RD&D smart grid 0.094 0.039 

  (0.064) (0.063) 

RD&D renewables -0.198** -0.145* 

  (0.080) (0.079) 

Int. knowledge stocks - smart grids 0.938*** 0.918*** 

  (0.041) (0.041) 

Int. knowledge stocks - green tech 0.130*** 0.123*** 

  (0.033) (0.032) 

Int. knowledge stocks - electricity 0.261*** 0.242*** 

  (0.034) (0.034) 

Int. knowledge stocks - ICTs -0.122*** -0.133*** 

  (0.030) (0.030) 

Ext. knowledge stocks - smart grids 0.646*** 0.529*** 

  (0.172) (0.161) 

Ext. knowledge stocks - green tech -0.538*** -0.418*** 

  (0.156) (0.157) 

Ext. knowledge stocks - electricity -0.268 -0.192 

  (0.170) (0.165) 

Ext. knowledge stocks - ICTs 0.216 0.163 

  (0.163) (0.160) 

Renewables share 1.330* 1.542** 

  (0.757) (0.743) 

      

Marginal effect, standards -0.078*** -0.045*** 

  (0.021) (0.014) 

      

Observations 30,628 44,370 

Log-likelihood -84109 -92700 
Note: The variables RD&D expenditures in grid-related technologies and in renewables technologies were 
adjusted for PPP and inflation and converted into 2015 real USD. All regressions include the firms' average yearly 
patents in the pre-sample period, a complete set of year dummies, a dummy for firms with no patents in the pre-
sample period, 4 dummies for knowledge stocks that are equal to zero (smart grids, green innovation, electricity, 
and ICT knowledge stocks). Country-level control variables were also weighted and included in all regressions: the 
share of electricity production from renewables, the growth in electricity consumption, household electricity 
prices (USD/MWh, real 2015 USD) and GDP per capita (real 2015 USD). All time-varying variables are lagged by 2 
time periods. We use the log transformation for all the internal and external knowledge stocks, for GDP per capita 
and for household electricity prices. Regressions start in 2000 and end in 2016. Robust standard errors are 
included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Second, we interact a dummy variable for firms with no smart grid patents before year t with the 

standards variable. This measure identifies new entrants more precisely.   Sample firms all 

eventually enter the smart grid space, so this model tests whether they are more likely to enter 

in response to standardization. For this analysis, we estimate a Zero-Inflated Poisson model. The 

first stage of this model – the extensive margin – captures the likelihood that a firm will have zero 

patents (i.e., that it will not enter in a given year). The second stage– the intensive margin – 

estimates the effects of standards on patenting levels given that a firm has patents that year.  

The interaction term at the extensive margin is therefore a more direct test of the effect of 

standards on entry for firms without prior smart grid experience.  

Table 1.3 shows that the negative effect of standards is driven by large firms. For these firms, an 

additional standard decreases patenting by a magnitude ranging from 11-28%. These results 

support our hypothesis that standards stifle experimentation in large incumbent firms. The R&D 

investment decisions of firms with low patenting intensity are more responsive to technology-

push policies in the form of government R&D subsidies. This aligns with our expectation that 

smaller, and presumably more resource-constrained firms, are more influenced by policy.  In 

particular, the tradeoff between R&D in smart grids and R&D in renewables is concentrated in 

these firms.  This suggests that smaller, and presumably more resource constrained firms, do not 

have the capacity to do R&D in several areas at a time and may choose to innovate in renewables 

at the expense of smart grids when government funding opportunities are greater in this area.  

This crowding out effect is strongest in firms with low patenting activity when using the 75th and 

90th percentiles cutoffs. 

Results presented in Table 1.4 confirm that firms without prior smart grid experience are more 

likely to enter when exposed to more standards. The interaction of standards with the zero stocks 

dummy variable, as well as the joint significance of the standards variables and the interaction 

term are both negative and significant, indicating that firms are less likely to have zero patents. 

While there is a negative effect of standards on the level of smart grid patenting, this occurs for 

both new entrants and incumbents. The combined marginal effect of the extensive and intensives 
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Table 1.3 Regression results by firm size 

Cutoff Median   75th percentile   90th percentile 

Firm patenting intensity High Low   High Low   High Low 

                  

Standards -0.051*** 0.022   -0.058*** -0.005   -0.050*** -0.025* 

  (0.013) (0.023)   (0.014) (0.017)   (0.016) (0.014) 

RD&D smart grid 0.070 -0.001   -0.038 0.105   -0.137 0.151*** 

  (0.071) (0.101)   (0.103) (0.065)   (0.144) (0.056) 

RD&D renewables -0.198** -0.070   -0.024 -0.313***   0.229 -0.349*** 

  (0.090) (0.137)   (0.116) (0.088)   (0.165) (0.070) 

Int. stocks - smart grids 0.937*** 1.568***   0.941*** 1.651***   0.900*** 1.262*** 

  (0.039) (0.475)   (0.037) (0.220)   (0.043) (0.067) 

Int. stocks - green tech 0.126*** -0.049   0.118*** -0.221   0.102** 0.170*** 

  (0.033) (0.323)   (0.034) (0.207)   (0.044) (0.060) 

Int. stocks - electricity 0.197*** 0.520*   0.218*** 0.329***   0.339*** 0.199*** 

  (0.035) (0.312)   (0.042) (0.078)   (0.057) (0.051) 

Int. stocks - ICTs -0.117*** -0.273   -0.132*** -0.132   -0.198*** -0.089** 

  (0.029) (0.325)   (0.034) (0.087)   (0.052) (0.046) 

Ext. stocks - smart grids 0.681*** 0.289   0.440 0.385*   0.093 0.640*** 

  (0.220) (0.254)   (0.330) (0.207)   (0.416) (0.183) 

Ext. stocks - green tech -0.583*** -0.298   -0.694*** -0.328   -1.062*** -0.322* 

  (0.185) (0.227)   (0.225) (0.227)   (0.319) (0.176) 

Ext.stocks - electricity -0.173 0.060   0.331 -0.336*   0.494 -0.229 

  (0.222) (0.255)   (0.305) (0.173)   (0.390) (0.149) 

Ext. stocks - ICTs 0.178 -0.100   0.119 0.282   0.600* -0.019 

  (0.185) (0.244)   (0.225) (0.194)   (0.308) (0.170) 

Renewables share 0.826 -1.435   2.809*** -3.526***   3.307* -0.683 

  (0.888) (2.018)   (0.926) (1.345)   (1.691) (0.988) 

                  

Marg. effect, standards -0.120*** 0.014   -0.206*** -0.004   -0.329*** -0.022* 

  (0.032) (0.015)   (0.052) (0.013)   (0.110) (0.013) 

                  

Observations 19,532 11,096   10,646 19,982   4,615 26,013 

Pseudo R-squared 0.527 0.243   0.616 0.137   0.674 0.164 
Note: These regressions use the same specification and control variables as the main model. Firms as classified as 
having high/low patenting intensity using different cutoffs in the distribution of patent counts (using total counts of 
patents assigned to the firm in the years 2000-2016 in the ICT, electricity, green innovation and smart grids patent 
classes). The first model uses the median observation (7 patents) as the cutoff between high and low patenting 
intensity. The second model uses the 75th percentile as a cutoff (57 patents). The third model uses the 90th percentile 
as a cutoff (512 patents).  Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1  
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margins is insignificant for new entrants.  Standards increase the number of firms patenting in 

smart grids, but not the total number of smart grids patents.  These results are suggestive of the 

role of standards reducing uncertainty.  Standards provide clarity on how technology will evolve, 

allowing innovators to focus their efforts on what they know will be needed rather than trying to 

anticipate multiple technology scenarios. 

1.6.3  Effect of standards on innovation quality   

The models discussed in the previous sections estimate the effects of standards on the level of 

patenting activity, but provide limited insights into other possible effects of standards on the 

substance of innovation. It is possible that standards decrease patenting through focusing R&D 

in more promising areas, in which case inventors might be trading off quantity in exchange for 

higher quality.  We test this hypothesis through estimating our model on citation-weighted 

patent counts.  

To account for differences in citation behavior across patent offices, citation counts are 

normalized by dividing each patent's citation count by the average citation count received by all 

smart grid technology patents granted by the same national patent office.  We add one to this 

normalized citation count so as to include patents without citations (Dechezleprêtre et al, 2021). 

The year fixed effects already included in our model control for the possibility that the likelihood 

of receiving citations changes over time, due to various unobservable factors. We counted 

citations received in the priority country within a five-year window from the patent's application 

date, with the exception of patent families granted by the European Patent Office, for which we 

used citations received from other European patents.  

Results in Table 1.5 show that the negative marginal effect of standards on patenting is half as 

small when accounting for quality. While this is insufficient to completely offset the negative 

effect of standards, it indicates that standards affect forward citations. Results from the 

heterogeneity analysis suggest that standards have a positive effect on quality for firms with high 

patenting intensity, as the negative coefficient for this group is of smaller magnitude than in 

previous analyses. For these firms, standards reduce their overall patent count by 5.6%, but 

citations-weighted counts by just 3.6% (when using the 75th percentile as a cutoff), suggesting
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Table 1.4 Effects of standards on new entrants (Zero-inflated Poisson) 

  Intensive margin Extensive margin 

      

Standards -0.033** 0.120*** 

  (0.015) (0.013) 

Interaction standards and zero stocks dummy -0.014 -0.165*** 

  (0.015) (0.011) 

RD&D smart grid 0.114 0.004 

  (0.073) (0.039) 

RD&D renewables -0.193** 0.036 

  (0.090) (0.050) 

Int. knowledge stocks - smart grids 0.595*** -1.442*** 

  (0.032) (0.050) 

Int. knowledge stocks - green tech 0.075** -0.178*** 

  (0.032) (0.021) 

Int. knowledge stocks - electricity 0.136*** -0.148*** 

  (0.034) (0.028) 

Int. knowledge stocks - ICTs -0.165*** -0.003 

  (0.029) (0.024) 

Ext. knowledge stocks - smart grids 0.454** -0.263*** 

  (0.184) (0.099) 

Ext. knowledge stocks - green tech -0.563*** 0.043 

  (0.151) (0.096) 

Ext. knowledge stocks - electricity -0.017 -0.041 

  (0.177) (0.096) 

Ext. knowledge stocks - ICTs 0.113 0.231** 

  (0.151) (0.101) 

Renewables share -1.039 -0.890 

  (0.878) (0.567) 

      

Joint significance for new entrants -0.047*** -0.044*** 

  (0.011) (0.009) 

      

Marginal effect for new entrants -0.014 

  (0.012) 

      

Observations 30,628 30,628 

Log-likelihood -46872 -46872 
Note: This regression uses the same specification and control variables as the main model. This model interacts 
the standards variables with a dummy variable that indicates whether the firm had any internal knowledge 
stocks in past periods. As with other variables, we use the second lag. Robust standard errors are included in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 1.5 Effect of standards on citation-weighted patent counts 

  
All firms 

  High Low    New entrants 

    intensity  intensity    Int. margin Ext. margin 

                

Standards -0.043***   -0.037** -0.037***   -0.039*** 0.109*** 

  (0.012)   (0.015) (0.014)   (0.013) (0.014) 

Interaction           -0.010 -0.172*** 

            (0.013) (0.013) 

RD&D smart grid 0.092   -0.045 0.018   0.091 0.028 

  (0.059)   (0.086) (0.065)   (0.077) (0.055) 

RD&D renewables -0.249***   -0.162 -0.096   -0.245** -0.046 

  (0.082)   (0.111) (0.108)   (0.100) (0.066) 

Int. stocks - smart grids 0.960***   0.934*** 1.608***   0.638*** -1.357*** 

  (0.039)   (0.036) (0.224)   (0.034) (0.052) 

Int. stocks - green tech 0.091**   0.062 0.024   0.016 -0.188*** 

  (0.042)   (0.041) (0.091)   (0.042) (0.026) 

Int. stocks - electricity 0.098**   0.043 0.222***   0.012 -0.153*** 

  (0.048)   (0.052) (0.072)   (0.048) (0.032) 

Int. stocks - ICTs 0.088*   0.075 0.055   0.039 0.021 

  (0.049)   (0.054) (0.066)   (0.054) (0.030) 

Ext. stocks - smart grids 0.340**   0.020 0.240   -0.049 -0.333*** 

  (0.158)   (0.242) (0.212)   (0.186) (0.129) 

Ext. stocks - green tech 0.047   -0.005 0.147   0.063 0.147 

  (0.126)   (0.168) (0.188)   (0.129) (0.113) 

Ext. stocks - electricity -0.242*   0.090 0.030   0.083 0.010 

  (0.146)   (0.221) (0.173)   (0.165) (0.122) 

Ext. stocks - ICTs 0.152   0.307 -0.236   0.167 0.260** 

  (0.164)   (0.207) (0.168)   (0.152) (0.125) 

Renewables share 3.009***   3.500*** -0.951   0.518 -0.876 

  (0.731)   (0.892) (1.155)   (1.101) (0.770) 

Marginal effect -0.034***   -0.061** -0.013***   -0.040*** 

  (0.009)   (0.025) (0.005)   (0.008) 

Joint significance           -0.049*** -0.062*** 

            (0.012) (0.012) 

                

Observations 30,628   10,646 19,982   30,628 30,628 

Pseudo R2/log-likelihood 0.458   0.544 0.132   -28558 -28558 
Note: The dependent variable in these regression analyses is a citation-weighted patent count. Patent counts are 
normalized as explained in the text. Firms with low patenting intensity and high patenting intensity are defined 
using the 75th percentile cutoff. New entrants are defined as before. Regressions are weighted by firm-level patent 
counts using importance weights. We use the same pre-sample mean Poisson estimator as before and include 
the same control variables as in our main specification. Robust standard errors are included in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1 
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that the remaining patents are, on average, of higher quality. Also, the effect is now negative and 

significant for firms with low patenting intensity, suggesting that while standards had no effects 

on patenting levels, these firms’ inventions received fewer citations after being exposed to 

standards. For new entrants, the interaction term coefficient at the extensive margin is of larger 

magnitude, suggesting that standards increase both entry and quality. The effect is not strong 

enough to offset the reduction in patenting level at the intensive margin and the combined 

marginal effect for new entrants remains negative.  Together these results suggest that if 

anything, the standards help firms with high patenting intensity in producing more influential 

knowledge, and through codifying and making widely available the knowledge embedded in the 

standard, help new entrants produce valuable complementary innovations, but firms with low 

patenting intensity do not appear to benefit from standards in the same way. 

1.6.4  Robustness checks 

We also verify that our results are not sensitive to the research decisions we made, with respect 

to the choice of depreciation rate applied to the knowledge stocks, strategy used to build policy 

weights for new firms with no pre-sample data, GDP-weighting of the policy weights to account 

for market size, number of lagged periods for the explanatory variables and, the measurement 

of the standards variable. Results for these robustness checks are presented in Appendix C2.  

1.7 Discussion 

Our analysis reveals heterogeneous effects of technology standards on firms’ inventive activities 

and suggests important tradeoffs, with implications for policy. A first consideration is that 

standards affect differentially the R&D decisions of incumbent firms, new entrants, firms with 

high patenting intensity and firms with low patenting intensity. Depending on the goals they are 

pursuing – such as stimulating competition in the market for smart grid technologies or 

strengthening incumbent champions – policy makers should consider these differential effects.  

Second, our analysis of citation-weighted counts suggests a tradeoff between the quantity and 

quality of innovation. One purpose of standards is to elect a technological framework that will 

become the convention within an industry. Our results show that this causes a decline in 
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patenting. A tenable explanation is that standards remove incentives to test out-of-box ideas and 

narrow the scope of ideas pursued by inventors. This is not necessarily an undesirable outcome. 

By giving more clarity to inventors about which research avenues are worth pursuing, standards 

likely help focus research efforts in areas that produce the highest expected value and establish 

foundational knowledge for future research. Our results provide suggestive evidence of this.  

While counts of citation-weighted patents also fall with additional exposure to standards, the 

percentage decrease is smaller for large firms particularly, from a 5.6% to a 3.6% reduction after 

accounting for patent quality, suggesting that the remaining patents are of higher quality than 

those no longer invented.  Our findings are consistent with limited evidence in the literature, 

including work by Rysman and Simcoe (2008) who find that standard-setting organizations are 

effective at selecting high-quality technology and by Wen and colleagues (2022) who find that 

standards help complementor firms produce high-impact innovation through lowering 

technological and legal uncertainty. This aligns with our findings that standards facilitate the 

entry of new players in the smart grid innovation space, conceivably through providing 

information that lowers uncertainty.  

Finally, both policy makers and future research should carefully consider the timing of standard 

adoption. Policy makers should assess when the timing is ripe for transitioning from broad 

experimentation to a narrower path of inventive activity. This in part depends on how much 

experimentation has already occurred, on technology maturity and on how promising alternative 

research avenues appear.  Considering the timing of standards adoption is also relevant given 

possible tradeoffs in the effects of standards on technology development versus diffusion. More 

substantial benefits from standardization may occur in downstream product markets where 

standards facilitate the deployment of technologies through reducing technical uncertainty for 

new adopters. Testing this hypothesis is beyond the scope of this paper, but remains an 

important question for future research. 

1.8 Conclusion 

In this paper, we argue that complementary technologies will be pivotal in enabling further 

decarbonization of electricity systems. We posit that the development of the requisite 
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technologies for achieving net-zero goals face important barriers in the form of coordination 

challenges and interoperability requirements. Using firm-level analysis, we investigate the effects 

of standards, as a coordination tool, on innovation in smart grids. Through the case of smart grids 

technology, we draw attention on the importance of considering technology standards within 

the literature on green energy innovation, especially because coordination and compatibility 

challenges are poised to become prominent in enabling and complementary energy 

technologies. We add to the literature on standards by contributing needed empirical evidence 

to further knowledge of the relationship between standards and innovation.  In particular, we 

advance understanding of the heterogeneous effects standards have on the inventive activities 

of different types of firms. We find that standards reduce the number of patents produced by 

firms with high patenting intensity, but help new players penetrate this sector of innovation. We 

further find preliminary evidence of tradeoffs between the effect of standards on the quantity 

versus the quality of patents. Future research should test the latter hypothesis more directly 

using patent-level models to analyze the effect of standards on citation patterns and other patent 

characteristics. 
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Appendix 1.A Background on smart grids and standards 
 

Appendix 1.A.1 Examples of smart grid technologies at different stages of maturity  

Smart grids encompass a range of technologies that include - but are not limited to - smart 

meters, remote and automated sensing, smart switching, hierarchical or distributed control 

architectures and an array of big data analytics and artificial intelligence applications. Below, we 

provide some examples of smart grid technologies that are at different levels of maturity. As 

these technologies are deployed, more data will be collected, opening up further possibilities for 

new inventions that utilize these data. While hardware such as smart meters and synchrophasors 

are routinely used, the data that is collected by these devices remain under-utilized (Syed et al., 

2020). Advances in big data analytics and artificial intelligence are needed to realize the full 

potential of smart grid technologies. 

Advanced metering infrastructure. Resolutely the most salient smart grid technology, smart 

metering has reached maturity and been deployed at scale in many industrialized economies. 

Across the United States, utilities had installed 102.9 million smart meters by 202020.  These 

devices have the ability to collect data multiple times per second (Syed et al., 2020), and 

communicate information to both utilities and their consumers. Because these devices enable 

remote automated meter readings, they make possible the implementation of time-varying 

electricity tariffs. Paired with smart appliances, this can enable demand response (NREL, 2015; 

Palensky and Kupzog, 2013, p.208). The mass deployment of these devices is sometimes equated 

to the smart grid, but advanced metering infrastructure is just one of many technologies that 

must be deployed to achieve a smarter and greener grid. Their deployment is a first, but 

insufficient, step towards the implementation of a smarter electrical grid.  (Brown et al., 2018).  

Synchrophasors. Another technology that has been widely adopted by utilities is the phasor 

measurement unit21. These devices are capable of monitoring voltage, current and frequency on 

the grid in real time (Palensky and Kupzog, 2013, p.205; Lee et al., 2017). The data collected by 

 
20 https://www.eia.gov/tools/faqs/faq.php?id=108&t=3, consulted on 11 June 2022 
21 https://www.energy.gov/articles/how-synchrophasors-are-bringing-grid-21st-century, consulted on 11 June 
2022 

https://www.eia.gov/tools/faqs/faq.php?id=108&t=3
https://www.energy.gov/articles/how-synchrophasors-are-bringing-grid-21st-century
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these units is currently used by industry in grid monitoring and post-mortem analysis, but 

possibilities for using these data to further improve grid management abound (Lee et al., 2017). 

As more devices are installed at different nodes on the grid, new software applications will 

become possible due to greater data availability. For example, the data collected by 

synchrophasors could be used in oscillation monitoring, voltage stability monitoring, angle-

frequency monitoring, adaptive protection, model valuation or linear state estimation (Lee et al., 

2017) 

Smart inverters. Smart inverters are another type of device that is already commercially available.  

These devices are used to convert DC current from solar photovoltaic installations into AC current 

that can be fed onto the grid. Their intelligent characteristics also enable them to monitor grid 

frequency and voltage, and automate decisions that help maintain grid stability (NREL, 2015). For 

example, these units have the capacity to adjust the output of solar installations in response to 

grid conditions (Martinot, 2016, p.236; Palensky and Kupzog, 2013, p.207). They may also enable 

the PV installation to absorb power from the grid if needed to help maintain grid frequency 

stability, keep installations online during minor disturbances and restart gradually after a power 

outages to avoid cascading power failures (NREL, 2015).  

Blockchain technology. Champions of blockchain technology believe it could revolutionize 

electricity markets, especially in the area of electricity trading and billing (Fulli et al., 2022; Lopes 

et al., 2019; Kuzlu et al., 2020). While there is interest on the part of the energy industry to 

leverage this technology - apart from a handful of start-up companies that offer services made 

possible by blockchains (such as WePower, Power Ledger and the Sun Exchange) (Kuzlu et al., 

2020) - applications to the electricity sector remain in early stages of development (pilots, use 

cases) (Fulli et al., 2022; Kuzlu et al., 2020). Blockchain technology is a form of distributed digital 

ledger that uses computer networks to record and coordinate transactions without the need for 

centralized oversight. Proponents believe it could enable new community-based/sharing 

economy business models such as peer-to-peer energy trading (Lopes et al., 2019, p.4-5; Kuzlu 

et al., 2020). Other possible blockchain applications to the electricity sector encompass 

microgrids, virtual power plants, renewable energy certificate trading, and electric vehicle 
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charging and payment settlement platforms (Kuzlu et al., 2020). But the availability of 

comprehensive network of interoperable advanced metering infrastructure will be indispensable 

to enable blockchain technology in the electricity sector (Fulli et al., 2022).  

Big data analytics and artificial intelligence. Other technologies that are likely to flourish as more 

hardware - such as smart meters, smart sensors, smart inverters – is installed across the grid 

include big data analytics and artificial intelligence.  Without data availability, these technologies’ 

potential remains under-utilized. Challenges extend beyond data acquisition however: several 

limitations in data storing, processing and security must be overcome to deploy these 

technologies. (Syed et al., 2020).  The digital transformation program implemented by Iberdrola 

illustrates the potential of big data analytics to the electricity sector. The Spanish utility uses wind 

generation data in developing curtailment optimization plans and consumer data for designing 

time-of-use rates (Syed et al., 2020). Beyond a handful of examples however, the commercial 

deployment of these technologies remains limited (Syed et al., 2020, p.59575; Bose, 2017). Many 

possible applications that use AI and big data to facilitate grid monitoring and automate power 

system control decisions can be envisioned. These include, but are not limited to: fault 

identification and classification, preventative maintenance, transient stability analysis, topology 

identification, health monitoring of wind generation systems, coordinated electric vehicle 

charging, hierarchical and distributed control architectures, automated load management, 

virtual energy storage systems, fault pattern identification, automated design, simulation and 

controller tuning of wind generation systems and more (Lopes et al., 2019; Palensky and Kupzog, 

2013; Syed et al., 2020; Bose, 2017)
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Appendix 1.A.2 List of sampled standards  
 
STANDARD NUMBER STANDARD NAME 

ANSI C 12.1 Electric Meters - Code for Electricity Metering 

ANSI C 12.18 Protocol Specification for Ansi Type 2 Optical port (communication between a C12.18 decide and a C12.18 
client via an optical port) 

ANSI C 12.19 American national Standard for Utility Industry End Device Data Tables 

ANSI C 12.20 Electricity Meters - 0.2 and 0.5 Accuracy Classes  

ANSI C 12.21 Protocol Specification for Telephone Modem Communication 

ANSI C 12.22 Protocol Specification for Interfacing To Data Communication Networks 

ANSI/ASHRAE 135 A Data Communication Protocol for Building Automation and Control Networks  

ANSI/CEA 709.1 Control Network Protocol Specification 

ANSI/CEA 709.2 Control Network Power Line (PL) Channel Specification 

ANSI/CEA 709.3  Free-Topology Twisted-Pair Channel Specification 

ANSI/CEA 709.4 Fiber-Optic Channel Specification 

ANSI/CEA 852-B Tunneling Device Area Network Protocols Over Internet Protocol Channels  

ANSI/CEA 852.1 Enhanced Protocol for Tunneling Component Network Protocols Over Internet Protocol Channels 
ANSI/NEMA SG-IPRM 1 Smart Grid Interoperability Process Reference Manual 

CEA/CEDIA-CEB 29 Recommended Practice for the Installation of Smart Grid Devices 

CEN/CLC/ETSI/TR 50572 Functional reference architecture for communications in smart metering systems 

CLC/TS 50568-4 prTS 50568-4: Electricity metering data exchange – The Smart Metering Information Tables and Protocols 
(SMITP) suite – Part 4: Physical layer based on B-PSK  modulation +Data Link Layer 

CLC/TS 50568-8 prTS 50568-8: Electricity metering data exchange – The Smart Metering Information Tables and Protocols 
(SMITP) suite – Part 8: PLC profile based on B-PSK modulation 

CLC/TS 52056-8-4 prTS 52056-8-4: Electricity metering data exchange – The DLMS/COSEM suite – Part 8-4: Communication 
profile for power line carrier neighborhood networks using OFDM modulation Type 1 

CLC/TS 52056-8-5 prTS 52056-8-5: Electricity metering data exchange – The DLMS/COSEM suite – Part 8-5: Communication 
profile for power line carrier neighborhood networks using OFDM modulation Type 2 
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EN 13757-1 Communication systems for meters - Part 1: Data exchange 

EN 13757-3 Communication systems for meters - Part 3: Application protocols 

EN 13757-4 Communication systems for meters - Part 4: Wireless MBus communication 

EN 13757-5 Communication systems for meters - Part 5: Wireless M-Bus relaying 

EN 50491-11 General requirements for Home and Building Electronic Systems (HBES) and Building Automation and Control 
Systems (BACS) - Part 11: Smart metering - Application specification - Home display 

EN 50491-12 General requirements for Home and Building Electronic Systems (HBES) and Building Automation and Control 
Systems (BACS) - Part 12: Smart grid - Application specification - Interface and framework for customer 

EN 61508 EN 61508 - Communication networks and systems in substations - Part 3: General requirements  

EN 62056-1-0 EN 62056-1-0: Electricity metering data exchange – The DLMS/COSEM suite – Part 1-0: Framework 

EN 62056-3-1 EN 62056-3-1: Electricity metering data exchange – The DLMS/COSEM suite –Part 3-1: Use of local area 
networks on twisted pair with carrier signalling 

EN 62056-4-7 EN 62056-4-7: Electricity metering data exchange – The DLMS/COSEM suite – Part 4-7: COSEM transport 
layers for IPv4 and IPv6 networks 

EN 62056-5-3 EN 62056-5-3: Electricity metering – Data exchange for meter reading, tariff and load control – Part 5-3: 
COSEM Application layer 

EN 62056-6-1 EN 62056-6-1: Electricity metering data exchange – The DLMS/COSEM suite – Part 6-1: Object identification 
system (OBIS) 

EN 62056-6-2 EN 62056-6-2: Electricity metering data exchange – The DLMS/COSEM suite – Part 6-2: COSEM interface 
classes 

EN 62056-7-6 EN 62056-7-6: Electricity metering data exchange – The DLMS/COSEM suite – Part 7-6: The 3-layer, 
connection oriented, HDLC based communication profile 

EN 62056-8-3 EN 62056-8-3: Electricity metering data exchange – The DLMS/COSEM suite – Part 8-3: Communication 
profile for power line carrier neighborhood networks using S–FSK modulation 

EN 62056-9-7 EN 62056-9-7: Electricity metering data exchange – The DLMS/COSEM suite – Part 9-7: Communication 
profile for TCP-UDP/IP networks 



 46 
 

EN 62056-9-8 Electricity metering data exchange – The DLMS/COSEM suite Part 9-8: Communication profile using SML 
services 

EN 62325-301 Framework for energy market communications - Part 301: Common Information Model (CIM) extensions for 
markets 

EN 62325-351 Framework for energy market communications - Part 351: CIM European market model exchange profile 

EN 62325-450 Framework for energy market communications - Part 450 : profile and context modelling rules 

EN 62325-451-1 Framework for energy market communications - Part 451-1: Acknowledgement business process and 
contextual model for CIM European market 

EN 62325-451-2 Framework for energy market communications - Part 451-2: Scheduling business process and contextual 
model for CIM European market 

EN 62325-451-3 Framework for energy market communications - Part 451-3: Transmission capacity allocation business 
process (explicit or implicit auction) and contextual models for European market 

EN 62325-451-4 Framework for energy market communications - Part 451-4: Settlement and reconciliation business process, 
contextual and assembly models for European market 

EN 62325-451-5 Framework for energy market communications - Part 451-5: Problem statement and status request business 
processes, contextual and assembly models for European market  

EN 62325-503 Framework for energy market communications - Part 503: Market data exchanges guidelines for the IEC 
62325-351 profile 

ETSI TR 102691 Machine-to-Machine communications (M2M); Smart Metering Use Cases 

ETSI TR 102886 Electromagnetic compatibility and Radio spectrum Matters (ERM); System Reference document (SRdoc): 
Spectrum Requirements for Short Range Device, Metropolitan Mesh Machine Networks (M3N) and Smart 
Metering (SM) applications 

ETSI TR 102935 Machine-to-Machine communications (M2M); Applicability of M2M architecture to Smart Grid Networks; 
Impact of Smart Grids on M2M platform 
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ETSI TR 103055 Electromagnetic compatibility and Radio spectrum Matters (ERM); System Reference document (SRdoc): 
Spectrum Requirements for Short Range Device, Metropolitan Mesh Machine Networks (M3N) and Smart 
Metering (SM) applications 

ETSI TR 103240 Powerline communication recommendations for smart metering and home automation 

ETSI TS 102887 Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices; Smart Metering 
Wireless Access Protocol 

ETSI TS 102887-1 TS102887-1 Smart Metering wireless access protocol: part 1: Physical layer 

ETSI TS 102887-2 TS102887-2 Smart Metering wireless access protocol: part 2: Data Link Layer (MAC) 

ETSI TS 103 908 PowerLine Telecommunications (PLT) - BPSK Narrow Band Power Line Channel for Smart Metering 
Applications  

IEC 60870-6-2 Telecontrol equipment and systems - Part 6: Telecontrol protocols compatible with ISO standards and ITU-T 
recommendations - Section 2: Use of basic standards (OSI layers 1-4) 

IEC 60870-6-501 Telecontrol equipment and systems - Part 6: Telecontrol protocols compatible with ISO standards and ITU-T 
recommendations - Section 501: TASE.1 Service definitions 

IEC 60870-6-502 Telecontrol equipment and systems - Part 6: Telecontrol protocols compatible with ISO standards and ITU-T 
recommendations - Section 502: TASE.1 Protocol definitions 

IEC 60870-6-503 Telecontrol Equipment and Systems - Part 6-503: Telecontrol Protocols Compatible with ISO Standards and 
ITU-T Recommendations - TASE.2 Services and Protocol. 

IEC 60870-6-601 Telecontrol equipment and systems - Part 6: Telecontrol protocol s compatible with ISO standards and ITU-T 
recommendations - Section 601: Functional profile for providing the connection-oriente d transport service 
in an end system connected via permanent acc ess to a packet switched data network 

IEC 60870-6-602 Telecontrol equipment and systems - Part 6-602: Telecontrol protocols compatible with ISO standards and 
ITU-T recommendations - TASE transport profiles 

IEC 60870-6-701 Telecontrol equipment and systems - Part 6-701: Telecontrol protocols compatible with ISO standards and 
ITU-T recommendations - Functional profile for providing the TASE.1 application service in end systems 

IEC 60870-6-702 Telecontrol Equipment and Systems: part 6-702: Telecontrol Protocols Compatible with ISO standards and 
ITU-T Recommendations - Functional Profile for Providing the TASE.2 Application Service in End Systems.  
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IEC 60870-6-802 Telecontrol Equipment and Systems - Part 6-802: Telecontrol Protocol Compatible With ISO Standards and 
ITU-T Recommendations - TASE.2 Object Models  

IEC 61334-3-1 Distribution automation using distribution line carrier systems - Part 3-1: Mains signalling requirements - 
Frequency bands and output levels  

IEC 61334-3-21 Distribution automation using distribution line carrier systems - Part 3: Mains signalling requirements - 
Section 21: MV phase-to-phase isolated capacitive coupling device 

IEC 61334-4-1 Distribution automation using distribution line carrier systems - Part 4: Data communication protocols - 
Section 1: Reference model of the communication system 

IEC 61334-4-33 Distribution automation using distribution line carrier systems - Part 4-33: Data communication protocols - 
Data link layer - Connection oriented protocol  

IEC 61334-4-41 Distribution automation using distribution line carrier systems - Part 4: Data communication protocols - 
Section 41: Application protocol - Distribution line message specification 

IEC 61334-4-42 Distribution automation using distribution line carrier systems -Part 4: Data communication protocols - 
Section 42: Application protocols - Application layer 

IEC 61334-4-511 Distribution automation using distribution line carrier systems - Part 4-511: Data communication protocols - 
Systems management - CIASE protocol 

IEC 61334-4-512 Distribution automation using distribution line carrier systems - Part 4-512: Data communication protocols - 
System management using profile 61334-5-1 - Management Information Base (MIB)  

IEC 61334-4-61 Distribution automation using distribution line carrier systems - Part 4-61: Data communication protocols - 
Network layer - Connectionless protocol  

IEC 61334-6 Distribution automation using distribution line carrier systems - Part 6: A-XDR encoding rule 

IEC 61400-25-1 Wind energy generation systems - Part 25-1: Communications for monitoring and control of wind power 
plants - Overall description of principles and models 

IEC 61400-25-3 Wind turbines - Part 25-3: Communications for monitoring and control of wind power plants - Information 
exchange models 

IEC 61400-25-4 Wind energy generation systems - Part 25-4: Communications for monitoring and control of wind power 
plants - Mapping to communication profile 
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IEC 61400-25-5 Wind turbines - Part 25-5: Communications for monitoring and control of wind power plants - Conformance 
testing 

IEC 61400-25-6 Wind turbines - Part 25-6: Communications for monitoring and control of wind power plants - Logical node 
classes and data classes for condition monitoring 

IEC 61850-1 Communication Networks and Systems for Power Utility Automation - Part 1: Introduction and overview 
IEC 61850-10 Communication networks and systems for power utility automation - Part 10: Conformance testing 
IEC 61850-3 Communication Networks and Systems for Power Utility Automation - Part 3: General Requirements 
IEC 61850-4 Communication Networks and Systems for Power Utility Automation - Part 4: System and Project 

Management  

IEC 61850-5 Communication Networks and Systems for Power Utility Automation - Part 5: Communication Requirements 
For Functions and Device Models 

IEC 61850-6 Communication Networks and Systems for Power Utility Automation - Part 6: Configuration Description 
Language for Communication In Electrical Substations Related to IEDs 

IEC 61850-7-1  Communication Networks and Systems for Power Utility Automation - Part 7-1 Basic Communication 
Structure - Principles and Models 

IEC 61850-7-2 Communication Networks and Systems for Power Utility Automation - Part 7-2 Basic Information and 
Communication Structure - Abstract Communication Service Interface (ACSI) 

IEC 61850-7-3 Communication Networks and Systems for Power Utility Automation - Part 7-3 Basic Communication 
Structure - Common Data Classes 

IEC 61850-7-4 Communication Networks and Systems for Power Utility Automation - Part 7-4 Basic Communication 
Structure - Compatible Logical Node Classes and Data Object Classes 

IEC 61850-7-410 Communication Networks and Systems for Power Utility Automation - Part 7-410: Basic Communication 
Strucutre - Hydroelectric Power Plants - Communiction for Monitoring and Control 

IEC 61850-7-420 Communication Networks and Systems for Power Utility Automation - Part 7-420: Basic Communication 
Structure - Distributed Energy Resources and Distribution Automation Logical Nodes 

IEC 61850-8-1 Communication networks and systems for power utility automation - Part 8-1: Specific communication 
service mapping (SCSM) - Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3 
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IEC 61850-9-2 Communication networks and systems for power utility automation - Part 9-2: Specific communication 
service mapping (SCSM) - Sampled values over ISO/IEC 8802-3 

IEC 61968-1 Application integration at electric utilities - System interfaces for distribution management - Part 1: Interface 
architecture and general requirements 

IEC 61968-11 Application integration at electric utilities - System interfaces for distribution management - Part 11: 
Common information model (CIM) extensions for distribution 

IEC 61968-13 Application integration at electric utilities - System interfaces for distribution management - Part 13: CIM RDF 
Model exchange format for distribution 

IEC 61968-2 Application integration at electric utilities - System interfaces for distribution management - Part 2: Glossary 

IEC 61968-3 Application integration at electric utilities - System interfaces for distribution management - Part 3: Interface 
for network operations 

IEC 61968-4 Application integration at electric utilities - System interfaces for distribution management - Part 4: 
Interfaces for records and asset management 

IEC 61968-8 Application integration at electric utilities - System interfaces for distribution management - Part 8: 
Interfaces for customer operations 

IEC 61968-9 Application integration at electric utilities - System interfaces for distribution management - Part 9: 
Interfaces for meter reading and control 

IEC 61970-1 Energy management system application program interface (EMS-API) - Part 1: Guidelines and general 
requirements 

IEC 61970-2 Energy management system application program interface (EMS-API) - Part 2: Glossary 

IEC 61970-301 Energy management system application program interface (EMS-API) - Part 301: Common Information Model 
(CIM) base 

IEC 61970-401 Energy management system application program interface (EMS-API) - Part 401: Component interface 
specification (CIS) framework 

IEC 61970-453 Energy management system application program interface (EMS-API) - Part 453: CIM based graphics 
exchange 
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IEC 61970-501  Energy management system application program interface (EMS-API) - Part 501: Common Information Model 
Resource Description Framework (CIM RDF) schema 

IEC 62051-1 Electricity metering - Data exchange for meter reading, tariff and load control - Glossary of terms - Part 1: 
Terms related to data exchange with metering equipment using DLMS/COSEM 

IEC 62052-11 Electricity metering equipment (AC) - General requirements, tests and test conditions - Part 11: Metering 
equipment  

IEC 62052-21  Electricity metering equipment (a.c.) - General requirements, tests and test conditions - Part 21: Tariff and 
load control equipment 

IEC 62052-31 Electricity metering equipment (AC) - General requirements, tests and test conditions - Part 31: Product 
safety requirements and tests 

IEC 62053-11 Electricity metering equipment (a.c.) - Particular requirements - Part 11: Electromechanical meters for active 
energy (classes 0,5, 1 and 2) 

IEC 62053-11 Electricity metering equipment (a.c.) - Particular requirements - Part 11: Electromechanical meters for active 
energy (classes 0,5, 1 and 2) 

IEC 62053-21 Electricity metering equipment (a.c.) - Particular requirements - Part 21: Static meters for active energy 
(classes 1 and 2) 

IEC 62053-23 Electricity metering equipment (a.c.) - Particular requirements - Part 23: Static meters for reactive energy 
(classes 2 and 3) 

IEC 62053-31 Electricity metering equipment (a.c.) - Particular requirements - Part 31: Pulse output devices for 
electromechanical and electronic meters (two wires only) 

IEC 62053-52 Electricity metering equipment (AC) - Particular requirements - Part 52: Symbols 

IEC 62053-61 Electricity metering equipment (a.c.) - Particular requirements - Part 61: Power consumption and voltage 
requirements 

IEC 62054-11 Electricity metering (a.c.) - Tariff and load control - Part 11: Particular requirements for electronic ripple 
control receivers 

IEC 62054-21 Electricity metering (a.c.) - Tariff and load control - Part 21: Particular requirements for time switches 
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IEC 62056-21 Electricity metering - Data exchange for meter reading, tariff and load control - Part 21: Direct local data 
exchange 

IEC 62056-31 Electricity metering - Data exchange for meter reading, tariff and load control - Part 31: Use of local area 
networks on twisted pair with carrier signalling 

IEC 62056-4-7 Electricity metering data exchange - The DLMS/COSEM suite - Part 4-7: DLMS/COSEM transport layer for IP 
networks 

IEC 62056-42 Electricity metering - Data exchange for meter reading, tariff and load control - Part 42: Physical layer 
services and procedures for connection-oriented asynchronous data exchange 

IEC 62056-46 Electricity metering - Data exchange for meter reading, tariff and load control - Part 46: Data link layer using 
HDLC protocol 

IEC 62056-53 Electricity metering - Data exchange for meter reading, tariff and load control - Part 53: COSEM application 
layer 

IEC 62056-61 Electricity metering - Data exchange for meter reading, tariff and load control - Part 61: Object identification 
system (OBIS) 

IEC 62056-62 Electricity metering - Data exchange for meter reading, tariff and load control - Part 62: Interface classes 
IEC 62058-11 Electricity metering equipment (AC) - Acceptance inspection - Part 11: General acceptance inspection 

methods 

IEC 62058-21 Electricity metering equipment (AC) - Acceptance inspection - Part 21: Particular requirements for 
electromechanical meters for active energy (classes 0,5, 1 and 2) 

IEC 62059-31-1 Electricity metering equipment - Dependability - Part 31-1: Accelerated reliability testing - Elevated 
temperature and humidity 

IEC 62351-1 Power systems management and associated information exchange - Data and communications security - Part 
1: Communication network and system security - Introduction to security issues 

IEC 62351-3 Power systems management and associated information exchange - Data and communications security - Part 
3: Communication network and system security - Profiles including TCP/IP 

IEC 62351-4 Power systems management and associated information exchange - Data and communications security - Part 
4: Profiles including MMS and derivatives 
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IEC 62351-5 Power systems management and associated information exchange - Data and communications security - Part 
5: Security for IEC 60870-5 and derivatives 

IEC 62351-6 Power systems management and associated information exchange - Data and communications security - Part 
6: Security for IEC 61850 

IEC 62351-7 Power systems management and associated information exchange - Data and communications security - Part 
7: Network and System Management (NSM) data object models 

IEC 62541-1 OPC unified architecture - Part 1: Overview and concepts 

IEC 62541-2 OPC Unified Architecture - Part 2: Security Model 

IEC 62541-3 OPC Unified Architecture - OPC Unified Architecture - Part 3: Address Space Model 

IEC 62541-4 OPC Unified Architecture - OPC Unified Architecture - Part 4: Services 

IEC 62541-5 OPC Unified Architecture - OPC Unified Architecture - Part 5: Information Model 

IEC 62541-6 OPC Unified Architecture - OPC Unified Architecture - Part 6: Mappings 

IEC 62541-7 OPC Unified Architecture - OPC Unified Architecture - Part 7: Profiles 

IEC/TR 61334-1-1 Distribution automation using distribution line carrier systems - Part 1: General considerations - Section 1: 
Distribution automation system architecture 

IEC/TR 61334-1-2 Distribution automation using distribution line carrier systems - Part 1-2: General considerations - Guide for 
specification 

IEC/TR 61334-1-4  Distribution automation using distribution line carrier systems - Part 1: General considerations - Section 4: 
Identification of data transmission parameters concerning medium and low-voltage distribution mains  

IEC/TR 62357-1 Power systems management and associated information exchange - Part 1: Reference architecture 

IEC/TS 61334-5-2 Distribution automation using distribution line carrier systems - Part 5-2: Lower layer profiles - Frequency 
shift keying (FSK) profile 

IEC/TS 61334-5-3 Distribution automation using distribution line carrier systems - Part 5-3: Lower-layer profiles - Spread 
spectrum adaptive wideband (SS-AW) profile 

IEC/TS 61334-5-4 Distribution automation using distribution line carrier systems - Part 5-4: Lower layer profiles - Multi-carrier 
modulation (MCM) profile 
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IEC/TS 61334-5-5 Distribution automation using distribution line carrier systems - Part 5-5: Lower layer profiles - Spread 
spectrum - fast frequency hopping (SS-FFH) profile 

IEC/TS 62351-2  Power systems management and associated information exchange - Data and communications security - 
Part 2: Glossary of terms 

IEEE 1377 IEEE Standard for Utility Industry Metering Communication Protocol Application Layer (End Device Data 
Tables) 

IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems 

IEEE 1701 IEEE Standard for Optical Port Communication Protocol to Complement the Utility Industry End Device Data 
Tables 

IEEE 1815.1 IEEE Standard for Exchanging Information Between Networks Implementing IEC 61850 and IEEE Std 
1815(TM) [Distributed Network Protocol (DNP3)] 

IEEE 1901 IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer 
Specifications 

IEEE 1901.2 IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line Communications for Smart 
Grid Applications 

IEEE 2030 IEEE 2030-2011 IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology 
Operation with the Electric Power System (EPS), End-Use Applications, and Loads 

IEEE 2030.5 IEEE Adoption of Smart Energy Profile 2.0 Application Protocol Standard 

IEEE C37.239 IEEE Standard Common Format for Event Data Exchange (COMFEDE) for Power Systems 

IEEE Std 1815 IEEE Standard for Electric Power Systems Communications -- Distributed Network Protocol (DNP3) 
IETF RFC 6272 Internet Protocols for the Smart Grid 

ISO/IEC 15067-3 Information technology - Home Electronic Systems (HEC) application model - Part 3: Model of a demand-
response energy management system for HES 

ITU-T G.9902 G.9902 (10/12) Narrowband orthogonal frequency division multiplexing power line communication 
transceivers for ITU-T G.hnem networks 

ITU-T G.9903 Narrowband orthogonal frequency division multiplexing power line communication transceivers for G3-PLC 
networks   
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ITU-T G.9904 G.9904 (10/12) Narrowband orthogonal frequency division multiplexing power line communication 
transceivers for PRIME networks 

ITU-T G.9960 Unified high-speed wire-line based home networking transceivers - Foundation   

ITU-T G.9972 G.9972 : Coexistence mechanism for wireline home networking transceivers 

NEMA SG-AMI 1 Requirements for Smart Meter Upgradeability 
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Appendix 1.A.3 Primer on the standard-setting process  

The rules and procedures specific to the organizations that develop standards have a bearing on 

whether standards are at risk of being endogenously determined. Technology endorsement by a 

standard has economic value and firms with a large smart grid patent portfolio may seek to 

influence the standard-setting process to strategically position their inventions. This may in turn 

affect their level of inventive activity after standards are introduced. Below, we argue that the 

likelihood that standards and patents are co-determined in the context of our study is low 

because the institutional rules and procedures for developing and adopting standards at the 

International Electrotechnical Commission (IEC) do not allow direct participation by firms. For 

firms to influence technology selection during the drafting, comment-and-response and voting 

process at the IEC - where most of standards in our sample originated - firms would need to 

successfully influence the majority of IEC member country organizations.  Furthermore, our 

identification of the causal effect of standards on patenting uses variation in country-level 

accreditations. For standards to be endogenously determined, firms would need to successfully 

control the outcome of similar drafting, comment-and-response and voting processes at the 

country-level in all the national markets where they operate. We believe this is highly unlikely. 

Below we describe the standard-setting process at the IEC as an example. The process in 

European standard-setting organizations – ETSI/CEN/CENELEC – that also developed some smart 

grid standards is similar.  

Standard-setting at the IEC  

The International Electrotechnical Commission is a non-governmental organization composed of 

62 full members and 26 associate members22. Individuals and firms can only influence the 

standard-setting process through national committees or liaison organizations. National 

committees coordinate the technical inputs of stakeholders at the national-level and represent 

the interests of their country at the IEC. Typically, they are housed in national standards bodies 

that are part of national governmental structures or are mandated by government. For example, 

 
22 https://www.iec.ch/national-committees, consulted September 9th 2022 

https://www.iec.ch/national-committees
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the United States National Committee23 of the IEC is part of the American National Standards 

Institute (ANSI) and is composed of more than 4,000 members, many from industry. Technical 

experts from industry, government, academia, and consumer or labor groups may also 

participate in the work of technical committees as liaison organizations. To be eligible, liaison 

organizations must have a sufficient degree of representativity, such as industry consortia, 

professional associations or scientific societies24. Examples of organizations that have a 

memorandum of understanding with the IEC to participate as liaisons include the European 

Network of Transmission System Operations, the International Conference on Electricity 

Distribution and the IEEE Power & Energy Society. This implies that individual firms cannot 

independently participate, and instead must work through a liaison organization to provide 

technical inputs to working groups that draft standards.  

Overall, the standard development process follows these stages: the proposal stage, the 

preparatory stage, the committee stage, the enquiry stage, the approval stage, and the 

publication stage25.  These stages aim at building consensus. Below we provide a short account 

of this process, with a view to clarifying how firms may provide input, as this is the main concern 

for identification in our study (e.g., this account is not intended to be exhaustive).  

Various actors can propose a new standard project: a national committee, the secretariat of a 

technical committee or subcommittee, or a category A liaison. However, only participating 

members – this is, the national committees of full member countries – can vote to approve a new 

work item, and ultimately decide which standards are developed. To move forward, a work item 

must receive the approval of two-thirds of the country members participating in the relevant 

technical committee. Therefore, industry consortia and other stakeholders that participate as 

liaisons are limited to proposing new work items and contributing technical inputs during the 

drafting of standards. Category A liaisons, which have the highest level of participation, must be 

approved by two-thirds of IEC members to engage in the activities of a technical committee and 

are appointed for a period of two years. To be eligible, they must be not-for-profit legal entities 

 
23 https://www.ansi.org/usnc-iec/usnc-overview, consulted September 9th 2022 
24 https://www.iec.ch/global-partnerships, consulted September 9th 2022 
25 https://www.iso.org/stages-and-resources-for-standards-development.html, consulted on 9 September 2022 

https://www.ansi.org/usnc-iec/usnc-overview
https://www.iec.ch/global-partnerships
https://www.iso.org/stages-and-resources-for-standards-development.html
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with a broad regional or international membership base. In addition, they must demonstrate that 

they have relevant technical expertise, sufficient representativity in their area, and show 

commitment to consensus decision-making in their internal rules and processes.  

Once a work item is proposed, the project for a new standard moves to the preparatory stage. 

Licensing, patenting and conformance assessment issues are discussed at this stage. Participating 

national committees nominate technical expects to contribute to the working group that will 

draft the standard. Once a draft standard is ready, it is circulated for comment and subject to 

voting by national committees that are members of the parent technical committee. This stage 

is optional as the draft standard can also move directly to the enquiry stage. This opens up the 

draft standard to commenting by member countries and stakeholders for a 12-week period and 

concludes with a vote by all IEC country members. For a draft standard to be released, it must 

receive the approval of two thirds of the members of its parent technical committee and no more 

than one fourth of negative votes by all members. If technical changes are requested, the 

technical committee revises the text of the standard and the final draft international standard is 

subject to another vote before being published.  Finally, after the end of the voting period, the 

technical committee must prepare a report in which it responds to all comments received. 

Throughout this process, representatives from the private sector can therefore be appointed as 

technical experts either by national committees or liaisons to contribute inputs and participate 

in the work of a working group, committee or sub-committee, or as observers who may comment 

on the draft standard.  Voting, however, remains the prerogative of national committees26.  

Standard-setting in national-level standardization organizations  

Standards can originate in international standard setting organization (SSOs), regional SSOs, 

national-level SSOs and smaller/less formal SSOs. It is often the case that standards developed 

by a national-level standardization body are later adopted by an international SSO and vice-versa 

(Baron and Spulber, 2018, p.489). To identify smart grid standards, we use lists that include, for 

the most part, international standards and find all associated country-level accreditations. When 

 
26 https://storage-iecwebsite-prd-iec-ch.s3.eu-west-1.amazonaws.com/2021-07/isoiecdir1%7Bed17.0%7Den.pdf, 
consulted on 9 September 2022 

https://storage-iecwebsite-prd-iec-ch.s3.eu-west-1.amazonaws.com/2021-07/isoiecdir1%7Bed17.0%7Den.pdf
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national-level standardization bodies adopt an international standard, they must indicate the 

level of correspondence. They may endorse the standard or reprint it with or without identical 

translation, in which case the country-level standard is considered identical to the original 

international standard. Country standardization bodies may also republish the standard with 

technical deviations. When those technical deviations are clearly identified and explained, the 

national standard is considered a modified version of the international standard. When those 

technical deviations are not clearly identified, it is labeled as not equivalent. National 

standardization bodies must identify the degree of correspondence with the international 

standard when they release a standard document. In our sample, the vast majority of country-

level accreditations are declared identical.  

National standardization bodies have consensus-building processes that mirror those of 

international standard-setting organizations (SSOs). For example, the Standards Council of 

Canada (SCC) has a parallel process in which it releases a notice of intent when an international 

SSO makes a decision to develop a new standard. During the drafting process, the SCC provides 

inputs to international standard development27. Once the draft international standard is 

circulated, the SCC launches a two-month public review, providing an opportunity to feedback 

comments from Canadian stakeholders to the international standard-setting process. Once the 

final draft international standard is circulated, the SCC might develop Canadian technical 

deviations, where applicable, before releasing the standard domestically. Adoption of an 

international standard at the national level therefore accomplishes various functions. Through 

this multi-layered process of consensus-building, the standard diffuses geographically (Baron and 

Spulber, 2018, p.492). This may contribute to giving it standing and showing widespread 

acceptability of the endorsed technology. Furthermore, local adoption enhances accessibility 

through the publication of the standard document in the reference library of the domestic SSO, 

often translated into local language, and sometimes through a commitment by the domestic SSO 

to oversee conformance testing.  

 
27 https://www.scc.ca/sites/default/files/publications/SIRB_RG_Adoptions_v0.1_2017-04-24.pdf, consulted on 9 
September 2022 

https://www.scc.ca/sites/default/files/publications/SIRB_RG_Adoptions_v0.1_2017-04-24.pdf
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Table 1.6 Geographical diffusion of sample standards 
 
Number of country 
accreditations 

Frequency Number of country accreditations Frequency 

1 24 8 5 

2 11 9 3 
3 16 10 16 

4 17 11 53 

5 13 12 18 

6 8 13 1 

7 5 14 6 

 

Country-level variation in standard counts in our sample come from two sources. First, there is 

differential timing of adoption of the same standard across countries. This is coherent with the 

overall trend that Baron and Spulber observe Searle Center’s data on technology standards 

(2018). They observe that while it is typical for national-level SSOs to adopt a standard within 18 

months of the release of an international standard, it may take up to 10 years for some countries 

to adopt (Baron and Spulber, 2018, p.490). Cross-country variation in standard counts in our 

sample also come from countries adopting different combinations of standards.  There is sizeable 

variation in the amplitude of geographical diffusion across our sample of standards, with 24 

standards being harmonized only in one of our sample countries, and 6 standards being 

harmonized in 14 of our 19 sample countries. There is a group of 11 mostly European countries 

that tend to adopt standards as a block. Table 1.6 shows descriptive statistics on geographical 

diffusion. The column number of country accreditations shows the number of countries that have 

adopted a given standard, and the column frequency indicates the number of standards with a 

given level of geographic diffusion.
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Appendix 1.A.4  Large smart grid innovators 

Firms that innovate in the smart grid space are diverse in terms of age, size, and background. The 

group of biggest smart grid innovators is comprised of large, diversified conglomerates, auto 

makers, electronics companies, and large electricity sector players.   

Table 1.7 List of largest smart grid innovators 

Panasonic 409 International Business Machines 175 

Mitsubishi 404 Toyota 158 

General Electric 393 Kyocera Corporation 155 
Toshiba 372 Schneider Electric 151 

Siemens 354 Samsung 145 
Hitachi 313 Sony 129 

Asea Brown Boveri 283 Itron 117 

Chugoku Electric Power 197 Korea Electric Power Corporation 113 
LG 181 LS Electric (LSIS) 104 

Nippon Electric Corporation 179 Fujitsu 102 
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Appendix 1.A.5 Counting standard parts  
 
Standard documents are composed of multiple parts, which are added overtime as new 

technological challenges surface. Because of this, in many instances not all parts of a standard 

are directly relevant to smart grids. Also, the year of the initial release of a standard may not 

accurately represent when specific attempts at coordinating over smart grid interoperability 

occurred since many of the parts that concern smart grids were added subsequently. Since we 

are interested in only including parts that are relevant to the smart grid, we count standards at 

the part level. This also allows us to capture the years in which standard parts concerning smart 

grids were adopted to more accurately measure when coordination efforts in this specific area 

occurred.  

To illustrate this, standard IEC 61400: Wind energy generation systems is described below. The 

table below shows examples of different components that are part of this standard, with the 

years these new parts were first released by the international standard-setting body. In this 

example, we kept in our sample of standards only the parts 25-1 to 25-6 which are directly 

relevant to smart grids.  The variation we leverage in our regression analysis comes from 

differential timing of adoption of standard parts at the country-level. For various reasons, 

countries choose to adopt international standards at different times, with delays between the 

international release and country adoption that range from zero to 10 years across various 

technologies (Baron and Spulber, 2018, p.490).   We observe similar variation in our sample of 

smart grid standards. For example, Germany accredited standard part IEC 61400-25-2 in 2006 

whereas Switzerland accredited it in 2007. 
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Table 1.8 Example of wind turbines standard 
Standard part First release 

Part 1: Design Requirements 1994 

Part 2: Small wind turbines 1996 

Part 3-1: Design requirements for fixed offshore wind turbines 2019 

… … 
Part 25-1 Communications for monitoring and control of wind power plants – 
Overall description of principles and models 

2006 

Part 25-2 Communications for monitoring and control of wind power plants - 
Information models 

2006 

Part 25-3 Communications for monitoring and control of wind power plants - 
Information exchange models 

2006 

Part 25-4 Communications for monitoring and control of wind power plants – 
Mapping to communication profile 

2008 

Part 25-5 Communications for monitoring and control of wind power plants - 
Compliance testing 

2006 

Part 25-6 Communications for monitoring and control of wind power plants – 
Logical node classes and data classes for condition monitoring 

2010 
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Appendix 1.B Data Construction  

Appendix 1.B.1 Definition of smart grids technologies included in sample, policy weights and 
knowledge stocks  
 
Table 1.9. Patent classes included in smart grid sample  

Technology Patent class from the Cooperative Patent Classification 
Systems integration 
and efficiency 

Y02E 40/70: Smart grids as climate change mitigation technology in the 
energy generation sector. 
 
Y04S 10/00: Systems supporting electrical power generation, transmission or 
distribution (and all its subclasses: 10/12, 10/123, 10/126, 10/14, 10/16, 
10/18, 10/20, 10/22, 10/30, 10/40, 10/50, 10/52) 

Smart grids in 
buildings 

Y02B 70/30: Systems integrating technologies related to power network 
operation and communication or information technologies for improving the 
carbon footprint of the management of residential or tertiary loads, i.e., 
smart grids as climate change mitigation technology in the buildings 
sector(…) (and all of its subclasses: 70/3225, 70/34) 
 
Y02B 90/20: Smart grids as enabling technology in the buildings sector.(This 
category overlaps with Y04 S 20*) 

ICTs applications to 
smart grids  

Y04S 40/00: Systems for electrical power generation, transmission, 
distribution or end-user application management characterised by the use of 
communication or information technologies, or communication or 
information technology specific aspects supporting them (and all of its 
subclasses: 40/12, 40/121, 40/124, 40/126, 40/128, 20/18, 40/20).  
 
Y04S 50/00: Market activities related to the operation of systems integrating 
technologies related to power network operation and communication or 
information technologies (and all of its subclasses: 50/10, 50/12, 50/14, 
60/16). 

End-user applications Y04S 20/00: Systems supporting the management or operation of end-user 
stationary applications, including also the last stages of power distribution 
and the control, monitoring or operation of management systems at the 
local level (and all of its subclasses: 20/12, 20/14, 20/20, 20/221, 20/222, 
20/242, 20/244, 20/246, 20/248, 20/30).   

Note: these definitions are from the European Patent Office’s Cooperative Patent Classification. A patent can be 
tagged under multiple categories. The full definitions of the CPC scheme may be found here: 
https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table 
 
 
 
 
 
 
 
 
 

https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table
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Patent classes used when building policy weights 

To identify each firm’s relevant markets, we consider its granted patents in a broader set of 

relevant patent classes. Smart grids is a new sector of technology with little patenting activity in 

the pre-sample period. Considering only smart grid inventions would not allow us to build policy 

weights from pre-sample data. For this reason, we consider related technologies because they 

are likely to be marketed the same markets as firms’ smart grid inventions. 

Table 1.10 Patent classes used for policy weights 
Technology field Corresponding patent classes 
Electricity Cooperative patent classification (CPC): H (and all subclasses) 

Green innovation Cooperative patent classification (CPC): Y (and all its subclasses with the 
exception of Y10) 

Information and 
communication 
technologies 

J-tag, taxonomy of ICT technologies based on the International Patent 
Classification (IPC). Select patent classes28: G06, G01S, G02F, G08B, G08G, 
G09G, G10L, G11B, G11C, H01P, H01Q, H01P, H01Q, H03B, H03C, H03D, H03F, 
H03G, H03H, H03J, H03K, H03L, H03M, H04H, H04J, H04K, H04L, H04N, H04Q, 
H04R, H04S, H04W, G01V3, G01V8, G02B6, G09B5, G09B7, G09B9, H01L2, 
H01L3, H01L4, H01S5, H04B1, H04B5, H04B7, H04M1, H04M3, B82Y10, 
G01V15, H01B11, H04M15, H04M17, G07F7/08, G07F7/09, G07F7/10, 
G07F7/11, G07F7/12, B81B7/02, G07G 1/12, G07G 1/14. 

Other29 B60: Vehicles in general (and all its subclasses) 
F02C: Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel 
supply in air-breathing jet-propulsion plants (and all its subclasses) 
F02B: Internal-combustion piston engines; combustion engines in general 
(and all its subclasses) 
F16D: Couplings for transmitting rotation; clutches; brakes (and all its 
subclasses) 
F25B: Refrigeration machines, plants or systems; combined heating and 
refrigeration systems; heat pump systems (and all its subclasses) 
F25D: Refrigerators; cold rooms; ice-boxes; cooling or freezing apparatus not 
otherwise provided for (and all its subclasses) 
G05: Controlling; regulating (and all its subclasses) 
F21: Lighting (and all its subclasses) 
B62D: Motor vehicles; Trailers (and all its subclasses) 

 
 
 

 
28 The full taxonomy is available in Inaba, Takashi and Mariagrazia Squicciarini (2017). From the J-tax taxonomy, we 
selected technology areas that have applications in the electricity sector. 
29 These were added to account for additional patent classes in which the largest smart grid innovators have 
experience. We used data on all the patents held by the 30 largest smart grid innovators and collated the most 
frequent patent classes that were not already covered by the three previous categories (electricity, green innovation 
and ICTs).  
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Table 1.11 Patent classes used to build knowledge stocks 

Knowledge stocks  Corresponding patent classes  
Smart grids Cooperative patent classification (CPC): Y02B 70/30, Y02B 90/20, 

Y02E 40/70, Y04S 10, Y04S 20, Y04S 40, Y04S 50 (and all their 
subclasses). 

Green technology Cooperative patent classification (CPC): Y02, Y04 (and all their 
subclasses, excluding smart grid classes above) 

Electricity  Cooperative patent classification (CPC): H, F21, F02C, F2B 

Information and communication 
technologies 

International Patent Classification (IPC): G06, G01S, G02F, G08B, 
G08G, G09G, G10L, G11B, G11C, H01P, H01Q, H01P, H01Q, 
H03B, H03C, H03D, H03F, H03G, H03H, H03J, H03K, H03L, H03M, 
H04H, H04J, H04K, H04L, H04N, H04Q, H04R, H04S, H04W, 
G01V3, G01V8, G02B6, G09B5, G09B7, G09B9, H01L2, H01L3, 
H01L4, H01S5, H04B1, H04B5, H04B7, H04M1, H04M3, B82Y10, 
G01V15, H01B11, H04M15, H04M17, G07F7/08, G07F7/09, 
G07F7/10, G07F7/11, G07F7/12, B81B7/02, G07G 1/12, G07G 
1/14 
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Appendix 1.B.2 Building knowledge stocks  

Internal knowledge stocks 

To obtain internal knowledge stocks for the sample firms, we collect patents for these firms going 

back to 1977.  As smart grids technology may draw on multiple disciplines, we construct four 

knowledge stocks: smart grids, renewable energy, electricity generation, and information 

technology (IT). 30 For each of these areas of technology, we aggregate patent filings from each 

year into an internal stock of knowledge for each firm. These stocks represent the firm’s past 

patenting history and are the internal knowledge upon which future innovation can build.  

Defining d as the depreciation rate of knowledge and Pijt as the successful patent applications in 

technology j filed by firm i in year t, the internal knowledge stock, KINT is: 

𝐾𝑖𝑗𝑡
𝐼𝑁𝑇 = (1 − 𝛿)𝐾𝑖𝑗𝑡−1

𝐼𝑁𝑇 + 𝑃𝑖𝑗𝑡 

 

We use a 15% depreciation rate (𝛿) as our base case.  When taking logs, we add one to all 

knowledge stocks and include four dummy variables indicating when each knowledge stock 

equals zero. 

External knowledge stocks 

External knowledge stocks capture the potential for spillovers from innovations external to the 

firm. Following Aghion et al. (2016), the external spillovers to which each firm is exposed depends 

on the countries where its inventors are located.  Multinational companies have scientists 

working in multiple locations in multiple countries.  The inventor address on the patent reveals 

where the inventive activity took place. Using all of a firm’s patents in our relevant technology 

categories, we calculate weights for each country using a time-invariant share of the number of 

inventors on firm i’s patents located in country c, 𝑤𝑖𝑐
𝐾.  This gives us the stock of external 

knowledge: 

 
30 Given the interdisciplinary nature of smart grid innovation, there is overlap between these categories. Patents 
are typically tagged under several different CPC classes, and may appear in more than one of our 4 categories.  In 
these cases, we count the patent as an invention in each of the categories.   
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𝐾𝑖𝑗𝑡
𝐸𝑋𝑇 = ∑ 𝑤𝑖𝑐

𝐾𝐾𝑖𝑐𝑗𝑡
𝐸𝑋𝑇

𝑐

 , 

where  

𝐾𝑖𝑐𝑗𝑡
𝐸𝑋𝑇 = (1 − 𝛿)𝐾𝑖𝑐𝑗𝑡−1

𝐸𝑋𝑇 + 𝑃𝑐𝑗𝑡 − 𝑃𝑖𝑐𝑗𝑡 

 

represents a stock of knowledge that includes patents granted to other inventors in country c at 

time t.  Thus, the external knowledge stock assumes that firms are exposed to spillovers in each 

of the countries where they have inventive activity, and places the greatest weight on spillovers 

from countries where they do most of their inventive activity. To build these stocks, we 

considered all the countries in which our sample firms have inventive activities and not just our 

19 sample countries.  

Note that Pcjt includes all patents granted in the relevant patent classes for technology j in country 

c at time t, not just those assigned to the firms in our sample.  This includes patents that may be 

assigned to public sector organizations such as universities or government laboratories.  We 

include spillovers from multiple technologies since smart grid innovations may arise in multiple 

sectors.  This set-up allows for spillovers from all innovations in relevant fields.  For example, 

spillovers from relevant IT knowledge need not only come from IT firms that actively patent in 

smart grids. Our external knowledge stock allows for this possibility.
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Appendix 1.B.3 Control variables 

Share of electricity generation from renewable sources. Greater renewables integration may 

further exacerbate grid pressures and generate demand for smart grid technologies, thereby 

inducing innovation. This variable also proxies for policies that encourage renewables adoption.  

The deployment of renewable energy technologies across the markets we study would not have 

happened without policy. OECD data on the stringency of green energy policies such as feed-in-

tariffs, emissions taxes and emissions trading schemes are unavailable for the years 2013-2016. 

We therefore cannot include those variables in our main model. Given this, we use data from the 

International Energy Agency’s World Energy Balances Highlights on electricity generation from 

renewable sources as a share of total electricity generation. This includes energy generated from 

hydro, geothermal, solar, wind, tide/wave/ocean, biofuels and renewable waste.  

Growth in electricity consumption. We include this variable to also control for grid pressures that 

are potentially exacerbated by growth in the demand for electricity. We use net electricity 

consumption in billion kilowatt-hours from the Energy Information Administration’s World 

Statistics and compute the yearly percent change in consumption. 

Household electricity prices. Changes in electricity prices may induce innovation through their 

effect on the demand for end-user smart grid technologies. These technologies can help utility 

consumers manage their electricity consumption. Demand for these products may grow with 

electricity prices. We use household electricity price data from the International Energy Agency, 

that we deflated and adjusted for purchasing power parity. Prices are in 2015 US dollars.   

GDP per capita. We also control for GDP per capita because the income where a firm operates 

also affects demand for its products and its level of investment in research and development 

activities.  Gross domestic product and population data used to compute GDP per capita are from 

the Organisation for Economic Co-operation and Development. We deflated and adjusted for 

purchasing power parity. Prices are in 2015 US dollars.  

Government incentives to R&D in grid-related technologies. We control for other public policies 

that target innovation in grid technologies. We use data on Energy Technology RD&D Budgets 
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from the International Energy Agency, which tracks government spending by energy technologies 

at the country-level. We select technologies at the two-digit level because more granular 

categories have many missing values. We select the following categories as being relevant to grid 

modernization technologies: 62 Electricity transmission and distribution, 63 Energy storage, 69 

Unallocated other power and storage techs, and 71 Energy system analysis. We interpolate 

missing values. We adjust for power purchasing parity and inflation. Values are expressed in 2015 

US dollars.   

Government incentives to R&D in renewable energy technologies. We control for other public 

policies that target innovation in renewable energy technologies as those may affect innovation 

in smart grids due to spillovers or tradeoffs. We use data on Energy Technology RD&D Budgets 

from the International Energy Agency. For this variable we use spending in technology Group 3: 

Renewable energy sources. We interpolate missing values and adjust for power purchasing parity 

and inflation. Values are expressed in 2015 US dollars.
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Appendix 1.B.4  Cleaning firm names and retrieving their knowledge stocks 

We assume that internal knowledge can be accessed by all inventors within the same firm, 

including within multinational corporations whose inventors are located in different countries. A 

firm’s internal knowledge stocks reflect its accumulated experience innovating in relevant areas, 

upon which all its inventors can further build when conducting R&D. Patents proxy for firms’ 

accumulated knowledge. Assuming that knowledge stocks are shared across a firm’s inventors 

requires counting all the patents held by the firms’ various geographic branches, divisions, 

licensing units, etc.  

However, identifying those patents is a challenge in the PATSTAT database. The same firm can 

be associated with more than one person identifier because there is no centralized system to 

track person identifiers for patents filed in various national patent offices, by different branches 

or even the same branches but overtime because assignees are not required to file under a 

standardized name or identifier every time they file a new patent application. The name listed in 

the database is what appears on the patent at the time of its publication (Arora et al., 2021). The 

same assignee may be associated with different names for various reasons: a change in the name 

of the company overtime (e.g., Minnesota Mining and Manufacturing and 3M), listing a 

subsidiary rather than the parent company (e.g., Google and Alphabet), listing a geographic 

branch, a licensing unit or a specific division instead of the parent company (Arora et al., 2021). 

Different spellings and typos also occur. Examples include Alcatel USA and Alcatel Canada; Philips 

electronics North America corporation and Philips lighting North America corporation, ABB 

Research and ABB Patent; GM and General Motors; Siemen power transmission & distribution 

(sic) and Siemens power transmission and distribution. We consider these to be the same firms.  

To overcome these challenges, we cleaned firm names using a combination of keyword matching 

and manual verification. To select and clean our sample of firms, we use the variables psn_name 

and psn_id in PATSTAT. These names and identifiers have previously been partially cleaned using 

the University of Leuven harmonization procedure31. We use the variable psn_sector to select 

 
31 This initiative harmonizes person identifiers using manual and automated cleaning. Details about this 

harmonization procedure may be found in the PATSTAT Data Catalogue 
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assignees that are companies. For assignees whose psn_sector is unknown, we first keep only 

those whose name is different from the name of the inventor to filter out individuals. We then 

conduct further manual cleaning to remove any remaining individuals, universities, non-profits, 

etc.  

We then group the various assignee names that belong to the same company. We assume that 

different subsidiaries, country offices, and divisions of a same parent company share knowledge 

stocks and therefore assign them a common identifier. To do so we do keyword matching after 

removing words that commonly occur in our sample such as energy, automation, 

superconductor, electric, windpower, etc. We also include on the stop list mentions of 

companies’ legal entity types such as ltd, limited, llc, s.p.a., ghmb, holding, inc, corp, and other 

frequently occurring geographic and division designations such as Korea, China, America, 

national, regional, global, corporate, technology, innovation, etc. We manually verify each match 

and confirm ambiguous ones using online searches.  

To collect data on firms’ internal knowledge stocks, the two challenges we seek to overcome 

when cleaning firm names are 1) including irrelevant company names and therefore irrelevant 

knowledge stocks, and 2) omitting relevant company names and failing to include relevant 

knowledge stocks. To overcome this challenge, we further search for person identifiers that do 

not appear in our sample of smart grid patents. We do this to ensure that we do not overlook 

assignees that belong to the parent companies in our sample and have patents in CPC classes 

relevant for building the knowledge stocks variables and policy weights and would be missing 

from the sample if we only use applicant identifiers related to smart grid patents. We use 

wildcards to search the PATSTAT database for the brand name of the largest 325 companies in 

our sample. We limit our search to companies that have 5 or more smart grids patents because 

the likelihood that small firms have multiple identifiers is low. These searches sometimes return 

dozens and even hundreds of identifiers for large conglomerates such as Mitsubishi. Japanese 

and Korean conglomerates typically have a more decentralized corporate governance structure 

 
((https://documents.epo.org/projects/babylon/eponot.nsf/0/9440099DEF5C9067C125884600546C48/$File/patstat_d

ata_catalog_global_5_19_en.pdf, p.295-297) and in WIPO documentation on name standardization efforts 

(https://www.wipo.int/edocs/mdocs/classifications/en/wipo_ip_cws_ns_ge_19/wipo_ip_cws_ns_part_1_callaert.pdf)  

https://documents.epo.org/projects/babylon/eponot.nsf/0/9440099DEF5C9067C125884600546C48/$File/patstat_data_catalog_global_5_19_en.pdf
https://documents.epo.org/projects/babylon/eponot.nsf/0/9440099DEF5C9067C125884600546C48/$File/patstat_data_catalog_global_5_19_en.pdf
https://www.wipo.int/edocs/mdocs/classifications/en/wipo_ip_cws_ns_ge_19/wipo_ip_cws_ns_part_1_callaert.pdf
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than European and North American conglomerates. For example, the different divisions of 

Mitsubishi operate as independent legal entities. For these, we further clean the search results 

to include only the ones containing keyword mentioned in the original sample of smart grid 

innovators. For example, we include Mitsubishi electric, Mitsubishi heavy industries and 

Mitsubishi semiconductors, but exclude patents by Mitsubishi metals and Mitsubishi materials 

from Mitsubishi’s internal knowledge stocks.
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Appendix 1.B.5 Assigning home country to firms  

We need to assign a home country to each firm in our sample for two reasons: 1) our sample 

consists of firms that own granted patents in 19 OECD countries and whose home country is also 

in-sample, and 2) in robustness check 2.1, we also use information on firms’ home countries to 

assign policy weights to new firms for which there is no pre-sample patents. To assign a country 

to a firm, we use information on the country of the applicant for the patents associated with that 

firm.  We consider all the patents we collected in the period 1965-2020.  These include patents 

in the cooperative patent classification sub-classes H (electricity), Y (environmental innovation), 

B60, F02C, F02B, F16D, F25B, F25D, G05, F21, B62D, and patents in the J-tag (ICTs) of the 

International Patent Classification. Fewer than a quarter of firms have more than one assignee 

country listed on their patents. For these, we use the country most frequently mentioned. In the 

case of a tie or when the applicant country is missing, we use information about priority patents 

to infer the missing values. We assume that the country where the firms’ priority patents are 

filed is the home country.
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Appendix 1.B.6 Firms in sample countries  

We use countries where firms obtained patents as an indication of where their markets are 

located. Applying for patents is a costly process and it is reasonable to expect that firms only file 

in countries where they intent to sell their products (Aghion et al., 2016). When considering firms’ 

markets, we are limited to 19 OECD countries for which we have complete data for our 

explanatory variables. However, many firms operate in markets beyond these 19 countries and 

might therefore be influenced by economic and policy conditions in markets for which we do not 

have data. To avoid spurious associations, it is important that we only include firms that have 

high exposure to explanatory variables in our sample countries and are therefore less likely to be 

influenced by conditions in out-of-sample countries.  

Given this, we built the policy weights using information on all countries where firms have 

granted patents in relevant patent classes. In our main specification, we use the following 

Cooperative Patent Classification sub-classes: H (electricity), Y (environmental innovation), B60, 

F02C, F02B, F16D, F25B, F25D, G05, F21, B62D, and the J-tag (ICTs) of the International Patent 

Classification. To ensure sufficient exposure to the policies included in the explanatory variables, 

in the sample we only include firms located in these 19 countries.  With this strategy, the sample 

is composed of firms who conduct a large share of their business in the 19 countries for which 

we have complete policy data. Using this strategy, 90% of the sample firms have at least 93% of 

their granted patents in those 19 countries. Table 1.12 shows further descriptive statistics about 

the coverage of the policy weights.  

 
Table 1.12 Market coverage of sample countries for sample firms 

Percentile Sum of weights Percentile Sum of Weights 

1% 0.5865056 75% 0.987733 
5% 0.6550884 90% 0.9896584   
10% 0.935672   95% 0.9946694 
25% 0.9611475 99% 1 
50% 0.9764343     

Min: 0.3174534 Mean: 0.953985 Max: 1 
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Appendix 1.B.7 Assigning country to patent family  

To build external knowledge stocks, we assign countries to patents. To identify where a patent 

originated, we use information on the location of its inventor(s). This implies that what matters 

for invention are spillover in the countries where the firm’s R&D activities take place. However, 

the person country is often missing for inventors in PATSTAT (for methods to infer missing values, 

see: Pasimeni, 2019; Rassenfosse and Seliger, 2021). To infer those missing values, we use the 

following strategy:   

- For patents that always have inventor country available, but for which this information is 

inconsistent within the patent family, we assign the inventor country that is most 

frequently listed. When there are ties, we use information contained in the most recent 

publication of the patent family.  

- For patents that are sometimes missing inventor country data, we use the inventor 

country listed in the publication that contains complete information.  

- When inventor information is always incomplete, we retrieve inventor country 

information from other patents that have the same inventor(s). This assumes that 

inventors are not mobile. When there are multiple countries, we assign the most 

frequently listed on other patents.  

- In the case of patents for which we cannot infer inventor country information using the 

steps above, we assign the country of the applicant. 
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Appendix 1.C Robustness checks 
Appendix 1.C.1 Full results 
Table 1.13 Regression results from Poisson model (full results) 

Standards -0.045*** 
  (0.012) 
RD&D smart grids 0.094 
  (0.064) 
RD&D renewables -0.198** 
  (0.080) 
Int. knowledge stocks - smart grids 0.938*** 
  (0.041) 
Int. knowledge stocks - green tech 0.130*** 
  (0.033) 
Int. knowledge stocks - electricity 0.261*** 
  (0.034) 
Int. knowledge stocks - ICTs -0.122*** 
  (0.030) 
Ext. knowledge stocks - smart grids 0.646*** 
  (0.172) 
Ext. knowledge stocks - green tech -0.538*** 
  (0.156) 
Ext. knowledge stocks - electricity -0.268 
  (0.170) 
Ext. knowledge stocks - ICTs 0.216 
  (0.163) 
Renewables share 1.330* 
  (0.757) 
Elect. consumption growth -0.001 
  (0.028) 
Household elect. prices -0.266 
  (0.436) 
GDP per capita -1.267** 
  (0.578) 
New firm -0.036 
  (0.095) 
Average patents/year in pre-sample 0.000 
  (0.000) 
Zero stock - smart grids 0.785*** 
  (0.075) 
Zero stock - green tech 0.053 
  (0.091) 
Zero stock - electricity 0.734*** 
  (0.077) 
Zero stock - ICTs 0.364*** 
  (0.074) 
Marginal effect, standards -0.0781*** 
  (0.021) 
Observations 30,628 
Log-likelihood -84109 

*** p<0.01, ** p<0.05, * p<0.1   
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We verify that our results are robust to making different research decisions and assumptions 

concerning 1) the home markets of firms with no pre-sample patent data, 2) the patent classes 

used to build the policy weights, 3) the rate at which knowledge stocks depreciate,  4) GDP 

weighting to account for market size in the policy weights, 5) the number of lagged periods it 

takes for standards to have an effect on patents, and 6) the choice of measure for the standards 

variable. We find that our results are robust to making these different research decisions.  

The robustness checks presented below all use our main specification: an unbalanced zero-

inflated Poisson model, with the average pre-sample mean of patents, a dummy variable that 

identifies firms with no pre-sample data, and year dummies.  

Appendix 1.C.2 Policy weights, assumptions for new firms 

We constructed policy weights using information on the countries where firms obtained patents 

during the pre-sample period.  Applying for patents is costly, and firms seek intellectual property 

protection only in markets where they intend to sell their products (Aghion et al., 2016).  We use 

this information as an indication of where their relevant markets are located. Because smart grids 

are an emerging area of technology with few patents in the pre-sample period, we use firms’ 

patents in green innovation, electricity, and information technologies more broadly to construct 

those weights. It is also a feature of this sector that several firms are too new to have patents 

prior to 2000. For these firms, in the main specification we weight their exposure to international 

markets using the average market share of all other companies from the same home country for 

which we have pre-sample data. In this robustness check, we instead assume that those firms 

conduct all their business in their home country, and therefore, that only the policies and 

economic conditions in their home country are relevant. In other words, we assign a weight of 

one to these companies’ home country. Table 1.14 shows results for this robustness check. We 

lose significance on the standards and the renewables share variables at the extensive margin, 

and the smart grid external knowledge stocks at the intensive margin. Other key results remain 

unchanged with coefficients of similar magnitude and significance.  
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Table 1.15 shows results for this robustness checks for large and small firms. As noted in the text, 

assuming that firms without any pre-sample data only operate domestically is more likely to hold 

for small firms. In this table, the key finding that the negative effect of standards is driven by large 

firms and that small firms are more responsive to government R&D support remains unchanged. 

However, government R&D support to smart grids has the effect of reducing the inventive 

activities of large firms at the extensive margin. Some of the results for the external knowledge 

stocks are also sensitive to assigning these different policy weights to new firms, as this 

robustness check changes firms’ exposure to these variables. For small firms, we lose significance 

for the green and electricity external knowledge stocks at the intensive margin, but external 

smart grids stocks matter at both margins for these firms.  For these firms, higher renewables 

share now dampen patenting at the extensive margin rather than the intensive margin. For large 

firm, external knowledge stocks in electricity now encourage entry, but external smart grids 

stocks do not. Other key results remain unchanged.
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Table 1.14 Alternative weights for firms with no pre-sample patents – main model 

Standards -0.022*** 

  (0.008) 

RD&D smart grid 0.019 

  (0.027) 

RD&D renewables -0.136*** 

  (0.039) 

Int. knowledge stocks - smart grids 0.946*** 

  (0.042) 

Int. knowledge stocks - green tech 0.118*** 

  (0.034) 

Int. knowledge stocks - electricity 0.268*** 

  (0.035) 

Int. knowledge stocks - ICTs -0.131*** 

  (0.032) 

Ext. knowledge stocks - smart grids 0.258 

  (0.195) 

Ext. knowledge stocks - green tech -0.342** 

  (0.163) 

Ext. knowledge stocks - electricity -0.047 

  (0.187) 

Ext. knowledge stocks - ICTs 0.202 

  (0.158) 

Renewables share -0.347 

  (0.295) 

    

Marginal effect, standards -0.038*** 

  (0.014) 

    

Observations 30,628 

Log-likelihood -84157 
Note: In this model, firms with no pre-sample patents and for which it is not possible to build weights are 
assigned their home country as their main market. Robust standard errors are included in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1  
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Table 1.15 Alternative weights for firms with no pre-sample patents - heterogeneity 

  High patenting intensity Low patenting intensity 

      

Standards -0.051*** -0.007 

  (0.012) (0.008) 

RD&D smart grid -0.015 0.054* 

  (0.072) (0.029) 

RD&D renewables 0.003 -0.166*** 

  (0.083) (0.046) 

Int. knowledge stocks - smart grids 0.942*** 1.644*** 

  (0.037) (0.217) 

Int. knowledge stocks - green tech 0.112*** -0.221 

  (0.034) (0.204) 

Int. knowledge stocks - electricity 0.228*** 0.342*** 

  (0.040) (0.077) 

Int. knowledge stocks - ICTs -0.141*** -0.142* 

  (0.034) (0.086) 

Ext. knowledge stocks - smart grids 0.291 0.414** 

  (0.318) (0.199) 

Ext. knowledge stocks - green tech -0.665*** -0.246 

  (0.215) (0.252) 

Ext. knowledge stocks - electricity 0.477* -0.304* 

  (0.288) (0.174) 

Ext. knowledge stocks - ICTs 0.055 0.169 

  (0.222) (0.208) 

Renewables share 1.599** -0.705** 

  (0.700) (0.336) 

      

Marginal effect, standards -0.180*** -0.005 

  (0.044) (0.006) 

      

Observations 10,646 19,982 

Log-likelihood -39996 -40924 

Note: In this model, firms with no pre-sample patents and for which it is not possible to build pre-sample 
weights are assigned their home country as their main market. Firms with high patenting intensity are defined 
as firms that are in the upper 25 percentile of total patents assigned in the ICT, electricity and green innovation 
patent classes during the period 2000-2016. Firms with low patenting intensity are defined as firms in the lower 
75th percentile in the same patent classes and years.  Robust standard errors are included in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1 
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Appendix 1.C.3  Knowledge stocks depreciation rate 

Another research decision pertains to the choice of the depreciation rate applied to the external 

and internal knowledge stocks variables (see Appendix B2, which details how these stocks were 

constructed). In our main specification, we use a 15% depreciation rate. In Table 1.16, we allow 

knowledge stocks to depreciate faster, at a rate of 20%. Both rates are commonly used in the 

literature. Using one or the other does not substantively alter our results.  

Table 1.16. 20% depreciation rate for knowledge stocks 

Standards -0.045*** 

  (0.012) 

RD&D smart grid 0.092 

  (0.064) 

RD&D renewables -0.204** 

  (0.080) 

Int. knowledge stocks - green tech 0.131*** 

  (0.034) 

Int. knowledge stocks - electricity 0.268*** 

  (0.035) 

Int. knowledge stocks - ICTs -0.121*** 

  (0.031) 

Ext. knowledge stocks - smart grids 0.587*** 

  (0.170) 

Ext. knowledge stocks - green tech -0.511*** 

  (0.151) 

Ext. knowledge stocks - electricity -0.264 

  (0.173) 

Ext. knowledge stocks - ICTs 0.239 

  (0.165) 

Renewables share 1.436* 

  (0.741) 

    

Marginal effect, standards -0.077*** 

  (0.021) 

    

Observations 30,628 

Log-likelihood -84231 
Note: This model uses the same specification and control variables as our main model with the 
exception that the knowledge stocks variables depreciate 20% annually instead of 15%. Robust 
standard errors are in included in parentheses. *** p<0.01, ** p<0.05, * p<0.1  
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Appendix 1.C.4 GDP weighting  

In our main specification we weight our policy weights by GDP to the power of 0.35, based on 

Dechezlepretre et al.’s (2021) suggestion that this value fits estimates of the elasticity of exports 

to GDP of the home country found by Eaton, Kortum, and Kramarz (2011). In Table 1.17, we 

weight by simple GDP (e.g.,using an exponent of 1), as in Aghion et al. (2016).  This alternative 

GDP weight places more importance on the size of each market. The effect of standards at the 

extensive margin is estimated less precisely and becomes insignificant, but the effect of 

government support to R&D in grid-related technologies becomes significant at the intensive 

margin. Other key results are unchanged.
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Table 1.17 Alternative GDP weighting of the policy weights 

Standards -0.057*** 

  (0.016) 

RD&D smart grid 0.169** 

  (0.074) 

RD&D renewables -0.272*** 

  (0.101) 

Int. knowledge stocks - smart grids 0.946*** 

  (0.041) 

Int. knowledge stocks - green tech 0.126*** 

  (0.033) 

Int. knowledge stocks - electricity 0.279*** 

  (0.035) 

Int. knowledge stocks - ICTs -0.135*** 

  (0.030) 

Ext. knowledge stocks - smart grids 0.704*** 

  (0.151) 

Ext. knowledge stocks - green tech -0.597*** 

  (0.157) 

Ext. knowledge stocks - electricity -0.293* 

  (0.174) 

Ext. knowledge stocks - ICTs 0.186 

  (0.168) 

Renewables share 0.024 

  (1.300) 

    

Marginal effect, standards -0.010*** 

  0.029 

    

Observations 30,628 

Log-likelihood -84317 
Note: This model uses the same specification and control variables as our main model with the 
exception that the policy weights are weighted by GDP instead of GDP to the power of 0.35. *** 
p<0.01, ** p<0.05, * p<0.1  
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Appendix 1.C.5 Lagged variables 

We also check the effects of standards on patents using different lags, as it is unclear how many 

years it takes for standards to affect patenting levels.  Table 1.18 shows results from regressions 

that use different lags in separate models. For each of these models we lag all the time-varying 

explanatory and control variables by 1 year, 2 years (main model), 3 years and 4 years 

respectively.  Results for the standards variable are generally robust, with the exception of the 

effect of standards at the extensive margin which is only significant in the short run.  Across all 

models, the combined marginal effect of standards is of similar magnitude and significance. Given 

this, we chose the model with the second lag as our preferred specification because it has a better 

goodness of fit than the models that include the 3rd and 4th lags. The model with the first lag has 

better goodness of fit but does not leave enough time for government R&D support to take 

effect. Government R&D only start becoming significant after two years have passed and 

becomes stronger and more significant thereafter.  Choosing the model with the second lag as 

our main specification allows to balance the effect of standards acting quickly than government 

R&D. 
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Table 1.18 Regression results for alternative lags 
  1-year lag 2-year lag 3-year lag 4-year lag 

Standards -0.043*** -0.045*** -0.031* -0.043*** 

  (0.013) (0.012) (0.017) (0.014) 

RD&D smart grid 0.099 0.094 0.151** 0.140** 

  (0.063) (0.064) (0.064) (0.054) 

RD&D renewables -0.180* -0.198** -0.253*** -0.215*** 

  (0.092) (0.080) (0.078) (0.069) 

Int. knowledge stocks - smart grids 1.017*** 0.938*** 0.890*** 0.877*** 

  (0.039) (0.041) (0.044) (0.048) 

Int. knowledge stocks - green tech 0.084*** 0.130*** 0.171*** 0.195*** 

  (0.032) (0.033) (0.033) (0.034) 

Int. knowledge stocks - electricity 0.272*** 0.261*** 0.241*** 0.253*** 

  (0.034) (0.034) (0.036) (0.038) 

Int. knowledge stocks - ICTs -0.125*** -0.122*** -0.117*** -0.128*** 

  (0.030) (0.030) (0.031) (0.031) 

Ext. knowledge stocks - smart grids 0.800*** 0.646*** 0.702*** 0.800*** 

  (0.154) (0.172) (0.166) (0.160) 

Ext. knowledge stocks - green tech -0.546*** -0.538*** -0.551*** -0.572*** 

  (0.158) (0.156) (0.160) (0.166) 

Ext. knowledge stocks - electricity -0.376** -0.268 -0.231 -0.142 

  (0.148) (0.170) (0.161) (0.152) 

Ext. knowledge stocks - ICTs 0.162 0.216 0.162 0.017 

  (0.165) (0.163) (0.160) (0.166) 

Share of renewables 1.630** 1.330* 1.093 1.460* 

  (0.782) (0.757) (0.756) (0.763) 

Marginal effect, standards -0.075*** -0.078*** -0.054* -0.075** 

  (0.023) (0.021) (0.029) (0.025) 

          

Observations 30,628 30,628 30,623 30,618 

Log-likelihood -79805 -84109 -86962 -88626 

AIC 159686 168294 174000 177327 
Note: These regressions include the same control variables as the main model. Robust standard errors are included in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table 1.19 Short and long run effects of standards 

Standards (1 year lag) -0.027** 

  (0.014) 

Standards (2 year lag) -0.031** 

  (0.013) 

Standards (3 year lag) -0.018 

  (0.014) 

Standards (4 year lag) -0.043*** 

  (0.014) 

Joint significance -0.119*** 

  (0.025) 

RD&D smart grid (1 year lag) -0.087 

  (0.090) 

RD&D smart grid (2 year lag) -0.028 

  (0.118) 

RD&D smart grid (3 year lag) 0.085 

  (0.116) 

RD&D smart grid (4 year lag) 0.084 

  (0.080) 

Joint significance  0.054 

  (0.065) 

RD&D renewables (1 year lag) -0.019 

  (0.199) 

RD&D renewables (2 year lag) 0.049 

  (0.250) 

RD&D renewables (3 year lag) -0.424* 

  (0.218) 

RD&D renewables (4 year lag) 0.183 

  (0.173) 

Joint significance -0.211** 

  (0.089) 

    

Observations 30,618 

Log-likelihood -88331 
Note: This regression adds the first, third and fourth lags to the main model. The internal and external 
knowledge stocks variables and zero stock dummies are lagged by 4 periods instead of two. The 
variables share of renewables, electricity consumption growth, household electricity prices and gdp 
per capita are lagged by two periods, as in the main model. Robust standard errors are included in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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We also investigate the short and long-run effects of standards by including these 4 lags in a 

single model, and testing whether the effect of standards over the four years that follow the 

introduction of a standard is jointly significant. Result from this model, included in Table 1.19, 

show that the effect of standards at the intensive margin becomes stronger and more significant 

overtime and that the effect for the four years is jointly significant at both the extensive and 

intensive margins.  

Appendix 1.C.6 Cumulative stock of standards 

We also conduct robustness checks using an alternative measure of the standards variable, as it 

is unclear which measure is most appropriate. In our main model, we use a simple count of 

standards. Results using this variable can be interpreted as an event-study approach – how does 

the accreditation of a new standard in a firm’s market affect innovation. In these robustness 

checks, we use a cumulative count of all smart grids standards that have been accredited in 

country c up to and including year t. This count can be interpreted as a proxy for the overall level 

of standardization each firm is exposed to in its markets.  Tables 1.20, 1.21and .1.22 replicate our 

main results tables (Tables 1.2, 1.3 and 1.4) using this cumulative count of standards as the main 

explanatory variable.  Overall, using this measure allows to estimate the effects of the RD&D 

variables more precisely, and our results on the standards variables are generally robust at the 

intensive marg
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Table 1.20 Main model on cumulative count of standards 
Standards -0.017*** 
  (0.004) 
RD&D smart grid 0.109* 
  (0.062) 
RD&D renewables -0.299*** 

  (0.075) 
Int. knowledge stocks - smart grids 0.936*** 
  (0.042) 
Int. knowledge stocks - green tech 0.132*** 
  (0.034) 
Int. knowledge stocks - electricity 0.268*** 

  (0.035) 
Int. knowledge stocks - ICTs -0.125*** 
  (0.030) 
Ext. knowledge stocks - smart grids 0.481*** 
  (0.170) 
Ext. knowledge stocks - green tech -0.339** 

  (0.161) 
Ext. knowledge stocks - electricity -0.144 
  (0.172) 
Ext. knowledge stocks - ICTs 0.066 
  (0.168) 

Renewables share 1.270* 
  (0.733) 
    
Marginal effect, standards -0.030*** 
  (0.008) 
    
Observations 30,628 
Log-likelihood -84056 
Note: This model uses the same specification and control variables as our main model, with the 
exception that the standard variable is a cumulative count of standards (stock) rather than a simple 
count (flow). Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 1.21 Results by firm patenting intensity using cumulative count of standards 

  High patenting intensity Low patenting intensity 

      

Standards  -0.028*** -0.000 

  (0.005) (0.005) 

RD&D smart grid  0.003 0.106 

  (0.098) (0.066) 

RD&D renewables -0.226** -0.313*** 

  (0.108) (0.087) 

Int. knowledge stocks - smart grids 0.945*** 1.651*** 

  (0.037) (0.220) 

Int. knowledge stocks - green tech 0.119*** -0.221 

  (0.034) (0.207) 

Int. knowledge stocks - electricity 0.235*** 0.329*** 

  (0.043) (0.078) 

Int. knowledge stocks - ICTs -0.139*** -0.132 

  (0.034) (0.087) 

Ext. knowledge stocks - smart grids 0.126 0.382* 

  (0.318) (0.206) 

Ext. knowledge stocks - green tech -0.331 -0.324 

  (0.236) (0.226) 

Ext. knowledge stocks - electricity 0.540* -0.338* 

  (0.302) (0.181) 

Ext. knowledge stocks - ICTs -0.143 0.283 

  (0.228) (0.199) 

Renewables share 2.703*** -3.530*** 

  (0.832) (1.304) 

      

Marginal effect, standards -0.101*** -0.000 

 (0.020) 0.004 

      

Observations 10,646 19,982 

Log-likelihood -39535 -40889 
Note: These regressions use the same specification and control variables as the main model, with the exception that the 
standard variable is a cumulative count of standards (stock) rather than a simple count (flow). Firms with high patenting 
intensity are defined as firms that are in the upper 25 percentile of total patents assigned in the ICT, electricity and green 
innovation patent classes during the period 2000-2016. This corresponds to more than 57 assigned patents. Firms with 
low patenting intensity are defined as having a total of 57 or fewer patents in these same technology classes and years.  
Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 1.22 Effect on new entrants using cumulative count of standards 

  Intensive margin Extensive margin 

      

Standards -0.022*** 0.015*** 

  (0.004) (0.003) 

Interaction standards and zero stock dummy 0.004 -0.034*** 

  (.003) (0.002) 

RD&D smart grid 0.132* -0.019 

  (0.071) (0.041) 

RD&D renewables -0.336*** 0.020 

  (0.084) (0.055) 

Int. knowledge stocks - smart grids 0.603*** -1.436*** 

  (0.032) (0.049) 

Int. knowledge stocks - green tech 0.079** -0.174*** 

  (0.032) (0.021) 

Int. knowledge stocks - electricity 0.153*** -0.147*** 

  (0.035) (0.028) 

Int. knowledge stocks - ICTs -0.175*** 0.002 

  (0.029) (0.025) 

Ext. knowledge stocks - smart grids 0.230 -0.260** 

  (0.181) (0.101) 

Ext. knowledge stocks - green tech -0.331** 0.076 

  (0.156) (0.102) 

Ext. knowledge stocks - electricity 0.172 -0.074 

  (0.180) (0.100) 

Ext. knowledge stocks - ICTs -0.073 0.218** 

  (0.154) (0.106) 

Renewables share -0.984 -0.991* 

  (0.858) (0.571) 

      

Joint significance  -0.018*** -0.019*** 

  (0.004) (0.003) 

      

Observations 30,628 30,628 

Log-likelihood -46493 -46493 
Note: This regression uses the same specification and control variables as the main model. This model interacts the 
standards variables with a dummy variable that indicates whether the firm had any internal knowledge stocks in past 
periods. As with other variables, we use the second lag. Robust standard errors are included in parentheses. *** 
p<0.01, ** p<0.05, * p<0.1 
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Our results for large firms, shown in table 1.21 are more sensitive to using the cumulative count 

of standards than the results for small firms. This being said, key results remain robust to using 

this alternative measure. For large firms, the coefficients on the standard variables and the 

combined marginal effect is smaller, which is consistent with one new standard being a smaller 

percentage increase in the cumulative count.  Moreover, the effect of standards on large firms 

loses significance at the extensive margin. Conversely, the RD&D renewables variable becomes 

significant at the extensive margin. The external knowledge stocks are more sensitive to changing 

our measure of the standard variable with the green stocks losing significance and the electricity 

stocks gaining significance. Our results are substantively unchanged for small firms with the 

exception that the external ICT knowledge stocks variables is estimated less precisely at the 

intensive margin. 

Finally, table 1.22 shows again that using a cumulative count attenuates the effect of standards, 

but the sign and significance of these coefficient corroborate our main findings. Again, the effects 

of the RD&D variables are estimated with greater precision and other key results remain 

unchanged.  

Appendix 1.C.7 Alternative cut-off years 

We also verify that the cutoff year we use for building the policy weights is not driving the results. 

In the main specification, we build policy weights using firms’ patents in the years 1977-1999 and 

begin the regression analysis in 2000. In Table 1.23, we use patent data for the years 1977-2004 

to build the policy weights and begin the regression analysis in 2005. While the effects of external 

knowledge are somewhat sensitive to when the stocks are constructed, our main results on 

standards and R&D are not affected by changing the years of the sample.
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Table 1.23 Alternative cut-off year for building policy weights (1977-2004) 

Standards -0.042*** 

  (0.012) 

RD&D smart grid  0.086 

  (0.113) 

RD&D renewables  -0.336*** 

  (0.125) 

Int. knowledge stocks - smart grids 0.941*** 

  (0.045) 

Int. knowledge stocks - green tech 0.106*** 

  (0.034) 

Int. knowledge stocks - electricity 0.203*** 

  (0.035) 

Int. knowledge stocks - ICTs -0.065** 

  (0.031) 

Ext. knowledge stocks - smart grids 0.586*** 

  (0.210) 

Ext. knowledge stocks - green tech -0.661*** 

  (0.169) 

Ext. knowledge stocks - electricity -0.492** 

  (0.202) 

Ext. knowledge stocks - ICTs 0.628*** 

  (0.175) 

Renewables share 0.348 

  (0.848) 

   
Marginal effect, standards -0.080*** 

  (0.023) 

   
Observations 24,774 

Log-likelihood -70167 
Note: This model uses the same specification and control variables as our main model with the 
exception that the policy weights were constructed using firms patents in the 1977-2004 period. 
Regression starts in 2005 and ends in 2016. Robust standard errors are included in parentheses.            
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 1.C.8 Fixed effects Poisson model  

To control for a firm’s overall propensity to patent, our preferred specification uses the average 

number of patents each firm had during pre-sample years, combined with a dummy that 

identifies new firms. This way of de-meaning to control for unobserved firm heterogenenity 

presents the advantage of producing consistent estimates under weak exogenenity, which is not 

possible with a fixed effects Poisson model, because the latter requires strict exogenenity. Strict 

exogenenity requires that these variables be orthogonal to error terms in all past, present and 

future periods. The strict exogeneity assumption is violated by our smart grid knowledge stocks 

variables, which by constrution are correlatd with past error terms since they carry forward 

patent counts from previous years. For these variables, weak exogenity only requires that shocks 

in period t are not correlated with lagged knowledge stocks, which is a more reasonable 

assumption.   

To demonstrate this bias, Table 1.24 presents results from a fixed effect Poisson model, side-by-

side with our main pre-sample mean Poisson model. Table 1C.8 shows that the coefficients in the 

fixed effects Poisson model are biased, especially for the smart grid knowledge stocks variables, 

whose direction, flips between the two models. This model also estimates the effect of standards 

and government R&D variables imprecisely.
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Table 1.24 Regression results from pre-sample mean estimator and fixed-effects Poisson 

Variable Pre-sample mean Poisson Fixed Effects Poisson 

      

Standards -0.045*** -0.019 

  (0.012) (0.013) 

RD&D smart grid 0.094 0.015 

  (0.064) (0.093) 

RD&D renewables -0.198** -0.029 

  (0.080) (0.180) 

Int. knowledge stocks - smart grids 0.938*** -0.324*** 

  (0.041) (0.114) 

Int. knowledge stocks - green tech 0.130*** 0.213 

  (0.033) (0.139) 

Int. knowledge stocks - electricity 0.261*** 0.440*** 

  (0.034) (0.117) 

Int. knowledge stocks - ICTs -0.122*** 0.070 

  (0.030) (0.098) 

Ext. knowledge stocks - smart grids 0.646*** 0.248 

  (0.172) (0.375) 

Ext. knowledge stocks - green tech -0.538*** -1.637*** 

  (0.156) (0.563) 

Ext. knowledge stocks - electricity -0.268 3.885*** 

  (0.170) (0.818) 

Ext. knowledge stocks - ICTs 0.216 -1.517 

  (0.163) (0.937) 

Renewables share 1.330* -4.336 

  (0.757) (4.101) 

      

Observations 30,628 30,426 

Pseudo R-squared 0.492   

Log-likelihood   -50701 
Note: The pre-sample mean estimator model includes firms' average yearly patents in the pre-sample period and a 
complete set of year dummies. The fixed effect Poisson model includes firm and year fixed effects. Both include the 
same control variables as the Zero-Inflated Poisson regression (main model). Robust standard errors are included in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 1.C.9 Zero-inflated Poisson model 

We further decompose the effects of standards on patenting levels into the extensive and 

intensive margins. This approach models excess zeros arising from the large number of small 

firms that rarely patent, through modelling the decision of whether to patent separately from 

the decision of how much to patent. In the first stage, this model estimates the effect on the 

probability that a firm will have zero patents using a logit regression. In the second stage, it 

estimates the effect on patenting levels using Poisson regression. The results from the ZIP model 

are similar to those from our main specification, and do not provide additional information. In 

particular, the combined marginal effect for the extensive and intensive margins in the ZIP model 

is nearly identical to the marginal effect in Table 1.2.   

Table 1.25 Results from ZIP model 
  Intensive margin Extensive margin 

Standards -0.038*** 0.016* 

  (0.012) (0.008) 

RD&D smart grid 0.116 0.019 

  (0.074) (0.039) 

RD&D renewables -0.197** -0.033 

  (0.091) (0.050) 

Int. knowledge stocks - smart grids 0.598*** -1.436*** 

  (0.032) (0.050) 

Int. knowledge stocks - green tech 0.075** -0.180*** 

  (0.032) (0.022) 

Int. knowledge stocks - electricity 0.137*** -0.147*** 

  (0.034) (0.029) 

Int. knowledge stocks - ICTs -0.165*** -0.012 

  (0.029) (0.025) 

Ext. knowledge stocks - smart grids 0.454** -0.414*** 

  (0.185) (0.098) 

Ext. knowledge stocks - green tech -0.565*** 0.078 

  (0.151) (0.096) 

Ext. knowledge stocks - electricity -0.010 0.013 

  (0.177) (0.094) 

Ext. knowledge stocks - ICTs 0.108 0.290*** 

  (0.151) (0.101) 

Renewables share -1.077 -1.146** 

  (0.887) (0.564) 

Combined marginal effect, standards -0.076*** 

  (0.020) 

Observations 30,628 30,628 

Log-likelihood -47022 -47022 

Note: The Zero-Inflated Poisson model includes the same explanatory variables as the main model.                               *** 
p<0.01, ** p<0.05, * p<0.1               
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Chapter 2 The effects of standards on 
technological change in the green energy 
sector: an analysis of patent citations 
 
Myriam Gregoire-Zawilski 

 Abstract  

Addressing grand societal challenges, such as climate mitigation and adaptation, requires 

focusing research efforts in areas most likely to deliver impactful solutions fast. The 

unprecedented scale and speed at which the research community must devise solutions probes 

many questions about the role of public policy in directing technological trajectories towards 

promising areas. This paper investigates the effects of technology standards in shaping 

technological trajectories. Standards disseminate information and expertise that can support 

R&D coordination, technology compatibility, and knowledge translation across fields. These 

functions may be particularly impactful in industries experiencing increased technological 

complexity, such as those undergoing digital transformations.  Using the green energy technology 

sector (solar PV, wind turbine and smart grid technologies) as an empirical application, this paper 

models the effects of technology standards on follow-on patent citation trajectories using a 

cohort approach. It presents evidence that standards support knowledge accumulation and 

convergence onto high-quality trajectories. These effects are strongest in technologies that have 

a complex architecture, draw on a diversified knowledge base, and require little customization 

to be scaled across different manufacturing and user environments.   
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2.1 Introduction  

Addressing grand societal challenges, such as climate mitigation and adaptation, requires 

focusing research efforts in areas most likely to deliver impactful solutions fast. The 

unprecedented scale and speed at which the research community must devise solutions probes 

many questions about the role of public policy in directing technological trajectories towards 

promising areas. Acknowledging that conventional technology policy instruments such as 

research grants and R&D fiscal incentives are insufficient to achieve these goals, policy makers 

are expressing renewed interest in leveraging a broader mix of policy tools - often presented 

under the label “green industrial policy” - to supply the research infrastructure and public goods 

that innovation systems need to deliver solutions to wicked societal problems. This paper 

investigates the effects of one such tool, technology standards, in shaping follow-on 

technological trajectories. It extends work presented in Gregoire-Zawilski and Popp (2024) in 

which we find that technical standards cause a decline in firms’ patenting activity in smart grids 

technology. These results require further contextualization to determine if this decline is 

necessarily a sign that standards are detrimental to innovation. Standards shape follow-on 

innovation in many ways beyond R&D intensity and it may be that their impacts on other 

dimensions of innovation outweigh concerns raised by a slowdown in R&D. In Gregoire-Zawilski 

and Popp (2024), we provide preliminary evidence that standards improve patent quality, a result 

aligned with findings from other studies (Wenn et al, 2022). However, to the best of my 

knowledge, the literature provides limited insights for understanding trade-offs associated with 

standardization to guide decision-making in the planning and management of standards (see Ho 

and O’Sullivan, 2018 and Featherson et al., 2016 for an overview). In particular, we know little 

about how standards shape follow-on knowledge trajectories.  

Using an analysis of patent citations, this paper unpacks how standards shape technological 

trajectories through investigating the following questions: 1) do standards increase knowledge 

utilization by follow-on inventive activity, 2) is this increase concentrated in high-value areas of 

technology, and 3) do the effects of standards on citations trajectories vary across different 

technologies? I find that standards generally increase patent citations and that this effect is 
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greater in high-quality inventions. Together, these results provide evidence that standards steer 

innovation onto high-quality pathways. I also find that the positive effect of standards is strongest 

in inventions that recombine knowledge from diverse fields: this shows that standards help 

follow-on inventors utilize knowledge that is particularly complex. There is notable heterogeneity 

across technologies that vary in their design complexity, knowledge base attributes, and 

scalability. In smart grids, standards support knowledge utilization across the whole distribution 

of patent quality, whereas technological focusing is strongest in solar photovoltaic technology. 

In wind, standards cause a decline in citations.  

Together these results provide important insights for practitioners to weight the advantages and 

disadvantages of standards at different stages of the technology cycle and across different 

industries. While standardization may be advisable to accelerate knowledge accumulation onto 

common foundations in areas where technical solutions are urgently needed, they might 

reallocate R&D resources away from research directions that have more uncertain horizons. 

Policy makers may also want to concentrate their standardization efforts in areas that will yield 

the greatest impacts. My findings show that standards are most effective at supporting 

knowledge utilization in technologies that have intricate design architectures, related 

interoperability needs, and that build on a diverse knowledge base.  

Drawing on insights from the innovation systems literature, my findings also have important 

implications for advancing theory. Innovation systems are comprised of a complex web of 

interactions across a constellation of individuals, organizations, and institutions (Nelson, 1993; 

Edquist and Johnson, 1997). Within these systems, technical change is defined as a process of 

knowledge accumulation and recombination intermediated by a multiplicity of factors such as 

the characteristics of different technologies and markets (Dosi, 1982; Nelson and Winter, 1982). 

Technical standards are important institutions intermediating these processes of technical 

change, for example supporting the transition from a technological paradigm to another (Bergek 

et al, 2008; Tassey, 2017). But their role within innovation systems remains under-investigated. 

My study provides further evidence that standards can help manage technological complexity by 
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providing common foundations that support technological stability and focus (Tassey, 2000; 

2017).  

The rest of the paper is structured as follows: section 2.2 reviews relevant insights from the 

standards and technical innovation systems literature; section 2.3 develops theoretical 

propositions; section 2.4 presents the data and empirical model; section 2.5 presents results; and 

section 2.6 discusses the implications of these results for policy and future research.   

2.2 Theoretical framework 

This paper combines insights from the standards literature with lessons from studies in the 

technological innovation systems literature that map the characteristics and knowledge 

trajectories of green energy technologies. Below, I summarize key findings from these two 

literatures. I then formulate new theoretical propositions about how standards and knowledge 

trajectories interact.  

2.2.1 Defining and characterizing standards 

Standards and innovation influence each other in myriad ways that can encourage or hinder 

innovation (Swann, 2000). Existing research offers various typologies to categorize standards and 

describe their roles in markets and innovation systems (Swan, 2000; Tassey, 2000; Blind and 

Gauch, 2009). However, scholars have paid less attention to how standards shape subsequent 

technological trajectories. 

The National Institute of Standards and Technology defines a standard as: “A document that 

contains technical specifications or other precise criteria to be used consistently as a rule, 

guideline, or definition of characteristics, to ensure that materials, products, processes, 

personnel or services are competent and/or fit for their intended purposes(s)” (cited in Baron 

and Spulber, 2018, p.4). These documents are typically developed in standard-setting 

organizations, with the input of technical experts from industry and other potential standard 

users (Wiegmann et al., 2017; Baron and Spulber, 2018). These organizations coordinate 

standardization activities with the goal of “establishing and recording a limited set of 
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solutions…intending and expecting that these solutions will be repeatedly or continuously used… 

by a substantial number of parties for whom they are meant” (de Vries, 1999, p.19).  

As institutions, standards play a crucial role in disclosing, codifying, and disseminating technical 

knowledge (Blind et al., 2023), but they vary in the type of information they contain and the 

functions they perform in markets and innovation systems.  Different types of standards address 

different market failures. Quality standards reduce information asymmetries, information 

standards lower transaction costs, variety reduction standards support economies of scale, and 

compatibility standards foster network externalities (Swann, 2000). Standards also clarify various 

types of technical information, responding to knowledge needs surfacing at different stages of 

the technology lifecycle (Blind and Gauch, 2009). In the early stages, terminology standards foster 

common understanding of concepts and testing standards provide guidance on measurement. 

Both support the translation of basic science into applied research.  In later stages, variety 

reduction and compatibility standards support the development and commercialization of new 

technology applications (Blind and Gauch, 2009). Understanding how standardization needs 

evolve over the course of a technology’s lifecycle is therefore also critical for managing standard-

setting activities strategically (Ho and O’Sullivan, 2018; Featherson et al., 2016; Blind and Gauch, 

2009).   

2.2.2  Interplay between standards and innovation 

Standards serve as both inputs and outputs in the innovation process: they draw on an industry’s 

state-of-the-art knowledge and make this information widely accessible, informing subsequent 

technology development. Past research has mainly focused on standards as an output, for 

example, of the governance structure of standard-setting organizations (Chiao et al., 2007.). A 

growing body of literature, to which this paper contributes, has however recently begun to 

consider standards as an input to follow-on innovation.  These studies shed light on 1) how 

standards affect firms’ innovation outputs, productivity, and overall industry growth, 2) how 

standards shape the attributes of subsequent inventions, and 3) how standards guide 

technological change within and across industries. 
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Extant literature shows that standards affect innovation in intricate ways. At the firm-level, 

Gregoire-Zawilski and Popp (2024) find that standards cause a decline in patenting. At the 

industry-level, Baron and Schmidt (2019) find a similar decline in total factor productivity, but 

only in the short-run as firms adapt to new a technological paradigm.  In the long run, the authors 

find that standards help industries grow. These average effects mask important heterogeneity, 

however. Gregoire-Zawilski and Popp (2024) find that the decline in patenting is concentrated in 

incumbents, whereas standards promote greater entry by new players. Bergeaud and colleagues 

find that standards initially boost the R&D investments of firms closest to the technological 

frontier, but that they eventually help less productive firms catch-up (2022). Other studies 

similarly find that standards support innovation by complementor firms further downstream in 

value chains (Funk and Luo, 2015; Wenn et al, 2022). Together these findings underscore the role 

of standards in establishing a common technological framework across an industry, helping 

various actors – including less productive firms and new entrants – innovate and transition to a 

new technological paradigm.  

Standards not only affect who partakes in inventive activities, but also the nature of subsequent 

innovation. Recent studies find that standards lead to higher-quality follow-on innovation (Wen 

et al., 2022; Gregoire-Zawilski and Popp, 2024, Rysman and Simcoe, 2006), but steer innovation 

onto more incremental paths, especially amongst less R&D intensive firms (Brem, Nylund and 

Schuster, 2016; Foucard and Li, 2021, Clugherty and Grajek, 2023). Together these finding help 

contextualize the effects of standards on patenting intensity previously discussed. Standards 

improve the quality and cumulativeness of knowledge. Declines in patenting therefore do not 

necessarily signal that standards are detrimental to innovation, but rather a natural consequence 

of this change on the characteristics of follow-on innovation.  

Finally, through consolidating a common technological framework (Swann, 2000), standards 

shape the rate and direction of technical change and industry growth (Tassey, 2017 p.267-268). 

When industries experience technological breakthroughs, standards help firms in the industry 

transition to this new technological paradigm, facilitating the creative destruction process and 

encouraging knowledge accumulation in these new directions (Tassey, 2017). Furthermore, 
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standards can also accelerate technological convergence not only within, but also across 

industries producing complementary products (Blind and Gauch, 2015). The literature on 

technological innovation systems, which I review next, provides useful lenses for understanding 

these processes of technological change in greater depth. 

2.2.3  Understanding knowledge trajectories 

Technology evolves through a series of generalizable stages (Murmann and Frenken, 2006). In 

the early stages, competition across different designs causes high technological uncertainty, until 

a dominant design takes root.  When consensus is achieved, the focus of inventive efforts moves 

downstream the design architecture in a way that is ordered by the technology’s design hierarchy 

(Murmann and Frenken, 2006; Huenteler et al., 2016; Malhotra et al., 2021). A product’s 

architecture defines the different components of a system and their interfaces, enabling the 

prioritization and sequencing of subsequent R&D activities. Some technical problems have 

greater incidence on the design of other parts of the system and are therefore tackled first. These 

considerations give form to a technology’s design hierarchy – the organization of its various 

nested parts – and are instrumental in ordering knowledge trajectories (Huenteler et al., 2016; 

Malhotra et al., 2019). 

The case of wind turbine technology provides a useful demonstration of these stages. From the 

mid-1980s onwards, the industry adopted the ‘Danish design’, consisting of a 3-blade upwind 

rotor. Getting clarity and consensus on the dominant design for the rotor enabled further 

innovation down the product design hierarchy: in power train technology, then in mounting and 

encapsulation, and finally, in grid connectivity technology. Data on patent citations show clear 

progression across these sub-system elements overtime and knowledge accumulation along the 

dominant trajectories (Huenteler, et al., 2016). Similarly, in solar photovoltaic technology, getting 

consensus on wafer-based crystalline silicon cells as a dominant design has enabled subsequent 

technology development – and related standardization – in PV modules, followed by off-grid 

standalone applications, and large-scale grid-connected power systems (Ho and O’Sullivan, 

2018).  The stages model therefore provides a useful heuristic for theorizing about the direction 

of technological trajectories. In empirical applications, however, the foci of inventive activities do 
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not always follow such an orderly linear progression. External shocks, such as shifting needs and 

demand in the use environment or unexpected scientific breakthroughs might alter these paths. 

For example, in lithium-ion batteries, booming demand from the automobile industry prompted 

innovation back into product architecture to develop lighter non-stationary applications better 

suited to needs of this new use environment (Malhotra et al., 2021).  

2.2.4 Standards and knowledge trajectories 

The Murmann-Franken’s nested hierarchy model is useful to reflect on how standards intervene 

in processes of technical change and knowledge accumulation. For example, standards may help 

consolidate a dominant design and focus subsequent inventive activity along the downstream 

product hierarchy, enabling specialization in component development (Vakili, 2016). Standards 

also lower the cost of searching and utilizing relevant high-quality knowledge. This may be 

particularly helpful when developing components that require interdisciplinary knowledge. 

Because technologies differ in their product architectures and knowledge bases, their knowledge 

trajectories also differ (Malhotra et al., 2019). In the green energy sector, these differences have 

been thoroughly analyzed, including using the Murmann-Franken model, by Malhotra and 

Schmidt (2020), Malhotra and colleagues (2019), and Huenteler and colleagues (2016). Drawing 

on insights from these studies, Table 1 summarizes the key characteristics of smart grids, wind 

turbine and solar photovoltaic technologies. Considering variation in these characteristics is 

essential for understanding the heterogeneous effects of standards on knowledge trajectories.   

In Table 1, design complexity refers to a technology’s product architecture. Complex designs have 

several components and interactions amongst them (Murmann and Frenken, 2006). The 

knowledge base refers to the scientific and technical knowledge one needs to acquire to innovate 

in this technology. When the knowledge base is highly specific, inventors cannot readily use 

general purpose technology. They require specialized expertise to adapt scientific discoveries to 

applications in their sector. Technology complexity refers to the diversity of the knowledge 

needed to innovate in a technology. Technologies building on interdisciplinary knowledge have 

highly complex knowledge bases.  Finally, the need for customization refers to the scalability of 

technical solutions across different manufacturing contexts and user environments.  



 105 

Standardized technical solutions will be most helpful in technologies that require low 

customization to be implemented in different manufacturing and user environments, and whose 

technical challenges can be simulated, tested, and resolved in laboratory environments 

(Malhotra et al., 2019). 

Table 2.1 Technology characteristics and types of standards. 

 Wind Solar Smart grids 
Design complexity High Low High 

Knowledge base    
          Specificity Low High High 
          Complexity Low Low High 

Customization needs High Low Low 

Standard types Safety Testing, Measurement Interoperability 
 Note: Adapted from Malhotra et al. (2019), and Malhotra and Schmidt (2020). 

The characteristics presented in Table 1 have different implications for how standards shape 

innovation. Below, I posit different ways in which these characteristics moderate follow-on 

knowledge trajectories.   

2.2.4.1  Design complexity 

The tuning of different product components is a chief concern in complex product architectures. 

Standards can clarify this architecture, the compatibility requirements between its different 

components, and map the sequence of innovation needs across the system. In doing so, 

standards provide guidance on where inventors should focus their efforts, and in which order of 

priority. Strong uncertainty and lack of guidance about the dominant architecture and 

compatibility across its different components might cripple innovation altogether in the absence 

of standards, especially when designs are highly intricate and when a constellation of 

decentralized inventors are developing technology for different components. When the industry 

is more vertically integrated, learning how to tune and integrate different components may be 

done through means other than standards, such as close collaboration between the providers 

and users of various components. In sum, the complexity of a technology’s design and how R&D 

actors in the value chain have organized in response to this complexity are both important factors 
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mediating the relationship between standards and innovation. These are also related to the 

characteristics of a technology’s knowledge base, which I discuss next. 

2.2.4.2  Knowledge base specificity  

When inventors need highly specialized expertise, standards might help them identify relevant 

scientific foundations for their inventions and provide guidance on translating this knowledge 

into technology-specific applications. In this case, standards can help disseminate and facilitate 

the utilization of relevant scientific knowledge and state-of-the-art solutions. However, when 

developing new components builds on general purpose technology, standards may not add much 

value because the knowledge base is more readily usable without making sector-specific 

adaptations. When the knowledge base is general, manufacturers may be able to design 

components in-house without needing to acquire highly specialized expertise, in which case 

standards would add little benefit.  

2.2.4.3  Knowledge base complexity   

Finally, when the knowledge base required for innovating in a sector of technology draws on a 

limited number of fields, or from fields the industry possesses core expertise in, standards might 

similarly add little value.  In this case, firms may be able to develop components in-house with 

their existing R&D capabilities. However, when firms need to pool knowledge from different 

domains, especially those outside of their industry’s core expertise, standards may help 

summarize and translate technical information. For example, standards might define common 

concepts and identify areas of synergies. This may be particularly important when actors from 

varied backgrounds and possessing distinct core expertise are developing different components 

of a technology. 

2.2.4.4  Customization needs  

Finally, technologies differ in their levels of replicability and scalability. Some technologies are 

readily deployable and scalable across different manufacturing and user environments. In this 

case, standards may help inventors replicate and improve upon state-of-the-art solutions across 

different contexts. However, when technology requires a high degree of customization to work 
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in different environments, local solutions may be too idiosyncratic for standards to support 

knowledge utilization and accumulation upon common trajectories.   

2.2.5  Standards and knowledge trajectories in green energy technologies 

Table 1 summarizes the characteristics described above for wind, solar and smart grid 

technology. Below, I elaborate on each and further highlight the types of standards that are 

prevalent in those technologies. The hypotheses formally developed in Section 3 then expand on 

how standards moderate knowledge trajectories, given these technologies’ respective 

characteristics.   

2.2.5.1  Wind turbine technology 

Wind turbines encompass 4 key subsystems – rotor, powertrain, mounting and encapsulation, 

and system integration - which are in turn composed of dozens of components (see Huenteler et 

al., 2016, and Malhotra et al., 2019, for a detailed description of wind turbines’ product 

architecture).  These interdependent parts combine in intricate ways to affect the overall 

performance of turbines, making their design highly complex. Tuning these moving parts to 

optimize the overall performance of the finished product is a chief concern of turbine 

manufacturers, and a central focus of technology development (Huenteler et al., 2016; Malhotra 

et al., 2019). Components that are vital to overall system performance, such as rotor blades, drive 

trains and control electronics, are typically developed and manufactured in-house (Malhotra et 

al., 2019).  However, several of the inputs and components used in wind turbines, as well as the 

manufacturing processes employed in their assembly, rely on general purpose technology such 

as steel- and iron-making, welding, and forging (Malhotra et al., 2019). For this reason, I describe 

the wind knowledge base as having low specificity: it generally requires few adaptations to be 

transposed to the wind turbine manufacturing context. When components rely on specialized 

knowledge from external fields, the turbine manufacturer maintains close relationships with 

suppliers to iteratively develop and test those products.  This is limited to the procurement of 

generators and gearboxes. For this reason, I describe the knowledge base as having low 

complexity. These attributes of the knowledge base have translated into a vertically integrated 

sector, where most components can be produced and assembled in-house, with a reliance on a 
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small number of suppliers to procure specialized components (Malhotra et al., 2019). Knowledge 

is acquired internally, through learning-by-doing for system optimization, or through these close 

interactions with select suppliers of specialized inputs, rather than being translated and 

disseminated through industry standards. This may explain why, as major technological leaps 

were being achieved, for example in increasing the size of rotors which has drastically improved 

the performance of wind turbines since the early 2000s, the industry has featured high rates of 

learning-by-doing at the firm-level, but low rates of knowledge spillovers within the industry 

(Sweeney et al., 2022; Anderson et al., 2019). Finally, the weather conditions in which wind 

turbines are deployed are impossible to re-create in laboratory and vary greatly across different 

user locations. Therefore, wind manufacturers also maintain close relationships with wind farm 

developers to gather feedback about turbine performance in real-world settings when 

developing their products (Malhotra et al., 2019). The need for customization in the user 

environment is high, limiting opportunities to replicate and apply lessons from one user 

environment to another (Malhotra and Schmidt, 2020).  The standardization activity that I 

observe in the wind sector reflects the industry’s limited needs and opportunities to standardize. 

Despite being the most mature of the sampled technologies, wind features the fewest standards. 

The standards that have been deployed are predominantly concerned with limiting the potential 

hazards and nuisances from wind turbines, with fewer standards providing guidance on 

measurement or design issues (see Appendix C1 for a full list of wind standards included in the 

analysis). For example, standard IEC 61400-5 outlines requirements for ensuring the engineering 

integrity and operational safety of wind turbine blades overtime and standard IEEE 2400 defines 

techniques for measuring the level of aero acoustic noise generated by wind turbines.  

2.2.5.2 Solar photovoltaic technology 

The core of solar photovoltaic technology consists of wafer-based crystalline silicon and thin-film 

cells. After the polysilicon is cast into ingots, sliced into wafers, etched, polished, printed and 

coated to form cells, the resulting PV cells are assembled into modules (Malhotra et al., 2019; 

Zhang et Gallagher, 2016). These modules exhibit relatively simple product design compared to 

wind turbines (Malhotra et al., 2019).  There are not as many distinct and interdependent 

components to calibrate, as they mainly consist of an array of PV cells encapsulated together. 
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The challenge in developing solar has instead been in achieving scientific breakthroughs in PV cell 

technology, followed by efficiency gains in the use of materials (reduction in wafer thickness to 

cut the use of polysilicon), and in achieving economies of scale in manufacturing (Malhotra et al., 

2019; Nemet, 2019; IRENA, 2022). Solar PV technology builds on basic science, in areas such as 

materials science and photonics, developed specifically for this sector of technology. Its scientific 

foundations are therefore highly specific to the industry and have required high levels of initial 

R&D and iterative learning across materials suppliers and PV cell manufacturers (Malhotra et al., 

2019). However, once these scientific foundations were established and a dominant design for 

PV cells had taken root, sector-specific knowledge – such as the properties of materials 

developed for PV cell manufacturing – was standardizable and replicable across many 

manufacturing contexts (Malhotra et al., 2019). Furthermore, when the sector draws on 

knowledge outside of its core competencies, such as innovations in encapsulation materials and 

metal pastes coming from the chemicals sectors, these materials can easily be procured and 

incorporated into manufacturing without making adaptations that require sector-specific R&D 

(Malhotra et al., 2019). Therefore, the complexity of the knowledge base for solar is relatively 

low, while its specificity is high. These properties of the sector’s knowledge base have enabled 

the replication and massive take-up of PV technology. This has afforded ample opportunities for 

different actors to innovate simultaneously to further improve manufacturing processes, 

bringing solar onto a steep experience curve (Nemet, 2019; Malhotra et al., 2019). This has 

occurred despite the high complexity of PV cell manufacturing processes, which involves multiple 

steps and the tuning of hundreds of parameters (Malhotra et al., 2019). Because solar is modular, 

scalable and replicable across various contexts, the sector experienced a rapid take-up of lessons 

and technical solutions for optimizing manufacturing processes.  Finally, when customization 

needs have surfaced across different user environments and applications – such as rooftop, 

ground-mounted, off-grid, or building-integrated systems, etc. – required adaptations have 

concerned peripheral components such as mounting equipment or inverter design, rather than 

core PV cell technology. Therefore, it has been possible to massively produce PV modules across 

different manufacturing locations for these different uses, and to simulate various user 

environments in the lab rather than requiring costly real-world applications and infrastructure 
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investments to test and improve PV technology (Malhotra and Schmidt, 2020; Malhotra et al., 

2019). With these technology characteristics, standardization activity has been abundant in solar 

and focused on providing industry-wide guidance for consistently measuring, assessing, and 

reporting on the performance of PV materials, cells, and modules (see Appendix C1 for a full list 

of solar standards included in the analysis). These may help, for example, with calibrating various 

parameters on production lines and measuring the specifications and quality of various materials 

and outputs. Examples of solar standards include ASTM E927-04A, which concerns the 

classification of solar simulators used for testing photovoltaic devices indoors; ISO 9847, which 

provides guidance on calibrating pyranometers which are instruments used in solar 

manufacturing to test solar radiation levels that PV modules are exposed to; and IEC 72788-1-6, 

which define terminology and testing guidelines for measuring the degree of cure of Ethylene-

Vinyl Acetate encapsulation sheets used in photovoltaic modules.  

2.2.5.3 Smart grid technology 

Finally, smart grid technology differs vastly from the two technologies previously discussed as it 

is an umbrella term designating innovation in an amalgam of different hardware and software 

applications, rather than a single physical product. These technologies aim to digitalize or 

automate different parts of the electrical grid. Working together, they could enable two-way real-

time communication across the grid system to improve the flexibility and resilience of grid 

operations (Brown et al., 2018; Colak et al., 2016; Martinot, 2016). A smart grid would have a 

highly complex product architecture, with millions of ‘smart’ components such as sensors, phasor 

measurement units, invertors, and metering equipment, all collecting, exchanging, and analyzing 

data in various subsystems, such as residential electricity consumption, behind-the-meter 

generation, distributed energy generation, electricity markets, power transmission and power 

distribution (NIST, 2021). Conducting R&D to develop various components of this decentralized 

system requires highly specialized knowledge about the industry’s state-of-the-art practices and 

requirements, for example regarding data transmission and security protocols. Standards can 

help clarify which specific data architectures, data encryption and transmission protocols apply 

to grid communications. Innovating in this area also requires proficiency in various emerging and 

fast-moving areas of technology that include artificial intelligence, information and 
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communication technologies, cloud computing, control engineering, information engineering, in 

addition to the industry’s core expertise in electrical engineering, (Ghiani et al., 2018; IEA, 2021; 

Syed et al., 2020). Smart grid innovation therefore draws on a highly complex and diversified 

knowledge base. Standards may add value through translating knowledge from these different 

fields that is relevant to develop smart grids applications, thereby supporting knowledge 

accumulation and technological focusing. Finally, companies innovating in this area develop 

products targeted at various niche uses and clients, such as automated demand response, 

building energy management, smart home appliances, smart electricity metering, smart 

electricity billing, microgrids, substation automation, etc. Despite the diversity of user 

environments, these technologies all have in common that to be useful, they need to 

communicate with the rest of the system and operate as part of a network. Therefore, 

standardization and interoperability needs are high in smart grids (Brown et al., 2018). Given this, 

most standards observed in smart grids are concerned with defining a common smart grid 

architecture, along with terminology and compatibility guidelines. Examples include the IEC 

61850 series which clarifies communications procedures between intelligent devices within 

power utility automation systems; ANSI/CTA-2045, which specifies a modular communications 

interface for residential energy management devices; and NIST IR 7761, which defines wireless 

communication standards for various smart grid applications. 

2.3 Hypotheses 

Building on the theoretical framework presented in section 2.4. and using an empirical model 

that estimates how standards change citations over the course of patents’ life, this paper tests 

hypotheses about 1) the effects of standards on patent citation intensity, 2) the effects of 

standards on reorienting knowledge utilization towards high-quality inventions, and 3) the 

heterogeneous effects of standards across the 3 technologies.  

H1. Increases in standards cause an increase in patent citations.  

H1 tests whether standards help follow-on inventors better utilize existing relevant knowledge, 

thereby supporting the dissemination of state-of-the-art technical solutions (Swann, 2000; 
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Tassey, 2000). If standards facilitate knowledge accumulation onto common paths, we should 

observe that patents exposed to greater standardization receive more citations, compared to 

similar patents exposed to lower standardization levels at similar stages of their citation lifecycle.  

H1 builds on findings from Gregoire-Zawilski and Popp (2024) and Wen and colleagues (2022) 

who estimate that standards cause patents to be more highly cited. However, these two studies 

estimate the effects of standard on patent quality at the firm-level using a static citation window, 

which does not allow to capture how standards change citations trajectories32. The contribution 

of this paper is to use an empirical model that allows to estimate how standards change citations 

over the course of patents’ lifetime.   

H2. The positive effect of standards on patent citations is concentrated in high-value patents.  

H2 provides a more direct test of the posited technological focusing effect of standards (Swann, 

2000; Tassey, 2000).  As evidence of technological focusing, we should observe that standards 

reallocate citations away from low-quality inventions and towards high-quality patents.  Such 

effect would suggest that standards help inventors identify a relevant and high-quality 

knowledge base upon which to build (Gregoire-Zawilski and Popp, 2024).  To test H2, I estimate 

the effects of standards on patents at different quantiles of the conditional distribution function.  

H3. The effect of standards on patent citations varies across different technologies.  

Finally, I posit that standards have heterogeneous effects across technologies exhibiting different 

features. The positive effect on citations will be highest in technologies that have a complex 

design, require complex and domain-specific knowledge, and present opportunities to replicate 

standardized solutions across many different user and manufacturing environments (Table 1).  

 

 

 
32 Gregoire-Zawilski and Popp (2024) use citation-weighted patent counts, using 5-year citation windows. Wenn and 
colleagues (2022) use a dummy variable that indicates whether a complementor firm had any high impact patent, 
defined as a patent in the top 5th percent of their cohort for the number of 10-year forward citations received. 
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H3a. In wind technology, standards have no effect, or a negligible effect, on patent citations. 

In wind turbine technology, a highly complex product architecture combined with a relatively 

general and simple knowledge base has allowed wind manufacturers to develop most 

components in-house or through close interactions with select suppliers. The focus is on 

optimizing complex interactions between different components of the product architecture, 

including as they interact with climatic elements in various user environments, requiring 

customized solutions. For these reasons, I posit that standards will be of little use for supporting 

knowledge accumulation and technological focusing, as most technical solutions are too 

idiosyncratic to build on knowledge acquired in other contexts. 

H3b. In solar technology, standards have a positive effect on patent citations. 

Solar PV technology is characterized by a relatively simple product architecture whose 

manufacturing is highly replicable across various contexts. I posit that standards make sector-

specific scientific knowledge more widely accessible and translate requisite lessons from other 

fields for use in the solar PV sector, enabling follow-on inventors to build on the industry’s 

accumulated knowledge and focus inventive activities towards common knowledge pathways 

that advance high-quality technical solutions widely applicable across the field.  

H3c. In smart grid technology, standards have a positive effect on patent citations.  

Smart grids have a highly intricate product architecture, comprising a constellation of 

interdependent components. These have high interoperability needs, as the different 

component are intended to be deployed across decentralized grid networks. The value of these 

inventions will come from their ability to collect, exchange, and use data in real time to digitalize 

and automate various grid operations. Developing these applications requires bringing 

knowledge from fast-moving high-tech fields into the electricity sector: areas of technology that 

are outside of the traditional expertise of this sector.  It also requires developing common 

agreement on the industry’s vision for the smart grid data architecture and on protocols needed 

to ensure compatibility between devices. In this context, standards can clarify a common 

knowledge base for the field and make relevant external and sector-specific knowledge more 
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readily accessible and usable to follow-on inventors. I posit that standards strongly support 

knowledge accumulation and technological focusing onto high-quality knowledge pathways in 

this sector. This should be evidenced by a strong positive effect of standards on patent citations, 

concentrated in the upper end of the patent quality distribution. 

2.4 Data and methods 

This paper uses data on citations between pairs of citing-cited patents as the outcome variable. 

Citation data provides information on patent quality and knowledge utilization. I combine these 

with data on the release of standard documents to measure standardization levels as the 

independent variable.  

2.4.1  Data on patent citations 

I use data on forward patent citations as an indicator of patents’ quality. Patent citations are 

useful for documenting trajectories of technological change and trends in innovative activity 

(Huenteler et al., 2016). With these data, we can track the knowledge antecedents and 

descendants of individual patents, as well as technological trajectories building upon important 

inventions (Jaffe and de Rassenfosse, 2017). Extant literature shows that these data are a reliable 

indicator of a patent’s quality, both in terms of an inventions’ contribution to advancing 

knowledge as well as its economic value (Hall et al, 2005; Trajtenberg, 1990; Jaffe and 

Rassenfosse, 2017).  Studies find that patent citations correlate with various measures of 

technological performance, such as declines in technology costs (Benson and Magee, 2015), 

assessments of an invention’s value by experts (Albert et al, 1991), and other indicators of 

commercial success (Jaffe and de Rassenfosse, 2017).  

I collect patent data using the European Patent Office’s PATSTAT database. I use the Cooperative 

Patent Classification, which identifies green technologies at a high degree of granularity, to 

sample cited patents granted in the United States in three areas of technology: smart grids 

(excluding electric vehicle grid connectivity), solar photovoltaic, and wind energy generation. The 

technology classes used to identify relevant patents are presented in Appendix C3.   
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I then track the forward citations received by these patents. These inform us on how this 

knowledge is utilized by follow-on innovation. For example, the absence of forward citations 

indicates a technological dead end, whereas forward citations across diverse technology classes 

may signal a general-purpose technology (Jaffe and de Rassenfosse, 2017). When sampling 

patent citations, I restrict the technology classes of the citing patents to the same classes as the 

cited patents because the focus of the analysis is on how standards help accumulate knowledge 

within an industry. This also controls for differences in citations within and between technologies, 

as patents in the same classes are more likely to cite each other (Jaffe and Trajtenberg, 1999) 

Additionally, I only count citations between patents that have at least one inventor located in the 

United States. This controls for home bias in citations (Jaffe and Trajtenberg, 1999) and is also 

motivated by the expectation that domestic standards are only relevant to citing patents 

developed within the United States. Appendix Table B1 nevertheless shows that results are 

robust to also counting citations between all patents granted in the United States.  I further 

exclude self-citations from the counts because patents sharing the same assignee are more likely 

to cite each other, which could create self-citation bias in the more prolific assignees (Jaffe and 

Trajtenberg, 1999) 

Finally, to assemble the data on forward citations, I begin by tracking citations across pairs of 

cited and citing patents.  I use the filing year to date these patents, because it is closest to when 

the R&D activity took place, but only include cited and citing patents that were eventually 

granted. I then compute the count of citations received by each cited patent in each subsequent 

year after the filing year until 2019.   Finally, patents classified under multiple technologies are 

assigned different counts, for citations received in each of the technology they belong to.   
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2.4.2  Data on standards  

I collect data on standards from multiple sources. For solar and wind standards, I used keyword33 

searches in the webstore search engines of the American National Standards Institute34 (ANSI) 

and the International Electrotechnical Commission (IEC).  Most standards included in the analysis 

were retrieved from these two sources, but I also searched for additional standards on the 

websites of the following ANSI-accredited standard developers: CSA America, the National 

Electrical Manufacturers Association (NEMA), the American Society of Mechanical Engineers 

(ASME), the American Society for Testing and Materials (ASTM), and the Institute of Electrical 

and Electronics Engineers (IEEE). Smart grids standards were retrieved from the Catalogue of 

Standards curated by the Smart Electric Power Alliance35. Further information on decision rules 

used for sampling standards, as well as the full list of sampled standards are available in Appendix 

C1 and C2.    

For the independent variable, I compute a stock of standards in each year/technology. I use a 

stock instead of a flow of standards because inventors likely consider the universe of existing 

standards when ascertaining which prior knowledge to build upon, and not just newly released 

standards.  The cumulative counts include standards developed by US-based and by international 

standard-setting organizations (SSOs).  The two do not usually overlap and international 

standards are globally relevant, including to inventors located in the United States. Appendix 

Table B2 shows that results are similar when only counting standards developed by US-based 

SSOs. Following Grégoire-Zawilski and Popp (2024), I count standards at the part-level. 

Furthermore, because standard-setting organizations maintain and update standards 

periodically, I assume that the sampled standards remain relevant unless explicitly withdrawn. 

Therefore, no depreciation rate is applied to the standards stocks. Additionally, in the main 

specification, standard parts are counted only in the year of their first iteration. This approach 

 
33 Keywords used include the following: wind energy, wind turbines, offshore wind, eolian, solar photovoltaic, solar 
PV, solar energy, solar power, solar panel. Standards pertaining to solar thermal collectors and solar concentrators 
were excluded from the sample.  
34 ANSI also has a directory of relevant standards by energy sector: 

https://webstore.ansi.org/industry/energy  
35 https://sepapower.org/knowledge/catalog-of-standards/  

https://webstore.ansi.org/industry/energy
https://sepapower.org/knowledge/catalog-of-standards/
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was preferred because subsequent revisions generally consist of minor updates to maintain and 

keep the standards current and should therefore not be counted as equivalent to first releases. 

Appendix Table B2 nevertheless shows that results are robust to counting revisions36. Finally, I 

assign the year of the standard release, rather than the year the technical committee initiated 

the project, because this is the date closest to when the knowledge comprised in the standard 

document became broadly available.  

2.4.3 Sample 

The sample comprises 18,044 individual patents that have at least 1 inventor located in the 

United States, for which it was possible to obtain a measure of patent originality37, to observe at 

least 3 duration years, and whose application filing year is between 2000 and 2017. These patents 

may be cited between the years 2001-201938. The unit of analysis is a cited patent, in a given 

technology and citing year. The number of years that a patent is represented in the sample varies 

by filing year39. Overall, the sample comprises 116,927 patent-technology-year observations. The 

standard count varies by technology and year. By 2019, the last year covered in the analysis, the 

stock of standards tallied up to 218 across the 3 technologies. 

Figures 2.1 and 2.2 show standard stocks and patent counts40 by year across the three 

technologies in the United States over the course of the sample period. These figures show 

important variation in the growth in standardization and in patenting activity across the three 

technologies over the sample period.  

Technologies that stand to benefit the most from standardization – smart grids and solar – have 

distinctly higher standards stocks than wind. Also, there does not appear to have strong 

 
36 Revisions were counted when these amendments were substantive: corrections and the re-publication of 
consolidated versions were not counted. 
37 Some 305 patents drop from the analysis because their originality score is missing because the CPC classes of the 
patents they cited are missing in the PATSTAT database.  
38 I stop in 2019 to avoid truncation bias, while allowing for patents filed in 2017 to have at least 1 cited year included 
in the analysis (given the 2-year lag used in the model).  
39 Patents filed in different years, have different duration. Therefore, the number of times patent appears in the 
sample is unbalanced. 
40 Those include all patents eventually granted in the United States, sorted by application year.  
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association between patenting levels and standardization levels. Smart grid technology has the 

highest stock of standards for the better part of the 2010s, despite having much lower patenting 

activity than solar. In contrast, solar experienced a boom in patenting from the late 2000s 

onwards, but slow standardization activity until the mid-2015. Relative to these two 

technologies, wind has low patenting and standardization levels throughout the sample period. 

Figure 2.1 Standards stock by technology and year 

 
Note: Figure 2.1 shows cumulative counts of standards in respective technologies by year. Cumulative counts 
represent stocks of standards available in each year. Standards are added to the count in the year they were 
released.   

Figure 2.2 Patent counts by technology and year 

 
Note: Figure 2.2 shows counts of patents in respective technology categories, sorted by application year. These 
counts only include patent applications that were eventually granted in the United States. Some patents are counted 
in more than one technology category. Counts show applications filed in each year and not cumulative counts.  
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2.4.4 Empirical strategy  

I model the citation lifecycle using a cohort model that controls for observable and unobservable 

confounders that affect the likelihood of receiving citations over the course of a patent’s life. 

Patents with different characteristics undergo different trajectories. For example, citations to 

patents by different types of assignees grow at different rates (Popp, 2017) and some sectors 

experience faster rates of technological change and knowledge decay, translating into shorter 

citation spans (Jaffe and de Rassenfosse, 2017). The model isolates those factors from the effects 

of standards, allowing to treat changes in standardization levels as plausibly exogenous. It 

leverages variation in the timing of standards across cohorts and technologies. Cohorts are 

differentially exposed to standards over the course of their life. The year-to-year change in 

standard stocks can therefore be treated as a series of exogenous shocks affecting the future 

likelihood of receiving citations. This is because the knowledge contained in a patent and its 

latent quality are fixed attributes of this invention. They are determined at the onset of a patent’s 

lifecycle and do not transform in response to changes in standardization. Only the utilization of 

this knowledge in follow-on R&D may be affected by changes in standardization. Because the 

duration year varies across different cohorts experiencing a common shock in a given calendar 

year, the model captures how these shocks cause a departure from the citation trajectory 

compared to similar patents that experience this shock in a different duration year. 

Risks of selection bias are also minimal. As we argue in Gregoire-Zawilski and Popp (2024), it is 

unlikely that a single assignee would capture the standard-setting process to position its 

proprietary technology as the industry’s standard, translating into higher citation counts. First, 

standards in the technology areas covered by this study don’t typically endorse single inventions, 

but rather provide guidelines for inter-device compatibility, measurement, and quality control. 

This is evidenced by the lack of standard-essential patents in these industries. Secondly, most 

standards included in the analysis were developed by standards-setting organizations whose 

voting members are national governments, making it unlikely that a single assignee would 

succeed at influencing the outcome of the vote (see Appendix in Gregoire-Zawilski and Popp, 

2024, for a detailed description of voting processes in these SSOs).    
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2.4.4.1 Baseline model  

I use Poisson regression to estimate the effects of standards on patent citations. I use a cohort 

model that leverages variation in the stock of standards over time and across technologies to 

isolate the effects of standards from other factors that affect citations. Patents sharing similar 

characteristics but belonging to different cohorts are differentially exposed to changes in 

standardization over the course of their life, providing the identifying variation. 

I estimate a model that controls for different characteristics of 1) the cohort, 2) the technology, 

3) the cited patent and 4) time trends affecting all patent citations. I write the baseline model as 

follows:  

𝑌𝑖𝑗𝑡𝑐𝑡𝑑𝑡𝑐𝑡𝑔
= exp (𝛽0 + 𝛽1𝑙𝑜𝑔𝑆𝑗𝑡𝑐𝑡𝑔−2

+ 𝛽2𝐷𝑡𝑐𝑡𝑔−𝑡𝑐𝑡𝑑
+𝛽3𝐷𝑡𝑐𝑡𝑔−𝑡𝑐𝑡𝑑

2

+ 𝛽4𝑃𝑗𝑡𝑐𝑡𝑑
+ 𝛽5𝑂𝑡𝑐𝑡𝑔

+𝛽6𝑙𝑜𝑔𝑀𝑗𝑡𝑐𝑡𝑔
+ β7𝑍𝑖 +  𝑇𝑐𝑡𝑔

+ 𝑇𝑐𝑡𝑔
2 + 𝑇𝑐𝑡𝑔

3 + 𝑇𝑐𝑡𝑔
4 +  𝛼𝑗 + 𝑢𝑖𝑗𝑡𝑐𝑡𝑑,𝑡𝑐𝑡𝑔

) 

In this model the subscripts ctd and ctg indicate the years in which the cited patent ctd and the 

citing patent, ctg, were respectively filed.  Cited patents enter the analysis in the year they were 

filed. Then then become eligible to receive citations the next year.  

The dependent variable Y designates the number of citations received by cited patent i belonging 

to the cohort of patents filed in year 𝑡𝑐𝑡𝑑  and in technology j. These citations are received in citing 

year 𝑡𝑐𝑡𝑔.  

The independent variables are indexed as follows:  

Main variable of interest 

• S designates the stock of standards in technology j and citing year 𝑡𝑐𝑡𝑔−2. I use the log to 

normalize across different technologies and years and to interpret coefficients as an 

elasticity.  Table B3 in the Appendix shows that results are robust to using the raw stocks 

instead of their logged transformation. I also lag this variable to avoid simultaneity bias, 
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using the second lag in the main specification 41. Appendix Table B4 shows that the results 

are robust to using the first, third and fourth lags. 

Controlling for factors affecting patent citations across different cohorts 

• D is a duration variable that designates the time that has elapsed since the patent was 

filed. It is the difference between the year of the citing patents, ctg, and the year of the 

cited patent, ctd, and represents how far along the patent is in its citation lifecycle. I enter 

this variable in the model also as a quadratic. This assumes that the baseline citation 

trajectory follows an inverse u-shape.  

• P designates the supply of patents that were filed in the same year, ctd, and technology 

class, j, as the cited patent. Following Popp (2006) and Popp and colleagues (2013), I 

include this variable to control for opportunities to be cited, which in part depend on 

competition for citations amongst patents belonging to the same cohort.   

• Opportunities to be cited also depend on the demand for knowledge. I therefore control 

for O, the number of green patents filed in citing year, ctg.  These represent the supply of 

all potentially citing patents (Popp et al., 2013).   

Controlling for factors affecting patent citations across different technologies 

• I control for unobservable factors that affect the likelihood of citations across different 

technologies using fixed effects, denoted as 𝜶𝒋. The fixed effects control for each 

technology’s baseline citation propensity.  

• The likelihood of receiving citations also changes as technologies mature. To control for 

differences in the rates of technology maturation, I include M, the stock of patents in each 

technology j and citing year ctg. Stocks represent the cumulative sum of patents granted 

in the United States since 1977 after applying a yearly 15% depreciation rate. In the main 

specification, I model technology maturation non-linearly using the log transformation of 

 
41 I use the second lag because it allows sufficient time for the standards variable to take effect, while also 
maximizing the number of observations included in the analysis 
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this variable, but Table B5 in the Appendix shows that results are robust to using simple 

stocks.   

Controlling for characteristics of the patent  

- Vector Z denotes time-invariant attributes of the cited patent i that affect its likelihood 

of receiving citations. These include:  

• The patent’s number of claims.  This proxies for the patent’s technological 

breadth. Patents with greater breadth are more likely to receive citations because 

they make a wider contribution to the advancement of knowledge and have 

greater technological and economic value (Squicciarini et al., 2013).   

• The patent’s originality. This indicates the technological diversity of the 

knowledge base used by the patent. Patents that draw on more original 

combinations of antecedents may have greater technological value and be more 

likely to receive citations.  Also, standards may be most helpful to translate 

knowledge from patents drawing on a complex and original base. I build a 

diversity measure using the technology classes comprised in the cited patents’ 

backwards citations following the methodology proposed in Squicciarini and 

colleagues (2013, p.49-52, see Appendix C4 for a description). 

• The assignee type. The sample comprises patents filed by different types of 

assignees, such as private companies, universities and government research 

laboratories. Studies show that assignee types differ in their propensity to receive 

citations, making it an important factor to account for (Jaffe and Trajtenberg, 

1996; Trajtenberg et al, 1997; Popp, 2017). 

• Finally, in the preferred specification, I do not control for unobserved patent 

characteristics. However, the results presented in Table B7 of the Appendix show 

that using a random effects model yields results similar to those from my 

preferred specification, providing reassurance that no important confounding 

factor has been omitted.  
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Controlling for factors affecting patent citations in different calendar years  

• To account for broad patterns in citations trends common to all patents and technologies 

over time, I model time non-parametrically using 4 polynomials, denoted as T (starting 

with citing year 2000=0). Table B6 in the Appendix further shows that results are robust 

to using 3-year fixed effects to model time trends 42.  

2.4.4.2  Quantile regressions 

The baseline Poisson model presented in the previous section estimates the conditional mean 

effect of the explanatory variables.  It does not provide insights into how standards affect 

citations across different regions of the conditional distribution.  Patent data are highly skewed, 

as most patents are never cited (Trajtenberg, 2000; Egger et al., 2016). Therefore, conditional 

mean estimates provide a poor representation of the effects of standards on patents located at 

the extremes of the distribution (Koenker and Hallock, 2001; Hao and Naiman, 2007). These 

regions are of core interest to my analysis: if standards lead to technological focusing, we should 

observe that increases in citations are concentrated in the upper quantiles, where high-value 

patents are located.  

To garner evidence of technological focusing (H2), I use quantile regressions to obtain estimates 

for different quantiles of the conditional distribution43. Quantile regressions sort patents into 

different regions of the distribution of regression residuals. In the context of citations data, I 

interpret residuals as providing information on the latent quality of these patents. Patents that 

have a high positive residual receive many more citations than predicted based on their observed 

characteristics (Popp et al., 2013). To accommodate count data, I employ a jittering approach 

 
42 Three-year fixed effects are used, because single-year fixed effects are collinear with the other market trend 
variables included in the model, which are preferred because they provide more information and cross-technology 
variation than single-year fixed effects would. 
43 Quantile analysis obtains regressions estimates using OLS, but through centering the solution of the minimization 
problem around a specified quantile rather than the mean (Koenker and Hallock, 2001). Because observations 
located on either side of a quantile are unbalanced (other than for the median), minimization is performed after 
weighting the sum of squared errors to accommodate this imbalance (Koenker and Hallock, 2001). 
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proposed by Machado and Santos Silva (2005, also used with citations data in Popp et al., 2013, 

and Kelchtermans and Veugelers, 2011)44. 

Quantile regression analysis presents many advantages when working with skewed patent 

citations data: estimation is more robust to the presence of outliers, it better accommodates 

heteroskedasticity and it is useful for investigating (re)-distributive issues, such as the 

technological focusing phenomenon investigated in this paper (Koenker and Hallock, 2001; Hao 

and Naiman, 2007). Previous studies using similar data have leveraged this method to investigate 

the returns to R&D in the green energy innovation sector (Popp et al., 2013), the determinants 

of scientific productivity in highly prolific researchers (Kelchtermans and Veugelers, 2011) and 

the effects of R&D on firms’ innovation performance (Ebersberger et al., 2010).   

2.5 Results 

In this section, I only discuss the main coefficients of interest. Tables A1-A3 in the Appendix 

display the full results, showing that coefficients for the control variables behave as expected. 

Summary statistics are presented in Table 2.2 and results from the regression analyses are 

presented in Tables 2.3-2.5.  

Table 2.3 first presents results for the baseline model, which estimates effects on the full sample, 

alongside results from a model that interacts the standards stocks with the technology variable45. 

Results from the baseline model show that an increase of 10% in the stock of standards increases 

citations by 6% on average. This confirms that standards increase knowledge utilization by follow-

on invention (H1).  When including interactions in the model, I find important heterogeneity 

across the different technologies, as hypothesized in H3.  The positive effect of standards is driven 

 
44 This approach generates a random variable, uncorrelated with the dependent and independent variables, that is 
uniformly distributed between 0 and 1. This random variable is then added to the discrete citations counts, to 
artificially smooth the dependent variable and lend it to quantile estimation.  This approach draws the random 
variable 100 times to create an average of the “jittered” sample. Other studies using patent citations to analyse the 
value of green energy patents and scientific production have also used this jittering method (Popp et al., 2013; 
Kelchtermans and Veugelers, 2011).  
45 This allows to estimate the heterogeneous effects of standards across the different technologies, while also 
continuing to leverage cross-technology and cross-cohort variation to estimate the parameters.  
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by smart grids patents, whose citations increase by 4.3% when the stock of standard increases 

by 10%, while the effect is negative in solar and wind patents, with declines of 4.5% and 13% 

respectively.  

These heterogeneous effects accord with the theoretical expectations outlined in Section 2.3 

about differences in these technologies’ attributes and their respective needs for 

standardization. Smart grid technology has an intricate product architecture and draws on a 

highly specific and complex knowledge base outside of the traditional expertise of the electricity 

sector. For smart grids, standards clarify a common technological framework and help identify 

and translate relevant knowledge for the industry. Results in Table 2.4 further show that, in this 

technology, standards have a strong positive effect across all quantiles of the distribution, with 

the largest coefficient at the 90th quantile.  These results confirm that in this technology 

standards broadly help follow-on inventors build on existing knowledge, while also focusing 

inventive activity onto high-value trajectories.   

The technological focusing effect is starkest in solar PV patents. While the effect of standards on 

citations in solar PV patents is negative in the pooled model, the quantile regression analysis 

reveals notable differences across the distribution, with statistically insignificant effects of lower 

magnitudes in the bottom quantiles and a strong and statistically significant effect in the top 

quantile. This provides evidence that standards reallocate the bulk of the increase in citations 

towards high-quality patents. These results align with theoretical expectations for the 

characteristics of solar PV technology. The relatively simple product architecture and low 

customization needs enable the replicability of technical solutions. Standards support the 

widescale uptake of high-quality solutions. As the industry converges on adopting these 

solutions, it may also abandon en masse other technological paths. In addition to Table 2.4, Figure 

2.3 visualizes the distribution of regression coefficients across the different technologies and 

quantiles. It shows a steeper upward curve in solar technology, illustrating that the bulk of the 

increase in citation is occurring in these upper quantiles
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Table 2.2 Summary statistics 
  Mean Std. Dev. Min. Max. Obs.   Obs. 

All technologies       

  Citation count 0.37 1.37 0 35 116,927   Assignee type   
  Standards stock 63.12 24.59 12 95 116,927           Academic 8,359 
  Duration 6.88 3.46 3 19 116,927           Company 89,273 
  Patent originality 0.87 0.13 0 1 116,927           Company-univ. 623 
  Number of claims 20.11 13.23 0 170 116,927           Government 1,690 
  Tech. maturity  7,553.14 3,851.24 538 12,739 116,927           Individual 13,662 

  Opp. to be cited (ctd) 1,021.55 742.99 74 2,462 116,927 
          Other 
partnership 246 

  Opp. to be cited (ctg) 23,061.29 5,195.13 10,562 28,211 116,927           Unknown 3,074 

Smart grids       

  Citation count 0.44 1.68 0 35 33,672   Assignee type   
  Standards stock 76.45 16.81 16 86 33,672           Academic 551 
  Duration 6.97 3.59 3 19 33,672           Company 30,016 
  Patent originality 0.90 0.11 0 1 33,672           Company-univ. 56 
  Number of claims 22.52 14.32 1 170 33,672           Government 430 
  Tech. maturity 4,362.73 1,303.53 841 5,411 33,672           Individual 2,064 

  Opp. to be cited (ctd) 554.95 351.22 121 1,105 33,672 
          Other 
partnership 17 

  Opp. to be cited (ctg)  22,832.27 5,266.35 10,562 28,211 33,672           Unknown 538 
Solar photovoltaic       

  Citation count 0.37 1.33 0 33 60,689   Assignee type   
  Standards stock 68.44 20.91 27 95 60,689           Academic 7,324 
  Duration 6.83 3.42 3 19 60,689           Company 45,128 
  Patent originality 0.85 0.13 0 1 60,689           Company-univ. 562 
  Number of claims 19.71 13.49 0 169 60,689           Government 1,130 
  Tech. maturity  10,658.44 2,704.75 1,952 12,739 60,689           Individual 5,214 

  Opp. to be cited (ctd)  1,435.09 777.14 338 2,462 60,689 
          Other 
partnership 226 

  Opp. to be cited (ctg) 23,117.33 5,186.84 10,562 28,211 60,689           Unknown 1,105 

Wind turbines       

  Citation count 0.28 0.81 0 24 22,566   Assignee type   
  Standards stock 28.90 4.95 12 37 22,566           Academic 484 
  Duration 6.88 3.37 3 19 22,566           Company 14,129 
  Patent originality 0.86 0.13 0 1 22,566           Company-univ. 5 
  Number of claims 17.58 9.76 1 127 22,566           Government 130 
  Tech. maturity  3,962.34 791.91 538 4,515 22,566           Individual 6,384 

  Opp. to be cited (ctd) 605.61 307.07 74 964 22,566 
          Other 
partnership 3 

  Opp. to be cited (ctg)  23,252.33 5,097.85 10,562 28,211 22,566           Unknown 1,431 
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Table 2.3 Average effect of standards and effects by technology 

  Baseline Tech. effects 

      

Standard 0.600***   

  (0.095)   

Smart grids # standards   0.429*** 

    (0.100) 

Solar # standards   -0.445*** 

    (0.123) 

Wind # Standards   -1.333*** 

    (0.172) 

      

Observations 116,927 116,927 

Pseudo R-squared 0.0991 0.102 
Note: Robust standard errors are clustered at the patent level. The reference category for the technology fixed 
effects is smart grids. The reference category for the assignee fixed effect is private companies. *** p<0.01,            
** p<0.05, * p<0.1 

 
Finally, I find a consistently strong negative effect in wind patents, suggesting that standards slow 

down knowledge accumulation. While the strength and significance of this result is surprising – 

H3 predicted that the effect in wind would be negligible – it may be explained by the type of 

standardization activity pursued in this sector. Wind technology is more mature and has lower 

standardization needs, given its relatively simple product architecture and knowledge base 

(Malhotra and Schmidt, 2020). Component compatibility and calibration has been achieved 

through other means such as vertical integration and close interaction with suppliers (Hueneter 

al et al, 2016a; Malhotra et al, 2019). It may be that in these later stages of technology 

maturation, standards address issues – such as safety, engineering integrity and noise 

externalities - that require looking inwards to innovate incrementally and develop customized 

solutions, rather than building on technology developed by others. While there is a discernable 

slowdown in R&D activity in this sector during the sample period, as wind technology matures 

(Fig. 2.2), results show that after controlling for technology-specific time trends, standards cause 

a generalized decline in citations in wind patents.  

 



 128 

Table 2.4 Effect by quantile, tech. effects model 

  Mean Q10 Q25 Q50 Q75 Q90 

        
Smart grids # std 0.429*** 0.502*** 0.449*** 0.352** 0.511*** 0.636*** 
  (0.100) (0.092) (0.077) (0.142) (0.116) (0.124) 
Solar # std -0.445*** 0.225 0.125 -0.063 0.095 0.586*** 
  (0.123) (0.145) (0.118) (0.198) (0.161) (0.173) 
Wind # std -1.333*** -0.752*** -0.885*** -0.845** -0.920*** -0.667** 
  (0.172) (0.17) (0.146) (0.347) (0.276) (0.293) 
        
Observations 116927 116927 116927 116927 116927 116927 
Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

Figure 2.3 Quantile results, baseline and tech. effects models 

 

In a final analysis, I interact the standards variable with the originality variable. This enables me 

to test if standards have a stronger positive effect in patents that draw on a more complex 

knowledge base. The originality measure is constructed using the technology classes of the cited 

patents’ backward citations: patents that are more original recombine knowledge from diverse 

fields.  Results presented in Table 2.5 confirm that the effect of standards increases as patent 
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originality rises. This provides strong evidence that standards facilitate knowledge utilization 

when the knowledge base is complex.  Furthermore, results from the pooled model show that 

this effect is concentrated in smart grid technology, aligning with expectations for this technology 

as it is characterized by a relatively complex and interdisciplinary knowledge base.     

Table 2.5 Effect of interaction of standards and patent originality 

  Baseline (orig.) Pooled (orig.) 

      
Standards # originality 0.729***   
  (0.123)   
Standards # orig. (smart grids)   0.538*** 
    (0.104) 
Standards # orig. (solar)   -0.265 
    (0.271) 
Standards # orig. (wind)   -0.222 
    (0.337) 
      
Observations 116,927 116,927 
Pseudo R-squared 0.0996 0.104 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

Results presented in Tables 2.3, 2.4, 2.5 and in Figure 2.3 show that standards increase forward 

patent citations overall, but these effects vary across technologies. Standards are most helpful in 

facilitating knowledge utilization when technologies have intricate design architectures, draw on 

a complex knowledge base, or have greater opportunities to utilize standardized solutions across 

the industry. Results from the quantile regressions unambiguously show that standards cause 

technological focusing in solar PV technology, and to a lesser extent, in smart grids. Coefficients 

for the interaction between standards and patent originality provide strong evidence that 

standards are most useful in aiding knowledge translation and utilization when this knowledge is 

complex.  

Furthermore, these results are robust to using different model specifications and measurement 

of the main variables, providing reassurance that my findings are not driven by arbitrary research 

decisions. Tables 2.B1-2.B7 in the Appendix show results 1) when including citing patents by all 

inventors, 2) when including revisions in the stock of standards and when excluding international 
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standards from this variable, 3) when estimating the effects of standards as a semi-elasticity, 4) 

when using the first, third and fourth lag of the standards variable, 5) when modelling technology 

maturity using the stock of standards instead of its logged transformation, 6) when using 3-year 

fixed effects to control for time trends, and 7) when controlling for potential unobserved 

confounding factors using a random effects model.  

2.6 Discussion and conclusion  

Overall, my results show that standards help inventors better utilize pre-existing knowledge: not 

only do patent citations increase, but this increase is greater in high-quality inventions. I find that 

standards have a stronger positive effect on citations in inventions that recombine knowledge 

from diverse fields: this shows that standards help follow-on inventors utilize knowledge that is 

particularly complex. My analysis also reveals important heterogeneity across technologies that 

differ greatly in generalizable characteristics such as design and knowledge base complexity, 

providing important insights about when standards are most helpful to steer innovation towards 

common high-quality trajectories. In short, while knowledge is a public good, there are important 

barriers to accessing and using it. My findings show that standards help overcome those. 

These findings nuance contentious debates in the literature about the benefits and drawbacks of 

standards. They show that to understand the full scope of their impacts, we must look beyond 

their effects on patenting levels. That standards cause a decline in patenting, as we find in 

Gregoire-Zawilski and Popp (2024), is not necessarily deleterious to innovation. I find that this 

drop occurs in concert with a shift towards more focused and high-quality innovation trajectories.  

As far as I am aware, this study is the first to offer a detailed investigation into how standards 

shape patent citation trajectories, complementing findings that standards steer innovation onto 

more incremental pathways (Foucard and Li, 2021; Clougherty and Grajet, 2023) and support 

technological convergence across industries (Blind and Gauch, 2015). My study therefore 

contributes rich insights for advancing understanding of the complex interplay between 

standards and innovation, and cautions against hastily concluding that drops in inventive activity 

are a symptom of technology lock-in. Overusing examples of “locked-in” inferior technologies, 

such as the QWERTY keyboard and the VHS videotape, detracts from more constructive 
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discussions on understanding tradeoffs when designing standardization policy. Given the urgency 

of addressing complex wicked problems in the climate arena and beyond, focusing the research 

community’s efforts on promising solutions and accelerating knowledge accumulation in those 

directions may outweigh concerns of technology lock-in, even when it means abandoning 

research avenues that could eventually yield valuable scientific breakthroughs but under more 

uncertain time horizons.   

Answering calls to advance understanding of the relationship between standards and innovation 

to inform the planning and management of standards (Ho and O’Sullivan, 2018; Tassey, 2015; 

Featherston et al., 2016), this study more specifically provides insights for practitioners on two 

themes: 1) considering the stage of technology maturity, and 2) considering the attributes of 

different technologies.  

Considering technology maturity is a chief concern for informing policy decisions about 

standardization. Extant literature suggests that standards play an important role in the 

technology maturation and creative destruction process (Tassey, 2015). For example, building on 

the typology offered by Sherif (2001), Ho and O’Sullivan (2018) examine how standards in the 

solar PV sector have evolved through recurring cycles of anticipatory-participatory-responsive 

standards as the industry sequentially tackled different technical challenges, from improving the 

efficiency of solar cells, to that of solar modules, and later, the performance of PV systems. This 

reinforces evidence that different types of standards are needed at different stages of technology 

maturation (Blind and Gauch, 2009).   My study contributes complementary evidence by 

highlighting how standards give directionality and focus to technological change, further 

stressing the need to consider technology maturity since this narrowing of inventive activities 

may not be desirable in the early stages.  

Finally, different standardization strategies should not only consider the stage of technology 

development, but also the attributes of the technologies themselves. My study illuminates 

heterogeneity in the effects of standards across technologies that differ appreciably in their 

characteristics. I find that standards have a strong positive effect across all quantiles of the smart 

grid distribution, a technology characterized by cross-disciplinarity and a complex decentralized 
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architecture. This adds complementary evidence to extant literature, about the benefits of 

standards for mitigating technological and market uncertainty, especially in complex 

technological platforms and networked technologies (Blind, Peterson and Riillo, 2016).  Findings 

for the smart grid case, in particular, have high generalizability and broad relevance in a context 

where major sectors of our economies are undergoing similar digital transformations that require 

integrating external knowledge of digital technologies to develop industry-specific applications. 

My findings also provide important insights for many emerging areas of green technologies that 

combine interdisciplinary knowledge and are in need to coordinate the R&D efforts of suppliers 

developing different components. In many cases, coordination is unlikely to occur through 

markets or vertical integration fast enough to confront the climate emergency. Policy makers 

should consider prioritizing standardization in those areas. Examples of such technologies include 

bioplastics and hydrogen. Bioplastics require specific advances in fundamental science in fields 

that include chemistry, materials sciences, and bioengineering, as well as the development of 

complex manufacturing processes. Hydrogen has similar features, it draws on knowledge from 

multiple fields that include chemical engineering, materials sciences, and electrical engineering 

and face similar interoperability challenges in developing infrastructure and processes for 

blending, storing, and distributing hydrogen (Cammeraat et al, 2022). Bioplastics and hydrogen 

therefore exhibit similar characteristics to smart grids, and lessons from my study may therefore 

generalize to these technologies.  

A final aspect that is critical for informing sound standardization policy but is left to future 

research due to the data limitations of this study, is discerning between the effects of standards 

on technology development and technology adoption. It may be that the strongest effects of 

standards are in supporting the deployment of technologies. The potential for standards to help 

technologies reach markets faster is of high interest to policy makers (European Commission, 

2011), and future research should bridge this gap in knowledge though studying the effects of 

standards in the commercialization and deployment stages of innovation. 
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Appendix 2.A Full Results 
Table 2.6 Average effect of standards and effects by technology 

  Baseline Pooled 

Standard 0.600***   

  (0.095)   

Smart grids # standards   0.429*** 

    (0.100) 

Solar # standards   -0.445*** 

    (0.123) 

Wind # Standards   -1.333*** 

    (0.172) 

Duration 0.244*** 0.259*** 

  (0.016) (0.017) 

Duration squared -0.006*** -0.006*** 

  (0.001) (0.001) 

Patent originality 0.187 0.204 

  (0.260) (0.261) 

Patent claims 0.006*** 0.006*** 

  (0.002) (0.002) 

Assignee: academic -1.000*** -1.001*** 

  (0.097) (0.097) 

Assignee: company university -0.142 -0.143 

  (0.695) (0.695) 

Assignee : government 0.124 0.123 

  (0.189) (0.189) 

Assignee: individual 0.211*** 0.202** 

  (0.080) (0.080) 

Assignee : other partnerships -1.787*** -1.793*** 

  (0.422) (0.421) 

Assignee : unknown 0.417*** 0.420*** 

  (0.106) (0.107) 

Technology: solar -1.913*** 2.408*** 

  (0.176) (0.429) 

Technology : wind 0.093 5.510*** 

  (0.106) (0.480) 

Technology maturity 2.215*** 1.109*** 

  (0.183) (0.191) 

Patents in cited year 0.000 0.000 

  (0.000) (0.000) 

Patents in citing year 0.000 0.000 

  (0.000) (0.000) 

Time 2.739*** 2.066*** 

  (0.341) (0.301) 

Time^2 -0.417*** -0.277*** 

  (0.050) (0.044) 

Time^3 0.022*** 0.013*** 

  (0.003) (0.003) 

Time^4 -0.000*** -0.000*** 

  (0.000) (0.000) 

Observations 116,927 116,927 

Pseudo R-squared 0.0991 0.102 

Robust standard errors are clustered at the patent level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 2.7 Effect by quantile, baseline model 

  Baseline Q10 Q25 Q50 Q75 Q90 

Standard 0.600*** 0.576*** 0.574*** 0.536*** 0.627*** 0.681*** 
  (0.095) (0.080) (0.070) (0.066) (0.110) (0.123) 
Duration 0.244*** 0.221*** 0.234*** 0.217*** 0.289*** 0.258*** 
  (0.016) (0.013) (0.012) (0.011) (0.018) (0.020) 
Duration squared -0.006*** -0.006*** -0.006*** -0.005*** -0.008*** -0.005*** 
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Patent originality 0.187 0.398*** 0.363*** 0.375*** 0.266** 0.802*** 
  (0.260) (0.078) (0.069) (0.066) (0.108) (0.124) 
Patent claims 0.006*** 0.005*** 0.006*** 0.005*** 0.008*** 0.009*** 
  (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 
Assignee: academic -1.000*** -0.787 -0.678*** -0.648*** -0.898*** -1.131*** 
  (0.097) (60861.207) (0.046) (0.041) (0.053) (0.061) 
Assignee: company university -0.142 -4.483 -2.909 -1.276 -0.426** -1.343*** 
  (0.695) (3417172.747) (4080368.932) (3572886.025) (0.183) (0.208) 
Assignee : government 0.124 0.101 0.076 0.100 0.006 -0.049 
  (0.189) (0.077) (0.068) (0.062) (0.112) (0.127) 
Assignee: individual 0.211*** 0.251*** 0.251*** 0.236*** 0.303*** 0.361*** 
  (0.080) (0.027) (0.026) (0.025) (0.043) (0.049) 
Assignee : other partnerships -1.787*** -5.834 -5.170 -4.414 -1.197*** -1.485*** 
  (0.422) (5277882.674) (7734533.373) (8324294.572) (0.290) (0.327) 
Assignee : unknown 0.417*** 0.612*** 0.624*** 0.547*** 0.656*** 0.512*** 
  (0.106) (0.040) (0.039) (0.039) (0.085) (0.097) 
Technology: solar -1.913*** -1.290*** -1.389*** -1.252*** -1.883*** -1.385*** 
  (0.176) (0.160) (0.144) (0.136) (0.227) (0.259) 
Technology : wind 0.093 0.753*** 0.742*** 0.666*** 0.677*** 0.373*** 
  (0.106) (0.076) (0.067) (0.063) (0.106) (0.120) 
Technology maturity 2.215*** 1.619*** 1.718*** 1.561*** 2.250*** 1.885*** 
  (0.183) (0.169) (0.153) (0.145) (0.243) (0.279) 
Patents in cited year 0.000 0.000*** 0.000*** 0.000*** 0.000*** -0.000*** 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Patents in citing year 0.000 0.000 0.000 0.000 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Time 2.739*** 1.564*** 1.656*** 1.537*** 2.043*** 1.858*** 
  (0.341) (0.327) (0.276) (0.259) (0.405) (0.476) 
Time^2 -0.417*** -0.257*** -0.277*** -0.258*** -0.343*** -0.305*** 
  (0.050) (0.048) (0.041) (0.039) (0.062) (0.073) 
Time^3 0.022*** 0.013*** 0.015*** 0.014*** 0.018*** 0.016*** 
  (0.003) (0.003) (0.003) (0.003) (0.004) (0.005) 
Time^4 -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000** 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Observations 116,927 116,927 116,927 116,927 116,927 116,927 
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Table 2.8 Effect by quantile, pooled model 

  Pooled Q10 Q25 Q50 Q75 Q90 
Smart grids # standards 0.429*** 0.502*** 0.449*** 0.352** 0.511*** 0.636*** 
  (0.100) (0.092) (0.077) (0.142) (0.116) (0.124) 
Solar # standards -0.445*** 0.225 0.125 -0.063 0.095 0.586*** 
  (0.123) (0.145) (0.118) (0.198) (0.161) (0.173) 
Wind # Standards -1.333*** -0.752*** -0.885*** -0.845** -0.920*** -0.667** 
  (0.172) (0.170) (0.146) (0.347) (0.276) (0.293) 
Duration 0.259*** 0.233*** 0.232*** 0.190*** 0.279*** 0.274*** 
  (0.017) (0.014) (0.012) (0.023) (0.018) (0.020) 
Duration squared -0.006*** -0.006*** -0.006*** -0.004*** -0.007*** -0.006*** 
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Patent originality 0.204 0.421*** 0.355*** 0.694*** 0.259** 0.870*** 
  (0.261) (0.080) (0.068) (0.139) (0.111) (0.123) 
Patent claims 0.006*** 0.006*** 0.006*** 0.005*** 0.008*** 0.009*** 
  (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 
Assignee: academic -1.001*** -0.808 -0.670*** -0.634*** -0.743*** -1.144*** 
  (0.097) (66036.614) (0.046) (0.068) (0.055) (0.060) 
Assignee: company university -0.143 -4.854 -2.899 -0.213 -1.254*** -1.391*** 
  (0.695) (3463597.589) (3860667.575) (0.234) (0.189) (0.205) 
Assignee : government 0.123 0.118 0.087 0.201 0.141 0.006 
  (0.189) (0.077) (0.067) (0.143) (0.116) (0.125) 
Assignee: individual 0.202** 0.255*** 0.242*** 0.235*** 0.265*** 0.296*** 
  (0.080) (0.028) (0.026) (0.056) (0.045) (0.049) 
Assignee : other partnerships -1.793*** -6.373 -4.986 -19.109*** -1.199*** -0.924*** 
  (0.421) (5575598.524) (7436307.504) (0.372) (0.300) (0.322) 
Assignee : unknown 0.420*** 0.631*** 0.609*** 0.532*** 0.654*** 0.429*** 
  (0.107) (0.041) (0.039) (0.109) (0.088) (0.096) 
Technology: solar 2.408*** 0.445 0.610* 1.160* 0.888* -0.108 
  (0.429) (0.416) (0.343) (0.652) (0.528) (0.572) 
Technology : wind 5.510*** 4.658*** 4.843*** 4.282*** 5.139*** 4.427*** 
  (0.480) (0.426) (0.361) (0.934) (0.743) (0.790) 
Technology maturity 1.109*** 0.888*** 0.887*** 0.650* 0.941*** 0.715** 
  (0.191) (0.197) (0.168) (0.366) (0.296) (0.329) 
Patents in cited year 0.000 0.000*** 0.000*** 0.000 0.000*** -0.000*** 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Patents in citing year 0.000 0.000* 0.000 0.000 0.000 0.000** 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Time 2.066*** 1.331*** 1.214*** 1.153** 0.788* 1.347*** 
  (0.301) (0.338) (0.262) (0.504) (0.419) (0.479) 
Time^2 -0.277*** -0.191*** -0.180*** -0.168** -0.111* -0.193*** 
  (0.044) (0.049) (0.039) (0.079) (0.065) (0.074) 
Time^3 0.013*** 0.009*** 0.009*** 0.008 0.004 0.009* 
  (0.003) (0.003) (0.003) (0.005) (0.004) (0.005) 
Time^4 -0.000*** -0.000** -0.000** -0.000 -0.000 -0.000 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
              
Observations 116,927 116,927 116,927 116,927 116,927 116,927 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 2.9 Results for technology originality, new entrants and incumbents 

  Baseline (orig.) Pooled (orig.) 
      
Standards     
      
Standards # originality 0.729***   
  (0.123)   
Standards # orig. (smart grids)   0.538*** 
    (0.104) 
Standards # orig. (solar)   -0.265 
    (0.271) 
Standards # orig. (wind)   -0.222 
    (0.337) 
Patent originality -2.512*** 0.691 
  (0.405) (1.064) 
Duration 0.241*** 0.266*** 
  (0.016) (0.018) 
Duration squared -0.006*** -0.006*** 
  (0.001) (0.001) 
Patent claims 0.006*** 0.006*** 
  (0.002) (0.002) 
Assignee: academic -1.002*** -0.993*** 
  (0.097) (0.096) 
Assignee: company university -0.144 -0.125 
  (0.695) (0.684) 
Assignee : government 0.126 0.119 
  (0.188) (0.187) 
Assignee: individual 0.203** 0.199** 
  (0.080) (0.082) 
Assignee : other partnerships -1.788*** -1.803*** 
  (0.421) (0.429) 
Assignee : unknown 0.414*** 0.422*** 
  (0.106) (0.106) 
Technology: solar -1.795*** 1.190 
  (0.190) (1.065) 
Technology : wind 0.119 2.180** 
  (0.123) (0.925) 
Technology maturity 2.102*** 1.763*** 
  (0.192) (0.275) 
Patents in cited year 0.000 0.000 
  (0.000) (0.000) 
Patents in citing year 0.000 0.000 
  (0.000) (0.000) 
Time 2.663*** 2.466*** 
  (0.341) (0.352) 
Time^2 -0.402*** -0.359*** 
  (0.050) (0.055) 
Time^3 0.021*** 0.018*** 
  (0.003) (0.003) 
Time^4 -0.000*** -0.000*** 
  (0.000) (0.000) 
      
Observations 116,927 116,927 
Pseudo R-squared 0.0996 0.104 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 2.B Robustness analyses 

Appendix 2.B.1 Including all inventors 

Table 2.10 presents results for models that vary the sample of citing patents included in the 

citation counts. The main specification restricts the cited and citing patents to ones that have at 

least one inventor located in the United States. This excludes most inventions that were 

developed elsewhere by foreign inventors and were eventually filed in the United States as their 

secondary market. This allows to only count citations by patents that are comparable in their 

targeted primary market, since patents by inventors from the same market are more likely to cite 

each other. Furthermore, this allows to only include in the analysis citing patents that are directly 

affected by the standards included in the scope of the analysis, as those are restricted to 

standards relevant to the USA market.  As expected, the coefficients for the standards variable 

are stronger in the main model that only includes citations by USA-based inventors, as this is the 

subsample of citing patents for which the sampled standards are most relevant.
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Table 2.10 Effects of standards on citations by all inventors 

  Baseline Baseline (all inv.) Pooled Pooled (all inv.) 
Standard 0.600*** 0.326***     
  (0.095) (0.071)     
Smart grids # standards     0.429*** 0.193*** 
      (0.100) (0.071) 
Solar # standards     -0.445*** -0.209** 
      (0.123) (0.085) 
Wind # Standards     -1.333*** -1.430*** 
      (0.172) (0.113) 
Duration 0.244*** 0.265*** 0.259*** 0.267*** 
  (0.016) (0.012) (0.017) (0.013) 
Duration squared -0.006*** -0.006*** -0.006*** -0.007*** 
  (0.001) (0.001) (0.001) (0.001) 
Patent originality 0.187 0.366** 0.204 0.364** 
  (0.260) (0.165) (0.261) (0.164) 
Patent claims 0.006*** 0.010*** 0.006*** 0.010*** 
  (0.002) (0.001) (0.002) (0.001) 
Assignee: academic -1.000*** -0.650*** -1.001*** -0.653*** 
  (0.097) (0.089) (0.097) (0.089) 
Assignee: company university -0.142 -0.666 -0.143 -0.680 
  (0.695) (0.502) (0.695) (0.504) 
Assignee : government 0.124 -0.254** 0.123 -0.257** 
  (0.189) (0.127) (0.189) (0.127) 
Assignee: individual 0.211*** 0.188*** 0.202** 0.171*** 
  (0.080) (0.064) (0.080) (0.065) 
Assignee : other partnerships -1.787*** -1.018*** -1.793*** -1.021*** 
  (0.422) (0.284) (0.421) (0.285) 
Assignee : unknown 0.417*** 0.326*** 0.420*** 0.319*** 
  (0.106) (0.084) (0.107) (0.085) 
Technology: solar -1.913*** -1.671*** 2.408*** 0.782*** 
  (0.176) (0.115) (0.429) (0.298) 
Technology : wind 0.093 0.395*** 5.510*** 5.382*** 
  (0.106) (0.078) (0.480) (0.315) 
Technology maturity 2.215*** 1.989*** 1.109*** 0.985*** 
  (0.183) (0.125) (0.191) (0.118) 
Patents in cited year 0.000 0.000 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) 
Patents in citing year 0.000 0.000*** 0.000 0.000*** 
  (0.000) (0.000) (0.000) (0.000) 
Time 2.739*** 1.753*** 2.066*** 1.059*** 
  (0.341) (0.252) (0.301) (0.217) 
Time^2 -0.417*** -0.293*** -0.277*** -0.152*** 
  (0.050) (0.036) (0.044) (0.031) 
Time^3 0.022*** 0.015*** 0.013*** 0.006*** 
  (0.003) (0.002) (0.003) (0.002) 
Time^4 -0.000*** -0.000*** -0.000*** -0.000 
  (0.000) (0.000) (0.000) (0.000) 
          
Observations 116,927 246,562 116,927 246,562 
Pseudo R-squared 0.0991 0.104 0.102 0.106 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 2.B.2 Alternative counts of standards 

Table 2.11 shows results for alternative measurements of the standards variable. The main 

specification uses the first release of standards developed by USA-based and international 

standard-setting organizations (SSOs). This assumes that the first release of a standard is the 

most relevant for informing follow-on invention. It also assumes that standards developed by 

international SSOs are broadly relevant across different country markets, including the United 

States. Alternative specifications show results when including revisions into these standards 

stocks, as well as when limiting the stocks to standards released by USA-based SSOs (i.e., 

excluding international standards), counting both the first releases only, as well revisions. The 

model that includes international standards in the scope of the analysis yields higher coefficients, 

which confirms the relevance of these standards in the United States market and validates the 

decision to include them in the analysis. While standards revisions were excluded in the main 

specification, they also appear relevant, since the models that includes them in the counts also 

yield higher estimates. It could be that the frequent updating of standards sends a signal to the 

market that these updates are highly relevant and current.   
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Table 2.11 Effects of different measures of the standards variable 

  
USA-Int 

First (Baseline) 
USA-Int  

First + revisions 
USA  
First 

USA 
First + revisions 

Standards  0.600*** 1.036*** 0.496*** 0.590*** 
  (0.095) (0.114) (0.052) (0.057) 
Duration 0.244*** 0.255*** 0.259*** 0.259*** 
  (0.016) (0.016) (0.016) (0.016) 
Duration squared -0.006*** -0.006*** -0.006*** -0.006*** 
  (0.001) (0.001) (0.001) (0.001) 
Patent originality 0.187 0.195 0.199 0.200 
  (0.260) (0.261) (0.261) (0.261) 
Patent claims 0.006*** 0.006*** 0.006*** 0.006*** 
  (0.002) (0.002) (0.002) (0.002) 
Assignee: academic -1.000*** -1.001*** -1.001*** -1.001*** 
  (0.097) (0.097) (0.096) (0.096) 
Assignee: company university -0.142 -0.140 -0.138 -0.139 
  (0.695) (0.694) (0.693) (0.694) 
Assignee : government 0.124 0.123 0.121 0.122 
  (0.189) (0.189) (0.189) (0.189) 
Assignee: individual 0.211*** 0.208*** 0.208*** 0.206** 
  (0.080) (0.080) (0.080) (0.080) 
Assignee : other partnerships -1.787*** -1.789*** -1.789*** -1.791*** 
  (0.422) (0.421) (0.422) (0.421) 
Assignee : unknown 0.417*** 0.420*** 0.422*** 0.421*** 
  (0.106) (0.106) (0.106) (0.106) 
Technology: solar -1.913*** -1.270*** -1.718*** -1.562*** 
  (0.176) (0.182) (0.157) (0.158) 
Technology : wind 0.093 0.401*** 0.781*** 0.653*** 
  (0.106) (0.115) (0.144) (0.124) 
Technology maturity 2.215*** 1.299*** 2.050*** 1.478*** 
  (0.183) (0.203) (0.168) (0.178) 
Patents in cited year 0.000 0.000 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) 
Patents in citing year 0.000 0.000** 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) 
Time 2.739*** 1.855*** 2.446*** 1.862*** 
  (0.341) (0.337) (0.322) (0.327) 
Time^2 -0.417*** -0.279*** -0.369*** -0.279*** 
  (0.050) (0.050) (0.047) (0.048) 
Time^3 0.022*** 0.013*** 0.019*** 0.014*** 
  (0.003) (0.003) (0.003) (0.003) 
Time^4 -0.000*** -0.000*** -0.000*** -0.000*** 
  (0.000) (0.000) (0.000) (0.000) 
          
Observations 116,927 116,927 116,927 116,927 
Pseudo R-squared 0.0991 0.100 0.101 0.101 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 2.B.3 Simple count of citations (semi-elasticity) 

Table 2.12 shows results for the main specification, interpreted as an elasticity, alongside a model 

that uses the simple stock of standards, whose coefficient may be interpreted as a semi-elasticity. 

As expected, the coefficient is lower in the semi-elasticity model. This is due to the magnitude of 

this variable: the stock grows from 5 to 86 standards for smart grids, from 26 to 95 for solar, and 

from 11 to 37 for wind over the course of the sample period. Therefore, in all years and 

technologies covered in the analysis the addition of one standard represents a higher percentage 

than 1%, explaining why the coefficient is smaller when using the simple stocks than when using 

their log transformation. 
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Table 2.12 Effect of standards as an elasticity and semi-elasticity 

  Baseline Semi-elasticity 
Standards 0.600*** 0.014*** 
  (0.095) (0.002) 
Duration 0.244*** 0.244*** 
  (0.016) (0.016) 
Duration squared -0.006*** -0.006*** 
  (0.001) (0.001) 
Patent originality 0.187 0.188 
  (0.260) (0.261) 
Patent claims 0.006*** 0.006*** 
  (0.002) (0.002) 
Assignee: academic -1.000*** -1.000*** 
  (0.097) (0.097) 
Assignee: company university -0.142 -0.143 
  (0.695) (0.696) 
Assignee : government 0.124 0.125 
  (0.189) (0.189) 
Assignee: individual 0.211*** 0.210*** 
  (0.080) (0.080) 
Assignee : other partnerships -1.787*** -1.788*** 
  (0.422) (0.422) 
Assignee : unknown 0.417*** 0.416*** 
  (0.106) (0.106) 
Technology: solar -1.913*** -1.314*** 
  (0.176) (0.199) 
Technology : wind 0.093 0.108 
  (0.106) (0.096) 
Technology maturity 2.215*** 1.646*** 
  (0.183) (0.202) 
Patents in cited year 0.000 0.000 
  (0.000) (0.000) 
Patents in citing year 0.000 0.000** 
  (0.000) (0.000) 
Time 2.739*** 2.499*** 
  (0.341) (0.338) 
Time^2 -0.417*** -0.357*** 
  (0.050) (0.050) 
Time^3 0.022*** 0.017*** 
  (0.003) (0.003) 
Time^4 -0.000*** -0.000*** 
  (0.000) (0.000) 
      
Observations 116,927 116,927 
Pseudo R-squared 0.0991 0.0994 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 2.B.4 Alternative lags 

Table 2.13 and 2.14 presents model that use different lags of the standards variable, showing 

results for the first, second, third and fourth lags for both the baseline specification and for the 

pooled model. In the baseline model, the effect of standards grows overtime, informing the 

choice of the second lag as the preferred specification. This affords sufficient time for the 

standards variable to take effect, while also including more observations in the analysis than 

when using the third and fourth lags, as the latter yields results that are meaningfully 

comparable.  
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Table 2.13 Effects of standards using different lags, baseline model  
  Baseline Lag 1 Baseline Lag 2 Baseline Lag 3 Baseline Lag 4 
Standards 0.352*** 0.600*** 0.556*** 0.823*** 
  (0.081) (0.095) (0.105) -0.114 
Duration 0.287*** 0.244*** 0.197*** 0.184*** 
  (0.014) (0.016) (0.019) (0.023) 
Duration squared -0.008*** -0.006*** -0.004*** -0.003** 
  (0.001) (0.001) (0.001) (0.001) 
Patent originality 0.220 0.187 0.147 0.090 
  (0.258) (0.260) (0.267) (0.280) 
Patent claims 0.006*** 0.006*** 0.006*** 0.006*** 
  (0.002) (0.002) (0.002) (0.002) 
Assignee: academic -0.995*** -1.000*** -1.007*** -1.008*** 
  (0.096) (0.097) (0.101) (0.105) 
Assignee: company university -0.215 -0.142 -0.055 0.075 
  (0.684) (0.695) (0.707) (0.709) 
Assignee : government 0.115 0.124 0.132 0.103 
  (0.187) (0.189) (0.193) (0.202) 
Assignee: individual 0.212*** 0.211*** 0.212** 0.192** 
  (0.077) (0.080) (0.084) (0.091) 
Assignee : other partnerships -1.676*** -1.787*** -2.143*** -2.671*** 
  (0.381) (0.422) (0.508) (0.617) 
Assignee : unknown 0.431*** 0.417*** 0.399*** 0.381*** 
  (0.104) (0.106) (0.111) (0.114) 
Technology: solar -1.919*** -1.913*** -2.178*** -1.965*** 
  (0.162) (0.176) (0.184) (0.203) 
Technology : wind -0.092 0.093 -0.010 0.153 
  (0.099) (0.106) (0.112) (0.115) 
Technology maturity 2.191*** 2.215*** 2.475*** 2.231*** 
  (0.166) (0.183) (0.194) (0.219) 
Patents in cited year -0.000 0.000 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) 
Patents in citing year -0.000 0.000 -0.000 -0.000 
  (0.000) (0.000) (0.000) (0.000) 
Time 1.879*** 2.739*** 4.551*** 5.712*** 
  (0.253) (0.341) (0.445) (0.584) 
Time^2 -0.308*** -0.417*** -0.651*** -0.779*** 
  (0.039) (0.050) (0.062) (0.079) 
Time^3 0.017*** 0.022*** 0.035*** 0.041*** 
  (0.003) (0.003) (0.004) (0.005) 
Time^4 -0.000*** -0.000*** -0.001*** -0.001*** 
  (0.000) (0.000) (0.000) (0.000) 
          
Observations 137,608 116,927 98,059 81,136 
Pseudo R-squared 0.104 0.0991 0.0976 0.101 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1     
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Table 2.14 Effects of standards using different lags, pooled model 

  Pooled Lag 1 Pooled Lag 2 Pooled Lag 3 Pooled Lag 4 
Smart grids # standards 0.324*** 0.429*** 0.145 0.619*** 

  (0.097) (0.100) (0.105) (0.148) 

Solar # standards -0.545*** -0.445*** -1.130*** -0.024 

  (0.100) (0.123) (0.172) (0.353) 

Wind # Standards -1.678*** -1.333*** -1.435*** -0.224 

  (0.160) (0.172) (0.198) (0.269) 

Duration 0.306*** 0.259*** 0.213*** 0.188*** 

  (0.015) (0.017) (0.020) (0.024) 

Duration squared -0.009*** -0.006*** -0.004*** -0.003** 

  (0.001) (0.001) (0.001) (0.001) 

Patent originality 0.244 0.204 0.158 0.093 

  (0.259) (0.261) (0.267) (0.280) 

Patent claims 0.006*** 0.006*** 0.006*** 0.006*** 

  (0.002) (0.002) (0.002) (0.002) 

Assignee: academic -0.996*** -1.001*** -1.008*** -1.008*** 

  (0.096) (0.097) (0.101) (0.105) 

Assignee: company university -0.215 -0.143 -0.054 0.073 

  (0.683) (0.695) (0.706) (0.710) 

Assignee : government 0.113 0.123 0.131 0.104 

  (0.187) (0.189) (0.193) (0.202) 

Assignee: individual 0.202*** 0.202** 0.202** 0.187** 

  (0.077) (0.080) (0.085) (0.091) 

Assignee : other partnerships -1.683*** -1.793*** -2.149*** -2.673*** 

  (0.380) (0.421) (0.507) (0.616) 

Assignee : unknown 0.431*** 0.420*** 0.409*** 0.386*** 

  (0.104) (0.107) (0.111) (0.114) 

Technology: solar 2.464*** 2.408*** 3.439*** 0.916 

  (0.398) (0.429) (0.512) (0.856) 

Technology : wind 6.303*** 5.510*** 4.569*** 2.570*** 

  (0.448) (0.480) (0.519) (0.625) 

Technology maturity 1.087*** 1.109*** 1.495*** 1.665*** 

  (0.157) (0.191) (0.223) (0.293) 

Patents in cited year 0.000 0.000 0.000 0.000 

  (0.000) (0.000) (0.000) (0.000) 

Patents in citing year 0.000*** 0.000 0.000 -0.000 

  (0.000) (0.000) (0.000) (0.000) 

Time 1.313*** 2.066*** 4.013*** 5.709*** 

  (0.214) (0.301) (0.431) (0.653) 

Time^2 -0.179*** -0.277*** -0.529*** -0.746*** 

  (0.033) (0.044) (0.060) (0.089) 

Time^3 0.008*** 0.013*** 0.027*** 0.039*** 

  (0.002) (0.003) (0.004) (0.005) 

Time^4 -0.000* -0.000*** -0.001*** -0.001*** 

  (0.000) (0.000) (0.000) (0.000) 

          

Observations 137,608 116,927 98,059 81,136 

Pseudo R-squared 0.108 0.102 0.0998 0.101 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 2.B.5 Modelling technology maturity using stocks  

Table B5 shows results for an alternative specification of the technology maturity variable. The 

preferred specification uses the log transformation of the stock of patents, to account for 

changes in the maturation rate of each technology. Table 2.15 table shows that using the simple 

stocks of patents yields a stronger coefficient in the baseline model, but comparable results in 

the pooled model. This provides support for the decision to use the log transformation of this 

variable in the main specification, as it allows to normalize across technologies that have 

substantially different levels and growth rates over the course of the sample period.
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Table 2.15 Modelling technology maturity  
  Baseline (log stock) Baseline (stock) Pooled (log stock) Pooled (stock) 
Standards 0.600*** 1.078***     
  (0.095) (0.099)     
Smart grids # standards     0.429*** 0.534*** 
      (0.100) (0.141) 
Solar # standards     -0.445*** -0.352*** 
      (0.123) (0.121) 
Wind # Standards     -1.333*** -1.661*** 
      (0.172) (0.264) 
Duration 0.244*** 0.234*** 0.259*** 0.257*** 
  (0.016) (0.016) (0.017) (0.017) 
Duration squared -0.006*** -0.005*** -0.006*** -0.006*** 
  (0.001) (0.001) (0.001) (0.001) 
Patent originality 0.187 0.179 0.204 0.202 
  (0.260) (0.260) (0.261) (0.261) 
Patent claims 0.006*** 0.006*** 0.006*** 0.006*** 
  (0.002) (0.002) (0.002) (0.002) 
Assignee: academic -1.000*** -1.000*** -1.001*** -1.001*** 
  (0.097) (0.097) (0.097) (0.097) 
Assignee: company university -0.142 -0.137 -0.143 -0.142 
  (0.695) (0.695) (0.695) (0.695) 
Assignee : government 0.124 0.124 0.123 0.124 
  (0.189) (0.188) (0.189) (0.189) 
Assignee: individual 0.211*** 0.211*** 0.202** 0.199** 
  (0.080) (0.080) (0.080) (0.080) 
Assignee : other partnerships -1.787*** -1.784*** -1.793*** -1.793*** 
  (0.422) (0.423) (0.421) (0.421) 
Assignee : unknown 0.417*** 0.433*** 0.420*** 0.429*** 
  (0.106) (0.106) (0.107) (0.106) 
Technology: solar -1.913*** 0.006 2.408*** 3.572*** 
  (0.176) (0.109) (0.429) (0.505) 
Technology : wind 0.093 0.528*** 5.510*** 6.964*** 
  (0.106) (0.122) (0.480) (0.476) 
Technology maturity 2.215*** 0.000** 1.109*** -0.000 
  (0.183) (0.000) (0.191) (0.000) 
Patents in cited year 0.000 -0.000 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) 
Patents in citing year 0.000 0.000*** 0.000 0.000*** 
  (0.000) (0.000) (0.000) (0.000) 
Time 2.739*** 1.324*** 2.066*** 1.416*** 
  (0.341) (0.286) (0.301) (0.294) 
Time^2 -0.417*** -0.149*** -0.277*** -0.144*** 
  (0.050) (0.039) (0.044) (0.040) 
Time^3 0.022*** 0.004 0.013*** 0.004* 
  (0.003) (0.002) (0.003) (0.002) 
Time^4 -0.000*** 0.000 -0.000*** -0.000 
  (0.000) (0.000) (0.000) (0.000) 
          
Observations 116,927 116,927 116,927 116,927 
Pseudo R-squared 0.0991 0.0968 0.102 0.101 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 



 148 

Appendix 2.B.6 Alternative modelling of time trends 

Table 2.16 shows results for a specification that models time trends using 3-year fixed effects 

instead of the polynomial approach used to model time non-parametrically in the main 

specification. I use 3-year fixed effects in this robustness check, as opposed to single year fixed 

effects, as the latter would be collinear with the other market trend variables included in the 

model. Results show that using the 3-year fixed effects yield comparable estimates in the baseline 

model, but stronger negative coefficients for the standards variable in solar and wind 

technologies in the pooled model. 
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Table 2.16 Alternative techniques for modelling years 
Polynomials:  Baseline Pooled  3-year fixed effects:  Baseline Pooled  
Standards 0.600***   Standards 0.544***   
  (0.095)     (0.090)   
Smart grids # standards   0.429*** Smart grids # standards   0.327*** 
    (0.100)     (0.101) 
Solar # standards   -0.445*** Solar # standards   -0.832*** 
    (0.123)     (0.130) 
Wind # Standards   -1.333*** Wind # Standards   -2.162*** 
    (0.172)     (0.152) 
Duration 0.244*** 0.259*** Duration 0.213*** 0.250*** 
  (0.016) (0.017)   (0.016) (0.017) 
Duration squared -0.006*** -0.006*** Duration squared -0.005*** -0.006*** 
  (0.001) (0.001)   (0.001) (0.001) 
Patent originality 0.187 0.204 Patent originality 0.124 0.181 
  (0.260) (0.261)   (0.257) (0.260) 
Patent claims 0.006*** 0.006*** Patent claims 0.006*** 0.006*** 
  (0.002) (0.002)   (0.002) (0.002) 
Assignee: academic -1.000*** -1.001*** Assignee: academic -1.001*** -1.002*** 
  (0.097) (0.097)   (0.097) (0.097) 
Assignee: company university -0.142 -0.143 Assignee: company university -0.143 -0.146 
  (0.695) (0.695)   (0.697) (0.697) 
Assignee : government 0.124 0.123 Assignee : government 0.131 0.128 
  (0.189) (0.189)   (0.188) (0.188) 
Assignee: individual 0.211*** 0.202** Assignee: individual 0.227*** 0.204** 
  (0.080) (0.080)   (0.079) (0.080) 
Assignee : other partnerships -1.787*** -1.793*** Assignee : other partnerships -1.778*** -1.791*** 
  (0.422) (0.421)   (0.422) (0.420) 
Assignee : unknown 0.417*** 0.420*** Assignee : unknown 0.451*** 0.433*** 
  (0.106) (0.107)   (0.106) (0.106) 
Technology: solar -1.913*** 2.408*** Technology: solar 0.435*** 4.822*** 
  (0.176) (0.429)   (0.124) (0.446) 
Technology : wind 0.093 5.510*** Technology : wind 0.037 7.714*** 
  (0.106) (0.480)   (0.102) (0.415) 
Technology maturity 2.215*** 1.109*** Technology maturity -0.298** -0.318*** 
  (0.183) (0.191)   (0.126) (0.113) 
Patents in cited year 0.000 0.000 Patents in cited year -0.000* 0.000 
  (0.000) (0.000)   (0.000) (0.000) 
Patents in citing year 0.000 0.000 Patents in citing year 0.000*** 0.000*** 
  (0.000) (0.000)   (0.000) (0.000) 
Time 2.739*** 2.066*** 2004-2006 -0.404*** -0.147 
  (0.341) (0.301)   (0.154) (0.159) 
Time^2 -0.417*** -0.277*** 2007-2009 -0.008 0.649*** 
  (0.050) (0.044)   (0.163) (0.173) 
Time^3 0.022*** 0.013*** 2010-2012 -0.247 0.673*** 
  (0.003) (0.003)   (0.183) (0.192) 
Time^4 -0.000*** -0.000*** 2013-2015 -0.979*** 0.175 
  (0.000) (0.000)   (0.194) (0.200) 
      2016-2018 -1.406*** -0.102 
        (0.201) (0.208) 
      2019 -1.896*** -0.505** 
        (0.207) (0.219) 
            
Observations 116,927 116,927   116,927 116,927 
Pseudo R-squared 0.0991 0.102   0.0938 0.101 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 2.B.7 Controlling for non-observable confounders 

Table 2.17 shows results from the main specification alongside a model that controls for 

unobserved heterogeneity at the patent level using a random effects model.  With the exception 

of the patent originality control variable, which is significant in the random effects model, the 

two models yield comparable results providing reassurance that the preferred specification does 

not omit important confounders.
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Table 2.17 Controlling for unobserved heterogeneity with random effects 
  Baseline Baseline (RE) Pooled Pooled (RE) 
Standard 0.600*** 0.461***     
  (0.095) (0.087)     
Smart grids # standards     0.429*** 0.309*** 
      (0.100) (0.088) 
Solar # standards     -0.445*** -0.616*** 
      (0.123) (0.115) 
Wind # Standards     -1.333*** -1.881*** 
      (0.172) (0.160) 
Duration 0.244*** 0.291*** 0.259*** 0.310*** 
  (0.016) (0.016) (0.017) (0.016) 
Duration squared -0.006*** -0.006*** -0.006*** -0.007*** 
  (0.001) (0.001) (0.001) (0.001) 
Patent originality 0.187 1.336*** 0.204 1.357*** 
  (0.260) (0.193) (0.261) (0.193) 
Patent claims 0.006*** 0.011*** 0.006*** 0.011*** 
  (0.002) (0.002) (0.002) (0.002) 
Assignee: academic -1.000*** -0.940*** -1.001*** -0.940*** 
  (0.097) (0.093) (0.097) (0.093) 
Assignee: company university -0.142 -0.698** -0.143 -0.700** 
  (0.695) (0.306) (0.695) (0.308) 
Assignee : government 0.124 0.154 0.123 0.154 
  (0.189) (0.175) (0.189) (0.175) 
Assignee: individual 0.211*** 0.451*** 0.202** 0.449*** 
  (0.080) (0.062) (0.080) (0.062) 
Assignee : other partnerships -1.787*** -1.354*** -1.793*** -1.372*** 
  (0.422) (0.512) (0.421) (0.513) 
Assignee : unknown 0.417*** 0.919*** 0.420*** 0.898*** 
  (0.106) (0.107) (0.107) (0.107) 
Technology: solar -1.913*** -1.983*** 2.408*** 2.665*** 
  (0.176) (0.165) (0.429) (0.428) 
Technology : wind 0.093 0.760*** 5.510*** 7.653*** 
  (0.106) (0.099) (0.480) (0.446) 
Technology maturity 2.215*** 2.443*** 1.109*** 1.256*** 
  (0.183) (0.165) (0.191) (0.171) 
Patents in cited year 0.000 0.000 0.000 0.000** 
  (0.000) (0.000) (0.000) (0.000) 
Patents in citing year 0.000 0.000 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) 
Time 2.739*** 2.760*** 2.066*** 1.982*** 
  (0.341) (0.318) (0.301) (0.286) 
Time^2 -0.417*** -0.429*** -0.277*** -0.273*** 
  (0.050) (0.046) (0.044) (0.042) 
Time^3 0.022*** 0.023*** 0.013*** 0.013*** 
  (0.003) (0.003) (0.003) (0.003) 
Time^4 -0.000*** -0.000*** -0.000*** -0.000*** 
  (0.000) (0.000) (0.000) (0.000) 
          
Observations 116,927 116,927 116,927 116,927 
          
Pseudo R-squared 0.0991   0.102   
Number of id   18,868   18,868 
Log-likelihood   -108339   -108019 
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 2.C Data construction 
 
Appendix 2.C.1 List of sampled standards 

Smart Grids 

IEC 60870-6-503:1997 1997 IEC 61850-7-410:2007 2007 IEC 62351-8:2011 2011 IEC 62351-3:2014 2014 

IEC 60870-6-802-1997 1997 IEC 62351-1 2007 IEC 62541-4:2011 2011 OASIS Energy Interoperation  2014 

IEC 60870-6-702-1998 1998 IEC 62361-4:2007 2007 IEC 62541-6:2011 2011 IEEE 1815.1 2015 

CEA-709.4-1999 1999 IEC 62351-6:2007 2007 IEEE 1701 2011 MultiSpeak V5.0 2015 

MultiSpeak V1.1 2000 ANSI C12.1-2008  2008 IEEE C37.238-2011 2011 ANSI/ASHRAE/NEMA Standard 201 2016 

IEC 61850-3:2002 2002 ANSI C12.19-2008 2008 NAESB REQ 20 2011 NAESB RMQ.26 2016 

IEC 61850-4:2002 2002 ANSI C12.22-2008 2008 NISTIR 7761  2011 ANSI/NEMA SG-IPRM 1-2016 2016 

IEC 61850-1:2003 2003 IEC 62351-2 2008 OASIS WS-Calendar  2011 IEC 62351-7:2017 2017 

IEC 61850-2:2003 2003 IEC 62351-5:2009 2009 IEEE C37.118-2011 2011     

IEC 61850-5:2003 2003 Smart Energy Profile 2.0 2009 CEA-852.1-2010 2012     

IEC 61850-7-1 2003 ITU-T G.9960 2009 CEA-CEDIA-CEB29-2012 2012     

IEC 61850-7-2:2003 2003 Multispeak V4.x 2009 ISO/IEC 15067-3:2012  2012     

IEC 61850-7-3:2003 2003 NEMA SG-AMI 1-2009 2009 IEC 61850-90-5 2012     

IEC 61850-7-4:2003 2003 ANSI C12.20-2010 2010 IE 62541-7:2012 2012     

ANSI/IEEE 1547-2003 2003 ASHRAE 135-2010 2010 IEEE 1377-2012 2012     

MultiSpeak V2.2 2003 CEA-709.1-C-2010 2010 IEEE 1901.2-2013 2012     

CEA-709.3-1999(R2004) 2004 CEA-852-B-2010 2010 ITU-T G.9903 2012     

IEC 61850-6:2004 2004 IEC 62351-7:2010 2010 OASIS EMIX  V1.0 2012     

IEC 61850-8-1:2004 2004 IEC 62541-1:2010 2010 OpenADR-2.0a 2012     

IEC 61850-9-2:2004 2004 IEC 62541-2:2010 2010 OpenADR2.0b 2012     

IEC 61850-10:2005 2005 IEC 62541-3:2010 2010 ANSI/CTA-2045 2013     

IEC 61850-10:2005 2005 IEEE 1815-2010 2010 IEEE 2030.5-2013 2013     

MultiSpeak V3.0 2005 IEEE 1901-2010 2010 NAESB REQ 19 2013     
ANSI C12.18-2006 2006 IEEE C37.239-2010  2010 NAESB REQ 21 2013     
NEMA ANSI C12.21:2006 2006 ITU-T G.9972 (06/10) 2010 NAESB REQ 22 2013     

CEA-709.2-A-2000 (R2006) 2006 NIST IR 7628 2010 NISTIR 7943 2013     
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Solar  

ASTM E424-71 1971 IEC 60364-7-712 Ed. 1.0 b:2002 2002 IEC 62759-1:2015  2015 IEC TS 62788-7-2:2017  2017 

ASTM-E1084-86 1986 ASTM E927-04a 2004 IEC TS 62910:2015 2015 IEC 61724-1:2017 2017 

ASTM E772-87 1987 ASTM E1830-04 2004 IEC 62446-1:2016  2016 IEC 62979:2017  2017 

IEC 60904-1:1987 1987 ASTM E1171-04 2004 IEC 62548:2016  2016 IEC TS 63049:2017  2017 

IEC 60891:1987 1987 IEC 62124:2004  2004 IEC TS 62782:2016  2016 IEC TS 62916:2017  2017 

IEC 60904-2:1989 1989 ASTM E973-05 2005 IEC 62788-1-2:2016  2016 IEC TS 60904-13:2018 2018 

IEC 60904-3 Ed. 1.0 b:1989 1989 IEC 62093:2005 2005 IEC 62788-1-4:2016  2016 CSA/ANSI C450-2018 2018 

ISO 9060:1990 1990 ASTM E2481-06 2006 IEC 62788-1-5:2016  2016 SCTE 246 2018 2018 

ISO 9059:1990 1990 IEC TS 62257-7-1:2006 2006 IEC 61215-1:2016 2016 IEC TS 62738:2018 2018 

IEC 60904-5:1993 1993 IEC 62116:2008 2008 IEC 61215-1-1:2016 2016 IEC TS 62915:2018  2018 

ISO 9846:1993 1993 IEC TS 62257-9-6:2008 2008 IEC 61215-1-2:2016 2016 IEC 61853-3:2018  2018 

ISO 9847:1992 1993 IEC 60904-4 Ed. 1.0 b:2009 2009 IEC 61215-1-3:2016 2016 IEC 61853-4:2018  2018 

IEC 60904-7:1995 1995 ASTM E2685-09 2009 IEC 61215-1-4:2016 2016 IEC TS 60904-1-2:2019  2019 

IEC 60904-8:1995 1995 IEC 62109-1:2010 2010 IEC 61215-2:2016 2016 IEC 62892:2019  2019 

IEC 60904-9 Ed. 1.0 en:1995 1995 ASTM E2848-11 2011 IEC TS 62941:2016 2016 IEC TS 62994:2019  2019 

IEC 61701:1995 1995 IEC 62109-2:2011  2011 IEC 61853-2:2016  2016 IEC TS 63019:2019  2019 

IEC TS 61836:1997 1997 IEC 61853-1:2011  2011 IEC 61215-1-4:2016  2016 IEC 63202-1:2019  2019 

IEC 60904-10:1998 1998 IEC/TS 62727 Ed. 1.0 en:2012 2012 IEC TS 61724-2:2016 2016     

ASTM E1040-98 1998 NECA 412-2012 2012 IEC TS 61724-3:2016  2016     

ISO 9488:1999 1999 ASTM E2908-12 2012 IEC 60904-1-1:2017  2017     

ASTM E1362-99 1999 ASTM E2766-13 2013 IEC 60904-8-1:2017 2017     

ASTM E1143-99 1999 IEC TS 62548:2013  2013 NSF/ANSI 457-2017 2017     

ASTM E2047-99 1999 IEC 62716:2013 2013 IEC PAS 62257-10:2017  2017     

ASTM E1125-99 1999 IEC 62817:2014 2014 IEC TS 62446-3:2017  2017     

ASTM E1462-00 2000 IEC 62790:2014 2014 IEC 62788-1-6:2017  2017     

ASTM E1021-95(2001) 2001 IEC 62894:2014  2014 IEC TS 62788-2:2017  2017     
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Wind  

PTC 42 - 1988 1988   IEC 61400-23:2014  2014 

IEC 61400-1:1994 1994   IEEE C37.30.2-2015 2015 

IEC 61400-2:1996 1996   IEC 61400-27-1:2015  2015 

AGMA 921-A97 1997   IEEE2400-2016 2016 

IEC 61400-11:1998 1998   IEEE/IEC 60076-16-2018 2018 

IEC 61400-12-0:1998 1998   IEC 61400-3-1:2019  2019 

IEC 60050-415 Ed. 1.0 b:1999 1999   IEC TS 61400-3-2:2019 2019 

ISO 12494:2017 2001   IEC 61400-21-1:2019  2019 

IEC TS 61400-13:2001 2001   IEC TR 61400-21-3:2019  2019 

IEC WT 01 Ed. 1.0 en:2001 2001   IEC TS 61400-25-71:2019  2019 

IEC TS 61400-23:2001 2001   IEC 61400-26-1:2019  2019 

IEC TR 61400-24:2002 2002       

IEC 61400-12-1:2005 2005       

IEC TS 61400-14:2005  2005       

IEC 61400-25-1:2006 2006       

IEC 61400-25-2:2006 2006       

IEC 61400-25-3:2006 2006       

IEC 61400-25-5:2006 2006       

IEC 61400-25-4:2008 2008       

IEC 61400-3:2009 2009       

IEC 61400-24:2010 2010       

IEC 61400-25-6:2010 2010       

IEC 60076-16 Ed. 1.0 b:2011 2011       

IEC TS 61400-26-1:2011 2011       

IEC 61400-4:2012  2012       

IEC 61400-12-2:2013 2013       

 
 



 155 

 
Appendix 2.C.2 Sampling strategy for standards 
 

- Smart grids:  

• List extracted from the Smart Electric Power Alliances’ Catalogue of Standards: 
https://sepapower.org/knowledge/catalog-of-standards/ (excluding standards 
related to electric vehicles).  

- Solar Photovoltaic and Wind.  

• Keyword searches were conducted in the webstore search engines and on the 
websites of the following standardization organizations:  

o American National Standards Institute, International Electrotechnical 
Commission, CSA America, National Electrical Manufacturers 
Association, American Society of Mechanical Engineers, American 
Society for Testing and Materials, Institute of Electrical and Electronics 
Engineers.  

o Keywords used in the searches: wind energy, wind turbines, offshore 
wind, eolian, solar photovoltaic, solar PV, solar energy, solar power, 
solar panel.  

 
- Excluded standards:  

• Standards pertaining to solar thermal collectors and solar concentrators. 

• Standards aimed at establishing best practices for technicians installing and 
maintaining solar panels and wind turbines, or for the design of mounting 
equipment.  

- For example: UL 2703 “Mounting systems, mounting devices, clamping-
retention devices, and ground lugs”.  

• Standards pertaining more generally to power conversion, power storage, and 
other general aspects of distributed energy systems, unless directly relevant to 
smart grids.  

- For example: “IEC 62257-7-4 “Recommendations for renewable energy 
and hybrid systems for rural electrification – Part 7-4: Generators – 
Integration of solar with other forms of power generation within hybrid 
power systems”, “IEC 60269-6 Low-voltage fuses – Part 6: Supplementary 
requirements for fuse-links for the protection of solar photovoltaic energy 
systems”, “IEC 61427-1:2013: Secondary cells and batteries for renewable 
energy storage – General requirements and methods of test – Part 1: 
Photovoltaic off-grid application”.  

 

https://sepapower.org/knowledge/catalog-of-standards/
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Appendix 2.C.3 Technology classes for sampling patents 
 

Technology Cooperative Patent Classification 

Smart grids Y02B 70/30 
Y02B 70/3225 

Y02B 70/34 
Y02B 90/20 
Y02E 40/70 

Y04S 10/00 (and all its subclasses) 
Y04S 20/00 and all its subclasses) 
Y04S 40/00 (and all its subclasses) 
Y04S 50/00 (and all its subclasses) 

Solar Y02E 10/50 (and all its subclasses) 

Wind Y02E 10/70 (and all its subclasses) 
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Appendix 2.C.4 Measuring patent originality 
 
The patent originality measure summarizes the diversity of knowledge upon which an invention 

builds. It captures the breadth and balance in the representation of patent classes cited by patent 

I, using information on the patent classes of the patent’s backward citations.  

I use IPC codes at the 7-digit levels and follow the measurement approach proposed in 

Squicciarini et al. (2013, p.49), who define the originality of patent i as:  

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑖 =  1 − ∑ 𝑠𝑖𝑗
2

𝑛𝑖

𝑗

   

Where 𝑠𝑖𝑗 is the ratio of citations made by patent i to patent class j out of the total number of 

patent classes that appear in patent j’s backward citations: 

𝑠𝑖𝑗 =
∑ 𝑐

𝑛𝑝

𝑗

∑ 𝑡𝑛
𝑝

 

Where c is the number of times patent class j is listed across all of the cited patents p that are 

cited by patent i.  The denominator t represents the total number of times any patent class is 

cited across all of the cited patents p, counting the same patent class every time it is listed in the 

cited patents.
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Chapter 3 Knowledge trajectories and 
transfers in smart grids technology: an 
analysis of the patent citation network 
 
Myriam Gregoire-Zawilski 
 
Abstract 
 

This paper explores the importance of knowledge transfers for advancing technology 

development in highly interdisciplinary sectors of technology, using smart grids technology as a 

case. I use patent citation data to identify inventions that are highly influential within the citation 

network. Using this subsample of influential patents, I garner qualitative insights about the field’s 

main knowledge trajectory. For example, influential patents appear to play an important role in 

transferring expertise across different sectors of smart grid technology. Findings from this 

exploratory analysis can help identify where important knowledge flows have occurred, with a 

view to informing future research on the causal effects of technology standards on knowledge 

transfers.
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3.1 Introduction 

Beyond affecting patenting intensity and the quality of follow-on inventions, another way in 

which standards may shape innovation is by facilitating knowledge transfers. This may be 

particularly beneficial when innovation requires interdisciplinary knowledge. By consolidating a 

dominant design, standards might help establish compatibility requirements for the industry, as 

well as shared priorities about the sequence in which different technical problems should be 

tackled. Overall, standards can make knowledge more widely accessible and reduce technological 

uncertainty. Together, these might help inventors learn from the experiences of others in the 

field, especially when innovating in different components of a technology requires shared 

knowledge. For example, standards might help inventors in downstream components integrate 

lessons from inventions located upstream in the product design hierarchy.  Standards might be, 

in fact, one of few channels for encouraging knowledge transfers when technologies are 

distributed/decentralized. I use smart grids as a case of a technology whose development and 

deployment occurs in a highly decentralized fashion.  In other complex technologies that are 

more centralized, like wind turbines, inventors might achieve this goal through other means, such 

as learning-by-interacting with other value-chain actors (Tang and Popp, 2016; Malhotra et al, 

2019).  

To study the effects of standards on knowledge flows, I must first identify meaningful categories 

of smart grids inventions across which important knowledge transfers occur. In this paper, I begin 

exploring this question using a mixed-method approach to map important knowledge 

trajectories in the field. This mix of quantitative and qualitative methods allows me to understand 

broad trends in smart grid patenting, while also gaining in-depth qualitative insights into the 

content of important patents and how the core focus of smart grid innovation has evolved over 

time. Knowing which components of smart grid technology were developed over time, for 

example, provides an indication of where important knowledge might have flowed across the 

smart grid design architecture. Knowing who the important innovators are in the field, what the 

influential inventions are, as well trends in patent citations, can also provide valuable insights for 



 160 

defining groups of patents to include in an analysis of the effects of standards on knowledge 

transfers. 

The remainder of this paper is structured as follows: in the next section, I review the theoretical 

literature on technological trajectories to garner insights into patterns of technical change in 

green energy technologies, how smart grids differ, and related implications for knowledge 

transfers within the field. In section 3.3, I then present how I use data on the network of patent 

citations to identify influential patents and trace the field’s core knowledge trajectory. In section 

3.4, I present results from my descriptive analysis, and in section 3.5, I discuss the theoretical and 

policy relevance of these results. 

3.2 Literature review  

3.2.1 Technology lifecycles and understanding factors shaping technological trajectories 

Across many different sectors of innovation, studies have found that technology evolves through 

a series of generalizable stages. The early stages are characterized by competition between 

different design concepts before consensus is reached on a dominant design (Murmann and 

Frenken, 2006). After the establishment of a dominant design, technological trajectories 

converge onto more cumulative and incremental paths (Dosi, 1982). They might undergo 

extended periods of incremental knowledge accumulation, occasionally disrupted by new 

technological breakthroughs  

Even when new technological paradigms emerge, knowledge trajectories tend to remain 

cumulative. For example, in the fuel cells sector, innovation in the 1950-60s established 

foundational principles for the design of fuel cells. At the time, the dominant designs were 

Alkaline FC (AFC) and Molte Carbonate (MCFC). Even as R&D moved to producing new cell designs 

in later years, foundational knowledge from these earlier designs transferred into these new 

applications (Verspagen, 2007).  

Research also shows that the engineering characteristics of technologies play an important part 

in ordering technological trajectories. Different components of a technology serve different 
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functions, that might have ramifications for developing other components. These can inform the 

sequence in which the industry tackles different technical problems. Components that support 

core functions of a technology are developed first. Resolving technical challenges in these areas 

then propels innovation in components that serve more peripheral functions (Murmann and 

Frenken, 2006). For example, a core component of wind turbines is the rotor. The industry 

focused on solving engineering challenges related to the aerodynamics of rotor blades and on 

developing blade materials and coatings before shifting its attention to refining power train 

technology (Huenteler, 2016a, 2016b).  

The extent to which these processes unfold in a sequential manner varies across different 

technologies, influenced by a complex interplay of technological, market, and other social 

factors. With time, technological pathways become entrenched, making deviations from core 

trajectories more unlikely (Malerba et al., 2007). However, external demand and technological 

shocks can alter these paths, and create opportunities for novel paths to emerge and new players 

to enter (Malhotra et al., 2021). Understanding these dynamics is crucial for anticipating future 

technological developments. 

3.2.2 Technological trajectories in green energy innovation 

Studies using patent citation networks to map technological trajectories show that green energy 

technologies experience markedly different paths. For example, solar photovoltaic (PV) 

technology underwent an incremental trajectory, exhibiting a persistent focus on PV cell, a core 

component of photovoltaic modules, initially through product inventions, and later, process 

inventions. This path can be attributed to the scalability of solar PV technology and policy-driven 

demand for affordable solar panels. As more companies began manufacturing solar panels, the 

innovation trajectory shifted towards process innovation achieved through learning-by-doing. 

Wind turbine technology, in contrast, experienced more balanced R&D activity (of its 

core/influential patents) across different components, unfolding in a sequential manner 

downstream the design hierarchy. This suggests that in complex technologies, getting consensus 

on a dominant design is paramount for coordinating technology development in different 

components and moving innovation along the product architecture (Huenteler 2016a, 2016b).  
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Complex technologies may, also, never move into the process innovation stage, as observed in 

wind (Huenteler 2016b). 

Furthermore, to forecast technological change and inform policy decisions, we need a better 

understanding of the circumstances under which technological change occurs along cumulative 

paths and of when those get disrupted. For example, in the lithium-ion batteries sector, booming 

demand for electric vehicles radically shifted the focus of inventive activity. This new use 

environment valued different features, such as portability and low weight. Opportunities and 

market demand were significant enough to prompt innovation back into core design 

components, radically steering technology onto a different path (Malhotra et al., 2021).   

In sum, technological trajectories are shaped both by design considerations (technology-push) 

and markets (demand-pull), and the combination of both vary across different technologies 

(Malhotra et al., 2021; Murmann and Franken, 2006). One lesson from the lithium-ion battery 

case is that the direction of these trajectories is not immutable, even though technological 

paradigms tend to become entrenched over time, raising possible concerns about incumbent 

advantages and barriers to entry (Malerba et al., 2007). Shifts in circumstances can open windows 

of opportunity for new actors to enter this innovation space, as Malhotra and colleagues 

observed in the batteries case (Malhotra et al., 2021). Policy-induced shifts in demand therefore 

have the potential to compel significant change in the core design of technologies and redirect 

trajectories in directions that can help fulfill social goals. These transitions also represent 

opportunities for public policies to support the entry of new R&D actors whose knowledge is 

valuable in the pursuit of these goals. In grid technologies, these include new actors with 

specialized knowledge of information technologies, for example, to support the digitalization 

transition. Better understanding movement along technical trajectories in response to external 

changes is therefore highly relevant to understanding how industries integrate novel general-

purpose technologies, such as digital technologies, and more recently, artificial intelligence.   
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3.2.3 Relevance for theory and policy  

One area of opportunity for advancing theory lies in exploring how technological characteristics 

generate different types of knowledge trajectories.  As illustrated by various examples of green 

energy technologies, these trajectories might be incremental, evolving from product to process 

innovation, they may be closely structured along the design hierarchy, or comprise a hybrid of 

both. They might also respond differently to changes in external demand and advances in 

general-purpose technology. Understanding these trajectories can help better identify these 

opportunities across different technologies and inform policy to guide technical change towards 

the achievement of social goals. 

Smart grid technology constitutes a compelling case for advancing theoretical understanding of 

these issues as it presents a distinctive set of characteristics. Like wind, its product architecture 

is intricate, composed of many components linked in a complex web of interfaces requiring 

interoperability. Unlike wind, a highly vertically integrated industry, R&D and technology 

adoption in smart grids occur in a decentralized fashion. Markets for these technologies are more 

fragmented, which may affect how the focus of inventive activity travels across different 

components over time, and how these paths transform with changing external contexts. Through 

an exploratory analysis of smart grid technological trajectories, this paper advances 

understanding of these issues. I find that the sequence through which different components of 

smart grid technology were developed was more strongly influence by market demand, initially 

in already established end-user consumer markets, and then evolved through a series of concerns 

emerging over time, such as grid stability and performance, and later, decarbonization and 

renewables integration. The emergence of a dominant design, formalized in technology 

standards developed in the late 2000s and early 2010s, appears to coincide with a period of 

intense innovation in the communication and information layers, which are core components of 

smart grid technology. After this period, the industry began developing a suite of applications to 

tackle emerging issues such as EV integration, microgrids and storage, but also continued R&D 

activities in pre-existing areas, indicating that new standards might have made previous 

knowledge antiquated, but also prompted innovation in new areas. Together these show that 

while a technology’s design architecture can have a structuring effect, in decentralized 
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technologies, changes in external factors also have a strong influence, perhaps stronger than in 

vertically integrated sectors.  

This has important implications for designing policies that leverage an adequate mix of 

technology-push and demand-pull instruments that are tailored to each technology’s particular 

knowledge trajectory. For example, consumer subsidies might not only accelerate technology 

adoption in technologies characterized by incremental trajectories, as seen in the PV case, but 

can also create markets that demand different service characteristics from technologies, helping 

steer innovation in entirely new directions (Malhotra et al., 2021).  In other technologies, like 

wind, demand-side approaches might not be sufficient, because technology is too complex. 

Technology-push instruments might be advised (Malhotra et al., 2021) to help support R&D 

across the different components of the design hierarchy. In complex technologies characterized 

by fragmented R&D and markets, policy interventions that support coordination may be 

particularly advised to consolidate a dominant design and propel innovation downstream the 

design hierarchy.  

Moreover, mapping technological trajectories can help identify where important knowledge 

flows occur. In complex and interdisciplinary technologies like smart grids, knowledge flows 

across different components play a pivotal role in diffusing a new technological paradigm across 

the industry and ensuring interoperability among different components.   

For instance, in wind energy, deployment subsidies proved most effective when combined with 

policies supporting knowledge transfers between different actors of the value-chain (Tang and 

Popp, 2016; Tang, 2018). This underscores the importance of knowledge flows, both from outside 

the field as well from within the field, for technological advancement. The latter may be 

particularly important in complex interdisciplinary distributed technologies, like smart grids. 

Technology standards might have significantly contributed to shaping knowledge trajectories 

through facilitating knowledge transfers across the different domains of smart grid technology, 

helping to translate core technology for various grid applications. This paper therefore also serves 

as a preliminary exploration of important knowledge flows within the field. To achieve this, I use 
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a mixed-methods methodology to trace the field’s core technological trajectory, described in the 

next section.  

3.3 Methods 

To gain insights into how smart grids technology has evolved over time, I leverage main path 

analysis from the innovation studies literature (Hummon and Dereian, 1989; Verspagen, 2007; 

Fontana et al., 2009). In recent years, this method has notably been used in studies of green 

innovation (Huenteler et al., 2016a, 2016b; Malhotra et al., 2019; Malhotra et al., 2021). It 

leverages data on patent citations to identify important knowledge paths within a sector of 

technology, and the influential patents located along these paths.  

Patent citations are widely used in innovation studies as a proxy for knowledge flows. They 

provide a paper trail that allows researchers to track the knowledge antecedents and 

descendants of patented inventions (Jaffe and Trajtenberg, 2002). Patent applicants have a duty 

to disclose, trough citations, when their invention uses knowledge that is already protected 

within the United States market. Because of the legal ramifications for intellectual property 

protection, in my analysis I only include citations between patents that were granted in the 

United States.  

3.3.1 Mixed-methods research design 

I use network connectivity methods as a bridge between large-N quantitative inquiry and small-

N in-depth qualitative analysis of smart grid technological pathways (Huenteler et al., 2016a, 

2016b). I start with the full sample of 14,498 patents that were granted in the United States 

between 1980 and 2021 and use the connectivity algorithm to identify a subset of 154 patents 

that are highly influential within the smart grid citation network. Following Huenteler and 

colleagues, I identify influential patents as those that make up 80% of the network’s weight 

(Huenteler et al., 2016a, 2016b; Malhotra et al., 2021). I then manually code the abstracts of 

these patents along different service characteristics and components of the smart grid’s design 

architecture (Huenteler et al., 2016a; 2016b; Malhotra et al., 2021). These categories are 

informed by desk research. This mixed method approach allows me to garner descriptive insights 
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about knowledge flows and technological trajectories in smart grids at a high-level and at a highly 

granular scale.  

3.3.2 Connectivity algorithm 

The assumption is that patents that are central in the patent citation network are a 

representative depiction of how the field’s foundational knowledge has evolved over time.  To 

implement the connectivity algorithm, I first obtain data on patent citations in the form of matrix 

𝐶𝑖𝑗, where i represents the cited patent and j represents the citing patent.  C refers to the citation 

that connects the two vertices. This citation network is directed: knowledge can only flow from 

patent i to patent j (Verspagen, 2007, Fontana et al., 2009). Following extant literature, I then 

compute a search path node pair (SPNP) indicator for each of the edges in the network 

(Verspagen, 2007, Fontana et al., 2009). The SPNP measure captures whether the edge lies along 

important knowledge pathways.  The SPNP is the product of 𝑛𝑖 and 𝑚𝑗, where 𝑛𝑖 is the sum of 

all distinct patents on the backward path to cited patent i (including i in the count), and 𝑚𝑗 is the 

sum of all distinct patents of the forward path from citing patent j (including j in the count). The 

SPNP value therefore depends on the importance of knowledge trajectories both upstream and 

downstream from an edge. It provides information on the position of an edge within the overall 

network. To have a high SPNP value, patents i and j need to build on the field’s core knowledge, 

but also provide a knowledge foundation upon which important patents subsequently build. A 

drawback of this approach is that the algorithm weights patents in the center of knowledge 

trajectories more heavily (Verspagen, 2007)46. For example, a pioneering patent that uncovered 

novel research directions that later became highly important in the industry, but that itself does 

not cite previous patents in the field has, by construction, a low SPNP value. Similarly, patents 

 
46 I only include smart grids patents within this network. Therefore, when patents build extensively on knowledge 
external to the field, these knowledge antecedents are not counted as part of their SPNP value. While this might 
under-weight patents that were pioneers in bringing new knowledge into the field, I find that the patents that the 
connectivity algorithm identifies as important are nevertheless more interdisciplinary than the average (for example, 
these patents have higher originality on average, a measure captures the diversity in CPC classes represented in the 
patent’s backward citations across all fields of technology, not just smart grids). Even when excluding their linkages 
to knowledge antecedents outside of the smart grids sector, these patents have high SPNP values. This indicates that 
thes4e influential patents build both on substantial knowledge from inside as well as outside the field.  
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that build on the industry’s core state-of-the art knowledge but receive few citations also have 

low SPNP values. To the extent that I am interested in capturing patents that are part of well-

established knowledge trajectories, those are patents that build on solid foundations and have 

also informed substantial follow-on R&D activity, this interpretation of the SPNP is adequate in 

the context of my study.  

Furthermore, I use the SPNP indicator instead of other metrics conventionally used in network 

analysis, such as eigenvector centrality, because it was developed specifically for applications 

using patent citations data (Hummon and Dereian, 1989).  Like eigenvector centrality, the SPNP 

indicator takes into consideration the importance of a node’s neighbors. Patents that are 

connected to other important patents generally have a high SPNP value, because their neighbors 

also have several knowledge antecedents and descendants. However, the SPNP allows to 

subsequently trace all the paths in the network, from each source (a patent that does not cite 

but it cited) to each sink (a patent that cites but is not cited) to find which of these paths has the 

highest sum of SPNP (Verspagen, 2007). Therefore, I favor this method over other traditional 

network analysis approaches because it is particularly suited to examining knowledge 

trajectories.   

3.3.3 Sampling decisions 

I compute these SPNP values for a network of patents granted in the United States between 1980 

and 2021. I exclude patents prior to 1980 from the analysis because I assume these are outdated. 

I construct the citation network for this entire period. In this context, patents that are identified 

as influential are situated along trajectories that have remained relevant until today. Some 

studies using connectivity analysis construct separate networks for each year in their sample 

period, comprising all patent citations leading up to year t (Huenteler et al., 2016a; 2016b). Those 

allow to compare how the network has evolved over time, particularly to identify patents that 

once were influential but are not anymore, as well as when the core knowledge trajectory 

stabilized. The former allows to identify previous research directions that turned out to be dead 

ends. The latter lends insights into a technology’s process of maturation and consolidation 

around a dominant design (Huenteler et al., 2016b).  
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Furthermore, I include self-citations in the network. Important innovators most likely pursue 

research directions cumulatively, building on their past experiences, as well as on the knowledge 

of others. Ideas might need to gain traction internally before they are picked up by other 

inventors. Including these as part of knowledge trajectories is therefore important. While self-

citation bias is a possible concern, the risk of excluding important information from the analysis 

is greater. Additionally, following extant literature, I only include citations within a 5-year window 

from the cited patent’s application date (Huenteler et al., 2016a, 2016b; Malhotra et al., 2021). 

This avoids over-weighting older patents that had more time to accrue citations and that might 

continue to get cited for legal reasons even after the technology has become obsolete. Because 

I am interested in knowledge flows across different components of the smart grid, I check that 

excluding citations beyond 5 years does not bias my data. For example, it could be that citations 

across different smart grid subsystems have longer lags than citations within the same 

subsystems. Using patent classes to proxy for subsystems, I find that the distribution of citation 

lags is similar within and across subclasses, providing reassurance that using a 5-year citation 

window is appropriate.     

3.3.4 Identifying influential patents 

To convert the SPNP value from the edge-level to the patent-level, I follow Huenteler and 

colleagues (2016a) and assign the SPNP value of the edge to both its nodes i and j. I then take the 

sum of the SPNP values over the entire sample of patents and identify influential patents as those 

constituting 80% of the network’s total weight.  Having obtained a sub-sample of influential 

patents, I manually code these inventions along different smart grid components and service 

characteristics. This mixed-methods approach enables me to generate descriptive statistics at a 

large scale for the entire sample, and to compare the characteristics of influential patents with 

the rest. Additionally, it allows for a detailed examination of the content of these patents to gain 

insights into the evolution of the field’s core knowledge path.  

Overall, these methods facilitate my descriptive analysis of the evolution of the focus of smart 

grid patenting and contribute to the broader goal of identifying components of smart grid 

technology across which important knowledge flows have occurred. These could then be 



 169 

leveraged to analyze how public policies, such as technical standards and regulations, affect 

knowledge flows within smart grid technology.   

3.4 Descriptive results 

I begin with a descriptive analysis of overarching trends in smart grid patenting over the period 

1980-2020. I investigate how patenting intensity has evolved and document which domains of 

smart grid technology have attracted the lion’s share of R&D activity. I then examine the 

characteristics of influential patents and firms, to garner insights about what it takes to produce 

impactful innovation in this field, and associated policy implications.  In the latter part of my 

analysis, I document knowledge trajectories within the field. First, I examine where knowledge 

flows have predominantly occurred. Next, I present descriptive statistics about the evolution of 

the citation networks’ connectivity, offering insights into patterns of technological convergence 

within the field. Finally, using the subsample of highly influential patents that I obtained through 

the connectivity analysis and coded manually to capture detailed information about their 

targeted users and service characteristics, I demonstrate how the substantive focus of smart grid 

R&D has shifted overtime.  

3.4.1 General trends in smart grid patenting 

Figure 3.1 shows low levels of patenting activity in the 1980s and 1990s, followed by a sharp 

increase in the 2000s, peaking around 2011, and declining thereafter. The dip at the end of the 

sample period is attributable not only to this declining trend, but also to truncation bias. This 

occurs because many applications filed after 2018 were likely pending by the time the version of 

the PATSTAT database I use (2022) was released.  

A notable trend throughout the sample period is the predominance of inventions related to 

buildings and other end-user applications, and the lesser focus on inventions that support 

distribution, transmission, and renewables integration (“systems” inventions). This is concerning 

given the severity of grid management bottlenecks, especially in the face of the increased 

frequency in severe weather events causing grid disturbances and the urgency to integrate 

distributed energy generation at a larger scale. Systems-related innovations is one of the domains 
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of smart grid technology where innovation is urgently needed to confront these challenges. A 

possible explanation for these trends is that market demand has been greater and more 

predictable in end-consumer applications, such as home energy management automation 

systems and other inventions supporting demand response and load shedding on the end-

consumer’s premises. Utilities, on the other hand, are infamous for being risk-averse to adopting 

new technologies, particularly in markets that are highly regulated (Brown et al., 2018).   

Figure 3.1 Trends in smart grid patenting 

 
Note: The counts represent applications that were eventually granted in the United States, sorted by filing year. These 
counts do not adjust for overlap in technology classes; patents classified under multiple categories contribute to the 
counts of each respective technology domain they fall under.    

Counts of patents related to information and communication technologies (“ICT”) closely track 

trends in buildings and end-user innovation, partly because there is overlap between technology 

classes. Smart grid technology is primarily about digitalizing electricity management at various 

locations of the electricity system. Therefore, ICT patents generally co-occur with other domains 

of smart grid technology. For example, an invention like the Google Nest thermostat falls under 

the ICT and end-user categories.    

Finally, inventions related to the integration of electric vehicles on the grid - for example to serve 

as flexible storage solutions - and innovations in electricity marketing - such as energy trading or 
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billing software used by aggregators or net metering participants – have lower patenting levels. 

This could be because these areas of technology are still in their infancy and have lower market 

demand compared to other categories.  

The descriptive results above only inform us on general trends in the intensity and focus of R&D 

activity overtime across different smart grid technology domains. Patents are notable for varying 

in quality, which cannot be fully captured through simple counts. Therefore, Figure 3.1 offers an 

incomplete representation of where important inventive activity has occurred. For instance, 

while we observe the highest patent counts in buildings technology, this may be due to intense 

market competition in this sector, without necessarily indicating commercial success for all 

patented inventions. Furthermore, patent counts do not inform us on knowledge flows and on 

whether some areas of technology are more foundational to the field than others, and what has 

been the direction and sequence of knowledge transfers across these different domains.  

To begin unpacking these questions, I first illustrate trends in patenting activity across these same 

categories of smart grid technology, but in the subsample of influential patents. Those are 

patents making up 80% of the citation network weight. These patents are located along the field’s 

core knowledge trajectories. They can be interpreted as inventions contributing important 

knowledge to the field. Strikingly, when restricting patent counts to this subsample, in Figure 3.2 

we observe a more balanced representation of the different smart grid technology domains. 

These suggests that important inventions contribute knowledge that is broadly relevant to the 

field.  
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Figure 3.2 Trends in smart grid patenting, influential patents 

 
Note: The counts represent applications that were eventually granted in the United States, sorted by filing year for 
the subsample of influential patents that make up 80% of the citation network weight. These counts do not adjust 
for overlap in technology classes; patents classified under multiple categories contribute to the counts of each 
respective technology domain they fall under.    

Examining this more closely, Table 3.1 shows that influential patents are more interdisciplinary 

than smart grid inventions of peripheral importance. Most core patents are classified under two 

or more different smart grid domains, as shown in the far-right column, whereas almost half of 

smart grid inventions fall under only one category.  

Table 3.1. Interdisciplinarity of inventions 

Number of smart 
grids domains 

Percentage of inventions 

All patents Influential patents 

1 47.22 16.88 

2 35.82 38.31 

3 11.31 25.97 

4 4.79 14.29 

5 0.81 4.55 

6 0.06 0 

 
Relatedly, influential patents also draw on more diverse combinations of knowledge. Figure 3.3 

shows the median originality score of patents in the full sample and in the subsample of 

influential patents over time. Originality scores capture the diversity in the technology classes of 
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a patent’s backward citations. In other words, it measures whether patents build on diverse 

combinations of knowledge, including knowledge external to the field. Overall, patent originality 

is high in smart grids, due to the inherent interdisciplinary nature of these technologies, and it 

also rises overtime as digitalization calls for increasingly complex technology. Still, influential 

inventions are distinctly more original than the rest, providing further evidence that to produce 

impactful innovation, inventors must have the capacity to draw on broad and diverse knowledge, 

as well as bring external knowledge into the field. To garner further insights about the expertise 

and skills needed to produce influential invention in this field, and related policy implications, I 

next present descriptive statistics on the field’s most important and most influential innovators.  

 

Figure 3.3 Patent originality over time, full sample and influential patents 

 
Note: Counts represent the median originality score of granted patents filed in each year since 1995. Originality 
scores were computed at the 7-digit level, following the method proposed by Squicciarini and colleagues (2013).  
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3.4.2 Firm-level descriptive statistics: important and influential smart grids inventors 

Table 3.2 lists the 30 largest smart grid innovators, sorted in descending order by their count of 

patents. These counts include the totality of granted patents filed by these firms between the 

years 1980-2020. Together, these firms hold close to 35% of all granted smart grids patents in 

the United States. This level of concentration is not unusual. For example, Verspagen (2007) 

observes similar shares in fuel cell technology47.  What is different, however, is that these large 

innovations hold a smaller share of influential patents, around 23%. In fact, two-thirds of the 

firms on this list never produced an influential patent. The few that are highly successful in 

producing important inventions are firms whose core activities are in the electricity sector, such 

as such as General Electric, Asea Brown Boveri and Siemens (except for AT&T).  A few electronics 

companies – Toshiba, Intel, and Hitachi – also produced influential inventions, to a lesser degree. 

These results suggest that the firms that contribute important knowledge to the field are the 

ones possessing core knowledge in the electricity sector, but also have the capability to bring in 

expertise from other sectors, such as digital technologies.  

The information presented in Table 3.3 complements these findings. This table shows the list of 

30 largest influential firms, sorted in descending order by the number of influential patents they 

produced during the period 1980-2020. While this list includes some of the large innovators, like 

General Electric, Asea Brown Boveri, Itron and Toshiba, it includes several smaller specialized 

firms, such as Square D, a manufacturer of electrical equipment (whose parent company is 

Schneider Electric); Consert a start-up eventually acquired by Toshiba who develops intelligent 

energy distribution systems; and GridPoint, another company specialized in grid management 

technologies.  The list even includes individuals listed as sole applicants on patents (i.e., no 

company co-applicants). Together, these 30 companies/individuals hold about 58% of all 

influential smart grid patents, a higher concentration than in the general sample. However, they 

hold a much smaller share of total patents - only about 14%.  

 
47 Verspagen finds that the 28 most prolific firms in the fuel cells sector are responsible for 52% of patents in the 
field’s citation network. The descriptive statistics I present in Tables 3.2 and 3.3 are not directly comparable, as I also 
included patents that are isolates in the count (never cite and are never cited) and might therefore underestimate 
large firms’ share of patents when only considering patents that are connected to other patents through citations.  
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Table 3.2. Largest smart grids patent applicants 

Company name 
Patent count  

(all) 
Share of  
all (%) 

Patent count 
(influential) 

Share of  
influential (%) 

General Electric 491 3.39 6 3.90 
IBM 341 2.35 0 0 
Siemens 288 1.99 4 2.60 
Asea Brown Boveri 286 1.97 7 4.55 
Toyota 252 1.74 0 0 
Panasonic 234 1.61 1 0.65 
Intel 201 1.39 0 0 
Toshiba 186 1.28 2 1.30 
Samsung 184 1.27 0 0 
Mitsubishi 182 1.26 0 0 
NEC 172 1.19 0 0 
Itron 165 1.14 2 1.30 
Sony 161 1.11 0 0 
Hitachi 161 1.11 1 0.65 
AT&T 156 1.08 9 5.84 
Panasonic 149 1.03 0 0 
Schneider 137 0.94 0 0 
Google 132 0.91 0 0 
Schweitizer 119 0.82 0 0 
LG 113 0.78 0 0 
Causam 107 0.74 3 1.95 
Broadcom 104 0.72 0 0 
Cisco 104 0.72 0 0 
Ford 97 0.67 0 0 
Honda 96 0.66 0 0 
Eaton 96 0.66 0 0 
Honeywell 88 0.61 0 0 
Qualcomm 88 0.61 0 0 
Landys + Gyr 84 0.58 0 0 
Fujitsu 82 0.57 0 0 

Total:  5,056 34.9 35 22.74 

The prominence of smaller, specialized firms in the production of influential patents suggests 

that the need to modernize and digitalize the industry has created opportunities for new firms 

to enter what is otherwise a highly regulated and concentrated market. The significance of these 

firms in driving impactful innovation has important implications for policy, particularly for 

understanding how different policy initiatives, such as technical standards, R&D incentives, 

incubators, etc. support the entry of new actors to help respond to the needs of digital (and other 

like) transitions, in industries that require highly complex technology and interdisciplinary 

knowledge.  
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Table 3.3. Most influential smart grids applicants  
Company name Patent count  

(all) 
Share of  
all (%) 

Patent count  
(influential) 

Share of  
Influential (%) 

Power measurement 
measurementMEASUREMEN
T 

42 0.29 10 6.49 
AT&T 156 1.08 9 5.84 
Asea Brown Boveri 286 1.97 7 4.55 
General Electric 491 3.39 6 3.90 
Square D 47 0.32 5 3.25 
Consert 10 0.07 4 2.60 
Siemens 288 1.99 4 2.60 
Cannon 5 0.03 3 1.95 
Causam 107 0.74 3 1.95 
Hunt technology 12 0.08 3 1.95 
Battelle Memorial Institute 44 0.3 3 1.95 
Yingo electronics 9 0.06 3 1.95 
Statsignal systems 9 0.06 3 1.95 
First Pacific Networks 3 0.02 2 1.30 
Stonewater control systems 
CONTROL SYSTEMS 

2 0.01 2 1.30 
Consellation energy group 
ENERGY GROUP 

2 0.01 2 1.30 
Itron 165 1.14 2 1.30 
Tecom 2 0.01 2 1.30 
Elster 42 0.29 2 1.30 
Viridity 10 0.07 2 1.30 
Toshiba 186 1.28 2 1.30 
Smartsynch 8 0.06 2 1.30 
James D. Romanowiz 2 0.01 2 1.30 
Enernoc 44 0.3 2 1.30 
Gridpoint 22 0.15 2 1.30 
Robert J. Brown  2 0.01 2 1.30 

Total: 1,996 13.74 89 57.83 

 
3.4.3 Mapping knowledge flows within smart grids technology 

Mapping where important knowledge flows occur across the different domains of smart grid 

technology can also provide useful insights for policy. For example, it can highlight areas where 

knowledge transfers are lacking and where policies encouraging research collaborations or cross-

sectoral learning in other ways may be helpful. To advance understanding of knowledge transfers 

across different domains of smart grids, Tables 3.4, 3.5, and 3.6 depict cross-citations. To ensure 

comparability across the three tables, I show the share of citations in each cell rather than the 

absolute count of citations.  

Table 3.4 begins by showing knowledge flows for the full sample. As expected, within-domain 

citations (shown in grey) are more frequent than cross-domain citations. We nevertheless 

observe non-negligible knowledge flows across the following domains: buildings and systems 
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(gen, trans, distr); end-user and systems; buildings and ICT; end-user and ICT. In the full network, 

these knowledge flows occur to a comparable extent in both directions. However, a clear 

direction emerges for market patents. Market applications are cited as frequently in buildings 

and end-user patents than in other market patents, but the reverse is not true. Few market 

patents cite buildings and end-user inventions. This could be a sign that the market domain is 

further upstream in the design hierarchy: important design decisions need to be made in market 

technologies, such as billing software, before end user devices, such as smart thermostats, can 

work to their full potential for achieving tasks like controlling electricity consumption in response 

to real-time price changes. Results from extant literature suggest that the direction of citations 

can inform us on the design hierarchy. For example, in the wind turbines sector, Huenteler and 

colleagues (2016b) find there are twice as many citations from patents in lower levels of the 

design hierarchy to patents in higher levels, such as power train patents citing rotor patents, than 

in the reverse direction. In the case of wind, this indicates that knowledge is flowing from the 

upper levels to the lower levels in a way that is congruent with the authors’ assessment of the 

wind turbine design hierarchy. 

Table 3.5 shows more clearly the direction of these knowledge flows for smart grids. This table 

only contains citations across influential patents, making it more directly comparable to the 

cross-citations table found in Huenteler and colleagues (2016b). It shows that knowledge travels 

more often from systems patents to end-user and buildings patents, and from ICT to end-user 

and buildings patents. For example, there is three times as much buildings patents citing systems 

patents than systems patents citing buildings patents. That knowledge flows down more often 

from systems and ICT inventions to other domains of smart grid technology suggests that these 

two domains are located upstream in the design hierarchy.   

Finally, Table 3.6 explores whether citation patterns are different between core and peripheral 

INVENTIONS. It shows citations from non-influential patents (peripheral) to influential patents 

(core). While within-domain citations remain important, their incidence is lower. This suggests 

that influential patents play an important role in supporting cross-domain learning. When 
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peripheral patents build on knowledge external to their technology domain, they appear more 

likely to cite influential patents.  

Table 3.4. Knowledge flows within full network 

 
 
Table 3.5 Knowledge flows within influential patents 

 
 
Table 3.6 Knowledge flows from influential to non-influential patents 

 
 

3.4.4 Evolution of the smart grids patent network 

The connectivity analysis does not only inform us on which are the influential patents in a citation 

network, but also on patterns of technological convergence over time. Figure 3.4 graphs the 

composition of different types of patents within the citation network. Isolates are patents that 

are never cited and never cite. They are, in fact, located outside of the citation network. 

Intermediates are patents that cite and receive citations. Sources are patents that do not cite but 

are cited. Sinks are patents that cite but are never cited (Verspagen, 2007; Fontana et al., 2009).  

Figure 3.4 shows that a substantial share of the growth in smart grid patenting is driven by 

isolates. While the number of isolates is lower than other types in the early years, they grow to 
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become the most important category in 2010s. This is much higher than what the literature has 

found in other sectors of technology such as fuel cells and ethernet (Verspagen, 2007; Fontana 

et al., 2009). It might occur because these patents draw solely on knowledge external to the field, 

since patent citations to non-smart grids patents are not included in the network48. The high 

presence of isolates might therefore be a distinctive feature of highly interdisciplinary 

technologies.  

Figure 3.4 Evolution of smart grid citation network 

 
 
We nevertheless observe signs that the industry is converging onto common paths, as the 

number of sinks eventually surpasses the number of sources, as seen in other technologies 

(Verspagen, 2007; Fontana et al., 2009). The share of patents that constitute a start point in 

 
48 Also, patent citation data is highly skewed as most patents are never cited. However, here we might expect that 
even patents that never receive citations nevertheless cite prior art and would be included in the network as a sink 
rather than an isolate.  
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knowledge trajectories shrinks overtime, implying that citing patents (intermediates and sinks) 

converge onto a narrower knowledge base. To further explore how the focus of knowledge 

trajectories has evolved over time, the next section presents results on the content of influential 

patents. These data were obtained through coding their abstracts manually.   

3.4.5 Evolution of core knowledge trajectories 

I use network analysis to identify important patents that are representative of the field’s core 

knowledge trajectories. After identifying a subset of 154 influential inventions from the initial 

14,498 smart grids patents, I analyze their content at a level of detail not supported by 

quantitative approaches on large-N datasets. The qualitative analysis provides insights into how 

the focus of inventive activity in the core trajectory has travelled across different components of 

the smart grid architecture, and how this has evolved with demand for different smart grid 

applications over time. 

I first coded patents along the type of user targeted by the invention, shown in Table 3.5. These 

reveal interesting trends over time. Inventions in the early years primarily target end-consumers. 

They concern home energy management, such HVAC automation and remote control of home 

appliances. The number of inventions targeted at utility users then begins to grow in the 1990s. 

Most inventions in this period target the interface between utilities and their customers. These 

include advanced metering infrastructure and inventions that enable utilities to remotely control 

and curtail power delivered to their customers. For these reasons, many patents from the 1990s-

2000s period are coded under both user types. The focus on residential and utility target users 

then declines in the late 2000s, moving to customer-generators (residential renewable energy 

producers). While the number of patents targeting customer-generators remains low relative to 

other categories, this nevertheless shows a clear sequencing of targeted users throughout the 

different periods: from residential customers, to utilities, to customer-generators.  

Importantly, it suggests that the focus of inventive activity is primarily driven by market demand 

rather than a more intentional ordering of inventive activities downstream the smart grid design 

hierarchy, especially in the early years. End-user customers readily existed in the early years of 
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the sample, which is not the case for many other grid actors that are emerging with the 

decarbonization transition. After the deregulation of electricity markets in the 1990s, when 

performance-based grid management gained prominence, we observe a sway of patents 

focusing on helping utilities manage flexibility on the demand-side. Then, as the deployment of 

DERs advanced, new types of grid users gained in importance. Those include customer-

generators, and to a lesser extent, electric vehicle users, micro-grids, electricity aggregators, etc. 

In the later years of the sample, we observe that companies began developing products for these 

new technology users as well.  

Figures 3.6. and 3.7. further show the evolution of the grid functions performed by inventions on 

the main technological path, and their related service characteristics. Following extant literature, 

I define the latter as characteristics of a technology - such as reliability and cost - that are valued 

by particular users, or for particular uses (Malhotra et al., 2021; Saviotti and Melcalfe, 1984). For 

example, in the batteries sector, size and weight became important service characteristics when 

the demand for batteries for electric vehicles boomed, steering R&D resources away from 

stationary applications, such as grid-scale batteries, where other service characteristics are 

valued, like cycle life, energy density and scalability (Popp et al., 2024). Malhotra and colleagues 

(2021) even find that this shift in demand, caused by the emergence of the new EV use 

environment, prompted innovation back into the product architecture to adapt the dominant 

design of lithium-ion batteries to service characteristics valued in the EV market. Therefore, while 

a technology’s design architecture might inform the sequence in which different technical 

problems are tackled (Murmann and Frenken, 2006), especially after a dominant design has 

taken root, this process is also moderated by other factors that include shifts in the demanded 

uses for a technology, and associated characteristics. An important question for the literature to 

address is when can we expect technological trajectories to follow the Murmann-Frenken model 

and when are those trajectories more haphazard? The smart grids case, as I describe below, 

offers valuable insights because it features aspects of both: some sequencing along the design 

hierarchy, as well as feedback from the emergence of new grid users demanding different service 

characteristics.  
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Figure 3.6 shows that in the early years of the sample, most patents focused on developing 

products for building energy management, whose principal service characteristics is the 

improvement of energy conservation on the demand-side of the grid. The focus later gradually 

moved from developing devices for end-users - for example to aid them save on their electricity 

bill - to developing technologies that service the overall grid network. This started with a focus 

on advanced metering infrastructure, which serves both end-users, to aid with managing their 

electricity consumption, and utilities, to improve knowledge of their customers’ electricity 

consumption habits. From a focus on developing devices that collect energy consumption data, 

the sector then moved to developing applications for utilizing these data. In the late 1990s and 

early 2000s many influential patents developed control systems and devices to enable utilities to 

collect and aggregate data about electricity consumption and remotely curtail electricity 

provision to customers. These inventions served the purpose of facilitating peak load shedding 

and supporting grid management. They revolved around service characteristics valued by 

utilities, as the primary users of these technologies, such as grid stability. 

In the early 2000s, innovation intensified in mainstay areas of smart grid technology such as data 

communication and data security. These patents spanned issues such as data storage, data 

exchange, data management, and data aggregation. Several of these patents developed wireless 

communication technologies for the grid. These inventions often targeted utilities or were non-

specific about users, suggesting that they have broad application: in generation, transmission, 

distribution and behind the meter. It appears that the service characteristics valued by users 

during this period concerned reliability, speed and coverage of data transmission, as well as 

security in the face of growing concerns about the grid’s vulnerability to cyberattacks and 

consumer data protection.   

Once technology for collecting, managing, and sharing data became available, inventors turned 

their attention to utilizing these data to optimize grid operations. In parallel with innovations in 

data communication and data security, we also observe influential patents in the areas of 

forecasting and modelling during the 2000s.   
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Finally, starting in the late 2000s, grid technologies that support the decarbonization transition 

gained in importance, likely driven by growing demand from new grid users participating in 

distributed electricity markets. In this period, we begin to observe influential patents in novel 

areas such as microgrids, electric vehicle charging, storage integration, while innovation in DER 

integration also grows. Important service characteristics of these applications include grid 

sustainability and flexibility.    

These descriptive data indicate that core knowledge development in smart grids underwent the 

following sequence. In the early years, inventive activity focused on areas where a consumer 

market readily existed, then shifting to concerns of grid stability and demand management likely 

propelled by pressure on utilities’ performance following deregulation of the electricity sector. 

During the digital revolution the industry began to harness these new technologies to improve 

grid management. It first developed data communication and security inventions, followed by 

innovation in a sway of new applications related to distributed generation. At the same time, 

intensive inventive activity continued in pre-existing areas such as building energy management, 

load shedding and electricity marketing.  

Figure 3.5 Patent counts by user type 
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Figure 3.6 Patent counts by grid function 

 
 
Figure 3.7 Patent counts by grid function 

 
 
A possible interpretation is that the advent of a new general-purpose technology combined with 

changes in the regulatory/market environment for grid technologies opened opportunities to 

deploy these new digital technologies across the grid. The industry responded by developing 

inventions adapting these for use on the grid, consolidating a new dominant design for the 

industry. It started with developing data communication and information technologies, which 

became foundational knowledge for follow-on innovation.  A common conceptual model of the 
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smart grid used by industry presented in Figure 3.8 shows that these communication and 

information layers of the smart grid design architecture are central. In the early years, innovation 

started in the lower component layer. Then innovation in core communication and information 

layers appears to have triggered a new wave of innovation back down into the component layer, 

both in new use areas related to distributed generation demanded by new actors of the 

decarbonization transition, as well as in pre-existing areas where incumbent technology likely 

became obsolete.  

Figure 3.8 Smart grid architecture, conceptual model 

 
Source: Smart Grid Architecture Model (SGAM) framework developed by European standardization agencies CEN and 
CENELEC49. 

 

3.4.6 Summary of descriptive findings 

- The greater focus of inventive activity has been in areas of technology where the 

customer base for specific products is readily available, such as buildings and end-user 

devices. R&D intensity has been lower in technologies that either do not have clearly 

 
49 https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/CEN-
CENELEC_Topics/Smart%20Grids%20and%20Meters/Smart%20Grids/reference_architecture_smartgrids.pdf  

https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/CEN-CENELEC_Topics/Smart%20Grids%20and%20Meters/Smart%20Grids/reference_architecture_smartgrids.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/CEN-CENELEC_Topics/Smart%20Grids%20and%20Meters/Smart%20Grids/reference_architecture_smartgrids.pdf
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defined customers or smaller markets, produce network externalities or other non-

excludable benefits to the grid, such as systems, market, and EV integration technologies. 

Low demand from utilities averse to adopting new technology, especially in regulated 

contexts, might also explain lower patenting levels in these areas.   

- Influential patents are more interdisciplinary and build on more original combinations of 

knowledge.  

- Companies that produce a lot of inventions do not necessarily produce influential 

inventions. Companies that produce influential inventions appear to either be large 

electricity sector incumbent with greater capacity to integrate knowledge external to the 

field, or young companies specialized in grid technologies.  

- Knowledge flows are higher within domains than across domains of smart grid 

technology. Cross-domain knowledge flows are higher between influential patents. 

Influential patents also seem important for transferring interdisciplinary knowledge to 

non-influential patents. Knowledge appears to flow from systems and ICT patents to 

buildings and end-user patent. The direction of these flows suggests that systems and ICT 

inventions are located higher in the design hierarchy.  

- The citation network converges gradually onto a common knowledge base over time, but 

smart grids feature a distinctly high number of isolates.  This may be because there is  a 

high share of smart grids patents that draw solely on knowledge external to the field.  

- Early innovation initially focused on home energy management and metering. Following 

deregulation in the 1990s and increased scrutiny of grid performance, core knowledge 

trajectories shifted toward grid and demand management. During the 2000s, innovation 

in the communication and information layer of the smart grid architecture, alongside the 

establishment of a dominant design through standardization, appears to have prompted 

R&D back into components. This period saw new grid technologies emerge in the areas 

of storage, micro-grids, and electric vehicle integration. It also saw continued innovation 

in areas that had already received substantial attention in earlier periods, such as grid 

management, load shedding, and building/home energy management, possibly to adjust 
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to the new information/communication paradigm. A combination of design architecture 

and market forces seems to have shaped knowledge trajectories.   

In the next section, I discuss the relevance of these results for advancing theory and informing 

policy. 

3.5 Discussion and conclusion 

The main objective of this paper was to gain a detailed qualitative understanding of the content 

of knowledge trajectories and influential smart grids patents, with a view to informing the future 

research on the effects of standards on knowledge transfers in smart grids technology.  

Nonetheless, this descriptive analysis in-and-of itself reveals novel insights for theory and policy.  

A first insight contributing to advancing theory is that the conceptual representations used to 

describe technological trajectories in other green energy technologies, such as wind (innovation 

traveling downstream components in the design hierarchy) and solar (incremental innovation 

from product to process innovation focused in one core component) are inadequate to describe 

the innovation trajectory of smart grids. In contrast with these other technologies, smart grid is 

a distributed technology, not a self-contained product sold to a single end-consumer. Instead, it 

encompasses a panoply of devices that connect to shared infrastructure. The different devices 

bought by individual consumers connect to the grid to achieve the common purpose of improving 

grid flexibility, grid stability, and facilitate renewables and EV integration, among other things. A 

'smart' electrical grid, therefore, resembles a club good more than a private good. This 

characteristic seems to have shaped the knowledge trajectory of this sector, as it evolved from a 

core focus on end-user technologies for a readily available consumer base in the early stages, to 

novel applications for emerging types of consumers in recent years. The middle years focused on 

developing applications for utility users and integrating digital technologies, which appear to 

have provided foundational knowledge for later innovation in both ongoing and new areas. As a 

complex and distributed technology, smart grids appear to have followed a path loosely guided 

by the design hierarchy. Especially in the period that coincides with the development of many 

interoperability standards for data communications and security, we observe innovation 
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travelling down from these core IT components to more peripheral applications, such as storage 

and renewables integration. However, compared to other complex technologies that are more 

centralized, like wind, technical change in smart grids appears to have been more strongly shaped 

by external factors such as changes in demand for novel applications - many of which have also 

been policy-driven - and changes in available general-purpose technology.  

These observations offer important insights for policy. For instance, as noted by Malhotra et al. 

(2021), knowledge trajectories are incremental, but they are not set in stone. The authors’ 

examination of the lithium-ion battery technology reveals that strong demand in new areas can 

steer innovation trajectories away from their core path. The authors speculate that this provides 

evidence that demand-pull policy instruments might not only help with supporting innovation in 

mature technologies, as extant literature shows (Johnstone et al., 2010), but can also be 

leveraged to encourage innovation in emerging areas, where technology-push instruments have 

traditionally been viewed as more effective (Malhotra et al., 2021). My analysis of the smart grid 

adds suggestive evidence that knowledge trajectories can be redirected by demand in new user 

environments.   

Beyond reflecting on which balance of technology-push and demand-pull policy interventions 

can encourage green innovation in needed areas, my analysis of the smart grid case provides 

insights for interdisciplinary technologies, and other sectors undergoing digitalization, more 

generally. Innovating in these sectors requires expertise in several areas and bringing external 

knowledge into the field. As different innovation actors adapt to a new technological paradigm, 

lessons learned in one area of smart grid might be relevant to innovate in another. In complex 

technologies where core components affect the design of subsequent components, transferring 

knowledge from these core components might help accelerate technology development in areas 

further downstream, and facilitate compatibility between components. Therefore, interventions 

that facilitate knowledge transfers across various domains of smart grid technology are crucial 

for addressing the system's diverse technological needs. This may help ensure that challenges 

are tackled not only sequentially but also effectively, utilizing the best available knowledge. 

Standards are one possible tool that can facilitate knowledge transfers, through making the 
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industry’s state-of-the-art knowledge more widely accessible.  Future research should investigate 

this further through formally modelling the causal effects of standards on knowledge transfers 

between different domains of smart grid technology.  
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Conclusion: implications for policy and 
future research 
 
In this dissertation, I examine the role of alternative green innovation policies, technology 

standards more specifically, in accelerating the development of technologies urgently needed to 

build a carbon-neutral economy by 2050. I focus on coordination challenges because they have 

received less attention than other market failures often discussed in the green innovation 

literature, like environmental externalities and knowledge spillovers. Compounding this dual 

externality problems, coordination challenges are poised to become increasingly prominent in 

emerging green technologies. My dissertation draws attention to these challenges and, using the 

case of smart grids as an example of a complex and interdisciplinary technology, presents findings 

of broader relevance to many emerging green technologies sharing similar features, including 

bioplastics, hydrogen, bioengineering, and carbon capture and storage. 

While existing literature on standards primarily examines their legal and governance aspects, my 

dissertation contributes to emerging research about the impacts of standards on knowledge 

production. I unpack various dimensions of the relationship between standards and follow-on 

innovation, starting with their effect on R&D intensity.  I find that standards cause a decline in 

patenting, particularly amongst large incumbent firms. However, I uncover that this occurs 

because standards focus innovation onto high-quality knowledge trajectories. They help 

integrate interdisciplinary knowledge into the field and encourage its utilization. Standard may 

therefore help establish and disseminate a new technological paradigm across an industry, for 

example, following breakthroughs in general purpose technology. This is relevant to many 

industries undergoing digital transitions, and increasingly, the automation revolution. Through 

formalizing a technology’s design architecture, standards can also help structure how different 

technical problems are tackled sequentially. An important part of this implies diffusing new 

knowledge across the different components of a technology to ensure its use in the development 
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of various applications that are compatible with one another. The last chapter begins to explore 

how standards support knowledge transfers across different domains of smart grid technology.  

Future research should expand on these insights to explore how various green industrial policy 

instruments, including standards but also other tools like green procurement and public-private 

research collaborations, can support emerging clean technologies and shape the sustainability 

landscape leading up to 2050. 
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