
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

Dissertations - ALL SURFACE at Syracuse University

5-12-2024

A TrustZone-based Framework to Secure Mobile Financial A TrustZone-based Framework to Secure Mobile Financial

Transactions and Provide End-to-End Protection for QR-code Transactions and Provide End-to-End Protection for QR-code

Payments and Credit Card Information Payments and Credit Card Information

Ammar Salman Salman
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Salman, Ammar Salman, "A TrustZone-based Framework to Secure Mobile Financial Transactions and
Provide End-to-End Protection for QR-code Payments and Credit Card Information" (2024). Dissertations -
ALL. 1971.
https://surface.syr.edu/etd/1971

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of
SURFACE at Syracuse University. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Fetd%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1971?utm_source=surface.syr.edu%2Fetd%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

In this work we have developed multiple solutions for financial transactions that can be

coordinated to provide high level of security and data integrity, while providing all

services with minimum changes in infrastructures, and maximum flexibility. The

solutions are novel in many aspects and the generalization is a clear feature. The

TrustZone hardware is an important component to ensure high security and protection.

The system can function smoothly on any type of operating systems and works with any

platform of services in the market. The tested case study is built on the Android system

and the ARM TrustZone hardware. This particularly does not mean it is the best option.

Under other operating systems the design can work equally efficiently or better.

Types of transactions can include using peripheral devices like cameras, GPS, or NFS

that can work in connection with mobiles or standard systems. QR code payment are

fully served including merchant or buyer modes with static or dynamics payments. Credit

card options are also fully served. The offline generation of virtual credit card systems

plays a major role in providing uniqueness, high security, and maximum flexibility to

serve all platforms.

In the development and testing, we have fully experimented with four component

solutions. The first covers using peripheral devices, the second provides decoding

capacity within the TrustZone and eliminating the need for decoding by external servers.

the Virtual Credit Card (VCC) offline dynamic generation of numbers provides

maximum flexibility in offering secure payment and eliminating middleman services.

Finally, the addition of encoding in the TrustZone generates secure QR codes covering

the buyer presented option. The VCC offline dynamic generation one way hash

encryption and decoding ensures to get secure information. Only the user and the bank

parties can reconstruct and confirm the true authenticity and accuracy of the

communication. Moreover, the use of UTC time to narrow the window of validity of the

credit card number closes known gaps for the conduct of unauthorized transactions.

With such conjunction, we developed a framework design to build a scalable commercial

and industrial applications that can use the current infrastructure, while getting the best of

all services. An important requirement is to have a cooperating TrustZone hardware

provider and a banking system willing to implement the system. The framework can be

applied smoothly to serve different operating systems and payment services.

To get an alternative, the framework can be served even more efficiently and securely if

we construct a TrustZone compatible standalone TrustProvider SOC. Such system can

remove the requirement of having a side to cooperate with. In fact, it provides more

flexibility, because there is no need to work with certain manufacturers. The system is in

design and development as an ongoing work. Such system is still TrustZone based, and

all components are managed by a Trusted Execution Environment (TEE). Meanwhile, it

can also provide the TrustZone service using the mobile phones albeit with less security

in terms of communication.

Keywords: ARM TrustZone, TrustProvider, DOT-VCC, Mobile Security, REE, OPT-

TEE, QR payments, OP-TEE, Android, Threat Model, Attack Surface. ZBar Decoder,

Split QR decoding, Payment fraud prevention. VCC generators, Encoding systems. Buyer

Present QR code.

A TrustZone-based Framework to Secure Mobile Financial

Transactions and Provide End-to-End Protection for QR-code

Payments and Credit Card Information

I/O Access and Data Security/Integrity; Split SSL Decoding and Encoding

DOT-Virtual Credit Card Generation with Security/Integrity.

A Framework with TrustZone Compatible SoC TrustProvider.

by

Ammar S. M. Salman

B.E., Alquds University, 2016

M.S., Syracuse University, 2021

Dissertation

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical and Computer Engineering.

Syracuse University

June 2024

Copyright © Ammar Salman, 2024

All Rights Reserved

v

Acknowledgements

I am pleased to thank my supervisor, Professor Kevin Du for his support and guidance.

Thanks extend to the department of Electrical Engineering and Computer Science at

Syracuse University and the cybersecurity group.

I am also indebted to thank the reviewing committee, Professor Riyad S. Aboutaha,

Professor Yuzhe Tang, Professor Garrett Katz, and Professor Mostafa Taha for showing

constant support and understanding and providing valuable feedback. Also, I would like

to give special thanks to Dr. Kailiang Ying and Dr. Amit Ahlawat for offering help

whenever was needed.

I extend my special thanks to my father Professor Salman M. Salman who as always

provided guidance, encouragement, and deep insights for me. Special thanks to my

mother Professor Suhair H Salman for her love and daily support. Sister Abeer lives in

Jordan, but I always feel we are together. I am specially indebted to brother Odai (who

completed PhD in deep learning in medical applications) for the cooperation and support

during our years of undergraduate and graduate studies and the hospitality when we

exchange visits. Finally, special thanks to sister Adan who has completed her graduate

studies in computer engineering from Syracuse university, and to Obada my youngest

brother who is studying computer science at SUNY POLY. I look forward to

collaborating with all of them in the future.

Ammar Salman

Syracuse, NY 2024

vi

Table of Contents

Abstract ... I

A TrustZone-based Framework to Secure Mobile Financial Transactions and Provide

End-to-End Protection for QR-code Payments and Credit Card Information III

Acknowledgements ... v

Table of Contents ... vi

List of Figures .. xi

List of tables ... xiii

List of Abbreviations and Terms Definitions ... xv

Chapter 1: Introduction, Problem Statement, and Contributions 2

1.1 Introduction ... 2

1.1.1 Motivation ... 3

1.1.2 ARM TrustZone .. 3

1.1.3 Existing Credit Card Protection Techniques ... 4

1.1.4 Summary of Our Framework .. 5

1.2 Problem Statement & Objectives .. 6

1.2.1 Problem and Solution .. 6

1.2.2 Objectives ... 7

1.2.3 Outcomes .. 7

1.2.4 Threat Model Basic Assumptions ... 7

1.2.5 Threat Model Attack Surfaces .. 8

1.3 Manuscript Structure and Organization .. 8

1.4 Contribution: A Brief Summary of the Thesis Work .. 9

1.4.1 Secure camera QR Payment Capture and Transfer to Servers for Processing

(Ch.3). 10

1.4.2 QR Split Decoder that Works Within the TrustZone. (Ch.4) 10

1.4.3 DOT-VCC Generator & SEEM-FTF Framework (Ch. 5 & Ch. 6) 10

1.4.4 Published Work. List of published articles covering this work 11

vii

Chapter 2: General Background ... 14

2.1 Introduction ... 14

2.2 General Threat Model ... 15

2.2.1 Android Breaches and Corruption .. 16

2.2.2 Credit/Debit Card Theft .. 18

2.3 ARM TrustZone .. 19

2.4 TruZ-Droid .. 22

2.4.1 Split-SSL ... 23

2.4.2 TruZ-UI ... 25

2.5 QR Code Encoding Functions .. 27

2.5.1 Definition .. 27

2.5.2 QR Code Structure .. 28

2.6 QR Decoding .. 31

2.7 Tokenization and Existing Protections Method .. 31

2.8 DOT-VCC Method ... 31

Chapter 3: Assured Data Integrity of Camera and Location Devices 33

3.1 Introduction ... 33

3.2 Background and Related Work ... 34

3.2.1 I/O Trust Access and Data Integrity ... 34

3.2.2 QR Merchant and Buyer Payments... 34

3.2.3 Location Attestation .. 35

3.2.4 ARM Trusted Execution Environment (TEE) .. 35

3.2.5 Related Work .. 36

3.3 Problem Statement & Threat Model ... 40

3.4 Solution Design ... 41

3.4.1 Data Retrieval from Peripheral Devices ... 41

viii

3.4.2 Data Processing ... 42

3.4.3 Transparency and Seamless Integration.. 43

3.5 Implementation ... 44

3.6 Evaluation & Analysis .. 49

3.6.1 Mock Applications .. 49

3.6.2 Modified Applications .. 49

3.6.3 Evaluation Results .. 50

3.6.4 Analysis... 51

3.7 Conclusions ... 52

Chapter 4: Split-QR Decoder Hybrid Design for ARM TrustZone 55

4.1 Introduction ... 55

4.2 Related Work .. 57

4.2.1 QR Decoding using ZBar Library... 57

4.2.2 ZBar C Library Utilization in the TrustZone .. 60

4.2.3 Related Work .. 61

4.3 Solution Design (Split-QR Decoder) .. 64

4.3.1 Design Analysis and Comparison ... 64

4.3.2 ZBar C Library Components in the TEE .. 67

4.3.3 Splitting Criteria.. 69

4.3.4 Design Evaluation ... 69

4.4 Implementation ... 76

4.5 Evaluation & Analysis .. 77

4.5.1 Datasets ... 78

4.5.2 Performance Comparison.. 79

4.5.3 Complete Analysis .. 81

ix

4.5.4 Summary of Results .. 82

4.6 Conclusions and Future Work .. 83

4.6.1 Conclusions ... 83

4.6.2 Future Work .. 85

Chapter 5: Dynamic Offline TrustZone VCC (DOT-VCC) Transactions Generator. 88

5.1 Introduction ... 89

5.2 Background and Related Work ... 91

5.2.1 Overview of Fraud Impact .. 93

5.2.2 Credit Cards Concepts .. 94

5.2.3 Related Work .. 98

5.2.4 The Preferred Embodiment ... 99

5.3 Problem and Objectives .. 103

5.4 Solution Design (DOT-VCC Generator) .. 105

5.4.1 Acquiring Issuer Approval .. 108

5.4.2 Constructing the Credit Card Number .. 108

5.4.3 Data Reconstruction by the Issuer (Bank) .. 110

5.4.4 Other Design Considerations .. 112

5.5 Implementation ... 115

5.6 Evaluation & Analysis .. 116

5.6.1 Validating the algorithm correctness. ... 116

5.6.2 Performance .. 118

5.6.3 TEE Size ... 119

5.7 Conclusions ... 120

5.7.1 Summary ... 120

5.7.2 The System Services and Protections ... 123

x

Chapter 6: Secure End-to-End Mobile Financial Transactions Framework (SEEM-

FTF) 126

6.1 Introduction ... 127

6.2 Background and Related Work ... 129

6.2.1 QR Payment Methods ... 130

6.2.2 Description of Quick Response (QR) Codes [80] [23] [24] 131

6.2.3 Frameworks Related Work ... 132

6.2.4 Problem and Objectives .. 137

6.2.5 Threat Model Assumptions ... 138

6.2.6 Encoding Functions in The Secure Transfer of Data 138

6.3 Solution Design ... 139

6.3.1 Buyer-Presented QR Codes .. 139

6.3.2 Design and Evaluation Plan of the SEEM Framework Integrated System . 141

6.4 Implementation and Evaluation .. 142

6.4.1 Implementation ... 142

6.4.2 Performance of Integrated Services .. 144

6.5 Conclusions and Ongoing Work ... 146

6.5.1 Conclusions and Generalizations .. 147

6.5.2 System Integration & Technology Innovation .. 148

Chapter 7: Conclusions and Future Work .. 153

7.1 Conclusions ... 153

7.1.1 Assured Data Integrity of Camera and Location Devices (Chapter 3). 153

7.1.2 Split-QR Decoding Hybrid Design for ARM TrustZone (Chapter 4). 153

7.1.3 TrustZone DOT-VCC Generation for Financial Transactions (Chapter 5). 154

7.1.4 SEEM Framework with DOT-VCC and other functions (Chapter 6) 156

7.2 Ongoing and Future Work .. 158

xi

7.2.1 SEEM Framework with DOT-VCC and other functions. 159

7.2.2 Extending Split Functions for Trusted Operations (Chapter 4). 159

7.2.3 Building a Standalone TrustProvider (Section 7.1.4D) requires the following:

 161

7.2.4 Work Plan and Prototype Implementation .. 162

7.2.5 Challenges ... 163

References ... 165

Vita .. 178

List of Figures

Figure 2.1: QR code payment types. ... 15

Figure 2.2: General Threat Model .. 16

Figure 2.3: NIST’s NVD database - Android vulnerabilities per year [1]........................ 17

Figure 2.4: Physical core layout under ARM TrustZone design. 20

Figure 2.5: Boot sequence for the TEE and REE [2] .. 21

Figure 2.6: Split-SSL design - SSL Handshake & Encryption [2] 24

Figure 2.7: Confirmation UI Integration of the TruZ-Droid [2]. 26

Figure 2.8: Keyboard integration of the TruZ-Droid [2] .. 26

Figure 2.9: Bit matrix representation and a real QR image [23] 28

Figure 2.10: QR code structure [23], [24]... 29

Figure 3.1 Merchant presented QR payments... 35

Figure 3.2 Attacks surfaces for QR transactions under a compromised REE. 41

Figure 3.3 Securing transactions through moving functions to TEE. 41

Figure 3.4 Peripheral device access for the Rich (REE) and Secure (TEE) 42

Figure 3.5 Using Split-SSL secure communication with the server. 43

Figure 3.6 Connecting peripheral devices to Hi-Key board. .. 44

Figure 3.7 Connected circuitry of the system. .. 45

Figure 3.8 System configuration hardware components. .. 46

Figure 3.9 Application invocation with TEE and REE services. 47

xii

Figure 3.10 Sequence diagram for static QR code processing under system design and

implementation ... 48

Figure 4.1 Static QR code payment initial server QR decoder design path. 64

Figure 4.2 Static QR payment with TEE Split QR decoding design path. 65

Figure 4.3 Sequence diagram for static QR payment processing under the Split-QR

Decoder design.. 67

Figure 5.1 Baseline threat model attack. ... 99

Figure 5.2 user-end tokenization countermeasure and limitations. 100

Figure 5.3 Merchant tokenization countermeasure and limitations. 102

Figure 5.4 VCC with tokenization countermeasure and limitations. 103

Figure 5.5: DOT-VCC design and the elimination of dependence on providers for

security. ... 105

Figure 5.6: DOT-VCC design solution and steps. .. 106

Figure 5.7 The concatenation string. ... 109

Figure 5.8 Credit card number construction. .. 110

Figure 5.9 Flowchart of the overall verification process of generated credit card data. . 111

Figure 6.1 Buyer-presented QR payments overview. ... 130

Figure 6.2 QR code structure .. 132

Figure 6.3 Invocation of secure peripheral services between the REE and TEE [7] 135

Figure 6.4 Split QR decoder design. ... 136

Figure 6.5 Offline virtual credit card generation using TEE. ... 137

Figure 6.6 SEEM framework integrated system components and their interactions: 1-

camera, 2- Split decoder, 3- encoder, 4- DOT VCC ... 141

xiii

List of tables

Table 1.1 List of chapters and titles. ... 9

Table 3.1 Results of the overhead for the two base services. 100% for Base Location. .. 48

Table 3.2 Applications, services and lines of code needed... 49

Table 3.3 Assessment of the applications integration and performance. 50

Table 3.4 Showcase of lines of code added to the TCB for trusted applications. 52

Table 3.5 Design highlights and comparison with other works summary 53

Table 4.1 Summary of the differences in the designs. .. 66

Table 4.2 key components within the decoder which were partially moved to the TEE.

The entire ZBar decoder library is much larger than the moved components. 68

Table 4.4 Summary of simulation environment. .. 77

Table 4.5 Datasets descriptions [53] ... 78

Table 4.6 Results of eight calibration runs on the two datasets in the REE. 79

Table 4.7 Results of Split-QR runs. .. 80

Table 4.8 Results for server decoder runs. .. 80

Table 4.9 Total processing time analysis for the different methods. 81

Table 4.10 Descriptions of variables. ... 82

Table 4.11 Methods performance: average decoding/code for code types and call settings

(values in milliseconds) .. 82

Table 4.12 Operational parameters for the methods of decoding 83

Table 4.13 Design highlights and comparison with other works summary 84

Table 5.1 Credit card verification (CCV) number generation algorithm [61]. 96

Table 5.2 Comparison Table for the three types of services vs. our DOT-VCC Solution

... 107

Table 5.3 Generated credit card numbers for the four test cases described above, and the

reference generator on the issuer server side. ... 118

Table 5.4 Time measurement analysis .. 119

Table 5.5 Description of functions added into the TEE.. 120

Table 6.1 Core functions and their LoCs in the TrustZone or TrustProvider. Camera and

split are treated as one system. .. 142

xiv

Table 6.2 The core operations where the first is the sender and the second is the receiver.

... 142

Table 6.3 Time measurement variables and their descriptions 145

Table 6.4 The integrated system core operations, where Dev1 is the sender and Dev2 is

the receiver, using TrustZone or standalone TrustProvider for protection. 146

Table 6.5 Design highlights and comparison summary .. 148

Table 6.6 TrustZone protection through two methods .. 149

Table 7.1 Feasibility for fully extended services as outlined in the thesis. 159

xv

List of Abbreviations and Terms Definitions

Term Meaning

Android The mobile operating system.

API Application Programming Interface.

ARM Advanced RISC Machines: a family of CPUs based on the RISC

architecture developed by ARM. Comes in 32-bit and 64-bit multi-

core processors.

Attack Surfaces The total number of threat that the system is exposed to and their

success frequency.

CVV Card Verification Value

Decoding Extracting embedded information from representation. E.g., QR

decoding extracts the original text that was represented through

encoding as a QR image.

Decoded data Tools that control the form of data from comprehensible or not.

DoS Denial of Service.

DOT-VCC Dynamic Offline TrustZone Virtual Credit Card

Emulator A hardware device or software program that enables a host computer

system to imitate the functions of another Guest computer system.

FW Firewall.

GPS Global Positioning System.

HTTP Hypertext Transfer Protocol.

I/O devices Input/output devices including camera GPS NFC…etc.

LoC Lines of Code.

Location

attestation

Identifying the location through GPS or other means.

Luhn algorithm A formula used to calculate checksums and it’s commonly used to

calculate the last of the 16 digits in credit cards

NFC Near Field Communication.

NIST National Institute for Standards and Technology

xvi

NVD National Vulnerability Database

One way hash A process where information is transformed irreversibly into another

representation where only holders of the original information may

generate the same representation.

OS Operating system.

Performance

overhead

Efforts in terms of time and resources that are added to the normal

operation due to certain changes in the original settings and the effect

on the standard operations

QR Code Quick Response code

REE Rich Execution Environment.

RISC Reduced Instruction Set Computer.

SEEM-FTF Secure End-to-End Mobile Financial Transactions Framework

SoC System on Chip

Split-SSL-

handshake

Secure Sockets Layer. Instead of relaying an insecure HTTP

connection, an SSL splitting proxy simulates a normal SSL

connection with the client by merging authentication records from the

server with data records from a cache.

TA Trusted application.

TAC Trusted application client (aka CA)

CA Client Application (aka TAC)

TCB Trusted Computing Base.

TEE Trusted Execution Environment.

Threat Model The main weak spots in the security system that allow certain

breaches of the normal operations of the original system.

Tokenization The process of passing tokens that represent information without

passing the information directly.

TrustZone An operating system that ensures hardware and software full

protection.

TruZ-Droid A design and implementation using TrustZone to offer secure services

for UI and SSL/

xvii

TrustProvider An SOC design for a standalone TrustZone based device that supports

secure I/O

UART Universal Asynchronous Receiver-Transmitter.

UI User Interface.

Verification Certain protocol of test to verify if the implementation works as

intended.

Vulnerabilities Weak spots in the system that allow breaches.

VCC Virtual Credit Card

ZBar Open-source C library for barcode and QR code decoding

1

Chapter 1

Introduction, Problem Statement, and Contributions

2

Chapter 1: Introduction, Problem Statement, and Contributions

1.1 Introduction

The security problem for real-time applications is a challenge that must take into account the

variability of the attack types and frequency [1]. Operating systems constantly provide security

updates, but they lag far behind attackers who exploit these systems, which leads to

vulnerabilities affecting sensitive operations users perform. One focus in this work is on security

procedures for Android devices utilizing TrustZone. The role of the TrustZone is to provide

dedicated protection that can foil attacks by preventing accessibility to critical information or

operations. The TrustZone concept provides a successful utility for different operating systems

environments [2], [3], [4], [16]. This work focuses on providing security for financial

transactions conducted using mobile devices using TrustZone.

In this section, we first define the problem statement, and the needed protection for the Android

user intensive applications, such as payment, location, and integrity of data. We introduce the

ARM TrustZone, and the specialized TruZ-Droid developed by our group [2], [5], [6].

The work of this thesis covers four components of financial or general transactions that use

various methods like QR coding encoding and virtual credit card generation and decoding. A

framework out of these components is discussed. All components are tested to operate in the

TrustZone, or an alternative standalone TrustProvider SoC, which is proposed to be dedicated for

these functions under the supervision of a dedicated hardware trust environment. Using a

standalone TrustProvider brings more dedication and independence. Still, the operations are

compatible with regular TrustZone.

Section 1.2 states the overall problem statement and general objectives, and the details will be

thoroughly covered when discussing each component definition, design, and implementation in

3

the following chapters. The thesis is divided into seven chapters as listed in section 1.3. Chapters

1 and 2 are introductory and background, and Chapters 3-6 cover the core components

description, ending with a framework proposal that integrates the components under a single

trust management. Finally, Chapter 7 presents the overall conclusions and proposals for future

work or extensions. Section 1.4 summarizes the contributions and publications.

1.1.1 Motivation

1. Mobile devices are increasingly used for financial transactions, and credit card payments are

vulnerable to remote attacks causing sensitive data loss.

2. Major financial losses result in global credit & debit card fraud losses amounting to $34B in

2022 [1], [11], [12] [75].

3. Hackers need only 6 seconds to breach the secrets as practiced in the existing payment

systems, security codes and expiry dates are easily bypassed [11].

4. Merchant and service provider databases are vulnerable to attacks, and credit card theft and

manipulation.

5. Complex infrastructure offers more room for attack surfaces and vulnerabilities.

6. Tokenization, virtual credit cards, service-provider-based transactions need an overall

revision using Arm TrustZone based protections.

7. This work addresses countering these problems on mobiles systems using built-in or

standalone TrustZone devices.

1.1.2 ARM TrustZone

1. A secure enclave created by ARM implemented software and hardware.

2. The TrustZone offers two execution environments: The secure Trusted Execution

Environment (TEE) and the unsecure Rich Execution Environment (REE).

4

3. The hardware-based isolation ensures data stored in the TEE is inaccessible to the REE,

which makes it suitable for storing information like biometric data and payment information.

4. The TEE is flashed on the device from the factory and does not receive Over-The-Air

updates, making the TEE inaccessible as a service to many applications that may want to

utilize its security. The TEE is kept small to ensure it only supports core features.

5. App developers must communicate with the manufacturers to have support for the features

they desire. The process is expensive, and most application developers cannot afford it.

6. Developing generic services that can be utilized by application developers seamlessly is a

goal.

7. TrustZone systems are available extensively on mobile REE systems, but can be utilized

independently.

1.1.3 Existing Credit Card Protection Techniques

Tokenization

1. User-end tokenization: user passes token to the merchant who validates the correctness of the

token and uses service-providers in the credit card network to fulfill the transaction. Service-

providers map the token to the real credit card being used so that merchants do not need to

hold the credit card info.

2. Merchant-based tokenization: the merchant gets the card information from the user and the

merchant is responsible for tokenizing the data using service-providers who store the credit

card information.

3. Tokenization is heavily dependent on service-providers (middlemen) to function.

5

Virtual Credit Cards (VCCs)

1. VCCs are useful in masking real credit card data with virtual data that can be set to expire

after a transaction, rendering theft of that data near harmless, because the original data cannot

be extracted from it.

2. VCCs are exclusively used for online payments and are still vulnerable to remote attacks

against devices used by service-based transaction providers.

Service-based transaction providers

1. Users often rely on service-providers to offer a platform for financial transactions.

2. They offload their security to that platform, which stores their credit card information and

uses it to generate platform-specific transactions in the form of QR codes that can be scanned

by other users for payment processing (buyer-presented or merchant-presented QR codes).

3. Such platforms can be managed by the banks or operating on their own, and they do support

VCCs for online transactions.

4. The primary issue is that the platforms are increasingly becoming targets for remote

attackers, given that they contain valuable data. Breaches against them do lead to theft of

many users’ credit card data.

1.1.4 Summary of Our Framework

1. With several protection techniques introducing middlemen to mitigate merchant-related

breaches, they also introduce new risks against their own databases. How do we mitigate the

risks for users without changing the infrastructure?

2. We introduce a framework that eliminates the need of service-providers’ security, but

incorporates the developed Dynamic Offline Trusted Virtual Credit Card generation (DOT-

VCC) for personal and online payments and maintains the integrity/secrecy of the data

through the ARM TrustZone protection.

6

3. This offers end-to-end transactions that do not expose any real credit card information in the

infrastructure aside from the issuing bank.

4. The system eliminates data theft through middleman-related breaches. The breaches can still

happen, but no useful data is stolen.

5. The DOT-VCC works with existing credit card network infrastructure without modification

to the core operations.

6. The framework offers seamless integration for developers, transparent user experience, and

protects integrity and secrecy of data based on the need.

1.2 Problem Statement & Objectives

1.2.1 Problem and Solution

Problem: How to protect user information in financial transactions, both in person and online,

from remote attacks against mobile devices as well as merchant and service provider databases,

while maintaining a transparent user experience, seamless integration for developers, secrecy of

sensitive data, and integrity of transactions?

Solution: Building secure services for the TrustZone to cover different aspects of the financial

transactions and integrate them in the TrustZone without introducing a large code base that

makes the TrustZone vulnerable to attacks. Functions include encoding/decoding, peripheral

control, and dynamic offline generation of virtual credit cards (DOT-VCC) for secure use. The

framework should facilitate end-to-end transaction security that does not expose users’ data.

Constraints: Transparent user experience, as added security should not inconvenience user

experience. Another concern is seamless integration, where developers employing security

measures should not have to redesign everything in their development pipelines. Finally,

7

solutions should not add large amounts of code into the TEE, which is the idea of a Small

Trusted-Computing-Base (TCB).

1.2.2 Objectives

Our main objective is building a framework for TrustZone based integrated transaction systems

for mobile devices, which also offers a foundation for a TrustZone compatible standalone SoC

TrustProvider.

Specific underlying objectives

1. Securing the data path for merchant-presented transactions to protect data integrity.

2. Processing the transaction data in the TrustZone while maintaining small TCB.

3. Maintaining the secrecy of user data in buyer-presented transactions.

4. Providing secure presentation of buyer-presented transactions for processing.

5. Offering end-to-end transaction security that does not rely on the security of service

providers.

1.2.3 Outcomes

1. Assured data integrity of camera and location devices.

2. Split-QR Decoder: hybrid design for TrustZone QR decoding operation.

3. DOT-VCC: TrustZone-based VCC generator for financial transactions.

4. QR-Encoder: TrustZone-based QR encoder for DOT-VCC data.

5. Framework: integrated framework combining the outlined components offering secure

financial transactions, using the TrustZone, and can be built a standalone (TrustProvider).

1.2.4 Threat Model Basic Assumptions

1. The security of the REE is fully compromised.

2. Ordinary communication channels are not secure.

8

3. Compromised merchant databases or other service-provider systems, with impacts limiting

existing infrastructure-based countermeasures, like tokenization.

4. The TrustZone provides high security over data residing in the TEE and can completely shut

down the REE’s access to resources it needs.

1.2.5 Threat Model Attack Surfaces

1. The mobile device: REE consists of millions of lines of code and loaded with features that

make it vulnerable to remote attacks by gaining full root access over the device, including

memory buffers, and I/O, resulting in stealing any data that flows through the OS. This threat

model is explored in depth in Chapters 3 and 4.

2. Provider/merchant databases: such databases are attractive for attackers. Companies that host

them are often victims of ransom, and in other cases the data is sold on the dark web. This

threat model is explored in further depth Chapters 5 and 6.

A solution against both threats necessitates a framework encompassing the whole transaction

paths. Our solution eliminates all threat model vulnerabilities.

1.3 Manuscript Structure and Organization

The thesis is divided into seven chapters. This introductory chapter identifies objectives, main

assumptions, and accomplished outcome. Chapter 2 covers background about TrustZone and our

main objectives and application that are used in the development of the main products. The

background includes decoding, encoding concepts, TruZ-Droid [2] (contains Split-SSL and

TruZ-UI) used in communication and decoding/encoding functions. Chapter 3 covers the first

component, namely the development of a secure I/O under TEE operation. It defines the threat

model, the solution design, the implementation test and evaluation of the actual feasibility of the

product on industrial scale. Chapter 4 covers the second component, which is the development

9

Split-QR Decoder hybrid design for QR decoding in the TrustZone. Table 1.1 shows the list of

chapters and titles.

Table 1.1 List of chapters and titles.

Chapter Title

Chapter 1 Introduction and problem statement

Chapter 2 General background.

Chapter 3 Assured data Integrity of camera and location devices [7]

Chapter 4 Split-QR Decoder: hybrid design for ARM TrustZone [8]

Chapter 5 VCC generation with security and integrity (DOT-VCC) [9]

Chapter 6 Secure End-to-End Mobile Financial Transactions Framework (SEEM-FTF) [10]

Chapter 7 Conclusions and Future Work.

Citations References.

Chapter 5 presents the third component which is the novel design DOT-VCC for credit card

protection. Chapter 6 covers the fourth component of encoding in relation to QR codes and

DOT-VCC generation with a proposed design for a framework covering the four components

and managed under the regular TrustZone on mobiles. It also discusses a design for standalone

TrustProvider that works under TEE independent of manufacturers settings. Finally, Chapter 7

outlines the conclusions, recommendations, and future work.

1.4 Contribution: A Brief Summary of the Thesis Work

Solutions and Outcomes

Outcomes 1-2 of section 1.2.3 target the user-end vulnerabilities, while 3-5 target both user-end

and service-related vulnerabilities. Outcome 5 also offers integration enabling end-to-end secure

transactions. Contributions are outlined as follows:

10

1.4.1 Secure camera QR Payment Capture and Transfer to Servers for Processing (Ch.3).

1. Split-camera configuration capability that lets the REE configure the camera and focus

settings, while the TEE takes the capture. This ensures the integrity of the capture is never

compromised.

2. Secure data path from the peripheral all the way to recipient server. This component

delegates the processing of the QR code to the server by sending the image capture to the

server. This eliminates any processing on the TrustZone side but introduces overhead.

1.4.2 QR Split Decoder that Works Within the TrustZone. (Ch.4)

1. Split-QR decoder design that allows the TrustZone to directly process QR codes without

needing to delegate the task to remote servers offering improved performance.

2. The design processes meta-data in the REE but leaves the extraction of the data to the TEE

and operates only on the original copy of the data which maintains the integrity of the

retrieved data.

1.4.3 DOT-VCC Generator & SEEM-FTF Framework (Ch. 5 & Ch. 6)

1. Unique design that combines the benefits of VCCs and tokenization without relying on

service providers for the security of financial transactions which include tokenization and

VCC service providers.

2. The design offers capability for end-to-end transactions without users exposing any sensitive

information about their financial data to others. The circle of trust demanded by this design

only contains the bank issuing the card, and the user who has the card.

3. It works for both physical transactions as well as virtual online transactions given the DOT-

VCC is suitable for both types.

11

4. The design is still compatible with existing infrastructure and does not require any

modifications to merchants nor service-provider systems to work with them. The design just

renders their stored data irrelevant in cases of security breaches.

5. It protects against compromised user devices by providing the service in the TrustZone. The

design also makes the service accessible to any banking system that wishes to utilize it

without adding application-specific code in the TEE, thereby maintaining the security of the

TEE while adding major security benefits.

6. The design introduces QR encoding within the TrustZone that is very lightweight and does

not introduce any significant performance overhead. The encoder ensures the added security

does not inconvenience user experience.

7. The Secure End-to-End Mobile Financial Transactions Framework (SEEM-FTF) offers

utilization of encoding and decoding capabilities in connection with DOT-VCC to create

secure peer to peer activities.

1.4.4 Published Work. List of published articles covering this work

1. Salman, A.S., Du, W. (2021). Securing Mobile Systems GPS and Camera Functions Using

TrustZone Framework. In: Arai, K. (Ed.) Intelligent Computing. Lecture Notes in Networks

and Systems, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-80129-8_58

2. Salman, A.S., Du, W.K. (2022). Split-QR Decoder Hybrid Design for ARM TrustZone. In:

Arai, K. (Ed.) Advances in Information and Communication. FICC 2022. Lecture Notes in

Networks and Systems, vol 439. Springer, Cham. https://doi.org/10.1007/978-3-030-98015-

3_64

3. Salman, A.S., Du, W.K. (2022). Dynamic Offline TrustZone Virtual Credit Card Generator

for Financial Transactions. In: Arai, K. (Ed.) Advances in Information and Communication.

https://doi.org/10.1007/978-3-030-80129-8_58
https://doi.org/10.1007/978-3-030-98015-3_64
https://doi.org/10.1007/978-3-030-98015-3_64

12

FICC 2022. Lecture Notes in Networks and Systems, vol 439. Springer, Cham.

https://doi.org/10.1007/978-3-030-98015-3_65

4. Salman, A.S., Du, W.K. (2024). A Framework for TrustZone Encoding/Decoding for QR

Buyer-Presented and VCC Offline Generated Transactions, submitted to Future Technologies

Conference 2024.

https://doi.org/10.1007/978-3-030-98015-3_65

13

Chapter 2

General Background

14

Chapter 2: General Background

2.1 Introduction

Modern operating systems are built on a massive legacy infrastructure that consists of millions of

lines of code (LoCs) accumulating over decades of development. The primary focus throughout

the development of such code bases is feature additions and fixing bugs, with a secondary

concern for security-related analysis. While modern OSes are much better equipped to deal with

attacks, due to constant support and security patches, they are still considered quite vulnerable

against cybersecurity threats. Security analysis is expensive and can hardly cover all cases in

such massive systems. Therefore, security patches are always playing catch-up with hackers

discovering new bugs and vulnerabilities. This makes such systems very unreliable for security-

critical operations, such as biometric authentication, financial transactions, and handling

sensitive data.

Luckily, the cybersecurity threat was recognized by many developers and researchers, and the

concept of a secure enclave, that is only used for security-sensitive operations, was born.

Different developers have different implementations of such an enclave, and they are used for

different use-cases. However, all such implementations are primarily hardware-based to

eliminate a lot of threats against the enclaves themselves.

ARM introduced the ARM TrustZone in all its processors, and the TrustZone has been available

in nearly every Android mobile device on the market for the past decade. However, the utility of

the TrustZone is very limited and does not cover many security-sensitive operations. Expansion

of that utility is also a difficult problem because the expansion itself can cause threats against the

TrustZone itself, which if breached, nullifies all protections for users and their data.

15

The threats against operating systems affect security for all sorts of transactions, including

financial transactions that use QR codes for convenience of the users. Figure 2.1 shows the

general overview of the types of QR payments. Chapter 3 explains, in more detail, how the QR

transactions take place.

Figure 2.1: QR code payment types.

In this chapter, we introduce background about Android-related attacks, the ARM TrustZone,

our research group work utilizing the TrustZone, and QR payment systems.

Section 2.2 covers the general threat model, and section 2.3 reviews the ARM TrustZone in

relation to our work. Section 2.4 reviews our group developed a modified version of a TrustZone

named TruZ-Droid. Section 2.5 outlines core encoding functions with a follow up in Chapter 6.

Section 2.6 lists decoding with a detailed review in Chapter 4, and sections 2.7 and 2.8 list

tokenization and DOT-VCC offline credit generation, which are covered in Chapter 5.

2.2 General Threat Model

The general threat model the thesis addresses includes two major attack areas, namely, attacks

against user mobile devices, and attacks against service-related databases that store users’ critical

information.

16

Mobile devices are generally assumed unsafe for data security and sensitive data protection due

to the wide range of attacks that exist against them. Attacks do not need physical access to the

device to break through its security systems, and gain access to its content. Figure 2.2 shows the

threat model

Figure 2.2: General Threat Model

Any security related application needs to address the shortcomings of mobile security through

other means. On the other side, when users utilize services that involve financial transactions,

those services are vulnerable to remote attackers who like to steal data from the databases and

use it for malicious purposes. That includes financial information like credit cards. The thesis

work introduces protections against both attack categories and aims to protect users’ financial

data when operating under compromised mobile devices, and with vulnerable service-related

databases.

2.2.1 Android Breaches and Corruption

There is a large number of vulnerabilities in Android OS. The trend in discovery of new

vulnerabilities is slowing down, but the number is already very high. Attacks and vulnerabilities

17

cover a large range of possibilities that range from attacking small components, to attacks against

the infrastructure of the OS that yield root access to remote attackers. Such access gives attackers

full control over every data path throughout the OS, and can lead to massive breaches of

sensitive data. Despite the constant security patches, Android OS is still unreliable for sensitive

data operations. Such security breaches are not limited to Android OS, they also apply to iOS

where there are several examples of breaches that gain attackers full control over the device.

Figure 2.3 shows the yearly number of vulnerabilities related to Android OS according to the

National Institute of Standards and Technology’s (NIST) National Vulnerability Database

(NVD) [1],[13]. Whenever using Android OS, we need to also be mindful of vulnerabilities that

are not disclosed to the NVD [14], given that the procedure to disclose is typically done by

ethical hackers who discover and report the vulnerabilities instead of exploiting them. Malicious

actors do not operate in the same manner. Therefore, it is reasonable to assume that any

Figure 2.3: NIST’s NVD database - Android vulnerabilities per year [1]

operation conducted under Android is vulnerable, and that includes financial transactions.

Accordingly, mobile devices utilize secure enclaves for sensitive operations. Android uses

ARM’s TrustZone while iOS uses Apple’s Secure Enclave. Given a wider range of companies

18

develop Android-based devices, the specific implementation of the TrustZone, both in software

and hardware, differs from one manufacturer to the other [2], [3].

The secure enclave offers better security countermeasures that can eliminate several risks in

principle. For example, they are the industry standard for processing fingerprint data as the

sensor is hardwired to the enclave which blocks the normal OS from accessing fingerprint

information. Other applications include cryptography, wallets, payments, and more.

All commercial Android devices, in the market today, are equipped with ARM’s TrustZone. The

TrustZone has its own operating system, developed by the vendors. Such systems do not have

updates given they are imprinted into secure isolated hardware components during the

manufacturing process. Only the vendor can update such systems, and that requires physical

access to the devices. Vendors do not disclose their specific implementations of the TrustZone

operating systems for added security.

2.2.2 Credit/Debit Card Theft

Credit and debit card fraud and attacks have been very costly to the financial markets around the

world. It was estimated that the credit/debit card fraud in 2022 reached 33 billion dollars in

losses [12]. The credit card infrastructure is massive and financial transactions have many

endpoints which are vulnerable to attacks and breaches that leak users’ financial data. A survey

conducted by W. Ahmed et. al. found it only takes 6 seconds to gain access to the credit card

information in online transactions [11]. The attacks are not limited to online transactions because

through everyday use, the users’ financial data is stored in several places on the credit card

network. Merchants who accept payments may store the credit card information in their

databases, which then become targets for attackers. Other merchants delegate their responsibility

for security by using service-providers to process the transactions for them, and accordingly they

19

do not store any credit card information in their databases. However, the problem is just moved

and not solved because service-providers become the target for attackers, and breaches against

them are even more damaging given they contain more credit card information than merchants.

While there are several security mechanisms put in place to protect users credit card information,

the problem persists, and it is increasingly getting worse as users rely on credit cards more than

cash [12]. Countermeasures include tokenization which comes in two variants: user-end and

merchant-based tokenization schemes [69], [70], [71]. Tokenization relies on service-providers

for translation of tokens into real credit card numbers, but as explained earlier, this does not offer

protection against service-provider breaches. There are also virtual credit cards which offer

better degree of protection due to their nature in hiding credit card information altogether by

using virtually generated ones [62], [63], [64]. VCCs are used in online transactions and are not

suited for physical use due to the security limitations of mobile devices.

2.3 ARM TrustZone

The ARM TrustZone [3], [4], [16] is a hardware-based security enclave, based in the processor,

which offers security through hardware design that splits the execution environment into two:

Trusted Execution Environment (TEE) and Rich Execution Environment (REE). The TrustZone

design splits the physical core in a processor into two virtual cores, one is considered a secure

core while the other is a normal core. There is a Secure Monitor which is responsible for the

switching between the environments through a Secure Monitor Call (SMC) which suspends the

context and clears all the resources for the switch. The secure world has its own set of resources

which are never accessible by the REE, those resources are where the operating system of the

TEE resides and operates. Such resources include certain regions of the main memory and cache.

Furthermore, the TEE can also access any resource in the entire device on demand. The

20

monitor’s responsibility is to completely block the REE from accessing any resource being

accessed by the TEE.

Figure 2.4: Physical core layout under ARM TrustZone design.

For example, if the TEE needs to operate on a REE’s main memory for a specific function, the

REE is not allowed to read/write from that region until the TEE relinquishes control back to the

REE. It is the responsibility of the TEE and the secure monitor to ensure any data that remains

there may not be used to deduce any secrets contained in the TEE. The TrustZone can be

implemented in several ways as the implementation stretches to the entire System-on-Chip (SoC)

design which includes the processor, cache, memory, data lines, storage and peripherals. The

SoC designers generally follow the guidelines by ARM for their specific implementation and the

context switching between the two worlds (secure and normal) needs to be in all such

implementations. Figure 2.4 shows how the physical core is split and the general layout of the

two execution environments (or worlds). The typical REE-TEE implementation requires TEE to

boot and initialize first, then REE is follows.

The boot sequence is shown in Figure 2.5. The TEE contains a Trusted-Computing-Base (TCB)

which relies on small size to maintain security analysis feasible by including only necessary

functionality [4]. Maintaining a small TCB is critical to maintain security of the TEE. And in

21

general, developers avoid adding legacy code into the TCB because such code is hard to verify

for security applications. There are several operating systems for the TEE including Google’s

Trusty OS [15] and GlobalPlatform’s Open-source Portable Trusted Execution Environment

(OP-TEE) [15]. Trusty OS uses more modern languages for the source-code, including Rust,

while OP-TEE relies solely on C99 standard.

Figure 2.5: Boot sequence for the TEE and REE [2]

The TEE systems offer their own APIs and dispatchers which allow the REE to make use of their

services, which include encryption, wallets, biometric authentication, and others. An application

that has specific security needs will have to use those APIs to protect the sensitive operations.

The TEE and REE have their own structures which look similar in terms of both having kernel

and user spaces for operations. The kernel is dedicated to the OS services which include

management of devices and drivers, management of TCP/IP and so on.

Applications run in the user space. When the TEE provides a service, it is implemented as a

Trusted Application (TA) which operates within the user space in the TEE and relies on the

TEE’s kernel to function. On the other side in the REE, there has to be a client application,

typically referred to as the Trusted Application Client (TAC) or Client Application (CA) which

runs in the user space of the REE and is responsible for sending requests to the TA, which are

sent through the dispatcher (or daemon) that manages the TEE API calls in the REE.

22

While Trusty OS and OP-TEE are open-source, vendors (e.g., Samsung, Sony... etc.) have their

own specific implementations of such systems, and they are closed-source and proprietary. This

limitation means any third-party developers who would utilize the TEE services are limited in

the capacity provided by the vendors and the TEEs. Typically, third-party application developers

have to communicate with the vendors to have certain parts of their operations embedded in the

TEE to offer them security. This process is very expensive and lengthy, and is not feasible for

the majority of developers who do not have large budgets, nor the capacity to communicate with

vendors to have their code reviewed and added to devices during manufacture. Furthermore,

when such code is added, it does not necessarily support other applications who wish to use the

same security features, which adds even more complexity. It is very desirable to have services be

generic and accessible to everyone while offering security, and the theme of this thesis is to

follow that principle. The TrustZone is adopted for use in a wide range of applications including

internet [17], [18] general communication and networks [19] zero trust interactions [20] [21] and

use in Internet of Things (IoT) [22].

2.4 TruZ-Droid

Kailiang Ying, et. al. [2], [31] introduced the TruZ-Droid design which expands the utility of the

TEE to include several services including Split-SSL and TruZ-UI. The design focused on making

the services as generic as possible which makes them support any application that wishes to

utilize the TEE for security sensitive operations. The services do not contain any application

specific code in the TEE, and they allow for easy integration for application developers who

wish to use them. The design was integrated into the Android OS’s SDK and APIs which allows

applications to use those services like they would any other service.

23

TruZ-Droid allows applications to benefit from the TEE to protect the user’s input confirmation,

and sending the confidential information to the authorized server. They have built a prototype

using the TrustZone-enabled Hi-Key board to evaluate the design. TruZ-Droid evaluation

showed applications can leverage TrustZone while using existing OS APIs. They claim users can

safely interact with TruZ-Droid to protect sensitive activities and data.

2.4.1 Split-SSL

The Split-SSL [2], [31], [32], [33] design allows for the secure transfer of data between the TEE

and remote servers without REE manipulation of the data, and it does so without introducing

large TCB into the TEE. When applications send data to servers, they use HTTPS to pack the

data and send it over the network. HTTPS is built upon TCP and the SSL protocols. The SSL

handshake is critical for secure communication with remote servers. However, the challenge is

using those protocols within the TEE under a very limited TCB. The TCP/IP protocol

implementation in the Linux kernel, which Android is built upon, contains hundreds of

thousands of LoCs, the SSL protocol adds even more LoCs which make porting their

implementation infeasible to achieve in the TEE. The Split-SSL design recognized the limitation

and aimed to split the HTTPS communication between the REE and the TEE. They highlighted

the key functions necessary for the secure transport of data and only ported them to the TEE

while leaving the rest of the large code base in the REE.

Figure 2.6 shows the SSL handshake and the data encryption process in the Split-SSL design.

The first step is the verification of the certificate received from the remote server.

This step is necessary to protect against Man-in-the-Middle (MITM) attacks, and it has to be

done within the TEE in order to establish a root of trust for the handshake. In other words, the

TEE verifies it is talking to the correct server through the X509 verification step. It then returns a

24

Boolean which tells the application in the REE whether the verification was successful or not.

Then the normal handshake operation begins with the application requesting Pre-Master-Secret

(PMS) from the TEE. Then the TEE uses a random number generator to create the PMS then it

sends a reference back to the REE. The reference does not contain the PMS, it is just a pointer

that the TEE can recognize internally. The SSL process continues for the Master Secret (MS) and

the session keys (private key, shared secret, and session key) are generated and agreed upon

without exposing any of their information to the REE, thereby ensuring the REE cannot act as

the MITM attacker throughout this handshake, which further ensures the REE cannot decrypt the

encrypted traffic between the TEE and the server.

Figure 2.6: Split-SSL design - SSL Handshake & Encryption [2]

The Split-SSL design also addresses the TLS data size limits, and it breaks down large packets to

smaller ones that can be individually sent to the server. The Split-SSL design also employs

HTTP header attestation to allow the remote server the ability to verify that the REE is not

engaging in a MITM attack before sending data to the TEE where it is eventually decrypted. This

means the server can also trust the communication with the TEE and be aware that the data

coming from the TEE is legitimate. The server’s awareness of the TEE’s attestation is a critical

25

step because it helps servers to reject data that was processed through the REE in cases where no

TEE was used (for example, in Denial-of-Service attacks that intend on getting services through

the REE instead of the TEE). However, this can lead to service unavailability, but the Split-SSL

design did not consider availability against DoS attacks as part of the design’s scope.

2.4.2 TruZ-UI

The TruZ-Droid extensions also include the TruZ-UI which allows for a transparent use

experience while operating within the TEE. The design focuses on providing Android UI within

the TEE but without actually using any of the Android Framework code base to do so.

Figure 2.7 shows their UI. The design recognizes that the TEE is only used for security sensitive

operations like displaying secrets or obtaining secret data from the user [31], [32], [33].

Therefore, it does not need to offer a UI rendering capability all within the UI to achieve that

goal. Instead, the design relies on using screenshots of the REE’s display, then it modifies the

screenshot to include the secret information after the REE has been locked out of accessing the

display device. This is done by directly accessing the framebuffer in the main memory, which is

a resource typically given to the REE.

When the TEE needs access to the display, it seizes control over the framebuffer, and it alters the

data contained within it to display the secret data. In their case, they used this design to display a

barcode and a QR code that were already stored within the TEE for the demonstration. Obtaining

the QR and barcode was not the focus of the work, nor the demonstration.

26

Figure 2.7: Confirmation UI Integration of the TruZ-Droid [2].

Furthermore, the TruZ-UI design also allows users to interact with the TEE through the keyboard

TA that they have built for the TEE as shown in figure 2.8. The keyboard. TA also makes use of

the screenshots concept where the CA (client application) renders the screen that wishes to take

user’s input, then requests the service from the TEE.

Figure 2.8: Keyboard integration of the TruZ-Droid [2]

27

The frozen framebuffer will also include the keyboard as rendered by the REE, but the TEE will

have its own overlay that allows it to receive input from the touchscreen to properly record the

data being fed by the user. This means we can rely on this service to securely add data to the

TEE without worrying about the REE obtaining the data, and while maintaining transparent user

experience throughout the process.

2.5 QR Code Encoding Functions

In this section we review a simpler encoding with minimum derivation details. For derivations

please refer to [23], [24], [25], [26], [27], [28], [29]. Chapter 6 covers the implementation we

have used with additional references and discussion.

2.5.1 Definition

Quick Response (QR) refers to a two-dimensional bar code bit matrix created by the Japanese

company Denso-Wave. They are generally scanned by mobile and other devices, with

applications that use the device camera to scan the code. The data stored in a QR Code can

contain product information and price, direct to links, provide contact information, or compose a

text-message or email [23], [24], [26].

As figure 2.9 shows, QR Codes are square grids filled with black and white pixels. Three of the

corners have distinctive concentric squares, called Finder Patterns. The pixels squares that make

up the symbol are called modules. Each module represents one bit of data, white or black,

meaning 0 or 1, respectively. It's possible to use colors provided there is sufficient contrast.

28

Figure 2.9: Bit matrix representation and a real QR image [23]

There are 40 QR Code versions, which refer to the size. Version 1 is 21x21 modules, and each

successive Version increases by 4 modules in each dimension, all the way up to Version 40,

which is 177x177 modules. Each version is surrounded by blank white space with thickness of 4

modules. There's no limit on the size of the images, they can be a fraction of a millimeter, or

several feet square. But the practical size is around 5x5 cm2.

The image is made of m x m matrix, where m=21+ 4n, n=0…39; min m = 21, max m = 177. i=

rows and j= columns; element = eij = 1bit. Figure 2.9 shows the representation and a QR image.

All 40 versions support 4 types of Error Correction (EC), namely L, M, Q, and H. L supports

roughly 7% of data to be restored, M (the default) supports restoration of about 15%, Q supports

about 25%, and H, 30%. Higher EC modes allow more data recovery in case the symbol is

damaged, but require using more modules for EC.

2.5.2 QR Code Structure

Figure 2.10 shows the different sections of a QR symbol. In what follows we discuss the stored

information in the various sections [24].

29

Figure 2.10: QR code structure [23], [24]

Alignment Pattern: for versions 2 and higher, alignment patterns are placed to help decoders

adjust skewing in the symbol. Without them, it would be harder for a decoder to convert a

skewed photograph into the virtual grid of data. The alignment patterns are also concentric

squares like the finder patterns, but the center is a single black module. It's surrounded by a one-

thick white box, which is surrounded by a one-thick black box, with no white space outside.

Higher versions have more alignment patterns placed across the symbol.

Timing Pattern: an alternating stripe of black and white modules is located vertically and

horizontally between the finder patterns. Starting with black on the innermost black corner of the

finder patterns, the Timing Patterns alternate values toward the adjacent finder patterns. There

are two lines to the timing pattern - one running horizontally between the two top finder patterns,

and one running vertically between the two left-side finder patterns (the green lines in Figure

2.10).

Format Data: the data in the QR symbol is masked by reversing rows and columns. In order for

the decoder to know which modules to read as reversed, the selected mask is stored twice, along

with the error correction version. After the format information is encoded to 15 bits, it's placed in

30

the symbol twice. The first copy starts on the far left, directly beneath the white space around the

top-left finder pattern (row i = 8, column j = 0, zero-indexing). The first (highest-order) bit is

placed at this position, and subsequent bits are placed to the right. The module of the timing

pattern in the way is skipped over, two more bits are placed to the right, then the data turns

around the corner of the finder pattern's white space.

The modules from the other timing pattern are also skipped, and the remaining modules are

placed vertically until the 15th bit (the lowest-order) is placed at the top row i =0 of the symbol.

The second copy starts from the bottom just to the right of the white space around the bottom-left

finder pattern. (Last row i = m-1, column j = 8, zero-indexed) The bits are placed from highest to

lowest order, upward alongside the white space until reaching the black module at the corner of

the finder pattern. The bit that would otherwise go in that position is placed at column j = m-7,

row j = 8, zero-indexing. Subsequent bits are placed to the right, with the last bit located at the

last column j= m -1.

Version Data: The version data shows the version used. It takes 18 modules or pixels (3 wide by

6 high). A 3x6 duplicate is placed just above the bottom-right finder pattern. The encoding is

mirrored diagonally along the NW to SE line. When building the encoder, the version data

information is stored at the original row and column element, and the opposite flipped row and

column indexes for the alternate. If the top-left corner element is e00, what is located at module

[x, y] in the original version data could be placed in module element [y, x] for the duplicate.

Data and Error Correction: after encoding the data an error correction algorithm is applied to

ensure the symbol can be decoded even if partially obscured. The encoded data and the error

correction information are stored in the free modules.

31

Mandatory Blank Space: of 4 modules in width are placed around the symbol, to prevent

interference with other images or text.

2.6 QR Decoding

We discussed the split decoding problem in Chapter 4. Decoding was part of the implementation

of decoding within the TrustZone while splitting the code between REE and TEE. Details and

references are cited in Chapter 4.

2.7 Tokenization and Existing Protections Method

This wide range problem was cited many times in many places in the thesis. It represents the

methods used to provide protections of transactions. Tokenization use divide between user

merchant, and provider, other methods include the virtual credit card to reduce potential breaches

of the databases. We have visited this briefly in Chapter 1 and discussed in detail in Chapters 5

and 6 and compared out method of Dynamic Offline TrustZone VCC generation. (DOT-VCC).

2.8 DOT-VCC Method

The DOT-VCC method utilizes credit card generation by bank to produce it offline by the user

through an agreement with the bank. Its main difference with virtual credit card, is that it is

timed, one time use, and many other combinations. The main point it is generates the number by

the user. This removes many attacks surfaces. We have outlined this novel approach in the

Chapters 5 and 6 in and the future work. All references and introductory information are outlined

in Chapter 5.

32

Chapter 3

Assured Data Integrity of Camera and Location Devices

33

Chapter 3: Assured Data Integrity of Camera and Location Devices

Abstract. Mobile phone devices constantly face new vulnerabilities from attackers to exploit.

Many vulnerabilities allow attackers to gain full control over the operating system, and thus

putting security critical operations at risk. Mobile payment systems are gaining more traction and

security countermeasures cannot rely on operating systems for protection. ARM TrustZone

provides hardware-based security, which is often used to protect key operations. In this chapter,

we extended TrustZone functionality to offer robust security measures for specific I/O

peripherals, namely, camera and location, to any application on demand. The design ensures

integrity of data retrieved by the peripherals. Applications that can utilize this functionality

include merchant-presented QR payment systems, location attestation for payments and other

applications. The work is designed to offer seamless integration for application developers, and

transparency to end-users. We demonstrated functionality on custom and modified existing

applications. The added overhead is within expected margins. The work provides a feasible

design for industrial implementations, where the vendors’ installed services do not need

coordination with application developers, and that offers flexibility for both vendors and

developers.

3.1 Introduction

In this chapter and article [7], we discuss the development of a configuration that serves third

party applications with no prior coordination with vendors, while maintaining peripheral data

integrity. We have worked on two services, camera-scanned Quick Response (QR) codes that

include payment information presented by merchants, and location services utilized by

merchants to attest location of devices prior to transactions.

34

The solutions of this chapter maintain the integrity of merchant-presented QR codes and user

location data for important operations. In section 3.2 we discuss background and related work, in

section 3.3 we discuss the problem statement and threat model. Sections 3.4 and 3.5 present our

design and implementation, respectively. Section 3.6 presents evaluation and security analysis.

Finally, we conclude and present some recommendations in section 3.7.

The problem main theme is data integrity. The normal world (i.e., Android) is free to access the

data, but any data exchange with servers must contain the correct data. The task is to develop a

product that is feasible for industrial implementation, with no need for vendor coordination with

application developers when implementing the services. For other background work, refer to

references [6] [44]. Related background to TrustZone is covered in Chapter 2 section 2.3.

3.2 Background and Related Work

3.2.1 I/O Trust Access and Data Integrity

This activity includes many operations that use peripherals for certain functions. Sometimes they

require accuracy and data integrity, in others they need confidentiality. We present here two

examples of services we have developed to protect under TrustZone operations. They are namely

using camera, and location attestation.

3.2.2 QR Merchant and Buyer Payments

1) Buyer-presented. Requires users to present generated QR codes for merchant scanners. These

codes contain sensitive information about the buyer and hence data secrecy is essential, and that

was addressed by [2]. Another stronger method we have developed is covered in Chapters 6-7.

2) Merchant-presented. Merchants present QR codes containing merchant information for buyers

to scan and complete payments. Merchant QR information does not require secrecy, but integrity

is crucial to ensure the payment goes to the intended destination. Merchant-presented QR

35

includes static and dynamic QR codes. Static QR does not include the payment value, while

dynamic QR includes it. Figure 3.1 shows the two QR payments methods.

Figure 3.1 Merchant presented QR payments.

3.2.3 Location Attestation

Advanced mobile payment systems utilize location services to attest buyers' locations during

transactions. This attestation is needed to protect buyers from unauthorized payments that can be

launched by malicious activities. The location of buyers is not secret, but the integrity of the

information is critical. Location attestation serves payment verification and can be used for

inquiring services, including social media.

3.2.4 ARM Trusted Execution Environment (TEE)

After the introduction of TrustZone in section 2.3 and [3], [4], [16], we will be using the

TrustZone and the modified form of TruZ-Droid extensively. The TrustZone is integrated into a

System-on-Chip (SoC) design by vendors [3], [4]. The TrustZone hardware isolation includes the

processor, cache, main memory, and other hardware. The hardware can be split physically or

virtually to achieve the TEE and REE environments. Physical splitting is costly, given it

dedicates hardware resources for TEE uses that are inaccessible to the REE. Virtual splitting, on

36

the other hand, allows both environments to share resources, but not simultaneously. That is,

when TEE uses a hardware resource, the REE cannot access it for the whole duration. In both

approaches, the TEE reserves the hardware, and the difference is in dynamic allocation. Either

way, TEE can still access the system wide resources at any given moment if necessary, including

peripherals. Mobile devices switch back and forth between TEE and REE depending on the use-

case. TrustZone implementation requires a presence of a Secure-Monitor that handles context

switching through REE triggered Secure-Monitor-Calls (SMCs), which immediately invoke the

monitor, and then proceed to the TEE. Figure 2.4 shows the two environments. The Secure

Monitor is built into the hardware and always operates under secure mode.

TEE operates like a normal OS by having a kernel and a user space. The user space contains

Trusted Applications (TAs), which conduct services to the REE, e.g., fingerprint authentication.

REE contains TA clients (sometimes called Client Applications) which correspond to TEE’s

TAs. An application in the REE typically makes a call to the TA client, which then calls the TEE

driver (in the REE) that then triggers the SMC which invokes the necessary TA service.

3.2.5 Related Work

In this section we review some of the works closely related to our work as background

information or parallel forms of activities. The more closely works will be reviewed here.

Stefan Saroi et. al. [34] propose on-off control of peripherals on smart devices as a key to

security and privacy in many scenarios. They present (SeCloak), an ARM TrustZone-based

solution that ensures reliable on-off control of peripherals even when the platform software is

compromised. They designed a secure kernel that co-exists with software running on mobile

devices without code modifications. An Android prototype demonstrates that mobile peripherals

like radios, cameras, and microphones can be controlled reliably with a very small and trusted

37

computing base and minimal performance overhead. This service is very useful for controlling

situations that require such services and the concept is utilized in our work. Peripheral control [6]

and Visa location [35] solutions are also utilized in the work.

S. Demesie Yalew, et. al. [36] present the design for Android OS Integrity, namely TRUAPP

which is a software authentication service that provides assurance of the authenticity and

integrity of applications running on mobile devices. It provides such assurance, even if the

operating system is compromised, by leveraging the ARM TrustZone hardware security

extension. TRUAPP uses a set of techniques like static watermarking, dynamic watermarking,

and cryptographic hashes to verify the integrity of the applications. The service was implemented

in a hardware board that emulates a mobile device, which is used to conduct experimental

evaluation of the service.

In addition, S. Demesie Yalew et. al. [37] present the design of T2DROID, a dynamic analyzer

for Android that uses traces of Android API function calls and kernel syscalls, which are

protected from malware by leveraging the ARM TrustZone security extension. They report the

T2DROID achieved accuracy and precision of 0.98 and 0.99, for the two calls respectively, using

a kNN classifier.

Darius Suciu and Radu Sion [38] present a framework for current ARM mobile devices that

can detect applications control flow manipulation attempts, by examining the history of the

executed control flow, that are altering instructions on the processor. The history examination

provides information to implement fine-grained control policies, without additional binary

instrumentation. Moreover, this framework can work with existing hardware and have a minimal

impact on performance.

38

Regarding confidentiality of user’s information, Bo Zhao, et. al. [39] propose a private user

data protection mechanism in TrustZone to avoid risks. They added modules to the secure and

normal worlds and authenticated the identity of Certificate Authority (CA) to prevent illegal

access to private data. They have tested the system security, validity, performance, and reported

that the method can perform effective identity recognition and CA control that protects the user

private data. After adding the authentication modules, the separation time increases by about

0.16s, an acceptable cost for the improved security.

Xianyi Zheng, et. al. [40] propose a mobile payment architecture, employing trusted computing

on an ARM TrustZone hardware isolation platform, which can ensure the transactions data

security, realize privacy friendly payment, and provide trusted computing services to the system.

They have implemented a prototype on a simulation environment by using ARM FastModel and

Open Virtualization software stack for ARM TrustZone and presented an implementation on a

real board by using ARM CoreTile Express A9x4. The security analysis shows the scheme can

meet the security requirements of a practical m-payment with acceptable performance.

For Trusted Operations on Sensor Data, Hassaan Janjua, et. al. [41] present the design and

implementation of a framework that allows capture of trusted data from external and internal

sensors on a mobile phone. In addition, they have addressed the development of trusted

operations on sensor data while suggesting a mechanism to perform predefined operations on the

data while the trust is maintained. Their evaluation shows that the proposed system can ensure

security and integrity of the sensor data with minimal performance overhead. The framework is

not tested on real implementations and does not provide solid testing of specific operations.

Burke, Jeffrey et. al. [42] introduce the concept of participatory sensing, in cellular phones, to

39

form interactive, sensor networks that enable users to share information. An initial architecture to

enhance data credibility, quality, privacy and sharing in such networks is described.

Liu, H. et. al. [43] propose two software abstractions for offering trusted sensors to mobile

applications. They present the design and implementation of the abstractions on both x86 and

ARM platforms. They have implemented a trusted GPS sensor on both platforms and provided

privacy control for a trusted location using differential privacy.

Kamble, P.A. and Neha Patil [44] discussed using TrustZone for payments systems. The paper

introduces utilizing arrangement of cloud framework with the assistance of Raspberry Pi,

claiming that would protect client information. The strategy applies consolidated use of

steganography and optic cryptography for this logic. The issue with cloud-based arrangements is

that servers are profoundly open through the Internet and hence extensively presented to

programmers and malware. They propose the idea of Darkroom, a secured picture preparing

administration for the cloud utilizing ARM TrustZone innovation. This framework empowers

clients to safely handle picture information in a protected domain that anticipates presentation of

delicate images.

Waqar Anwar [45] for mobile payments using Near Field Communication (NFC), a Secure

Element (SE) is the preferred place to securely store cardholder data. The paper summarizes

shortcomings in Global Platform’s (GP) SE access control specifications, and weaknesses in its

implementation by the Android Operating System (OS). Moreover, a coherent model for an

alternate and secure SE access control is proposed using SE and Mobile Trusted Module (MTM)

specifications. This new model is secured by design and can be implemented using existing

specifications, technologies and hardware. We will consult with this work in our designs and

implementations.

40

S. Rehman and J. Coughlan [46] present an implementation of a mobile payment using NFC.

It is not clear if the implementation is actually working or can be applied to real time situations.

3.3 Problem Statement & Threat Model

How to maintain the integrity of camera and location data, for third-party applications, under

compromised REE operating system, while using the protection of TrustZone and maintaining

transparency to developers and users. The work assumes the availability of secure and trusted

TEE. In addition, how to provide a solution that is feasible for industrial implementations with

no prior coordination between vendors and developers. The threat model assumes that the Rich

Executive Environment (REE) is vulnerable, and attackers can gain full access. This access can

modify data flow in any application and can initiate unwanted operations. Mobile users prefer

ease-of-use provided by their devices, and when they intend to make payments, QR scanning is

convenient. With no security in place, attackers with access to REE can exploit users in 2 ways:

1- Initiating false payments: attackers can start-over a payment transaction using the

exploited user device and provide the necessary information to proceed with unauthorized

payments. For example, they can provide QR code and trick the users that they have scanned

those codes. Furthermore, they can change the device location to make the transactions match

their own geolocations to process their own transactions.

2- Modifying ongoing payments: the users initiate payments on their own, and when they are

scanning the QR codes, attackers can change and manipulate the information to alter the

destination and the payment amount. The attack surfaces can occur during data retrieval from

the peripheral, during data processing, or before sending data to the server. Figure 3.2 shows the

details of the attack surfaces for the two attacks possibilities.

41

Figure 3.2 Attacks surfaces for QR transactions under a compromised REE.

The payment problem can be addressed in the TrustZone as follows: 1) Obtain trustworthy data

from peripherals, 2) Provide the needed data and attestation to servers, 3) Transparency to

application developers & users, and 4) Maintaining a small TCB size.

Figure 3.3 Securing transactions through moving functions to TEE.

Since the work assumes security and availability of the TEE, attacks that target the TEE or deny

it from servicing REE are out-of-scope of this work. Figure 3.3 shows the general configuration

of the operation by moving the necessary parts to TEE.

3.4 Solution Design

3.4.1 Data Retrieval from Peripheral Devices

The TrustZone designs allow for exclusive TEE-only access to all system resources including

peripherals, hence it is crucial to block REE access to the peripherals during data retrieval. In our

case, we target the camera and geo-location devices. Therefore, the design relies on developing a

trusted service application (TA) that collects data from each device. Furthermore, we need a

corresponding TA client in the REE to trigger the necessary calls to invoke that TA. Figure 3.4

shows access to peripherals under our design. It is important to maintain accessibility of the

42

peripheral for normal REE operations and only block it when TEE needs the data. Getting data

from the camera and geolocation are not the only tasks needed.

Figure 3.4 Peripheral device access for the Rich (REE) and Secure (TEE)

For example, static QR codes do not contain payment amounts. Therefore, it is necessary for the

TEE to get the amount from the user directly. The TruZ-Droid solution provides means to

capture the input from an on-screen keyboard which we incorporated into this design [2].

3.4.2 Data Processing

Data from the peripherals comes in all forms and sizes. In our case, we are dealing with camera

images and geolocation data. Camera peripheral devices usually contain an Image-Signal-

Processor (ISP) which configures the camera and formats the data as desired. The data can either

be in RAW, bitmap, or other image formats. Geolocation peripherals use NMEA statements as

standard. The NMEA statements describe information, including location coordinates, movement

speed, direction… etc.

Since we need to maintain data integrity, it is not allowed to delegate data processing to the REE

because of the assumed compromise. Therefore, all data processing is executed within the TEE.

We decided to include this functionality within the same TA that retrieves the data from the

corresponding peripheral. For NMEA statements, this procedure is straightforward, because they

can easily be decoded into latitude and longitude. Camera data is a bit trickier. QR processing is

not algorithmically difficult, but it requires a relatively large code base given the limited library

43

support from TEE. A tradeoff is needed: 1) process the QR inside TEE and carry the entire extra

code base inside the TCB, which adds burden on the TEE security and performance, 2) transfer

the image data to the server without processing.

The first approach has many advantages especially in the case of static-QR codes, when the QR

code does not contain the payment amount. This enables TEE to immediately recognize the

situation and ask the user to input the amount.

Figure 3.5 Using Split-SSL secure communication with the server.

The second approach maintains a small TCB size, with a disadvantage especially if the user must

enter the amount. This adds a significant performance overhead due to increased communication

with the server over the internet. Still, we decided to use the second approach to maintain small

TCB size. Finally, we need to send the data to the server securely. We decided to use TruZ-

Droid's Split-SSL as shown in Figure 3.5.

3.4.3 Transparency and Seamless Integration

The services we provide in the TEE should be easily accessible to third-party applications. To

ensure such seamless integration for third-party applications developers, we designed a special

API that is integrated into the Android framework and requests the service from the TEE.

Therefore, developers will just need to change few calls in their applications to utilize our

provided services without diving into any low-level code.

Our design considers maintaining transparency to the user. If a service is too imposing on the

users, they may not use it. Therefore, our design maintains the same procedural flow while

44

ensuring data integrity. Capturing the user input for static QR codes should have an indicator

letting the user know when they are operating under secure environment. This can be achieved

using an indicator peripheral (e.g., LED). It is important that this peripheral use is restricted to

TEE and never accessible for REE.

3.5 Implementation

Commercial devices do not typically come ready for development. Even doing basic tasks such

as rooting the device requires unlocking the bootloader which can be involved and lengthy

process. Therefore, developing this design on commercial devices is not feasible. Meanwhile,

Hi-Key provides a set of development boards that are suited for this purpose. We chose Hi-Key

620 board given it both has Cortex-A series cores, which are used in commercial Android

devices, and it officially supports OP-TEE. The OP-TEE support comes combined with Android

Open-Source Project (AOSP) which gives a lot of control over development. There were many

challenges to overcome in the development. One major issue when working on TrustZone is the

lack of driver support. This is usually not an issue for vendors who make their own equipment.

Therefore, we had to work our way around this issue. OP-TEE comes pre-equipped with serial

UART drivers, so we picked UART compatible camera and GPS peripherals. Figure 3.6 shows

the layout.

Figure 3.6 Connecting peripheral devices to Hi-Key board.

45

The UART camera device still required writing a second-level driver to synchronize, configure

and capture photos. As for the GPS device, it was more straightforward given it sent ready for

use NMEA statements. We wrote one service TA for each peripheral as they provide different

services.

Figure 3.7 Connected circuitry of the system.

Figure 3.7 shows the connected circuitry of the system, and Figure 3.8 shows the system

component devices. Once having the drivers functional, we developed the data processing

portion. The challenge is to maintain a small TCB. That was difficult, because OP-TEE does not

support most of the standard C library found on Android or Linux based systems. Any addition

of standard C libraries also counts as addition to the TCB and might put the TEE at risk by

introducing vulnerabilities to the code base.

This was a reason we chose delegate decoding to the server despite the added overhead.

Overhead is not of high concern regarding performance. This is mainly due to the nature of the

services as they are typically low frequency use-cases. Still, we developed a measure of the

overhead when using TEE versus REE use only as discussed in the next section.

46

UART GPS sensor

UART camera

UART volt converter 5v

→ 3.3v

debugging kit for hi-key

620

UART Hi-Key 620 main board

Figure 3.8 System configuration hardware components.

The final challenge was to provide seamless integration for developers by minimizing the

number of changes needed to utilize the TEE functions. The modifications include Android

framework in several ways. We have also developed modified APIs to provide that can be used

by the developers as a replacement to their APIs.

Figure 3.9 shows the path an application takes to invoke TEE services. The TEE path (TA) is

given by: App → TEE-API → TEE Framework→ TEE Daemon→ TA-Client→ TA →

Peripheral and the REE application path is given by App→ REE API→ REE FW→ Peripheral.

Regarding Split-SSL and TruZ-UI, we ultimately decided to simulate their service because

implementation does not add value to the proof-of-concept. To ensure the simulation does not

affect the evaluation results of our service, we artificially added the Split-SSL and TruZ-Droid

overhead so it would count towards the total overhead of our service. Outside of the overhead

47

values, those services behave more like black-boxes with respect to our service. In essence,

Split-SSL is the black box necessary to securely transfer data to the server and ensure the server

is aware the data received is correct. And TruZ-Droid is a black box which allows for the secure

retrieval of the amount necessary for the payment processing. With that in mind and outside of

the overhead, the remaining details of those services do not affect our evaluation results.

Figure 3.9 Application invocation with TEE and REE services.

Finally, the implementation also required changes to the server-side to accommodate the

existence of TrustZone and its attestation. This lets the server know the integrity of the data. The

changes include having the server decode the QR image and communicate accordingly. And the

necessary changes to simulate Split-SSL as described in [6]. Table 3.1 shows results regarding

overhead increase due to using TEE vs. REE functionalities to complete the operation for the two

services. They are denoted as Base Location and Base Camera. The Overhead = (TEE time –

REE time)/REE time. The results show the added overhead compared to an operation that does

not utilize the TEE to retrieve and send data from the peripherals to a remote trusted server. In

other words, the overhead is the cost of the security added by our services. Figure 3.10 shows the

sequence diagram beginning from user initiation of payment request until the final confirmation.

48

Table 3.1 Results of the overhead for the two base services. 100% for Base Location.

Application TEE

path

Relative TEE

Time %

Application REE

path

 Relative REE

Time %

Overhead%

Base Location 100 Location REE Time 85 18

Base Camera 120 Camera REE Time 95 26

Figure 3.10 Sequence diagram for static QR code processing under system design and implementation

49

3.6 Evaluation & Analysis

To demonstrate functionality, we have performed the evaluation in two stages: namely, mock

and existing applications. Both tests required our custom-built server to evaluate if everything is

under the controlled environment.

3.6.1 Mock Applications

Mock applications are custom built to test correctness and functionality of our provided utilities.

We have created an application to test QR scans, and another one to test location services. Both

applications support non-TEE and TEE functions to measure performance overhead.

3.6.2 Modified Applications

We have downloaded a list of existing applications and modified their API calls to demonstrate

utility on real-world examples, and equally important, to demonstrate seamless integration for

developers. Naturally, we redirected their calls to our custom server. Some of the external

applications provide their source-code online, while others are closed-source. The latter category

needs repackaging attack to make the necessary changes. This adds difficulty given that we no

longer work with source-code, but the Dalvik software instead. Furthermore, many modern

applications rely on pinned server certificates to ensure they are not redirected by outside

malicious activity, we also had to override this security mechanism for completeness.

Accordingly, we did not implement external applications but developed our base applications to

prove the feasibility. The modified applications and change in lines of code is shown Table 3.2.

Table 3.2 Applications, services and lines of code needed.

Application Service LoCs App + API TA LoCs in TCB

Base Location Location 1000 150

Base Camera Camera 1500 300

50

The application-API change is what one would need to modify the existing application. In our

case it is the base application we developed. The TA LoCs in TCB is the needed code to install

inside the TrustZone and in this we care to make it minimum.

3.6.3 Evaluation Results

Table 3.3 shows the assessment of integrating the service with the intended applications in terms

of data integrity success and performance overhead. The test of data integrity means assurance of

no errors allowed in the data flow or readout. This is quantified by comparing the data coming

from the peripherals into the TEE with the data received by the remote server. With the help of

Split-SSL, we ensure the server knows it has data that was attested by the TEE. And while it is

not possible to guarantee the data is received by the server (due to possible DoS attacks), we can

guarantee that the server can verify the integrity of any data it receives. In other words, if the

server receives fake data from the REE, that data cannot carry the attestation of the TEE, so the

server knows the data is not trustworthy. On the other hand, if the server receives data attested by

the TEE, it knows the data is trustworthy, and therefore can complete the transaction.

Table 3.3 Assessment of the applications integration and performance.

Application Service Implementation

Success

Data

Integrity

Performance

Overhead%

Base Location location yes yes 18

Base Camera QR payment yes yes 26

The performance overhead is measured in terms of percentage of change in the application

performance with and without invoking the intended TEE services.

51

The overhead average for secure QR payment processing was around 26%, the variations come

largely from the type of QR processing involved. For static QR codes (where the user needs to

manually enter an amount) the overhead is higher compared to dynamic QR codes that include al

information. We address this in more depth in Chapter 4 as we discuss the QR decoding problem

which aims to securely process images to minimize the amount of data sent over Split-SSL to

reduce the total overhead of employing our design for secure QR payment processing.

3.6.4 Analysis

Our analysis was focused on integrity of data retrieval, amount of added Lines-of-code (LoCs) to

the TCB, and performance overhead increase.

ARM TrustZone provides restricted hardware access to system-wide resources when operating in

secure mode (or under TEE) [4]. The UART lines are no exception. Given we are not concerned

about data secrecy, both camera and location peripherals are available for REE at any given

moment except when TEE requests data from them. This is ensured by the TrustZone

implementation, which in turn ensures the integrity of data captured by TAs from the peripherals.

The secure transfer of the data to the server and the secure retrieval of data from the UI are

problems that were addressed by Kailiang et. al. and the key point is we can guarantee, from

their work, that the server is aware whether it is dealing with trustworthy data as explained in

their analysis of Split-SSL and TruZ-UI [2]. Therefore, the utilization of Split-SSL and TruZ-UI

designs is sufficient for data integrity which is a primary focus of our design.

As explained before, maintaining small TCB size increases verifiability of TCB security.

Therefore, it’s important to count the amount of code added to the TCB. Table 3.4 showcases our

added LoCs. The camera TA mostly consists of the UART camera driver, and this varies heavily

in commercial applications due to different devices and driver implementations. Despite that, the

52

number of LoCs added is relatively small. As for the location TA, smaller given it is mainly

decoding NMEA messages.

Table 3.4 Showcase of lines of code added to the TCB for trusted applications.

Trusted Application LoCs added to TCB

Camera TA 300

Location TA 150

Finally, performance overhead is within the expected margins, since context switching using

SMCs is an expensive process. We did notice a significant increase in static-QR applications due

to the back-and-forth communication with the server, this is expected as discussed in the design

where we cut performance to maintain smaller TCB. Adding QR decoder in the TEE would

reduce this overhead but increase the TCB size.

3.7 Conclusions

This work demonstrates how TrustZone can be extended to offer robust services to third-party

applications without the need for developers to coordinate with vendors. We have built a system

that ensures integrity of data collected from peripherals, camera and location devices, and

maintained the integrity all the way to the server. The added overhead is acceptable when

compared to normal untrusted operation. The added security does not introduce inconveniences

for user interaction given the transparency of flow, nor does it create inconvenience for

applications developers by requiring minimum changes to accommodate the provided TEE

functionality. Our work provides means for extensions towards other peripherals in similar

manners. It is feasible to secure Near-Field-Communication (NFC). The design offers seamless

integration for developers as well as transparency for user experience. Table 3.5 highlights the

key points and differences between our design and other relevant designs with emphasis on the

overhead and total added LoCs to the TCB.

53

Table 3.5 Design highlights and comparison with other works summary

Design Highlights Comparison to our design

Our design • Addresses peripheral data integrity

• Offers secure path from peripheral to remote server

• Provides attestation of the data

• Processes QR payments

• Transparent security to users

• Minimal modifications for developers

• Small TCB additions

N/A

SeCloak [34] • Addresses peripheral control

• Offers minimal and secure on/off control over peripherals

• Transparent privacy control to both users and developers

• Small TCB additions

Does not offer data integrity

assurances and cannot protect QR-

based transactions

TRUAPP [36] • Addresses REE application integrity

• Utilizes TEE to detect static/dynamic manipulation of apps

Does not offer data integrity

assurances and cannot protect QR-

based transactions

T2Droid [37] • Addresses Android API calls integrity

• Uses dynamic analysis to detect malware in the calls

• Useful for debugging

Does not offer data integrity

assurances and cannot protect QR-

based transactions

Xianyi Zheng, et.

al. [40]
• Addresses mobile payment security

• Offers secure monitor and I/O access

• Offers secure storage for financial data

Does not offer data integrity

assurances and cannot protect QR-

based transactions

Hassaan Janjua,

et. al. [41]
• Addresses secure data retrieval from internal/external

sensors

• Offers data attestation and secrecy for data sent to remote

server

• Does not offer data integrity

assurances

• Cannot protect QR-based

transactions

Liu, H. et. al.

[43]
• Addresses sensor data attestation and secrecy assurances

• Utilizes TEE to securely retrieve the data from the sensors

• Signs the data with private keys and sends it over the

network

• Offers seamless integration for developers through

abstraction

• Does not address QR payment

processing path

• Requires large TCB additions to

the TEE by porting OpenSSL

library into the TEE

Kamble, P.A.

and Neha Patil

[44]

• Addresses online payment security using TrustZone

• Offers camera-based verification of pre-established online

payment platforms that have ledgers

• Uses TrustZone to confirm online transactions

• Does not address the secure data

path of the image data

• Cannot process QR payments

• Strict to online payments

54

Chapter 4

Split-QR Decoder Hybrid Design for ARM TrustZone

55

Chapter 4: Split-QR Decoder Hybrid Design for ARM TrustZone

Abstract. In Chapter 3 we have built a system that ensures data integrity from merchant-

presented QR code transactions by designing a secure data path between the peripherals and the

TEE, and then we used Split-SSL to transfer the data to the server. Decoding was delegated to

the servers with some disadvantages regarding performance and convenience for application

developers. In this chapter we have designed a novel hybrid method by splitting the QR decoder

between the TEE and REE. We have compared three different methods: 1) full operation in REE,

2) Split-QR decoding with dynamic and static QR, and 3) server decoding under dynamic and

static QR payments. The five settings showed the feasibility and advantages of using the Split-

QR. Advantages compared to the server-based decoder case include significant performance

improvement and increased convenience for developers, while adding manageable code to the

TrustZone. The success of this application encourages the design of a generalized framework to

use split operations, where the TrustZone performs the core critical operations, or delegates them

to a dedicated server outside the system if the operations are too extensive. In addition, it

manages the meta data that runs noncritical operations on REE. We envision a wider scope of

services with large and complex tasks where the Android system cannot handle them generally.

4.1 Introduction

Quick Response (QR) code processing libraries exist in many programming languages. Under

feature-rich environments, such decoders are not usually considered as complex systems. This,

however, does not apply to Trusted Execution Environments (TEEs), which are based on small

Trusted Computing Bases (TCBs) that require small amounts of code to maintain strict security

analysis and keep the system with little-to-no vulnerabilities. Such TEEs are typically built using

C code given its high versatility and low-level capabilities.

56

QR processing is not algorithmically difficult, but it requires a relatively large code base given

the limited library support in TEEs. Their existence in TEEs can be crucial to achieve many

operations more securely, e.g., processing merchant-presented QR payments. A simplistic

engineering solution may opt to move the entire QR decoder library into the TEE and bring with

it much of the standard C library. While such approach would serve the intended functionality, it

can introduce numerous vulnerabilities into the TEE and hinder its purpose. To put things into

perspective, the ZBar decoder library consists of nearly 31k Lines-of-Code (LoCs), while Global

Platform’s Open-source Portable TEE’s (OP-TEE) entire TCB consists of ~270k LoCs.

Factoring in all the necessary C library dependencies would add over 50k LoCs (~20% size

increase) into the TEE for a single functionality which would be nearly impossible to analyze for

security purposes. An alternative approach that maintains TCB’s security is necessary.

In Chapter 3, we had two options to consider: 1) the simplistic engineering approach described

earlier, or 2) delegating the decoding process to the remote server which processes the payment.

We chose the latter to maintain small TCB size and security, given it is of an upmost importance.

While the second approach maintains a small TCB size, it carries its own disadvantages. It adds a

significant overhead due to increased communication with the server over the internet. This is

magnified in the case of static QR codes, where the amount of payment is not embedded into the

QR code, and further communication is necessary. This shortcoming is not present in the first

approach, given the TEE can immediately recognize the situation and ask the user to input the

amount before initiating communication with the remote server.

In this design, we introduce a novel third approach that carries the advantages of both

approaches, namely, little overhead while maintaining small TCB. The idea is to split the QR

decoder into two components: 1) core decoding functionality and 2) meta-data processing. The

57

solution is to rely on the Rich Execution Environment (REE) to process meta-data, while the

TEE does the core decoding. Meta-data processing accounts for a large portion of the decoder

function.

In addition, as presented in Chapter 3 and [7], we continued using TruZ-Droid's Split-SSL for

secure data transfer to the server; keyboard integration for secure amount retrieval from the user;

and UI confirmation for final attestation step. In addition to the descriptions of Chapter 2

regarding the TrustZone and the Android problems, we review here only the most relevant topics

to the decoding problem we are addressing. Methods shared with the work of Chapter 3 will not

be repeated.

In section 4.2 we review related work to decoding methods. In section 4.3 we preset the formal

problem, and section 4.4 outlines our new design solution and compares it to the previous design.

In section 4.5, we present the implementation of the design solution, and section 4.6 covers

testing and evaluation of the implemented solution. Finally, section 4.7 outlines conclusions and

extensions to new related problems.

4.2 Related Work

4.2.1 QR Decoding using ZBar Library

The library is about 31k LoC, and the decoder spans over 6k Lines of Code (LoCs). Adding the

C library dependencies, the problem becomes quite challenging. Here we describe the basic

functions of the library.

ZBar C Source-code Library [49], [53]. There are scores of commercial and shareware

programs that read many different symbols, the best open-source readers available is the so

called ZBar C-source code library. This library provides high performance, stable, robust library

components with supporting infrastructure that makes it easy to use in a variety of applications.

58

We will use the ZBar library components to achieve our implementation in the TEE environment

[3], [4], [48] [57].

The ZBar library was originally designed for Linux-based systems but was extended later to

support other systems. It was also originally built to run on x86-based architectures, but now it

supports ARM architecture. The library can be ported, and it works with Android’s NDK [54].

For our purposes since we will be splitting the decoder between TEE and REE.

ZBar Operation. A common design for a barcode/QR image scanner is to apply digital image

processing techniques to the images. Exact details vary, but this usually involves several filter

steps to cleanup noise, sharpen and enhance contrast, edge detection and shape analysis to

determine symbol location and orientation, etc. All of the processing stages require CPU and are

sensitive to various filter configurations which are difficult for end-users to understand or setup.

The ZBar library method is similar to "wand and laser" scanners: linear (1D) bar codes can be

decoded by a simple light sensor passing over the light and dark areas of a symbol. The ZBar

implementation makes linear scan passes over an image, treating each pixel as a sample from a

single light sensor. The data is scanned, decoded and assembled.

ZBar further abstracts this idea into a layered streaming model. Processing is separated into

independent layers with interfaces, which can be used together or individually. In the following

we present brief description of operations:

1. Video input: abstraction of a video device which produces a stream of images for scanning.

The library has interfaces to video4linux (versions 1 and 2) [55].

2. Output window: simple abstraction of a display output window that can present a scanned

image to the user and accept input in response. To maximize flexibility, the window may be

59

opened and owned by the library or attached to an application managed window embedded in

a GUI. The library supports basic X11 interfaces (XVideo and XImage) [56].

3. Image scanner: makes scan passes over a two-dimensional image to produce a linear stream

of intensity samples. The input images may come from the video input module, or any

external image source (such as an image file output by a flatbed scanner or digital camera).

This module also incorporates the optional inter-frame consistency heuristic applied to a

video stream.

4. Linear scanner: scans a stream of abstract intensity samples to produce a "bar width"

stream. The intensity samples could be pixel values from the built-in image scanner, or from

an alternate external image scanner, or raw sensor samples from a "decoder-less" wand or

laser sensor. The bars are detected and measured by applying basic 1D signal processing to

the input sample stream.

5. Decoder: the decoder searches a stream of bar widths for recognizable patterns and produces

a stream of completely decoded symbol data. The current release implements decoding for

EAN-13, UPC-A, UPC-E, EAN-8, Code 128 and Code 39 symbology codes. Support is

planned eventually for PDF-417 and EAN/UPC add-ons.

6. Processor: one potential drawback of a fully independent modular approach is that it can

take some coding to tie all of the modules together, complicating simple applications. The

high-level "processor" module connects all of the other modules to flexibly support many

common uses. For example, this makes it easy to pop up a window (or not) and scan for bar

codes from video or image sources with very few lines of code. The included sample

applications: zbarcam and zbarimg are two examples of how this can be done (UTSL).

60

7. Widgets: for applications which already have a GUI, it does not always help to open a

separate window for reading bar codes. To facilitate tighter integration between the reader

and an existing GUI, the library also comes with ready-made "widgets" for various popular

toolkits (currently Qt4, GTK+-2.0 and PyGTK2). The test programs in the distribution are

good examples of how to use these widgets to incorporate a bar code reader widget into an

application.

8. Language interfaces: with the performance sensitive image processing done in C, library

wrappers for Perl and Python make building a bar code application simple and efficient.

4.2.2 ZBar C Library Utilization in the TrustZone

ZBar is an open-source C library designed to decode QR codes with many different formats. The

total Lines of Code (LoCs) count in ZBar is over 31k but the decoder itself is around 6k LoCs.

However, the library depends heavily on standard C libraries to support different functionalities.

Such libraries do not exist in the OP-TEE system running on the TrustZone. The challenge

resides in porting this library to the TrustZone without introducing new vulnerabilities that can

be exploited by the compromised Android through the exchange between the two worlds.

Furthermore, ZBar also contains image processing code necessary to properly align the image to

make the QR readable and ready for the decoder. This adds an extra significant amount of code

to include within the TEE.

The LoC count isn’t the only thing that matters when including source-code into the TEE. What

truly matters is the security and verifiability of this code. As long as no vulnerabilities are

introduced, the amount of code added does not matter critically. However, with large code,

verification of source code becomes very difficult hence it’s preferred to have smaller bases. The

library can be ported to Android, and it works with Android’s NDK. For our purposes, we’re

61

interested in splitting it between the TEE and Android (REE). The ARM support makes our job a

bit easier.

The ZBar library consists of:

• Decoder: this is the core portion of the library. It has the image reading functionality, the

alignment processing and the many different formats to process from different QR types.

• Entry point: how the program is run, it can either process a single existing image or take feed

directly from a camera device.

• Interfaces: ZBar has Python, perl and GUI interfaces to make it accessible from these

different environments.

4.2.3 Related Work

In this section we refer to the reference article we used as a metric, and we review briefly the

Split-SSL. In addition to the ZBar library decoding we touch upon some literature related to

other decoding algorithms.

We reported [7] extending TrustZone functionality to offer robust security measures for specific

I/O peripherals, namely, camera and location, to any application on demand. The work mainly

ensures integrity of data retrieved by the peripherals. Applications that can utilize this

functionality include merchant-presented QR payment systems, location attestation for payments

and other applications. The work is designed to offer seamless integration for application

developers, and transparency to end users. We demonstrated functionality on custom and

modified existing applications. The added overhead is within expected margins. The work

provides a feasible design for industrial implementations, where the vendors’ installed services

do not need coordination with potential application developers, and that offers flexibility for both

62

vendors and developers. In this work we use the ZBar library in the TrustZone to decode QR

code images instead of relying on the vendors servers.

Brief basics of Split-SSL Utilization [47]

A popular technique for reducing the bandwidth load on Web servers is to serve the content from

proxies. Typically, these hosts are trusted by the clients and servers not to modify the data that

they proxy. SSL splitting guarantees the integrity of data served from proxies without requiring

changes to Web clients. Instead of relaying an insecure HTTP connection, an SSL splitting proxy

simulates a normal Secure Sockets Layer (SSL) connection with the client by merging

authentication records from the server with data records from a cache. This technique reduces the

load on the server, while allowing the unmodified Web browser to verify that the data served

from proxies is endorsed by the originating server.

Jeng-An Lin and Chiou-Shann Fuh [50] emphasize the challenges that face barcode

technology in Automatic Identification and Data Capture (AIDC), and how to decode QR code

images efficiently and accurately is a challenge. They outline a revision to traditional decoding

procedures by proposing carefully designed preprocessing methods. The decoding procedure

consists of image, QR code extraction, perspective transformation and resampling, and error

correction. By these steps, we can recognize different types of QR code images. Results show

that the method has better accuracy than Google open-source 1D/2D barcode image processing

library Zxing-2.1. Moreover, they evaluate the execution time for different-size images and show

the method can decode these images in real time.

Nivedan Bhardwaj et. al. [51] propose a color QR code decoding algorithm for mobile

applications by considering the color profile of red, green and blue channels, respectively. They

have developed a prototype by including various image processing techniques and the open

63

source Zxing library. The article presents an Android based color QR code decoder

implementation and performance evaluation. Experimental results show a high success rate of

the methodology implemented.

Madeline J Schrier [52] presents the first rigorous study of resolution requirements in camera-

based barcode scanners. What is the resolution needed in the captured image to unambiguously

decode a barcode? For simplicity, they consider the UPC barcode, which is widely used in retail

and commerce. A UPC barcode consists of black and white bars of different widths. The widths

of these bars encode a 12-digit number according to a look-up table. They show that the camera

model can be completely determined by a set of parameters defining the bar width and the shift

in the image. These parameters can be determined using features of the UPC symbology, and the

knowledge of these parameters allows exact decoding. They showed that the two parameters can

be recovered from the image data for narrowest bars larger than three-fourths a pixel and in some

cases, only half a pixel. Extreme cases show that unique determination of the digit is possible in

worst-case scenarios, even under the presence of noise. Problem and Objectives

In Chapter 3 design we solved the problem by delegating the QR image decoding to the server.

That causes difficulties regarding seamless integration for developers. The problem we are

targeting is integrating a relatively large codebase into the TrustZone while maintaining

TrustZone security. The TrustZone does not need all decoding functions that do not threaten data

integrity. We want to process data decoding within the TrustZone, by including the essential

parts of the ZBar library that are related to decoding in the TrustZone. If all transaction

information is included then we send the request to the server, otherwise we ask the user to

provide the needed information. The assumptions for this design are the following: 1) Android is

completely compromised and attackers have full root access over it. 2) The TrustZone offers

64

secure framework for development. And under those assumptions, we want to achieve data

integrity guarantees while maintaining transparent user experience and seamless integration for

developers. DoS attacks against TrustZone APIs are out of scope and are discussed in Chapter 7.

4.3 Solution Design (Split-QR Decoder)

4.3.1 Design Analysis and Comparison

Instead of delegating the decoding task to the server or completely embedding the decoder into

the TrustZone, we decided to split the decoder. Split-QR decoder is a hybrid approach that uses

REE to process the image meta-data, while the core of decoding (reading the code’s data) is the

only part moved to the TEE. This novel hybrid design reduces the overhead of delegating

decoding to the server, and it requires much smaller increase in the TCB size compared to

moving the whole decoder into the TEE. For reference, Figure 4.1 shows the steps taken in

Chapter 3 design for static QR code transactions, and it carries a lot of overhead due to the back-

and-forth between the server and the TEE through Split-SSL

Figure 4.1 Static QR code payment initial server QR decoder design path.

One of the most apparent advantages in reducing overhead shows when processing static QR

codes which do not include payment amount information. Figures 4.1 and 4.2 show the designs

65

for the server decoder and the Split-QR, respectively. The steps taken to get static QR code and

amount are numbered and described in each figure. In Split-QR decoding, the server does not

decode anything, and no payment amount request is necessary to initiate from the server side.

The data is prepared using Split-QR and includes the amount as shown in Figure 4.2.

While the number of steps may seem larger, communication with the server is time-consuming.

Sending images can be quite slow given it depends on the image size. This limitation is removed

in the Split-QR design, where only text information (payment destination and amount) is sent to

the server, and it is done at once which significantly reduces overhead. Other benefits include

less changes on the server side.

Figure 4.2 Static QR payment with TEE Split QR decoding design path.

In the Split-QR design, servers only need to implement TrustZone attestation mechanisms

discussed in TruZ-Droid [2] approach. Furthermore, application developers will no longer need

to implement extra functions to accommodate the extra communication introduced in the

previous design.

It is important to note that REE decoder in Figure 4.2 is not directly called by the TEE decoder.

Realistically, the REE API manages all of this when the application initiates the original request

to process the QR payment. That is, the application calls the TA service, the image is captured

66

and transferred to the REE decoder through the API calls, the meta-data is sent back to the TA

which decodes the code. The TA can automatically determine if the payment amount is not

embedded in the code.

Therefore, it will automatically initiate a request to the keyboard TA (as described by TruZ-

Droid) to securely retrieve the amount from the user. The data is then prepared and sent to the

server for direct processed. Table 4.1 shows a summary of differences between the two designs.

Table 4.1 Summary of the differences in the designs.

 Server QR Decoder Split-QR Decoder

Overhead w.r.t REE-only operations High Low

Server modification High Low

TCB size increase Small Moderate

Seamless integration Moderate High

Transparency for users High High

Figure 4.3 shows the sequence diagram for the Split-QR design which starts from the user

request the amount and ends with the confirmation of the payment request. When compared to

Figure 3.10, which shows the sequence diagram for the design from Chapter 3, we can see the

server is not requested until the very end of the QR processing.

The TEE takes care of the processing completely internally without external interruptions outside

the Split-QR exchanges. The server does not have to decode any QR codes, nor does it have to

process a payment amount. All of that information is provided, at once, in the first request which

saves communication overhead.

67

Figure 4.3 Sequence diagram for static QR payment processing under the Split-QR Decoder design

4.3.2 ZBar C Library Components in the TEE

ZBar decodes QR codes with different formats. The total Lines of Code (LoCs) count in ZBar is

over 31k, but the portion corresponding to the decoder and its preprocessing is about 6k LoCs.

However, the library depends heavily on standard C libraries to support different functions. Such

libraries do not exist in the TEE OS. The challenge is to move only the needed parts to the TEE

without introducing vulnerabilities that can be exploited by the compromised Android through

68

the exchange between the two worlds. ZBar contains the image processing code necessary to

properly align the image to make the QR readable and ready for the decoder. Luckily, all of this

part can operate in REE. It is important to minimize the LoC source-code included in the TEE.

What is more important is the security and verifiability of this code. If no vulnerabilities are

introduced, the amount of code added is not critical. However, with large code, verification of

source code becomes difficult, hence it is preferred to have smaller bases. The TCB size increase

is significant in this approach compared to the server approach, due to the library size. Table 4.2

shows the code partitioning where we moved the decoder’s essential components to process the

QR code without endangering data integrity.

Table 4.2 key components within the decoder which were partially moved to the TEE. The entire ZBar decoder

library is much larger than the moved components.

File Total LoC TEE REE No use

Sum 6167 3717, 60% 1468, 24.1% 982, 15.9%

rs.c; rs.h 820 (800;20) 320 (300;20) 0 500

bch15_5.c;

bch15_5.h

200 (180;20) 200 (180;20) 0 0

isaac.c isaac.h 180 180 0 0

util.c util.h 190 190 0 0

binarize.c; binarize.h 660 9640; 20) 660 (640;20) 0 0

qrdec.h 160 080 0 80

qrdec.c 3957 2087 1468 402

Total LoCs 31330; TEE portion = 12%

Therefore, the increase came up around 60% of the full decoder, but we did not need much from

the rest of the library after removing 16% of the decoder for nonessential function and kept 34%

in the REE where the operations there do not harm decoding data integrity. 3.7k LoCs is still

within reason.

69

4.3.3 Splitting Criteria

Splitting the ZBar library between the two execution environments is not arbitrary, it is based on

the following factors:

1. Minimization of external dependencies: the size of ZBar is not the only consideration due to

the limitations in the TEE TCB as we do not have access to the vast majority of the standard

C libraries that come with normal Android/Linux systems. The OP-TEE conforms only to the

C99 standard and its corresponding libraries. Therefore, the portion of the library moved into

the TEE must work with the available C99 libraries.

2. Integrity of extracted data: when relying on the compromised REE for meta-data extraction,

it is important that the meta-data received from the REE does not lead to alteration of the

data extracted from the QR image itself. The worst-case scenario should not yield more than

a DoS attack which is equivalent to the REE not sending any meta-data to the TEE.

The aim is to target the security of both the TEE’s TCB and the user operation’s security. Those

are the two primary areas of concern for this design, hence why the split was conducted. In the

next section we discuss the scenarios an attacker may use to manipulate the meta-data sent to the

TEE and what such attacks may yield.

4.3.4 Design Evaluation

In this section we discuss two major concerns for evaluation. The environment to use and the

interaction between the Split-QR components in the REE and TEE.

A. Environment

In Chapter 3, we have tested the design feasibility on an actual ARM TrustZone capable

hardware. We used Hi-Key 620 development board and OP-TEE for TEE development.

Evaluation was done accordingly, and our tests and results covered integrity, performance and

LoCs necessary to integrate the design into existing systems . The design in this work, however,

70

is only concerned with the decoder part, given the rest is already done. Proving feasibility and

functionality can be simplified since development on the actual hardware is quite complicated

and not necessary for this purpose. For instance, many tedious hardware settings must be done,

which consumes time and effort with no practical benefits. Therefore, we chose to test this

design in a simulated environment where we test the flow of Split-QR between simulated REE

and TEE environments. The purpose behind the simulation environment is to isolate testing

between the designs presented in Chapter 3 and the Split-QR decoder design in order to study the

performance differences without the interference of external services that may affect the results.

The Split-QR design splits a software library running in the user space and does not rely on

specific hardware compared to the design in Chapter 3. In fact, the hardware in both designs

would be identical, therefore, when we simulate the hardware we can better study the differences

between the two designs and have more accurate comparison results.

Since the decoder part is the one we truly care about, we chose x86 environment to test the split

functionality. We designed processes that simulate environments and components. Then we

tested the flow of information between them. One component that took a lot of development time

in the previous work was the camera driver in the TEE. Given that already exists, we can

simulate this functionality by using a file descriptor and read the images from local storage as the

desired result is to acquire the image by the TEE. The process then transfers the image to the

REE process which extracts meta-data from the image. The meta-data is transferred back to the

TEE to decode the QR code. Once complete, we check if the payment amount is embedded or

not and launch the simulated keyboard TA. We can simply take input from the user since the

keyboard TA is already proven to work in the TruZ-Droid design. Finally, sending the data to the

server using Split-SSL and the final attestation with the UI TA are also simulated. Simulation

71

worked well to address the problem, due to the nature of different independent components.

Split-SSL, keyboard TA, UI TA and our previous work TAs are all completely independent from

each other and are already proven to work. Therefore, simulating the roles does not hinder the

proof-of-concept we seek, and the design remains intact. In fact, it is more efficient to test the

subtle variations. In this work we had time to fine analyze the codes nature and how their

execution time is divided.

B. Interaction Between Split-QR Components

We have established that the TEE process transfers the image to the REE process, where

preprocessing is made, and meta-data is extracted and sent back. However, it is important to

show that this interaction does not hinder the integrity of the final data extracted in the TEE. The

meta-data extracted by the REE contains information about the position and alignment of the QR

code within the provided image. The REE conducts its analysis on a copy of the image not the

original one. In other words, the image in the TEE remains untouched by the REE at all times,

and that is ensured by the TrustZone implementation. Therefore, the meta-data is a description

that helps the TEE extracts the image actual data. In this scenario, the worst a compromised REE

can achieve is to provide invalid meta-data to the TEE decoder. This would result in invalid

reading from the image, but it cannot produce a compromised reading of the data decoded from

the actual image given that never changes. This sort of attack would fit more in the Denial-of-

Service (DoS) category, and if the attacker wishes to conduct a DoS attack, there are much easier

and more effective ways of achieving it. For example, the attacker can completely shut down the

TEE driver in the REE which alienates TEE services. This type of attacks is extremely difficult

to protect against, which is why we consider it out of scope. Nevertheless, the integrity of the

data remains fully ensured, which is our main objective.

C. Analysis of Potential Attacks by the REE

72

Splitting code between the TEE and REE means we rely on the REE to process certain parts of

the operation. By assumption, the functions performed by the REE are still subject to attacks

from the remote attacker, which means those attacks have to be evaluated. The meta-data

extracted from the image includes:

1. Position of the QR code and the skew angle within the image.

2. Positions of the finder, alignment, and timing patterns.

3. Content of the format data (error-correction level and mask pattern).

4. Content of the version data.

The position of the QR code within the image combined with the angle/skew of the QR code are

the most important parts of the meta-data received from the REE. The REE uses the finder,

alignment and timing patterns to find this information, and those patterns can, in turn, be

extracted from the position/skew. Both types of information can be inferred from one another.

Furthermore, the content of the format data (ECC level and mask pattern) and version data is

purely supplementary and not essential for the TEE at this stage of decoding. Once the finder,

alignment and timing patterns are available in the TEE, the module matrix of the QR code is

possible to extract. The extraction is only performed on the authentic image received securely

from the camera (as explained in Chapter 3) and produces a bit-matrix representing the QR code

modules. The bit-matrix size depends on the version of the QR code, which is also embedded

within the matrix itself (a sequence of 18 bits repeated twice in two fixed locations on the map).

The data format bits are also embedded in the bit-matrix (15 bits repeated twice in two fixed

locations as well). In essence, the verification of the information provided by the REE is an easy

(straight forward and reliable) process. the difficult process that demands external dependencies

is the one involved in finding the QR code within the captured image.

73

In terms of attack types performed by the REE, the attacks that can only yield denial of service

do not represent a challenge to the configuration functionality. That is the case, because there are

many ways to perform DoS attacks against the entirety of the TEE. For example, an attacker can

completely shut down the TEE driver within the Android kernel, which renders any service calls

requesting TEE services blocked. Therefore, an attack against the Split-QR decoder that only

yields blocking of the service will be a wasteful effort that can be achieved with easier means. In

this respect, DoS attacks against the TEE and its services are considered out-of-scope. With that

in mind, there are two main categories of attacks in this system that are worth investigation, and

each category has a range of associated attacks:

1. Omission of meta-data going into the TEE: the attacker performs attacks that aim to limit

the amount of meta-data going into the TEE. This category of attacks includes removing

parts or all the meta-data from the info sent back to the TEE.

2. Manipulation of meta-data going into the TEE: the attacker changes the meta-data before

sending from the REE to the TEE after the REE extracts the data from the image copy. This

category includes manipulation of parts or all the meta-data going into the TEE.

The attack scenarios can include one or both categories concurrently to achieve different

purposes. In this analysis we will prove that such attacks will not yield decoding malicious data

from the QR code inside the TEE. The main scenarios include:

1. Omission of all meta-data: in this attack the purpose is to block the TEE from decoding any

data from the QR image. Such an attack represents DoS, but it does not pose a risk to the data

integrity. This scenario also includes omission of all positional data (QR position, skew, and

the patterns).

74

2. Omission of position and skew data: the attacker withholds the position and skew

information from the TEE, while sending the remaining information (patterns, version data,

and format data) as-is to the TEE. In such case, the patterns on their own are enough for the

TEE to read the bit-matrix from the image. Therefore, the attacker does not achieve anything

by omitting the position and skew data. But that can indicate a malicious activity on the part

of the REE.

3. Omission of position and skew data with manipulation of the remaining data: the attacker

aims to misguide the TEE by omitting the position of the QR code and skew information

while changing the positions of the patterns. The finder pattern has very distinct shapes that

must have blank space around them from all directions. This allows the TEE to verify if the

pixels on the real image match the manipulated information received from the REE. If a part

of the pattern was manipulated by the REE, then the TEE verification will discover that the

information does not yield a valid QR code. Meanwhile, if all the pattern was altered, then

the TEE verification will determine that the pattern does not really exist in the reported

location, and the attack would yield no data extraction. As for the timer pattern, this pattern

always connects to the finder pattern itself. Therefore, TEE verification will easily determine

if the timer pattern is previously verified that there is a QR code using the finder pattern,

which is an essential step anyway. The alignment pattern helps determine the rotation of the

QR code, but it still has to coexist with the finder pattern properly. That means there can be

no intersection between the two patterns, which is verifiable by the TEE. Finally, as

explained previously, the version and data format information can be extracted from the bit-

matrix, so manipulations of that information can be ignored upon failure of verification,

without affecting the integrity of the data extraction.

75

4. Manipulation of position and skew data while omitting the remaining data: in this scenario,

the attacker aims to manipulate the way the TEE reads the QR code from the image.

Omission of the patterns means the TEE must read them itself from the position and skew

information provided by the REE. In such an attack, the attacker can claim the QR code starts

in a different location and claim there is a different skew to the image. If the claim suggests

the QR code starts in a completely different area, then no patterns will be found and no QR

code can be extracted, but it does not yield any manipulation of the data. Another case could

have the attacker point to a place within the QR code itself aiming to take a portion of the

real code to construct a different code during the bit-matrix reading. In such case, there is no

portion within any QR code that can be interpreted as another QR code as we will outline

shortly. Finally, if the skew is altered by the attacker, then the patterns (finder, alignment and

timer) themselves will become self-contradictory. In other words, the TEE verification will

determine that the resulting patterns cannot exist.

It is possible to make a scenario of every possible combination of omission and manipulation of

the meta-data, but the scenarios described above cover all the cases implicitly. For example, any

manipulation or omission of version and format data is useless for the attacker because they are

found within the bit-matrix. In addition, manipulation attacks are addressed fully in scenarios 3

and 4 combined. The attacks cannot produce more than DoS due to the QR code structure itself.

For instance, trying to claim that part of the alignment pattern is a finder pattern cannot produce

a functional QR code as described by the standard. In such a case, it is not possible to have the

three components of the alignment pattern with empty blank space around all three, and an

empty space around their combination (the quiet zone). Furthermore, there is no possible QR

code that will have a correct timing pattern between those three components of the alignment

76

pattern. This is primarily due to the masking pattern used to alter the data bits to make the QR

code more readable for scanners. There are eight masking patterns, and all eight are evaluated in

the encoding process to determine which one has the least penalty score (which is looks for

different bit patterns in the QR code’s data/ECC bits). The resulting effect of the masking pattern

on the resulting QR bit-matrix is similar to salt-and-pepper noise effect. And it is used to remove

scanners ambiguity when decoding, which includes a QR code embedded in another QR code.

Table 4.3 summarizes the attack scenarios and their assessment.

Table 4.3 Summary of meta-data related attacks and their worst outcomes. In all cases data integrity is assured and

malicious activity is discovered.

Scenario Attack type Purpose of attack Worst outcome

1 Omission of all meta-data DoS DoS

2 Omission of position/skew data Misleading finding of

QR code in image

Will not stop accurate

decoding.

3 Omission of position/skew data.

Manipulation of patterns.

Alteration of data read

from QR code

No extraction or DoS

4 Omission of patterns. Manipulation

of position/skew data

Alteration of data read

from QR code

No extraction or DoS

4.4 Implementation

As described in section 4.2.1, we chose to use x86 environment for our implementation to

simplify the proof-of-concept. A major point of concern when it comes to simulating

functionality on different architectures and platforms is to make sure it can be ported to the

correct architecture, namely ARM architecture and its TEE. Another point of concern is to make

sure the TEE process is actually completely independent from the development platform libraries

(standard C library support). This step is necessary to ensure that the process does not have

77

uncounted external dependencies, which is crucial to prove the simulation is correct. The

simulation environment we used is summarized in Table 4.4. The first concern can be addressed

by removing any architecture-specific and platform-specific function calls in the decoder itself

from the moment the image is retrieved until the data is extracted properly.

Table 4.4 Summary of simulation environment.

Architecture x86_64

Platform Ubuntu 20.04

Processor Core i7-8700k

RAM 48GB DDR4 3200MHz

The remaining steps (e.g., reading the image from local storage) are irrelevant in this context as

explained in section 4.2.1. Addressing the second concern can be achieved by using static

compilation. Static compilation ensures no external dependencies exist in the produced binary

(the TEE process). External dependencies must be manually included in the binary, which we

have made sure not to do.

4.5 Evaluation & Analysis

We have compared three main runs for testing: 1) full operation in REE, 2) Split-QR decoding

with dynamic and static QR, 3) server decoding under dynamic and static QR. The idea is to test

the secure payment method against unsecure REE method and compare with the previous design

where decoding is done by the server. The full REE test defines the control data for best possible

performance, given it does not use any TEE overhead. This reflects normal operation procedure

that most applications have to use, given the lack of the TEE services.

The TEE testing is the true test in terms of security. Here we have installed only 12% of the ZBar

library and 60% of the core decoder in the TrustZone as discussed in the design section. We

ensured data integrity which is the main objective. Testing performance compared to the control

78

is important to ensure our solution design does not introduce major overheads, which

significantly slow down normal operations. The server test is not fully representative, because it

assumes all servers would operate with the same decoder we are using, and it assumes minimum

server delays which can grow much longer in real-time settings. Either way, the test is mainly to

measure the overhead reduction by the new design under ideal conditions compared to other

settings. Given the server decoding approach relies more on server communication, delays

introduced by connection issues would increase overhead even further and are not counted here.

4.5.1 Datasets

Typically, we would not use datasets for testing security applications. However, we need to

measure performance over large variance of QR codes that come in different formats and sizes.

Table 4.5 Datasets descriptions [53]

Dataset Count Resolution Difficulty

Simple 10,000 250x250 – 400x400 Centered & aligned.

Complex 1,602 100x100 – 2048x1536 Random placement. Unaligned. Sheered.

Skewed.

Therefore, we have tested decoding on two sets. The first is simple, uniform, with easy to codes

to decode. The set has 10k QR codes. Each image contains only the QR code, and it is perfectly

squared. Furthermore, the image size varies between 250x250 to 400x400 pixels for different

images. The second set is more realistic and has much more variance in shape and code format.

It contains 1602 images with dimensions varying widely from low to high resolutions. The codes

are also skewed and sheered in some images making it more difficult to decode. Table 4.5 shows

the sets description.

79

4.5.2 Performance Comparison

Table 4.6 shows the processing time for the codes of the two sets run one by one, meaning call

each code separately, which is the normal use. The complex set time consumption was 5 times

longer than the simple ones on average, while some codes took 50 times longer. Furthermore, the

table shows another test on both sets, where the images were taken in batches of 10 instead of

singles. This test is supposed to measure the overhead introduced by initialization of the decoder

library. For the simple codes set, processing time was reduced by half while the complex set

showed around 12% decrease. In both cases, decoder initialization took nearly 10 milliseconds.

Finally, Table 4.6 shows test results for singular and batched runs on both sets after resizing

images to one size per set. We conclude from Table 4.6 that image size plays a crucial role in

defining the processing time of decoding. The larger the image, the longer it takes, and the

relation is nearly linear, and that is expected. We can also see the batched runs consistently saved

~12.5ms for all runs. This means the decoder initialization time is constant, independent of the

image size. We have tested on many different image formats (PNG, JPG, BMP & RAW) and the

results were pretty consistent.

Table 4.6 Results of eight calibration runs on the two datasets in the REE.

Test run Average time (ms) Image dimensions

Simple – singular 19.7 Dataset original

 Simple – batches of 10 08.2

Complex – singular 97.8

Complex – batches of 10 84.0

Simple - singular 21.3 Resized: 400x400

Simple – batches of 10 09.2

Complex – singular 44.7 Resized: 800x600

Complex – batches of 10 32.5

80

For the Split-QR method, we used the same singular runs of Table 4.6. The results are shown in

Table 4.7. The overhead, as percentage, is largest for simple-singular images and least for

complex-singular. This is quite expected given the Split-QR design adds near constant overhead

to the procedure. In other words, the larger the image, the less overhead percentage is caused by

Split-QR.

Table 4.7 Results of Split-QR runs.

Test run Average time (ms) Overhead (ms) Image dimensions

Simple – singular 28.9 9.2 Dataset original

 Complex – singular 109.2 11.4

Simple – singular 30.9 9.6 Fixed: 400x400

Complex – singular 55.4 10.7 Fixed: 800x600

Finally, server decoding test was conducted similar to the Split-QR run, but the communication

time is different. The results are shown in Table 4.8. It is important to note that Split-SSL

overhead is not accounted for in these tests given we have simulated that part as explained in the

design section. This will be discussed further shortly. In all cases we observe that there is similar

overhead for small images, but the overhead grows massively for large sized and complex

images. In the following we discuss the total overhead of the entire process, all the way from

capturing the image to completion of the payment using the final attestation.

Table 4.8 Results for server decoder runs.

Test run Average time (ms) Overhead (ms) Image dimensions

Simple – singular 32.7 13 Dataset original

Complex – singular 146.9 52.9

Simple – singular 35.6 14.3 Fixed: 400x400

Complex – singular 68.4 23.7 Fixed: 800x600

81

4.5.3 Complete Analysis

Table 4.9 shows the full design time slices and compares different approaches in total time and

overhead. Table 4.10 describes the different variables and parameters used in Table 4.9. As

shown in Tables 4.8 and 4.9, the shortest total time is when running full REE. But it is also not

secure and prone to attacks. The security provided by the other two methods is quite similar

under the same assumptions. However, Split-QR is much faster with much smaller overhead

especially when we factor in the overhead introduced by Split-SSL [47].

Table 4.9 Total processing time analysis for the different methods.

Method Read Decoding Amount Server

Comm.

Attestation Total

REE C D 0 x U A + x

Split-QR C D + T 0 x + S U A + T + x + S

Split-QR static C D + T K x + S U A + T + K + x +

S

Server normal C D 0 nx + S U A + nx + S

Server - static C D K nx + 2S U A + K + nx + 2S

Furthermore, image transfer costs a lot of time depending on the network. In ideal test

conditions, such times are minimal. In real-time scenarios, they are not predictable. Split-QR is

not as affected on network transmission fluctuations, given it sends only one time, and the data is

quite small. Split-QR does introduce T overhead, not present in other methods. However, as

demonstrated in Table 4.10, T is quite small and does not grow fast with the image size.

82

Table 4.10 Descriptions of variables.

Variable Description Typical value (ms)

C Time required to capture an image from the

camera device.

10-20ms

D ZBar decoding time. +20ms – can grow to over 250ms for

large images.

T Overhead introduced by Split-QR on

decoding.

+15ms – grows slowly with image

size.

K Overhead introduced by Keyboard TA from

TruZ-Droid.

160ms on ARM. In x86 environment

it is projected to be around 40-50ms.

x Transmission time to the server. Depends on network.

nx x multiplied by the number of transmissions

necessary to send image data to the server.

Depends on network.

S Overhead introduced by Split-SSL. 370ms on ARM. In x86 environment

it is projected to be around 80-90ms.

U Overhead introduced by UI TA. 60ms on ARM. In x86 environment it

is projected to be around 15-20ms.

A For convenience: A = C + D + U -

4.5.4 Summary of Results

Table 4.11 shows the summary of results produced in previous tests for all of the three methods.

Table 4.12 compares the methods in terms TEE size, feasibility, and integrity achievability.

Table 4.11 Methods performance: average decoding/code for code types and call settings (values in milliseconds)

Method\Dataset Simple codes 10k set batch Complex codes 1.6k set

 singular batches of 10 singular batch of 10

RE decoding 19.7 8.2 97.8 84.0

Split TEE decoding 28.9 - 109.2 -

Server with same decoder 32.7 - 146.9 -

83

Table 4.12 Operational parameters for the methods of decoding

Test Split Full REE Server/same decoder

TEE LoCs 3700 + 500 0 500

Feasibility yes yes yes

Integrity yes no yes

4.6 Conclusions and Future Work

4.6.1 Conclusions

In this chapter, we introduced a new hybrid approach to solve the QR decoder problem. The

design solution we introduced is novel and makes it much easier for developers to incorporate

into existing applications compared to our previous approach when the server decoded images

instead. The overall results show less overhead with increased transparency and seamless

integration. Therefore, this new approach is quite advantageous. The simulation environment

was quite sufficient to test the new design given it relies on existing independent components

produced by TruZ-Droid and our previous work. This new decoder design can be extended

beyond QR payments and towards anything that requires trusted QR code analysis where

integrity of data is crucial. Secrecy would be harder to achieve in the given boundaries. The

camera is available to REE at all times except when TEE needs it. Therefore, a QR code

displayed on another screen will be hard to keep away from a compromised REE’s reach. This is

why our hybrid approach works well and makes a difference under the assumption that REE is

compromised. We plan to extend this hybrid problem solving approach towards other services

as shown in the following section. Table 4.13 summarizes the design highlights compared to

other works and highlights the differences.

84

Table 4.13 Design highlights and comparison with other works summary

Design Highlights Comparison to our design

Split-QR Offers quick processing of QR codes that

offers integrity assurances. Reduces QR

payment processing overhead while

maintaining a small TCB

N/A

Chapter 3 QR payment using an external server for

decoding. Offers same integrity assurances

and a small TCB. Relies on remote server

to process the QR code itself.

Smaller TCB size than Split-QR

but larger performance overhead

due to increased communication

with the remote server.

Jeng-An Lin

and Chiou-

Shann Fuh [50]

Emphasis on optimizing decoding with

focus on performance and accuracy. Uses

Google open-source 1D/2D barcode image

processing library Zxing-2.1.

Useful for optimizing decoding

in the TrustZone option, but does

not address decoding and data

integrity through the TEE.

Nivedan

Bhardwaj et.

al. [51]

Android-based REE decoding system with

colored barcode and measuring

performance.

Optimizes decoding in the REE

but does not address data

integrity risks.

Madeline J

Schrier [52]

Addresses the UPC barcode, which is

widely used in retail and commerce.

Optimizes parameter extraction from the

features of the UPC symbology, which

allows exact decoding.

Does not address QR codes nor

splitting between TEE and REE,

but can be very useful for secure

UPC decoders implementations

in the TEE.

85

4.6.2 Future Work

Extending Split functions for trusted operations: The success of Split-SSL and the Split-QR

decoding as outlined in this paper suggest extending the splitting to other applications and

functionalities. Five types of different nature arise.

1. Small size services that fully need security—cannot split and must go to the TrustZone;

Examples: GPS through a sensor. We estimate such services to be around 10% of services.

2. Services that can be split into essential to run on TEE, and not essential that is possible to run

on REE with no harm to the basics of the operation or data integrity. They are the main

candidates for generalization. Examples: QR decoding. We estimate such services to be

around 60% of possible services.

3. Service that are possible to split, but the part for REE execution can harm the operation or

beyond the REE capacity. This case can be due to complexity and a need of help from more

powerful services. Examples: complex machine learning classification. We estimate such

services to be around 10% of services.

4. Services that cannot be split and require outside dedicated services. Either fully TEE or fully

external service. We estimate such services to be around 10% of services.

5. Large services that cannot be split and no external service are available. Only TEE or the REE

can do them. Such cases are out of the scope definition assuming the Android is corrupted.

Example: internet-assisted location attestation. We estimate such services to be around 10%

of services.

Without splitting, all service types have to be done through external servers or others. After

classification we can reduce the types that need full outside support to maybe 10%, and the split

with external extensive use to 20% and around 70% can utilize local splitting or full TEE

86

execution. The splitting then serves 70% of the total load. The others can still benefit from the

TrustZone albeit traditionally. In the upcoming work we will address these types and show the

benefits to performance, integrity, and sometimes security.

87

Chapter 5

Dynamic Offline TrustZone VCC Transactions Generator

88

Chapter 5: Dynamic Offline TrustZone VCC (DOT-VCC) Transactions

Generator

Abstract. This chapter introduces DOT-VCC design which uniquely combines the benefits of

VCCs and user-end tokenization systems and offers security for users against attacks targeting

user devices as well as service providers. It works for in-person transactions (unlike regular

VCCs) and does not require changes to infrastructure (unlike tokenization). Finally, it is

compatible with merchant-end tokenization. The design offers protection for user cards

information from theft or abuse in relation to merchant or service providers databases, and

against attacks targeting user devices. The offline nature of the algorithm cuts off many attack

surfaces. The DOT-VCC generator extends the utility of VCCs to cover in-person transactions

unlike traditional online-only systems. The dynamic and offline aspects allow the generator to

work independently from online communication to any remote servers. The design does not

require architectural changes to the existing credit card network. The only modifications required

are at the endpoints, the cardholder and bank server. The system can be utilized by banks and

card issuers without specific settings and integrated within any TrustZone system as a service for

any bank without contacting TrustZone specific manufacturers. The generated VCCs are

irreversible which offers protection against database breaches, and the data is inaccessible for

live attackers who compromise user devices. The issuing bank server and the TEE are the only

parties who can reconstruct the number. The credit card number is based on secrets, original

credit card data, and UTC timestamps and other dynamic parameters. The method uniquely

combines various technologies that yield the unique security and services. Strong hash

encryption is used and any change in the information blocks the transactions. The algorithm is

robust even in the worst-case scenario where both the merchant database and the REE are

compromised by attackers.

89

5.1 Introduction

Credit card information is one of the most valuable user data that attackers want to obtain. There

are many types of attacks against many different environments. A very common attack targets

merchant or service provider databases. Such merchants have massive databases of user data,

and a security breach can leak financial information of customers including credit card

information.

Virtual credit cards have existed for years, and many algorithms were developed to generate such

cards. There are usually two main types of virtual credit cards: 1) merchant specific cards, and 2)

limited use cards. The former type is generated specifically for each merchant and can be used

many times. The latter type works with any destination, but it is limited in the number of times it

can be used. In other words, it expires.

Virtual credit cards mitigate the breaches problem in merchant databases as users can cancel

such cards immediately after usage. Furthermore, in case of a breach, the merchant can share the

leaked credit cards with the respective issuers who can proceed to cancel such virtual cards with

ease. Limited-use cards provide more protection due to expiry.

Most of the time, people use virtual credit cards for online purchases where they either use direct

generation services or third-party generation services. Direct generators are provided by the same

bank that issues the real credit card. Third-party generators are provided by other means. Either

way, these cards are not commonly used for in-person payments. While some service providers

have mobile phone applications to generate such data, it can be risky due to vulnerable operating

systems. In a scenario where a remote attacker has full access over the operating system, the

dynamically generated cards can be stolen the moment they reach the application.

Given virtual credit cards provide protection against merchant-based leaks, they do not provide

solutions to attacks against the user requesting the cards which puts such cards at risk. On the

90

other hand, user-end protections often overlook virtual credit cards given they are mostly used

for online payments. Instead, such protections focus on actual credit cards and protect them using

trust-based environments (TrustZone and Apple’s Secure Enclave). Unfortunately, those

protections do not apply against attacks targeting merchants and service providers. Therefore,

there are no solution designs that provide protection against attacks targeting both, merchants,

and user devices.

While TrustZone supports different types of payments using the concept of Trusted Execution

Environment (TEE), it does not extend the support for developers who wish to protect the data

from leaking into the Rich Execution Environment (REE). In this case, generated virtual cards

would be freely accessible to remote attackers which reduces the reaction time of users to stolen

credit card information and causes more risks of theft.

In Chapter 3, we utilized the TrustZone to protect data integrity of peripheral devices (camera

and location devices). Information from camera and location devices is often used in merchant-

presented QR payments to attest and verify payment information. We ensured the data integrity

all the way from the hardware device and to the server. TruZ-Droid [31] [32] was useful in

achieving our goals due to Split-SSL which allows the TEE to prepare encrypted data to be sent

to the server without the REE intercepting the data or altering it. In Chapter 4, we developed the

Split-QR decoder by adding the essential parts of the decoder within the TrustZone. In a that

work we have extensively tested such operation and shown the feasibility and analyzed the

performance of the added protection. The designs from Chapters 3 and 4 address attacks that

target merchant-presented QR transactions.

In this chapter, we introduce a novel design to enhance the security of credit card use. We target

the problem of virtual credit card generation and consider the potential risks of a compromised

91

REE on the generated data. A trivial approach may attempt solving the problem by generating

the data on the server and using Split-SSL to transfer the data to the TEE where it can be

protected. However, such approach could introduce new issues in the TEE given it receives data

from remote servers. A user mistake may authorize an untrustworthy server to store data in the

TEE. Our approach to this problem is to cut off communication with remote servers while also

completely masking users’ credit card information. Such an approach demands offline

synchronization between the user’s device and the bank’s server but without direct

communication, and it works similar to authenticator applications. In other words, it can be fully

synchronized even if the device is offline. The generated data is transferred over the credit card

network, through the merchants and service providers, to the bank. The generated data must

contain multiple pieces of information and can never be reversible. That is, the generated credit

card information cannot be used to extract the original data. Once the merchant receives this

payment information, it is sent to the credit cards network which forwards the data to the issuer

where the payment can be processed. Given the synchronization, the issuer can verify the virtual

card with ease. Section 5.2 covers background about credit card processing and virtual credit

card generation. Section 5.3 defines the problem and what exactly are the terms and conditions

of the REE where it is fully compromised. Section 5.4 outlines the solution design including all

requirements for authentication by the bank, and algorithms needed for the number generation.

Section 5.5 presents the implementation. Section 5.6 covers evaluation and testing, and section

5.7 outlines the main conclusions and future work.

5.2 Background and Related Work

Credit card use is expanding beyond expectation and grows well above linearly with the

population growth. With that comes fraud and attempts by many parties to steal the cards data

92

and financial credit. In a comprehensive study [58] they predict the losses due to frauds in 2018-

23 to get over $130 billion. This can impact trust badly and can destroy businesses too. The

credit card trust problem is old as the cards have been. Traditionally, someone would steal cards

from others and simply use them. They used to have signatures, but that can be faked with no

expert to watch at the selling side. Then the idea came to run the service over the internet where

card holders input a credit card verification (CCV) code and expiry date. There are several

methods of defeating this security mechanism and it was estimated not to take longer than 6

seconds to brute force [11]. What is equally risky are many sellers themselves if they can charge

the same card many times using the information provided by the original card transaction. With

soft authentication comes easy breaches. Additional restrictions were applied, but the pace of

corruption is generally faster.

A new novel idea came to issue one-time use credit cards instead of using the cards repeatedly.

While this can work properly, it carries new associated risks. Usually, the cards are generated by

the issuer and then transferred to the user over the internet. Any breach at any stage could steal

the data and use it before the user gets a chance to use it. Furthermore, such approach is very

difficult to utilize for in-person payment systems.

An early idea was proposed in 2001 by [66]. They have suggested an offline issuance of the

number without requesting the bank-based issuance. The concept assigns the number by an

independent entity that can serve the cardholder. We do not have the evolution history of such

proposal, but if that service is done over insecure protocols the end result may fail just like the

other ideas.

Finally came the TrustZone and our proposal to engage both sides. Restrict the offline issuance

of the number to the TrustZone, which can protect the data fully by definition. In such

93

environment, REE corruption cannot steal anything from the TEE unless the user decides to

write down the data on paper and then voluntarily give to the REE. That would be an effort from

the cardholder to knowingly violate the secrecy of their own data. Even then, the damage is

mitigated given the generation algorithm is time-bound and changes continuously.

5.2.1 Overview of Fraud Impact

The B2B (business-to-business) world ecommerce market is about $28 trillion in 2024 and the

B2C (business-to-consumer) ecommerce market value is about $4.1 trillion. [74], [75], [76],

[77]. Since 2020, ecommerce market has been on steady growth and the B2C market is expected

to reach over $5.5 trillion by 2027. Fraudsters are tempted to taking advantage, and online

payment fraud is rising fast. Two types of fraud, one is using the physical card and the other

when card is not present, and its information is used over the phone or online. They are prime

targets as they only need the card details stored digitally, and it is easier to get away with it [58].

Payment fraud affected 82% of organizations in 2018. Online sellers are estimated to lose $130

billion to online fraud between 2018 and 2023 MRC survey results show world-wide fraud costs

1.8% of business revenue. For every $1 of fraud from chargebacks, businesses lose an extra

$2.94 which include fees, merchandise distribution, fraud investigation, legal prosecution, and

software security. For customers, victims spend two working days cancelling their cards and

dealing with the aftermath. For online sellers, fraud is a huge cost and the top concern for 44% of

finance professionals. In Europe, the revised Payment Services Directive (PSD) means sellers

will be legally responsible for fraud across their entire portfolio of online sellers [58].

There are different types of online payment fraud. One is when real customers deny receiving the

goods, while they did, and they file a chargeback through their bank instead of requesting a

refund from the seller. Most online payment fraud is identity theft: Criminals steal cardholder

94

information through skimming on payment pages or buy on the dark web. In stolen cards,

fraudsters impersonate the cardholder and buy online. The seller thinks the purchase is valid and

sends the goods to the fraudster. In chargeback fraud, the cardholder sees the charges and

contacts the bank. The seller is hit with a chargeback plus fees.

For the average fraudster, buying card details on the dark web is the easiest to get large numbers

of card details. The Breach Level Index reports that over 14 billion data records have been stolen

and leaked online since 2013 [73]. Fraudsters are stealthy, constantly finding new ways to

improving their techniques. The dark web is a corner of the internet where criminals can interact

with little trace. There are card details from all over the world on the dark web. Fraudsters buy

compromised cards details and can quickly find out who the cards are registered to, and then

spoof the location.

Fraudsters can buy real customer phone numbers online with card details - but they won’t have

access to actual owners’ phones. To get around this they contact the phone company to request

diverting the calls to their own numbers so that they can verify purchases if needed. The dark

web also advertises ‘calling services’ where someone can call a victim’s bank and credit card

provider to change their registered phone number. Visa and Master card lost $750 million to

credit card fraud for the period 1988-1998. That led to the creation of monitoring programs for

chargebacks [58].

5.2.2 Credit Cards Concepts

Credit cards coding. Credit cards have different structures and standards. Here we outline the

ISO/IEC 7812-1:2006 standard for 16-digit card numbers. The breakdown is as follows [59].

1. Digits 1-6: Issue Identifier Number (IIN). The first digit in this segment represents the issuer

industry (e.g., 4 for Visa, 5 for MasterCard). The six digits provide a unique identifier for the

95

issuer institution. This is crucial in order for the credit cards network to find the proper

destination when a payment is made.

2. Digits 7-15: Unique Personal Identifier (UPI). These digits represent the unique identity of

the cardholder. They vary depending on the issuer and the generation method.

3. Digit 16: Luhn digit used to verify the validity of the credit card number. It is a checksum

which adds to modulus 10 if the card number is properly constructed.

The Luhn algorithm. The "modulus 10" algorithm, is a checksum used to validate a variety of

identification numbers, such as credit card, IMEI, and National Provider Identifier numbers in

the US, and similar numbers in other countries. The Luhn formula [60] was created in the late

1950s by a group of mathematicians, and soon afterward, credit card companies adopted it. Most

credit cards and many government identification numbers use the algorithm as a simple method

of distinguishing valid numbers. It helps protect against accidental errors, not malicious attacks.

Steps involved in the Luhn algorithm:

1. Starting from the rightmost digit, double the value of every second digit.

2. If doubling of a number results in a 2-digit number (e.g., 6 × 2 = 12), then add the digits of

the product (e.g., 12: 1 + 2 = 3), to get a single digit number.

3. Take the sum of all the digits.

4. If the total modulo 10 is equal to 0 then the number is valid; else, it is not valid.

Credit card verification number generation. Credit cards often carry a three-digit number at

the back. In American Express cards, the number consists of four digits instead and it is

calculated quite differently. Table 5.1 shows a three-digit number CCV generation.

96

Virtual card numbers (VCC/VC). These numbers provide seclusion, without compromising

making payments or earning rewards. They improve making payments. They can be issued

immediately and revoked or customized after use. Fraud is reduced with transaction-specific

using VC. For commercial card programs, costs are also reduced. VC are very similar to physical

credit or charge cards. They have a 16-digits, generated, and assigned for use by a user, and VC

can be used immediately, if funding is available. They also provide spending controls, reporting

tools and fraud protections and prevent misuse. For consumers, VC provide privacy protection

against tracking by adversaries, while protecting sensitive banking information, including the

real debit, credit card account number, expiration date and security code. For businesses, VC

provides immediate issuance and funds, while managing cash flow, enhanced payables, and

stronger reporting. For consumers, they can be generated with existing credit card accounts [62].

Table 5.1 Credit card verification (CCV) number generation algorithm [61].

1. Generate a 16-byte key (32 hex digits).

2. Retrieve credit card number (16 or 19 digits) which is the PAN.

3. Retrieve 4 characters of the expiration date (formatted as YYmm).

4. Use the proper three-digit service code (depends on industry and purpose, iCVC uses 999).

5. Concatenate PAN, expiration date, and service code in that order to a single string.

6. Pad the result from (5) with zeros on the right until reaching 32 in length. Call this data.

7. DES encrypt the first half of the data with the first half of the key.

8. XOR the result from (7) with the second half of data.

9. DES encrypt the result from (8) with the first half of the key.

10. Decrypt the result from (9) with the second half of the key.

11. Encrypt the result from (10) with the first half of the key.

12. Get the first digits (3 or 4) from the result as the calculated code.

Single or multi-use VC can prevent fraud. Most credit card companies provide examples of both.

Single-use works for one transaction, while multi-use can be used as a dedicated payment

97

method to a regular vendor, enhancing tracking and privacy. VC numbers differ from payment

apps used by providers where most merchants can accept online purchases or in-store use with

NFC (Near Field Communications) or MST (magnetic secure transmission) [83]. With these

payment apps, a payment token replaces the primary account number (PAN). VC numbers can

make purchases with online payments. These VC numbers are managed by the card issuer, where

one can create VC numbers with any expiration date or spending limit suitable for the user with

few extra steps to generate a VC number.

Returning items ordered online with VCC to a physical location could be a challenge. Some

stores require inserting the card used for the purchase to refund back. The time it takes for a

refund to show up on the credit card varies by vendors and card issuers. This is not possible with

a VCC. Recent developments have provided solution for refund of VCC transactions. VCC with

short expiration dates can cause issues for subscriptions. To keep subscription active, an update

of VCC number each time it expires is needed [63].

With the merchant having the billing address, card number, expiration date, and security code,

some can abuse the customer card. The cardholder is not liable for unauthorized charges, but

until reversing the transaction the account may not have credit for valid purchases. With VC

numbers, this risk is eliminated [64].

Tokenization. The token is another method that can be used for purchases [65], [69]. It is

different from VC numbers, but both keep sensitive card number information from reuse for

fraudulent purposes. Reporting and spending controls are available for both tokenization and VC

number payments, but the features differ between VC issuers and smartphone payment app. In

our method we used the standard virtual number utilization dynamically which provide security

superior to standard credit cards and EMV tokenization.

98

5.2.3 Related Work

Aviel D. Rubin, Rebecca N. Wright [66] proposed a system that reduces the risk of misuse of a

card number without the need of secure contact and authentication with the card issuer before

each transaction. The protocol generates tokens as for conventional account numbers and

observe transaction restrictions before approval. The account number is the shared secret

between the card issuer and the holder. The tokens, length and format are identical to the account

number, allowing easy layering of the protocol on existing commerce infrastructures. The

account number is converted into a symmetric cryptographic key, by using a hash function. The

transaction rules are encoded using the symmetric key that may be utilized in the transaction and

verified by a card issuer who receives the request information from the merchant. The card issuer

decrypts the code using the symmetric key, verifies the information and approves the transaction.

The functionality is controlled by the card holder. Still the operation needs the bank approval of

the method. The main focus of the work is regarding online transactions, and it does not provide

effective ways to deploy the solution into everyday transactions. Furthermore, the work does not

target vulnerable generation environments which gain instant access over generated numbers.

Ian Molloy et. al. [67] propose a dynamic virtual credit card number scheme that protects

against cards abuse. The VCC numbers are generated based on the real account number, billing

information, secret key, and other information in coordination with the issuer. The secret

password must be given to the issuer prior to any payment, the remaining information is

extracted from the payment information provided by the merchant. While there are similarities

with the solution we offer, it does not consider any timestamps, and it requires the user to

manually specify expiry date, merchant information, transaction amount and the secret password.

This process must be done all over for every transaction and it requires internet connectivity.

Furthermore, the solution does not specify the means of deployment into an actual system, nor

99

does it utilize the concept of a TEE to protect the generation process. From a mathematical point-

of-view, the solution is reliable. From a practical point-of-view, it can be very inconvenient

especially in physical transactions. And given the lack of timestamps, the attack window can be

quite wide for an attacker with remote access over the generator device. Our approach eliminates

such risk by allowing a dynamic specification of a timestamp while also integrating and

verifying the solution’s validity in the TEE.

Park Chan-ho and Park Chang seop [68] propose a virtual credit card number payment

scheme based on public key system for efficient authentication in card present transaction. They

claim their scheme can authenticate efficiently in card present transaction by preregistering

virtual credit card number based on cardholder's public key without PKI. There are common

features with our method but less dynamic. Again, this solution does not address the problem of

a vulnerable device used for the generation. Table shows DT-VCC and related work

5.2.4 The Preferred Embodiment

In the following discussion, we showcase the attack scenario on merchant databases, and discuss

the existing countermeasures and their underlying limitations; namely, tokenization (user-end

and merchant-end) [69] and virtual credit cards.

Figure 5.1 Baseline threat model attack.

100

One problem is their inability to provide a solution that covers both in-person and online

transactions. We then compare the different methods to our implementation and summarize the

differences. Figure 5.1 shows the general threat model attack against the merchant databases.

A. User Card and Merchant Tokenization

The most common method of protection for credit cards information is the use of tokenization.

Tokenization is a general term that is often used for many different types of technologies used

within the context of credit cards. Some of them are done on the user end while others are on the

merchant’s server.

A1. User-end tokenization

Figure 5.2 shows user-end tokenization countermeasure and limitations. The idea behind this

form of tokenization is that you don’t trust any merchant with sensitive information at any given

stage.

Figure 5.2 user-end tokenization countermeasure and limitations.

Therefore, the payment system only passes a token, which is a reference to an actual credit card,

to a payment terminal (merchant), and also passes another token representing a single

transaction. Those tokens are what merchant databases store, and accordingly, a compromised

101

database does not leak useful data. Such tokens need verification if the payment is to go through,

and this is where the credit card network infrastructure comes into play. As stated before, the

token is a reference to an actual account, this reference is stored in the service provider for the

tokenization in the credit card network which has to translate it into the actual account [69].

Threat model vulnerability and counter measures limitation in comparisons with our solution that

removes all threats.

The service provider for the tokenization comes in different types. Google Pay and Apple Pay

use tokenization and they use their own services to store such references. Essentially, when you

enter your card information, they will store them in their own databases, and give the mobile

application a token reference to those accounts. Effectively, you trade an untrusted merchant

with a “trusted” service provider. That is, you don’t want a merchant to save your information,

so you let Google or Apple save it for you and trust them to not leak your data. The same

principle applies to EMV tokenization which is done on the credit card itself. While neither

Google nor Apple will be responsible for the translation of your token, other similar service

providers will be. In essence, the security concept is the same. This type of tokenization is used

to protect in-person transactions where you directly pay the terminal.

A2. Server or merchant-end tokenization:

Figure 5.3 [70] shows the merchant tokenization countermeasure and limitations. In this type of

tokenization, the merchant takes responsibility into not storing your account information. They

will receive your sensitive information as it is, then tokenize it using a service provider. And the

tokens also are references to the actual accounts. The service provider is the one that will hold

your account information ‘securely’ while the merchant holds the token. Therefore, when you

need to make a payment, the merchant will use the token with the service provider and the

payment can then be processed and it goes through. Effectively, you are trusting the merchant to

102

properly protect your information through using an external service provider, that you are

unaware of, to store your data and provide tokens to the merchant.

Figure 5.3 Merchant tokenization countermeasure and limitations.

It seems redundant to use this sort of tokenization when end-user tokenization already “solves”

the problem. However, it is still relevant in ecommerce environments where the user has no

means of transferring the token to the merchant. Therefore, the user relies on the merchant to be

responsible and to tokenize their information for its protection.

B. Virtual Credit Cards with Tokenization [71], [72]

This type of protection is often used for ecommerce transactions where you do not want to trust

the server to do the tokenization because not every server does it. In essence, VCCs are similar to

user-end tokenization, except instead of tokens, we use virtually generated credit card numbers.

However, it is highly different than the user-end tokenization, VCCs do not need any special

infrastructure in the credit card network to work properly. The bank that generates the VCC can

deal with it like a normal credit card because the bank’s database knows how to distinguish or

associate the two. Figure 5.4: shows the VCC tokenization countermeasures and limitations.

VCCs are user-end protection methods which are supported by the servers of the users’ banks.

103

That is a bit of an oversimplification since VCCs can also be generated by third-party providers,

but the concept is the same.

Figure 5.4 VCC with tokenization countermeasure and limitations.

VCCs are compatible with existing server-end tokenization systems, but do not rely on them in

any way. That is, if the merchant’s server implements tokenization, the transaction will still go

through like a normal credit card transaction. The same can be said if there is a lack of

tokenization by the merchant. The main issue with VCCs is their disconnect from in-person

transactions. So, the only available technology for such transactions is going to be user-end

tokenization, which requires massive infrastructure changes. And they still require the user to

trust entities other than their bank to hold their sensitive data and not leak it, which leads into a

transparency issue in cases of leakage.

5.3 Problem and Objectives

The main objective is to eliminate any damage caused by data breaches against merchant

databases while providing transparent user experience. Mobile phones are perfect candidates for

generating one-time use credit card numbers. However, they carry their own risks. Therefore, we

put the following assumptions, based on the threat model in Figure 5.1, to define the scope:

104

1. Merchant databases are compromised: a seller who scans the user data is breached and an

attacker has access to users’ credit card data from the database.

2. Android OS on the mobile phone is compromised: an attacker has full root access over the

operating system and can perform memory manipulation and management to steal any data

that goes in and out of the environment.

We set the following criteria for the solution design:

a. The generated credit cards must be linked to real physical cards issued by valid authority,

e.g., CapitalOne, Bank of America, Chase…etc.

b. Robust and secure credit card number generator. The user shall get approval from the credit

card issuer to generate their own temporary numbers using a special key. The generated

number shall be verifiable but irreversible. In other words, the data that goes into the

generator cannot be derived from the output.

c. The integrity of the generated card must remain intact. The credit card issuer shall be able to

verify the generated number immediately. Moreover, it must detect any data manipulation in

any form or shape, whether by accident or malicious intent, during data transfer and

examination at the issuer’s server.

d. Credit card theft from merchant databases shall not put any risk on the user’s data. This is

achieved by the single-use aspect of the generated credit card number.

e. The generator must have the capacity to generate offline.

f. The design shall not require changes to the credit card network infrastructure, and hence

provide easy adaptation by credit card issuers and banks.

g. User experience must remain simple and straightforward without inconvenience.

105

Finally, denial-of-service attacks are out of scope of this work as they are irrelevant to the

problem being solved. Section 4 elaborates more on this scenario.

5.4 Solution Design (DOT-VCC Generator)

As stated earlier, mobile phones are good candidates to solve our problem. The vulnerable nature

of the REE (Android or iOS operating systems) makes this problem more interesting. Therefore,

we decided to utilize the concept of the ARM TrustZone and the TEE to secure the generation

procedure and lock REE out of the operation. First, we describe the generation and then we

showcase how the issuer can verify the correctness of the information.

This approach combines the best of both worlds, the VCCs and the end-user tokenization. It

works for both ecommerce and in-person transactions, and it does not need any changes to the

infrastructure of the credit card network. Figure 5.5 shows the DOT-VCC solution to eliminate

dependence on merchants/providers for user security.

Figure 5.5: DOT-VCC design and the elimination of dependence on providers for security.

The main idea behind tokenization is trading one untrustworthy entity (merchant) with

trustworthy service providers (e.g., Apple Pay or Google Pay) may be warranted due to them

106

exercising better security practices to protect user's data. Despite that being relatively accurate, it

does not necessitate that such service provider is invulnerable.

In case a service provider is breached, more user data is put at risk due to having more data to be

trusted with a service provider. By not relying on the service providers for security, we can

eliminate a large attack surface that is completely out of the user’s control. Figure 5.6 shows the

steps taken in DOT-VCC design.

Figure 5.6: DOT-VCC design solution and steps.

Table 5.2 shows a comparison between the 4 methods including our solution. The main

assumption in security is that nothing is secure for granted. "trusted" entity (service provider).

Eventually, from an end-user point of view, a service provider as a role player is equal to the

merchant within the token model.

107

Table 5.2 Comparison Table for the three types of services vs. our DOT-VCC Solution

 User-end

tokenization

Merchant-end

tokenization

Virtual

credit cards

Offline

TrustZone VCC

generator

Merchant gets

real account info

No Yes No No

Infrastructure

change

Yes Yes No No

Trust network Issuing bank,

Tokenization

service

provider

Issuing bank,

merchant,

Tokenization service

provider and their

databases

Issuing

bank or

VCC issuer

Issuing bank

End-to-end trust No No Yes Yes

Ecommerce No Yes Yes Yes

In-person Yes No No Yes

Mobile friendly Yes N/A Yes Yes

One-time use Yes Yes Yes Yes

Protection against

user-end attacks

No No No Yes, by design.

Delayed

transaction

processing

Yes Yes Yes Optional

Secret code

assignment

NA NA NA Yes, changeable

QR codes No No No Yes

Dynamic offline No No No Yes

108

5.4.1 Acquiring Issuer Approval

This is the initialization step. The user must have an existing credit card with the issuer. The

issuer can be a bank or an authorized credit card company. For the majority of cases, it is usually

a bank. Anyway, once the user has a credit card, they apply for an authorization to generate

single-use credit cards that are linked to their own existing account. This can be a service sold by

the issuer or provided for free. Either way, the issuer must generate a secret key that is only

shared with the corresponding user. This key is needed to generate single-use credit card

numbers. Once the key is given, the following data is provided to the credit card generator:

1. Original credit card number (16 digits).

2. Original credit card verification number (CVV, CVC, CCV, …, etc.).

3. Original credit card expiry date.

4. Cardholder name: first, middle initial (if any) and last.

5. The issuer-generated secret token.

The given information is stored securely in the TEE and REE is never allowed access to such

data. The generator uses this data to instantly generate a single-time credit card number which is

provided to the issuer during the transaction to verify correctness. After this, the approval step is

processed. It is important to note that the issuer does not share the secret token it uses to generate

the original credit card’s verification code (CCV, CVV…). The secret token shared with the user

is different and used only for the future single-use cards.

5.4.2 Constructing the Credit Card Number

In order to properly generate variable credit card information, we need to include in the

generation a variable that keeps changing. We opted to use the Coordinated Universal Time

(UTC) to get timestamps. However, we need to make sure the bank has the same timestamp at

the time it receives the generated card information in order to verify properly. Therefore, we

109

decided to discretize timestamps. That is, we set duration in minutes which defines the time

periods the timestamp changes. For example, if the amount is 5 minutes, the timestamp updates

every five minutes and the time period 12:00:00-12:04:59 is represented by one timestamp. The

following 5 minutes are defined by a new timestamp and so on. The construction string is shown

in figure 5.7:

Figure 5.7 The concatenation string.

1. Retrieve the original card data and cardholder information from a secure storage.

2. Retrieve the current UTC timestamp.

3. Concatenate the information into an ASCII (8-bit) character string. The concatenation

structure is shown in Figure 5.7.

4. Use the resulting concatenated string from step (3) as input to SHA256 hash function and

produce a 32-byte hash.

5. Copy the first six digits from the original card as the first six digits of the new card. This helps

the credit card network find the issuer when it needs to get authorization for the transaction.

6. Use the hash generated in step (4) to generate digits 7-15 in the new credit card number. One

way to do that is to by using three bytes from the hash for every digit. For example, the

leftmost bytes 1-3 represent digit 7 in the new card number, bytes 4-7 represent digit 8 and so

on. In total, we use 27 bytes (9 digits x 3 bytes per digit). The last 5 bytes of the hash are not

used. Now, the 3 bytes for each digit are XORed to produce 1 byte. This is then divided by 10

and the remainder is the final digit used in the credit card.

110

7. At this point, we have generated digits 1-15 of the new card number. We calculate the Luhn

checksum, according to the algorithm described in section 2.2. With the checksum, the 16-

digit card number is complete.

8. Generate expiry date for the new card. This step can be simple, take the current date and

increment by a predefined number of years (e.g., 5 years).

9. Finally, we calculate the verification code as described in Table 5.1. For the secret token, we

use the key provided by the issuer upon approval of the generation procedure.

Figure 5.8 Credit card number construction.

Figure 5.8 shows a summary of the algorithm that generates the 16-digit card number. The figure

shows the SHA256 hash in hexadecimal format (64 in total, each two hex digits represent one

byte) because the ASCII representation does not have displayable text characters for all values.

The secret token as shown in Figures 5.7 and 5.8 is for demonstration purpose. Actual keys can

be longer and more complex, and infeasible to break by brute force or other methods when they

are generated using proper randomizers.

5.4.3 Data Reconstruction by the Issuer (Bank)

Once the single-use credit card is generated, it is ready to use for payment. Given the data is

inside the TEE, it can be transferred into the merchant’s terminal in different ways. One method

is to use Near Field Communication (NFC) similar to how Google Pay and Apple Pay do.

However, unlike Google or Apple Pay apps, this will not be tokenized, and the information is

111

given directly to the payment terminal where it can be encrypted by the terminal prior to going

into the credit card network. This is how swipe-payment procedures work as the data is

encrypted after inception either using end-to-end (E2EE) or point-to-point (P2PE) encryption.

Either way, after the data is accepted by the terminal, the credit card network will be able to find

the issuer industry (e.g., MasterCard, Visa, …, etc.) which will redirect the request to the

corresponding issuer using the first six digits of the card number. Given we reused the same six

digits as the original card, this should lead to the same issuer. The issuer verifies the received

information as shown in Figure 5.9 and described below:

Figure 5.9 Flowchart of the overall verification process of generated credit card data.

1. Check Luhn checksum. Incorrect checksum means invalid card number which leads to the

rejection of the payment on the spot.

112

2. Query the database for cardholder information, if not found in the database the payment is

instantly rejected.

3. Query the database for existing cardholder credit cards. If there exists a card that matches the

received number, then it is a real card issued directly by the bank and payment is further

processed like normal payments.

4. If the query from step (3) returned nothing, the server checks if the cardholder is approved to

generate their own single-use credit cards. If not, the payment is rejected.

5. Once the cardholder is known to be approved to generate cards, the server sends query to the

database to get the approval using the associated secret token and original card information

(including expiry and verification code). The server then generates the virtual card number

from the data using the same procedure described in section 4.2.

6. The server-generated and the received numbers are compared. If they match the payment is

processed and the generated data is stored and marked as used. If the same data is received

again by the server, it will be rejected because it is marked as being used.

5.4.4 Other Design Considerations

Now that we covered the overall approval procedure, generation and verification of generated

data, there are still some fine issues that can be considered. They are not critical, but we discuss

them for completeness.

Multiple real credit cards for a single cardholder. It is possible for a cardholder to have

multiple credit cards from the same issuer or bank. In such case, the procedure only considers the

ones that have been approved for generation of single-time cards. That is, if the cardholder is

approved for one but not the other, the secret token cannot be used by the user to generate for the

113

unapproved one. This association is made and stored by the issuer. The association is made

between certain secret tokens with certain cards and never with the cardholder’s profile. To

avoid using a single key to generate multiple cards, the user is required to get a separate approval

for each card. Other protocols can be envisioned.

Periodic time-stamp overlap. It is possible for the client to generate a card number near the end

of a periodic timestamp. For example, generating the number at 12:04:59 (assuming 5-minute

periods). In such case the data is more likely to be received by the issuer in the next timestamp

period. The issuer then may use a different timestamp for the verification which leads to

rejection of valid data. To accommodate such possibility, the issuer can check the previous

periodic timestamp if the current live timestamp is within a few seconds from the end of the

previous periodic timestamp. Alternatively, the bank may choose a policy to accept credit cards

from the previous timestamp period. The time window would remain small in the context of data

breach attacks.

Collision between cards. This problem does not exist within DOT-VCC. The PIN is 9 digit long

and can cover up to one billion credit cards per IIN. While the range is wide, if such a design is

utilized on scale then it is possible for the regular generated VCCs to collide with each other or

with real credit cards. This is where the personal identification information come in handy given

they are used in conjunction with the credit card number (whether real or VCC) to identify the

specific card in question. In other words, the personal information will have to be the same with

another random credit card holder for the two cards to be completely indistinguishable. The

personal information contains name and address (which can be masked as a token for privacy

concerns). The two users will have to have the same name and address for a true collision to

happen. There is only one case where that may be true, when the user is requesting the DOT-

114

VCC when they generate their real credit card as a VCC. The odds of that happening are one in a

billion, which is negligible compared to regulars credit cards. As a remedy, the generator

compares the generated number with the real number of the user, and if they do match, the

generation is skipped and another number is generated using the next/previous time periodic

timestamp to avoid the collision. In that sense collision is a nonexistence problem for DOT-

VCC, while it can happen with regular VCC except if the generators consider the remedy above.

However, it would be more complex, because regular VCCs generation is not made in

comparison with a certain true number. Compared to regular credit cards, regular VCC are still

billion times better, while with DOT-VCC this is not possible.

Multiple payments within the same timestamp. It is possible for cardholders to initiate more

than one transaction within a very short time period. This can be shorter than the associated

timestamp period. Such operations can overlap with unauthorized operations. The issuer would

have already marked this card as used and rejects further payments. A good remedy is to use a

counter for the number of generations during the same timestamp and include it in the generation

and verification. Such addition can completely eliminate any possible breach, and at the same

time allow for multiple transactions during the same time stamp. We have not implemented such

option. Another remedy can do by borrowing future timestamp. In this scenario, the generator

and issuer keep track of the used generated cards. The generator marks the card used when

sending the request to the payment terminal. The issuer does that when the payment is processed.

If another generation is needed during this period, the generator uses the next timestamp to

generate a new card number. The issuer receives the new card number and checks against the old

card (if the timestamp is the same as the old). Since it is the second request, the server uses the

115

timestamp for the new number. And approves if there is a match. Again, we have not

implemented this option.

Theft of real credit card information. It is possible for attackers to steal the original credit card

information due to human errors. A potential solution could be to completely disable transactions

using the original credit card upon the approval of the virtual generation procedure. Other

options can be envisioned.

5.5 Implementation

TrustZone developments can be a challenging task quite often due to multiple reasons. For one,

there is a limited set of hardware development boards that completely support the latest OP-TEE

standards for development. Further, the development of OP-TEE is completely done in C in

similar style to embedded system development, except it lacks the library support. Due to

shortage of libraries, certain tasks are not possible right away.

For our problem here, the algorithm we developed is self-contained. While it does rely on certain

cryptographic operations, it has very little other dependencies. Luckily, given the TrustZone is

often used for cryptography, it contains a wide range of algorithms including SHA256 hash

function and DES encryption algorithm. Those two algorithms are the only cryptography

methods used in our generation algorithm. There are few other implementation challenges.

Retrieving the input from the user while operating in the TrustZone is a problem on its own.

Luckily, this was resolved by the TruZ-Droid UI and Keyboard [2] which was verified to allow

user input into the TEE. Another issue is obtaining UTC timestamp within the TEE. OP-TEE

implementation does not currently support getting real-time clock epochs except from the REE

which cannot be trusted for sensitive operations like ours. We solved this issue in Chapter 3 [7]

where we established a secure channel between the TEE and location sensor (GPS). Location

116

sensors receive UTC time directly from satellites embedded in NMEA statements. We can

securely obtain these statements and hence the UTC timestamp. However, location data from

satellites can be lost in large buildings due to poor reception. Therefore, the location data is only

used for calibration of the TEE clock which can operate independently thereafter. While the

location timestamps may not be extremely precise, they are good enough. In addition, we already

covered the overlap case of periodic timestamp in section 4.4. Meanwhile, in a commercial

device the manufacturer can implement an accurate clock and therefore this will not be an issue.

Given the above challenges established solutions we do not need to complicate our proof-of-

concept outlined in this work. Therefore, we tested our system using OP-TEE with Qemu

emulator for ARMv8. We essentially simulate the established solutions to simplify the proof-of-

concept and study the algorithm more accurately.

5.6 Evaluation & Analysis

Evaluation of this system can be broken down into three main areas: validation of the algorithm

and its correctness under different and extreme test cases to also test the robustness of the

provided solution. We also need to conduct performance analysis and measure any possible

overhead introduced by the design. Finally, we need to evaluate the impact of additional services

we embedded in the Trusted Execution Environment (TEE). Therefore, we define a set of test

cases and then show our results and findings.

5.6.1 Validating the algorithm correctness.

The main test cases for the algorithm are the following:

1. Case1: Approved generator with correct data: the cardholder is approved to generate single-

use cards, the provided data is correct for the generator, and the secret token is correct. This

is the only test case that should successfully complete a transaction.

117

2. Case2: Approved generator with incorrect data: the cardholder is approved as in (1), the

secret token is correct, but the part of rest of the data is corrupted due to uncounted for

reasons. For example, hardware fault that changes one character in the name. This case

should fail.

3. Case3: Malicious generator with incorrect data: unapproved malicious actor attempting to

generate new cards with incorrect initial data (card information, name, etc.). The secret token

is incorrect as well. This should fail always.

4. Case4: Malicious generator with correct data: unapproved malicious actor with the correct

data (card info, name, etc.) but without the secret token. We discussed this scenario in section

4.4. That is, the attacker managed to get the cardholder information through external means.

If the original card is restricted from initiating any transactions, the malicious actor will have

to use this information to attempt generating their own virtual credit card numbers. The

missing piece of the puzzle is the secret token. This case should fail always.

 ‘Data’ refers to the initial provided information to the issuer (i.e., name, card number,

verification code, and expiry date). The first test case should be the only one to successfully

complete a transaction. Test cases 2-4 are completely different in nature and cause but would be

treated with rejection equally from the perspective of the issuer trying to validate the generated

data. Namely, the received information is incorrect and does not match what it had generated on

its end. Therefore, all of them are rejected. This is a good expectation.

Table 5.3 shows the results of the generated credit card information for each of the 4 test cases

with the addition of the generated data at the issuer server side. The tests were taken within the

same timestamp. We can observe that the Issue Identification Number (IIN) is the same for test

cases 1, 2, and 4 while it is completely different for 3. This is due to the fact that the original

118

credit card number is unknown in case 3 and hence the attacker must rely on different means of

guessing. In such a case, the generated card will not even reach the proper issuer server given it

points to a different IIN. Therefore, it will be rejected altogether. For test case 2 we changed only

1 bit in the first name of the cardholder and the result is a completely different Unique Personal

Identity (UPI). This small change is reflected in the result due to the nature of one-way hash

functions (namely, SHA256) which are very sensitive to any modification. For test case 4,

everything is known to the attacker except the secret token, and the result is a completely

different UPI as in test case 2 which, again, is due to the SHA256 hash function.

Table 5.3 Generated credit card numbers for the four test cases described above, and the reference generator on the

issuer server side.

Test Case Generated Card Modified Data

Case1 5178052475745861 None - fully accurate data.

Case2 5178053685172813 1 bit changed from 0 to 1 in the first name.

Case3 4991470714805908 Everything other than the name.

Case4 5178054174819278 Secret token is not given (guessed)

Issuer 5178052475745861 None

Due to the extreme sensitivity of SHA256 to any data modification, there is no room for

guesswork. The attacker either has all the information or no use. Although, the attacker in test

case 4 can attempt to guess the secret token by brute force, the task is computationally

impossible. Strong secret tokens can contain 95 different possibilities (if special symbols,

numbers, lower/upper-case letters…etc. are included) for each character. Even a small 16-byte

key would take over 8×1016 years to guess.

5.6.2 Performance

It is important to measure the time it takes the algorithm to generate new cards in order to test the

practicality of the algorithm in real-life use cases. Therefore, we measured different time

119

components as outlined in Table 5.4 As we can see from the table, it takes nearly 145

milliseconds for the REE (Android) to initiate and send a request to the TrustZone generate a

new card. This operation is long period due to the nature client application (CA) and trusted

application (TA) flow. The operation includes opening a session, requesting the data, and getting

an acknowledgement of the generation, all of which require context switching through the Secure

Monitor. Either way, this is still within reasonable delay as it usually takes the cardholder a few

seconds (thousands of milliseconds) to get their card out of their wallets. In practice, it will take

the user much longer time to get the phone and initiate the request than the request procedure

itself. The generation time, once inside the TEE, only takes 2.19 milliseconds which is less than

2% of the total procedure on the mobile phone. The algorithm is lightweight and portable.

Table 5.4 Time measurement analysis

Function Time

(ms)

Description

REE request for

new card

145 Total time taken for the REE to initiate a request to the TEE

to generate a new credit card. This includes creating TEE

session and context switching through the SMC.

Card generation 2.19 Time taken to generate a new card within the TEE (after the

REE invokes the TA).

Server card

generation

0.079 Time taken by the server to generate the card to check

against received data.

Finally, the server-side analysis can be quite complicated. We only focused on the part where the

server decides to generate the card number (after other ordinary test are verified) to compare

with the card number it received from the credit card network. Since it is a server environment,

processing speeds are much higher and hence the generation only took 79 microseconds. In

practice, this “overhead” is negligible given the database queries consume a lot longer. All things

120

considered; the design does not introduce any significant overhead compared to normal credit

card processing methods.

5.6.3 TEE Size

It is always important to study the effects of embedding new functions into the TrustZone and its

TEE. The model of the TEE is to have a small TCB which can be verified and tested for security

purposes. Table 5.5 breaks down the functions added into the TEE and their corresponding size

in LoCs (Lines of Code).

Table 5.5 Description of functions added into the TEE.

Function Added LoCs Description

Time parser 110 Convert time (epochs) into string format.

Card generator 190 Use stored data to generate a new card.

Trusted Application 200 OP-TEE standard procedure to add TAs into the TEE

The total count of LoCs added to the TEE is ~500. However, the code relevant to the

functionality we developed is only ~300. That is, the 200 lines added by the TA itself follow the

OP-TEE standard structure for TAs which are largely redundant in most TAs.

The nature of the introduced code is also safe for use. There is no input/output data flowing

between the REE and TEE, and the procedure is internal within the TEE which does not

introduce any new attack surfaces against the TEE itself.

5.7 Conclusions

5.7.1 Summary

There are numerous countermeasures that attempt to solve the payment fraud problem. In

modern times, everyone holds a smartphone with great processing abilities. Our design proved it

121

is possible to utilize those devices fully securely to generate single-use credit cards for in-person

and online payments whenever necessary.

The offline nature of the algorithm cuts off many attack surfaces and windows which attackers

exploit. Furthermore, the algorithm does not impose any architectural changes to the existing

credit card network. The only modifications required by the algorithm are at the very endpoints

of the network (the cardholder and issuer server) while everything in-between remains the same.

The strong security does not come with any significant overhead and works very efficiently.

Furthermore, it does not introduce risks to the TrustZone environment. The algorithm proved

robust even in the worst-case scenario where both the payment terminal and the REE (Android)

are compromised by attackers. In addition, the algorithm is quite convenient for cardholders. The

procedure is straightforward and fully safe.

The algorithm, as-is, can be utilized by numerous banks and card issuers without any

specification towards any of them. This allows them to utilize the same TEE service without

having to contact smartphone vendors to support their own specific services. This, in turn, saves

a lot of development effort, time and resources for all parties.

We mentioned NFC as a way to transfer the generated data from the TEE to the payment

terminal. In future work, we plan to introduce QR encoder into the TEE which generates a QR

code representing the newly generated credit card information. This extension allows merchants

to scan user payment which is a system widely used in some parts of the world like China.

The framework can still accommodate bank generated card numbers, but the main advantages

will not be optimized. Still the TrustZone handling will make it better than ordinary enquiry by

the users from the bank.

122

The solutions offered in this work can provide near complete protection with seamless activity.

The design is flexible to further improvements for convenience of use.

The overall Threat Model consists of two combined adversary models: Remote attacker against

user-end device from the compromised Operating System, or against merchant databases. The

Dynamic Offline TrustZone VCC Generator targets both merchant and buyer presented QR

payments in addition to general payment services. It provides the following protections.

1. Provides VCC numbers for payment processing as part of regular credit card transaction, and

after scanning merchant or buyer-presented QR codes.

2. The generated VCCs are never available to OS and cannot be used for database attacks.

In comparison existing market protections against merchant databases include User-end

tokenization which work only for in-person transactions, while merchant-end tokenization and

regular virtual credit cards: work only for ecommerce transactions.

The threat model consists of two combined adversary models: Remote attacker against user-end

device from a compromised Operating System, or against merchant databases. The Dynamic

Offline TrustZone VCC Generator targets both merchant and buyer presented QR payments in

addition to general payment services. It offers the following services and protections:

3. Provides VCC numbers for payment processing as part of regular credit card transactions,

and after scanning merchant or buyer-presented QR codes.

4. The generated VCCs are never available to OS and cannot be used for database attacks.

In comparison existing market protections against merchant databases include User-end

tokenization, which work only for in-person transactions, while merchant-end tokenization and

regular virtual credit cards work only for ecommerce transactions.

123

5.7.2 The System Services and Protections

1. Provides security against attacks targeting mobile-based or other credit card transactions,

while assuming compromised environments both on the mobile device and merchant

databases. The design fully secures user payment information and eliminates the risk of

leakage, either through attacks against the operating system or the merchant databases.

2. Provides security and data integrity regarding transactions using QR payments. It can be used

to initiate VCC payments after scanning merchant or buyer presented QR code transactions.

3. This system uniquely combines the benefits of VCCs and user-end tokenization systems and

other parameters. It works with in-person transactions (unlike VCCs), does not require

changes to any infrastructure (unlike tokenization), and it is compatible with merchant-end

tokenization.

4. The construction method of the credit card number is based on secrets, original credit card

data, and UTC time. The method uniquely combines many existing technologies that yield

the unique levels of security and services. Strong hash encryption is used and any change in

the card information blocks its use in transactions. The system uses UTC as the dynamic

component of the VCC variability. This allows transactions within the same time window if

assigned for single or multiple transactions.

5. The generated VCCs are irreversible and hence inaccessible to the Android or other OS and

cannot be utilized by database attackers. It is not possible to get real information from them.

The issuing bank and the TrustZone are the only parties who can reconstruct the number. The

unique offline VCC generator extends their use to in-person transactions unlike traditional

online-only role. The dynamic and offline nature allows the generator to work completely

independently from online communication to any remote servers.

124

6. The secret between the bank and TrustZone user is initially made directly between the bank

and the user. From there on the secret and other information can be updated without the need

of manual interference, while providing full security. Attempts of denial of service do not

yield any benefits to attacks, and they can be solved within a short practical time.

7. The method is fully implementable as a general service by banks and TrustZone vendors and

can work for various mobile or other devices operating systems.

8. The robustness and ease of implementation answer the important questions in the most direct

way, without reducing versatility, i.e., tokenization uses random numbers to generate tokens,

and the design does not add complexity beyond the service providers trust-based network.

9. The use of VCCs eliminates any need for architectural changes to the credit card network.

They provide end-to-end security that is completely transparent to the user and does not

require the trust of any entity between the cardholder and the issuing bank.

10. The system is fast, lightweight, and does not introduce overhead. It can handle complex

interacting transactions acting across credit card and QR services with seamless ease.

11. The small size of the generator keeps TrustZone TCB small and does not compromise the

security of the TrustZone.

12. The current implementation serves Android but can extend easily to other platforms.

125

Chapter 6

A Framework for TrustZone Encoding/Decoding for QR

Buyer-Presented and VCC Offline Generated

Transactions

126

Chapter 6: Secure End-to-End Mobile Financial Transactions Framework

(SEEM-FTF)

Abstract. In this chapter we present a design of a framework for TrustZone encoding/decoding

for QR buyer-presented and DOT-VCC offline generated transactions. The framework securely

works offline and can operate as a standalone TrustProvider, or regular TrustZone connected to

Android or similar systems. Implementing either mode (standalone/TrustZone) can provide full

protection. The framework also provides other functions like encoding/decoding, that can enable

for peer to peer closed circuit communication In Chapters 3 and 4 we introduced solutions for

merchant-presented QR payments using the TrustZone by securing the data path for transactions

with the server, and providing the Split-QR decoder for processing the data in the TEE. TruZ-

Droid addressed buyer-presented QR codes, where the code is generated once and stored in the

TEE. In Chapter 5, we have developed DOT-VCC which is a design that eliminates dependence

on service providers for users’ security by generating virtual credit card numbers offline to

protect users credit card information from data breaches and attacks against mobile devices. In

this work we connect all components together to introduce our Secure End-to-End Mobile

Financial Transactions Framework (SEEM-FTF), which offers security for merchant-presented

and buyer-presented QR transactions and extends towards in-person transactions as well as

online transactions. We also discuss a design for standalone device (TrustProvider) compatible

with the TrustZone systems and dedicated towards providing secure transactions and can replace

carrying physical credit cards. The SEEM-FTF implements QR encoding in the TEE, which is

combined with the DOT-VCC design for secure and dynamic buyer-presented QR transactions

that do not rely on providers for security while offering low overhead, transparent user

experience, compatibility with existing infrastructure, and are easy to integrate for system

developers. The components work well to support end-to-end transactions with the components

127

presented in Chapters 3 and 4 where the merchant can just be another user of the SEEM-FTF

design.

6.1 Introduction

This chapter presents the fourth component of a system development that provides high security

and data integrity for financial transactions using the ARM TrustZone for credit card

presentation using QR encoding. In Chapter 3 we protected the integrity of merchant-presented

QR transactions using the TrustZone by ensuring the data path from the moment a request is

made all the way to the completion of the transaction was attested by the TrustZone. Chapter 4

offered a unique method for QR decoding in the TrustZone using a small codebase by splitting

the decoding between the TEE and REE. Decoding was tested in different domains and the split-

decoder proved to offer better security, performance, and reliability compared to the alternatives.

In Chapter 5 we have developed the DOT-VCC design that eliminates dependence on service

providers for users’ security by generating virtual credit card numbers offline to protect users

credit card information from data breaches and attacks against mobile devices. In this chapter we

introduce a method for presenting payment information to sellers using QR encoding from

within the TrustZone. We designed and tested a system that extends the TrustZone functionality

to generate QR codes for buyer transactions by installing an encoder within the TrustZone and

ensuring sensitive information remains protected. It was done with minimum addition of Lines of

Code (LoCs). There are cases where Near-Field Communication (NFC) can be used to transfer

payment data from the TEE to the payment terminal to ensure security [83]. We use QR code

presentation for the sellers to scan and complete the transaction. Combined with DOT-VCC, this

method ensures the users’ credit card information is never put at risk while simultaneously

offering a convenient payment system. Another added benefit is the introduction of middleman-

128

free peer-to-peer payment method that can be natively supported by mobile devices while

offering protection against data breaches.

The key motivation for the system development is the constant threat against data integrity and

security in credit card transactions that lead to billions in losses yearly [1], [4], [11], [12]. Such

threats are devastating because they target merchant and service-provider databases which

when breached leak countless numbers of users’ credit cards. Furthermore, attackers also target

mobile devices to steal such data directly from users using different malware that propagates and

compromises operating systems like Android and iOS and causes data leaks and can grant

attackers full root access over the operating system. Such access allows attackers to perform

memory manipulation and management to steal any outgoing or incoming data.

Building a system that can address these problems and provide a higher security with a

framework that integrates many functions is a needed development. The system we are

proposing can be implemented by individuals with no need of manufactures restrictions or

limitations. In that sense this work covers the encoding component and the preliminary design

configuration of an integrated system that can provide higher security levels. In section 6.2 we

cover a background and related work. It also covers related work and conclusions towards

building an integrated system of the services. Section 6.3 presents the problem and objectives.

Section 6.4 outlines our new design solution that generates buyer present QR code using direct or

generated virtual credit cards. In section 6.5 we present the implementation of the selected QR

encoder that satisfies the TrustZone settings mainly using C language and has minimum size.

The implementation connects all functionalities to produce an integrated system that serves a

wide range of applications. In addition, it covers testing and evaluation of the implemented

129

solutions using an alternative of dedicated standalone trust provider. Finally, section 6.6 outlines

conclusions and an outline of an integrated system core functionalities.

6.2 Background and Related Work

Introducing more features to computers or smart devices brings more vulnerabilities given the

amount of code the operating systems use. The modern Linux kernel consists of over 26 million

LoCs, while Android OS consists of 12-15 million. Naturally, it is not easy to analyze such large

bases. Vulnerabilities are discovered at a rate faster than what security updates can keep up with.

Furthermore, the rapid introduction of new features introduces more vulnerabilities causing more

risks in such massive systems. Therefore, mobile systems utilize another security measure for

sensitive operations, namely Trusted Execution Environment (TEE). Android uses ARM’s

TrustZone while iOS uses Apple’s Enclave. For Android devices, the secure OS is varied by

vendor and many versions exist including Google’s Trusty TEE [15] and the Open-source

Portable TEE (OP-TEE) [15] [78], [79].

As discussed in Chapter 2, the TEEs offer better security countermeasures that can eliminate

risks instead of mitigating them in many scenarios. TEEs are the industry standard for processing

fingerprint authentication as the sensor is hardwired to the secure world which eliminates the

risks of a compromised Rich Environment Execution (REE) leaking the users’ data. Other

applications include cryptography, wallets, payments…etc. These approaches divide the

execution environments in the mobile device into REE and TEE. The REE is massive when

counting the code base, while the TEE is reserved for sensitive operations and has a small

Trusted Computing Base (TCB). It is critical that any TEE service design be generic and does

not include any application-specific code which allows it to be utilized by multiple developers

without having to request special additions by the vendors.

130

6.2.1 QR Payment Methods

QR payment presentation comes in two types, merchant-presented and buyer-presented QR

payments. We thoroughly addressed merchant-presented QR payments in Chapters 3 and 4 and

offered data integrity assurances with the designs. Figure 6.1 shows buyer-presented QR

payments type where the buyer presents their credit card information and the merchant scans that

information and sends it over the credit card network for verification and approval for the

transaction to complete.

Figure 6.1 Buyer-presented QR payments overview.

Both approaches have their own sets of security risks. If the user’s mobile device is

compromised, the information they extract from the merchant’s QR code can be altered in

several places leading to misdirection of the payment and money theft. In [7], this issue was

addressed by offering a new data path through the TrustZone that protects the integrity of the

processed data with no emphasis on secrecy given the merchant’s QR code is not a secret.

Furthermore, the decoding process of the scanned QR was addressed in Chapter 4, where a split

design was utilized to minimize the code added to the TrustZone. On the other hand, buyer-

presented QR codes also have their own risks especially with compromised merchants, where

attackers can steal the credit card information from the merchant after the payment is conducted.

131

Furthermore, the mobile device cannot be trusted to keep the users’ credit card information if it

is compromised. TruZ-Droid and TruZ-UI addressed the display and presentation portion of this

problem by storing the information of the credit card in the TEE, and using secure display mode

to present it to the merchant [2], [31]. While useful, it does not address the issues with the

merchants’ databases if they are compromised, which can still leak the users’ data. We addressed

protection of the data in Chapter 5, where virtual credit cards were utilized in an offline setting to

ensure the real credit card information does not reside in any merchant databases. The delivery of

the virtual credit card information was not addressed by any of the aforementioned works.

6.2.2 Description of Quick Response (QR) Codes [80] [23] [24]

A QR code is a two-dimensional barcode represented in a bit (or module) matrix with several

levels of error correction that allow for versatile information sharing between different

endpoints. There are several versions of QR codes ranging from version 1 to 40 with the main

differences being in the amount of data each version can carry. There are several other

differences in the structure of the modules and the matrix as well [23], [24].

Furthermore, QR codes can easily be customized to include logos in the center of the matrix. The

applied error-correction mode will change the amount of data carried for the specific version of

the QR code used. More recovery from errors means less data to be carried. There are several

factors involved in selection of the version and the error-correction mode which we discuss in

sections 6.3 and 6.4. Figure 6.2 shows the structure of QR codes with consideration for various

versions and their differences. The mandatory blank space and the finder pattern are what we use

to identify that there is a QR code in the image. The alignment pattern allows decoders to adjust

the image in cases of skewing in the symbol which allows for conversion into virtual grid

representing all the modules and allowing for proper reading of the information contained within.

132

Figure 6.2 QR code structure

The timing pattern is used to determine the central coordinate of which cell in the QR code. The

format data (a.k.a. format pattern) contains information about the error correction mode and data

mask pattern information. The version data is stored above the bottom-left finder pattern cell and

contains information about the version used (if above version 7). Finally, the data and error

correction modules represent the rest of the QR code.

6.2.3 Frameworks Related Work

Since we are building our framework, we do not expect other designs to offer or relate to the

same norms and particulates we address. Two references with some common relations will be

discussed. The rest of the review will revisit the three papers produced in this work, namely

Chapters 3-5 in order to utilize their outcomes as part of the framework building.

A. Others Related Work

Xianyi Zheng, et. al. [84] propose a mobile payment framework TrustPAY on TrustZone

security enhanced platform, which can ensure payment transactions security and realize privacy

friendly payment. They have implemented a prototype system on a simulation environment by

using ARM FastModel and Open Virtualization software stack for ARM TrustZone and

133

presented a development board by using ARM CoreTile Express A9x4. They claim their

experiment evaluation and security analysis showed that the scheme can effectively meet the

security requirements of a practical mobile-payment with acceptable performance. Furthermore,

they claim their system is flexible to support secure applications requiring privacy protection.

They address the security challenges when users disclose sensitive data and privacy information

over REE systems and networks. Thus, compromised mobile REE is assumed. Their

implementation uses a large portion of the TCB compared to our tendency to minimize the

trusted code.

Even though they address privacy they do not address peer-to-peer communication or suggest

building SoC devices that can handle full privacy. They do not use rendering UI as strongly

established by TruZ-Droid. In addition, the framework does not change the methodology of

payment, but utilizes the existing system without protection on the fundamental level like

removing service providers or assuming merchant data bases issues or limitations.

In some sense the TrustZone service is mainly to protect the user privacy from the open

environment to REE. Our framework operates on deeper security levels and provides wider

protection as we shall see in the rest of the chapter.

Martin Pirker, Daniel Slamanig [85] claim to demonstrate how privacy friendly payment can

be realized using current payment mechanisms in combination with TrustZone enhancements.

They discuss the public transport ticket domain as an example. Then they propose a platform

framework that can be used for arbitrary applications requiring a privacy preserving online

remote prepaid payment system suitable for various payments. They assume the operation

through service providers. They suggest this can open the door for issues regarding user’s

privacy since they disclose sensitive information to the service providers. Their proposal is to

134

protect users’ privacy from public domain breaches. The issue with their model is they still rely

on the existing payment system and assume a trust of the service providers. They only add

privacy to the user through a system that is not protected from the REE. The TrustZone is just to

keep privacy, but there is no protection of privacy from service providers. They do not discuss

implementation, and the proposed work is mainly theoretical. In some respect utilizing the

TrustZone does not really provide added security, except for storage of sensitive information.

B. This Thesis Related Components

In the following we summarize the outcomes of Chapters 3, 4, and 5 and the associated articles

to focus on the framework design and utilization.

Chapter 3 [7] extended TrustZone functionality to offer robust security measures for specific

I/O peripherals, namely, camera and location, to any application on demand. The work mainly

ensures integrity of data retrieved by the peripherals. Figure 6.3 shows the invocation mechanism

offered in by this design.

Applications that can utilize this functionality include merchant-presented QR payment systems,

location attestation for payments and other applications. The work is designed to offer seamless

integration for application developers, and transparency to end users. We demonstrated

functionality on custom and modified existing applications. The added overhead is within

expected margins. The work provides a feasible design for industrial implementations, where the

vendors’ installed services do not need coordination with potential application developers, and

that offers flexibility for both vendors and developers.

A key aspect to this design is that the data secrecy is not of concern given the REE will have

access to the peripherals before and after the TEE is done retrieving the data from them. This is

by design given the REE needs to have access to peripherals for normal operations, e.g.,

135

capturing photos or sharing location. The design ensures the integrity of the data is attested by

the TEE for security critical operations where the data from the peripheral must not be altered by

the REE in any shape or form.

Figure 6.3 Invocation of secure peripheral services between the REE and TEE [7]

Chapter 4 [8] designed a new hybrid method by splitting the QR decoder between the normal

and trusted worlds. The work compared three different methods. 1) full operation in REE, 2)

Split-QR decoding with dynamic and static QR, and 3) server decoding under dynamic and static

QR payments. The comparison was meant to highlight the different security features and

performance of each approach. The five settings showed the feasibility and advantages of using

the Split-QR. Advantages compared to server-based decoders include significant performance

improvement and increased convenience for developers, while adding manageable code to the

TrustZone.

The success of this application encourages the design of a generalized framework to use split

operations, where the TrustZone performs the core critical operations, or delegates them to a

dedicated server outside the system if the operations are too extensive. In addition, it manages

the meta data that runs noncritical operations on REE.

136

Figure 6.4 Split QR decoder design.

We envision a wider scope of services with large and complex tasks, where the Android system

cannot handle them generally. Figure 6.4 shows the design for the split QR decoder where the

meta data is extracted by all types of operations can be executed while keeping integrity, and

sometimes secrecy too.

Applications can include machine learning classification, biometric data classification, the REE

passed onto the TEE uses that information to decode the original picture that was securely

captured by the TEE. This relieves a good part of processing from the TEE without introducing

risks of the REE manipulating the data given the meta-data is verified with the original photo.

After the information is decoded, Split-SSL [2], [7], [31] is used to communicate the data over

the network, which ensures integrity across the entire path.

Chapter 5 [9] designed a novel virtual credit card generation algorithm, which works offline and

under the TrustZone environment. Virtual credit cards can protect users from credit card

information theft, which can happen in both physical and digital means. It is common to hear

about hacked merchant databases which led to massive leak of credit card information. This risk

can be eliminated by the design we set in this work. Combining this design with mobile phones

yields high protection for users’ data. Meanwhile, it is important that the REE never gets this

information since it can be under a remote attacker’s control. Hence this is why we designed the

137

algorithm to work under the TrustZone environment securely. Figure 6.5 shows the design for

the offline generation of VCCs in the TEE. We have proven the system’s correctness by sending

the data to a simulated network to ensure the proper verification of the generated data. In

addition, the level of protection can reach near complete security where any fraudulent act can be

foiled. Some options can ensure no one can breach the operations beyond intentional bank or

user actions in the TrustZone.

Figure 6.5 Offline virtual credit card generation using TEE.

6.2.4 Problem and Objectives

The overall strategy is to provide comprehensive protection with minimal additions to the TEE.

We previously addressed three problems; securing IO device, split QR decoding to control data

integrity within the TrustZone, and we introduced the concept of offline virtual card generation

which eliminates the necessity to share credit card information with merchants and keeps it

securely stored in the TEE for generation. Here we extend the problem further to enable the

secure transfer of the generated virtual credit card information to merchants, while maintaining

the secrecy of the original card information.

138

6.2.5 Threat Model Assumptions

1. Merchant databases are compromised: sellers who scan the user data can be breached and

attackers can access users’ credit card data from their databases.

2. Android OS on the mobile phone is compromised: an attacker has full root access over the

operating system and can perform memory manipulation and management to steal any data

that goes in and out of the environment.

3. Service providers are compromised: processing credit cards can be offset to third-party service

providers introducing further security risks on users’ credit card information.

6.2.6 Encoding Functions in The Secure Transfer of Data

Under a compromised OS it is critical not to expose the generated VCC to the REE given a

remote attacker can have automated scripts that instantly make use of such data before it is

processed by the merchant. Therefore, it is important to directly transfer the data from the TEE to

the merchant in a seamless manner that is secure and convenient to the user. Encoding the VCC

into a QR code can allow us to display it directly within the TEE by seizing control over the

screen buffers and locking the REE out.

During this time, the merchant can scan the data and process it to get the transaction approved.

Upon approval, the generated VCC is invalidated and can no longer be used for further

transactions. Therefore, any theft of the data that may happen during breaches will not be

harmful to the user. Benefits of using an encoder include the following:

1. Immediate presentation of payment information. Encoders are quick and the operation can be

done near instantaneously which offers a reliable method of transfer.

2. The encoder uses VCC data, which already completely masks the original credit card data;

therefore, it does not expose any important information and acts just as a mediator.

139

3. The QR code can be treated as an image that is directly displayed using the output buffers in

the display driver using the raw image data. This simplifies the process of displaying the data

to the merchant.

4. Implementing the encoder within the TEE allows for secure and direct access to the generated

VCCs, which allows for more efficient processing that does not require multiple TrustZone

SMC expensive calls.

5. An encoder can be designed to be self-contained without reliance on external code libraries to

operate given it’s primarily tasked with generating a bit matrix, which means the addition of it

to the TEE will not introduce risks against the TEE itself.

6.3 Solution Design

In this section we discuss two concerns for evaluation, the environment, and the encoder build

and communication with TEE and REE. The evaluation covers all components outlined in Table

6.1, and Figure 6.6 show the interactions between the components. Table 6.2 shows the core

operation descriptions.

6.3.1 Buyer-Presented QR Codes

In buyer presented QR code the seller scans the payment information from the buyer’s device.

QR codes come in a variety of versions ranging from very simple version 1 to the more data

encompassing version 40. The core encoding method remains the same while the details differ

[81] In essence, the higher the version the more data can be packed into the QR and the more

tolerant to errors it will be. There are, other types of QR codes specialized for applications by

developers as seen in WhatsApp [82] for example. Choosing a QR version is application

specific, therefore any support for QR encoding or decoding must encompass all versions of QR

codes and be accompanied by criteria necessary for selection based on the application. The main

140

criteria include the size of data to transfer and the number of tolerable errors during the transfer.

Increased tolerance to errors means less capacity for data within the specific version. There are

four levels of error correction: low (L), medium (M), quartile (Q) and high (H) which allow for

7%, 15%, 25% and 30% of data restoration, respectively.

Using phones to display QR codes is generally desirable given screens have high quality and

even cracks and broken displays can be mitigated by the error correction of the QR code itself.

Generally speaking, credit card payments do not exceed 1kilobyte of data in total. This makes

version 25 a suitable option given its capacity of holding 1269 characters of data leaving enough

room even for H-level error correction.

The payment information stored within the TrustZone needs to remain there. The VCC generator

allows for a one-way encryption of that data into a one-time use card that automatically

deactivates upon usage. That significantly reduces risks carried when buyers present their

information to merchants given the VCC data can be leaked after the fact causing no harm to the

original data stored in the TrustZone.

The threat model changes when considering an active attack happening on the phone’s REE

given that such access can be automated to steal the VCC data at the moment of creation and use

it before processing by the merchant, which causes a decline for the authentic payment, and more

importantly theft of buyer’s money. Strictly speaking the REE should never access the VCC

information. It is essential to generate it and send in directly from the TrustZone. Two methods

of protection against this type of compromise can be considered: 1) elimination of exposure of

the VCC data to the REE, and 2) introducing transaction specific info in the presented data.

The first approach entails a full containment of the VCC generation as well as presentation

within the TEE. The REE is completely blind after requesting transaction processing from the

141

TEE as the original data is stored in the TEE, and the generated VCC is created in the TEE, and

finally, the QR code is encoded in the TEE and displayed on the phone’s screen with secure

mode enabled, eliminating the REE’s access even to the screen’s frame buffer. The TrustZone

design allows for acquisition of shared resources and the ability to lock the REE out of using

such resources. ARM uses ports that write to the screen buffer and those can be securely mapped

into the TEE, then the QR is presented, and the buffers are flushed before relinquishing control

over them back to the REE. The second approach for the bank to check further validations of the

merchant. However, this can complicate the bank protocols and it is not recommended to follow.

6.3.2 Design and Evaluation Plan of the SEEM Framework Integrated System

The design includes integration with the previous components as presented in references [3], [7],

[8], [9].

Figure 6.6 SEEM framework integrated system components and their interactions: 1- camera, 2- Split decoder, 3-

encoder, 4- DOT VCC

142

The integrated system is composed of three core transaction analyzers and generators (camera

and Split-SSL are treated as one core components. Figure 6.6 shows the integrated system and

components with the interaction paths. Table 6.1 shows the functions and their size in the

TrustZone. These functions comprise the integrated system proposed. Table 6.2 shows the

operations where the first is the sender and the second is the receiver. The table shows the

feasibility, type of protection, and relevant players and medium. Evaluation is based on

executing the operations.

Table 6.1 Core functions and their LoCs in the TrustZone or TrustProvider. Camera and split are treated as one

system.

Function Type TrustZone LOCs

Camera receive 500

Split QR Decoding receive 3700

Encoder send 950

VCC send 300

Table 6.2 The core operations where the first is the sender and the second is the receiver.

 * 1 = offers integrity assurances only. 2 = offers integrity and secrecy assurances.

** 1 = TrustZone + TrustProvider. 2 = TrustZone + TrustProvider + Bank

 Sender- Receiver Protection* Trust Medium**

1 Encoder → Camera 1 1

2 Encoder → Camera + Split 2 1

3 VCC-Encode → Camera 2 2

4 VCC Encode →Split 2 2

5 VCC →Bank 2 2

6.4 Implementation and Evaluation

6.4.1 Implementation

A good aspect in an implementation that involves the TrustZone is the size and facing possible

vulnerabilities in what should be a secure enclave of data. It is important to minimize the

143

installed code in such enclaves to ensure easy review and debugging. This includes reduction in

the code’s size (LoCs added), or eliminating unnecessary dependencies on other external

libraries, and minimizing the code’s interactions with the REE in order to ease the analysis. We

have applied all these aspects in our implementation.

To minimize the amount of code going into the TEE we examined the exact functions and

omitted unnecessary code. This elimination was tricky considering that offering more utilities

provides better services. often means wider support of functions that are useful. However, it is

not the priority in the TEE to have environments, but rather to have only the necessary ones for a

specific goal, to secure creation and presentation of payment information to merchants. The

necessary functions for encoding the payment information include support for numeric and

alphanumeric encoding; binary encoding; and support for segmented information.

The elimination of any unnecessary external dependencies. The OP-TEE defines C99 as the

standard C library supported. This means additions to C since they are not supported. We

avoided heavy referral to external libraries that would necessitate including them into the TEE,

which would grow out of proportion and renders the TrustZone in conflict and introduce many

bugs for no critical reasons for our encoder to function. The code was reduced by minimizing the

interaction between the Trusted Application (TA) and the TA client on the REE side. The

information communicated by the REE include:

1) A reference to the credit card to be used: this reference does not contain information about the

credit card itself, it is a public reference that the TEE can expose to the REE while the credit card

information remains secure in the TEE. This is similar to how fingerprint authentication works

where each fingerprint gets its own reference, and the REE stores the references of accepted

fingerprints while the TEE actually verifies the inputted fingerprint matches the securely stored

144

ones and then returns a reference to the one found. This allows the user of the REE to use a set of

credit cards instead of just one.

2) The operation mode: this mode allows the user to select if they wish to utilize a QR

transportation method or other methods if necessary. For instance, NFC is another method of

transportation desired by different users. The input from the REE is just a flag indicating which

mode to be used and is translated by the TEE’s API to the proper function.

The REE receives no data from the TEE once the TA call is initiated. The phone switches to the

secure mode and the REE is cutoff completely which is necessary to protect the privacy as well

as the secrecy of the transaction.

Initially we installed our QR encoder on a normal development machine (x86) to verify the

functionality of the encoder and perform the analysis necessary to migrate that implementation

for ARM TrustZone. The only standard C dependencies we used were (assert, limits, stdlib,

string, stdbool and stdint). All of which are provided by the C99 standard and come as part of the

OP-TEE API. The total Lines of Code added to the TEE for the encoder itself were 950 LoCs.

We did not implement a new TA for the encoder given that the functionality is integrated with

the VCC generator TA and compliments it. The grand total LoCs supporting both the VCC

generator and the QR encoder is ~1250LoCs which is reasonably small.

6.4.2 Performance of Integrated Services

We have conducted the tests as outlined in Table 6.3. The most detailed and highly needed part

is the VCC encoding. In order to assess the performance impact of the system compared to non-

TrustZone enabled payment systems, we need to define the time parameters. Table 3 describes

and the different time measurements necessary to assess the impact. For certain transactions, the

total time needed for generation, sending, and decoding using our system components is given in

145

Table 6.4. Using this configuration one can envision peer to peer designs where a group of users

can use the four functions in their communications. The non-split camera decoding method using

nx time to transfer data to external end server for decoding, the transfer time is pretty significant

given the data can be quite large. When the QR code is decoded using our system split-decoder

design, the transfer to the server only contains small amount of data that does not depend on the

size of the captured image. This saves significant amount of time [8]. Table 6.4 shows the

detailed functions and performance of the various components.

Table 6.3 Time measurement variables and their descriptions

Variable Description Typical time values (ms)

C Time to capture an image from camera 10-20

E Encoding time 50-350 (depending on QR version used)

D Decoding a QR code 20-250 (depends on image size)

T Split-QR Decoder TrustZone overhead 15-50 (depends on image size)

S Split-SSL overhead 350-400

V VCC generation time 2-3

VE VCC generation and encoding = V + E 50-350 (depends on QR version)

O TrustZone SMC overhead 200 (depends on QR version)

K TruZ-Droid Keyboard TA overhead 150-200

U TruZ-Droid UI overhead 50-80

Z External composition time -

x or nx Network transmission/packet or

Communication/set of n packets

Depends on network

A For simple reading: A = C + D + U 80-350

When the split-decoder and the VCC encoder are combined, we can introduce a peer-to-peer

system where one device can generate and present a QR code from the TrustZone in VE + O

time, while another device uses the split-decoder method to capture an image of the presented

QR and process the payment through it for a total time of A + T + x + S.

146

Note that the VCC-encoder does not rely on any network traffic to generate and present the

payment information, which significantly improves both security and performance compared to

systems that need external approval for the VCC generation even when the TrustZone SMC

overhead is factored into the equation.

Table 6.4 The integrated system core operations, where Dev1 is the sender and Dev2 is the receiver, using

TrustZone or standalone TrustProvider for protection.

Dev1 → Dev2 Compose Read Decoding Server

Comm.

Attestation Total

Ext/Enc→Cam Z/E C D nx + S U Dev1 = Z/E

Dev2 = A + nx + S

Ext/Enc→Cam

Split

Z/E C D + T x + S U Dev1 = Z/E

Dev2 = A + T + x + S

VCC+Enc →

Cam

VE C D nx + S U Dev1: VE + O

Dev2: A + nx + S

VCC+Enc →

Cam-Split

VE C D + T x + S U Dev1: VE + O

Dev2: A + T + x + S

VCC → Bank V C D2 - U Dev1: V + O

Dev2: C + D2 + U

6.5 Conclusions and Ongoing Work

This work concludes the cycle of development to build an integrated system for transactions of

various types with high levels of integrity and security. The cycle covers testing of feasibility and

performance. One can demonstrate the overall functionalities of the components: the new

communication lines for peripherals (camera and location), split QR for data integrity decoding

as an alternative to server-based expensive decoding. The VCC plan includes integration with

encoding and decoding options that ensure data integrity and security, in addition to extending

the applications with minimum android changes and flexible developer strategies. All of the

147

components are driven by the TEE operating securely on the TrustZone. In this section we

present a summary of all developed components as part of the integrated system. Figure 6.6

shows the layout of the modules including the encoder serving other operations. We also discuss

the concept of the TrustProvider, a separate design that integrates all of the components in one

device that isn’t dependent on Android mobile devices and their infrastructure.

6.5.1 Conclusions and Generalizations

The encoder fits within a set of components designed for a comprehensive framework of

protection for payments using mobile devices. The previously developed components paved the

way for the encoder to complete the pieces and introduce new benefits of its own. For example,

it offers a reliable, secure, and seamless method of transfer of generated data to merchants that

organically goes with users’ expectations from such a service. It also allows for peer-to-peer

transactions between users where one can use the encoder to display their temporary payment

information and the other user can scan that using [7] and process the information using [8] to

complete the transaction. Table 6.5 outlines our design highlights compared to other frameworks.

All is done while secrecy of both users remains protected from their respective REEs, and from

each other without using third-party service providers, or middlemen, to process transactions.

This end-to-end security can significantly reduce credit card theft and save users money and

effort combating theft.

148

Table 6.5 Design highlights and comparison summary

Design Highlights Comparison to our design

SEEM-FTF Servicing a new payment system using the

current infrastructure providing data security

and integrity and removal of middle man

influences including service providers plus

peer to peer transactions and dynamic offline

VCC including decoding and encoding and

peripherals and utilization on TrustZone based

devices or on a standalone TrustProvider.

N/A

TrustPAY

Framework

[84]

Addresses vulnerabilities present on the

mobile devices and offers protection against

attacks that aim to steal data from the phone or

redirect financial transactions to malicious

destinations.

Does not address compromised

merchant/provider databases. Assumes

trust in existing infrastructure.

Introduces large code into the TCB.

Does not offer peer-to-peer transaction

security. Does not support a dedicated

TrustProvider implementation.

Martin

Pirker,

Daniel

Slamanig

[85]

Addresses prepaid payment systems where

user privacy is compromised due to service

providers. Uses public transport ticket domain

to reduce amount of data shared with service

providers

Does not offer protection against

provider-related breaches. It is

primarily concerned with privacy, not

integrity nor secrecy of sensitive

financial information. Does not

address compromised REEs and

attacks against mobile devices

themselves.

6.5.2 System Integration & Technology Innovation

Using the integrated system design, it allows the development of a standalone TrustProvider that

offers integrity and security, while being capable of communicating with TrustZone-based

solutions. The integration is built on the design of DOT-VCC system [9] The integrated payment

system includes QR encoding and decoding as described in Table 6.2 and Figure 6.6. The system

does not require providing critical information to go through the merchant database or service

149

providers which can be compromised. In addition, the design provides utility to secure buyer-

presented QR codes for static or dynamic encoding. Table 6.6 shows a description of using the

TrustZone through android devices, and direct standalone TrustProvider.

Table 6.6 TrustZone protection through two methods

Method Description Pros and Cons

TrustZone in

mobile

devices

System is installed on the

mobile TrustZone. Needs

installation permission from

manufactures.

Needs personal device compatibility and

readiness of mobile manufactures to install

services on the device. Hard to ensure REE

safe environment.

Standalone

TrustProvider

System is independent and

can execute all transactions

using the TrustZone TEE.

Secure user transactions with no middleman.

No restriction from TrustZone manufacturers.

TEE operation ensures security.

Implementing either mode, Standalone TrustProvider or TrustZone, can offer better protection.

We have demonstrated the system’s accuracy and security by sending data to a network to ensure

proper verification of data generation. In the following we outline the ongoing work to build the

integrated system and the innovations involved.

A. Our Solution: DOT-VCC Generation System vs Tokenization [69], [70], [71].

Initiation: User requests generation authorization from the bank once, for approval with a secret

token. All user info is fed to the TrustZone/TrustProvider generator at the user end.

Transactions: Generator creates offline VCCs based on secrets, UTC timestamps and other

dynamic parameters, and presents it to the merchant, who sends for the bank approval.

B. World Infrastructure Countermeasures Limitations.

1. Threat Model: credit card info leaks through attacks against merchants and 3rd-party service

providers. Vulnerabilities: Merchant databases, compromised mobile devices, and VCC and

verification providers.

150

2. For card and merchant Tokenization: User or merchant initiates the token. Provider translates

token-to-from-CC info. Vulnerabilities: Merchant database or tokenization provider security

is not assured for online services, in addition to their own compromises. Users’ devices are

compromised.

3. For VCC w/Tokenization VCC is generated by a provider. Vulnerabilities: Works online

only. Users’ devices are compromised. Service provider is not eliminated.

C. Innovations

1. Offline VCC generation is done without external VCC providers. VCC is validated only for a

time window. Works for online and in-person purchases. Middleman or user device

compromises are eliminated.

2. Reduces dependence on 3rd-party infrastructure by offering end-to-end one-way encryption

between bank and user. The method mitigates risks present in methods like tokenization,

regular credit cards, and others.

3. The VCC generation is based on secrets, timestamps, and other dynamic parameters. The

method utilizes 1-way encryption to generate data that is invalidated after use which renders

online databases breaches near harmless (with the exception being the bank’s database).

4. The standalone TrustProvider: realizing the complexity of dependence on manufactures we

added a TrustProvider compatible with the TrustZone.

5. Integrated trust service: Combining transaction formats like QR or NFC with the DOT-VCC

integrates system uses including peer-to-peer transactions.

D. TrustProvider-SoC

1. The SoC would cut attack surfaces on the communication line and cyber security.

151

2. TrustProvider would be compatible with the TrustZone/TEE.

3. Setting design parameters and building the prototype, The SoC controls functionalities

dedicated to secure transactions.

4. Applicability and compatibility. The design should be flexible to improvements.

5. Open source at the end for independent developers to enrich evolution.

6. Software development and architecture need special settings.

E. Testing and Software Development

1. Test relevant attack surfaces and foil the threat model assumptions.

2. Computer development: building a system that operates securely with minim size and

threat surfaces.

3. Compatibility: make it portable to other systems, and adoption by manufactures

4. Potential interested stockholders can be invited to conduct real-time testing of all possible

attacks through selected customers.

F. Integrated Trust Service

1. A general framework unifying QR coding-decoding, and NFC transfer line, can enrich

capacity to serve other nonfinancial transactions.

2. Peer-to-peer service can secure independent operations with no middleman or third

parties. That would encourage developers.

3. Development of the system through peer-to-peer action and open-source publishing.

4. Activities include integrating encoders, decoders, and cameras to enable conducting

merchant operation or VCC based transaction encoding.

152

Chapter 7

Conclusions & Future Work

153

Chapter 7: Conclusions and Future Work

7.1 Conclusions

7.1.1 Assured Data Integrity of Camera and Location Devices (Chapter 3).

Utilizing ARM TrustZone and TruZ-Droid allows a platform to secure several I/O operations.

Peripherals include camera, location sensor, Wi-Fi, NFC, and others. Operation security falls in

two main categories, namely Security and Integrity. Ensuring security automatically includes

integrity. However, integrity does not require secrecy. Our problem was mainly focused on

integrity of such operations.

This work demonstrates the TrustZone can be extended to offer robust services to third-party

applications without the need for developers to coordinate with vendors. We have built a system

that ensures integrity of data collected from peripherals, namely, camera and location, and

maintained integrity of data all the way to the server. The added overhead is acceptable when

compared to normal untrusted operation. The added service does not introduce inconveniences

for user interaction given the transparency of flow, or for applications developers by requiring

minimum changes to accommodate the provided TEE functionality.

Our work provides means for extensions to other peripherals in similar manners. It is feasible to

secure Near-Field-Communication (NFC) since it is similar conceptually but with different

implementation details. Industrial implementation is feasible through the design outlined and

there is no need for coordination with applications developers.

7.1.2 Split-QR Decoding Hybrid Design for ARM TrustZone (Chapter 4).

1. In this part, we introduced a new hybrid approach to solve the QR decoder problem. The

design solution makes it much easier for developers to incorporate into existing applications

compared to our previous approach when the server decoded images instead. The overall

154

results show less overhead with increased transparency and seamless integration. Therefore,

this new approach is quite advantageous.

2. The simulation environment was quite sufficient to test the new design given it relies on

existing independent components produced by TruZ-Droid and our previous work. This new

decoder design can be extended beyond QR payments and towards anything that requires

trusted QR code analysis where integrity of data is crucial. Security would be much harder to

achieve in the given boundaries. The camera is available to REE at all times except when

TEE needs it. Therefore, a QR code displayed on another screen will be hard to keep away

from a compromised REE’s reach. This is why our hybrid approach works well and makes a

difference under the assumption that REE is compromised.

3. Extensions to other wider applications is feasible. We discuss these points in the future work.

7.1.3 TrustZone DOT-VCC Generation for Financial Transactions (Chapter 5).

In this part, we present a novel design for virtual credit card (VCR) generation algorithm which

securely works offline within the TrustZone environment. VCRs can protect users’ cards

information from theft. Merchant databases are often hacked resulting in massive leak of credit

card information. This design can completely eliminate the risks. In addition, we secured buyer-

presented QR codes for static or dynamic encoding. This extension is widely used in some parts

of the world like China. Implementing this design with mobile phones or other operating systems

can provide full protection. It is important that the normal-world operating system never gets this

information considering the high probability of compromise by remote attackers. We have

proven the system’s accuracy by sending the data to a simulated network to ensure the proper

verification of the generated data. The protection can reach near complete security where any

155

fraudulent act can be foiled. Some options can ensure no one can breach the operations beyond

intentional bank or user actions in the TrustZone.

The offline nature of the algorithm cuts off many attack surfaces and windows. Furthermore, the

algorithm does not impose any architectural changes to the existing credit card network. The

only modifications required are at the very endpoints of the network (the cardholder and issuer

server) while everything in-between remains the same. This system uniquely combines the

benefits of VCCs and user-end tokenization systems and other parameters. It works with in-

person transactions (unlike VCCs), does not require changes to any infrastructure (unlike

tokenization), and it is compatible with merchant-end tokenization.

The construction method of the credit card number is based on secrets, original credit card data,

and UTC time. The method uniquely combines many existing technologies that yield the unique

levels of security and services. Strong hash encryption is used and any change in the card

information blocks its use in transactions. The system uses UTC as the dynamic component of

the VCC variability. This allows transactions within the same time window if assigned for single

or multiple transactions.

The generated VCCs are irreversible and hence inaccessible to the Android or other OS and

cannot be utilized by database attackers. The issuing bank and the TrustZone are the only parties

who can reconstruct the number. The unique offline VCC generator extends their use to in-

person transactions unlike traditional online-only role. The dynamic and offline nature allow the

generator to work completely independently from online communication to any remote servers.

The strong security does not yield significant overhead nor introduce risks to the TrustZone

environment. The algorithm is robust even in the worst-case scenario where both the payment

156

terminal and the REE (Android) are compromised by attackers. In addition, the algorithm is

convenient, straightforward, and fully safe.

The algorithm can be utilized by many banks and card issuers without specific settings for any of

them. This allows utilizing the same TEE service without having to contact devices vendors to

support their own specific services. The solutions provide near complete protection with

seamless activity. The design is flexible for further improvements and applications on other

system or devices beyond mobile systems.

7.1.4 SEEM Framework with DOT-VCC and other functions (Chapter 6)

A. DOT-VCC Generation System

Initiation: User requests generation authorization from the bank once, for approval with a secret

token. All user information is fed to the TrustZone/TrustProvider generator at the user end.

Transactions: Generator creates offline VCCs based on secrets, UTC timestamps and other

dynamic parameters, and presents it to the merchant, who sends a request for the bank approval.

Countermeasures: Offline generation is done without external VCC providers. VCC is

validated only for a time window. Works for online and in-person purchases. Middleman,

databases. or user device compromises are eliminated.

B. World Infrastructure Countermeasures Limitations.

1. Threat Model: credit card info leaks through attacks against merchants and 3rd-party service

providers. Vulnerabilities: merchant databases compromised mobile devices, VCC and

verification providers.

2. For card and merchant Tokenization: User or merchant initiates the token. Provider translates

token-to-from-CC info. Vulnerabilities: Merchant database or tokenization provider security

157

is not assured for online services, in addition to their own compromises. Users’ devices are

compromised.

3. For VCC w/Tokenization VCC is generated by a provider. Vulnerabilities: Works online

only. Users’ devices are compromised. Service provider is not eliminated.

C. Technology Innovations

1. Offline VCC generation is done without external VCC providers. VCC is validated only for a

time window. Works for online and in-person purchases. Middleman or user device

compromises are eliminated.

2. Reduces dependence on 3rd-party infrastructure by offering end-to-end one-way encryption

between bank and user. The method mitigates risks present in methods like tokenization,

regular credit cards, and others.

3. The VCC generation is based on secrets, timestamps, and other dynamic parameters. The

method utilizes 1-way encryption to generate data that is invalidated after use which renders

online databases breaches near harmless (with the exception being the bank’s database).

4. The standalone TrustProvider: realizing the complexity of dependence on manufactures we

added a TrustProvider compatible with the TrustZone.

5. Integrated trust service: Combining transaction formats like QR/ NFC with the DOT-VCC

integrates system uses including peer-to-peer transactions.

D. Standalone TrustProvider-SoC

1. The SoC would cut attack surfaces on the communication line and cyber security.

2. TrustProvider would be compatible with the TrustZone/TEE.

3. Setting design parameters and building the prototype, The TrustProvider-SoC controls

functionalities dedicated to secure transactions.

158

4. Applicability and compatibility. The design should be flexible to improvements.

5. Open source at the end for independent developers to enrich evolution.

6. Software development and architecture need special settings.

E. Testing and Software Development

1. Test relevant attack surfaces and foil the threat model assumptions.

2. Computer development: building a system that operates securely with minim size and threat

surfaces.

3. Compatibility: make it portable to other systems, and adoption by manufactures

4. Banks will be invited to conduct real-time testing of all attacks and supervise. This can be

conducted after system validity.

F. Integrated Trust Service

1. A general framework unifying QR coding-decoding, and NFC transfer line, can enrich

capacity to serve other non-financial transactions.

2. Peer-to-peer service can secure independent operations with no middleman or third parties.

That would encourage developers.

3. Development of the system through peer-to-peer action and open-source publishing.

4. Integrating encoders, decoders, and cameras to enable conducting merchant operation or

VCC based transaction encoding.

7.2 Ongoing and Future Work

Following the conclusions of section 7.1 we present here the potential feasibility and challenges

to the future and ongoing works.

159

7.2.1 SEEM Framework with DOT-VCC and other functions.

Our research revolves around providing generic TEE services that can be utilized by all

developers without contacting vendors. In previous works, we developed TEE services that can

securely retrieve camera and location data from the peripherals. Feasibility and performance

cycle for fully integrated services. Table 7.1 shows the completed the extension possible in order

to complete a fully integrated system that offers all possible operations for a financial transaction

framework. The system integration is feasible and can be implemented with minimum changes to

the available infrastructures and can be extended to other operating systems and payments

platforms.

Table 7.1 Feasibility for fully extended services as outlined in the thesis.

Service Feasibility Type of Protection TrustZone LOCs
Trust + Approvals

Needed

Offline VCC

Generation
Yes

Total data security and

integrity
500 TrustZone + Bank

QR Encoding

for QR buyer

and VCC

Yes
Data security & integrity;

QR buyer present,
1250 TrustZone + Bank

Split-QR

Decoding

Yes Data integrity and

improved security

3700 TrustZone +

Vendor

Bank VCC

Reconstruction

Yes Full data security and

integrity.

0 TrustZone + Bank

All services Yes
All of the above as

detailed

5.4k for 2 I/O dev,

VCC, encoder +

decoder.

TrustZone + Bank

7.2.2 Extending Split Functions for Trusted Operations (Chapter 4).

The success of Split-SSL and the Split-QR decoding as outlined in this work suggests extending

the splitting to other applications and functionalities. Five types of different nature arise.

160

1. Small size services that fully need security. They cannot split and must go to the TrustZone;

Examples: GPS through a sensor. We estimate such services to be around 10% of services.

2. Services that can be split into essential to run on TEE, and not essential that is possible to run

on REE, with no harm to the basics of the operation or data integrity. They are the main

candidates for generalization. Examples: QR decoding. We estimate such services to be

around 60% of possible services.

3. Services that are possible to split, but the part for REE execution can harm the operation or

beyond the REE capacity. This case can be due to complexity and a need of help from more

powerful services. Examples: complex machine learning classification. We estimate such

services to be around 10% of services.

4. Services that cannot be split and require outside dedicated services. Either fully TEE or fully

external service. We estimate such services to be around 10% of services.

5. Large services that cannot be split and no external service are available. Only TEE or the

REE can do them. Such cases are out of the scope definition assuming the Android is

corrupted. Example: internet-assisted location attestation. We estimate such services to be

around 10% of services.

Without splitting, all service types have to be done through external servers or others. After

classification we can reduce the types that need full outside support to maybe 10%, and the split

with external extensive use to 20% and around 70% can utilize local splitting or full TEE

execution. The splitting then serves 70% of the total load. The others can still benefit from the

TrustZone albeit traditionally. In the upcoming work we will address these types and show the

benefits to performance, integrity, and sometimes security.

161

The main point here is that if we use the TrustProvider with the capacity of dedicated hardware-

software functionalities and availability of large space and execution power for long programs,

the splitting problem and running large programs becomes part of the core system operations.

7.2.3 Building a Standalone TrustProvider (Section 7.1.4D) requires the following:

a) It should provide all TrustZone functionalities plus some certain hardwire protection and

insistence on secure communication for a good fraction of the operations.

b) Should handle extensive execution with minimum communication through regular online

services. This service demands security beyond existing infrastructure, which can harm it.

c) The standalone TrustProvider is our proposal to build the protected trust that use either fully

secure communication or minimum communication with no true threats to the data. The

hardware is designed to minimize dependence on other services.

d) If the idea succeeds and becomes commercial some people will break the design and our role

is to keep track of such breaks as usual, but this is the way how thing work. The advantage is

that the system we propose does not use heavy communication hence the risk will always be

smaller. In addition, many commands are hardwired, and the software has a watch dog that

will always watch the traffic and search it on for regular communication or use fully secure

protocols that are hard to break.

e) Compared to the Regular TrustZone The main criteria are trust through minimum operations

and communication, but they accept to deal with an REE that is compromised. That is a

bottle neck of all TrustZone research on mobiles. If we can get rid of the dependence on the

mobile altogether while investing a smaller amount on having the TrustProvider can make

life easier. TrustZone hardware already can provide the TrustProvider settings, but that must

162

go through a service provider or/and manufacturer. In our proposal we want to develop one

that provides the same service without the need for the REE service except minimum

communication with no risky information

7.2.4 Work Plan and Prototype Implementation

A. Testing and Prototype Construction

The project’s vision is to prove the claims outlined above and build a prototype that beats the

challenges. The proposal includes extending the testing to prevent various attacks envisioned and

show that all operations are safe and accurate. Comparisons with other mainstream methods will

be made as well. Another objective is to build a prototype that can be implemented and would

address the following outcomes:

1. Build a thoroughly tested credit system that can pass security breaches to reach a true

conclusion about feasibly. This includes detailed testing between a number of users

independently (peer to peer) using their own attacks and recording all instances when it

succeeded. Any failure breaks the system’s integrity and claims. We will also test

tokenization, regular VCCs, and QR transactions, including encoding or decoding, against

the same attacks.

2. Apply stress tests and difficult challenges that can break other competing payment methods

and show whether the new system succeeds against all of them.

3. Design a system on chip (SoC) TrustServer that can be programmable to deal with the

various payment systems considerations. This device will be designed through the project

funding, but the manufacturing contract is part of the commercialization plan. The

specifications of the circuit will depend on the use cases and scope of applications. We

envision that to include virtual generation, standard credit card payment transaction, QR

163

encoding and decoding transactions, and possibly communication of high values secure

communications. The system can be run standalone or with a network.

4. Produce a prototype that has a well-documented record of foiling all breaches that could

affect other established methods. The prototype would work offline or communicate with

other systems through defined protocols.

7.2.5 Challenges

B1. Making the daunting job of testing all attack surfaces: connected with mobile usage vs

using the TrustProvider. (Sec7.1.4A-1.4E).

B2. Building the Integrated Software (Sec 7.1.4F).

That Can Utilize all Functions. Integration requires a good zone that combines the 4 functions.

For encoding, it seems normal, but for decoding that opens a range of challenges if the messages

are large or complex. See B4.

B3. Building the Standalone TrustProvider (Sec 7.2.3).

Feasible solutions are hard to implement due to three factors. In the following we address these

challenges and their answers

1. Challenge: Control by big service providers and manufacturer can skew the advantages of

having peer to peer contribution to well-designed TrustProvider. Answer: benefits for the

expert developers and the public at large outweigh the controlling tendencies.

2. Challenge: It seems contradictory to offer secure services, while allowing the public to

participate in building such structure. The catch is making it available for peer to peer, where

a select group can decide to do their work on their own. The hardware design should ensure

full protection conditions. Answer: If the users do not preserve such conditions that will be

their problem. However, a majority can come with solutions that meet the requirements.

164

3. Challenge: The third reason has to do with the tradition in security setting threat models that

are near impossible to avoid except if you do nothing or isolate. Answer: In such cases

isolation is the solution, and there is a reason and feasibility to do so. Isolation does not mean

cutting all communication, but keeping only what is needed. There is a good space in

optimizing isolation. The proposed framework addresses this point seriously.

B4. Handling Decoding and Large Programs (Section 7.2.2).

Extending split functions for trusted operations. The success of Split-SSL and the Split-QR

decoding suggests extending the splitting to other applications and functionalities. Chapter 4 and

section 7.2.2 discussed this problem in detail.

Without splitting, all service types except the first have to be done through external servers or

others. After classification we can reduce the types that need full outside support to maybe 10%,

and the split with external extensive use to 20% and around 70% can utilize local splitting or full

TEE execution. The splitting then serves 70% of the total load. The others can still benefit from

the TrustZone albeit traditionally. In the upcoming work we will address these types and show

the benefits to performance, integrity, and sometimes security.

The main point here is that if we use the TrustProvider with the capacity of dedicated hardware-

software functionalities and availability of large space and execution power for long programs

the splitting problem and running large programs becomes part of the core system operations.

165

References

References Chapter 1

1. NVD: What is the National Vulnerability Database? Lacework. Available online:

https://www.lacework.com/cloud-security-fundamentals/nvd-what-is-

the-national-vulnerability-database. 2024

2. Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin Jiang, Priyank Thavai, and Wenliang

Du, “TruZ-Droid: Integrating TrustZone with Mobile Operating System”, MobiSys ’18,

June 10–15, 2018, Munich, Germany.

http://www.cis.syr.edu/~wedu/Research/paper/mobisys2018_truzdroid.p

df

3. Holding, A , “ARM Security Technology Building a Secure System using TrustZone®

Technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-

genc-009492c/PRD29-GENC 009492C_trustzone_security_whitepaper.pdf

4. Section 3 ARM TrustZone - OPTEE- GLOBAL PLATFORM.

https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html

5. Yousra Aafer, Xiao Zhang, and Wenliang Du, “Harvesting Inconsistent Security

Configurations in Custom Android ROMs via Differential Analysis”, 25th USENIX

Security Symposium August 10–12, 2016 • Austin, TX

https://www.usenix.org/system/files/conference/usenixsecurity16/sec

16_paper_aafer.pdf

6. Matthew Lentz, Rijurekha Sen, Peter Druschel, Bobby Bhattacharjee, “SeCloak: ARM

TrustZone-based Mobile Peripheral Control”, MobiSys ’18, June 10–15, 2018, Munich,

https://www.lacework.com/cloud-security-fundamentals/nvd-what-is-the-national-vulnerability-database
https://www.lacework.com/cloud-security-fundamentals/nvd-what-is-the-national-vulnerability-database
http://www.cis.syr.edu/~wedu/Research/paper/mobisys2018_truzdroid.pdf
http://www.cis.syr.edu/~wedu/Research/paper/mobisys2018_truzdroid.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC%20009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC%20009492C_trustzone_security_whitepaper.pdf
https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_aafer.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_aafer.pdf

166

Germany

https://www.cs.umd.edu/~mlentz/papers/secloak_mobisys2018.pdf

7. Ammar S. Salman, Wenliang K. Du, "Securing Mobile Systems GPS and Camera Functions

Using TrustZone Framework", SAI 2021 Computing Conference, London, United Kingdom

(2021). https://link.springer.com/chapter/10.1007/978-3-030-80129-

8_58

8. Ammar S. Salman, Wenliang K. Du, "Dynamic Offline TrustZone Virtual Credit Card

Generator for Financial Transactions", Future of Information and Communication

Conference (FICC), San Francisco, United States (2022).

https://link.springer.com/chapter/10.1007/978-3-030-98015-3_65

9. Ammar S. Salman, Wenliang K. Du, "Split-QR Decoder Hybrid Design for ARM

TrustZone", Future of Information and Communication Conference (FICC), San Francisco,

United States (2022). https://link.springer.com/chapter/10.1007/978-3-

030-98015-3_64

10. Ammar S. Salman, Wenliang K. Du. A Framework for TrustZone Encoding/Decoding for

QR Buyer-Presented and VCC Offline Generated Transactions, submitted to Future

Technologies Conference 2024. (2024)

11. IEEE Security and Privacy W. Ahmed et. al., "Security in Next Generation Mobile Payment

Systems: A Comprehensive Survey," in IEEE Access, vol. 9, pp. 115932-115950, 2021, doi:

10.1109/ACCESS.2021.3105450.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9514868

12. Jonathan Reed, Top five cybercrime types, intelligence security, June 5, 2023,

https://securityintelligence.com/news/10-billion-in-cyber-crime-

https://www.cs.umd.edu/~mlentz/papers/secloak_mobisys2018.pdf
https://link.springer.com/chapter/10.1007/978-3-030-80129-8_58
https://link.springer.com/chapter/10.1007/978-3-030-80129-8_58
https://link.springer.com/chapter/10.1007/978-3-030-98015-3_65
https://link.springer.com/chapter/10.1007/978-3-030-98015-3_64
https://link.springer.com/chapter/10.1007/978-3-030-98015-3_64
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9514868
https://securityintelligence.com/author/jonathan-reed/
https://securityintelligence.com/news/10-billion-in-cyber-crime-losses-shatters-previous-totals/

167

losses-shatters-previous-totals/,

https://www.techtarget.com/whatis/34-Cybersecurity-Statistics-to-

Lose-Sleep-Over-in-2020

References Chapter 2

13. National Institute of Standards and Technology (NIST). https://www.nist.gov/

14. NIST National Vulnerability Database (NVD). https://nvd.nist.gov/

15. Android Open-Source Project (AOSP), Trusted Execution Environment (Trusty TEE).

https://source.android.com/docs/security/features/trusty

16. SANDRO PINTO, Centro Algoritmi, Universidade do Minho, NUNO SANTOS, INESC-

ID, Demystifying Arm TrustZone: A Comprehensive Survey, Surv. 51, 6, Article 130

(January 2019), 36 pages. https://doi.org/10.1145/3291047

https://www.dpss.inesc-id.pt/~nsantos/papers/pinto_acsur19.pdf

17. David Clark and kc clafy, trust zones A Path to a More Secure Internet Infrastructure,

Journal of Information Policy, Volume 11, 2021, DOI:

https://doi.org/10.5325/jinfopoli.11.2021.0026;

https://www.caida.org/catalog/papers/2021_trust_zones_jip/trust_zon

es_jip.pdf

18. Kaspersky, About the trusted zone,

https://support.kaspersky.com/KESWin/10SP2/en-US/KESWin-10SP2-en-

US.pdf

19. Qinyu Zhu, Quan Chen, Yichen Liu, Zahid Akhtar, Kamran Siddique, "Investigating

TrustZone: A Comprehensive Analysis", Security and Communication Networks, vol. 2023,

Article ID 7369634, 19 pages, 2023. https://doi.org/10.1155/2023/7369634

https://securityintelligence.com/news/10-billion-in-cyber-crime-losses-shatters-previous-totals/
https://www.techtarget.com/whatis/34-Cybersecurity-Statistics-to-Lose-Sleep-Over-in-2020
https://www.techtarget.com/whatis/34-Cybersecurity-Statistics-to-Lose-Sleep-Over-in-2020
https://www.nist.gov/
https://nvd.nist.gov/
https://source.android.com/docs/security/features/trusty
https://doi.org/10.1145/3291047
https://www.dpss.inesc-id.pt/~nsantos/papers/pinto_acsur19.pdf
https://doi.org/10.5325/jinfopoli.11.2021.0026
https://www.caida.org/catalog/papers/2021_trust_zones_jip/trust_zones_jip.pdf
https://www.caida.org/catalog/papers/2021_trust_zones_jip/trust_zones_jip.pdf
https://support.kaspersky.com/KESWin/10SP2/en-US/KESWin-10SP2-en-US.pdf
https://support.kaspersky.com/KESWin/10SP2/en-US/KESWin-10SP2-en-US.pdf
https://doi.org/10.1155/2023/7369634

168

20. Alberts, J. (2023). The first steps on the zero-trust journey. Retrieved from

https://trustedsec.com/blog/the-first-steps-on-the-zero-trust-

journey

21. Poonam Dhiman, Neha Saini, Yonis Gulzar, Sherzod Turaev, Amandeep Kaur, Khair Ul

Nisa, and Yasir Hamid, A Review and Comparative Analysis of Relevant Approaches of

Zero Trust Network Model, 7 2024 Feb; 24(4): 1328. Published online 2024 Feb 19. doi:

10.3390/s24041328 PMCID: PMC10892953, PMID: 38400486

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892953/

22. Vince Ricco, Zones of Trust: A New Way of Thinking about IoT Security, 2017

https://www.darkreading.com/iot/zones-of-trust-a-new-way-of-thinking-about-iot-security

23. QR Code Tutorial, © 2021 Thonky.com, https://www.thonky.com/qr-code-

tutorial/introduction

24. Matcha Design. (2021). QR code demystified - part 1.

https://matchadesign.com/blog/qr-code-demystified-part-1/

25. Matcha Design. (2011). QR code demystified - part 2.

https://matchadesign.com/blog/qr-code-demystified-part-2/

26. Matcha Design. (2011). QR code demystified - part 3.

https://matchadesign.com/blog/qr-code-demystified-part-3/

27. Matcha Design. (2011). QR code demystified - part 4.

https://matchadesign.com/blog/qr-code-demystified-part-4/

28. Matcha Design. (2011). QR code demystified - part 5.

https://matchadesign.com/blog/qr-code-demystified-part-5/

https://trustedsec.com/blog/the-first-steps-on-the-zero-trust-journey
https://trustedsec.com/blog/the-first-steps-on-the-zero-trust-journey
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892953/
https://www.darkreading.com/iot/zones-of-trust-a-new-way-of-thinking-about-iot-security
https://www.thonky.com/qr-code-tutorial/introduction
https://www.thonky.com/qr-code-tutorial/introduction
https://matchadesign.com/blog/qr-
https://matchadesign.com/blog/qr-code-demystified-part-2/
https://matchadesign.com/blog/qr-code-demystified-part-3/
https://matchadesign.com/blog/qr-code-demystified-part-4/
https://matchadesign.com/blog/qr-code-demystified-part-5/

169

29. Matcha Design. (2011). QR code demystified - part 6.

https://matchadesign.com/blog/qr-code-demystified-part-6/

30. ISO/IEC 18004:2006 Information technology- Automatic identification and data capture

techniques - QR Code 2005 bar code symbology specification [4.0.1]

https://www.iso.org/standard/43655.html

31. Kailiang Ying, "Integrating TrustZone Protection with Communication Paths for Mobile

Operating System" (2019). Dissertations - ALL. 1018.

https://surface.syr.edu/etd/1018

32. Lesniewski-Laas, C., Kaashoek, M.F.: SSL splitting: Securely serving data from untrusted

caches. Computer Networks. 48, 763–779 (2005).

https://www.usenix.org/conference/12th-usenix-security-

symposium/ssl-splitting-securely-serving-data-untrusted-caches

33. Novikov, I. (2024). SSL offloading decoded: What it means for your security health.

Retrieved from https://www.wallarm.com/what/what-is-ssl-offloading

References Chapter 3

34. Stefan Saroi, Alec Wolman, “Enabling New Mobile Applications with Location Proofs”,

Microsoft Research, HotMobile 2009, February 23-24, 2009, Santa Cruz, CA, USA.

https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/proofs.pdf

35. Mobile Location Confirmation Documentation

https://developer.visa.com/capabilities/mlc/docs

36. Sileshi Demesie Yalew, Pedro Mendonc ̧a, Gerald Q. Maguire Jr., Seif Haridi, Miguel

Correia, TruApp: A TrustZone-based authenticity detection service for mobile apps”.

https://matchadesign.com/blog/qr-code-demystified-part-6/
https://www.iso.org/standard/43655.html
https://surface.syr.edu/etd/1018
https://www.usenix.org/conference/12th-usenix-security-symposium/ssl-splitting-securely-serving-data-untrusted-caches
https://www.usenix.org/conference/12th-usenix-security-symposium/ssl-splitting-securely-serving-data-untrusted-caches
https://www.wallarm.com/what/what-is-ssl-offloading
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/proofs.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/proofs.pdf
https://developer.visa.com/capabilities/mlc/docs

170

October 2017 IEEE 13th International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob). http://www.gsd.inesc-

id.pt/~mpc/pubs/truapp-final.pdf

37. Sileshi Demesie Bahir Dar Q. Maguire JrSeif Haridi Miguel Correia, “T2Droid: A

TrustZone-based Dynamic Analyzer for Android Applications”, August 2017 with 86 DOI:

10.1109/Trustcom/BigDataSE/ICESS.2017.243 Computing And Communications (IEEE

TrustCom-17)

https://www.researchgate.net/publication/318824757_T2Droid_A_TrustZ

one-Based_Dynamic_Analyser_for_Android_Applications

38. Darius Suciu, Radu Sion, “Droids entry: Efficient Code Integrity and Control Flow

Verification on TrustZone Devices”. May 2017, 21st International Conference on Control

Systems and Computer Science.

https://www.computer.org/csdl/proceedings/cscs/2017/1839/00/0796855

6.pdf

39. Bo Zhao; Yu Xiao; Yuqing Huang; Xiaoyu Cui, “A Private User Data Protection

Mechanism in TrustZone Architecture Based on Identity Authentication”. Tsinghua Science

and Technology (Volume: 22, Issue: 2, April 2017).

https://ieeexplore.ieee.org/document/7889643

40. Xianyi Zheng; Lulu Yang; Gang Shi; Dan Meng, “Secure Mobile Payment Employing

Trusted Computing on TrustZone Enabled Platforms”, August 2016. IEEE

Trustcom/BigDataSE/ISPA. https://ieeexplore.ieee.org/document/7847180

http://www.gsd.inesc-id.pt/~mpc/pubs/truapp-final.pdf
http://www.gsd.inesc-id.pt/~mpc/pubs/truapp-final.pdf
https://www.researchgate.net/publication/318824757_T2Droid_A_TrustZone-Based_Dynamic_Analyser_for_Android_Applications
https://www.researchgate.net/publication/318824757_T2Droid_A_TrustZone-Based_Dynamic_Analyser_for_Android_Applications
https://www.computer.org/csdl/proceedings/cscs/2017/1839/00/07968556.pdf
https://www.computer.org/csdl/proceedings/cscs/2017/1839/00/07968556.pdf
https://ieeexplore.ieee.org/document/7889643
https://ieeexplore.ieee.org/document/7847180

171

41. Hassaan Janjua, Wouter Joosen, Sam Michiels and Danny Hughes, Celestijnenlaan,”

Trusted Operations on Sensor”, Data Sensors 2018, 18, 1364

https://ieeexplore.ieee.org/document/7590042

42. J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, M. B. Srivastava,

“participatory sensing”, 2006, Center for Embedded Networked Sensing (CENS), University

of California, Los Angeles. https://escholarship.org/uc/item/19h777qd

43. Liu, H.; Saroiu, S.; Wolman, A.; Raj, H., “Software abstractions for trusted Sensors”, In

Proceedings of the ACM 10th International Conference on Mobile Systems, Applications,

and Services, Low Wood Bay, UK, 25–29 June 2012; pp. 365–378.

https://www.microsoft.com/en-us/research/publication/software-

abstractions-for-trusted-sensors/

44. Kamble, P.A. and Neha Patil, SECURE ONLINE PAYMENT WITH ARM TRUSTZONE”,

International Journal of Development Research Vol. 07, Issue, 07, pp. 13872 - 13875, July,

2017 https://www.journalijdr.com/sites/default/files/issue-

pdf/9394.pdf

45. Waqar Anwar, Dale Lindskog, Pavol Zavarsky, Ron Ruhl , “An Alternate Secure Element

Access Control for NFC Enabled Android Smartphones”, International Journal for

Information Security Research (IJISR), Volume 4, Issue 1, March 2014

https://infonomics-society.org/wp-content/uploads/ijisr/volume-4-

2014/An-Alternate-Secure-Element-Access-Control-for-NFC-Enabled-

Android-Smartphones.pdf

46. Shafiq ur Rehman and Jane Coughlan, “An Efficient Mobile Payment System Based On

NFC Technology”, International Journal of Computer and Information Engineering Vol: 7,

https://ieeexplore.ieee.org/document/7590042
https://escholarship.org/uc/item/19h777qd
https://www.microsoft.com/en-us/research/publication/software-abstractions-for-trusted-sensors/
https://www.microsoft.com/en-us/research/publication/software-abstractions-for-trusted-sensors/
https://www.journalijdr.com/sites/default/files/issue-pdf/9394.pdf
https://www.journalijdr.com/sites/default/files/issue-pdf/9394.pdf
https://infonomics-society.org/wp-content/uploads/ijisr/volume-4-2014/An-Alternate-Secure-Element-Access-Control-for-NFC-Enabled-Android-Smartphones.pdf
https://infonomics-society.org/wp-content/uploads/ijisr/volume-4-2014/An-Alternate-Secure-Element-Access-Control-for-NFC-Enabled-Android-Smartphones.pdf
https://infonomics-society.org/wp-content/uploads/ijisr/volume-4-2014/An-Alternate-Secure-Element-Access-Control-for-NFC-Enabled-Android-Smartphones.pdf

172

No: 6, 2013, https://waset.org/publications/7277/an-efficient-mobile-payment-system-based-

on-nfc-technology

References Chapter 4

47. Chris Lesniewski-Laas and M. Frans Kaashoek, “SSL splitting: securely serving data from

untrusted caches”, Proceedings of the 12th USENIX Security Symposium. Washington,

D.C., USA. 2003

https://www.usenix.org/legacy/events/sec03/tech/full_papers/lesniew

ski/lesniewski.pdf

48. Mauro Carvalho Chehab, mchehab, ZBar maintenance and versions,

https://github.com/mchehab/zbar

49. Jeff Brown, “ZBar bar code reader”, Copyright 2007-2010 (c) Jeff Brown, last updated July

2015. http://zbar.sourceforge.net/about.html

50. Jeng-An Lin, Chiou-Shann Fuh, "2D Barcode Image Decoding", Mathematical Problems in

Engineering, vol. 2013, Article ID 848276, 10 pages, 2013.

https://doi.org/10.1155/2013/848276

https://www.hindawi.com/journals/mpe/2013/848276/

51. Nivedan Bhardwaj, Ritesh Kumar, Rupali Verma, Alka Jindal and Amol P. Bhondekar,

“Decoding Algorithm for color QR code: A Mobile Scanner Application”, (ICRTIT), 2016

International Conference (IEEE), DOI:10.1109/ICRTIT.2016.7569561

https://www.researchgate.net/publication/309041301_Decoding_algorit

hm_for_color_QR_code_A_mobile_scanner_application;

https://ieeexplore.ieee.org/document/7569561

https://waset.org/publications/7277/an-efficient-mobile-payment-system-based-on-nfc-technology
https://waset.org/publications/7277/an-efficient-mobile-payment-system-based-on-nfc-technology
https://www.usenix.org/legacy/events/sec03/tech/full_papers/lesniewski/lesniewski.pdf
https://www.usenix.org/legacy/events/sec03/tech/full_papers/lesniewski/lesniewski.pdf
https://github.com/mchehab/zbar
http://zbar.sourceforge.net/about.html
https://doi.org/10.1155/2013/848276
https://www.hindawi.com/journals/mpe/2013/848276/
https://www.researchgate.net/publication/309041301_Decoding_algorithm_for_color_QR_code_A_mobile_scanner_application
https://www.researchgate.net/publication/309041301_Decoding_algorithm_for_color_QR_code_A_mobile_scanner_application
https://ieeexplore.ieee.org/document/7569561

173

52. Madeline J Schrier, “Barcode Decoding in a Camera-Based Scanner: Analysis and

Algorithm”, PhD Thesis, © Madeline J Schrier 2015

https://conservancy.umn.edu/bitstream/handle/11299/175329/Schrier_u

mn_0130E_16096.pdf%3Bsequence%3D1

53. Databases collection, “Images of QR Codes: versions 1-4, random four digit numbers

Simple QR codes dataset”, https://www.kaggle.com/coledie/qr-

codes?select=qr_dataset, “Finder patterns of QR codes - Yolo format, Complex QR

codes dataset”, https://www.kaggle.com/samygrisard/finder-patterns-qr-

code

54. Android Native Development Kit (NDK). Android Developers. Available Online:

https://developer.android.com/ndk

55. Overview of the V4L2 driver framework. Bootlin. Available online:

https://elixir.bootlin.com/linux/v4.4/source/Documentation/video4li

nux/v4l2-framework.txt

56. X Window System open-source project. X.Org Foundation. Available online:

https://www.x.org/wiki/

57. ZBar decoder, Wikipedia, https://en.wikipedia.org/wiki/ZBar

References Chapter 5

58. Online payment fraud, https://www.ravelin.com/insights/online-payment-

fraud, last accessed 2021/08/01.

59. ISO/IEC 7812-1:2017, Identification cards — Identification of issuers — Part 1: Numbering

system, https://www.iso.org/obp/ui/#iso:std:iso-iec:7812:-1:ed-

5:v1:en, last accessed 2021/08/01.

https://conservancy.umn.edu/bitstream/handle/11299/175329/Schrier_umn_0130E_16096.pdf%3Bsequence%3D1
https://conservancy.umn.edu/bitstream/handle/11299/175329/Schrier_umn_0130E_16096.pdf%3Bsequence%3D1
https://www.kaggle.com/coledie/qr-codes?select=qr_dataset
https://www.kaggle.com/coledie/qr-codes?select=qr_dataset
https://www.kaggle.com/samygrisard/finder-patterns-qr-code
https://www.kaggle.com/samygrisard/finder-patterns-qr-code
https://developer.android.com/ndk
https://elixir.bootlin.com/linux/v4.4/source/Documentation/video4linux/v4l2-framework.txt
https://elixir.bootlin.com/linux/v4.4/source/Documentation/video4linux/v4l2-framework.txt
https://www.x.org/wiki/
https://en.wikipedia.org/wiki/ZBar
https://www.ravelin.com/insights/online-payment-fraud
https://www.ravelin.com/insights/online-payment-fraud
https://www.iso.org/obp/ui/%23iso:std:iso-iec:7812:-1:ed-5:v1:en
https://www.iso.org/obp/ui/%23iso:std:iso-iec:7812:-1:ed-5:v1:en

174

60. Luhn, H.P.: Self-checking number punch,

https://patents.google.com/patent/US2731196A/en, (1956).

61. Calculate CVV/CVC, iCVV, CVV2/CVC2, dCVV for Visa MasterCard,

https://neapay.com/online-tools/calculate-cvv-cvc-icvv-cvv2-cvc2-

dcvv.html, last accessed 2021/08/01.

62. Resuello, J.: Complete Guide to Virtual Credit Card Numbers,

https://www.forbes.com/advisor/credit-cards/virtual-credit-card-

numbers-guide/, last accessed 2021/08/01.

63. How Do Virtual Credit Cards Work & How Can You Get One?

https://www.creditkarma.com/credit-cards/i/virtual-credit-card, last

accessed 2021/08/01.

64. Rubenking, N. J., 5 Things You Should Know About Virtual Credit Cards,

https://www.pcmag.com/news/5-things-you-should-know-about-virtual-

credit-cards, last accessed 2021/08/01.

65. Rupp, M.: The Challenges and advantages of EMV Tokenization,

https://www.cryptomathic.com/news-events/blog/the-challenges-and-

advantages-of-emv-tokenization, last accessed 2021/08/01.

https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html, last accessed

2021/08/01.

66. Rubin, A., Wright, R.: Off-line generation of limited-use credit card numbers,

https://patents.google.com/patent/US20020073045A1/en, (2002).

67. Molloy, I., Li, J., Li, N.: Dynamic virtual credit card numbers. In: International Conference

on Financial Cryptography and Data Security. pp. 208–223. Springer (2007).

https://patents.google.com/patent/US2731196A/en
https://neapay.com/online-tools/calculate-cvv-cvc-icvv-cvv2-cvc2-dcvv.html
https://neapay.com/online-tools/calculate-cvv-cvc-icvv-cvv2-cvc2-dcvv.html
https://www.forbes.com/advisor/credit-cards/virtual-credit-card-numbers-guide
https://www.forbes.com/advisor/credit-cards/virtual-credit-card-numbers-guide
https://www.creditkarma.com/credit-cards/i/virtual-credit-card
https://www.pcmag.com/news/5-things-you-should-know-about-virtual-credit-cards,
https://www.pcmag.com/news/5-things-you-should-know-about-virtual-credit-cards,
https://www.cryptomathic.com/news-events/blog/the-challenges-and-advantages-of-emv-tokenization
https://www.cryptomathic.com/news-events/blog/the-challenges-and-advantages-of-emv-tokenization
https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html,%20last%20accessed%202021/08/01
https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html,%20last%20accessed%202021/08/01
https://patents.google.com/patent/US20020073045A1/en,

175

https://www.springerprofessional.de/en/dynamic-virtual-credit-card-

numbers/2930130

68. Park, C., Park, C.: Public Key based Virtual Credit Card Number Payment System for

Efficient Authentication in Card Present Transaction. Journal of the Korea Institute of

Information Security & Cryptology. 25, 1175–1186 (2015).

https://www.researchgate.net/publication/285647501_Public_Key_based

_Virtual_Credit_Card_Number_Payment_System_for_Efficient_Authentica

tion_in_Card_Present_Transaction

69. Yingjiu Li a, Xinwen Zhang b, Securing credit card transactions with one-time payment

scheme, Electronic Commerce Research and Applications, Volume 4, Issue 4, Winter 2005,

Pages 413-426

https://www.sciencedirect.com/science/article/abs/pii/S156742230500

0177

70. Credit card tokenization explained: Everything you need to know – stax. (2024). Retrieved

from https://staxpayments.com/blog/credit-card-tokenization-

explained/

71. Rourke, T. (2024). The Complete Guide to Payments Tokenization. Retrieved from

https://www.aciworldwide.com/a-primer-on-tokens-tokenization-

payment-tokens-and-merchant-tokens; https://www.aciworldwide.com/

72. Choh, C. (2023). VCC fuels demand for Private Credit & Fund Tokenization. Retrieved

from https://www.ssctech.com/blog/vcc-fuels-demand-for-private-

credit-fund-tokenization

https://www.springerprofessional.de/en/dynamic-virtual-credit-card-numbers/2930130
https://www.springerprofessional.de/en/dynamic-virtual-credit-card-numbers/2930130
https://www.researchgate.net/publication/285647501_Public_Key_based_Virtual_Credit_Card_Number_Payment_System_for_Efficient_Authentication_in_Card_Present_Transaction
https://www.researchgate.net/publication/285647501_Public_Key_based_Virtual_Credit_Card_Number_Payment_System_for_Efficient_Authentication_in_Card_Present_Transaction
https://www.researchgate.net/publication/285647501_Public_Key_based_Virtual_Credit_Card_Number_Payment_System_for_Efficient_Authentication_in_Card_Present_Transaction
https://www.sciencedirect.com/science/article/abs/pii/S1567422305000177
https://www.sciencedirect.com/science/article/abs/pii/S1567422305000177
https://staxpayments.com/blog/credit-card-tokenization-explained/
https://staxpayments.com/blog/credit-card-tokenization-explained/
https://www.aciworldwide.com/a-primer-on-tokens-tokenization-payment-tokens-and-merchant-tokens
https://www.aciworldwide.com/a-primer-on-tokens-tokenization-payment-tokens-and-merchant-tokens
https://www.aciworldwide.com/
https://www.ssctech.com/blog/vcc-fuels-demand-for-private-credit-fund-tokenization
https://www.ssctech.com/blog/vcc-fuels-demand-for-private-credit-fund-tokenization

176

73. Merchant Tokenization Merchant tokenization. Retrieved from

https://www.payair.com/merchant-tokenization/

74. B2B/B2C eCommerce Forecast, International Trade Administration. Available online:

https://www.trade.gov/ecommerce-sales-size-forecast

75. Payment Card Fraud Losses Reach $32.34 Billion. The Nelson Report. Available Online:

https://www.globenewswire.com/news-

release/2022/12/22/2578877/0/en/Payment-Card-Fraud-Losses-Reach-32-

34-Billion.html (2022)

76. Global Ecommerce Sales Growth Report. Shopify. Available online:

https://www.shopify.com/blog/global-ecommerce-sales (2024)

77. Top Cybersecurity Statistics for 2024. Cobalt. Available online:

https://www.cobalt.io/blog/cybersecurity-statistics-2024 (2024)

References chapter 6.

78. ARM Security Technology: Building a Secure System using TrustZone Technology, (2009).

Available online: https://documentation-

service.arm.com/static/5f212796500e883ab8e74531

79. Trusted Framework Open-source Portable Trusted Execution Environment (OP-TEE).

Available online: https://optee.readthedocs.io/ Accessed 2024/02/10.

80. Barcode Technologies, Morovia, https://www.morovia.com/manuals/barcode-

dll/shared.bartech.php; QR code payments: How businesses can generate and use QR codes,

stripe, 10-2023 https://stripe.com/resources/more/qr-code-payments

81. Nayuki, QR Code generator library, GitHub. Available online:

https://github.com/nayuki/QR-Code-generator. Accessed: 2023/12/15.

https://www.payair.com/merchant-tokenization/
https://www.trade.gov/ecommerce-sales-size-forecast
https://www.globenewswire.com/news-release/2022/12/22/2578877/0/en/Payment-Card-Fraud-Losses-Reach-32-34-Billion.html
https://www.globenewswire.com/news-release/2022/12/22/2578877/0/en/Payment-Card-Fraud-Losses-Reach-32-34-Billion.html
https://www.globenewswire.com/news-release/2022/12/22/2578877/0/en/Payment-Card-Fraud-Losses-Reach-32-34-Billion.html
https://www.shopify.com/blog/global-ecommerce-sales
https://www.cobalt.io/blog/cybersecurity-statistics-2024
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://optee.readthedocs.io/
https://www.morovia.com/manuals/barcode-dll/shared.bartech.php
https://www.morovia.com/manuals/barcode-dll/shared.bartech.php
https://stripe.com/resources/more/qr-code-payments
https://github.com/nayuki/QR-Code-generator

177

82. About WhatsApp QR codes, Help Center, WhatsApp. Available online:

https://faq.whatsapp.com/2416198805185327. Accessed: 2024/02/20

83. MST Payments: What Merchants Need to Know About Magnetic Secure Transmission.

Credit Card Processing, Payment Technology and Hardware. Payment Depot. Available

online: https://paymentdepot.com/blog/mst-payments/

84. Xianyi Zheng, Lulu Yang, Jiangang Ma, Gang Shi, Dan Meng TrustPAY: Trusted Mobile

Payment on Security Enhanced ARM TrustZone Platforms, 2016 IEEE Symposium on

Computers and Communication (ISCC).

https://ieeexplore.ieee.org/abstract/document/6296107

85. Martin Pirker, Daniel Slamanig, A Framework for Privacy-Preserving Mobile Payment on

Security Enhanced ARM TrustZone Platforms, 2012 IEEE 11th International Conference on

Trust, Security and Privacy in Computing and Communications.

https://ieeexplore.ieee.org/abstract/document/7543781.

https://faq.whatsapp.com/2416198805185327
https://paymentdepot.com/blog/mst-payments/
https://ieeexplore.ieee.org/abstract/document/6296107
https://ieeexplore.ieee.org/abstract/document/7543781.

178

Vita

Ammar Salman was born in Ithaca NY, USA. Received a Bachelor of Computer Engineering

degree from Alquds University, Jerusalem, Palestine in July 2016. He received a Master of

Engineering degree in Computer Engineering from Syracuse University, (Syracuse, New York,

USA) in 2021. This dissertation was defended in June 2024 at Syracuse University. And the

degree earned in June 2024.

	A TrustZone-based Framework to Secure Mobile Financial Transactions and Provide End-to-End Protection for QR-code Payments and Credit Card Information
	Recommended Citation

	Abstract
	A TrustZone-based Framework to Secure Mobile Financial Transactions and Provide End-to-End Protection for QR-code Payments and Credit Card Information
	Acknowledgements
	Table of Contents
	List of Figures
	List of tables
	List of Abbreviations and Terms Definitions
	Chapter 1: Introduction, Problem Statement, and Contributions
	1.1 Introduction
	1.1.1 Motivation
	1.1.2 ARM TrustZone
	1.1.3 Existing Credit Card Protection Techniques
	1.1.4 Summary of Our Framework

	1.2 Problem Statement & Objectives
	1.2.1 Problem and Solution
	1.2.2 Objectives
	1.2.3 Outcomes
	1.2.4 Threat Model Basic Assumptions
	1.2.5 Threat Model Attack Surfaces

	1.3 Manuscript Structure and Organization
	1.4 Contribution: A Brief Summary of the Thesis Work
	1.4.1 Secure camera QR Payment Capture and Transfer to Servers for Processing (Ch.3).
	1.4.2 QR Split Decoder that Works Within the TrustZone. (Ch.4)
	1.4.3 DOT-VCC Generator & SEEM-FTF Framework (Ch. 5 & Ch. 6)
	1.4.4 Published Work. List of published articles covering this work

	Chapter 2: General Background
	2.1 Introduction
	2.2 General Threat Model
	2.2.1 Android Breaches and Corruption
	2.2.2 Credit/Debit Card Theft

	2.3 ARM TrustZone
	2.4 TruZ-Droid
	2.4.1 Split-SSL
	2.4.2 TruZ-UI

	2.5 QR Code Encoding Functions
	2.5.1 Definition
	2.5.2 QR Code Structure

	2.6 QR Decoding
	2.7 Tokenization and Existing Protections Method
	2.8 DOT-VCC Method

	Chapter 3: Assured Data Integrity of Camera and Location Devices
	3.1 Introduction
	3.2 Background and Related Work
	3.2.1 I/O Trust Access and Data Integrity
	3.2.2 QR Merchant and Buyer Payments
	3.2.3 Location Attestation
	3.2.4 ARM Trusted Execution Environment (TEE)
	3.2.5 Related Work

	3.3 Problem Statement & Threat Model
	3.4 Solution Design
	3.4.1 Data Retrieval from Peripheral Devices
	3.4.2 Data Processing
	3.4.3 Transparency and Seamless Integration

	3.5 Implementation
	3.6 Evaluation & Analysis
	3.6.1 Mock Applications
	3.6.2 Modified Applications
	3.6.3 Evaluation Results
	3.6.4 Analysis

	3.7 Conclusions

	Chapter 4: Split-QR Decoder Hybrid Design for ARM TrustZone
	4.1 Introduction
	4.2 Related Work
	4.2.1 QR Decoding using ZBar Library
	4.2.2 ZBar C Library Utilization in the TrustZone
	4.2.3 Related Work

	4.3 Solution Design (Split-QR Decoder)
	4.3.1 Design Analysis and Comparison
	4.3.2 ZBar C Library Components in the TEE
	4.3.3 Splitting Criteria
	4.3.4 Design Evaluation

	4.4 Implementation
	4.5 Evaluation & Analysis
	4.5.1 Datasets
	4.5.2 Performance Comparison
	4.5.3 Complete Analysis
	4.5.4 Summary of Results

	4.6 Conclusions and Future Work
	4.6.1 Conclusions
	4.6.2 Future Work

	Chapter 5: Dynamic Offline TrustZone VCC (DOT-VCC) Transactions Generator
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Overview of Fraud Impact
	5.2.2 Credit Cards Concepts
	5.2.3 Related Work
	5.2.4 The Preferred Embodiment

	5.3 Problem and Objectives
	5.4 Solution Design (DOT-VCC Generator)
	5.4.1 Acquiring Issuer Approval
	5.4.2 Constructing the Credit Card Number
	5.4.3 Data Reconstruction by the Issuer (Bank)
	5.4.4 Other Design Considerations

	5.5 Implementation
	5.6 Evaluation & Analysis
	5.6.1 Validating the algorithm correctness.
	5.6.2 Performance
	5.6.3 TEE Size

	5.7 Conclusions
	5.7.1 Summary
	5.7.2 The System Services and Protections

	Chapter 6: Secure End-to-End Mobile Financial Transactions Framework (SEEM-FTF)
	6.1 Introduction
	6.2 Background and Related Work
	6.2.1 QR Payment Methods
	6.2.2 Description of Quick Response (QR) Codes [80] [23] [24]
	6.2.3 Frameworks Related Work
	6.2.4 Problem and Objectives
	6.2.5 Threat Model Assumptions
	6.2.6 Encoding Functions in The Secure Transfer of Data

	6.3 Solution Design
	6.3.1 Buyer-Presented QR Codes
	6.3.2 Design and Evaluation Plan of the SEEM Framework Integrated System

	6.4 Implementation and Evaluation
	6.4.1 Implementation
	6.4.2 Performance of Integrated Services

	6.5 Conclusions and Ongoing Work
	6.5.1 Conclusions and Generalizations
	6.5.2 System Integration & Technology Innovation

	Chapter 7: Conclusions and Future Work
	7.1 Conclusions
	7.1.1 Assured Data Integrity of Camera and Location Devices (Chapter 3).
	7.1.2 Split-QR Decoding Hybrid Design for ARM TrustZone (Chapter 4).
	7.1.3 TrustZone DOT-VCC Generation for Financial Transactions (Chapter 5).
	7.1.4 SEEM Framework with DOT-VCC and other functions (Chapter 6)

	7.2 Ongoing and Future Work
	7.2.1 SEEM Framework with DOT-VCC and other functions.
	7.2.2 Extending Split Functions for Trusted Operations (Chapter 4).
	7.2.3 Building a Standalone TrustProvider (Section 7.1.4D) requires the following:
	7.2.4 Work Plan and Prototype Implementation
	7.2.5 Challenges

	References
	Vita

