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Abstract

Unmanned Aerial Vehicles (UAVs) have become indispensable in a variety of fields, includ-

ing surveillance, emergency response, packet delivery, and data collection for the Internet

of Things (IoT). These systems are also critical in enhancing connectivity within cellular

networks. This dissertation focuses on improving UAV operational efficiency and security by

advancing trajectory optimization techniques, enhancing trajectory design through antenna

radiation patterns, and increasing resilience against cyber-physical attacks, particularly GPS

sensor faults.

The first part of the study addresses UAV trajectory optimization in wireless communi-

cations, highlighting the significance of trajectory planning in improving the efficiency and

reliability of UAV operations. Effective trajectory planning ensures optimal energy usage

and maximized coverage areas, crucial for maintaining robust communication links with

ground base stations (GBS). This optimization is vital for enhancing both the performance

and safety of UAV operations in complex environments.

Building on trajectory optimization, the second part of the research explores the impact

of antenna radiation patterns on UAV trajectory design. The study develops an Enhanced

Artificial Potential Field (Enhanced-APF) algorithm that integrates the 3D radiation pat-

terns of antennas equipped on UAVs. This integration is essential for facilitating effective

collision avoidance and smoother navigation paths, thereby optimizing UAV performance in

scenarios involving multiple UAVs and ensuring safer operations across various applications.

The final part of the dissertation introduces a novel algorithm, the Resilient Cyber-Attack

Artificial Potential Field (RCA-APF), designed to enhance the resilience of UAV path plan-

ning against permanent GPS faults within a cyber-physical system (CPS) framework. This

algorithm employs a three-stage process: detecting GPS faults due to the attack, estimating

UAV location using Received Signal Strength (RSS) trilateration, and adjusting the UAV’s



path planning accordingly. The effectiveness of this approach is validated through rigorous

experimental and simulation testing, demonstrating its capability to substantially improve

the robustness of UAV operations against cyber-physical threats.

Overall, this research provides comprehensive strategies for improving UAV trajectory

planning and resilience, offering significant advancements in the safe and efficient deployment

of UAVs. By integrating advanced cyber-security measures with strategic communications

engineering, the dissertation contributes to the development of more reliable and effective

UAV systems, paving the way for their expanded use in increasingly complex scenarios.
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Chapter 1

Introduction

1.1 UAV Path Planning in Wireless Communication

The utilization of unmanned aerial vehicles (UAVs), also known as drones, has expanded into

various civilian domains such as aerial mapping, delivery of goods and healthcare supplies,

and search and rescue operations [1], [2]. Advances in battery power management and solar

energy harvesting, coupled with their ability to bolster network capabilities, have led to

the growing use of UAVs as aerial base stations. This development positions UAVs as key

players in reshaping the future of broadband communication networks. Utilizing UAVs as

aerial base stations brings several advantages. Their higher altitude increases the probability

of establishing line-of-sight (LoS) connections with ground users. Additionally, the mobility

and flexible deployment of UAVs facilitate rapid and adaptable communication services on

demand [3].

However, the deployment of UAVs as airborne base stations is not without challenges.

Critical issues include optimizing the 3D positioning of UAVs, managing energy constraints,

controlling interference, and formulating efficient path planning strategies [4]. UAV path

planning is particularly vital in enhancing wireless communication, involving the careful de-

sign of flight routes to optimize signal coverage, data collection, and transmission efficiency
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[5], [6]. This is crucial in scenarios like establishing temporary communication networks in

disaster-stricken areas or improving coverage in low-signal regions. UAVs, equipped with

communication payloads, dynamically adjust their positions based on user distribution, ter-

rain, and signal strength, thereby optimizing network performance [7]. Advanced algorithms

that account for factors such as battery life, flight duration, and environmental challenges

are used in path planning. This approach not only broadens coverage but also minimizes

latency, enhancing the quality of service in wireless networks. The integration of UAVs into

wireless communication systems represents a significant step towards more flexible, resilient,

and efficient network infrastructures [8].

Furthermore, UAV trajectory optimization is a critical aspect of enhancing the effective-

ness of UAVs as airborne base stations in wireless communication networks [9]. It involves

the precise design of UAV flight paths to meet specific communication goals while consid-

ering operational constraints. This process is essential for ensuring effective area coverage,

consistent signal quality, and optimal energy utilization of UAVs.

Overall, UAV trajectory optimization is a complex but crucial element that greatly en-

hances the functionality of UAVs in wireless communication networks. It ensures that UAVs

provide not only extended coverage and improved connectivity but also operate in an effi-

cient and sustainable manner, leading to more advanced and reliable wireless communication

solutions [10].

1.2 Antenna Pattern Design for UAVs

Due to the UAVs’ capability to navigate in any direction at varying speeds, there’s a press-

ing need for innovative antenna designs tailored for airborne communication to achieve high

data rates. A viable solution for facilitating high-speed data transmission between UAVs

and ground base stations (GBSs) is the implementation of antennas on UAVs. These an-

tennas leverage gyroscopic, accelerometer, and GPS data to maintain alignment with the
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ground base station (GBS), adjusting their orientation as necessary [11]. Additionally, the

limited space available on UAVs, particularly smaller models, poses a challenge for antenna

installation [12]. To address this, the adoption of a tilted beam circularly polarized antenna

mounted on the UAV’s underside has been proposed [13], offering a space-efficient solution.

Simulation studies have demonstrated that such an antenna configuration can deliver su-

perior performance in terms of return losses, axial ratio, and radiation patterns, thereby

enhancing airborne communication efficacy.

1.3 Cyber-Attacks to the UAV Systems

Since 2007, the surge in the popularity of drones has been paralleled by an increase in

cyber-attacks targeting UAV systems, highlighting significant security concerns [14]. These

attacks predominantly target the UAVs’ radio links, essential for the transmission of data,

control signals, and GPS navigation signals to and from cellular User Equipments (UEs).

The interception of these signals by adversaries could lead to data theft or even the hijacking

of UAVs, underscoring the critical need to secure these wireless communication channels for

maintaining the integrity of UAV systems.

The vulnerability of UAVs is further exacerbated by their operation in complex and

unregulated environments, compounded by the lack of stringent security protocols and the

openness of wireless communication channels. This vulnerability landscape has prompted

extensive research into the cyber-attack susceptibilities of UAVs, focusing on identifying and

addressing potential security loopholes [15], [16].

UAVs, as cyber-physical systems (CPS), comprise an intricate network of sensors, com-

munication frameworks, computational units, and control mechanisms. Each component

within this network is a potential cyber-attack target, which could lead to critical sys-

tem malfunctions and compromised operational states. Understanding these cyber-physical

threats is imperative for developing robust defensive strategies. The study of UAVs, given
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their complexity and role as safety-critical CPS, provides invaluable insights into the cyber-

physical vulnerabilities that could affect other critical CPS infrastructures, highlighting the

importance of comprehensive security measures in safeguarding these advanced systems.

1.4 Dissertation Organization

In Chapter 2, we conduct a detailed literature review and address the intricacies of optimizing

the trajectory paths of Unmanned Aerial Vehicles (UAVs), a task that initially presents itself

as a nonconvex optimization problem. Nonconvex problems are known for their complexity

and computational challenges, often requiring sophisticated approaches to find solutions.

The proposed methodology in the literature simplifies this complexity by transforming the

problem into a convex format, which is significantly more manageable and solvable using

standard optimization techniques. This transformation is achieved through the strategic

introduction of an auxiliary variable, which serves as a pivotal element in reformulating the

problem [2].

To validate the considered approach and ensure its practical applicability, we employ the

CVX optimization tool, a powerful software package designed for solving convex optimization

problems [17]. CVX provides a user-friendly interface and robust computational capabilities,

making it an ideal choice for tackling complex optimization tasks. By leveraging CVX, we

are able to precisely map out the optimal trajectories for UAVs as they navigate through a

network of Ground Base Stations (GBSs) [2].

In Chapter 3, we delve deeper into the development of a cutting-edge narrowband shad-

owing model tailored for High Altitude Platforms (HAPs), such as Unmanned Aerial Vehicles

(UAVs), operating within the urban fabric. This model is specifically designed for the 2-6

GHz frequency spectrum, which is pivotal for the infrastructure of contemporary mobile

networks [18]. The essence of this model lies in its ability to accurately predict the proba-

bility of establishing Line-of-Sight (LoS) connections between HAPs and terrestrial mobile
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stations, a critical factor in ensuring reliable communication links. Moreover, the model

meticulously quantifies the additional path losses encountered in Non-Line-of-Sight (NLoS)

scenarios, where physical obstructions lead to signal degradation, with a particular emphasis

on how elevation angles influence these dynamics.

A unique aspect of this model is its capability to distinguish between LoS probabilities in

varying urban densities, ranging from sparsely populated suburban areas to densely packed

high-rise urban centers. This granularity allows for a nuanced understanding of how different

urban landscapes impact the connectivity and performance of HAP-based systems, providing

valuable insights for optimizing network designs in diverse urban settings.

Building on this foundation, the chapter also addresses the challenge of interference in

heterogeneous aerial and terrestrial Internet of Things (IoT) networks. These networks of-

ten comprise a mix of simple wireless communication devices, where managing interference

becomes crucial for maintaining network integrity. We discuss an innovative interference mit-

igation strategy that hinges on a cross-dipole antenna configuration. This setup intelligently

switches between z-axis and y-axis dipole antennas depending on the specific characteristics

of the receiving device, thereby optimizing signal reception.

The effectiveness of this antenna arrangement is rigorously analyzed through a compre-

hensive 3D channel model that incorporates the complex radiation patterns of the dipole

antennas and the precise geographical positioning of IoT devices. Our analysis reveals that

the y-axis dipole antenna configuration significantly enhances the performance of aerial-

based receivers, outperforming the conventional z-axis setup [19]. This finding is pivotal,

as it highlights a practical solution for improving aerial receiver performance in mixed IoT

networks, thereby enhancing overall network efficiency and reliability in the intricate urban

IoT ecosystems.

In Chapter 4, we refine the Artificial Potential Field (APF) algorithm [20], a cornerstone

in UAV navigation technology, to better cater to the intricate demands of both individual

UAV flights and coordinated swarm operations. This advancement was pivotal in overcoming
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common navigational challenges, such as avoiding physical obstacles and preventing mid-air

collisions among UAVs—a factor of paramount importance in scenarios involving multiple

drones operating in close proximity, known as swarm dynamics.

A novel aspect of our approach was the integration of antenna radiation pattern consider-

ations into the trajectory planning process. This inclusion was based on the understanding

that the quality of communication links, which are vital for the control and coordination

of UAVs, can be significantly influenced by the UAV’s orientation and position relative to

ground stations and other UAVs. By accounting for these factors, our algorithm was able to

optimize flight paths not only for safety and efficiency but also for maintaining robust and

reliable communication links.

The efficacy of our enhanced APF algorithm was validated through comprehensive sim-

ulations, which illustrated the algorithm’s proficiency in guiding UAVs to their intended

destinations while adeptly managing the dual objectives of navigational safety and commu-

nication integrity. The simulation outcomes highlighted the algorithm’s potential to sig-

nificantly improve operational outcomes in real-world UAV deployments. The content of

this chapter is published as a conference paper in 2021 IEEE/AIAA 40th Digital Avionics

Systems Conference (DASC) [21].

In Chapter 5, we consider the evolving security paradigm for Unmanned Aerial Vehicles

(UAVs), shedding light on the intricate cyber and physical threats that these systems face.

As UAVs become increasingly integrated into various sectors, their operation within Cyber-

Physical Systems (CPS) exposes them to a unique blend of vulnerabilities that span both

the digital and tangible realms. Our study adopts a comprehensive perspective, examining

how cyber threats, such as data breaches, hacking, and cyber-physical interference, can

transcend the digital boundary to induce tangible, often hazardous, consequences in the

physical operation of UAVs. This includes scenarios where cyber intrusions lead to loss of

control, collisions, or compromised mission integrity [22].

This holistic analysis is pivotal for several reasons. Firstly, it acknowledges that the

6



security of UAVs cannot be compartmentalized into separate cyber and physical domains.

Instead, it underscores the necessity of a unified security strategy that addresses the con-

tinuum between cyber intrusions and their physical outcomes. Secondly, by exploring the

symbiotic relationship between these threat vectors, our work illuminates the broader im-

plications for CPS security. UAVs, as integral components of CPS, exemplify the challenges

and complexities of securing systems where digital and physical elements are inextricably

linked.

In Chapter 6, we introduce a two-step detection and recovery strategy to address cyber-

physical attacks on UAV GPS systems. This strategy begins by detecting an attack when

a UAV loses connection with its nearest ground base station (GBS), likely due to false data

injections that alter its path. Our solution includes a novel detection and estimation archi-

tecture: initially, the UAV’s location under GPS attack is estimated using Received Signal

Strength (RSS) based trilateration. Subsequently, we implement a cyber-attack resilience

procedure utilizing an enhanced version of the Artificial Potential Field (APF) algorithm,

termed Resilience to Cyber-Attacks APF (RCA-APF).

The RCA-APF algorithm specifically addresses permanent GPS faults, effectively plan-

ning and recalibrating the UAV’s path by utilizing real-time coordinates during flight. It

not only facilitates obstacle avoidance but also ensures the UAV can navigate safely through

potentially hazardous zones, even with compromised GPS data. The RCA-APF algorithm

works in conjunction with the RSS trilateration to provide precise localization and safe

navigation, forming a comprehensive solution to GPS inaccuracies.

In comparison to traditional APF algorithms, RCA-APF offers significant enhancements:

• It dynamically adjusts its responses based on environmental context, such as the prox-

imity to obstacles and the severity of GPS faults.

• It demonstrates increased robustness in dynamic environments, crucial for UAV oper-

ation in GPS-compromised scenarios.

7



The effectiveness of this approach is validated through simulation-based experiments, demon-

strating the algorithm’s capability to maintain UAV safety and operational integrity under

cyber-physical threats. The content of this chapter has been accepted for publication in the

ACM Transactions on Cyber-Physical Systems [23].
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Chapter 2

UAV Trajectory Optimization in

Wireless Communication – Literature

Review and Simulation Results

2.1 Introduction

Unmanned Aerial Vehicles (UAVs) are garnering significant interest for their potential in

future applications that demand autonomous and swiftly deployable systems. Unlike tra-

ditional communication methods reliant on fixed infrastructure, UAV-aided networks offer

enhanced benefits due to their inherent mobility [24], [5]. However, realizing the full poten-

tial of UAVs in such networks necessitates careful resource allocation, a task made complex

by the UAVs’ ability to freely navigate the airspace.

While utilizing UAVs as aerial base stations offers many benefits, several technical hur-

dles must be addressed. Key challenges encompass the strategic 3D positioning of UAVs,

managing energy constraints, mitigating interference, and devising effective path planning

strategies [25], [26]. Among these, the issue of deployment stands out due to its significant

influence on both energy usage and the level of interference produced by the UAVs.
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Yet, only a few studies have explored the relationship between UAV deployment and its

impact on wireless performance [24], [5]. For example, research presented in [26] examines

the role of multiple UAVs serving as wireless relays to support ground sensors, focusing

on the balance between maintaining UAV connectivity and maximizing coverage. However,

this study does not explore the concept of UAVs functioning as aerial base stations or

consider the potential interference in downlink communications between them. In contrast,

[27] employs evolutionary algorithms to determine the optimal positioning of Low Altitude

Platforms (LAPs). The approach in [27], though, is based on the premise that LAPs can

have overlapping coverage areas without issue, thanks to the use of Inter-Cell Interference

Coordination (ICIC), a solution that necessitates additional communication measures.

To the best of our understanding, Zeng et al. [28] were the pioneers in examining the

optimization of power and trajectory for UAV-assisted mobile relay systems, demonstrating

that substantial throughput improvements are attainable by leveraging channel fluctuations.

Lyu et al. [29] delve into a more straightforward scenario, considering users uniformly

distributed in a linear arrangement on the ground. These insights have inspired us to leverage

the mobility of UAVs to enhance service quality for ground users scattered randomly, by

dynamically modifying the UAVs’ positions and transmission power.

In this chapter, we perform a detailed literature review and delve into the challenges of

power distribution and trajectory optimization within UAV-assisted networks, focusing on a

scenario where a UAV simultaneously facilitates network connectivity for multiple nodes. We

consider a non-convex optimization framework aimed at maximizing the minimum average

throughput over a specified duration, taking into account both trajectory limitations and

power constraints. Leveraging the unique properties of the problem at hand, we analyze an

effective algorithm that concurrently optimizes transmit power and UAV trajectory. This

involves initially tackling two separate subproblems: optimizing transmit power with a fixed

trajectory and optimizing the trajectory with a set transmit power. Additionally, we consider

a lower bound for the non-convex function in the trajectory optimization subproblem to
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facilitate its resolution. The efficacy of the approach is corroborated by simulation results,

which also highlight a water-filling characteristic of the optimized transmit power across the

spatial domain.

2.2 Introduction to Convex Optimization

A mathematical optimization problem, often simply referred to as an optimization problem,

is presented in the following format [30]:

minimize h0(x)

subject to hj(x) ≤ bj, j = 1, ...,m

(2.1)

In this context, the vector x = (x1, ..., xn) represents the set of variables to be optimized

in the problem. The function h0 : Rn → R serves as the objective function to be minimized

or maximized. The functions hj : Rn → R, j = 1, ...,m, act as the inequality constraints

of the problem, and the constants bj, ..., bm define the bounds or limits for these constraints.

A vector x∗ is deemed optimal or a solution to the problem (2.1) if it yields the lowest

objective value while adhering to all the constraints: for any vector z that meets h1(z) ≤

b1, ..., hm(z) ≤ bm it holds that h0(z) ≥ h0(x
∗).

We typically examine specific families or categories of optimization problems, distin-

guished by the distinct structures of their objective and constraint functions. A notable

instance is when the optimization problem, as outlined earlier (2.1), is termed a linear pro-

gram. This classification arises when both the objective and the constraint functions exhibit

linear characteristics h0, ..., hm to satisfy the following

hi(αx+ βy) = αhi(x) + βhi(y) (2.2)

for all x, y ∈ Rn and all α, β ∈ R. When the optimization problem does not adhere to

linearity, it is referred to as a nonlinear program.
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Indeed, a convex optimization problem is characterized by having both objective and

constraint functions that are convex. This implies that these functions fulfill the specific

inequality condition associated with convexity which given as follows

hi(αx+ βy) ≤ αhi(x) + βhi(y) (2.3)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 1, β ≥ 1.

Given that every linear program inherently qualifies as a convex optimization problem,

it’s accurate to view convex optimization as an extension or broader category encompassing

linear programming.

2.2.1 Solving Optimization Problems

A solution method for a category of optimization problems refers to an algorithm designed to

find a solution to a specific problem within that category, achieving a predetermined level of

accuracy. Since the late 1940s, there has been significant investment in creating algorithms

to solve various optimization problems, analyzing their characteristics, and developing robust

software implementations. The efficiency of these algorithms, meaning our capacity to resolve

the optimization problem, can greatly vary. This variability is influenced by factors such as

the specific nature of the objective and constraint functions, the number of variables and

constraints involved, and any unique structures like sparsity. A problem is considered sparse

if each constraint function is influenced by only a limited subset of the variables [30].

However, there are notable exceptions to the general notion that most optimization prob-

lems pose significant challenges to solve. For certain classes of problems, we possess effective

algorithms capable of reliably solving large-scale instances, involving hundreds or even thou-

sands of variables and constraints. Prominent examples include least-squares problems and

linear programs. Less commonly recognized is that convex optimization also falls into this

category of exceptions. Similar to least-squares and linear programming, convex optimiza-
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Figure 2.1: UAV Trajectory System Model

tion benefits from highly efficient algorithms that can dependably and effectively tackle large

convex problems.

2.3 System Model And Problem Formulation

In this section, consider a situation where a group of N Ground Base Stations (GBSs), de-

noted as N = {1, 2, ..., n, ..., N}, are scattered randomly on the ground, and a UAV, cruising

at a constant altitude H, offers network connectivity to these nodes over a limited time

period T . Given that the UAV’s takeoff and landing spots are typically predetermined for

specific tasks, the starting and ending coordinates are specified as [x0, y0, H] and [xF , yF , H],

respectively. By the same token, we consider a system model for UAV trajectory optimiza-

tion, starting from an initial location and concluding at a final location, all within a specified

circular geographical area with a radius of R, as illustrated in Figure 2.1. For simplicity, let’s
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consider [x0, y0, 0] as the origin of the coordinate system in question. The entire duration

T is segmented into M brief intervals, each of a duration δ, such that T = Mδ. Conse-

quently, the UAV’s path can be represented as a series of points x[m], y[m], H, where m

belongs to the set M = {1, ...,M}. The choice of M , the count of discrete points, balances

computational complexity against the precision of the trajectory approximation. In essence,

a larger M or a smaller δ increases the number of optimization variables, thereby elevating

the complexity. Conversely, it allows for a more finely detailed and accurate representation

of the trajectory. Given that the UAV’s maximum flight speed is capped at V , it is necessary

to impose constraints on the UAV’s positions as outlined below:

(x[1]− x0)2 + (y[1]− y0)
2 ≤ (V δ)2,

(x[m]− x[m− 1])2 + (y[m]− y[m− 1])2 ≤ (V δ)2,

(xF − x[M ])2 + (yF − y[M ])2 ≤ (V δ)2.

(2.4)

Given that the UAV maintains a constant altitude H throughout its flight, we can, for the

sake of simplicity, concentrate on the horizontal coordinates {x[m], y[m]} in our subsequent

analysis. In particular, we consider a downlink orthogonal frequency division multiple access

scheme. The total available bandwidth and the transmit power are represented by B and

PT , respectively. Bandwidth is evenly distributed among all the nodes being served. The

channel power gain between the UAV and the nth node during the mth time slot, denoted

as gn[m], is primarily influenced by the line-of-sight component [31], [29], [10].

gn[m] =
β0

(x[m]− xn)2 + (y[m]− yn)2 +H2
(2.5)

where β0 represents the channel power gain at the reference distance d0, and (xn, yn, 0)

denotes the coordinates of the nth GBS. As indicated by equation (2.5), the channel power

gain diminishes as the altitude H increases. Consequently, a lower altitude is preferable as

it yields optimal channel conditions. Given this, the optimization of the UAV’s altitude is
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not addressed in this work. The average throughput experienced by the nth GBS over the

time period T is as follows [5]:

Rn =
1

T

M∑
m=1

B

N
log2(1 +

pn[m]gn[m]

B/Nσ2
) (2.6)

where pn[m] denotes the transmit power of the UAV directed towards the nth GBS, and

σ2 represents the noise power spectral density. To guarantee communication access for all

ground GBSs, as opposed to adopting a winners-take-all approach, the focus is on maximiz-

ing the minimum average throughput. This is achieved by judiciously allocating transmit

power and fine-tuning the UAV’s flight trajectory. The problem under consideration is math-

ematically expressed as follows [5]:

max
{x[m],y[m]},{pn[m]}

min
n

Rn

subject to C1 :
N∑

n=1

M∑
m=1

pn[m] ≤ PT ,

C2 : pn[m] ≥ 0,∀n ∈ N,∀m ∈ M,

C3 : (x[1]− x0)2 + (y[1]− y0)
2 ≤ (V δ)2,

C4 : (x[m]− x[m− 1])2 + (y[m]− y[m− 1])2 ≤ (V δ)2,m = 2, ...M,

C5 : (xF − x[M ])2 + (yF − y[M ])2 ≤ (V δ)2

(2.7)

Constraints C1 and C2 pertain to the power budget, while C3 to C5 relates to the spatial

limitations as outlined in equation (2.4). The challenge in this optimization problem stems

from its non-convex nature, caused by the interdependence of transmit power and trajec-

tory variables. This complexity renders the problem unsolvable using conventional convex

optimization methods.
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2.4 Trajectory Optimization and Transmit Power

By incorporating a new variable s, the initial problem stated in equation (2.7) can be rede-

fined as presented in references [29] and [32].

max
{x[m],y[m]},{pn[m]},s

s

subject to Rn ≥ s,∀n ∈ N,

C1 :
N∑

n=1

M∑
m=1

pn[m] ≤ PT ,

C2 : pn[m] ≥ 0,∀n ∈ N,∀m ∈ M,

C3 : (x[1]− x0)2 + (y[1]− y0)
2 ≤ (V δ)2,

C4 : (x[m]− x[m− 1])2 + (y[m]− y[m− 1])2 ≤ (V δ)2,m = 2, ...M,

C5 : (xF − x[M ])2 + (yF − y[M ])2 ≤ (V δ)2

(2.8)

Despite that equation (2.8) is still non-convex nature, it’s noteworthy that Rn exhibits

concavity with respect to the transmit power pn[m] when gn[m] is fixed. Additionally, a

lower bound for Rn can be established when the transmit power is specified. Building

on these insights, the approach initially tackles two separate subproblems: optimizing the

transmit power with a predetermined trajectory, and optimizing the trajectory with a fixed

transmit power. Subsequently, an integrated algorithm for optimizing both transmit power

and trajectory is developed in the literature.

2.4.1 Transmit Power Optimization With Given Trajectory

When UAVs are deployed for particular tasks or services, such as aerial photography or cargo

delivery, a third party may initiate the activation of service to GBSs. In these scenarios, the

trajectory is predetermined. Given this fixed trajectory, represented by {x[m], y[m]},m =

1, ...,M , the problem of optimizing transmit power is formulated as follows:
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max
{pn[m]},s

s

subject to C1 :
1

T

M∑
m=1

B

N
log2(1 +

Npn[m]gn[m]

Bσ2
) ≥ s,∀n ∈ N,

C2 :
N∑

n=1

M∑
m=1

pn[m] ≤ PT ,

C3 : pn[m] ≥ 0,∀n ∈ N, ∀m ∈ M

(2.9)

This problem (2.9) falls within the realm of standard convex optimization, for which es-

tablished algorithms, like the interior point method with a computational complexity of

O(N3M3), are applicable [30]. Additionally, by adhering to the guidelines in [33], an algo-

rithm with reduced complexity can be devised.

2.4.2 Trajectory Optimization With Given Transmit Power

Given the constraints imposed by the UAV’s hardware capabilities, the transmit power might

be predetermined or fixed. Under these conditions, the problem of optimizing the UAV’s

trajectory, with the transmit power {pn[m]} set in advance, can be redefined as follows:

max
{x[m],y[m]},s

s

subject to C1 :
1

T

N∑
n=1

B

N
log2(1 +

Npn[m]β0

Bσ2(x[m]− xn)2 + (y[m]− yn)2 +H2
) ≥ s,∀n ∈ N,

C2 : (x[1]− x0)
2 + (y[1]− y0)

2 ≤ (V δ)2,

C3 : (x[m]− x[m− 1])2 + (y[m]− y[m− 1])2 ≤ (V δ)2,m = 2, ...M,

C4 : (xF − x[M ])2 + (yF − y[M ])2 ≤ (V δ)2

(2.10)

Given that constraint C1 is non-convex, an effective algorithm has been formulated, as

per reference [31], by iteratively refining the objective using the lower bound of constraint

C1.
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Let the trajectory at the j-th iteration be represented by {xj[m], yj[m]}. The trajec-

tory for the subsequent j +1-th iteration is denoted as {xj+1[m], yj+1[m]}, where xj+1[m] =

xj[m] + ∆j
x[m] and yj+1[m] = yj[m] + ∆j

y[m]. Here, ∆j
x[m] and ∆j

y[m] signify the ad-

justments made at the j-th iteration. Consequently, the rate Rj+1
n can be expressed as

Rj+1
n = 1

T

∑M
m=1

B
N
rj+1
n,m, where rj+1

n,m denotes the rate at the j + 1-th iteration for the n-th

GBS and the m-th time slot.

rj+1
n,m = log2

(
1 + γ

β0

djn,m + f
(
{∆j

x[m],∆j
y[m]}

)) (2.11)

where

γ = Npn[m]/Bσ2,

djn,m =
(
xj[m]− xn

)2
+
(
yj[m]− yn

)2
+H2,

f
(
{∆j

x[m],∆j
y[m]}

)
= ∆j

x[m]2 +∆j
y[m]2 + 2

(
xj[m]− xn

)
∆j

x[m] + 2
(
yj[m]− xn

)
∆j

y[m].

(2.12)

Given that the function log2(1 +
a

b+x
) exhibits convexity, it follows that

log2

(
1 +

a

b+ x

)
≥ log2

(
1 +

a

b

)
− a

ln 2b(a+ b)
x (2.13)

which results from the first order condition of convex functions [30]. This further leads to

rj+1
n,m ≥ lbrj+1

n,m = log2

(
1 + γ

β0

djn,m

)
− γβ0

ln 2djn,m
(
γβ0 + djn,m

)f ({∆j
x[m],∆j

y[m]}
)
. (2.14)

Starting with the trajectory {xj[m], yj[m]} at the j-th iteration, the trajectory for the j+1-th

iteration is determined by addressing the subsequent optimization problem:
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max
{∆j

x[m],∆j
y [m]},s

s

subject to C1 :
1

T

M∑
m=1

B

N
lbrj+1

n,m ≥ s,∀n ∈ N,

C2 : (xj[1] + ∆j
x[1]− x0)

2 + (yj[1] + ∆j
y[1]− y0)

2 ≤ (V δ)2,

C3 : (xj[n] + ∆j
x[n]− xj[n− 1]−∆j

x[n− 1])2+

(yj[n] + ∆j
y[n]− yj[n− 1]−∆j

y[n− 1])2 ≤ (V δ)2, n = 2, ...N,

C4 : (xF − xj[N ]−∆j
x[N ])2 + (yF − yj[N ]−∆j

y[N ])2 ≤ (V δ)2

(2.15)

This constitutes a convex optimization problem that can be resolved through established

convex optimization methods [30]. The optimization variables, representing the increments

at each iteration, yield a sequence of non-decreasing values. However, these values are

constrained to not exceed the optimal solution of problem (2.10), ensuring that convergence

is assured.

2.5 Simulation Results

In this section, we employ CVX [17], [34], a software package for convex optimization ref-

erenced in [30], to address the convex optimization problem at hand. CVX is specifically

designed for solving convex problems efficiently. The simulations were conducted using this

technique, and for clarity, the environment setup parameters governing these simulations are

detailed in Table 2.1. This table offers a detailed summary of the simulation parameters,

elucidating the setup used to both illustrate the efficacy of the proposed approach and to

tackle the convex optimization challenge presented.

For the initial and final locations specified in Table 2.1, we examine two scenarios re-

garding the positioning of the Ground Base Stations (GBSs). In Figure 2.2, showcases the

UAV’s flight path, initiating from a starting point and culminating at a designated endpoint.
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Table 2.1: Parameters for UAV Simulation Analysis

Parameters Parameter Description Values
H The fix height of the UAV 100 m

(x0, y0, H) Initial location of the UAV (55 m, 83 m, 100)
(xF , yF , H) Final Location of the UAV (1945 m, 83 m, 100)

σ2 The unit bandwidth −169 dBm/Hz
V UAV speed 100 m/s
T Time 50 sec
PT Transmit Power 5 W
M The number of discrete points 50
δ The time slot length 1 sec
β0 The channel power gain 10−3
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Figure 2.2: The UAV Trajectory Optimization case I

Additionally, the Ground Base Stations (GBSs) are strategically positioned at three distinct

coordinates: (200, 400, 0), (1000, 200, 0), and (1800, 400, 0). The depicted optimized trajec-

tory thoughtfully includes all GBS locations, ensuring comprehensive coverage. Notably, this

particular flight route offers a significant benefit: it affords the UAV ample opportunity to

hover over each GBS, facilitating thorough data exchange or surveillance before proceeding to

the subsequent station. This aspect of the trajectory underscores its efficiency and strategic
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Figure 2.3: The UAV Trajectory Optimization case II

Table 2.2: Ground Base Stations (GBSs) coordinates for each scenario

Parameters Coordinates Value (x, y, z)

Case I

GBS1 (200 m, 400 m, 0)

GBS2 (1000 m, 200 m, 0)

GBS3 (1800 m, 400 m, 0)

Case II

GBS1 (100 m, 200 m, 0)

GBS2 (1000 m, 200 m, 0)

GBS3 (1800 m, 400 m, 0)

trajectory planning in maximizing the UAV’s operational effectiveness over the GBSs.

Similarly, Figure 2.3, depicts the UAV’s optimized flight path in case II, which in-

cludes visits to Ground Base Stations (GBSs) placed at fixed location (100m, 200m, 0),

(1000m, 200m, 0), and (1800m, 400m, 0), respectively. The UAV embarks on its route from

the starting point, navigating through each GBS en route to its final destination. In addi-

tion, observations from 2.3 reveal that the GBSs are positioned at distinct locations. Despite

this, the UAV’s optimized trajectory ensures it passes over each GBS, demonstrating the ef-
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fectiveness of the trajectory planning in accommodating the varied positions of the GBSs.

2.6 Conclusion

In this chapter, we investigate the trajectory optimization of a UAV by transforming a non-

convex optimization challenge into a convex optimization problem, a process that includes

the introduction of an auxiliary variable, s. We then leverage the CVX optimization frame-

work to validate the approach, effectively mapping out the UAV’s path as it traverses the

strategically positioned Ground Base Stations (GBSs). This methodology not only show-

cases the practical implementation of convex optimization strategies in UAV route planning

but also emphasizes the effectiveness of the CVX tool in both visualizing the optimized flight

path and ensuring its compliance with the predetermined GBS coordinates.
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Chapter 3

Designing 3D Antenna Patterns for

UAV-Enabled Wireless Connectivity

3.1 Introduction

Drones, also known as Unmanned Aerial Vehicles (UAVs), have captured widespread interest

in recent times, thanks to their vast array of promising uses. Their application spans across

military, commercial, and public safety sectors, encompassing tasks such as surveillance,

delivery services, drone taxis, live video feeds, and search and rescue operations [35]. How-

ever, to unlock the full potential of these emerging applications, establishing reliable wireless

connectivity for UAVs in beyond-visual-line-of-sight (BVLOS) conditions is essential. This

objective can be met by integrating UAVs with cellular networks (Cellular-Connected UAVs

or C-UAVs), facilitating uninterrupted communication and data transfer between the UAVs

and ground base stations (BS) [36], [37].

For the effective deployment of Cellular-Connected UAVs (C-UAVs) within existing ter-

restrial networks, a thorough understanding of the distinct air-to-ground signal propagation

characteristics is essential. Specifically, the radio propagation model for C-UAVs is influenced

by two primary factors: 1) the dependency of antenna radiation patterns on the elevation
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angle, and 2) the pronounced impact of ground reflections. In traditional ground-to-ground

wireless communications, the altitudes of the transmitter (Tx) and receiver (Rx) are typi-

cally constant and comparable, allowing for a simplified 2D modeling of radio propagation.

However, the introduction of 3D spatial considerations in air-to-ground C-UAV scenarios ne-

cessitates a more detailed examination of 3D antenna patterns and ground reflection effects

[19]. Beyond influencing wireless coverage, the air-to-ground propagation traits of Cellular-

Connected UAVs (C-UAVs) play a vital role in determining the accuracy of 3D wireless

localization involving C-UAVs. The ability to swiftly and precisely pinpoint signal origins

using UAVs is crucial across a range of applications in commercial, public safety, and military

contexts [38].

Recent studies have delved into UAV air-to-ground propagation models, taking into ac-

count the influences of ground reflection and three-dimensional antenna radiation patterns.

For instance, research documented in [39] utilized flight measurement datasets to charac-

terize air-to-ground channels, finding that the two-ray path loss model, which accounts for

ground reflection, offers a more precise representation of air-to-ground signal data. Another

study in [40] assessed UAV air-to-ground channels in open rural settings with various antenna

orientations, uncovering a significant reliance of received signal strength on the elevation an-

gle of the antenna pattern. Research presented in [41] explored the additional path loss in

cellular-to-UAV channels attributable to 3D antenna patterns. Furthermore, the study in

[42] examined how a UAV’s structure, along with the positioning and alignment of anten-

nas, affects the azimuth antenna pattern and polarization properties, utilizing an anechoic

chamber for antenna pattern assessments and conducting field tests through UAV-to-UAV

and ground-to-UAV configurations.

The study in [43] analyzed the effects of 3D antenna radiation patterns on the accuracy

of time difference of arrival (TDOA)-based three-dimensional localization of UAVs within a

terrestrial wireless network. The findings indicate that antenna patterns play a crucial role

in determining the precision of UAV localization.
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In this chapter, we delve into the influence of three-dimensional antenna patterns and

ground reflections on the path loss models for air-to-ground communication involving Cellular-

Connected UAVs (C-UAVs). We provide a detailed examination of the UAV’s air-to-ground

propagation model, highlighting how these factors affect signal transmission. Additionally,

we explore how the path loss varies with altitude across different environmental conditions,

offering insights into the complex interplay between UAV altitude, antenna design, and the

surrounding landscape on communication efficacy. This comprehensive analysis aims to en-

hance our understanding of the critical parameters shaping UAV communication systems in

diverse settings.

3.2 UAV Propagation Model

The likelihood of establishing line-of-sight (LoS) connections predominantly influences inter-

actions between UAVs and ground-based entities (such as ground base stations and mobile

devices). In such scenarios, the Free Space Loss (FSL) model is applicable for calculating

average path loss. Additionally, it’s essential to account for extra path loss caused by the

shadowing effects of buildings in Non-Line-of-Sight (NLoS) connections. In the context of

High Altitude Platforms (HAPs) like UAVs, especially for mobile applications in urban en-

vironments, realistic elevation angles usually span from 60 to 90 degrees. This positioning

places the HAP directly above the mobile terminal, optimizing the line-of-sight and enhanc-

ing connectivity within densely built-up areas. However, lower elevation angles are also

relevant, particularly in contexts such as interference analysis or other specialized studies.

For example, at a 5-degree elevation angle, the distance from a user to a point directly be-

neath the HAP on the ground spans approximately 211 km at an altitude of 22 km (factoring

in Earth’s curvature) and about 168 km at an altitude of 17 km [18].
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Figure 3.1: LOS probability in the ground as a function of the elevation angle for selected
environments

3.2.1 LOS Probability of the UAV

The probability of Line-of-Sight (LoS) occurrences within ground-level environments, as

influenced by the elevation angle, was determined for four distinct settings, as illustrated in

Figure 3.1. As demonstrated in [18], a precise function was developed to accurately align

with the simulation results presented in Figure 3.1.

PLOS(θ) = A− A−B

1 + ( θ−C
D

)E
(3.1)

where PLOS is the probability of Line-of-Sight (LoS), expressed as a percentage, is a function

of the elevation angle θ measured in degrees, with A,B,C, and D representing empirical

parameters specific to four typical environments, as detailed in Table 3.1. Additionally,

parameters characterizing an environment defined by arbitrary values of α, β, and γ in

accordance with the ITU-R Rec. P. 1410 statistical model can also be readily deduced from
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the simulation outcomes [44].

Table 3.1: Parameters for LOS Probability

Environment A B C D E
Suburban 101.6 0 0 3.25 1.241
Urban 120 0 0 24.3 1.229

Dense Urban 187.3 0 0 82.1 1.478
Urban High-Rise 352 -1.37 -53 173.8 4.67

3.2.2 Shadowing Loss of the UAV

This section delves into the effects of building-induced shadowing on Non-Line-of-Sight

(NLOS) connections. A notable advantage of using UAVs as high altitude aerial stations over

traditional satellites is their relatively shorter path length. This characteristic significantly

enhances the feasibility of establishing NLOS links between mobile stations and the UAVs,

thereby improving connectivity in urban environments where direct line-of-sight may be ob-

structed. Figure 3.2 presents a normalized histogram showcasing the simulation outcomes,

specifically the additional rooftop diffraction loss at 2.0 GHz for vertical polarization with an

elevation angle of 70 degrees. From the figure, a normal distribution pattern is discernible.

Additionally, the Probability Density Function (PDF) corresponding to the normal distribu-

tion, which has been fitted to the simulated data, is depicted in Figure 3.2. The expression

for the PDF of the normal distribution is as follows [18]:

pn(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(3.2)

where pn is normalized probability, µ the mean value in dB, and σ the standard deviation

in dB.
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Figure 3.2: Normalized histogram and PDF of shadowing loss at 2.0 GHz for vertical polar-
ization in a dense urban area

3.3 Modeling Air-to-Ground Path Loss of the UAV

In this section, we incorporate path loss models and three-dimensional antenna patterns to

examine and model the received signal strength. The expression for received signal strength

can be articulated as follows:

R = PTx − PL+ σ (3.3)

where PTx, PL and σ denote the transmit power, the path loss, and the shadowing compo-

nent, respectively.

3.3.1 UAV Path Loss Model

To depict the air-to-ground communication channel in rural settings, we utilize the two-ray

path loss model, which describes the interaction between a Ground Base Station (GBS)

tower and a UAV. This model accounts for both the direct line-of-sight (LoS) path and a
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Figure 3.3: The two-ray ground reflection model of the UAV

significant ground-reflected path, each playing a role in the signal received by the UAV. The

path loss as defined by this two-ray ground reflection model is formulated as follows [45]:

PL2r =

(
λ

4π

)2

×

∣∣∣∣∣
√

GTx(ϕl, θl)GRx(ϕl, θl)

dc
+

Γ(θr)
√

GTx(ϕr, θr)GRx(ϕr, θr)e
−j∆τ

da + db

∣∣∣∣∣
2

(3.4)

where GTx(ϕ, θ), GRx(ϕ, θ) denote the antenna gain of the transmitter and a receiver

from 3D antenna radiation pattern depending on azimuth ϕ and elevation θ angles, λ,

θr = tan−1
(
hGBS+hUAV

d

)
indicate wave-length and the ground reflection angle, and ∆τ =

2π(da+db+dc)
λ

indicates the phase difference of two paths at the UAV. In the two-ray ground

reflection model, the parameters for distance and angle are depicted in Figure 3.3. The

reflection coefficient for a vertically polarized signal off the ground can be characterized as

follows:

Γ(θr) =
ϵ0 sin θr −

√
ϵ0 − cos2 θr

ϵ0 sin θr +
√
ϵ0 − cos2 θr

(3.5)

where ϵ0 is the relative permittivity of the ground, which can be varied depending on the

ground condition. By incorporating the Line-of-Sight (LoS) component within the two-ray
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path loss framework, we derive the free-space path loss model, which is expressed as follows:

PLFS =

(
λ

4π

)2
∣∣∣∣∣
√
GTx(ϕl, θl)GRx(ϕl, θl)

dc

∣∣∣∣∣
2

(3.6)

3.3.2 UAV 3D Antenna Radiation Pattern

In this section, we delve into the significance of precise 3D antenna radiation patterns for

UAV air-to-ground propagation models. Terrestrial networks often assume isotropic antenna

gains, effectively representing the influence of omnidirectional antenna patterns within the

azimuth angle domain. However, this method may not account for the variation in antenna

gain with elevation angles, which is crucial in the 3D structure of air-to-ground networks.

To examine the effects of various 3D antenna patterns, we explore a theoretical dipole an-

tenna pattern. The radiation pattern of a dipole antenna is characterized by the normalized

antenna field pattern, denoted as L. When the dipole antenna is oriented along the z-axis,

its radiation pattern exhibits omnidirectional behavior with respect to the azimuth angle

(ϕ). The expression for the normalized antenna field pattern for a dipole antenna positioned

on the z-axis is given as follows [46], [47]:

Lz(θ) =
cos
(
πl0dlen

c
cos θ

)
− cos

(
πl0dlen

c

)
sin θ

(3.7)

where dlen, c, l0 denote the length of dipole antenna, the speed of light, and the carrier

frequency, respectively. Assuming a half-wavelength dipole antenna, where the antenna

length (dlen) equals half the wavelength (λ/2), the relationship πf0dlen
c

= π
2
is satisfied. Under

this condition, equation (3.7) can be reformulated as follows [48]:

Lz(θ) =
cos(π

2
cos θ)

sin θ
. (3.8)

Positioning the dipole antenna along the y-axis, the angle between the antenna’s orientation
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and the direction of signal propagation is determined by cos−1(ŝ · ŷ) = cos−1(sin(θ) sin(ϕ)),

where ŝ and ŷ represent the unit vectors of the signal and the y-axis, respectively. Conse-

quently, the normalized antenna field pattern for a dipole antenna aligned with the y-axis

can be expressed as follows [48]:

Ly(θ, ϕ) =
cos
(
π
2
cos (cos−1(sin(θ) sin(ϕ)))

)
sin (cos−1(sin(θ) sin(ϕ)))

. (3.9)

In this expression, θ represents the elevation angle, and ϕ denotes the azimuth angle. The

equation captures how the antenna’s response varies with these angles, illustrating the di-

rectional characteristics of the antenna’s radiation pattern. In addition, it is important to

recognize that the antenna’s field pattern along the y-axis is influenced by both the azimuth

angle (ϕ) and the elevation angle (θ). This implies that adjustments to either the azimuth

or elevation angle can result in variations in the antenna’s gain. Figure 3.4 displays the

dipole antenna pattern aligned along the z-axis which is derived from the analytical ex-

pression in equation (3.8), showcasing the distinctive donut shape that is emblematic of a

standard dipole antenna. Similarly, the normalized field patterns for dipole antennas aligned

along the y-axis, as derived from equations (3.9), are depicted in Figure 3.5 using Cartesian

coordinates.

3.4 Conclusion

In this chapter, we consider a narrowband elevation-dependent shadowing model specifically

devised for mobile systems operated by High Altitude Platforms (HAPs), such as UAVs,

within urban settings. This model, which is applicable in the 2–6 GHz frequency spectrum,

is pertinent to the infrastructure of mobile networks. It meticulously assesses the probabil-

ity of establishing Line-of-Sight (LoS) connections between HAPs and ground-based mobile

stations, and also quantifies the additional path loss due to shadowing in Non-Line-of-Sight

(NLoS) scenarios, with a particular focus on the impact of elevation angles. The model fur-
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Figure 3.4: The 3D dipole antenna pattern along Z-axis coordinate

Figure 3.5: The 3D dipole antenna pattern along Y-axis coordinate
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ther stratifies the LoS probabilities across a spectrum of urban environments, from the less

dense suburban areas to the highly congested high-rise urban centers, providing a compre-

hensive understanding of connectivity dynamics in diverse urban landscapes. Moreover, this

work delves into the development and scrutiny of an interference mitigation technique tai-

lored for heterogeneous aerial and terrestrial IoT networks, which are distinguished by their

utilization of straightforward wireless communication technologies. Central to this strat-

egy is the innovative deployment of a cross-dipole antenna setup at the transmission point,

which adeptly switches between the z-axis and y-axis dipole antennas contingent upon the

receiver’s characteristics. An in-depth exploration of the 3D channel model, which integrates

the intricate 3D radiation patterns of the dipole antennas and the geographical positioning

of IoT devices, substantiates the enhanced efficacy of the y-axis dipole antenna for servicing

aerial-based receivers, thereby outperforming the traditional z-axis configuration. This nu-

anced approach not only augments the performance of aerial receivers but also contributes

significantly to the optimization of network efficiency in complex urban IoT ecosystems.
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Chapter 4

Antenna Pattern Aware UAV

Trajectory Planning Using Artificial

Potential Field

4.1 Introduction

Recently, unmanned aerial vehicles (UAVs) have attracted much interest in both academia

and industry. UAVs have a wide range of commercial, civilian, and military applications.

Indeed, the new technological advances in autonomous drones have led to numerous ben-

eficial applications, e.g., in food delivery and humanitarian aid during disasters [49]. In

wireless communication systems, UAVs can also provide significant improvements to the

existing terrestrial communication infrastructure. Additionally, they can assist the 5G and

beyond wireless applications [50]. Also, UAVs can be quickly deployed to support the cellu-

lar networks and enhance the quality of service (QoS) [51]. In many cases, QoS is strongly

dependent on the location of a UAV determined by taking into account the ground users

and the number of base stations.

The optimal trajectory design of a UAV becomes a key challenge to provide the best

34



wireless connectivity for ground users. Therefore, many studies in the literature have ad-

dressed the trajectory design of UAVs. Finding the optimal position for UAVs to maximize

the throughput was studied in [52]. The authors of [2] considered the entire trajectory of

multiple UAVs to jointly optimize scheduling and user association. In [53], the 3D placement

of a single UAV and the base station, maximizing the number of covered users, and mini-

mizing the transmit power was considered. In the same direction, the authors of [25] studied

the optimal 3D deployment of multiple UAVs, maximizing the total coverage area of the

ground users. In addition to designing the UAV’s trajectory for its ability to be considered

as an aerial base station, the authors of [54] studied the cellular-enabled UAV communica-

tion system, in which a UAV flies from an initial to a final location via the shortest path

determined by applying graph theoretical tools.

One approach in UAV path planning is to use artificial potential field (APF) algorithms.

The APF method is a virtual force method that was first introduced by Khatib in [20].

It is developed to avoid collisions among multiple real-time robots operating in a complex

environment [20]. Recently, multiple studies have been published in the literature on UAV

path planning using APF. For instance, in [55], the authors developed dynamic APF path

planning for multirotor UAVs for following a ground moving target. Also, the optimized

APF for multi-UAV operation in 3-D dynamic space was studied in [56]. In [57], the authors

introduced and evaluated the artificial potential field approach with simulated annealing

(SA) which has been applied to local and global path planning. However, the artificial

potential field algorithm in UAV path planning and trajectory design depends on distance

calculations at each step the UAV makes in the system. Additionally, the initial and final

locations of UAVs are predefined, and coordination between agents is required for collision

avoidance.

As also noted above, numerous studies have considered the applications of APF and the

implementations on robots and to a limited extent on UAVs. To the best of our knowledge,

prior work has not taken into account the impact of antenna patterns on the UAV trajec-
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tory when using the APF algorithm. With this motivation, this work focuses primarily on

improving and implementing an APF-based algorithm for single-UAV and multiple UAV

trajectory designs while taking into account antenna radiation patterns, connectivity re-

quirements, and collision avoidance constraints. We implement and simulate circular regions

for UAVs to maintain the connectivity constraint, which is ensured by having a sufficiently

large signal-to-noise ratio (SNR) between the UAV and the nearest ground base station.

Additionally, we show the impact of adding 3D antenna patterns on the trajectory design of

the UAV. The algorithm chooses the shortest path for the UAV to reach its final destination.

We consider the UAV collision avoidance and obstacle avoidance in the entire system, where

UAVs avoid hitting each other while at the same time avoiding the fixed obstacles. The

critical part of the enhanced-APF algorithm finds the appropriate values for the parameters

such as UAV altitude, the threshold, attraction and repulsion gain coefficients, etc. Simu-

lation results demonstrate the impact of the antenna pattern on the UAV trajectory using

the enhanced-APF algorithm.

4.2 System Model

In this chapter, we consider a graphical area with a 3D Cartesian coordinate system, where

the horizontal coordinate of ground base station (GBS) k is fixed at Wk = [xk, yk]. All UAVs

are assumed to fly at an altitude of Hu above the ground, and the time-varying horizontal

coordinate of the UAV at time instant t is denoted by Zu = [xu(t), yu(t)]. In this model, we

assume that each UAV starts from a fixed initial location Zs = [xs, ys], and aims to reach a

target Zg = [xg, yg]. Also, we assume that the fixed obstacles are randomly distributed and

the location of the obstacle j is denoted by Zo = [xj, yj]. It is worth noting that obstacles are

assumed to have an altitude closer to the UAVs’ altitude. Figure 4.1 illustrates the system

model for UAV trajectory design.
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Figure 4.1: UAVs trajectory design system model.

4.2.1 Channel Model between UAVs and GBSs

The communication link between a UAV and the kth GBS is typically dominated by line-

of-sight (LOS) [10]. Assuming that all GBS locations are known, the distance from the ith

UAV to the kth GBS at time t is given by

dk(t) =
√
H2

u + (xi(t)− xk)2 + (yi(t)− yk)2. (4.1)

Similarly, the distance from the ith UAV to the jth obstacles at time t is given by

dj(t) =
√

H2
u + (xi(t)− xj)2 + (yi(t)− yj)2. (4.2)

4.2.2 3D Antenna Patterns for UAVs

In this section, we define the types of antenna patterns. Each UAV can follow and connect

with its nearest GBS. The antenna patterns of the UAV can be determined by the gain in

the vertical and horizontal planes. We consider the following two types of UAV antenna

patterns [58]:

37



Sine Pattern

When the UAV is equipped with horizontally oriented directional antenna, the horizontal

pattern as a function of elevation angle θ can be expressed as

sin(θ) =
Hu√

H2
u + x2

u

(4.3)

where x2
u = (xi(t) − xk)

2 + (yi(t) − yk)
2 is the distance from the UAV to the nearest GBS

impacted by the directional antenna. From (5) the maximum antenna gain of the UAV is

experienced when sin(θ) = 1 that occurs when the UAV is right above the GBS.

Cosine Pattern

When the UAV is equipped with vertically oriented directional antenna, the vertical pattern

as a function of elevation angle θ can be expressed as

cos(θ) =
xu√

H2
u + x2

u

. (4.4)

From 4.5, we note that the directional antenna is tilting down to give a cone-shaped radiation

lobe directly beneath the UAV. Considering similar sine and cosine patterns at the base

station, we can express the overall antenna gain in the links as

Gs(x) = sin(θ) sin(θ) (4.5)

Gc(x) = cos(θ) cos(θ) (4.6)

where Gs(x) and Gc(x) are the antenna gains in the horizontal and vertical orientation,

respectively. At time t, each UAV connects to its nearest GBS, providing the best signal-to-
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noise ratio (SNR), which can be expressed as

SNRs =
PTGs(x)

d2k(t)
,∀t (4.7)

SNRc =
PTGc(x)

d2k(t)
,∀t (4.8)

where PT denotes the transmit power.

4.3 Basic Analysis of Artificial Potential Field Algo-

rithm

The artificial potential field (APF) approach provides a simple and effective motion planning

method for unmanned vehicles. Also, it is used for robotic collision avoidance because of

its simple and effective structure. Therefore, it is a frequently used technique for trajectory

planning design. Additionally, this algorithm generates a real-time trajectory for single or

multiple agents. Indeed, the APF algorithm can transfer all the information about the

environment, such as obstacles, final location, and other agents. However, in some complex

environments, the algorithm needs some improvements and modifications accordingly [56].

In [20], Khatib first introduced the artificial potential algorithm to the robot obstacle

avoidance and trajectory planning. The basic idea behind this algorithm is that the agent

moves in a field of forces.

In Khatib’s algorithm, UAVs and obstacles are treated as objects inside a two-dimensional

space. These obstacles have a repulsion effect on the UAV that varies inversely proportional

to the distance. In other words, if the UAV gets closer to the obstacles, the repulsion force

will be greater. And the attraction force will be greater when the UAV gets closer to its

final destination. The potential energy of a location near a target is low, while the potential

energy near an obstacle is high. The obstacles are distributed randomly, while the initial
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Figure 4.2: The original map of the traditional artificial potential field.

and final locations are located in a fixed position, as shown in Figure 4.2.

Khatib considered collision avoidance with a single obstacle. The attractive potential

field function and repulsive potential function can be expressed as [56]

Utot(Z) = Urep(Z) + Uatt(Z) (4.9)

where Utot(Z) is the total potential field, Urep(Z) is the repulsive potential field, and Uatt(Z)

is the gravitational potential field.

The gravitational potential field can be defined as

Uatt(Z) = qatt
(Z− Zg)

2

2
(4.10)

where Zg is coordinate of the goal. Z = [x(t), y(t)]T ∀t is coordinate position of the agent.

qatt is the attractive force gain coefficient.
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Figure 4.3: The original map of the traditional artificial potential field.

The repulsive potential field of the traditional artificial potential field is defined as

Urep(Z) =


qrep
2

(
1

Z−Z0
− 1

p0

)2

, Z− Z0 ≤ p0

0 Z− Z0 > p0.

(4.11)

Urep(Z) is the repulsive force in position Z, qrep is repulsive force gain coefficient, Z− Z0 is

the distance from the obstacle Z0, and p0 is the range of repulsive field of the obstacles.

In (4.11), when the final destination is farther away from the UAV, both the gravitational

potential energy and attraction function to UAV are greater. On the other hand, when UAV

is at the final destination, the gravitational potential energy is 0. The heat map of the

traditional potential energy is shown in Figure 4.3. The potential field transforms gradually

at the position away from the target point, but the potential field disappears rapidly in the

position near to the target point.

The corresponding attractive force function Fatt(Z) is described as the negative gradient

41



expressed as follows:

Fatt(Z) = −∇Uatt(Z) = −qatt|Z− Zg|. (4.12)

The repulsion force function Frep(Z) is described as the negative gradient of the repulsive

potential field as follows:

Frep(Z) = −∇[Urep(Z)] =

qrep(
1

Z−Z0
− 1

p0
) 1
(Z−Z0)2

, Z− Z0 ≤ p0

0, Z− Z0 > p0

(4.13)

In (4.13), no repulsion function will be generated when obstacle is out of the influence range

of the UAV.

The total force FZ at position Z is calculated by superimposing the potential forces of

both obstacles and targets as follows:

FZ =
t∑

l=1

Fatt(l) +
i∑

r=1

Frep(r). (4.14)

The traditional algorithm of the artificial potential field has advantages in applications in-

volving real-time path planning for UAVs. In some cases, the APF algorithm has a local

point, and this creates a problem in reaching some targets located in narrow regions. Specif-

ically, this issue can appear in a more complex environment where many goals and obstacles

are deployed. The agent will stop at the local point between the goals without reaching the

final destination.

4.4 Enhanced Artificial Potential Field Algorithm

4.4.1 Enhanced-APF Algorithm for Single Agent UAV

In this section, we consider a single UAV moving toward the target point in 3D space.

Also, we assume a simple environment with one goal and multiple obstacles. To overcome

the problem with the local minimum point, we adopt the same approach in [59] and include
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additional attractive potential field and modify the potential field to guarantee that the UAV

avoids stopping between the obstacles and the target. The UAV flies in the horizontal axis of

the space and its 2D position is Zu = [xu(t), yu(t)]
T∀t. The target is fixed at Zg = [xg, yg]

T

Thus, the definition of the single UAV attractive potential function is given by

Uatt(Zu) = qatt
(Zu − Zg)

2

2
. (4.15)

The single UAV case is similar to the attractive potential function of the traditional APF.

The attractive force of the UAV Fatt(Zu) is the negative gradient of the attractive potential

function given as

Fatt(Zu) = −∇Uatt(Zu) = −qatt(ZuZg). (4.16)

The additional field function helps the UAV to avoid the local minimum point by pulling it

toward the target. The additional field force Uadd(Zu) is given by [59]

Uadd(Zu) =


qadd
2

[
(Zu − Zg)− padd

]2
, Zu − Zg ≤ padd

0, Zu − Zg > padd

(4.17)

where qadd is the additional field coefficient, Zu − Zg is the distance between the UAV

and the goal, padd is the impact of the field on the distance between the UAV and the goal.

The additional field force Fadd(Zu) is represented as follows:

Fadd(Zu) = −∇[Uadd(Zu)] =


qadd

[
(Zu − Zg)− padd

]
, Zu − Zg ≤ padd

0, Zu − Zg > padd

(4.18)

The modified repulsive potential function, which takes the relative distance between the
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UAV and the target into consideration is given as

Urep(Zu) =


qrep
2

(
1

Zu−Z0
− 1

p0

)2

, Zu − Z0 ≤ p0

0, Zu − Z0 > p0.

(4.19)

The repulsion force function Frep(Zu) for the single UAV is given by

Frep(Zu) = −∇[Urep(Zu)] =

qrep(
1

Zu−Z0
− 1

p0
) 1
(Zu−Z0)2

, Zu − Z0 ≤ p0

0, Zu − Z0 > p0.
(4.20)

As shown in (4.19) and (4.20), the formulations are identical to the original APF. The

critical change is presented by introducing the additional force, which guarantees that the

UAV will avoid the local minimum point. The total potential field at every move the UAV

makes can be expressed as follows:

UZu =
i∑

r=1

Urep(r) +
t∑

l=1

[Uatt(l) + Uadd(l)] (4.21)

where i is the number of the obstacles, and t is the number of the goals. Similarly, the total

force that affects the UAV and applies to multiple targets and obstacles is given as follows:

FZu =
i∑

r=1

Frep(r) +
t∑

l=1

[Fatt(l) + Fadd(l)]. (4.22)

There are other factors that can effect the performance of the APF algorithm. Therefore,

in the next section, we will consider the effect of other UAVs on the single UAV.

4.4.2 Enhanced-APF Algorithm for Multiple UAVs

In this section, we apply the APF algorithm on multiple UAVs flying in an area where the

UAVs are considered as moving obstacles with position and speed. Moreover, the UAVs have

repulsion forces which can be enforced depending on their distance to other UAVs, obstacles,
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and targets. The APF algorithm can provide the UAVs with all the information that is

required for collision avoidance, and the repulsive and attractive forces are the important

key components of the algorithm. Similar to a single UAV, the APF algorithm will run into

the same local minimum problems. To overcome this problem, we apply the enhanced-APF

algorithm based on a new set of formulations. In addition to the repulsion of obstacles, we

also consider the impact of the repulsion between UAVs. Specifically, when the distance

between UAVs is less than the desired distance, a repulsive force is generated. When the

distance between the UAVs is greater than the desired distance, this force is zero. The critical

change is considered in representing the repulsion function. Therefore, the formulation for

attractive force is similar to the case with single UAV. The repulsion function of two UAVs

can be given as [60]

Urep(Zuu) =

qu(
1

Zui−Zuj
− 1

puu
)2, Zui − Zuj < puu

0, Zui − Zuj ≥ puu.
(4.23)

where Zui − Zuj is the distance between two UAVs. qu represents the force gain coefficient

between UAVs. puu is the safety distance between two UAVs for collision avoidance.

The total force for the entire system includes a combination of multiple repulsive and

attractive forces. The targets have gravitational force, obstacles have repulsive force, and

additionally, each UAV moves toward the target under the superposition of various potential

fields. The following equation combines all the potential fields that are required in the

multi-UAV enhanced-APF algorithm:

Uu = Urep(Zu) + Uatt(Zu) + Uadd(Zu) + Urep(Zuu) (4.24)

4.4.3 Impact of 3D Antenna Radiation on UAV Trajectory

In this part, we consider the radiation pattern of the directional antenna which is mounted at

the UAV. The trajectory of the UAVs can be affected by the deployment of these antennas.
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For connectivity between the UAV and GBS, the SNR level should exceed a certain threshold

β. Since SNR is proportional to the antenna gain, connectivity requirement translates into

antenna gain being larger than a threshold. This proportionality further has an impact on

the design of the UAV trajectory.

Hence, the trajectory of the UAV gets affected by applying the antenna gain formulas

with antenna patterns in the APF algorithm. In the next section, we provide more details

on the implemented enhanced-APF algorithm for UAV path planning.

4.5 The Proposed Solution of the Enhanced-APF Al-

gorithm

Based on the equations in the previous section, we construct an iterative algorithm for the

best UAV trajectory by applying the enhanced-APF method. Specifically, at each step, the

UAV calculates the functions of attraction and repulsion potential fields. In this way, the

UAV collects information about the position of the target, obstacles, and GBS. Additionally,

inside a small grid with dimension [q × q], the UAV will decide for the next move. The

geographical area of our system is defined as [M × Z]. Furthermore, the UAV has eight

moves to chose from starting at the initial location until it reaches the final destination.

After that, the directional antenna of the UAV affects the trajectory of the UAV. The

antenna can be oriented either horizontally or vertically. In the end, the UAV coordinates

will get updated and finalized inside the matrix P . The rows and columns of the matrix

represent xu and yu positions of the UAV, respectively. The details of the algorithm are

summarized in Algorithm 1. It is worth pointing out that this algorithm is derived from the

traditional AFP algorithm.

Similarly, Algorithm 2 is also adaptable for use with multiple UAVs. In such scenarios,

each UAV is programmed to navigate around obstacles and maintain a safe distance from

other UAVs, ensuring a collision-free path to the final destination. The subsequent section
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Algorithm 1 Enhanced-APF Algorithm for single UAV

1: Input: for given position of initial location Zs, position of final location Zg, position
of GBS Wk, position of obstacles Zo, the attraction gain coefficient qatt, the repulsive
gain coefficient qrep, additional field coefficient qadd, the UAV height Hu, antenna gain
threshold β,

2: Output: trajectory of the UAV P
3: for s = 1 : S do
4: calculate equation (4.15) and (4.17) and (4.19) and (4.23) for given input
5: calculate the total force potential field (4.21)
6: while dk(t), dj(t) ≥ [q × q] do
7: for each UAV step do
8: Update xu(t) and yu(t)
9: if xu(t), yu(t) < 0 or xu(t), yu(t) > [M × Z] then
10: Break;
11: else if solve (4.7) for Sin patterns or (4.8) for Cos patterns then
12: Update UAV coordinate xu(t) and yu(t)
13: end if
14: end for
15: if the UAV have reached the final location Zg then
16: Break;
17: end if
18: end while
19: end for
20: return P;

will present our findings, showcasing the results and simulations conducted to validate the

algorithm’s effectiveness in multi-UAV environments.

Table 4.1: Table of Parameter Values

Parameters Values
Hu 60m, 80m
β 0.1
qatt 10
qrep 100
qadd 18

4.6 Simulations And Numerical Results

This section presents simulation results to demonstrate the effectiveness and efficiency of the

implemented enhanced-APF algorithm. We conducted multiple experiments and set up the

appropriate values for the parameters.
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Algorithm 2 Enhanced-APF Algorithm for Multiple UAVs

1: Input: for given position of initial location Zs, position of final location Zg, number of
UAVs N , position of GBS Wk, position of obstacles Zo, the attraction gain coefficient
qatt, additional field coefficient qadd, the force gain coefficient for multiple UAVs qu, the
repulsive gain coefficient qrep, the UAV height Hu, antenna gain threshold β,

2: Output: trajectory of the UAV P
3: for s = 1 : S do
4: for i = 1 : N do
5: calculate equation (4.15) and (4.17) and (4.19) and (4.23) for given input
6: calculate the total potential field (4.24)
7: while dki(t), dji(t) ≥ [q × q] do
8: for each UAV step do
9: Update xui(t) and yui(t)
10: if xui(t), yui(t) < 0 or xui(t), yui(t) > [M × Z] then
11: Break;
12: else if solve (4.7) for Sin patterns or (4.8) for Cos patterns then
13: Update UAV coordinate xui(t) and yui(t) ;
14: end if
15: end for
16: end while
17: end for
18: if the UAV have reached the final location Zg then
19: Break;
20: end if
21: end for
22: return P;

Figure 4.4: The original map of the traditional artificial potential field
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Figure 4.5: The original map of the traditional artificial potential field

Figure 4.6: Trajectory Design for 2 UAVs Using Enhanced-APF Algorithm with Integrated
Collision Avoidance
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Figure 4.7: Trajectory Design for 3 UAVs Using Enhanced-APF Algorithm with Integrated
Collision Avoidance

In Figure 4.4, we show a trajectory design of a single UAV traveling from an initial

location to a final destination, as it strictly flies inside circular coverage regions of the ground

base stations while avoiding obstacles. On the other hand, in Figure 4.5, the UAV fails to

reach its final destination due to the constraint that does not allow the UAV to fly outside

the coverage area.

In Figure 4.6, we show the trajectory design for two UAVs reaching their final destinations

while they satisfy the connectivity requirements (by staying in the coverage regions) as well

as avoiding the collision with obstacles and other UAVs. Similarly, the trajectory design

for three UAVs as they travel within the communication region with obstacle avoidance and

other UAVs is shown in Figure 4.7.

In Figure 4.8, we illustrate the trajectory planning for a UAV that is influenced by an

antenna with a horizontally oriented gain pattern. This specific orientation of the antenna

gain affects how the UAV navigates through its environment, as the signal strength and
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Figure 4.8: Trajectory Design using Enhanced-APF Algorithm on Single UAV equipped with
horizontally oriented antenna

coverage are optimized along the horizontal plane. As a result, the UAV’s path is strategically

designed to maximize communication efficiency by aligning its flight route with areas of

strong signal reception, which are predominantly spread out horizontally due to the antenna’s

orientation.

Conversely, Figure 4.9 showcases the trajectory planning for a UAV that utilizes an

antenna with a vertically oriented gain pattern. This vertical orientation significantly alters

the UAV’s optimal flight path. The vertical gain pattern provides enhanced signal strength

and coverage in the vertical dimension, which influences the UAV to adjust its altitude more

frequently to remain within areas of optimal signal reception. This results in a trajectory that

may include more vertical movements or altitude adjustments compared to the horizontally

influenced path seen in Figure 4.8.

The comparison between these two figures highlights the profound impact that antenna

radiation patterns can have on UAV trajectory planning. The orientation of the antenna gain
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Figure 4.9: Trajectory Design using Enhanced-APF Algorithm on Single UAV equipped with
vertically oriented antenna

not only dictates the UAV’s ability to maintain a strong communication link with ground

stations or other aerial platforms but also directly influences the UAV’s path to ensure

it remains within the antenna’s optimal coverage area. This emphasizes the importance

of considering antenna characteristics in the design and optimization of UAV flight paths,

especially in applications where reliable communication is critical.

In Figures 4.10 and 4.11, we present the UAV flight paths at varying altitudes, details of

which are also tabulated in Table 4.1. Figure 4.10 illustrates the UAV’s trajectory at a lower

altitude of 60 meters. At this height, the UAV successfully navigates to its intended endpoint,

adeptly circumventing any obstacles in its path while ensuring a stable communication link

with the ground stations. This is attributed to the optimal altitude facilitating a balance

between obstacle avoidance and maintaining a strong signal for reliable connectivity.

Conversely, Figure 4.11 depicts the UAV’s flight path at a higher altitude of 80 meters.

Despite the increased elevation offering a broader line-of-sight and potentially easier obstacle

52



Figure 4.10: Trajectory Design using Enhanced-APF Algorithm when the UAV at altitude
Hu = 60m

avoidance, the UAV fails to reach its designated target. This failure is primarily due to the

exacerbated path loss associated with the higher altitude, which is a consequence of the

specific antenna radiation pattern in use. At this elevated height, the signal attenuation

becomes significant enough to disrupt the UAV’s communication with the ground stations,

thereby hindering its ability to complete the designated route effectively. This scenario

underscores the critical interplay between altitude, antenna radiation characteristics, and

path loss in UAV navigation and communication systems, highlighting the need for careful

consideration of these factors in UAV path planning.

4.7 Conclusion

In this study, we introduced and applied an advanced version of the Artificial Potential Field

(APF) algorithm, tailored for both individual and collective UAV navigation scenarios. This

refined algorithm facilitated the derivation of optimized flight paths, ensuring operational
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Figure 4.11: Trajectory Design using Enhanced-APF Algorithm when the UAV at altitude
Hu = 80m

efficiency and safety. Our approach meticulously tackled the challenges of navigating around

obstacles and preventing in-flight collisions among UAVs, a critical consideration for swarm

operations. Furthermore, we delved into the nuanced effects of antenna radiation patterns

on flight path optimization, revealing how these technical specifications can significantly

influence trajectory planning to ensure robust communication links.

The simulation outcomes have been illuminating, showcasing the algorithm’s capability to

guide UAVs to their designated locations effectively. These results underscore the algorithm’s

adeptness in maintaining essential communication links with ground stations or other UAVs

while simultaneously navigating around obstacles and avoiding potential aerial conflicts.

This balance is crucial for the practical deployment of UAVs in complex environments,

where operational reliability and safety are paramount.

Looking ahead, our research will venture into uncharted territories by integrating more

sophisticated constraints and operational parameters into the trajectory planning algorithm.
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We aim to explore the incorporation of advanced security measures and safety protocols,

addressing the growing concerns surrounding UAV cybersecurity and the need for fail-safe

mechanisms. This future work will not only enhance the operational integrity of UAVs but

also expand their applicability in sensitive and critical missions, paving the way for more

autonomous, secure, and reliable UAV operations in diverse application domains.
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Chapter 5

Cyber-Physical Attacks on UAV

Systems

5.1 Introduction

As networked embedded control technology advances and manufacturing costs decline, Un-

manned Aerial Vehicles (UAVs), commonly referred to as drones, have become increasingly

prevalent for executing tasks that are hazardous, monotonous, physically challenging, or

economically impractical for humans. In military contexts, UAVs are revolutionizing war-

fare tactics and strategies. Concurrently, the civilian applications of UAVs have seen rapid

expansion. In these applications, a notable trend is the shift from solitary UAV opera-

tion to collaborative efforts, forming dependable networks. This is because a collective of

UAVs offers broader coverage, enhanced flexibility, and increased robustness due to redun-

dancy [61]. Consequently, the complexities associated with managing a network of multiple

UAVs are substantially greater than those encountered with a single UAV. As a result,

multi-UAV networks have garnered considerable interest over the past decade. Advances in

wireless communication, high-performance computing, and flight control have significantly

augmented the capabilities of UAV networks in terms of communication, computation, and
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control. However, this surge in usage has also brought UAV security issues to the forefront,

drawing heightened scrutiny in recent years.

The intricate and unpredictable environments, along with open wireless communication

channels and the absence of robust security protocols for UAVs, render them susceptible

to attacks. Studies in [62], [63] predominantly delve into the analysis of vulnerabilities to

cyber-attacks on UAVs. Yet, UAVs embody cyber-physical systems (CPS) composed of var-

ious elements such as sensors, communication networks, computational units, and control

mechanisms, all of which could potentially be targeted by cyber-attacks, thereby compro-

mising the system’s integrity and leading to adverse operational outcomes and significant

malfunctions. As outlined in [64], attacks that manifest physical repercussions through cyber

means are termed ”cyber-physical” attacks. Such attacks pose a significant risk of catas-

trophic outcomes for UAVs and other cyber-physical systems (CPS). Therefore, examining

the cyber-physical threats and the implications of cross-domain attacks on UAVs is impera-

tive. This area of inquiry represents a critical research trajectory within the domain of CPS

security.

Comprehending and scrutinizing cyber-physical threats are crucial for formulating ro-

bust defense strategies against them. Using UAVs as a prime illustration of a complex,

safety-critical cyber-physical system (CPS), it is beneficial to explore their cyber-physical

vulnerabilities to gain insights applicable to other critical CPS. This work delves into the

potential cyber-physical threats faced by UAVs and examines how these threats propagate,

viewed from a CPS standpoint.

5.2 Cyber-Physical Attack on the UAV

Cyber-physical systems (CPS) create a seamless integration between the cyber and physical

realms by embedding cybernetic functionalities—namely communication, computation, and

control—directly into physical devices [65]. This integration facilitates real-time, depend-
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Figure 5.1: The interactions and data exchange between sensing, communication, computa-
tion, and control within UAV networks, viewed through the spectrum of CPS.

able oversight and manipulation of physical entities, thereby enhancing the management of

resources and the fine-tuning of system performance. As outlined in [66], Figure 5.1 illus-

trates the architecture of a typical UAV from a Cyber-Physical System (CPS) perspective.

It’s important to highlight that within the CPS framework, each component not only fulfills

its designated role but also collaborates seamlessly with others to ensure efficient coordina-

tion. The communication architecture encompasses both UAV-to-Ground Control Station

(UAV-GCS) and UAV-to-UAV interactions. In UAV-to-UAV communications, any UAV can

establish direct communication with its peers or utilize multi-hop links for extended connec-

tivity. Furthermore, the communication and control modules are equipped with capabili-
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ties for mission coordination, collaborative path planning, cooperative control, monitoring

and diagnostics, as well as data interoperability. UAV networks epitomize this integration

through a cyclical process that encompasses the initial gathering of data, the exchange of

information, the formulation of decisions, and the execution of actions [67]. Within these

networks, sensor-acquired data is rooted in the physical environment (reflecting the opera-

tional context of the UAV), while the resultant decisions, shaped by computational processes

and communicated across the network, manifest in the physical domain via actuator-driven

actions. Viewed through this lens, the intricate structure of UAV networks exemplifies a

CPS. Given the expansive scope of CPS, UAV networks—ranging from individual UAVs at

the cellular level, to coordinated groups forming a UAV swarm at the system level, and even

to conglomerates of diverse UAV swarms at the system-of-systems level—can all be concep-

tualized and developed as CPS. In critical societal sectors such as transportation, energy,

healthcare, and manufacturing, the adoption of CPS paves the way for enhanced intelligence

and efficiency. As a cornerstone of next-generation systems, CPS is poised to play a pivotal

role in the practical application of artificial intelligence. Consequently, the incorporation of

CPS principles into UAV networks holds the potential to substantially elevate the overall

efficacy of these systems. UAV’s actions.

5.3 Cyber-Physical Threats of UAVs

In the context of cyber-physical attacks, every element within the UAV architecture in a

CPS framework can be considered a potential target for attacks. This section is dedicated to

examining the array of cybersecurity threats and exploring the mechanisms through which

these threats could extend their impact to the physical functionalities of the system.
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5.3.1 Attack on UAV Sensors

Sensors play a crucial role in UAVs, gathering data about the drone and its surroundings.

Modern drone technologies depend on the integration of multiple sensors, including gyro-

scopes, accelerometers, magnetometers, Global Positioning Systems (GPS), and barometers,

among others. These essential sensors enable UAVs to acquire information about their al-

titude, position, and environment, ensuring safe and stable operation. For enhanced safety,

UAVs are additionally outfitted with supplementary sensors like infrared and ultrasonic de-

tectors, as well as vision sensors, to facilitate obstacle avoidance. The flight controller,

guided by data from an array of sensors, commands the power system to ensure the UAV’s

stable flight and successful mission completion. Consequently, inaccurate data can lead the

controller to make erroneous decisions, jeopardizing flight safety and potentially leading to

a crash. Therefore, attacks on sensors are recognized as a significant and widespread threat

[22].

5.3.2 UAV GPS Spoofing/Jamming

The navigation of Unmanned Aerial Vehicles (UAVs) is heavily reliant on the Global Po-

sitioning System (GPS), where the UAV’s onboard GPS receiver captures and processes

signals transmitted by satellites. However, the GPS signals designed for civilian applications

are freely available, unencrypted, and lack authentication measures. This openness makes

GPS systems particularly vulnerable to spoofing attacks, a prevalent form of cyber assault on

UAV navigation systems. Spoofing attacks come in two primary variants: the repeater type

and the generating type [68]. The repeater attack involves capturing genuine satellite signals

and rebroadcasting them to the UAV, misleading its navigation system. On the other hand,

the generating type of attack employs specialized software to create counterfeit GPS signals

that mimic authentic ones. These fabricated signals are indistinguishable from real ones to

the UAV’s receiver due to the public availability of the encryption and testing algorithms

used for civilian GPS signals.
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Figure 5.2: The UAV trajectory path scenario under spoofing attack

In addition to spoofing, GPS jamming represents another significant threat, albeit one

that is simpler to execute. Jamming involves the emission of disruptive signals that over-

power or interfere with the GPS signals, preventing the UAV’s receiver from accurately

receiving and interpreting the navigation data [69]. This interference can lead to a loss of

orientation for the UAV, potentially resulting in catastrophic outcomes, including crashes.

The simplicity of mounting jamming attacks, coupled with the critical reliance of UAVs

on GPS for navigation, underscores the urgent need for robust countermeasures to protect

UAV systems from such vulnerabilities, ensuring their safe and reliable operation in various

applications.

5.3.3 Attacks on UAV Computation/Control Units

False Data Injection Attacks (FDIAs) [70], also known as stealthy deception attacks, repre-

sent a sophisticated form of cyber assault that targets the state estimation processes within

various control systems, notably in power systems [71]. These attacks subtly alter mea-

surement data to skew state estimations without triggering alarms in the system’s bad data

detection mechanisms. Accurate state estimation is crucial for the reliable operation of

drones, particularly for navigation and flight control functionalities.

In a notable study [72], UAV navigation was examined through the lens of a stochastic

linear Cyber-Physical System (CPS) framework, incorporating Gaussian noise to reflect real-

world conditions. This research highlighted the vulnerabilities of the Kalman Filter (KF), a
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prevalent method for state estimation in such systems. The study outlined specific conditions

under which the system dynamics could be exploited by stealthy deception attacks, thereby

compromising the integrity of state estimations.

Furthermore, this research broadened the scope of potential attack vectors by considering

simultaneous attacks on both sensor and actuator components. This approach contrasts with

much of the existing literature, which typically focuses on cyber-attacks targeting either sen-

sors or actuators exclusively. Another study [73], introduced several attack strategies against

two common altitude estimation techniques: KF-based estimation and sensor-model-based

estimation. For KF-based systems, a maximal FDI attack was proposed and thoroughly

analyzed. In the case of sensor-model-based estimation, the researchers devised strategies to

disrupt GPS signals and alter barometer readings, thereby affecting the system’s confidence

in altitude estimations and enabling the manipulation of perceived altitude.

In addition to FDIA, communication link attacks pose a significant threat to UAV op-

erations. These attacks specifically target the data exchange channels between UAVs and

Ground Base Stations (GBS), compromising the integrity of telemetry feeds and command

signals issued by the GBS. The vulnerability arises when these communication links lack

robust encryption, making them susceptible to interception.

Much like GPS signals, the control signals from the GBS are prone to spoofing and

jamming attacks. In a typical scenario, attackers might intercept authentic commands from

the GBS, substitute them with malicious instructions directed at the UAV, and then relay

altered responses back to the GBS, effectively conducting a ”man-in-the-middle” attack. This

type of cyber assault not only jeopardizes the safety and operational integrity of the UAV

but also undermines the reliability of the control and monitoring systems managed by the

GBS. Ensuring secure and encrypted communication channels is paramount to safeguarding

UAVs from such sophisticated cyber threats.
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5.4 Conclusion

Historically, the security assessments of Unmanned Aerial Vehicles (UAVs) have been seg-

mented into two distinct realms: flight safety and information security. However, as the

integration of cyber-physical system (CPS) components within UAVs becomes more intri-

cate, cyber-attacks targeting the information systems not only compromise data integrity

but also precipitate erroneous control commands. Such breaches can critically undermine the

overall safety and operational reliability of UAVs. Consequently, it becomes imperative to

examine the cascading effects of security threats from the informational layer to the physical

layer, understanding how vulnerabilities in the cyber domain can manifest as tangible risks

in the physical domain.

In this work, we provide an overview of how the security landscape for UAVs is evolving,

highlighting the interconnected nature of cyber and physical threats. This holistic approach

to analyzing the interplay between cyber-attacks and their physical repercussions forms the

cornerstone of this study and offers valuable insights for the security evaluation of broader

CPS frameworks.
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Chapter 6

Path Planning for UAVs Under GPS

Permanent Faults

6.1 Introduction

Unmanned aerial vehicles (UAVs) have attracted significant interest in civilian and military

applications. Indeed, many new technologies have been involved in designing and building

UAVs that have different capabilities in rescue missions and emergency response. Addition-

ally, UAV technology is expected to become a crucial part of aerial surveillance systems,

particularly in smart cities. Also, in wireless communication systems, UAVs will play a

significant role in assisting and improving the existing communication infrastructure and

helping the deployment of the 5G technology in rural and remote regions [50]. UAV trajec-

tory planning is one of the most critical components in controlling and monitoring UAVs

during flight. Therefore, the UAV must stay connected with its associated ground base

station (GBS) to make sure that the position and location of the UAV have been updated

regularly. Additionally, the path planning and the trajectory design of a UAV becomes a key

challenge to provide the best wireless connectivity and enhance the system’s security and

robustness. The air-to-ground channel model has been studied in [74]. Also, new studies
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started to look at UAVs as aerial base stations [75], [5]. Authors in [52], have studied the

optimal position for UAVs to maximize the throughput. In UAV positions and placement

scenarios, authors in [76] have considered the entire trajectory design for multiple UAVs to

jointly optimize scheduling and user association. In the deployment and trajectory planning

in UAV communication with jamming, authors in [6] proposed a trajectory planning method

in three-dimensional (3D) and introduced an anti-jamming approach by dynamically adjust-

ing the UAV’s trajectory. Moreover, authors in [77] present an intelligent UAV anti-jamming

strategy, in which the optimal trajectory of the typical UAV is obtained via dueling double

deep Q-network (D3QN). A low-power robust learning framework to deal with adversarial

attacks has been introduced in [78], the authors propose a staged ensemble defense strat-

egy in the framework, which achieves better defensive performance than a single defense

algorithm.

One approach in trajectory design planning is to apply the artificial potential field (APF)

algorithm. The APF method is a virtual force method that was first introduced by Khatib

in [20]. The APF algorithm is developed to avoid collisions among multiple real-time au-

tonomous vehicles and robots operating in a complex environment [20]. Recently, several

studies have been conducted on UAV path planning using APF. For instance, the authors

in [56] study the optimized APF for multiple UAVs operating in a 3-D dynamic environ-

ment. Similarly, the adaptive particle swarm optimization algorithm (APSO) designed for

introduction to APF has been introduced in [79] where authors combine the global virtual

navigation path (VNP) calculated by the particle swarm optimization algorithm (PSO) with

the artificial potential field method for UAV path planning. In [80], the authors propose

two algorithms, one is an obstacle avoidance control algorithm for a distributed multi-UAV

formation system, and the other is the velocity-based artificial potential field (VAPF) algo-

rithm which helps a UAV to avoid dynamic obstacles and overcome the APF problems of

local minimum. The key idea behind the APF algorithm is to calculate the distance between

the moving object and the obstacle.
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6.1.1 UAV and Cyber-Physical System (CPS)

Cyber-physical systems (CPS) are intelligent computer systems that are engineered in a

way combining algorithmic computation and communication processes while sensing and

interacting with the physical world. The rapid development of CPS technology encourages

the development of key technologies and products in autonomous systems such as UAVs

and self-driving cars. The mutual interaction between the physical world and information

technology puts CPS at risk and makes it vulnerable to malicious attacks that are beyond

traditional cyber attacks [81], [82], [83]. This is becoming a real threat to many technologies

sometimes resulting in potential breaches of sensitive information about individuals and

entities. Therefore, UAVs are one of the most targeted elements by the attackers to take

advantage of and wreak havoc by taking control of the UAVs’ movement and position.

However, since it is difficult to ensure the safe movement of UAVs with the autopilot system

against various cyber security attacks, many new studies have proposed new approaches to

discovering the attackers and providing a recovery procedure for the system. The authors in

[22] discuss the security threat coming from cyber attacks and how it will affect the safety

performance of the UAVs, and they analyze the Cross-domain security risk mechanism of

UAVs. Furthermore, in [62], the authors propose a new GPS spoofing attack detection

method based on a machine learning algorithm that allows UAVs to detect GPS spoofing

attacks. An attacker implementing GPS spoofing sends fake information either by generating

new signals or by altering legitimately received signals, leading to an inaccurate display of

GPS positions of the targeted device [84]. By the same token, a detection attack using

the Bayesian network model has been proposed in [85], authors use their proposed model

to analyze and detect the fake GPS signal data which is injected by the attackers. In

the same direction, the authors in [86] carry out three studies involving GPS attacks in

UAVs detecting GPS fraud, counterfeiting GPS on real UAVs, and implementing security

measurements to avoid the attack. In [87], the authors propose an effective real-time cyber

attack detection method using modified sliding innovation sequences (MSIS) detector. Also,
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in [88] the authors develop a Gaussian process GP-based approach to estimate the unknown

disturbance and propose an approach to adapt the system performance (i.e., speed) along

the planned trajectory based on environmental constraints and the GP-based estimation and

to dynamically update the GP model.

These results have motivated further research efforts on studying problems of adversarial

attacks on UAVs. The adversarial training and defensive distillation methods are evaluated

and discussed in [89]. The authors in [90] propose two adversarial attack methods based

on forward derivative and optimization to conduct adversarial attacks against DL-based

navigation systems of UAVs. To the best of our knowledge, prior work has not taken into

account the impact of the cyber-physical attack on the path planning of the UAV and how

it affects the entire flight mission of the UAV by sending wrong information to the GBS on

the location of the UAV. Furthermore, in many cases, it can cause a real danger to the entire

mechanism and the components of the autopilot system, which controls the movement of

the UAV.

To address this challenge, we propose an efficient approach to detect and recover the

UAV path planning under cyber-physical attacks on the GPS, knowing that the UAV is

equipped with a detector. Attack detection occurs when the UAV loses connectivity with

the nearest ground base station (GBS). By injecting false data, the attack diverts the UAV

from following its planned path and dictates it to follow a different path. In addition,

the GBS loses track of the UAV information such as the coordinates at a certain time and

location. We design a new detection and estimation architecture based on two steps. Firstly,

we estimate the UAV location under GPS attack using received signal strength (RSS) based

trilateration. Secondly, we have developed a cyber-attack resilience procedure utilizing the

Artificial Potential Field (APF) algorithm, known as the Resilience to Cyber-Attacks APF

(RCA-APF) algorithm.

In essence, the RCA-APF algorithm is a specific method that handles both GPS perma-

nent fault detection and estimated UAV path planning. Such an algorithm can be developed
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based on feeding the system with the coordinates of the UAV during its flight from an ini-

tial to a final location. To be specific, our method is applicable to deal with compromised

sensor measurements caused by faults and false data injection. In this sense, detection, and

estimation are presented as cause and effect. Finally, we evaluate our design by conducting

simulation-based experiments which demonstrate the performance of the proposed approach.

Particularly, the RCA-APF algorithm, while indeed serving as an obstacle avoidance

mechanism, is intrinsically designed to complement our system’s resilience to GPS permanent

fault. In scenarios where GPS fault might mislead the UAV path into hazardous zones, the

RCA-APF algorithm serves as a critical layer of defense. It enables the UAV to make

context-aware decisions, avoiding obstacles that might not be evident through compromised

GPS data. In addition, the RCA-APF algorithm works in collaboration with our RSS

trilateration technique. While RSS trilateration provides accurate localization in the absence

of reliable GPS data, RCA-APF ensures safe navigation through potential threats, forming

a comprehensive solution to GPS faults.

Regarding the advantages of RCA-APF over traditional APF algorithms, we have iden-

tified several key improvements:

• Unlike traditional APF algorithms [20], which have static response behaviors, our

RCA-APF algorithm adapts its response based on the context, such as the proximity

and size of obstacles and the severity of GPS fault.

• Our algorithm demonstrates superior robustness in dynamic and unpredictable envi-

ronments, a common challenge for the UAV, especially in GPS-compromised scenarios.

The rest of this chapter is organized as follows. Section 6.2 presents the design overview

and the system model. Section 6.3 introduces the UAV cyber-physical system and the

threat model. Section 6.4 describes the UAV cyber-physical system approach. Section 6.5

demonstrates the simulation results. Finally, Section 6.6 concludes the chapter.
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Figure 6.1: UAVs attack system model.

6.2 Preliminaries and Design Overview

In this section, we delineate the system model, illustrating the trajectory of each UAV as

it navigates from a starting point to its destination. We detail the communication channel

model between UAVs and Ground-Based Stations (GBSs).

6.2.1 System Model

In this work, we consider a graphical area with a 3D Cartesian coordinate system, where

the horizontal coordinate of a ground base station (GBS) k is fixed at Wk = [xk, yk]. The

UAV communicates with each of the ground base stations with time length T . All UAVs

are assumed to fly at an altitude of Hu above the ground, and the time-varying horizontal

coordinate of the UAV at time instant t is denoted by Lu = [xu(t), yu(t)]. In this model,

potential permanent faults on the UAV path planning can be introduced, as shown in Figure

6.1. Also, we assume that each UAV starts from a fixed initial location Ls = [xs, ys], and

aims to reach the destination/goal Lg = [xg, yg]. Also, we assume that the fixed obstacles

are randomly distributed and the location of the obstacle j is denoted by Lo = [xj, yj].
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6.2.2 Channel Model between UAV and GBS

The communication link between a UAV and the kth GBS is typically dominated by line-of-

sight (LOS) [10]. The LOS probability is given by

PLOS =
1

1 + a exp(−b(arctan h
di
− a))

. (6.1)

where a and b are constant values depending on the environment. The relative Non-line-of-

sight (NLOS) probability is PNLOS = 1− PLOS. The UAV exchanges data packets with the

GBS, assuming that all GBS locations are known. The distance from the ith UAV to the kth

GBS at time t is given by

dk(t) =
√
H2

u + (xi(t)− xk)2 + (yi(t)− yk)2. (6.2)

Similarly, the distance from the ith UAV to the jth obstacle at time t is given by

dj(t) =
√

H2
u + (xi(t)− xj)2 + (yi(t)− yj)2. (6.3)

6.3 UAV CPS and Threat Model

6.3.1 System Model of UAVs Wireless Networks

UAVs are drones or aircraft that can fly without the need for a pilot on board. Also,

UAVs are equipped with many essential components such as the flight control unit, sensor

payloads, and wireless communications module. In addition, reliable and very high-speed

wireless communication networks are required for the UAV to execute its flying mission

successfully. The payload sensors are equipped with onboard sensors and GPS modules for

position and navigation purposes. The communication module includes a high-speed wireless

interface and antennas to transmit and receive control signals and data. There are mainly
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two types of radio communications that occur in a typical UAV-assisted communication

network; UAV-to-UAV and the communication between UAV to the nearest GBS. More-

over, network communication plays an important role to ensure smooth wireless networking

and uninterrupted services. The integrated system of the UAV works by collecting data,

exchanging information, making decisions, and eventually executing those decisions [91].

6.3.2 CPS Architecture of UAV

We consider that a single UAV is used to execute complex missions. During these missions,

the UAV communicates with the GBS through the uplink and downlink channels. Moreover,

the onboard GPS sensor in the cyber-physical system architecture plays an essential role in

cooperating and achieving efficient coordination. In addition, the GPS sensor helps the

UAV with mission allocation and monitors path planning in addition to exchanging the data

between the UAV and the nearest GBS.

In this work, we focus on the GPS permanent faults in cyber-physical systems. It is

important to have an attack detector deployed on the UAV to maintain the safety of the

system [92], [93], [94]. Additionally, the attack detector should be computing-efficient due to

the limited resources on the UAV in real-time scenarios. Usually, the attack detector monitors

the data streams from the sensors to check whether there is a statistically abnormal signal

[92], [95]. For example, Cumulative Sum CUSUM-based methods can be applied onboard

at the UAV to monitor the residuals between the sensor measurements and estimation over

a time window [95]. Figure 6.2 depicts the UAV hardware components within the cyber-

physical system architecture. Notably, the GPS sensor of the UAV emerges as an appealing

target for potential attackers, posing a significant risk of system damage. The errors in the

GPS readings affect the movements of the UAV. These errors instruct the UAV to follow

a specific path. In other words, the GPS permanent faults divert the UAV to an arbitrary

location of the attacker’s choosing. It is worth noting that the UAV is equipped with an

onboard detector. This onboard attack detector is further used to estimate the UAV position
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Figure 6.2: Cyber-physical system architecture.

when the attacker caused the permanent fault for the UAV-GPS sensor.

Figure 6.3 illustrates the primary sensors mounted on the UAV, which include the onboard

attack detection system, the GPS sensor, and the camera sensor.

6.3.3 Cyber-Physical Attack to UAV and Threat Model

In general, a cyber-physical attack can target each of the components of any cyber-physical

system. Indeed, UAV security threats should be analyzed from the perspective of a new

type of attack, which dismantles the physical operation of the UAV. Moreover, sensors are

critical components for the UAV to receive data about itself and the surrounding environ-

ment. Essentially, UAVs rely on the collaboration of various sensors, including GPS. With

this crucial sensor, UAV can obtain the obstacle’s location, altitude, and other important

information related to the flight mission, for the safe and successful completion of a task.
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Figure 6.3: The hardware components of the UAV.

Additionally, the GPS sensor provides the necessary data to make sure the UAV reaches its

final destination. However, false data leads the UAV to make the wrong decision, affecting

flight safety and reliability. It can further cause a catastrophic crash. Therefore, sensor

attacks have been categorized as one of the most critical threats in cyber-physical attacks.

6.3.3.1 Threat Model

In this work, our attention is centered on the physical mechanisms of Unmanned Aerial

Vehicles (UAVs). Specifically, we explore the strategies for path planning in scenarios where

UAVs encounter persistent GPS sensor malfunctions. In addition, false GPS data alters the

real data by compromising the integrity and availability of the GPS sensor measurements.
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The wrong readings modify the GPS sensor data and feed it into the system, making it un-

reliable, and thus the estimated state based on the sensor measurements becomes corrupted

and untrustworthy.

For example, the value r(t) can be set to be r̃(t)± e by an attack, where e is the

perturbation/modification value. Another attack scenario can be realized by the attacker

through delay of the data sent to the GPS sensor, i.e., r(t) = r̃(t0) for a time period of T

where t0 is the start time of the attack, and then r(t) = r̃(t−T) for t ≥ t0 +T.

6.3.3.2 GPS Sensor Spoofing/Jamming

The UAV depends on the GPS signals received and processed by the onboard GPS receiver.

GPS spoofing attack is the most common attack form where the attackers take control of

the UAV by transmitting signals from the satellites to the target UAV. Compared with

the spoofing attacks, GPS jamming is more implemented GPS sensor spoofing attacks are

directed toward onboard sensors that depend on the outside environment. The goal of this

attack is to destabilize UAVs by compromising the sensor by injecting false data. Some

attacks try to steal information through security holes of communication links in the system

while others aim to spoof sensors, such as GPS spoofing. Therefore, successful attacks will

lead to serious consequences [96]. Another example that can be related to the spoofing

attack, is to develop acoustic injection attacks on Microelectromechanical Systems (MEMS)

accelerometers [97].

6.3.3.3 False GPS Sensor Data Injection

The UAV can be forced to respond to false signals as a result of the GPS sensor attack,

and it can completely disrupt its navigation system and mislead the UAV from achieving

its goal [98]. Fake GPS sensor data injection targets onboard GPS sensing components

such as accelerometers and actuators that are dependent on sensing external environment

conditions. Authors in [99] took the UAVs navigation as the example and modeled it as a
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stochastic liner CPS system with the Gaussian noise. The purpose of these permanent faults

is to destabilize UAVs by compromising a collection of sensors such as GPS and introducing

falsified readings into the flight controller, hence jeopardizing the control system and the

flight mission of the UAV [100].

6.3.3.4 UAV Authentication and Cybersecurity Measures for GBS Communica-

tions

In this chapter, we explore how attackers can significantly impair network performance by

disrupting routing mechanisms, leading to packet loss and congestion, which adversely im-

pacts UAV missions. To counter these threats, researchers are developing comprehensive

solutions that include both prevention and detection strategies. The primary line of de-

fense, prevention, aims to thwart attacks before they penetrate the system. This involves

traditional security practices such as authentication, encryption, and secure routing proto-

cols. However, these measures can sometimes compromise system availability, and the risk

of insider threats persists [101].

Detection serves as a secondary but vital line of defense. It focuses on continuous system

monitoring to identify any anomalies or ongoing attacks, ensuring timely response to secu-

rity breaches. This layered approach to security is crucial for maintaining the operational

integrity of UAV systems.

One notable advancement in UAV security is the development of a lightweight mutual

authentication mechanism, as discussed in [102]. This protocol is pivotal in distributed

systems for ensuring the integrity and trustworthiness of communication nodes. It employs a

unique challenge-response strategy that leverages a physical unclonable function and chaotic

system dynamics to obscure messages and generate a secret session key. The main objective

is to ensure the integrity of each packet transmitted along the communication path, thereby

facilitating key agreement and mutual authentication between UAVs and between UAVs

and their ground stations [103]. This system completes the access control process with
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just two message exchanges and is designed to withstand various security threats, including

MITM attacks, physical attacks, forgery, insider threats, replay attacks, and threats related

to session-specific temporary information. This robust mechanism enhances the security

framework, significantly bolstering the defense against sophisticated cyber threats.

6.4 UAV CPS

The physical state of the UAV path planning under GPS permanent faults is addressed in this

section. It contains physical and cyber components including computation, communication,

and on-board sensors. Figure 6.2 depicts the data flows that begin with the UAV-GPS sensor,

which communicates the original data from the UAV to the nearest GBS. Computation

modules, analyze and make decisions based on all the acquired information. In our case, the

onboard UAV-GPS sensor records all the decisions that the UAV makes. For example, the

UAV flies from an initial location following the path plan and at a specific time, the GPS

sensor starts being disabled and compromised due to faults. After a short delay, as shown

in Figure 6.4.

The system architecture of the UAV includes the GPS procedure based on two main steps.

Firstly, the UAV localization method was introduced using the received signal strength

trilateration approach, and then we implemented the resilience to cyber-attack artificial

potential field algorithm (RCA-APF). In other words, the UAV generates the path plan in

the environment with randomly distributed obstacles, where the UAV flies from an initial

position to the final destination while it communicates with the GBSs. Due to the GPS false

readings, the UAV loses its connectivity with the GBSs. Therefore, location estimation for

the UAV is obtained using the received signal strength trilateration.
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Figure 6.4: The Path planning framework of the UAV at different scenarios.

6.4.1 Received Signal Strength Based Trilateration

To estimate the location of the UAV under the GPS attack, we use a geolocation approach

based on the received signal strength (RSS). Essentially, the UAV flies along a trajectory

and receives signals from the surrounding ground base stations (GBSs). The RSS traditional

model [104] has been implemented to collect those measurements. Using the long-distance

path loss propagation model [105], [106], the location-related information measurements

are obtained from the RSS, which is generally affected by multi-path effects and NLoS

propagation. Furthermore, the location of the UAV can be ideally determined in 2D space

with the use of the three GBSs. In general, the average received power Pk associated with

the kth GBS can be modeled in dB form as

Pk = P0 − 10αk log10 dk + eRSS,k, k = 1, 2, ..., N, (6.4)

77



where P0 is the reference received average power at a reference distance of 1 meter, αn

denotes the path loss exponent, and eRSS,n represents the error of the RSS measurements.

Assuming that P0 and αk, k = 1, 2, ..., K are given, the distance between the UAV and each

of the GBSs can be estimated. Therefore, the RSS measurement model that comes from the

kth GBS and received by the UAV can be derived as follows

rRSS,k = Pk − P0, (6.5)

qRSS(pk,w) = −10αk log10 dk, (6.6)

rRSS,k = qRSS(pk,w) + eRSS,k, k = 1, 2, ..., N. (6.7)

where rRSS,k denotes the RSS measurement associated with the kth GBS, qRSS(pk,w) is

a nonlinear function which contains all necessary information to calculate the location of the

UAV, and eRSS,k represents the measurement error. The main task of RSS-localization is to

estimate w based on the obtained {rRSS,k}Kk=1 in (6.7).

In Figure 6.5, we show the RSS measurements fromK GBSs at different locations received

by the UAV. Typically, solving nonlinear equations requires the application of nonlinear

estimators, which include the nonlinear least squares (NLS), weighted nonlinear least squares

(WNLS), and maximum likelihood (ML) estimators [107]. Based on the RSS model (6.7),

the cost function of the NLS estimator can be expressed as [108]

QNLS(w) =
K∑
k=1

(rRSS,k − qRSS(pk,w))2

= (r− q(w))T (r− q(w)), (6.8)

where r = [rRSS,1, ..., rRSS,K ]
T and q(w) = [q(p1,w), ..., q(pK,w)]T . The solution of NLS
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Figure 6.5: RSS values from UAV to GBS.

estimator corresponds to the estimated location ŵ that minimizes the cost function (6.8),

i.e.,

ŵ = argmin
w

QNLS(w). (6.9)

The NLS estimator does not rely on any assumption about the error statistics. However,

when the covariance of the error vector w = [e1, ..., eK ]
T is available, we can obtain the

WNLS estimator, which can be expressed as [109]

ŵ = argmin
w

QWNLS(w)

= argmin
w

(r− q(w))TC−1(e)(r− q(w)), (6.10)

where C(e) = E[eeT] represents the covariance of e, and E[.] denotes the expectation opera-
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tion. In addition, when error probability distribution Pe(e) is known, the ML estimator can

be used for location estimation [110],[111]

ŵ = argmin
w

QML(w)

= argmin
w

logPe(e)(r− q(w)). (6.11)

The errors follow the zero-mean Gaussian distribution, and the WNLS and ML estimators

have the same performance. To solve the optimization problems in (6.9), (6.10), (6.11),

several approaches exist. For instance, grid search is a reliable method to find the point ŵ

that minimizes the objective function Q.

Moreover, the main advantage of RSS-based localization lies in that time synchroniza-

tion among different GBSs is not required and RSS measurements are readily available in

almost all practical wireless systems. On the other hand, the main drawback of RSS-based

approaches is the poor localization accuracy. Also, RSS-based distance estimation can be
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challenged due to the unpredictable variations of the channel behavior. However, due to

inaccuracy in the RSS localization, we consider a larger obstacle to covering the issue, as

shown in Figure 6.6.

6.4.1.1 UAV Localization Using Time of Arrival (TOA)

The primary advantage of RSS-based localization is that it does not require time synchroniza-

tion among different agents (UAV and GBSs), and RSS measurements are readily available

in almost all practical wireless systems. Unlike alternative schemes such as TOA, TDOA,

or AOA-based approaches, RSS measurements do not rely on Line-of-Sight (LoS) signal

propagation. However, the major drawback of RSS-based methods is their poor localization

accuracy, especially in cluttered environments. In these settings, signal attenuation is weakly

correlated with distance, resulting in inaccurate distance estimation [112]. Additionally, an

accurate signal propagation model is essential for reliable RSS-based distance estimation,

which is challenging due to the unpredictable variations in channel behavior.

Another approach for location estimation is the Time of Arrival TOA-based approaches

which initially estimate the distances between the UAV and each of the Ground Base Stations

(GBSs) by measuring the signal propagation delay or time of flight (TOF), denoted as tf .

Using these distance estimates, they then construct a trilateration model to determine the

location of the UAV. TOA-based methods can be further categorized into one-way TOA

(OW-TOA) and two-way TOA (TW-TOA), depending on how tf is defined [113], [114].

For OW-TOA localization, the UAV transmits a packet to the GBS that includes a

timestamp, ts, recording the transmission time. GBS then measures the Time of Arrival

(TOA) of the received signal, denoted as tr. The TOA is commonly measured using matched

filtering or correlation techniques, where the TOA measurement is derived from the time shift

of the reference signal that produces the highest correlation with the received signals. In OW-

TOA localization, if the clocks of the GBSs and the UAV are perfectly synchronized, GBS

can determine the time of flight tf as tf = tr − ts, and the distance between UAV and GBS
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can be calculated as d = tf .c, where c is the signal propagation speed, typically the speed

of light. However, OW-TOA methods have two main drawbacks. First, even a small time

synchronization error between the UAV and the GBSs can significantly compromise distance

estimation. Second, the transmitted signal must be labeled with a timestamp, increasing the

complexity of the signal structure and potentially introducing additional estimation errors.

In contrast, TW-TOA localization involves UAV transmitting a packet to GBS, which

responds by sending an acknowledgment packet back to the UAV after a response delay,

td. If td is known, UAV can calculate its distance to GBS based on the signal’s round-trip

time of flight (RTOF), i.e., tRT = 2tf + td. TW-TOA addresses the primary drawback

of OW-TOA by eliminating the need for time synchronization between the UAV and GBS.

However, in practice, it is challenging for UAV to know the exact response delay td. Although

td can be ignored if it is relatively small compared to tf in long-range signal propagation, it

critically affects performance in short-range scenarios. Moreover, while TW-TOA eliminates

clock synchronization errors between the two agents, relative clock drift can still compromise

distance estimation accuracy. Additionally, a timestamp is still required for TW-TOA to

compute the RTOF of the transmitted signal.

A general TOA-based measurement model can be mathematically expressed as follows

[115], [108]:

c.tf,n = dn + eTOA, n = 1, 2, ..., N. (6.12)

In this model, tf,n represents the measured Time of Flight (TOF) of signal propagation

between the Ground Base Station (GBS) and the UAV. This measurement is typically af-

fected by a positive bias error introduced during the signal measurement process, which is

captured by the additional measurement error eTOA. Using similar notations as in (6.7), let

rTOA,n = c · tf,n and hTOA(pn,w) = dn = ∥pn − w∥. The general model for TOA-based
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localization can be expressed as

rTOA,n = hTOA(pn,w) + eTOA,n, n = 1, 2, . . . , N. (6.13)

By solving the system of nonlinear equations in (6.13), the location of the UAV can be

estimated.

6.4.1.2 Error Analysis in UAV RSS Tolerance Range Measurements

In this chapter, we acknowledge that relying on Received Signal Strength (RSS) measure-

ments for UAV localization is susceptible to environmental factors and communication chal-

lenges such as interference, signal attenuation, multipath propagation, and other wireless

communication complexities. These factors can indeed affect the accuracy of RSS-based

localization methods. As described in Section 2.2, line-of-sight (LOS) propagation is the

dominant communication mode between the UAV and each Ground Base Station (GBS).

Additionally, we assume that the UAV is flying at a moderate altitude of 60 meters. Accord-

ing to the 3rd Generation Partnership Project (3GPP) technical report TR 36.777 [116], at

moderate to high altitudes, UAVs are more likely to maintain a Line of Sight (LoS) with

the Ground Base Stations (GBS). LoS conditions are favorable for communication as they

typically result in lower path loss and better signal quality. Hence, in the presence of a

relatively strong LoS link, the impact of interference and multipath propagation diminishes,

and RSS measurements are not substantially affected by these factors.

Regarding the assumption of fixed altitudes for the UAV, we acknowledge that this may

limit the applicability of our approach in diverse and complex environments. This assumption

was made to simplify the initial model and focus on the core aspects of our algorithm.

However, we recognize the importance of addressing the dynamic nature of UAV operations.

Concerning the acceptable error range for our system, it is primarily influenced by the
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performance of the RSS-trilateration estimation method, which can exhibit considerable vari-

ation depending on the specific application and deployment environment. In this work, we

have focused on a relatively straightforward environment characterized by moderate-altitude

UAV flight. Under ideal circumstances, RSS trilateration achieves sufficient accuracy within

a few meters. However, when operating in more challenging environments with significant

interference and multipath effects, the error margin may expand to tens of meters. A rele-

vant study conducted in [18] the error associated with localization estimation, particularly

focusing on the analysis of RSS errors. This study formulated an analytical expression for

the RSS localization error, demonstrating that the precision of range-based RSS localization

is contingent upon crucial environmental factors.

6.4.1.3 RSS-based Trilateration

Trilateration determines the location of the UAV under attack using distance-related signal

measurements for multiple GBSs. In other words, the UAV would be located at the intersec-

tion of the three circles with the centers being the locations of the GBSs and radii equal to

the distances from the UAV to each of the GBSs. The locations of the GBSs are known and

their distances to the UAV can be determined based on the RSS measurements [117], [118],

[119], [112]. Furthermore, the RSS measurements from all GBSs are calculated and then

converted into distances. Based on this distance, the system trilaterates the UAV location

as illustrated in Figure 6.7. The trilateration method uses RSS measurement values to cal-

culate the distance between the UAV and GBSs. The location of the UAV [xu, yu] needs to

be computed, then the formulated circles are calculated using mathematical computations.

Assuming z = 0 and to simplify the calculations, the equations are formulated so that the

intersection of circles occurs at the Cartesian plane. The equation for each circle can be

expressed as [120]

(xu − xk)
2 + (yu − yk)

2 = d2k. (6.14)
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Figure 6.7: RSS-based localization, where dk, k = 1, 2, 3, denote the actual distances from
the UAV to each of the GBS.

where (xk, yk) denotes the location of the kth GBS.

The intersection of three circles is obtained by solving systems of linear equations for two

variables simultaneously. Hence, by solving the linear systems, the location of [xu, yu] can be

determined. The accuracy of coordinate [xu, yu] depends on the measurement of RSS values.

6.4.2 UAV Estimated Location Based On Three GBSs

Given the three GBSs coordinatesW1 = [x1, y1], W2 = [x2, y2], W3 = [x3, y3] and the distance

measurements d1, d2, and d3 as shown in Figure 6.7. The UAV coordinates Lu = [xu, yu] can

be calculated by finding the solution to the following system of quadratic equations: [121]

(xu − x1)
2 + (yu − y1)

2 = d21 (6.15)
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(xu − x2)
2 + (yu − y2)

2 = d22 (6.16)

(xu − x3)
2 + (yu − y3)

2 = d23 (6.17)

Equations (6.15), (6.16), and (6.17) can be rearranged and represented in matrix as:


1 −2x1 −2y1

1 −2x2 −2y2

1 −2x3 −2y3



x2 + y2

x

y

 =


d21 − x2

1 − y21

d22 − x2
2 − y22

d23 − x2
3 − y23

 (6.18)

Thus, (6.18) is the matrix equation and which can be written as:

A0.x = b0; x ∈ E = {(x0, x1, x2, x3)
T ∈ R4 : x0 = x2

1 + x2
2 + x2

3} (6.19)

The UAV flies each time step updating its coordinate at different locations. Therefore,

equation (6.19) does not lie on a straight line and the solution can be given by:

x1 = xk + t1xi (6.20)

x2 = xk + t2xi (6.21)

where t1 and t2 are real parameters that can be calculated using a quadratic equation t1,2 =

−b±
√
b2−4ac
2a

. xk and xi are the particular and homogeneous solutions, respectively. The

solution for the trilateration estimation values for the UAV based on three GBSs locations

is given by
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UAV1 = x1I, UAV2 = x2I,

where I =



0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

(6.22)

6.4.3 RCA-APF Algorithm

6.4.3.1 Artificial Potential Field Algorithm

The Artificial Potential Field (APF) method offers a straightforward yet efficient technique

for the motion planning of unmanned vehicles. The APF algorithm is capable of encap-

sulating comprehensive environmental data, including obstacles, the destination, and other

entities within the vicinity. Our focus is on a solitary UAV navigating towards a target point

within a three-dimensional space, assuming a relatively uncomplicated setting characterized

by a singular objective and several obstacles. To address the issue of local minima, we employ

the strategy outlined in [59], incorporating extra terms for the attractive potential field and

adjusting the potential field configuration to ensure the UAV circumvents any halt between

obstacles and the target. The UAV navigates along the horizontal plane, maintaining a 2D

position denoted as Lu = [xu(t), yu(t)]
T at any time t. The destination is stationary, located

at Lg = [xg, yg]
T . Consequently, the attractive potential function for a single UAV is defined

as per [122].

Jatt(Lu) = qatt
(Lu − Lg)

2

2
. (6.23)

The single UAV case is similar to the attractive potential function of the traditional APF.

The attractive force of the UAV Fatt(Lu) is the negative gradient of the attractive potential
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function given as

Fatt(Lu) = −∇Jatt(Lu) = −qatt(Lu − Lg). (6.24)

The additional field function helps the UAV to avoid the local minimum point by pulling

it toward the target. The additional field force Jadd(Lu) is given by [59]

Jadd(Lu) =


qadd
2

[
(Lu − Lg)− padd

]2
, ∥ Lu − Lg ∥≤ padd ,

0 , ∥ Lu − Lg ∥> padd .

(6.25)

where qadd is the additional field coefficient, ∥ Lu − Lg ∥ is the distance between the UAV

and the goal, padd is the impact of the field on the distance between the UAV and the goal.

The additional field force Fadd(Lu) is represented as follows:

Fadd(Lu) = −∇[Jadd(Lu)] =


qadd

[
(Lu − Lg)− padd

]
, ∥ Lu − Lg ∥≤ padd ,

0 , ∥ Lu − Lg ∥> padd .

(6.26)

The modified repulsive potential function, which takes the relative distance between the

UAV and the target into consideration is given as

Jrep(Lu) =


qrep
2

(
1

Lu − L0

− 1

p0

)2

, ∥ Lu − L0 ∥≤ p0 ,

0 , ∥ Lu − L0 ∥> p0 .

(6.27)
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The repulsion force function Frep(Lu) for the single UAV is given by

Frep(Lu) = −∇[Jrep(Lu)] =


qrep(

1

Lu − L0

− 1

p0

)
1

(Lu − L0)2
, ∥ Lu − L0 ∥≤ p0 ,

0 , ∥ Lu − L0 ∥> p0 .

(6.28)

As demonstrated in equations (6.27) and (6.28), the formulations closely mirror the original

APF. The pivotal modification lies in the introduction of an extra force, ensuring the UAV’s

evasion of local minimum points. The complete potential field encountered by the UAV at

each step can be expressed as follows:

JLu =
i∑

r=1

Jrep(r) +
t∑

l=1

[Jatt(l) + Jadd(l)] (6.29)

where i is the number of obstacles, and t is the number of the goals. Similarly, the total

force that affects the UAV and applies to multiple targets and obstacles is given as follows:

FLu =
i∑

r=1

Frep(r) +
t∑

l=1

[Fatt(l) + Fadd(l)]. (6.30)

There are other factors that can affect the performance of the RCA-APF algorithm.

Drawing from the equations outlined in the preceding section, we have devised an iterative

algorithm to determine the optimal UAV trajectory using the RCA-APF method. At each

iteration, the UAV computes the attractive and repulsive potential field functions, thereby

gathering essential data regarding the location of the target, obstacles, and Ground-Based

Stations (GBS). Within a compact grid of size [s × s], the UAV deliberates its subsequent

maneuver. The operational geographic expanse of our system is demarcated as [M × Z].

The UAV is equipped with a repertoire of eight possible movements to navigate from

its starting point to the intended target. The matrix’s rows and columns correspond to the
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Algorithm 3 RCA-APF Algorithm for Single UAV Path Planning

1: Input:Initial location Ls, final location Lg, position of GBSWk, position of obstacles Lo,
attraction gain coefficient qatt, repulsive gain coefficient qrep, additional field coefficient
qadd, UAV height Hu, RSS-based Trilateration measurement values

2: Output:path planning of the UAV P
3: for j = 1 : J do
4: for s = 1 : S do
5: calculate equation (6.23), (6.25) and (6.27) for given input

calculate the total force potential field (6.30)
6: while dk(t), dj(t) ≥ [q × q] do
7: for each UAV step do
8: Update xu(t) and yu(t)
9: if xu(t), yu(t) < 0 or xu(t), yu(t) > [M × Z] then
10: Break;
11: end if
12: Update UAV coordinate xu(t) and yu(t)
13: end for
14: end while
15: if the UAV have reached the final location Zg then
16: Break;
17: end if
18: end for
19: return xu, yu;
20: for i = 1 : I do
21: each UAV (xu, yu) step; calculate distances using equations (6.15), (6.16), and

(6.17), calculate the RSS values (6.7)
22: for each UAV RSS value do
23: calculate UAV estimated value (xues, yues) equation (6.11)
24: end for
25: end for
26: return xues, yues;
27: for calculated inputs (xu, yu) and (xues, yues) start to implement the path planning

using an open-source simulator
28: end for
29: return P ;

UAV’s xu and yu coordinates, respectively. The intricacies of the algorithm are encapsulated

in Algorithm 1. It is important to note that this algorithm evolves from the conventional

APF algorithm.

6.4.3.2 RCA-APF Algorithm Description

Based on the equations in the previous sections, we construct an iterative RCA-APF algo-

rithm for the best UAV path planning. Initially, we calculate the UAV path planning using

a modified version of the traditional artificial potential field algorithm. Specifically, at every

move of its journey, the UAV actively computes the attractive and repulsive potential field
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Figure 6.8: Architecture of the proposed approach.

functions. This process enables the UAV to assimilate critical data regarding the positions

of the target, any obstacles in the vicinity, and Ground-Based Stations (GBSs). Operating

within a confined grid space measured at [q×q], the UAV assesses and selects its forthcoming

course of action. The system’s operational terrain is designated as [M ×Z]. From the onset

of its mission, the UAV is presented with a selection of eight directional choices to navigate

towards its ultimate goal. At this point of the RCA-APF algorithm, the UAV coordinates

(xu, yu) will get calculated and updated for the next iterative loop. The UAV coordinates will

be constructed as a matrix representing xu values for the rows and yu values for the column,

respectively. We calculat the UAV positions at each time step and we use the trilateration

estimation localization technique to estimate the location of the UAV. The implementation

of the trilateration algorithm is combined with the RCA-APF algorithm. For the fixed co-

ordinate values of each of the GBSs, we calculated the distances from the UAV at each time

step to the GBSs. In addition, we computed the received signal strength between UAV and

GBSs. From the measured distances for each GBS, the algorithm finds the coordinates that

minimize the error function and returns the most optimal solution of the estimated location

coordinates (xues, yues) of the UAV. The specifics of the algorithm are concisely explained in

Algorithm 1. It is noteworthy to mention that this algorithm evolves from the conventional

Artificial Potential Field (APF) algorithm. The path planning is computed to be used as
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a reference to the UAV simulator. In the final iteration of the RCA-APF algorithm, we

applied both calculated and estimated coordinates of the UAV as input to an open-source

UAV simulator implementing UAV path planning scenarios. The UAV simulator is based

on Python Dynamics, which is a toolkit made to enable the study of multibody dynamics.

The simulator is built on multiple packages. The main functionality of the UAV simulator is

to initialize the UAV with various parameters and conditions. Also, the simulator includes

a control algorithm that is strongly inspired by the PX4 multicopter control algorithm. It

is a cascade controller, where the position error (difference between the desired position and

the current position) generates a velocity setpoint, the velocity error then creates a desired

thrust magnitude and orientation, which is then interpreted as a desired rotation (expressed

as a quaternion). Figure 6.8, depicts the workflow of the proposed RCA-APF algorithm.

6.5 Simulation Results and Analysis

In this section, we show the UAV’s behavior with GPS permanent faults and the effective-

ness of the proposed algorithm by conducting experiments and simulations on different path

planning of the UVA at different environment setups. Also, we consider the UAV communi-

cates with the nearest GBS to receive all the information about the current location of the

UAV at each time step.

To illustrate the concepts and the algorithm discussed in this chapter, we present and

show simulation results to demonstrate how the RCA-APF algorithm operates. We conduct

multiple experiments and set up the appropriate values for the parameters. To facilitate

the simulation, the UAV is set to fly at a known altitude, which is fixed throughout the

entire simulation. We run the simulation using an open-source UAV simulator. Also, we

provide 2D plan implementation of the UAV path planning. In the simulations, the UAV

path is generated based on an input to the UAV simulator, v ≤ 5m/s, and flight altitude is

60m. In addition, the time flying off the UAV varies based on the path planning time delay.
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We have further explained the robustness of our UAV path-planning algorithm, particularly

focusing on its obstacle avoidance capabilities, which, alongside permanent fault detection

and recovery, stands as one of its primary functionalities. To this end, we have designed and

executed several additional experiments under a variety of environmental conditions. The

outcomes of these experiments are comprehensively detailed in Table 6.1.

Table 6.1 shows the success rates of UAV missions conducted across various scenarios,

each uniquely characterized by a varying number of obstacles while maintaining a constant

configuration of three Ground Base Stations (GBSs). The presence of three GBSs across

all scenarios is a strategic choice, reflecting a realistic density of navigational aids that a

UAV might typically have access to. Moreover, we define the success rate as the proportion

of missions in which the UAV successfully navigates to its intended destination without

incurring collisions or deviating significantly from its planned trajectory. To ensure the

reliability and accuracy of our success rate, we ran our algorithm to a rigorous testing

protocol, executing the experiment a total of 100 times for each obstacle scenario. Upon

analyzing the data, we observed a clear trend: as the number of obstacles increased, the

success rate tended to decrease. This was expected, as more obstacles present a greater

navigational challenge.

Number of obstacles Number of GBSs Number of Iteration Success Rate (%)

10 3 100 98
25 3 100 85
50 3 100 74.5
75 3 100 60
100 3 100 50

Table 6.1: Success/Failure Rates of the UAV.

In Figure 6.9, we demonstrate a 2D path planning design of a single UAV. The UAV flies

from an initial location to its final destination with obstacle collision avoidance integrated

into the system. The obstacles are generated in a way that fits with the setup framework.

Furthermore, the framework includes the GBSs located at fixed positions to maintain con-
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nectivity with the UAV during the mission. The figures show a different number of obstacles.

Indeed, the obstacles are randomly distributed with mean and variance. We run the experi-

ment with 25 and 75 obstacles. In an environment with more obstacles, the UAV has failed to

reach the final location. Indeed, the obstacles are randomly distributed with mean µ = 0and

variance σ = 0.01.

In Figure 6.10, we illustrate two distinct scenarios of UAV path-planning. These sce-

narios compare the actual UAV path planning with a trajectory estimated using the RSS-

trilateration method. Specifically, Figure 6.10 (a) depicts the intended UAV trajectory in

blue, while the estimated trajectory derived from RSS-trilateration is shown in red. The

comparison demonstrates the efficacy of the RSS-trilateration estimation algorithm, as it

closely mirrors the desired trajectory.

Extending this analysis to Figure 6.10 (b), we observe a scenario where, despite the UAV’s

inability to reach its final destination, the RSS-trilateration estimation remains accurate and

reliable. This is evidenced by the red trajectory, which is based on RSS-trilateration, closely

following the actual path taken by the UAV until its early termination. The consistency of

the RSS-trilateration algorithm’s performance in both scenarios underscores its robustness

and potential applicability in real-world UAV navigation systems.

6.5.1 UAV Simulator

To validate our results, we used an open-source Quadcopter simulator. In that simulator,

we implemented a simple scenario with a single UAV flying from the initial location to

the final destination. The Quadcopter simulator provides a simple working simulation of the

quadcopter’s dynamics and a simple controller that can handle position control and supports

minimum snap (but also minimum velocity, acceleration, and jerk) trajectory generation.

The UAV’s orientation is based on two frames: the first one is the X direction North, Y

East, and Z Down. The second frame is the X direction East, Y North, and Z Up. Also, the

simulator uses the quaternion for the UAV’s rotation. Different trajectories can be selected,
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Figure 6.9: The path planning of the UAV with a different number of obstacles.
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for both position and heading. Using the simulator, we can set the desired position and

heading waypoints, and the time for each waypoint. We can select to use each waypoint as

a step, interpolate between waypoints, or generate a minimum velocity, acceleration, jerk,

or snap trajectory. The controller of the Quadcopter simulator is the most critical part.

There are three controllers: one to control XYZ positions, one to control XY velocities

and Z position, and one to control XYZ velocities. In all 3 current controllers, it is also

possible to set a Yaw angle (heading) setpoint. The control algorithm is strongly inspired

by the PX4 multicopter control algorithm. It is a cascade controller, where the position

error (difference between the desired position and the current position) generates a velocity

setpoint, the velocity error then creates a desired thrust magnitude and orientation, which

is then interpreted as a desired rotation (expressed as a quaternion). The source code is

available at https://github.com/bobzwik/Quadcopter_SimCon.

It should be noted that the UAV encounters a certain delay in detecting attacks, a criti-

cal metric that is essential for assessing the effectiveness of our system. We have conducted

additional experiments to measure this delay, which is the time duration from the initial

data point of an attack being observed to the point where our system successfully identifies

the attack. Particularly, we utilized an open-source simulation tool to implement and test

the attack/recovery scenario. It is important to note that the delay in attack detection ob-

served in these simulations is influenced by the performance capabilities of the computing

device, particularly the GPU and CPU specifications. To provide a more thorough insight

into this aspect, for each system, we executed the simulation 10 times to ensure statistical

reliability and to mitigate any anomalies or outliers in the data. After each run, we metic-

ulously recorded the time taken by the attack detection mechanism to identify the breach.

This process involved measuring the interval from the initial indication of an attack to the

point where our system successfully recognized and flagged the anomaly. Below, Table 6.2

summarizes the results of these experiments:

The modeling of our attack detector is intricately designed around the RCA-APF algo-
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Processor GPU Specs CPU Specs Average Attack
Detection Delay

Intel Core
i9

Intel UHD
Graphics 630

2.4 GHz 8-core 16.32 sec

Apple M1
Max

Integrated
Apple GPU

10-core CPU 10.45 sec

Table 6.2: Attack delay table.

rithm. This setup encompasses a comprehensive environment configuration, precise param-

eter tuning, and a realistic representation of potential obstacles. Utilizing an open-source

simulator, we have meticulously adapted and fine-tuned various parameters to accurately

replicate scenarios where a UAV deviates from its intended flight path due to an external

attack. In these simulated scenarios, the attack detector is integrated into the UAV’s system.

Its primary role is to promptly identify any form of attack that causes trajectory deviation.

The moment an attack-induced diversion is detected, our RCA-APF algorithm is triggered

to initiate an immediate recovery process. This process is designed to swiftly reorient the

UAV back to its original course, thereby mitigating the impact of the attack. Our modifica-

tions to the simulator parameters include adjustments to the UAV’s response sensitivity to

external disruptions, the threshold levels for attack detection, and the dynamic recalibration

of the UAV’s pathfinding algorithms post-attack detection. These enhancements enable us

to simulate with high fidelity the UAV’s behavior under attack conditions and to rigorously

test the efficacy of our attack detection and recovery mechanism. This comprehensive setup

not only demonstrates the robustness of our attack detector in identifying and responding

to trajectory deviations but also underscores the effectiveness of the RCA-APF algorithm in

ensuring the UAV’s swift return to its intended path post-attack.

In our experiments, the implementation of the attack detector, based on the RCA-APF

algorithm, was conducted in a controlled simulation environment designed to mimic real-

world UAV operational scenarios. We utilized a sophisticated open-source UAV simulator

that allowed us to create the attack scenario. This includes a GPS attack, which could
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potentially divert the UAV from its intended path. In addition, the attack detector was inte-

grated into the UAV’s onboard system within the simulator. This integration was crucial to

ensure that the detector had access to real-time flight data, including the UAV coordinates,

flight speed, and trajectory information. Also, we configured specific parameters within the

simulator to define the attack detection threshold. This involved setting up conditions un-

der which the UAV would be considered under attack, such as sudden deviations from the

planned path. Following the detection of an attack, our RCA-APF algorithm was auto-

matically activated. This algorithm then recalculated the optimal path to ensure the UAV

returned to its original trajectory. Throughout the experiments, data was collected on the

response time of the attack detector, the accuracy of attack detection, and the effectiveness

of the recovery path. This data was crucial for evaluating the performance of our system

under various parameters. The experiments were conducted iteratively, allowing us to refine

the attack detection parameters and recovery algorithms based on the outcomes of each test.

This iterative process was key to enhancing the robustness and reliability of our system.

In Figure 6.11, we present an overhead view of a 3D path planning simulation for a UAV

navigating in an environment with obstacles. This simulation is derived from an enhanced

version of the original Quadcopter Simulation and Control program, to which we have inte-

grated a reference UAV path planning algorithm with no attack. The modifications enable

the simulator to generate a realistic depiction of the UAV’s trajectory based on the provided

input parameters.

Specifically, Figure 6.11 demonstrates the UAV’s path planning capabilities in an attack-

free scenario. This allows us to observe the UAV’s trajectory as it smoothly progresses

from its initial location to the intended destination, strictly adhering to the pre-calculated

trajectory determined by our algorithm. The simulation, conducted in such an idealized

setting, serves as a benchmark for evaluating the UAV’s navigational proficiency and the

path planning algorithm’s efficacy under optimal conditions. In addition, the simulation

results depicted in Figure 6.11 not only demonstrate the UAV’s adherence to the predefined
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Figure 6.11: UAV Path planning simulation with no attack.

trajectory but also underscore the precision and robustness of our path planning algorithm.

It is evident from the UAV’s flight pattern that the trajectory is followed with remarkable

accuracy, highlighting the algorithm’s capability to navigate with minimal deviation from the

set course. This fidelity to the planned route is indicative of the algorithm’s sophisticated

design, which accounts for various flight dynamics and environmental factors to ensure a

seamless navigation experience.

In Figure 6.12, we show a comparative visual analysis of two scenarios that highlight the

resilience and adaptability of our algorithm in UAV path planning simulations. Figure 6.12

(a) depicts the UAV’s path when it encounters a hostile attack and lacks any recovery proto-

cols. This particular depiction serves to illustrate the vulnerability of the UAV’s trajectory

to external disruptions, which can lead to significant deviations from the intended path or,

in some cases, result in the failure to complete the mission. The trajectory shown reveals the
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Figure 6.12: UAV Path planning simulation with (a) attack and no recovery, (b) attack and
recovery.
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extent to which adversarial interference can compromise the UAV’s operational integrity and

underscores the necessity for robust countermeasures within the path planning framework.

In contrast, Figure 6.12 (b) illustrates the UAV’s trajectory under the condition of an exter-

nal attack, which is initiated at a specific time and location during the flight. The system is

designed to detect such an attack within a brief time frame, triggering the activation of the

recovery protocol embedded within our algorithm. This sequence of events sets the stage for

a critical evaluation of the recovery mechanism’s robustness. The subsequent path of the

UAV, as shown in Figure 6.12 (b), serves as a testament to the resilience of the recovery

protocol. Despite the initial disruption, the UAV is not only able to detect and respond

to the attack but also to recalibrate its course effectively. This realignment with the pre-

planned route is a crucial demonstration of the algorithm’s dynamic response capabilities.

The UAV’s successful navigation back to its intended trajectory and ultimate arrival at the

target destination.

Moreover, the UAV’s successful completion of its mission, as shown in the simulation,

is proof of the algorithm’s operational effectiveness. The algorithm’s ability to guide the

UAV through its journey with or without interference showcases its potential for real-world

applications where reliability and precision are paramount. The UAV’s performance, in this

case, reflects a well-synchronized harmony between the algorithm’s theoretical underpinnings

and practical execution, paving the way for its deployment in more complex and dynamic

environments.

6.6 Conclusions

As shown in this work, the cyber-physical nature of UAVs demands an extension to the

scope of ordinary vulnerability analysis for such systems. In addition to threats in the

computational components such as the GPS sensor and detectors, a largely overlooked class

of vulnerabilities is fostered by the interactions between the computational systems and
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electrical and mechanical components. Pondering the list of UAV attacks, we started to

investigate some of these computational threats where we have determined strategies and

policies for path planning of the UAV under GPS performant faults. In the considered

setting, we have developed a path planning procedure based on three stages: firstly, we use

the modified artificial potential field algorithm to find the best path planning of the UAV,

which flies in a complex environment with obstacles and GBSs. Secondly, we used the RSS

trilateration localization approach to estimate the location of the UAV under GPS permanent

faults. The RSS trilateration localization measurements helped us to estimate the location of

the UAV at every step. Finally, combining the first two steps, we implemented the RCA-APF

algorithm considering a single UAV. Simulation and experiment results have demonstrated

the path-planning conditions under which the UAV can reach its final destination. Finally,

we validate the feasibility of our design using a path-planning UAV simulator. Future work

will show more complex environments including multiple path planning for several UAVs.
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Chapter 7

Conclusion

7.1 Dissertation Summary & Conclusion

7.1.1 Antenna Pattern Aware UAV Trajectory Planning Using

Artificial Potential Field

In this study, we have presented and implemented a sophisticated variant of the Artificial

Potential Field (APF) algorithm, specifically designed for the navigation of both individual

and grouped UAVs. This enhanced algorithm enables the generation of optimal flight paths

that enhance both operational efficiency and safety. Our method comprehensively addresses

the challenges associated with obstacle avoidance and the prevention of in-flight collisions

among UAVs—key factors for effective swarm operations. Additionally, we have explored

the subtle impacts of antenna radiation patterns on the optimization of flight paths, demon-

strating how these technical elements crucially affect trajectory planning to maintain strong

communication links.

The simulation results have been enlightening, demonstrating the algorithm’s effective-

ness in directing UAVs accurately to their intended destinations. These findings highlight

the algorithm’s proficiency in sustaining vital communication links with ground stations and

other UAVs, while adeptly maneuvering around obstacles and mitigating potential aerial
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conflicts. This equilibrium is essential for the successful real-world application of UAVs in

complex scenarios, emphasizing the importance of operational reliability and safety.

7.1.2 Cyber-Physical Attack on UAV Systems

Historically, security assessments for Unmanned Aerial Vehicles (UAVs) have been catego-

rized into two distinct areas: flight safety and information security. However, with the in-

creasing complexity of cyber-physical system (CPS) integration within UAVs, cyber-attacks

that target these systems not only threaten data integrity but also lead to incorrect control

commands. Such incursions critically compromise both the safety and operational reliability

of UAVs. It is therefore crucial to explore the ripple effects of security threats from the

informational to the physical realm, understanding how cyber vulnerabilities can translate

into real-world risks.

In this study, we have provided a comprehensive overview of the evolving security land-

scape for UAVs, emphasizing the intertwined nature of cyber and physical threats. Our

holistic examination of how cyber-attacks impact physical operations is central to this re-

search, providing key insights for the security assessment of broader CPS frameworks. This

approach underscores the need for an integrated security strategy that addresses both cyber

and physical vulnerabilities.

7.1.3 Path Planning for UAVs Under GPS Permanent Faults

As demonstrated in this study, the cyber-physical integration of Unmanned Aerial Vehicles

(UAVs) necessitates a broader approach to vulnerability analysis than traditionally applied.

Beyond the computational risks inherent to components like GPS sensors and detectors, a

significant yet often neglected set of vulnerabilities arises from the interplay between com-

putational, electrical, and mechanical systems. In response to a catalog of UAV attacks,

we have initiated investigations into several computational threats, devising strategies and

policies for UAV path planning in scenarios of GPS malfunctions.
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Our developed path planning process consists of three phases: initially, we employ a mod-

ified artificial potential field algorithm to navigate the UAV through complex environments

filled with obstacles and Ground-Based Stations (GBSs). Next, we utilize the Received Sig-

nal Strength (RSS) trilateration technique to ascertain the UAV’s location in the event of

persistent GPS failures, providing location estimates at each stage. Subsequently, by inte-

grating these methods, we implemented the Robust Control Algorithm-Artificial Potential

Field (RCA-APF) algorithm tailored for a single UAV scenario.

Simulation and experimental results have affirmed the operational conditions under which

the UAV successfully reaches its target. The effectiveness of our approach is further vali-

dated through a path-planning UAV simulator. Future research will explore more intricate

scenarios, including multi-UAV path planning in diverse environments.

7.2 Future Research Directions

This section outlines the principal domains for future research, which aim to significantly en-

hance UAV cyber-resilience using the Advanced RCA-APF (Resilient Cyber-attack Artificial

Potential Field) algorithm in complex environments:

• One future goal is to enhance UAV Cyber-Resilience with Advanced RCA-APF Al-

gorithms in Complex Environments. Furthermore, we aim to deploy the Resilient

Cyber-attack Artificial Potential Field (RCA-APF) algorithm in more intricate envi-

ronments involving multiple UAVs. This will test the algorithm’s efficacy in scenarios

where several UAVs concurrently navigate from an initial location to a designated

final destination. The primary challenge addressed will be the coordination and real-

time path adjustment among UAVs to maintain optimal flight paths while responding

dynamically to potential threats.

– The initial step is to evaluate the RCA-APF algorithm’s scalability by increasing

the number of UAVs in simulation environments to mirror real-world operational
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complexities.

– Next step is to develop mechanisms for effective inter-UAV communication and

coordination, ensuring that the fleet can respond as a unified entity to navigational

adjustments or threats.

• Another future direction is to enhance attack detection and recovery mechanisms by

significantly improving the process of detecting attacks. The main goal is to reduce

the response time to nearly instantaneous recovery, targeting intervention speeds close

to fractions of a second. This enhancement will be achieved by optimizing the ex-

isting RCA-APF algorithm parameters and integrating more responsive sensor data

processing techniques.

– Refine algorithmic efficiency to detect and initiate recovery processes quicker,

minimizing the potential impact of attacks.

– Utilize a broader array of sensor inputs to enhance detection capabilities, employ-

ing faster data processing frameworks to support rapid response functionalities.

– New approaches depend on advanced technologies in wireless communication sys-

tems, such as 5G and beyond, utilizing more sophisticated signal processing meth-

ods and control systems.

• A promising future direction is to explore predictive analytics for preemptive attack

mitigation. In this scenario, another branch of our research will concentrate on de-

veloping predictive capabilities within the RCA-APF framework, employing artificial

intelligence (AI) and machine learning techniques. The goal is not only to react to

attacks but also to anticipate them before they occur, thereby enhancing preemptive

countermeasures. Implementation can involve the following:

– Leverage machine learning models to analyze historical attack data and UAV be-

havior, developing predictive models that can accurately forecast potential cyber-
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attacks.

– Integrate these predictive models with the RCA-APF algorithm, allowing UAVs

to adjust their flight paths in anticipation of potential threats, rather than merely

reacting to them.

• Each of these areas can be pursued through a combination of theoretical development,

simulation testing, and controlled field experiments. In particular, advanced simula-

tion tools can be employed to model UAV fleet operations in high-risk environments,

algorithms can be validated through extensive testing, and approaches can be refined

based on feedback from these simulations.

• The proposed enhancements and expansions to the RCA-APF algorithm hold the

promise of significantly advancing the state of UAV cybersecurity, making these sys-

tems more robust against increasingly sophisticated cyber-physical attacks.

• This research will not only improve the safety and reliability of UAV operations but also

contribute to the broader field of autonomous vehicle security and wireless connectivity.
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[48] S. J. Maeng, M. A. Deshmukh, Güvenç, A. Bhuyan, and H. Dai, “Interference analysis

and mitigation for aerial iot considering 3d antenna patterns,” IEEE Transactions on

Vehicular Technology, vol. 70, no. 1, pp. 490–503, 2021.

[49] E. Frachtenberg, “Practical Drone Delivery,” Computer, vol. 52, no. 12, pp. 53–57,

2019.

[50] L. Zhang, H. Zhao, S. Hou, Z. Zhao, H. Xu, X. Wu, Q. Wu, and R. Zhang, “A Survey

on 5G Millimeter Wave Communications for UAV-Assisted Wireless Networks,” IEEE

Access, vol. 7, pp. 117 460–117 504, Jul. 2019.
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