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Abstract

Recent successes in Euclidean Dynamical Triangulations (EDT) motivate the further

comparison of lattice observables to predictions of general relativity (GR) treated as an

effective quantum theory. A particularly promising observable is the two-point func-

tion of the scalar curvature, which can be straightforwardly computed on the lattice and

which in principle can also be computed from the Einstein-Hilbert path integral. Any such

comparison should be between manifestly gauge-invariant observables, and will require

that the GR predictions be analytically continued in a gauge-invariant manner to the Eu-

clidean signature of the lattice. In this thesis I present my work toward this goal, namely:

the construction of a set of relational observables, including the scalar invariantized scalar

curvature; the calculation of the graviton propagator in a basis suitable for continuation;

and the calculation of three manifestly gauge-invariant results in Lorentzian signature, as

support of the coherence of the so-far developed machinery. I conclude by outlining the

difficulties that remain in the evaluation of the scalar curvature two-point function at one

loop, including the stubborn gauge dependence of the result and the difficulty in actually

performing the analytic continuation to Euclidean signature.
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1

1 Introduction

The formulation of a coherent and testable theory of quantum gravity continues to be elusive.

The well-known nonrenormalizability of general relativity [1, 2] requires that any consistent

theory of gravity differ at high energies from the perturbative quantization. For decades string

theory has been seen as the most promising candidate for such a theory. However the stabil-

ity of string theory requires that it be supersymmetric [3], and experimental searches have

found no evidence of superpartners [4–13]. While these results do not exclude the possibil-

ity of high-mass superpartners the complete lack of experimental evidence for supersymmetry

casts doubt on string theory and all other supersymmetric theories as viable UV completions

of gravity.

That general relativity is not renormalizable in the perturbative sense means that there

does not exist a finite set of counterterms which can be added to the action to absorb every

divergence in the theory: at higher and higher order in the loop expansion, i.e. in the expan-

sion in the gravitational coupling κ, new divergences inevitably arise, which must be absorbed

by new counterterms. Since each new counterterm must be fixed by a new experiment such a

theory has predictive power only at low energies, where we can restrict ourselves to finite or-

der in the loop expansion, add a finite number of operators with associated couplings to the

action, and absorb the finite number of singularities in the truncated loop expansion by renor-

malizing these finite new couplings [14–16].

This effective field theory approach allows us to perform perfectly well-defined quantum

gravitational calculations over a limited range of energies, but does not solve the problem of

formulating a theory of gravity which is valid at all scales. However this approach of building

the full theory out of the classical theory by performing a series of perturbative calculations

and adding counterterms to the action to absorb the divergences is not the only way for a the-

ory to be renormalizable. As was first observed by Wilson and Kogut [17] a theory can also be

UV-completed if its couplings flow to a fixed point in theory space at high energies. As Wein-
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berg pointed out in [18], if such a fixed point exists for gravity then it can still be nonperturba-

tively renormalizable.

To see this let me be more clear about my terms. (My exposition here echoes the much

fuller treatments in the literature, e.g. [19, 20].) Suppose we have some set of operators Oi ,

finite or infinite in number. Then given this set of operators and a corresponding set of dimen-

sionless coupling values gi a theory is defined by the resulting action,

S =∑
i
µni giOi , (1.1)

including an energy scale µni for each term to account for the possibly varying dimensions of

the operators. The set of all possible values of the couplings defines a manifold on which the

couplings act as coordinates, and this theory space will be finite or infinite dimensional de-

pending on the number of operators we’re including. The renormalized couplings will gener-

ically depend on the scale µ at which they’re measured, gi = gi (µ), meaning that the action S,

and hence the theory, will vary depending on the scale at which renormalization is performed.

Letting µ vary then defines a trajectory through theory space, and a given theory is asymptot-

ically safe if as µ→∞ its trajectory flows to a fixed point in theory space. The surface of criti-

cality of a particular fixed point is the submanifold of theory space for which that fixed point

is an attractor, i.e. the set of all asymptotically safe theories which tend toward that particular

fixed point in the UV. A direction in theory space is called relevant if it is tangent to the surface

of criticality.

Suppose now that a theory is asymptotically safe. Then it must lie on some surface of crit-

icality, and it follows that the number of free couplings in the theory is given by precisely the

dimension of that surface of criticality. For examples on either extremes, if the surface of crit-

icality is a line, i.e. if there is one relevant direction, then there is only one free coupling in the

theory, in terms of which all other couplings are determined; while if the surface of criticality

is infinite-dimensional then there are infinite free couplings, i.e. infinite relevant directions,
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and we’re no better off than we were with our perturbatively nonrenormalizable general rela-

tivity. It therefore follows that if a theory is asymptotically safe, and if the fixed point to which

it tends in the UV has a finite-dimensional surface of criticality, then only a finite number of

measurements are needed entirely determine the theory. It is in this sense that an asymptot-

ically safe theory can be nonperturbatively renormalizable: even though an attempt to mea-

sure all the couplings by proceeding through higher- and higher-loop Feynman diagrams may

well fail, there can still be in fact only a finite number of independent couplings, and the the-

ory is therefore predictive. The wrinkle is that if the theory is not perturbatively renormaliz-

able then these relationships between the couplings are not apparent on the level of Feynman

diagrams.

Asymptotic safety therefore offers, at least in principle, a potential paradigm for a consis-

tent quantum theory of gravity, as was noted in e.g. [21]. However to test whether gravity actu-

ally is asymptotically safe an investigative approach other than perturbation theory is needed.

Euclidean dynamical triangulations (EDT) have recently proven fruitful in this regard [22–30].

EDT begins in a similar spirit to the more standard lattice field theories, in that the first

step is to discretize spacetime as a collection of simplices. However EDT is a discretization

of gravity, i.e. of a theory of dynamical spacetime itself, and it is therefore the geometry of

spacetime, which manifests as the relationships between the simplices which compose the

discretized spacetime, which EDT evolves. This is done as follows. The starting point is the

Euclidean gravitational path integral:

Z =
∫
Dg e−S[g ], S[g ] =− 2

κ2

∫
d4x

p
g (R −2Λ). (1.2)

This is discretized as [31, 32]

Z =∑
T

1

CT

{ N2∏
i=1

O(ti )β
}

e−SER , (1.3)

in which the sum is over all triangulations; CT is a symmetry factor which accounts for the
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fact that the vertices in a given triangulation T can be labelled in many different ways; N2 is

the number of triangles, i.e. two-simplices, in the triangulation; and O(ti ) is the number of

four-simplices to which the triangle ti belongs. The Einstein-Hilbert action is replaced by the

Einstein-Regge action SER [33], and the lattice is updated via the Pachner moves [34–36], with

each update accepted or rejected via the Metropolis algorithm.

In [22, 23] it was found that there exists a region of EDT parameter space containing ex-

tended lattices with spectral and Hausdorff dimensions approaching 4 at large distances. In

[24] the phase diagram of the model was investigated; in [25] four-dimensional semiclassi-

cal geometries were obtained in the large distance limit, and it was argued that the number of

relevant couplings in the continuum limit is one, making the theory maximally predictive. In

[26, 27] scalar fields and Kähler-Dirac fermions were successfully implemented on the lattice,

with the latter used in place of Dirac spinors because they can be defined without reference to

any metric. In [28] the emergence of classical de Sitter space from the lattice was studied, and

by making contact with the Hawking-Moss instanton [37] a value was extracted for Newton’s

constant G in lattice units. In [29] it was shown that in the continuum limit the interaction

of two scalar particles on the lattice does behave as one would expect for Newtonian gravity,

allowing for an independent determination of G in lattice units. Importantly the two values

of G found in [28] and [29] agree within uncertainty, providing strong evidence that the lat-

tice is in fact simulating a recognizably gravitational interaction. Finally in [30] an algorithmic

improvement was presented which allowed for a more detailed investigation of the de Sitter

solution of [28], and on these finer lattices the agreement with classical de Sitter space was

stronger still.

EDT therefore shows promise as a nonperturbative and asymptotically safe formulation

of gravity. To continue buttressing this case it is important to continue to test the correspon-

dence between the continuum limit of the lattice and the known low-energy theory of general

relativity, and to do so we must identify observables which can be calculated both on the lat-

tice and in the low-energy theory.
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A seemingly obvious candidate for such an observable is the scalar curvature R, whose dis-

cretized form, the Regge curvature [38], can be and has been [24] calculated on the lattice. In

particular work is ongoing on the lattice to obtain the two-point function of the Regge curva-

ture in the long-distance limit, and it therefore behooves us to obtain an analogous prediction

of the two-point function of the scalar curvature in the low-energy effective theory of general

relativity, again evaluated at long distances. Actually producing a result for this correlation

function which can be compared to the lattice is a formidable task, and one which has not yet

been accomplished. In this thesis I present the progress that has been made in this direction.

The fundamental obstacle, and the one from which all subsequent difficulties arise, is that

the lattice to which I want to compare my result is Euclidean, while the known low-energy

effective theory of general relativity is Lorentzian. The question of analytically continuing

general relativity to Euclidean space has long been known to be subtle (see e.g. [39]), with the

trouble arising from the sign of the kinetic term of the conformal mode of the graviton. How-

ever any such continuation certainly ought to be done in a gauge-invariant manner, meaning

that we would like to be able to explicitly verify the gauge invariance of the continuation. To

do so we should therefore begin with an explicitly gauge-invariant Lorentzian result, perform

the continuation, and verify that the result remains gauge-invariant.

The definition of gauge-invariant observables in general relativity is itself a subtle one; I

review and surmount this difficulty sec. 2, following and extending the recent development of

relational observables [40–48]. The essential idea of relational observables is to define a shared

“master” coordinate system X to which all other coordinate systems x refer their observations.

These master coordinates are defined to be harmonic with respect to the full metric, ∇2X = 0,

and are in this sense therefore the “straightest possible” coordinates. Two-point functions of

relational observables are then functions of the “master coordinate distance” between the

points at which the relational observables are measured. Meanwhile correlators on the lattice

are measured at fixed geodesic distance, which is the distance between two points measured

along the “straightest possible” curve between those points. It may therefore be plausibly con-
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jectured that the master coordinate distance on which relational observables depend is equiv-

alent to the geodesic distance measured on the lattice, and therefore that (modulo a successful

Euclidean continuation) the correlators of relational observables may be appropriately com-

pared to the corresponding lattice results.1

In sec. 3 I obtain the propagators of the graviton and its Faddeev-Popov ghost, choosing

a useful tensor basis which allows one to keep track of the contributions of the problematic

conformal mode in loop calculations; since the difficulty of the continuation arises from the

“wrong” sign of the conformal mode kinetic term, and since the sign of a field’s kinetic term

determines the direction in which its propagator’s poles are deformed in the complex plane,

any effective continuation scheme will surely need to do so. In sec. 4 I give the relevant Feyn-

man rules, taking care to derive the new external vertices which arise from the use of relational

observables, and in sec. 5 I apply this machinery to obtain three manifestly gauge-invariant

correlators: the two-point function of the volume factor
p−g at tree level, the gravitational

corrections to the mass of a minimally-coupled scalar at one loop, and the two-point function

of a massless scalar at one loop. Finally in sec. 6 I discuss the work that remains to obtain a

gauge-invariant Euclidean continuation of the scalar curvature two-point function.

CONVENTIONS

Throughout this thesis I will denote the d-dimensional spacetime manifold by M and a generic

coordinate system on M as2 x : M → Rd . Note that the sans serif symbol x represents the map

which takes a point p ∈ M to its coordinates. The italic symbol x will rather denote an actual

value of the coordinates:

x : p ∈ M 7→ x(p) = x ∈Rd . (1.4)

1A previous proposal [49] attempted to directly compute gauge-invariant correlators at fixed geodesic dis-
tance. However we have favored the relational approach due to its relatively straightforward implementation and
comprehensible results when compared with [49].

2I will typically ignore the fact that coordinate systems are generally defined only on subsets of M , since (for
the purposes of our discussion) we gain nothing but a little extra notation by keeping explicit track of the coordi-
nate domains.
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This may seem unnecessarily pedantic at the moment, but we will find this distinction use-

ful in our discussion of relational observables in sec. 2. Abiding with the usual conventions I

denote the coordinate frame by ∂µ and the coordinate coframe by dxµ. When I need a second

coordinate system I’ll denote it with tildes, so that e.g. the coordinate system x̃ : M → Rd has

coordinate frame ∂̃µ. I denote a generic diffeomorphism of M by F : M → M and assume that

some such diffeomorphism relates x and x̃ as x̃= x◦F−1. I also typically abbreviate “diffeomor-

phism” as “diff”.

The ring of smooth real-valued functions on M I denote in the standard way as C∞(M).

The space of rank
(k
`

)
tensors3 at a point p ∈ M I denote by

(
T k
`

)
p

M , with the usual special

cases for the tangent and cotangent spaces Tp M and T ∗
p M . The rank

(k
`

)
tensor bundles I de-

note similarly as T k
`

M , and the space of smooth sections thereof in the usual way as Γk
`

M ,

with the conventional notation for the spaces of vector and one-form fields X(M) ≡ Γ1M and

X∗(M) ≡ Γ1M .

I write the metric on M and its components as g = gµνdxµdxν. The flat metric is denoted

by η= ηµνdxµdxν, and the metric perturbation of g about flat space is denoted by

g =η+κh, h = hµνdxµdxν , (1.5)

where κ is the gravitational coupling, given in terms of Newton’s constant by κ = p
32πG in

four dimensions. I use the space-negative convention, so that e.g. η = dt2 − dx2 in Carte-

sian coordinates. Objects related to the background metric are denoted by a bar, e.g. ∇̄ for

the background gradient operator, while objects related to the full metric are not, e.g. ∇ for

the full gradient operator. Indices are raised and lowered with the background metric, so that

e.g. hµ
ν = ηµρhρν, with the sole exception being the inverse of the full metric, which I write as

g−1 = gµν∂µ∂ν. Thus to first order in κ the inverse metric has components gµν = ηµν−κhµν.

3There seems to be no settled convention in the literature as to whether e.g. the k in “rank
(k
`

)
” means “takes

k vector arguments” or “carries k superscripted indices”, so to be clear: in this thesis a rank
(k
`

)
tensor has k su-

perscripted and ` subscripted indices.
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Finally I will note that I write g and h in boldface in order to align myself with convention and

write g = det g and h = trh. All other tensors I’ll just write as e.g. C =Cµ
ν∂µ⊗dxν.

Many expressions will feature multiple integrals over momenta and/or position variables.

To simplify the notation in these cases I adopt the shorthand
∫

dd x = ∫
x and

∫
dd p /(2π)d = ∫

p .

ACKNOWLEDGEMENT OF TOOLS

Throughout this thesis I make almost ubiquitous use of MATHEMATICA [50], in particular XACT

and its extensions [51–58] for abstract tensor manipulations and FEYNCALC [59–61] for one-

loop tensor reductions. I also make use of the LaTeX package TIKZ-FEYNMAN [62] to produce

the inline Feynman diagrams on display.

2 Diffeomorphism-invariant observables

2.1 THERE ARE NO DIFFEOMORPHISM-INVARIANT LOCAL OBSERVABLES

It is well known that in a diffeomorphism-invariant field theory there exist no invariant local

observables. In this section I demonstrate this claim, from both the passive and active per-

spectives of diffeomorphisms.4

2.1.1 The passive perspective

Let’s begin with the passive perspective. Let M be our spacetime manifold, x : M → Rd a co-

ordinate system on M , and F : M → M a diffeomorphism. In the passive perspective we think

of x and F as providing us with a new coordinate system x̃ = x ◦F−1 : M → Rd . The transfor-

mation between these coordinates is given explicitly by the transition map between them,

defined by T = x̃ ◦ x−1 : x(M) → x̃(M), which eats a value x ∈ x(M) ⊆ Rd , takes us to the point

p = x−1(x) ∈ M whose coordinates are x in the “old” coordinate system, and spits out the co-

ordinates T(x) = x̃(p) ∈ Rd of that point in the “new” coordinate system. For an equivalent

4See Appendix A for details on these two perspectives.
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interpretation of T observe that

T= x◦F−1 ◦x−1 = x̃◦F−1 ◦ x̃−1, (2.1)

meaning that T is the coordinate representation of the (inverse of the) inducing diffeomor-

phism F−1 in either coordinate system.

From this viewpoint the tensor fields of interest, say some arbitrary C ∈ Γk
`

M , do not them-

selves change – rather we shift our focus from the components Cµ...ν
ρ...σ of C in the old coordi-

nates to its components C̃µ...ν
ρ...σ in the new coordinates, e.g. for a rank

(1
1

)
tensor

C =Cµ
ν∂µ⊗dxν = C̃µ

ν ∂̃µ⊗dx̃ν . (2.2)

From eq. (A.84) we can relate the components in the old and new coordinates via the inducing

diff as

C̃µ
ν(p) = (

F∗C
)
µ
ν ◦F−1(p) =

(
∂α

(
F−1)µ)

p

(
∂νFβ

)
F−1(p)C

α
β(p). (2.3)

evaluating at some point p ∈ M for clarify and writing Fµ = xµ ◦F and
(
F−1

)µ = xµ ◦F−1. It may

be further shown (see eq. (A.85)) that the matrices in the above can be given explicitly in terms

of the transition map as

(
∂µFν

)
F−1(p) =

∂
(
T−1

)ν
∂xµ

(
x̃(p)

)
,

(
∂µ

(
F−1)ν)

p
= ∂Tν

∂xµ
(
x(p)

)
, (2.4)

i.e. we evaluate the derivatives of the transition map at the old coordinates of the point p and

the derivatives of its inverse at the new coordinates of that same point. Thus if we express the

transformation rule (2.3) as a function of the coordinates (which as we will discuss below is the

more physically meaningful expression, despite obscuring the basic geometric significance)

we find

C̃µ
ν ◦ x̃−1(x) = ∂Tµ

∂xα
(
T−1(x)

)∂(T−1
)β

∂xν
(x)

(
Cα

β ◦x−1(T−1(x)
))

. (2.5)
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Let’s unpack the above. The short explanation for what we’ve done is that we’ve taken eq. (2.3)

and substituted in x̃−1(x) for p. The immediate result of doing so is that we obtain the “nat-

ural” new-coordinate representation of C on the left hand side: its components in the new

coordinate frame and coframe, evaluated as a function of the new coordinates.5 We wish to

relate this to the natural old-coordinate representation of C on the right hand side, so since

x̃−1 = x−1 ◦T−1 we obtain the old-coordinate representation, evaluated at the coordinate value

T−1(x). That we evaluate these components at different coordinate values, even though they’re

the components at the same spacetime point, is just the consequence of the fact that in the

passive perspective we assign different coordinates to the same point before and after the

transformation. Finally by similar logic we obtain the transformation matrices evaluated at

those same distinct coordinate values. These coordinate values differ for a different reason:

unlike the components, which are evaluated at the same point but in different coordinate sys-

tems, the matrices in eq. (2.3) are evaluated at the distinct points p and F (p) in the same co-

ordinate system, meaning that when we substitute x̃−1(x) for p in eq. (2.4) we obtain the given

differing arguments.

Now let’s turn to the main topic of this section. To see why there are no diff-invariant lo-

cal observables from this passive perspective let’s first be explicit about what we mean by

that phrase. In particular let’s begin by discussing the term observable, by which I refer to any

quantity which one might reasonably hope to measure in an experiment. In the context of this

thesis, which is entirely concerned with theories of tensor fields on spacetime, we will use the

word to refer most broadly to any component of a tensor field, or any polynomial and/or inte-

gral thereof.6

To be more specific about what an observable is as a mathematical object let’s think about

5N.B. since x is just some arbitrary element of Rd I don’t need to decorate it with a tilde to indicate that it’s a
value of the new coordinates - the fact that it’s mapped into spacetime by x̃−1 is enough to indicate that fact.

6Note that I very deliberately don’t exclude the components of tensor fields of nontrivial rank from this def-
inition. For example one might reasonably hope to measure the total energy in a region, which is the integral of
the (0,0) component of the energy-momentum tensor over that region. I’ll also note that this is the definition of
a classical observable - when we move to the quantum theory it will be the correlation functions of these objects
which are the actual physically observable quantities, although we will still often refer to the classical observables
as just the “observables”.
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how one would actually perform a measurement in a field theory, say of a scalar field φ : M →
R. The observer would wish to record not just the measured value of φ but also the time and

place at which it had that value. To record these latter the observer would set up their coordi-

nate system (or make reference to one preestablished) and record the coordinates at which the

measurement occurs. Importantly, the observer does not record the actual spacetime point

p ∈ M at which the measurement occurs - they instead record its coordinates x = x(p) ∈ M . To

emphasize this point consider the fact that if two observers who do not know each other make

a measurement apiece, and then they meet to discuss their measurements, they would have

no way of knowing whether they took their measurements at the same place and time unless

they first established the rules by which to compare the coordinate values they recorded, i.e.

unless they first determined the transition map between their coordinates.

All of the above is to say: it is not the actual map φ : M → R which is observable, but rather

its representation φ ◦ x−1 : x(M) → R. More generally, when I refer to a component of a tensor

field (or a polynomial and/or integral thereof) as an observable, I am referring specifically to

its coordinate representation. Distinguishing between fields and their coordinate represen-

tations may seem unnecessarily pedantic now (and when we turn to the active perspective it

certainly is), but it is critical to understanding precisely what is meant by a diff-invariant ob-

servable, to which we will come in a moment.

Before discussing diffeomorphism invariance we will briefly discuss the entirely straight-

forward notion of a local observable, which is one which requires a measurement at only a

single point in space. In other words the value of a field at a point, e.g. φ◦ x−1(x), is a local ob-

servable, while e.g. the integral of the field over spacetime or some spacelike hypersurface is

nonlocal. (As a spoiler: this is the property we will sacrifice in order to construct diff-invariant

observables in sec. 2.3.)

Now, the basic definition of diffeomorphism invariance is what you likely expect: an ob-

servable is diff-invariant if it does not change under diffeomorphisms. From the passive per-

spective this means that the value of the observable in one coordinate system x agrees with its
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value in any other x̃.

It is immediately apparent that, for example, the value at a point in spacetime of a compo-

nent of a tensor field of nontrivial rank cannot be diff-invariant, since the components of such

a tensor mix amongst themselves under the transformation (2.3). However one might think

that any scalar quantity ought to be diff-invariant, since performing a coordinate transforma-

tion doesn’t change e.g. the value φ(p) of a scalar field φ at a point p ∈ M . But this is precisely

the point at which the distinction we made above - that the actual observable quantity is the

coordinate representation of the field, instead of the field itself - becomes critical: in order for a

local observable to be invariant, it must give the same value when measured at the same coor-

dinate values, no matter the coordinate system used. In other words it doesn’t matter that φ(p)

is the same in all coordinate systems. What matters is that φ◦x−1(x) and φ◦ x̃−1(x), i.e. the val-

ues of the distinct coordinate representations of φ at the same coordinate value x, are in gen-

eral not equal, since they are the values of φ at the distinct points p = x−1(x) and p̃ = x̃−1(x).

In other words, to summarize: from the passive perspective, even the value of a scalar field

at a fixed coordinate value x changes under a diffeomorphism, since the diffeomorphism

changes the spacetime point to which the coordinate value x is assigned. And since the com-

ponents of tensors of nontrivial rank mix amongst themselves under diffeomorphisms, on top

of the spacetime point at which the measurement is made changing, there are thus no local

observables which are invariant under diffeomorphisms.

2.1.2 The active perspective

In this section we’ll argue the same point, in much briefer fashion, from the active perspective.

Again let M be our spacetime manifold, x : M → Rd a coordinate system on M , and F : M → M

a diffeomorphism. In the active perspective we leave x alone and think of F as actually pulling

the fields of interest around on M :

C ∈ Γk
`M 7→ C̃ ≡ F∗C . (2.6)
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Thus, while in the passive perspective the components C̃µ...ν
ρ...σ are of the original tensor C

and evaluated in the new coordinates x̃, in the active perspective they are the components of a

new tensor C̃ and evaluated in the old coordinates x.

From eq. (2.3) we can obtain the active transformation rule as a function of the spacetime

point p, simply by sending p 7→ F (p) in the second and third expressions:

C̃µ
ν(p) = (

F∗C
)
µ
ν(p) =

(
∂α

(
F−1)µ)

F (p)

(
∂νFβ

)
pCα

β ◦F (p) (2.7)

again giving the case of a rank
(1

1

)
tensor for notational brevity. Eq. (2.7) seems to give an ex-

plicitly different expression for C̃µ
ν than eq. (2.3), since the right hand sides are the same func-

tions evaluated at different spacetime points, and this might call into question the common

claim that the active and passive perspectives are equivalent.

To see that this claim is not in fact in any jeopardy let’s obtain the analogue of eq. (2.5), i.e.

the more physically significant relationship of the coordinate representations. In the passive

perspective the natural new-coordinate representation was C̃µ
ν ◦ x̃−1, so we substituted x̃−1(x)

for p in eq. (2.3) to obtain eq. (2.5). In the active perspective we only have one coordinate sys-

tem x, so we ought to substitute x−1(x) for p in eq. (2.7), and doing so yields

C̃µ
ν ◦x−1(x) = ∂Tµ

∂xα
(
T−1(x)

)∂(T−1
)β

∂xν
(x)

(
Cα

β ◦x−1(T−1(x)
))

. (2.8)

which is precisely the same relationship as eq. (2.5).7 Since the coordinate representations

are the physical quantities this confirms the claim that the active and passive perspectives are

physically equivalent.

N.B. the symbol T appears throughout eq. (2.8), even though in the active perspective we

have only one coordinate system and therefore we should have no transition map at all. The

symbol is instead showing up here in its other guise, as you might recall from the previous sec-

7There is an apparent difference: in eq. (2.5) we have C̃µ
ν ◦ x̃−1 on the left hand side, while in eq. (2.5) we have

C̃µ
ν ◦ x−1. However this is not a difference in fact, since in either case the object at hand is the relevant natural co-

ordinate representation of C̃µ
ν.
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tion, as the coordinate representation of the diffeomorphism: T = x◦F−1 ◦x−1. In this context

it is, again, not playing the role of the transition map, i.e. eating a coordinate value x, taking us

to the spacetime point p = x−1(x) which is assigned those coordinates under the old system,

and telling us the coordinates x̃(p) = T(x) of that point under the new system. Rather it eats a

coordinate value x, takes us to the spacetime point p with those coordinates, moves us from

p to F−1(p), and then tells us the coordinates x
(
F−1(p)

) = T(x) of that new point, all working

in the same solitary coordinate system x. Of course as a map Rd → Rd , and as a representation

of F , this is precisely the same T we’ve been using all this time - the only difference is that, not

having any new coordinate system to transition to, we must think of the intermediate step as

moving us around in M , instead of changing the coordinates we’re using on M .

Let us now return to demonstrating that in this picture there are no diff-invariant local ob-

servables. We can directly import our definition of the term from the previous section, with

the simplification that, since in the active perspective we’re concerned with only one coordi-

nate system, we need not worry about distinguishing between the field as a function of space-

time and the field as a function of the coordinates. In other words in this picture a local ob-

servable is diff-invariant if and only if its value at an arbitrary point p ∈ M is unchanged under

diffeomorphisms.

In fact in this perspective it is nearly self-evident that there exist no diff-invariant local ob-

servables. As before we can immediately discount the components of any tensor field of non-

trivial rank, leaving scalar fields as our only hope. But even scalar fields change under diffs in

the active picture: the pullback of a scalar field φ : M → R by F is given by F∗φ = φ◦F , mean-

ing that F∗φ 6=φ for arbitrary p outside of the specific cases in which φ is a constant or F is the

identity map. And therefore, as previously claimed, in the active perspective there are also no

diff-invariant local observables.
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2.2 THE COORDINATE SCALARS

In sec. 2.1 we discussed at length the impossibility of diff-invariant local observables. In this

and the next section I will describe a recently-developed program [40–48], called the relational

approach, by which to construct, given any local observable, a corresponding diff-invariant

but nonlocal observable.

To understand the relational approach let’s start by recapping the narrative of the previ-

ous section, from the passive perspective. Suppose that two observers wish to measure some

observable, which for simplicity we’ll take to be a scalar field φ : M → R. Then each would set

up their coordinate systems and make their measurements and record where and when they

did so. Thus each would measure some value φ ◦ x−1(x) and φ ◦ x̃−1(x̃), where x and x̃ are the

coordinate values at which each observer made their measurement and x and x̃ are the coordi-

nate systems each has set up. If these observers wished they could then sit down later and talk

about it, and they could (in principle) figure out whether their different sets of numbers x and

x̃ corresponded to the same point in space. However this doesn’t change the fact that in order

for the observable to be diff-invariant it must appear the same to them in their own frames,

without them sitting down and figuring out how to translate from one of their systems to the

other, and if x 6= x̃ and x = x̃ (i.e. if the observers are distinct and make their measurements at

the same coordinate values) then their measurements cannot in general be the same in both

frames.

The above also points to a resolution to the problem: if it were somehow possible to “sign-

post” each point in spacetime, so that observers in different coordinate systems could still

agree on the point at which to make their measurements, then it would certainly be possible

to make diff-invariant observations - each observer would simply mark down the signpost at

which the measurement was made, instead of the coordinates in their own system.8 To put

this more quantitatively, we would hope to construct a “master” coordinate system, and pro-

8This is all framed from the passive perspective. From the active perspective we would want our signposts to
get pushed around by diffeomorphisms in the same manner as the fields of the theory.
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vide to every observer the means to obtain these master coordinates given only information in

their frame. In this section I will review the construction of such a coordinate system [47, 48].

In the next I review the resulting general construction of nonlocal diffeomorphism-invariant

observables and obtain the explicit perturbative expansions of the invariantized volume fac-

tor
p−g and scalar curvature R, which to the best of my knowledge have not previously been

obtained in the literature.

2.2.1 The coordinate scalars as a function of the background coordinates

Our first order of business is to construct the master coordinates. We denote these by X : M →
Rd , with the italic symbol X referring to an arbitrary value, i.e. X(p) = X for p ∈ M . Since X

are not “coordinates” in the usual sense, with instead each component Xµ transforming under

diffeomorphisms in precisely the same way as an arbitrary scalar field, we will refer to these as

the coordinate scalars.

The construction of the coordinate scalars depends on the setting in which they are con-

structed. In our case we are interested in perturbations about flat space, which implies the

following.

• We assume some pre-existing coordinate system x= (t,x) : M → Rd , an arbitrary value of

which is denoted x(p) = x = (t , x) ∈Rd . We’ll call these the background coordinates.

• We assume the existence of a metric g on M , whose perturbation about flat space is de-

noted in the usual way,

g =η+κh, (2.9)

with η = ηµνdxµdxν = dt2 −dx2 the flat metric. As discussed more fully in sec. A.6 the

background metric is itself not a well-defined geometric object on M in either the active

or passive pictures: in the active picture the background metric is unaffected by diffeo-

morphisms while all other fields (including the full metric) are pulled around, while in

the passive picture the background metric is defined to have the same components in
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any coordinate system.

Following [47] we will begin from the observation that the background coordinates are har-

monic with respect to the background metric, ∇̄2
xµ = 0. Since we are perturbing about flat

space we then define the coordinate scalars (a) to be harmonic with respect to the perturbed

(full) metric, and (b) to reduce to the background coordinates when the metric perturbation

vanishes. In other words we define the coordinate scalars to satisfy

∇2Xµ = 0 (2.10)

(recalling that ∇ denotes the gradient operator with respect to the full metric g ) and construct

them perturbatively as

X=
∞∑

a=0
κaXa , X0(p) = x(p). (2.11)

Note that the coordinate scalars depend nontrivially, by construction, on the background co-

ordinates from which we build them: if we first proceed through the next paragraphs and then

perform a passive coordinate transformation x 7→ x̃ = x ◦F−1 the explicitly constructed coor-

dinate scalars will obey X0 = x and not X0 = x̃. Equivalently if we perform an active transfor-

mation then the coordinate scalars will themselves change as any other scalar field, Xµ 7→ X̃µ =
F∗Xµ, meaning that X̃0(p) = X0 ◦F (p) 6= x(p). (N.B. even though the components of X carry

an index which looks superficially like a vector index they are all individually scalars, not the

components of a vector.)

We can reexpress the equation (2.10) in a more perturbatively useful form by recalling [63]

that we can write the full Laplacian ∇2 in terms of the full metric g , its determinant g , and the

coordinate frame ∂µ of the x coordinates as

∇2Xµ = 1p−g
∂α

(p−g gαβ∂βX
µ
)
. (2.12)

We may then expand this expression in κ and solve for the Xa ’s order by order, which proceeds
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as follows. Expanding the various pieces gives

gµν = ηµν−κhµν+κ2hµαhα
ν−κ3hµαhνβhαβ+κ4hµαhνβhα

γhβγ+O(κ5) (2.13)

for the inverse metric and

p−g = 1+ 1
2κh +κ2

(
1
8 h2 − 1

4 hµνhµν
)
+κ3

(
1
6 hµνhµ

αhαν− 1
8 hhµνhµν+ 1

48 h3
)

+κ4
(
− 1

8 hµνhµ
αhν

βhαβ+ 1
12 hhµνhµ

αhαν+ 1
32 (hµνhµν)2 − 1

32 h2hµνhµν+ 1
384 h4

)
+O(κ5)

(2.14)

for the volume factor. I review the derivations of these expansions in sec. 4.1.1 and 4.1.2. I also

make use of the MATHEMATICA [50] package XACT [51–58] to confirm my work, as well as for

the lengthier perturbative expansions to come. The O(κ0) term in ∇2Xµ is then

∇2Xµ = ∂α
(
ηαβ∂βX

µ
0

)+O(κ) = ∇̄2
X
µ
0 +O(κ). (2.15)

Since we impose ∇2Xµ = 0 this term must vanish, although we in fact already knew this, since

we also impose that X0 = x.

Things get less trivial at O(κ). When we expand the right hand side of eq. (2.12) at this or-

der we find one term featuring X
µ
1 and with every other factor evaluated at O(κ0), and the rest

of the terms feature X
µ
0 = xµ and various factors of h. The X

µ
1 term reduces to ∇̄2

X
µ
1 , and (since

∂µX
ν
0 = ∂µx

ν = δνµ) the rest form a linear polynomial in h, which we may denote Jµ1 . Setting

∇2Xµ = 0 at this order then implies that Xµ1 satisfies an equation of the form

∇̄2
X
µ
1 = Jµ1 , (2.16)

and using the expansions (2.13) and (2.14) and turning the crank yields

Jµ1 = ∂αhαµ− 1

2
∂µh. (2.17)
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The objects in eqs. (2.16) and (2.17) are functions of spacetime, e.g. Xµ1 : M → R. To obtain an

explicit expression for X1 we need to rewrite these as functions of the background coordinates

x : M → Rd . Let’s therefore denote the coordinate representations of these objects with hats,

e.g. X̂=X◦x−1, so that X̂(x) tells us the value of the coordinate scalars X at the spacetime point

p ∈ M whose background coordinates are x ∈ Rd . The right hand side of eq. (2.16) expands to

the standard coordinate representation of the flat-space Laplacian,

(∇̄2
X
µ
1

)◦x−1(x) = ηαβ ∂2X̂
µ
1

∂xα∂xβ
(x) =

(
�X̂

µ
1

)
(x), (2.18)

denoting by � the explicit coordinate representation ηαβ ∂2
/
∂xα∂xβ of the flat-space Lapla-

cian ∇̄2
. Eq. (2.16) then becomes

�X̂
µ
1 = Ĵµ1 , (2.19)

meaning that, given a Green function G(x, x ′) of �, we obtain the explicit solution

X̂
µ
1 (x) =

∫
dd x ′G(x, x ′) Ĵµ1 (x ′). (2.20)

Similar logic applies at O(κ2). There is one term featuring X
µ
2 and with every other factor

evaluated at O(κ0), which term reduces to ∇̄2
X
µ
2 . There is then a collection of terms featuring

X
µ
1 , in each of which one of the other factors is evaluated at O(κ) and the rest are at O(κ0). This

collection takes the form of an h-linear scalar differential operator acting on X
µ
1 , which we

may denote K1X
µ
1 . Finally there is another collection of terms featuring X

µ
0 , and this collection

reduces to a quadratic polynomial in h, which we will denote Jµ2 . Setting ∇2Xµ = 0 at this order

therefore implies that Xµ2 satisfies an equation of the form

∇̄2
X
µ
2 = Jµ2 +K1X

µ
1 , (2.21)
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and turning the crank yields

K1 = hαβ∂α∂β+ Jα1 ∂α, Jµ2 = 1

2

(
hαβ∂

µhαβ+hαµ∂αh
)
−∂α

(
hαβhβ

µ
)
. (2.22)

By the same logic as for X1 we can then obtain an explicit solution for Xµ2 as

X̂
µ
2 (x) =

∫
dd x ′G(x, x ′)

(
Ĵµ2 (x ′)+ K̂1X̂

µ
1 (x ′)

)
, (2.23)

again with G(x, x ′) a Green function of � and with hats denoting the coordinate representa-

tions in x.

The expressions (2.20) and (2.23) make manifest the tradeoff we’re making in this construc-

tion. As we’ll see below the X’s do allow us to define diffeomorphism forms of tensor com-

ponents of arbitrary rank. However these “invariantized” tensor components will be written

in terms of the X’s, which contain explicit integrations over all of spacetime, and hence the

gauge-invariant observables so defined will be nonlocal. This is to be expected given the dis-

cussion of sec. 2.1.

In fact we can make systematic the above construction to all orders as follows. Let’s define

Dµ ≡ 1p−g
∂α

(p−g gαµ
)≡−

∞∑
n=0

κn Jµn . (2.24)

Since gαµ = gαβ∂βxµ we can interpret Dµ as the Laplacian of the background coordinate com-

ponent xµ. As we will see below the Jµn ’s defined here include precisely the Jµ1 and Jµ2 we’ve

already met. Let’s also define, given any κ-independent function f ∈ C∞(M),

∇2 f ≡−
∞∑

n=0
κ2Kn f . (2.25)

Again we will see that the differential operators Kn include the same K1 as before.

We can relate the K ’s and J ’s, so defined, by expanding the Laplacian of our κ-independent
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f :

∇2 f = 1p−g
∂α

(p−g gαµ∂µ f
)= Dµ∂µ f + gαµ∂α∂µ f . (2.26)

Defining the perturbative expansion of the full inverse metric by

gµν =
∞∑

n=0
κn g̃µνn (2.27)

we then have

∇2 f =
∞∑

n=0
κn

(
− Jµn∂µ+ g̃αµn ∂α∂µ

)
f , (2.28)

from which we can conclude that

Kn = Jµn∂µ− g̃αµn ∂α∂µ. (2.29)

So far we have only considered the action of the Laplacian on the κ-independent function

f . However what we are actually interested in is the action of the Laplacian on the coordinate

scalars, which are not κ-independent, but rather infinite series in κ. This action can still be

represented in terms of the K ’s, and therefore in terms of the J ’s, by expanding both the Lapla-

cian and the coordinate scalar itself:

∇2Xµ =−
∞∑

r=0
κr KrX

µ =−
∞∑

r=0

∞∑
s=0

κr+sKrX
µ
s =−

∞∑
n=0

κn
n∑

r=0
KrX

µ
n−r , (2.30)

or to O(κ2).

∇2Xµ =−K0X
µ
0 −κ

(
K0X

µ
1 +K1X

µ
0

)
−κ2

(
K0X

µ
2 +K1X

µ
1 +K2X

µ
0

)
+O(κ3). (2.31)

To find the explicit forms of the K ’s we need the expansions of gµν and
p−g , which are

given by eqs. (2.13) and (2.14). At zeroth order we therefore have

Dµ = ∂αηαµ+O(κ) = 0+O(κ) =⇒ Jµ0 = 0, (2.32)
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and hence

K0 =−g̃µ0 ν∂µ∂ν =−∇̄2
, (2.33)

as it must. Thus at O(κ0) and using our assumption X
µ
0 = xµ we find that the condition ∇2Xµ =

0 reduces to the harmonic gauge condition on the background coordinates, ∇̄2
xµ = 0, as ex-

pected, and at arbitrary O(κn) the same condition yields a differential equation of the form

∇̄2
X
µ
n =

n∑
r=1

KrX
µ
n−r . (2.34)

At first order we have

Dµ = ∂α
((

1+ 1
2κh

)(
ηαµ−κhαµ

))+O(κ2) = κ
(

1
2∂

µh −∂αhαµ
)
+O(κ2) =⇒ Jµ1 = ∂αhαµ− 1

2∂
µh,

(2.35)

in terms of which

K1 = Jµ1 ∂µ+hµν∂µ∂ν, (2.36)

both of which agree with the prior results (2.17) and (2.22). From eq. (2.34) we then find the

equation for Xµ1 ,

∇̄2
X
µ
1 = K1X

µ
0 = Jα1 ∂αxµ+hαβ∂α∂βxµ = Jµ1 , (2.37)

in agreement with (2.16). Proceeding similarly at second order we have

Dµ = (
1− 1

2κh
)
∂α

{(
1+ 1

2κh +κ2(1
8 h2 − 1

4 hρσhρσ
))(
ηαµ−κhαµ+κ2hµνhν

α
)}

=O(κ)+κ2
{
− 1

2 hαβ∂
µhαβ− 1

2 hαµ∂αh +∂α
(
hµνhν

α
)}+O(κ3),

(2.38)

from which we can read off

Jµ2 = 1
2

(
hαβ∂

µhαβ+hαµ∂αh
)−∂α(

hαβhβ
µ
)
, (2.39)
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in agreement with eq. (2.22). In terms of J2 we then have

K2 = Jµ2 ∂µ−hµαhα
ν∂µ∂ν, (2.40)

and the general condition (2.34) at this order gives us the differential equation (2.21) for X2,

∇̄2
X
µ
2 = K1X

µ
1 +K2X

µ
0 = K1X

µ
1 + Jµ2 , (2.41)

again using the fact that Xµ0 = xµ.

2.2.2 Toy: inverting a perturbatively-constructed function

In sec. 2.2.1 we obtained a perturbative expression for the coordinate scalars X as a function of

the background coordinates x,

X̂(x) = x +κX̂1(x)+κ2X̂2(x)+O(κ3), (2.42)

where X̂ ≡ X ◦ x−1 is the background-coordinate representation of X : M → Rd and the X̂a ’s

are given in eqs. (2.20) and (2.23). However our goal is to express the tensor fields of a theory,

which we know as functions of the background coordinates, in terms of the coordinate scalars,

and thus our goal is to invert the relationship X̂(x) to obtain the background coordinates as a

function of the coordinate scalars. In fact we may obtain this inverse in terms of the same X̂a ’s

as above. To make this procedure clear I will in this section demonstrate the analogous logic as

applied to a simple function R→R.

Suppose therefore that we have some f : R→ R, analogous to X̂(x), which is known to us as

a Taylor expansion in some parameter κ and which at O(κ0) is the identity map:

f (x) =∑
a
κa fa(x) = x +κ f1(x)+κ2 f2(x)+O(κ3). (2.43)

Our goal is to obtain an expression for the inverse of f , which I will denote g = f −1 : R→ R, in
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terms of the fa ’s. We begin from the fact that f ◦ g is the identity map by definition and then

use our defining expansion of f , evaluated at g (y) (writing an arbitrary element of the domain

of f as x and an arbitrary element of its range as y):

y = ( f ◦ g )(y) = g (y)+κ f1
(
g (y)

)+κ2 f2
(
g (y)

)+O(κ3), (2.44)

or

g (y) = y −κ f1
(
g (y)

)−κ2 f2
(
g (y)

)+O(κ3). (2.45)

We can systematically eliminate the explicit dependence on the unknown g on the right hand

side as follows. The above tells us that at O(κ0) the function g is just the identity map:

g (y) = y +O(κ). (2.46)

The full function g contains O(κn) terms for, in principle, arbitrarily large n ≥ 0, so the super-

ficially O(κ) term in eq. (2.45), −κ f1
(
g (y)

)
, in fact contributes at all orders n ≥ 1. However by

using eq. (2.46) in the argument we may explicitly isolate the O(κ) contribution:

f1
(
g (y)

)= f1(y)+O(κ), (2.47)

which yields an explicit expression for g (y) up to O(κ) in terms of the (assumed known) fa ’s:

g (y) = y −κ f1(y)+O(κ2). (2.48)

Now that we know g (y) to O(κ) we may isolate the O(κ2) contribution to g (y) in a similar man-

ner from the O(κ) contribution to f1
(
g (y)

)
and the O(κ0) contribution to f2

(
g (y)

)
. For the for-

mer we find

f1
(
g (y)

)= f1
(
y −κ f1(y)

)+O(κ2) = f1(y)−κ f1(y) f ′
1(y)+O(κ2), (2.49)
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and for the latter

f2
(
g (y)

)= f2(y)+O(κ), (2.50)

which yields to O(κ2)

g (y) = y −κ f1(y)+κ2
(

f1(y) f ′
1(y)− f2(y)

)
+O(κ3). (2.51)

This procedure may in principle be continued to arbitrary order in κ to obtain an expres-

sion for g (y) in terms of the expansion functions fa , although for our purposes O(κ2) is suffi-

cient. Once the calculation has performed to some O(κn) an explicit calculation will verify that

g = f −1 to that same order. For example combining eqs. (2.43) and (2.51) yields the expected

results

( f ◦ g )(y) = y +O(κ3), (g ◦ f )(x) = x +O(κ3). (2.52)

N.B. in eq. (2.51) the functions fa(y) are the exact same as the functions fa(x) which ap-

pear in eq. (2.43) – if f2(x) = x2 in the latter, then f2(y) = y2 in the former. This may not seem

like a point worth making at the moment, but it’ll be important in the next section.

2.2.3 The background scalars as a function of the background coordinates

Now let’s return to the task at hand. We have an expression for the coordinate scalars X : M →
Rd as a function of the background coordinates x : M →Rd ,

X̂(x) = x +κX̂1(x)+κ2X̂2(x)+O(κ3), (2.53)

where X̂ = X ◦ x−1; the italic x is an arbitrary value of the background coordinates; and the

functions X̂a(x) are given in eqs. (2.20) and (2.23). Our goal is to obtain an expression x̂ = x ◦
X−1 for the background coordinates as a function of the coordinate scalars, i.e. to invert X̂(x)

for x̂(X ), where the italic X is an arbitrary value of the coordinate scalars. And this is hardly

any more complicated than the toy calculation of the previous section! Since we are working



26

entirely in terms of the coordinate representations X̂=X◦x−1 : x ∈Rd 7→ X ∈Rd and x̂= x◦X−1 :

X ∈ Rd 7→ x ∈ Rd the problem is simply the d-dimensional generalization of the previous, and

is in itself oblivious to the geometrical origins of these functions – the fact that X̂ and x̂ both

take a pitstop in spacetime on their way between values of the background coordinates and

the coordinate scalars is completely irrelevant to the process of inverting X̂.

We can therefore follow the exact same steps as in sec. 2.2.2, which I will here outline in

brief. Starting from eq. (2.53) we use the fact that X = (
X̂◦ x̂)(X ) to obtain

x̂µ(X ) = X µ−κX̂µ1
(
x̂(X )

)−κ2X̂
µ
2

(
x̂(X )

)+O(κ3), (2.54)

analogous to eq. (2.45). From this we have

x̂µ(X ) = X µ+O(κ), (2.55)

analogous to eq. (2.46), using which in the O(κ) term yields

x̂µ(X ) = X µ−κX̂µ1 (X )+O(κ2), (2.56)

analogous to eq. (2.48), and using which in turn in the O(κ) and O(κ2) terms yields

x̂µ(X ) = X µ−κX̂µ1 (X )+κ2
(
X̂α1 (X )

∂X̂
µ
1

∂xα
(X )− X̂

µ
2 (X )

)
+O(κ3), (2.57)

analogous to eq. (2.51).

It is here that the point raised at the end of the previous section becomes important. Re-

call that in the toy model I emphasized that the fa(y)’s which appear in the expansion of g (y)

have the same functional dependence on y as the fa(x)’s have on x in the expansion of f (x).

In the exact same way, the X̂
µ
a(X )’s which appear in the above expansion of x̂µ(X ) have the

same functional dependence on the coordinate scalar value X as the X̂
µ
a(x)’s have on the back-
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ground coordinate value x in the expansion of X̂µ(x). In other words there is nothing implicit

in eq. (2.57): X̂µ1 (X ) (for instance) means the function X̂
µ
1 : Rd → R evaluated at X ∈ Rd , and

nothing more. In particular, even though X represents an arbitrary value of the coordinate

scalars, we’re feeding it directly into X̂
µ
1 = X

µ
1 ◦ x−1 in the slot where we would expect to put a

value of the background coordinates. While this may not feel right, it is in fact critical to the

usefulness of this whole construction – we have explicit expressions for X̂µ1 and X̂
µ
2 in eqs.

(2.20) and (2.23) as functions of the background coordinates, and eq. (2.57) tells us how to

use these exact same results, with the desired value of the coordinate scalars playing the role

of the background coordinates, to obtain (a second-order approximation of) the value of the

background coordinates which corresponds to that value of the coordinate scalars.

2.2.4 Derivatives of and with respect to the background coordinates and the coordinate

scalars

So we have constructed two coordinate systems on spacetime: the background coordinates

x : M →Rd , p 7→ x(p) = x, and the coordinate scalars X : M →Rd , p 7→X(p) = X . In this section I

will carefully discuss the basis frames each of these coordinate systems.

It is important to keep in mind for this discussion that I am engaging in a slight abuse of

notation here: namely, in this thesis the lowercase italic symbol x refers both to a generic value

of the background coordinates and to the canonical coordinates on Rd themselves. This is

directly relevant in the construction of the basis frames as follows. As discussed at length in

the appendix (see sec. A.1.3), the basis frame of any coordinate system x : M → Rd is given by

the pushforward by x−1 of the canonical coordinate frame on Rd :

∂µ =
(
x−1)

∗
∂

∂xµ
=⇒ (

∂µ f
)

p = ∂
(

f ◦x−1
)

∂xµ
(
x(p)

)
. (2.58)

Changing the coordinate system whose frame you’re interested in does not change the ba-

sis frame on Rd which you push forward – it only changes the map x−1 by which you push it



28

forward. Thus the basis frame of the coordinate scalars is the pushforward of the same coordi-

nate frame ∂
/
∂xµ ∈X(Rd ), just by X−1 this time:9

Dµ =
(
X−1)

∗
∂

∂xµ
=⇒ (

Dµ f
)

p = ∂
(

f ◦X−1
)

∂xµ
(
X(p)

)
. (2.59)

I make this point to emphasize that the denominator in eq. (2.59) should not be a capital X µ

– we are differentiating the coordinate scalar representation f ◦X−1 : Rd → R with respect to

the same coordinates on Rd as those with respect to which we differentiate the background

coordinate representation f ◦x−1 :Rd →R in eq. (2.58). The only differences are the coordinate

representations f ◦ x−1 and f ◦X−1 themselves, and the coordinate values x(p) and X(p) at

which we evaluate the derivatives.

This is directly relevant to explicit calculations in that, if we did write ∂
/
∂X µ instead of

∂
/
∂xµ , that would then mistakenly suggest that we need an extra factor of ∂X̂µ

/
∂xν to relate

Dµ and ∂µ, and including this extra factor would lead to outright errors in our calculations.

(This is especially important when we construct the relational Christoffel symbols – including

an extra ∂X̂µ
/
∂xν next to the partial derivatives in that construction would then lead to an

incorrect invariantized Ricci scalar.)

2.3 RELATIONAL OBSERVABLES

We now come to the crux of this section: the construction, given any tensor field C ∈ Γk
`

M , of a

set of corresponding diffeomorphism-invariant observables.

9I use Dµ for the basis from of the coordinate scalars in keeping with the general theming of “lowercase for
background, uppercase for scalars”. N.B. Dµ does not in this thesis refer to the gauge covariant derivative of some
Yang-Mills theory.
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2.3.1 Defining relational observables

The relational observable C µ
ν corresponding to any component Cµ

ν of C is defined [47, 48] to

be that component in the coordinate system defined by the coordinate scalars:

C ≡C µ
νDµ⊗dXν . (2.60)

If the tensor field has a name then the corresponding set of relational observables is its invari-

antized form (e.g. the invariantized metric in sec. 2.3.4).

In terms of the components Cµ
ν of C in the background coordinates the invariantized

form is found by transformating from x to X as one would transform between any coordinate

systems, namely

C µ
ν =

(
∂αX

µ
)(

Dνx
β
)
Cα

β. (2.61)

N.B. the above is just the standard rule (A.62) for the passive transformation of the compo-

nents of a tensor field, with the coordinate scalars Xµ and the corresponding frame Dµ playing

the role of the “new” coordinates and frame x̃ and ∂̃µ.

Evaluating eq. (2.61) at a point p ∈ M yields

C µ
ν(p) = (

∂αX
ν
)

p

(
Dνx

β
)

pCα
β(p). (2.62)

Let’s rewrite the above more explicitly in terms of functions of the coordinates, starting with

the transformation matrices. This is just the calculation of sec. A.2.1, with X in place of x̃ and

X̂=X◦x−1 in place of the arbitrary transition map T= x̃◦x−1. For the first matrix we find

(
∂µX

ν
)

p = (
x−1)

∗

(
∂

∂xµ

∣∣∣∣
x(p)

)
Xν = ∂

(
Xν ◦x−1

)
∂xµ

(
x(p)

)= ∂X̂ν

∂xµ
(
x(p)

)
, (2.63)
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and similarly for the second

(
Dµx

ν
)

p = (
X−1)

∗

(
∂

∂xµ

∣∣∣∣
X(p)

)
xν = ∂x̂ν

∂xµ
(
X(p)

)
. (2.64)

In sec. 2.3.2 we’ll expand these transformation matrices in terms of the X̂
µ
a ’s.

In the literature these matrices are often written more concisely as ∂X ν
/
∂xµ and ∂xν

/
∂X µ .

However I will emphasize once again that I am not making a mistake by leaving the denom-

inator in the latter lowercase – in both matrices we differentiate the transition map and its

inverse using the same basis frame on Rd , but we evaluate the matrices at the different coor-

dinate values x(p) and X(p). It is this latter difference which is more concisely indicated by the

differing denominators in the literature. I make the distinction here to make it clear that there

is no extra factor of ∂X µ
/
∂xν needed to relate the derivatives in the two matrices.

Let’s return to the question of writing eq. (2.62) in terms of functions of the coordinates.

Since the invariantized C µ
ν is a component of the tensor C in the X coordinate system its nat-

ural coordinate representation is as a function of the background coordinates:

Ĉ µ
ν ≡C µ

ν ◦X−1. (2.65)

We should therefore compose both sides of eq. (2.62) with X−1:

Ĉ µ
ν(X ) = (

∂αX
µ
)
X−1(X )

(
Dνx

β
)
X−1(X )C

α
β ◦X−1(X ). (2.66)

From eqs. (2.63) and (2.64) we can simplify the derivative matrices. For the first we find

(
∂µX

ν
)
X−1(X ) =

∂X̂ν

∂xµ
(
x̂(X )

)
, (2.67)

i.e. the µth derivative of X̂ν, evaluated at the background coordinate value of the point with
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coordinate scalar value X . For the second we find

(
Dµx

ν
)
X−1(X ) =

∂x̂ν

∂xµ
(X ). (2.68)

i.e. the µth derivative of x̂ν, evaluated directly at the coordinate scalar value X . (To reiterate

ad infinitum, there is no mistake in the denominator being lowercase.) Finally we can rewrite

Cα
β ◦X−1(X ) in terms of the natural coordinate representation10 Ĉµ

ν ≡Cµ
ν ◦x−1 as

Cα
β ◦X−1(X ) = Ĉα

β

(
x̂(X )

)
. (2.69)

Thus in terms of the natural coordinate representations eq. (2.62) becomes

Ĉ µ
ν(X ) = ∂X̂µ

∂xα
(
x̂(X )

)∂x̂β
∂xν

(
X

)
Ĉα

β

(
x̂(X )

)
. (2.70)

2.3.2 Perturbative expansion of the transformation matrices

To obtain an explicit expression for a relational observable we need the derivative matrices

which transform tensor components from the background coordinates x to the coordinate

scalars X.

Let’s begin with the “forward” derivative ∂µXν, whose coordinate representation we know

from eq. (2.67). To explicitly write it in terms of the X̂
µ
a ’s we start by differentiating the expan-

sion of X̂(x) in κ,

∂X̂ν

∂xµ
(x) = δνµ+κ

∂X̂ν1
∂xµ

(x)+κ2∂X̂
ν
2

∂xµ
(x)+O(κ3). (2.71)

Now evaluate the above at x = x̂(X ), using the expansion (2.57). In fact since the O(κ0) term in

10For the interested reader I will note that it may be straightforwardly verified that this definition of Ĉµ
ν is

equivalent to defining Ĉ = (
x−1

)∗C ∈ Γk
`
Rd and taking the components of the result in the canonical basis frame

and coframe on Rd . (An analogous statement holds for Ĉ and X.)
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eq. (2.71) is independent of x we only need x̂(X ) to O(κ),

x̂(X ) = X −κX̂1(X )+O(κ), (2.72)

from which we find

∂X̂ν

∂xµ
(
x̂(X )

)= δνµ+κ∂X̂ν1∂xµ
(X )+κ2

(
∂X̂ν2
∂xµ

(X )− X̂α1 (X )
∂2X̂ν1
∂xα∂xµ

(X )

)
+O(κ3). (2.73)

N.B. while on the left hand side of eq. (2.73) the coordinate scalar value X is converted to a

background coordinate value by x̂, there is no such x̂ implicit on the right hand side. For exam-

ple X̂ν1 :Rd →R is a function of the background coordinates x ∈Rd , which we differentiate with

respect to the µth canonical coordinate xµ on Rd to obtain ∂X̂ν1
/
∂xµ : Rd → R, and we then

plug the coordinate scalar value X ∈Rd directly into this function.

For the “backward” derivative Dµx
ν we similarly use the coordinate representation (2.68)

and the expansion (2.57) of x̂(X ) in terms of the X̂
µ
a ’s, from which we obtain

∂x̂ν

∂xµ
(X ) = δνµ−κ

∂X̂ν1
∂xµ

(X )+κ2
(
X̂α1 (X )

∂2X̂ν1
∂xα∂xµ

(X )+ ∂Xα1
∂xµ

(X )
∂X̂ν1
∂xα

(X )− ∂X̂ν2
∂xµ

(X )

)
+O(κ3). (2.74)

Note that it may be straightforwardly checked that the above results satisfy the condition

∂xν

∂xµ
(X ) = ∂

(
X̂◦ x̂)ν
∂xµ

(X ) = ∂X̂ν

∂xα
(
x̂(X )

)∂x̂α
∂xµ

(X ) (2.75)

to O(κ2), as they must.

2.3.3 Invariantized scalars

The simplest example of a relational observable is the invariantized formΦ = φ◦X−1 : Rd → R

of a real scalar field φ : M → R. Our goal is to obtain an explicit expression forΦ entirely in

terms of quantities which are known in the background coordinate system, namely:



33

• the coordinate representation of the scalar field, φ̂=φ◦x−1 :Rd →R.

• the coordinate representation of the perturbative expansion of the coordinate scalars,

i.e. the X̂
µ
a ’s.

Before proceeding I will note that for the scalar field we have only three distinct quantities –

the original scalar φ : M → R, the background coordinate representation φ̂ = φ ◦ x−1, and the

invariantized scalarΦ= φ◦X−1, which I am here conflating with its own coordinate represen-

tation. This is in contrast with a tensor field of nontrivial rank, for which there are four distinct

quantities – the original tensor components Cµ
ν : M → R, the background coordinate repre-

sentation Ĉµ
ν = Cµ

ν ◦ x−1 of those components, the invariantized components C µ
ν : M → R,

and the coordinate representation Ĉ µ
ν = C µ

ν ◦X−1 of those invariantized components. For

the scalar we may conflate the latter two simply because a scalar field does not have different

components in different coordinate systems, so the only new quantity introduced by the rela-

tional program is the coordinate representationΦ = φ ◦X−1 of the scalar field with respect to

the coordinate scalars.

Anyway, to business. We use the fact that X−1 = x−1 ◦ x̂ to write

Φ= φ̂◦ x̂, (2.76)

and expandΦ(X ) using the expansion (2.57) of x̂(X ) in terms of the X̂
µ
a ’s:

Φ(X ) = φ̂
(

X −κX̂1(X )+κ2
[
X̂α1 (X )

∂X̂1

∂xα
(X )− X̂2(X )

])
+O(κ3)

= φ̂−κX̂α1
∂φ̂

∂xα
+κ2

(
1

2
X̂α1 X̂

β
1

∂2φ̂

∂xα∂xβ
+ X̂α1

∂X̂
β
1

∂xα
∂φ̂

∂xβ
− X̂α2

∂φ̂

∂xα

)
+O(κ3),

(2.77)

where every quantity in the last line is evaluated at the coordinate scalar value X .

N.B. the above applies to any scalar field, including one which is built out of a tensor or

tensors of nontrivial rank. In particular the invariantized Ricci scalar R(X ) is obtained from
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the coordinate representation R̂ = R ◦x−1 of the Ricci scalar R in the exact same way:

R(X ) = R̂ −κX̂α1
∂R̂

∂xα
+κ2

(
1

2
X̂α1 X̂

β
1

∂2R̂

∂xα∂xβ
+ X̂α1

∂X̂
β
1

∂xα
∂R̂

∂xβ
− X̂α2

∂R̂

∂xα

)
+O(κ3), (2.78)

every quantity on the right hand side again being evaluated at the coordinate scalar value X .

In secs. 2.3.4 and 2.3.6 I’ll verify this result in the context of perturbation theory by properly

constructing the invariantized metric and the resulting Christoffel symbols.

2.3.4 The invariantized metric

In this section I obtain the explicit expansions of the invariantized metric and its inverse, whose

coordinate representations are given by

Ĝµν(X ) = ∂x̂α

∂xµ
(X )

∂x̂β

∂xν
(X )ĝαβ

(
x̂(X )

)
, Ĝµν(X ) = ∂X̂µ

∂xα
(
x̂(X )

)∂X̂ν
∂xβ

(
x̂(X )

)
ĝαβ

(
x̂(X )

)
, (2.79)

in which ĝµν = gµν ◦ x−1 is the background coordinate representation of the components of g

and analogously for ĝµν and g−1.

These calculations are a bit more complicated than the analogous calculation for the in-

variantized scalar fieldΦ. Recall that in the scalar case we needed only evaluate the back-

ground coordinate representation φ̂ at the background coordinate value x̂(X ) of the space-

time point whose coordinate scalar value is X and use our known expansion of x̂(X ) to obtain

an expansion ofΦ in terms of quantities which are known in the background coordinates. We

still need do that when we invariantize the metric and its inverse – that’s how we handle the

ĝαβ
(
x̂(X )

)
and ĝαβ

(
x̂(X )

)
factors – but we then also need to multiply that result by expansions

of the transformation matrices, which we found eqs. (2.73) and (2.74).

However on the bright side this process is simplified somewhat by the fact that we are in-

terested in obtaining expressions for Ĝµν and Ĝµν not in terms of the full metric gµν but the
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metric perturbation hµν, in terms of which the metric and its inverse are

ĝαβ = ηαβ+κĥαβ, ĝαβ = ηαβ−κĥαβ+κ2ĥασĥσ
β+O(κ2). (2.80)

Thus expanding ĝαβ
(
x̂(X )

)
and ĝαβ

(
x̂(X )

)
in κ consists of two steps: first, apply the expansion

of the argument, which proceeds identically to the steps which led to the invariantized scalar

field (2.77) and hence yields identical results but with ĝαβ and ĝαβ in place of φ̂; and second,

apply the expansions (2.80). This latter step simplifies things a great deal, since (a) all partial

derivatives of ηαβ vanish and (b) we need only keep the terms up to O(κ) in eq. (2.80) when

calculating the O(κ) terms in eq. (2.77), and even better we need only keep the O(κ0) terms in

the former – whose derivatives, again, vanish – when calculating the O(κ2) terms in the latter,

meaning that all the terms in brackets in eq. (2.77) actually vanish. We’re left with the reason-

able results

ĝαβ
(
x̂(X )

)= ηαβ+κĥαβ−κ2X̂σ1
∂ĥαβ
∂xσ

+O(κ3),

ĝαβ
(
x̂(X )

)= ηαβ−κĥαβ+κ2
(
ĥασĥσ

β+ X̂σ1
∂ĥαβ

∂xσ

)
+O(κ3),

(2.81)

again with all quantities on the right hand sides evaluated directly at X . As a check it’s straight-

forward to verify that the above satisfy ĝασĝσβ = δβα+O(κ3).

However we’re not done at eqs. (2.81) – it remains to plug these results into the defini-

tions (2.79) of the invariantized metric and inverse metric and apply the expansions (2.73) and

(2.74) of the derivative matrices. It is at this point that the arithmetic gets moderately heinous

without becoming particularly interesting, so in the interest of clarity and brevity I will leave

out the intermediate steps and organize the results by defining

Ĝµν ≡
∑
a
κaĜ a

µν, Ĝµν ≡∑
a
κaĜ

µν
a , (2.82)
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in terms of which we find (expectedly) at zeroth order

Ĝ 0
µν = ηµν, Ĝ

µν
0 = ηµν; (2.83)

at first order

Ĝ 1
µν = ĥµν− ∂X̂1ν

∂xµ
− ∂X̂1µ

∂xν
, Ĝ

µν
1 =−

(
ĥµν− ∂X̂ν1

∂xµ
− ∂X̂

µ
1

∂xν

)
; (2.84)

and at second order

Ĝ 2
µν =

{
∂X̂σ1
∂xµ

∂X̂1ν

∂xσ
+ ∂X̂σ1
∂xν

∂X̂1µ

∂xσ
+ X̂σ1

∂2X̂1ν

∂xσ∂xµ
+ X̂σ1

∂2X̂1µ

∂xσ∂xν
+ ∂X̂σ1
∂xµ

∂X̂1σ

∂xν

}
−

{
∂X̂2ν

∂xµ
+ ∂X̂2µ

∂xν

}
−

{
X̂σ1

∂ĥµν
∂xσ

+ ĥµσ
∂X̂σ1
∂xν

+ ĥσν
∂X̂σ1
∂xµ

}
,

Ĝ
µν
2 =

{
∂X̂

µ
1

∂xσ
∂X̂ν1
∂xσ

− X̂σ1
∂2X̂ν1
∂xσ∂xµ

− X̂σ1
∂2X̂

µ
1

∂xσ∂xν

}
+

{
∂X̂ν2
∂xµ

+ ∂X̂
µ
2

∂xν

}

+
{

ĥµσĥσ
ν+ X̂σ1

∂ĥµν

∂xσ
− ĥµσ

∂X̂ν1
∂xσ

− ĥσν
∂X̂

µ
1

∂xσ

}
,

(2.85)

using brackets purely to visually separate distinct classes of terms (those quadratic in X̂1, those

linear in X̂2, and those containing at least one factor of ĥ).

I will first note that it may be (somewhat laboriously) verified by hand that the above do

indeed satisfy ĜµαĜαν = δνµ, as they must. Additionally, if one wishes to stay a little orga-

nized, I will note that given the expansion coefficients Ĝ a
µν for the invariantized metric and

the straightforward results that at zeroth order both Ĝµν and Ĝµν are flat it is straightforward

to show that the expansion coefficients Ĝ
µν
a for the invariantized inverse metric are given by

Ĝ
µν
1 =−Ĝ 1µν, Ĝ

µν
2 = Ĝ 1µαĜ 1

α
ν− Ĝ 2µν, (2.86)

and it may be shown that these relations are satisfied by the above.
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2.3.5 The invariantized metric perturbation and volume factor

From the invariantized metric we can immediately define the invariantized metric perturba-

tion [48] to be the metric perturbation in the coordinate system X:

Gµν = ηµν+κHµν, i.e. Hµν = 1

κ

(
Gµν−ηµν

)
. (2.87)

In terms of the metric expansion coefficients defined above the coordinate representation of

the invariantized metric perturbation is therefore

Ĥµν = Ĝ 1
µν+κĜ 2

µν+O(κ2)

=
{

ĥµν− ∂X̂1ν

∂xµ
− ∂X̂1µ

∂xν

}
+κ

{
∂X̂σ1
∂xµ

∂X̂1ν

∂xσ
+ ∂X̂σ1
∂xν

∂X̂1µ

∂xσ
+ X̂σ1

∂2X̂1ν

∂xσ∂xµ
+ X̂σ1

∂2X̂1µ

∂xσ∂xν
+ ∂X̂σ1
∂xµ

∂X̂1σ

∂xν

− ∂X̂2ν

∂xµ
− ∂X̂2µ

∂xν
− X̂σ1

∂ĥµν
∂xσ

− ĥµσ
∂X̂σ1
∂xν

− ĥσν
∂X̂σ1
∂xµ

}
+O(κ2).

(2.88)

In keeping with the convention that hµν = ηµαηνβhαβ 6= (gµν−ηµν)/κ we can also define H µν =
ηµαηνβHαβ, although we will not need this.

The invariantized metric perturbation was recently used in [48] to compute gauge-invariant

corrections to the Newtonian potential. For our purposes its usefulness is in obtaining the in-

variantized volume factor
p−detG , which we may do as follows. In any coordinate system the

volume factor
√−det g can be expanded in the metric perturbation gµν = ηµν+κhµν:

√
−det g = 1+ 1

2κh +κ2
(

1
8 h2 − 1

4 hµνhµν
)
+O(κ3). (2.89)

(I review the details of this expansion in sec. 4.1.2.) Eq. (2.89) provides the expansion of the

volume factor
√−det g in terms of the metric perturbation hµν, evaluated in any coordinate

system. It therefore follows that the invariantized volume factor is given by the exact same
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equation, evaluated in the X-coordinate system:

p
−detG = 1+ 1

2κH +κ2
(

1
8H 2 − 1

4HµνH
µν

)
+O(κ3), (2.90)

where H =H µ
µ. Using eq. (2.88) we can write this in terms of the graviton and the X’s as

p
−detG = 1+κ

(
1
2 h −∂µXµ1

)
+κ2

(
1
2∂µX

µ
1∂νX

ν
1 +X

µ
1∂µ∂νX

ν
1 + 1

2∂µX1ν∂
νX

µ
1 −∂µX

µ
2

− 1
2X

µ
1∂µh − 1

2 h∂µX
µ
1 + 1

8 h2 − 1
4 hµνhµν

)
+O(κ3).

(2.91)

2.3.6 The invariantized Christoffel symbols and Ricci scalar

Finally let’s return to my claim at the end of sec. 2.3.3 that the invariantized Ricci scalar may

be obtained from the invariantized metric.

THE RICCI SCALAR IN PERTURBATION THEORY. Let’s begin by obtaining an expansion of the

standard (non-invariantized) Ricci scalar from the expansion of the metric about flat space,

gµν = ηµν+κhµν. The Christoffel symbols are

Γ
ρ
µν =

1

2
gρα

(
∂µgαν+∂νgαµ−∂αgµν

)
, (2.92)

where ∂µ is the frame of the coordinate system in which the metric components are gµν, and

the Riemann tensor is

Rµ
νρσ = ∂ρΓµσν−∂σΓµσµ+ΓµραΓασν−ΓµσαΓαρν, (2.93)

from which the Ricci tensor and Ricci scalar are obtained as

Rµν = Rα
µαν, R = gµνRµν = gµνRα

µαν. (2.94)
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Since every term in the Christoffel symbol contains at least one partial derivative on the met-

ric, and the partial derivatives of ηµν vanish, it follows that the Christoffel symbols begin at

O(κ). Following the definitions through it follows that the Ricci scalar also begins at this order,

meaning that we may write

R = κR1 +κ2R2 +O(κ3). (2.95)

An explicit calculation yields for the expansion terms

R1 = ∂µ∂νhµν−∂2h,

R2 = hµν∂µ∂νh − 1

4
∂µh∂µh −∂µhµν∂ρhν

ρ+∂µh∂νhµ
ν−2hµν∂ν∂ρhµ

ρ

+hµν∂2hµν− 1

2
∂νhµρ∂

ρhµν+ 3

4
∂ρhµν∂

ρhµν.

(2.96)

THE INVARIANTIZED RICCI SCALAR, OBTAINED AS A SCALAR FIELD. Using the above expan-

sion in eq. (2.78) yields an expression for the invariantized Ricci scalar in terms of the expan-

sions of both the metric and the coordinate scalars:

R = κR̂1 +κ2
(
R̂2 − X̂α1

∂R̂1

∂xα

)
+O(κ3), (2.97)

where R = R ◦X−1 and R̂a = Ra ◦x−1.

N.B. this result, which is the correct one, does not in itself rely at all on the fact that R is de-

fined in terms of any higher-rank tensor field – given any scalar field φ known as an expansion

in κ and whose O(κ0) contribution vanishes, the invariantized φ would have this exact same

form. In what follows I will show that this form may also be obtained by correctly constructing

the invariantized curvature tensors from the invariantized metric.

A TEMPTING BUT INCORRECT DERIVATION FROM THE INVARIANTIZED METRIC. Before pro-

ceeding to the correct derivation I will briefly demonstrate the problem with the formulation

which is most tempting in the standard more concise notation. It is most common to con-

flate the basis frame ∂µ on M corresponding to a coordinate system with the partial derivative
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∂
/
∂xµ with respect to those coordinates, and to conflate a tensor field component gµν with its

coordinate representation ĝµν. In this notation one might then think to construct the Christof-

fel symbols in the X-coordinate system as

Γ
ρ
µν =

1

2
G ρα

(
∂Gαν

∂X µ
+ ∂Gαµ

∂X ν
− ∂Gµν

∂Xα

)
, (2.98)

the Riemann tensor as

Rµ
νρσ = ∂Γ

µ
σν

∂X ρ
− ∂Γ

µ
ρν

∂X σ
+ΓµραΓασν−ΓµσαΓαρν, (2.99)

and the Ricci tensor and scalar as

Rµν =Rρ
µρν, R =GµνRµν. (2.100)

If one wished to then expand the Ricci scalar in κ one would then rightly use the known ex-

pansion of Gµν and Gµν.

The problem with this notation is that one would also think that, in order to reduce the ex-

pression to one involving only functions we know in the background coordinates – namely,

partial derivatives of background coordinate functions with respect to the background coordi-

nates – one must also convert the ∂
/
∂X µ ’s to ∂

/
∂xµ ’s via the chain rule:

Γ
ρ
µν =

1

2
G ρα

(
∂xβ

∂X µ

∂Gαν

∂xβ
+ ∂xβ

∂X ν

∂Gαµ

∂xβ
− ∂xβ

∂Xα

∂Gµν

∂X β

)
,

Rµ
νρσ = ∂xα

∂X ρ

∂Γ
µ
σν

∂xα
− ∂xα

∂X σ

∂Γ
µ
ρν

∂xα
+ΓµραΓασν−ΓµσαΓαρν.

(2.101)

That this construction is incorrect may be seen directly by following it through and observing

that the result disagrees with the result (2.97) obtained from treating R like any other scalar

field. This is by itself damning: all we are really doing in obtaining the invariantized scalar

field is transforming from an arbitrary coordinate system x to the specified coordinate system
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X, meaning that if the relationship between R and R differs from the relationship between

a generic scalar field φ and its invariantized formΦ then the Ricci scalar does not transform

like a scalar at all, in contradiction with, for example, a century and a half of well-established

mathematics.

However the problem with the derivative prescription above may also be seen by consid-

ering of the actual meaning of a partial derivative with respect to coordinates on a manifold.

This is most apparent by comparing to the more careful development below, but we may also

understand it as follows. Suppose we have a function f : M → Rd and some coordinate system

x : M → Rd with frame ∂µ. If we wish to take the µth partial derivative of f with respect to this

coordinate system then we “think of f as a function of the coordinates”, i.e. construct its coor-

dinate representation f ◦ x−1, and then take the µth derivative of that function. If we also have

another coordinate system x̃ with frame ∂̃µ and we want to take the µth partial derivative of f

with respect to these other coordinates then we do the same thing: we construct the coordi-

nate representation f ◦ x̃−1 and take its µth derivative.

The key point here is that, once we have the coordinate representations fx ≡ f ◦ x−1 and

fx̃ ≡ f ◦x̃−1, we do the exact same thing to each – we’re differentiating these different coordinate

representations with respect to the same coordinates on Rd , and therefore we do not a priori

need any extra chain-rule factor to relate the two derivatives. More explicitly, evaluating ∂µ f

and ∂̃µ f at p ∈ M such that x(p) = x and x̃(p) = x̃, we have

(
∂µ f

)
p = ∂ fx

∂xµ
(x),

(
∂̃µ f

)
p = ∂ fx̃

∂xµ
(x̃). (2.102)

Of course we can then relate the two derivatives by the chain rule if we wish by writing fx̃(x̃) =
fx

(
x̂(x̃)

)
with x̂= x◦ x̃−1, so that

(
∂̃µ f

)
p = ∂ fx̃

∂xµ
(x̃) = ∂x̂α

∂xµ
(x̃)

∂ fx
∂xα

(
x̂(x̃)

)= ∂x̂α

∂xµ
(x̃)

(
∂µ f

)
p , (2.103)

but N.B. the expression containing the partial derivative matrix does not also contain the new
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coordinate representation of the function f .

In short, the problem with the intuitive construction (2.98) is that, implicitly, we are simul-

taneously including the partial derivative matrix and differentiating the new coordinate rep-

resentation, when really we should be doing one or the other. Thus the correct invariantized

Christoffel symbols are

Γ
ρ
µν =

1

2
G ρα

(
∂Gαν

∂xµ
+ ∂Gαµ

∂xν
− ∂Gµν

∂xα

)
, (2.104)

in terms of which the correct invariantized Riemann tensor is

Rµ
νρσ= ∂Γ

µ
σν

∂xρ
− ∂Γ

µ
ρν

∂xσ
+ΓµραΓασν−ΓµσαΓαρν. (2.105)

To more rigorously justify the above results I will now obtain the above from the more careful

construction in which spacetime- and coordinate-dependent objects are not conflated.

THE CORRECT DERIVATION FROM THE INVARIANTIZED METRIC. In a general coordinate sys-

tem x : M → Rd with coordinate frame ∂µ = (
x−1

)
∗
(
∂
/
∂xµ

)
and in which the metric has com-

ponents g = gµνdxµdxν the Christoffel symbols are defined by

Γ
ρ
µν =

1

2
gρα

(
∂µgαν+∂νgαµ−∂αgµν

)
. (2.106)

We want to write down the Christoffel symbols in the coordinate system X : M → Rd . Thus,

not conflating anything and being careful to write Dµ = (
X−1

)
∗
(
∂
/
∂xµ

)
for the frame of this

coordinate system and g = GµνdXµdXν for the metric components, the Christoffel symbols

are

Γ
ρ
µν =

1

2
G ρα

(
DµGαν+DνGαµ−DαGµν

)
. (2.107)

N.B. in the above each metric component Gµν is a real-valued function of spacetime and hence

distinct from its coordinate representation Ĝµν = Gµν ◦X−1 = (
(X−1)∗g

)
µν, which is a real-

valued function of the coordinate scalars.

To write the Christoffel symbols in this coordinate system as a function of the coordinates
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let’s evaluate at a point p. For a representative derivative term we find

(
DαGµν

)
p = ∂

(
Gµν ◦X−1

)
∂xα

(
X(p)

)= ∂Ĝµν

∂xα
(
X(p)

)
, (2.108)

meaning that the coordinate representation Γ̂ρµν = Γρµν ◦X−1 of the Christoffel symbols is

Γ̂
ρ
µν =

1

2
Ĝ ρα

(
∂Ĝαν

∂xµ
+ ∂Ĝαµ

∂xν
− ∂Ĝµν

∂xα

)
, (2.109)

in agreement with eq. (2.104). Similarly the invariantized Riemann tensor is

Rµ
νρσ = DρΓ

µ
σν−DσΓ

µ
ρν+ΓµραΓασν−ΓµσαΓαρν, (2.110)

which yields the coordinate representation

R̂µ
νρσ = ∂Γ̂

µ
σν

∂xρ
− ∂Γ̂

µ
ρν

∂xσ
+ Γ̂µραΓ̂ασν− Γ̂µσαΓ̂αρν, (2.111)

in agreement with eq. (2.105).

The invariantized Ricci scalar is, finally, given by

R(X ) = Ĝµν(X )R̂ρ
µρν(X ). (2.112)

To turn this into an evaluable expression for R in terms of quantities known in the background

coordinate system one would (i) use eqs. (2.109) and (2.111) to write the Riemann tensor in

terms of the invariantized metric, yielding an expression for R entirely in terms of Gµν and

Gµν; and then (ii) use eqs. (2.82) through (2.85) to expand this result in terms of ĥµν and the

X̂
µ
a ’s, which are themselves given in terms of ĥµν by eqs. (2.17) through (2.23). Doing so con-

firms that this construction agrees with the result (2.97) obtained by treating the Ricci scalar

like any other scalar field.
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2.4 SUMMARIZING AND CLEANING UP THE NOTATION

Throughout this section I have used a careful distinction between objects defined on space-

time and their coordinate representations to clarify certain subtle points in the construction

of relational observables. For the rest of this thesis we will not need to be quite so explicit, so I

will bring my notation more in line with convention as follows.

• I will gleefully conflate functions of spacetimes and their coordinate representations,

meaning that I will drop all the hats and write things like hµν(x) and X(x).

• A partial derivative, e.g. ∂µ, may denote either the coordinate frame (which acts on func-

tions of spacetime) or the actual partial derivative (which acts on functions of the coor-

dinates).

Additionally, in sec. 3 and beyond we will make frequent reference to the scalar modes of the

metric tensor, one of which I denoteΦ. Thus from here on out I will denote the invariantized

scalar field by φ̂=φ◦X−1, since I no longer need to distinguish notationally between φ and its

background coordinate representation φ◦x−1.

Finally, in the interest of clarity, I will summarize the main results of this section in this

cleaned up notation. The coordinate scalars as a function of the background coordinates are

X(x) = x +κX1(x)+κ2X2(x)+O(κ3). (2.113)

The expansion terms are

X1(x) =
∫

dd x ′G(x, x ′)J (x ′), (2.114)

where G(x, x ′) is a Green function of ∂2 and

Jµ1 = ∂αhαµ− 1
2∂

µh; (2.115)
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and

X2(x) =
∫

dd x ′G(x, x ′)
(

J2(x ′)+K1X1(x ′)
)
, (2.116)

where

K1 = hαβ∂α∂β+ Jα1 ∂α, Jµ2 = 1
2

(
hαβ∂

µhαβ+hαµ∂αh
)
−∂α

(
hαβhβ

µ
)
. (2.117)

Given a scalar field φ its invariantized form is

φ̂=φ◦X−1 =φ−κXα1 ∂αφ+κ2
(

1
2X

α
1X

β
1∂α∂βφ+Xα1 ∂αX

β
1∂βφ−Xα2 ∂αφ

)
+O(κ3), (2.118)

and considering in particular the scalar curvature yields

R = R ◦X−1 = κR1 +κ2
(
R2 −Xα1 ∂αR1

)
+O(κ3), (2.119)

where

R1 = ∂µ∂νhµν−∂2h,

R2 = hµν∂µ∂νh − 1

4
∂µh∂µh −∂µhµν∂ρhν

ρ+∂µh∂νhµ
ν−2hµν∂ν∂ρhµ

ρ

+hµν∂2hµν− 1

2
∂νhµρ∂

ρhµν+ 3

4
∂ρhµν∂

ρhµν.

(2.120)

3 Propagators

In the previous section I reviewed the relational program for constructing gauge-invariant

nonlocal observables corresponding to the components of any tensor field, and explicitly con-

structed the invariantized volume factor, scalar field, and scalar curvature by perturbing about

flat space. To calculate correlation functions of these quantities we need, among other things,

the propagators of the scalar and gravitational fields. We’re considering a minimally coupled



46

scalar, so its propagator is the same as it always is:

D(p) = 1

p2 −m2 + iε
. (3.1)

However it takes a little more work to obtain the graviton propagator, and doing so also leads

naturally to the introduction of the Faddeev-Popov ghost which removes the diffeomorphism

redundancy in the gravitational functional measure, whose propagator is also necessary. In

this section I obtain these propagators.

As mentioned previously, the eventual goal of this program is to obtain a manifestly gauge-

invariant for
〈
R(x)R(y)

〉
which can be continued in a well-defined manner to Euclidean

space. The well-known trouble posed by the scalar mode of gravity in this rotation suggests

that, in any eventual Euclidean continuation procedure, the contributions to any amplitude of

that scalar will have to be isolated and dealt with in a manner different from the contributions

of the other modes. Therefore it will be useful to express the graviton propagator in a form

which explicitly separates the terms which propagator the different modes. I will do this by ex-

pressing the graviton propagator as a linear combination of projectors onto the various modes

which compose a generic symmetric rank-two tensor, namely a transverse-traceless tensor,

a transverse vector, and two scalar modes. This scheme resembles the one followed in e.g.

[64].11 However in this thesis I take special care to isolate the “physical” scalar mode which

actually appears in the Einstein-Hilbert action from the scalar and vector modes which appear

only as a result of the Faddeev-Popov gauge-fixing. I also decompose the spin-one ghost prop-

agator into its transverse vector and scalar modes. This is not as likely to be practically useful

in a continuation scheme, but it does not introduce a great deal of complication, and it serves

as a helpful warmup for the more complicated spin-two procedure.

11I would like to offer special thanks to Marc Schiffer for many incredibly helpful conversations on this topic.
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3.1 GAUGE-FIXING

3.1.1 In general

Consider a generic gauge theory with gauge field φ and classical action Scl[φ]. Denote by V the

space of configurations of φ and by W the space of gauge degrees of freedom λ. (For exam-

ple in electromagnetism φ is a one-form, so V is the space of sections of the cotangent bun-

dle, and gauge transformations are parametrized by smooth functions, so W = C∞(M).) The

Faddeev-Popov procedure yields the gauge-fixed path integral

Z =
∫

DφDet

(
δC a(x)

δλb(y)
[φ]

)
δW

(
C [φ]

)
eiScl[φ], (3.2)

in which we write an arbitrary λ ∈W in components as λa(x), δW is the Dirac delta on W, and

C is some arbitrary12 functional C :V→W.

The Faddeev-Popov determinant can be evaluated perturbatively in terms of a pair of

ghost fields c and c̄, where c is in the Grassmann-valued version of W and c̄ is in the dual

space thereof:

Det

(
δC a(x)

δλb(y)
[φ]

)
∝

∫
Dc Dc̄ exp

(
θS̃gh[c, c̄,φ]

)
, S̃gh[c, c̄,φ] =

∫
dd x

∫
dd y c̄a(x)

δC a(x)

δλb(y)
cb(y).

(3.3)

In the first equation above θ is an arbitrary phase (the choice of which we discuss at the end

of this section), which is the only quantity on which the proportionality constant in the first

of eqs. (3.3) depends. Hence this proportionality constant cancels out of all observables and

can be entirely ignored. Note also that for any local C [φ] the derivative will be proportional

to δd (x − y), so the two spacetime integrals in the second of eqs. (3.3) collapse into one (or in

other words, any local C [φ] will result in a local ghost action).

The δW can be eliminated as follows. Choose our C to be of the form C [φ] = F [φ]−ω, where

12Well, not exactly arbitrary - we require that for every value of the physical degrees of freedom there exists a
unique root of C [φ], which fixes the gauge degrees of freedom.
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ω ∈ W is independent of φ and F is our gauge-fixing functional. By construction Z is inde-

pendent of C , meaning that it is also independent of ω. Hence if we multiply Z by some func-

tional of ω and integrate over it we will at most change its value by an overall constant (i.e. the

value of the integral of that functional), which will (as before) drop out of all observables and

can therefore be ignored. The standard choice of functional is exp
(
ϕ 1

2α

∫
dd x t

(
ω(x),ω(x)

))
,

where ϕ is another arbitrary phase, α is an unfixed parameter, and t is the metric on the fibers

of W.13 (I’m keeping the phases explicit in order to later make clear certain signs related only

to conventions.) When we integrate over ω the δW then sets ω = F [φ] in the integrand, yield-

ing14

Z =
∫

DφDc Dc̄ exp
(
iScl[φ]+θS̃gh[c, c̄,φ]+ ϕ

2α
S̃gf[φ]

)
, S̃gf[φ] =

∫
dd x t

(
F (x),F (x)

)
, (3.4)

for our final gauge-fixed path integral.

Let’s briefly discuss the phases. Conventional choices of F include at least one term which

is linear in φ, meaning that (a) the ghost integrals will include at least one term which is quadratic

in the ghosts and contains no other fields, i.e. a standard kinetic term for the ghosts, and (b)

the F integral will include at least one term which modifies the kinetic terms of φ. We there-

fore choose θ in order to give the ghosts a properly normalized kinetic term (with respect to

the signature of the metric), and we choose ϕ in order for the φ propagator to have the desired

functional dependence on α. Similarly I denote the ghost and gauge-fixed actions with tildes

because if we choose θ or ϕ to be not equal to i then the actual corresponding action picks up

a phase (given by θ/i or ϕ/i) relative to the ones defined above.

However to avoid this overabundance of notation I will instead simply write

Z =
∫

DφDc Dc̄ exp
(
iS[c, c̄,φ]

)
, S[c, c̄,φ] = Scl[φ]+Sgh[c, c̄,φ]+Sgf[φ], (3.5)

13So for example in a general Yang-Mills theory ω ∈ Lie(G) ⊗ C∞(M) is a Lie(G)-valued smooth function (with
G the gauge group) so the metric on the fibers is would be tr(ω(x)ω(x)) = 1

2δabω
a(x)ωb(x); and in gravity, which

we will soon focus on, ω ∈ X∗(M) is a one-form, so the metric on the fibers is given by the spacetime metric as
gµνωµ(x)ων(x).

14(ignoring those previously-noted overall factors)
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in which the ghost and gauge-fixing actions are provisionally defined by the gauge-fixing func-

tion F as

Sgf[φ] = 1

2α

∫
dd x t

(
F (x),F (x)

)
, Sgh[c, c̄,φ] =

∫
dd x

∫
dd y c̄a(x)

δF a(x)

δλb(y)
cb(y) (3.6)

with the understanding that we’re free to fiddle with the normalizations and signs of the ghost

and gauge-fixing actions.

3.1.2 Example: Yang-Mills theory in Minkowski space

As a relatively simple example (before diving into Einstein-Hilbert gravity in sec. 3.1.3) let’s

consider a generic Yang-Mills theory with gauge group G.15 In such a theory the gauge field A

is a Lie-algebra-valued one-form, A ∈ g⊗X∗(M), and the gauge transformations are parametrized

by a Lie-algebra-valued function, γ= γaTa ∈ g⊗C∞(M):

A 7→U AU † + i

λ
U∇U †, U (x) = exp

(−iλγ(x)
)= exp

(−iλγa(x)Ta
)
, (3.7)

where {Ta} is some basis of g and λ is the coupling of the theory.

Our classical action is

Scl[A] =
∫

dd x

{
− 1

2 tr
(
FµνF

µν
)}

, (3.8)

where Fµν = ∇µAν−∇νAµ− iλ
[

Aµ, Aν

]
is the field strength of A and tr is the trace (i.e. metric)

on g, with respect to which we assume {Ta} has been normalized to tr(TaTb) = 1
2δab .

Since we are here interested only in the propagators of the theory we need only consider

the kinetic terms in Scl[A]:

Scl,kin[A] =−
∫

dd x

{
1
2

(∇µAa
ν∇µAaν−∇νAa

µ∇µAaν)}. (3.9)

Fourier-transforming with Aµ(x) = ∫
k eikx Aµ(k) yields the momentum-space representation of

15In my mathematical description of Yang-Mills theory I follow most closely Nakahara’s text [65].
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the kinetic terms:

Scl,kin[A] =−1

2

∫
dd k

(2π)d
k2 Aa

µ(k)P abµν(k)Ab
ν(−k), P abµν(k) = δab

(
gµν− kµkν

k2

)
. (3.10)

The gauge-fixing and ghost actions are fixed by our choice of gauge-fixing function F ,

which (by definition) takes as its argument an generic field configuration A ∈ g⊗X∗(M) and

returns an element of the space of gauge degrees of freedom g⊗C∞(M). We choose the gauge-

fixing function appropriate to Rα gauge,

F [A] =∇· A, (3.11)

from which we obtain

Sgf[A] =− 1

α

∫
dd x tr

(∇µAµ∇νAν

)=− 1

2α

∫
dd x∇µAa

µ∇νAa
ν, (3.12)

making use of our freedom to rescale the gauge-fixing action. Fourier-transforming Sgf as we

did Scl,kin gives

Sgf[A] =− 1

2α

∫
dd k

(2π)d
kµkνAa

µ(k)Aa
ν(−k). (3.13)

To obtain the ghost action we need to compute the functional derivative of F with respect

to the gauge degree of freedom γ. To do so we first need the infinitesimal variation of A, which

we obtain as follows. Recall the general finite gauge transformation:

A 7→ A′ =U AU † + i

λ
U∇U †. (3.14)

Writing U = exp
(−iλγ(x)

)
and expanding to first order in λ yields the infinitesimal variation of

A:

A 7→ A′ = A+ iλ
[

A,γ
]−∇γ+O(λ2) = A−Dγ+O(λ2), (3.15)

where Dγ = ∇γ− iλ
[

A,γ
]

is the gauge covariant derivative in the adjoint representation. The
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resulting functional derivative of F with respect to γ is

δF a(x)

δγb(y)
=−

(
δa

b∇2 −λ fcb
a Ac

µ(y)∇µ
)
δd (x − y), (3.16)

in which the derivatives are with respect to y and the structure constants fab
c are defined by

the Lie bracket of the generators, [Ta ,Tb] = i fab
c Tc . The above yields the ghost action

Sgh[c, c̄, A] =−
∫

dd x c̄a(x)
∫

dd y
δF a(x)

δγb(y)
cb(y) =

∫
dd x c̄a∇·Dca , (3.17)

using our freedom to rescale Sgh by rescaling F , which in particular contains the kinetic term

Sgh,kin[c, c̄] =
∫

dd x c̄a∇2ca . (3.18)

And this kinetic term is straightforward to Fourier transform:

Sgh,kin[c, c̄] =−
∫

dd k

(2π)d
k2c̄a(k)ca(−k). (3.19)

3.1.3 Einstein-Hilbert gravity: the classical action

Now we specialize to the case of interest: Einstein-Hilbert gravity in Minkowski space with a

space-negative metric. In this theory the gauge transformations are coordinate transforma-

tions, and hence the gauge degrees of freedom are parametrized by the generators ξ ∈X(M) of

these coordinate transformations. In particular under an infinitesimal coordinate transforma-

tion xµ 7→ xµ−κξµ the metric g transforms as g 7→ g +κLξg .

In this signature the classical action is

Scl[g ] =− 2

κ2

∫
dd x

p−g R. (3.20)

(In d = 4 the coupling κ is given in terms of Newton’s constant by κ2 = 32πG .) Since we are
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here interested in only the propagators of the theory let’s rewrite Scl[g ] in terms of a perturba-

tion about flat space, i.e. g = ḡ +κh with ḡ flat, and ignore all terms other than those quadratic

in h. We find

− 2

κ2

p−g R = 4hµν∇ν∇ρhµ
ρ+2∇µhµν∇ρhν

ρ−2hµν∇2hµν+∇νhµρ∇ρhµν− 3

2
∇ρhµν∇ρhµν

−2hµν∇µ∇νh −2∇νh∇ρhν
ρ−h∇ν∇ρhνρ+ 1

2
∇νh∇νh +h∇2h

+O(κ),

(3.21)

in which ∇ is the covariant derivative with respect to ḡ (which is also the metric with which

we raise and lower indices), and h = hµ
µ. After integrating by parts (writing ∇νhνµ ≡ ∇hµ for

shorthand) the classical action becomes

Scl[g ] 7→ Scl,kin[h] =
∫

dd x

{
−4∇hµ∇hµ+2∇hν∇hν−2hµν∇2hµν+∇hµ∇hµ+ 3

2
hµν∇2hµν

+2∇hν∇νh −2∇νh∇hν+∇hν∇νh − 1

2
h∇2h +h∇2h

}
=

∫
dd x

{
−∇hµ∇hµ− 1

2
hµν∇2hµν+∇hν∇νh + 1

2
h∇2h

}
.

(3.22)

3.1.4 The gauge-fixing action

The gauge-fixing and ghost actions are fixed by our choice of gauge-fixing function. Let’s choose

the gauge-fixing function appropriate to generalized harmonic gauge,

Fµ =∇hµ− 1+β
d

∇µh, (3.23)
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where β is an arbitrary parameter, in terms of which we obtain linearized harmonic gauge16 by

setting β= d
2 −1. The gauge-fixing action is then

Sgf[h] = 1

2α

∫
dd x

(
∇hµ− 1+β

d
∇µh

)(
∇hµ− 1+β

d
∇µh

)
. (3.24)

3.1.5 The ghost action

To obtain the ghost action we need the functional derivative of F with respect to the gauge

degree of freedom ξ, to compute which we require the variation of h:

hµν 7→ h′
µν = hµν+

(
∇µξν+∇νξµ

)
+κ

(
ξρ∇ρhµν+hρν∇µξρ+hρµ∇νξρ

)
. (3.25)

The resulting functional derivative yields the ghost action

S̃gh[c, c̄,h] = S̃gh,kin[c, c̄]+ S̃cc̄h[c, c̄,h] =
∫

dd x L̃gh,kin[c, c̄]+
∫

dd x L̃cc̄h[c, c̄,h], (3.26)

where the kinetic terms are given by

L̃gh,kin[c, c̄] = c̄µ∇2cµ+
(
1− 2(1+β)

d

)
c̄µ∇µ∇νcν (3.27)

and the interactions with the graviton are given by

L̃cc̄h[c, c̄,h] = κ
{(

1− 2(1+β)

d

)
c̄µhνρ∇ρ∇µcν− 1+β

d

(
c̄µ∇µcν∇νh + c̄µcν∇µ∇νh

)− 2(1+β)

d
c̄µ∇µhνρ∇ρcν

+ c̄µ∇µcν∇ρhν
ρ+ c̄µcν∇ν∇ρhν

ρ+ c̄µhµν∇2cν+ c̄µ∇νhµρ∇ρcν+ c̄µ∇ρhµν∇ρcν
}

.

(3.28)

Further we’ll immediately drop the tilde on Sgh, i.e. set Sgh = S̃gh, and set the corresponding

phase in the path integral to θ = i. We make this choice since from L̃gh,kin we see that if we

choose our gauge by β = d
2 −1 in order to cancel the second term then the ghost kinetic term

16I define linearized harmonic gauge by ∇hµ = 1
2∇µh for all d , since this is the condition obtained by lineariz-

ing the nonlinear harmonic gauge condition gρσΓµρσ = 0 for all d .
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becomes the very simple c̄µ∇2cµ, which we recognize as the usual Lorenz-gauge spin-one ki-

netic term, correct sign and all. Setting β= (d/2)−1 yields the ghost kinetic terms and interac-

tion vertex commonly found in the literature, e.g. [66].

3.1.6 Fourier-transforming the various kinetic terms

Now let’s find the Fourier transformation of the graviton and ghost kinetic terms. The ghost is

easy:

Sgh,kin[c, c̄] =
∫

dd k

(2π)d
c̄µ(k)

{
−δµνk2 −

(
1− 2(1+β)

d

)
kµkν

}
cν(−k). (3.29)

However the graviton terms are fairly long and unilluminating when expressed directly in

terms of k and gµν. So let us instead introduce a shorthand. First let’s define the momentum-

space kinetic matrices for the gauge-invariant classical kinetic terms and the gauge-fixing

terms:

Scl,kin[h] = 1

2

∫
dd k

(2π)d
hµν(k)Pµνρσ

cl,kin (k)hρσ(−k), Sgf[h] = 1

2

∫
dd k

(2π)d
hµν(k)Pµνρσ

gf (k)hρσ(−k).

(3.30)

In practice these matrices are most easily computed in MATHEMATICA, in which it’s easy to

verify that Pcl,kin and Pgf are symmetric. We can therefore parametrize the P ’s in terms of the

five independent symmetric rank-four tensor structures that we can compose out of k and

gµν:

T1µνρσ =Gµνρσ = 1
2

(
gµρgνσ+ gµσgνρ

)
,

T2µνρσ = 1

d
gµνgρσ ≡ trµνρσ,

T3µνρσ = pµpνpρpσ
p4

≡ Aµνρσ,

T4µνρσ = 1

2p2

(
gµνpρpσ+ gρσpµpν

)≡ Bµνρσ,

T5µνρσ = 1

4p2

(
gµρpνpσ+ gµσpνpρ+ gνρpµpσ+ gνσpµpρ) ≡Cµνρσ.

(3.31)

We will see in sec. 3.3.1 that T1 is the natural metric induced by g on the space of symmetric

rank-two tensors, which is why I dub it ‘G’. Note as well that T2 can be trivially verified to be
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precisely the projector onto the trace mode, which is why I identify it as such. The final three

tensors are labeled in ascending alphabetical order of the number of terms comprising them.

We can obtain an expression for Pcl,kin and Pgf in terms of these structures as follows:

Pcl,kin = p2
(
G−d tr+2(B −C )

)
, Pgf =

p2

α

{
− (1+β)2

d
tr−2(1+β)

d
B +C

}
. (3.32)

3.1.7 Summarizing

In sum the gauge-fixed path integral is given by

Z =
∫

Dh Dc Dc̄ exp
(
i
(
Scl[h]+Sgf[h]+Sgh[h]

))
, (3.33)

where the classical action is given by

Scl[g ] =− 2

κ2

∫
dd x

p−g R (3.34)

and the gauge-fixing function Fµ =∇hµ− 1+β
d ∇µh determines the gauge-fixing action,

Sgf[h] = 1

2α

∫
dd x

(
∇hµ− 1+β

d
∇µh

)(
∇hµ− 1+β

d
∇µh

)
, (3.35)

and the ghost action, which we can write as Sgh[c, c̄,h] = ∫
dd x

(
Lgh,kin[c, c̄]+Lcc̄h[c, c̄,h]

)
with

Lgh,kin[c, c̄] = c̄µ∇2cµ+
(
1− 2(1+β)

d

)
c̄µ∇µ∇νcν,

Lcc̄h[c, c̄,h] = κ
{(

1− 2(1+β)

d

)
c̄µhνρ∇ρ∇µcν− 1+β

d

(
c̄µ∇µcν∇νh + c̄µcν∇µ∇νh

)− 2(1+β)

d
c̄µ∇µhνρ∇ρcν

+ c̄µ∇µcν∇ρhν
ρ+ c̄µcν∇ν∇ρhν

ρ+ c̄µhµν∇2cν+ c̄µ∇νhµρ∇ρcν+ c̄µ∇ρhµν∇ρcν
}

.

(3.36)

Fourier-transforming the ghost action yields

Sgh,kin[c, c̄] =
∫

dd k

(2π)d
c̄µ(k)

{
−δµνk2 −

(
1− 2(1+β)

d

)
kµkν

}
cν(−k), (3.37)
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and, defining the kinetic matrices of the graviton terms by

S A[h] = 1

2

∫
dd k

(2π)d
hµν(k)Pµνρσ

A (k)hρσ(−k), (3.38)

we can write the P ’s in terms of the tensor structures of sec. 3.1.6 as

Pcl,kin = p2
(
G−d tr+2(B −C )

)
, Pgf =

p2

α

{
− (1+β)2

d
tr−2(1+β)

d
B +C

}
. (3.39)

3.2 DECOMPOSING THE GHOST ACTION

Here I will construct the standard decomposition of a generic vector into a transverse vector

and scalar part, obtain the projectors onto these modes, and use these projectors to efficiently

obtain the ghost propagator in this basis. While this decomposition is not likely to be neces-

sary for a continuation of correlators to Euclidean space it serves as a clean and simple exam-

ple of the logic that will used in decomposing the graviton, without the attendant complica-

tions and extensive equations.

3.2.1 Definitions

• Let’s write V = C1,3, so that V∗ is the space in which (any given Fourier component of)

an arbitrary one-form field lives. Then given any basis eµ for V and its dual basis ϑµ for V

we’d write e.g. A ∈V∗ in components as A = Aµϑ
µ.

• Let’s also denote by T and T∗ the space of covariant and contravariant tensors on V (i.e.

the space of maps V → V∗ and V∗ → V respectively). In components we would then

write any T ∈T as T = Tµνϑµ⊗ϑν and any T̃ ∈T∗ as T̃ = T̃ µνeµ⊗eν.

• Finally let’s assume that we are given some symmetric and invertible g ∈ T (i.e. the met-

ric), in terms of which we define X · X = g (X , X ′) for X , X ′ ∈ V and A · A′ ≡ g−1(A, A′) for

A, A′ ∈V∗, and some distinguished p ∈V∗ (i.e. the momentum of the Fourier component
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under consideration), which we assume to be real.

With respect to the metric we use the usual convention in which g = gµνϑµ ⊗ϑν and

g−1 = gµνeµ⊗ eν, and we also adopt the usual convention in which the isomorphisms

V ↔ V∗ and T ↔ T∗ ↔ . . . (with the dots standing for the spaces of mixed tensors) in-

duced by g are implicit, so that from here on out I’ll only refer to V and T (with explicit

reference to index position when necessary).

3.2.2 The decomposition

First observe that to any A ∈V we can associate a unique A⊥ ∈V such that p · A⊥ = 0 via

A⊥µ = Aµ− p · A

p2
pµ. (3.40)

We call A⊥ the transverse part of A. Defining also a unique scalar part S ∈C of A via

S =−i
p · A

p2 (3.41)

we can therefore decompose A uniquely into transverse and scalar parts as

Aµ = A⊥µ+ ipµS. (3.42)

(We introduce the i into the scalar part so that the position-space version of this decomposi-

tion is A = A⊥+∇S.)

3.2.3 Obtaining the projectors onto the transverse and scalar parts

Our goal is to obtain the projectorsΠ⊥µν andΠS
µν such thatΠ⊥µνAν = A⊥µ andΠS

µνAν =
ipµS, i.e. such thatΠ⊥ projects out the transverse part of A andΠS the scalar part. We do this

as follows.

• First consider any projectorΠ ∈ T such that A0 · A1 = 0 for all A0 ∈ kerΠ and A1 ∈ ImΠ.
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Since we can write any A ∈ V as A = A0 + A1 in terms of some such A0 and A1 it follows

that

A · (ΠA′) = (A0 + A1) · A′
1 = A1 · A′

1 = A1 · (A′
0 + A′

1) = (ΠA) · A′ (3.43)

for all A, A′ ∈ V, i.e. that any suchΠ is self-adjoint with respect to the inner product A ·
A′ = g−1(A, A′). In more prosaic terms: any suchΠ is symmetric.

Our desiredΠ⊥ andΠS both certainly satisfy this property, which we can quickly check

as follows: every A ∈ kerΠ⊥ is of the form Aµ = ipµS and every A′ ∈ ImΠ⊥ is of the form

A′ = A′
⊥µ, and the resulting inner product is A · A′ = ipµS A′

⊥µ = 0 since pµA′
⊥µ by defi-

nition. Further kerΠ⊥ = ImΠS and ImΠ⊥ = kerΠ⊥, so the same holds forΠS. HenceΠ⊥

andΠS are both symmetric:

Π
µν

⊥ =Πνµ⊥ , Π
µν

S =ΠνµS . (3.44)

• SinceΠ⊥ andΠS should apply to arbitrary A ∈ V they should not depend on the A on

which they act. Hence the only tensors on which they can depend are the ones we are

given in our setup, namely the metric g and the distinguished p ∈ V which labels the

Fourier component under consideration. ThatΠ⊥ andΠS are symmetric implies further

that they can only depend on p in the combination pµpν:

Πµν =C 1gµν+C 2 pµpν

p2
, (3.45)

including a factor of 1/p2 in the pµpν term so that C 1 and C 2 have the same dimension.

We can therefore find C 1 and C 2 for each ofΠ⊥ andΠS by acting this ansatz forΠ on an

arbitrary decomposed A ∈V and insisting that it select the desired component.

So let’s turn the crank. Acting a genericΠµν =C 1gµν+C 2pµpν/p2 on Aµ = A⊥µ+ ipµS yields

(ΠA)µ =
(
C 1δµ

ν+C 2 pµpν

p2

)(
A⊥ν+ ipνS

)=C 1 A⊥µ+ i
(
C 1 +C 2)pµS. (3.46)
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Hence we can set the result equal to A⊥µ by choosing C 1 = 1 and C 2 =−C 1 =−1,

Π
µν

⊥ = gµν− pµpν

p2
, (3.47)

and we can set the result equal to ipµS by choosing C 1 = 0 and C 2 = 1,

Π
µν

S = pµpν

p2
. (3.48)

Note thatΠµν⊥ +ΠµνS = gµν, as must be the case.

3.2.4 Decomposing the ghost kinetic terms

Now recall from eq. (3.37) that the ghost kinetic matrix is given by

Pµν

gh =−p2gµν−
(
1− 2(1+β)

d

)
pµpν. (3.49)

This matrix can be written in terms of the transverse and scalar projectors (3.47) and (3.48) as

follows. SinceΠ⊥ is the only one of the two to contain gµν its coefficient is fixed:

Pgh =−p2Π⊥+CΠS, (3.50)

with C a constant to be determined. Using our expressions for Pgh and theΠ’s gives

−p2gµν−
(
1− 2(1+β)

d

)
pµpν =−p2gµν+pµpν

(
1+ C

p2

)
, (3.51)

from which it follows that

C = 2(1+β−d)

d
p2. (3.52)
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And thus we find that the ghost kinetic matrix may be written in terms of the transverse and

scalar vector projectors as

Pgh =−p2
(
Π⊥+ 2(d −1−β)

d
ΠS

)
. (3.53)

3.2.5 The ghost propagator

The ghost propagator Sµν(p) is the inverse of the ghost kinetic matrix Pgh. A major advantage

of the projector formalism is that it streamlines the process of inverting this kinetic matrix:

since we know how to write Pgh entirely in terms ofΠ⊥ andΠS, and these satisfyΠA ·ΠA =
δABΠB (no sum), the ghost propagator is found by simply inverting the coefficients of the pro-

jectors:

S(p) =− 1

p2

(
Π⊥+ d

2(d −1−β)
ΠS

)
, (3.54)

or explicitly

Sµν(p) = 1

p2

{(
1− d

2(d −1−β)

)
pµpν− gµν

}
. (3.55)

3.3 THE YORK DECOMPOSITION OF THE GRAVITON KINETIC TERMS

3.3.1 Definitions

The transition from the spin-one construction of the previous section to the spin-two con-

struction is as follows. The vector space in which our field lives is now the space V≡ Sym2(C1,3)

of symmetric rank-two tensors on Minkowski space (i.e. the symmetric subspace of the T

from the previous section), and the tensor space T is the space of rank-two tensors on V (so

rank-four tensors on C1,3). Given a dual basis ϑµ of C1,3 we would then write any h ∈ V as h =
hµνϑµ⊗ϑν with the added condition that hµν = hνµ, and any T ∈T as T = T µνρσeµ⊗eν⊗eρ⊗eσ,

with the added condition that T µνρσ = T µνσρ = T νµρσ. We also retain the assumption of a

given metric gµν, with which we raise and lower indices, and a given p ∈ R1,3, which labels the

Fourier mode under consideration.
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In general when comparing this to the spin-one case it’s useful to think of each pair of in-

dices as a single multi-index, e.g. h(µν) and T (µν)(ρσ), so that the action of T on h is (T h)µν =
Tµνρσhρσ. From this perspective the symmetry of T µνρσ under µ↔ ν and ρ↔ σ is, in a sense,

trivial, and T being actually ‘symmetric’, i.e. self-adjoint, would manifest as a symmetry under

(µ,ν) ↔ (ρ,σ), i.e. T µνρσ = T ρσµν. Of course if we want to refer to T as ‘self-adjoint’ it must

be with respect to a particular inner product on W, which is given by the G mentioned in sec.

3.1.6:

G(h,h′) = 1
2

(
gµρgνσ+ gµσgνρ

)
hµνh′ρσ = 1

2

(
hρσh′ρσ+hσρh′ρσ)= hµνhµν. (3.56)

This last form for G demonstrates that it is the unique rank-four tensor we can construct out of

the provided metric g such that Gµν
ρσhρσ = hµν, and is in this sense the natural choice of an

inner product on V given the metric g , as promised. And indeed if we act T on h′,

G(h,T h′) = hµνT µν
ρσhρσ = hµνhρσT µνρσ, (3.57)

we see that T is self-adjoint if and only if it is symmetric in the sense described above, T µνρσ =
T ρσµν.

3.3.2 The decomposition

Our goal now is to decompose hµν as far as possible, namely into a transverse and traceless

(TT) part h⊥µν and some combination of one or more scalars and/or transverse vectors. This

decomposition will, as is probably expected, be more involved than the spin-one case, which

was done essentially by inspection.

So let’s get after it. First observe that we can associate a unique traceless ĥµν with each hµν

via

ĥµν = hµν− 1

d
gµνgρσhρσ, (3.58)
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i.e.

hµν = ĥµν+ 1

d
gµνφ (3.59)

with the trace mode defined by φ= gµνhµν.

It remains to associate a unique transverse and traceless h⊥µν with our arbitrary traceless

ĥµν. In other words we want to find some ∆µν(p, ĥ) such that

h⊥µν = ĥµν−∆µν, (3.60)

and the requirement that gµνh⊥µν = 0 = pµh⊥µν implies that we need gµν∆µν = 0 and pµ∆µν =
pµĥµν. We will proceed by first writing down a general traceless ∆µν in terms of p and an ar-

bitrary vector ξ, and then use the condition pµ∆µν = pµĥµν to obtain an expression for (the

transverse and scalar components of) ξ in terms of ĥ.

Let’s begin by justifying our expectation that ∆µν can be determined in terms of a vector ξ.

We want to obtain h⊥µν from ĥµν by imposing the additional constraint pµh⊥µν = 0, which has

d component equations. In other words h⊥ should have d fewer independent components

than ĥ, which is precisely the number of independent components of ξ.

Now let’s consider the ways in which ξ can enter into ∆µν, given only as extra ingredients

pµ and gµν. For simplicity we’ll consider only terms linear in ξ.17 There are three:

pµξν+pνξµ,
pµpν

p2
p ·ξ, gµνp ·ξ. (3.61)

The latter two terms contain only the scalar part of ξ: if we write ξµ =Vµ+ipµS then p ·ξ= ip2S.

It therefore makes sense to decompose ξ in the first as well:

pµξν+pνξµ = pµVν+pνVµ+2ipµpνS. (3.62)

17This is justified by hindsight because we know this is where we want to end up, and also because we don’t
need to obtain every way to decompose hµν, only one in particular.
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So we can equivalently phrase the three options above in terms of the transverse vector V and

the scalar S:

pµVν+pνVµ, pµpνS, gµνp2S. (3.63)

Let’s write Tµν as an arbitrary linear combination of the three:

Tµν = i
(
pµVν+pνVµ

)+ (
Apµpν+B gµνp2)S. (3.64)

Note that we can without loss of generality choose the coefficient in front of the first term to

be i by rescaling V .18 Let’s impose that Tµν is traceless:

gµνTµν =
(

A+Bd
)
p2S, (3.65)

using the fact that p ·V = 0. It follows that we must have B =−A/d :

Tµν = i
(
pµVν+pνVµ

)+ A

(
pµpν− 1

d
gµνp2

)
S = i

(
pµVν+pνVµ

)−(
pµpν− 1

d
gµνp2

)
S, (3.66)

choosing A =−1 by rescaling S.19

Using the above we arrive at our ansatz: we aim to decompose a generic symmetric hµν

into a TT rank-two tensor h⊥, a transverse vector V , and two scalars S and φ, in the form

hµν = h⊥µν+ i
(
pµVν+pνVµ

)−(
pµpν− 1

d
gµνp2

)
S + 1

d
gµνφ. (3.67)

We have already obtained φ = gµνhµν. It remains only to express V and S in terms of h, since

once we do so we also arrive at an implicit equation for h⊥ in terms of h (and hence at an un-

ambiguous, completely defined decomposition of h into h⊥, V , S, and φ). To keep some of the

18Q. What if the correct coefficient is zero? Then you can’t rescale it away! A. The coefficient can’t be zero
because that would eliminate the d − 1 independent components of V , leaving us without enough indepen-
dent components to decompose an arbitrary hµν in full generality. Note that we can’t yet apply the same logic to
rescale away either of A or B , since we’re not a priori guaranteed that neither is zero, although we do know that
they can’t both be, because if they were then we’d lose the independent component S.

19And now using the fact that we must have A 6= 0 in order to retain the independent component S.
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expressions manageable let’s recall our notation for the traceless part of h,

ĥµν = hµν− 1

d
gµνφ, (3.68)

and further introduce its scalar-less part,

h′
µν = hµν− 1

d
gµνφ+

(
pµpν− 1

d
gµνp2

)
S. (3.69)

Since we already have an expression for φ in terms of h the traceless part ĥ is defined unam-

biguously for any h. Similarly once we obtain an expression for S in terms of h the above will

provide an unambiguous definition of h′ for all h.

To solve for S from ĥµν let’s consider pµpνĥµν. This immediately eliminates the h⊥ and V

terms, leaving us with

pµpνĥµν =−
(

p4 − 1

d
p4

)
S =−d −1

d
p4S =⇒ S =− d

d −1

pµpν

p4
ĥµν. (3.70)

Writing ĥ in terms of h and φ20 yields our final (and unambiguous) expression for S in terms of

h:

S =− d

d −1

pµpν

p4

(
hµν− 1

d
gµνφ

)
=− d

d −1

pµpν

p4
hµν+ 1

d −1

1

p2
φ. (3.71)

Since S is the scalar part of the vector ξ, i.e. the only part which doesn’t vanish under p ·ξ, we’ll

call it the longitudinal scalar part of h.

It only remains to find V , which also follows straightforwardly. Contracting the scalar-less

part of h with p eliminates the h⊥ term and leaves only V :

pνh′
µν = ip2Vµ =⇒ Vµ =− ipν

p2
h′
µν. (3.72)

Expressing h′ in terms of h and φ is a little more involved, but after a little algebra things sim-

20I leave φ, instead of writing gµνhµν, as notational shorthand. Mostly I just think ‘φ’ looks better than ‘trh’ or
‘hµµ’ or whatever.
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plify nicely:

Vµ =− i

p2

(
pνhµν− 1

d
pµφ+ d −1

d
pµp2S

)
=− i

p2

(
pνhµν−

pµpρpσ

p2
hρσ

)
(3.73)

And now that we have explicit expressions for S and V on top of φ we can in principle write

down an explicit expression for h⊥. I say ‘in principle’ because the resulting expression is

long and unilluminating, so I won’t write it down here. The point is rather that we have now

demonstrated that the decomposition we have written down,

hµν = h⊥µν+ i
(
pµVν+pνVµ

)−(
pµpν− 1

d
gµνp2

)
S + 1

d
gµνφ, (3.74)

uniquely defines the TT part h⊥, the transverse vector part V , and the scalar parts S and φ.

This decomposition is called the York decomposition [67].

3.3.3 The York projectors

Our goal in this section is to express the projectorsΠ⊥,ΠV ,ΠS , andΠφ which project onto the

York modes defined above, i.e.

Π⊥µνρσhρσ = h⊥µν, ΠV µν
ρσhρσ = i

(
pµVν+pνVµ

)
,

ΠSµν
ρσhρσ =−

(
pµpν− 1

d
gµνp2

)
S, Πφµν

ρσhρσ = igµνφ.
(3.75)

By definition theseΠ’s sum to the identity,

∑
n
Πnµν

ρσ =Gµν
ρσ = 1

2

(
δµ

ρδν
σ+δµσδνρ

)
, (3.76)

and it is straightforward to verify that each is orthogonal and hence symmetric.21 We can

therefore write down a completely general ansatz in terms of the symmetric tensor structures

21Recall that each multi-index (µ,ν) is by definition symmetric - the nontrivial symmetry referred to above is
between multi-indices, i.e. Πµνρσ =Πρσµν.
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of sec. 3.1.6:

Πn =∑
i

X i
nTi , (3.77)

where n ∈ {⊥,V ,S,φ} and the tensor structures are as given in eq. (3.31),

T1µνρσ =Gµνρσ = 1
2

(
gµρgνσ+ gµσgνρ

)
, T2µνρσ = 1

d
gµνgρσ ≡ trµνρσ, T3µνρσ = pµpνpρpσ

p4
≡ Aµνρσ,

T4µνρσ = 1

2p2

(
gµνpρpσ+ . . .

)≡ Bµνρσ, T5µνρσ = 1

4p2

(
gµρpνpσ+ . . .) ≡Cµνρσ.

(3.78)

Each of the four desired projectors (i.e. the coefficients X i
n for the desired n) are entirely de-

termined by the definitions (3.75). This calculation is most efficiently done in MATHEMATICA,

which yields the following. For the trace projector we find, as mentioned above,

Πφ = tr . (3.79)

The projectors onto the longitudinal scalar and the vector are a bit more complicated:

ΠS = 1

d −1
tr+ d

d −1
A− 2

d −1
B , ΠV = 2

(
C − A

)
. (3.80)

And finally we have the projector onto the TT mode:

Π⊥ =G − d

d −1
tr+d −2

d −1
A+ 2

d −1
B −2C . (3.81)

As a check on these results it is straightforward to verify22 that these four projectors do indeed

sum to the identity.

3.3.4 The scalar mixing pseudoprojector

Let’s take stock for a moment. The symmetric tensor h which we’ve been concerned with de-

composing is (by definition) an element of the vector space V = Sym2(C1,3), and we can think

22In the shorthand we’ve been using - when the explicit form is written out, in all its rank-four glory, it’s still
quite a lengthy sum.
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of our decomposition as a choice of (a class of) basis for V.23 Let’s write this as a column vec-

tor:

h =



h⊥

V

S

φ


. (3.82)

In the above we can think of h⊥ as a column vector with dof[h⊥] = 1
2 (d + 1)(d − 2) indepen-

dent components24 and V as a column vector with d −1 components. In this picture the York

projectors can be represented as the usual diagonal projectors:

Π⊥ =



1⊥

0

0

0


, ΠV =



0

1V

0

0


, ΠS =



0

0

1

0


, Πφ =



0

0

0

1


,

(3.83)

in which 1⊥ and 1V are the (respectively (d + 1)(d − 2)/2- and (d − 1)-dimensional) identity

operators in the TT and vector subspaces.

Now, our eventual goal is to decompose the gauge-fixed graviton kinetic terms into a sum

of projectors onto the various parts of h. The York projectors are insufficient for this purpose,

which we can see as follows. If the gauge-fixed graviton kinetic matrix Pkin = Pcl,kin+Pgf (where

Pcl,kin and Pgf are given in sec. 3.1.6 in terms of the tensor structures above) is a sum of the

York projectors then the gauge-fixed graviton kinetic terms hµν(p)Pµνρσ

kin hρσ(−p) should de-

compose into terms quadratic in each of the York components, with no cross-terms. However

23I say ‘a class of’ because, while we have decomposed V into orthogonal subspaces, we haven’t chosen a basis
within those subspaces.

24(i.e. the
∑d

k=1 k = 1
2 d(d + 1) independent components of a generic symmetric rank-two tensor in d dimen-

sions, minus d components from the d constraints pµh⊥µν = 0 and another component from the constraint
gµνh⊥µν = 0)
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a direct evaluation reveals that this product contains a cross term in φ and S:25

hµνPµνρσ

kin hρσ ∼ h2
⊥+V 2 +S2 +φ2 +φS. (3.84)

Hence Pkin must contain a termΠφS which mixes φ and S. We’ll callΠφS the (scalar) mixing

pseudoprojector,26 and we can think of it as being analogous to

ΠφS ∼



0

0

0 1

1 0


. (3.85)

We’ll obtainΠφS as follows. Let’s define the ‘raw’ mixing pseudoprojector Π̃φS in the most

naive way possible, (
Π̃φSh

)
µν =−

(
pµpν

p2
− 1

d
gµν

)
φ+ 1

d
gµνp2S, (3.86)

i.e. by requiring that it project onto the scalar subspace and swap the longitudinal scalar and

trace parts, φ ↔ p2S. (The factors of p2 are there because the mass dimension of S is two

less than the mass dimension of φ.) The Π̃φS defined in this way is not symmetric,27 which

we can see either by attempting to solve for it as a linear combination of the symmetric ten-

sor structures enumerated above (which attempt fails) or by directly comparing G
(
h,Π̃φSh′)

and G
(
Π̃φSh,h′). However since our goal is to write the graviton kinetic terms, and the cor-

responding propagator, in terms of theΠ’s, and the kinetic terms are symmetric, it follows

that the only way in which the kinetic terms can depend onΠφS is through its symmetric part

ΠφS = 1
2

(
Π̃φS + Π̃T

φS

)
.

25N.B. the vector contribution is pure gauge, but the longitudinal and mixing contributions are not. I will
return to this point in the next section and in sec. 3.4.1.

26Really it’s in no sense a projector, so ‘pseudoprojector’ is kind of overselling it. However we’ll be using it
along with the otherΠ’s as a (partial) basis for the space of tensors on the space of h’s, so it’s useful to give it a
similar name.

27Note that this holds even though even though its image and kernel are orthogonal, since it’s not a projector -
the proof that kerΠ⊥ ImΠ =⇒ Π=ΠT requires thatΠ2 = 1.



69

So, to work. Since Π̃φS is not symmetric we need to include new antisymmetric terms in

our ansatz. It turns out to be sufficient to include the antisymmetric version of B :

B̃µνρσ ≡ 1

2p2

(
gµνpρpσ− gρσpµpν

)
. (3.87)

Imposing that our ansatz satisfy eq. (3.86) is sufficient to determine it uniquely:

Π̃φS = d

d −1
tr− d

d −1
B + d −2

d −1
B̃ . (3.88)

And we can in this form (since tr and B are symmetric and B̃ is antisymmetric) read off the

symmetrized scalar mixing pseudoprojector:

ΠφS = d

d −1

(
tr−B

)
. (3.89)

The symmetrized pseudoprojector acts on h in essentially the same way as the raw pseudo-

projector. The only difference is some extra numerical factors:

(
ΠφΠφSh

)
µν = 1

2 gµνp2S,
(
ΠSΠφSh

)
µν =− d

2(d −1)

(pµpν
p2

− 1

d
gµν

)
φ. (3.90)

Or in other words, writingΠφSh = h′,

φ′ = d

2
p2S, S′ = d

2(d −1)

φ

p2
. (3.91)

As an aside: that the “raw” mixing pseudoprojector is not symmetric is a direct conse-

quence of the fact that the scalar modes it is defined to swap are not normalized with respect

to the inner product defined by G. I’ll return to this point in sec. 3.4.1.
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3.3.5 Decomposing the graviton kinetic terms

Now that we have the projectorsΠ⊥,ΠV ,ΠS , andΠφ from eqs. (3.79), (3.80), and (3.81), along

with the pseudoprojectorΠφS from eq. (3.89), we are equipped to reexpress the graviton ki-

netic terms in terms of the York decomposition. Recall from eq. (3.39) that the classical and

gauge-fixing kinetic matrices are given in terms of the tensor structures (3.31) by

Pcl,kin = p2
(
G−d tr+2(B −C )

)
, Pgf =

p2

α

{
(1+β)2

d
tr−2(1+β)

d
B +C

}
. (3.92)

Both of these may be straightforwardly reexpressed in terms of theΠ’s by matching the coef-

ficients of the tensor structures, in a manner analogous to but more lengthy than that of sec.

3.2.4. Doing so yields for the classical terms

Pcl,kin = p2
{
Π⊥− 2−3d +d 2

d
Πφ− d −2

d
ΠS − 2(2−3d +d 2)

d 2
ΠφS

}
, (3.93)

and for the gauge-fixing terms

Pgf =
p2

α

{
1

2
ΠV + β2

d
Πφ+ d −1

d
ΠS + 2β(d −1)

d 2
ΠφS

}
. (3.94)

N.B. eq. (3.93) explicitly demonstrates that none of the scalar pieces (trace, longitudinal, and

mixing) are pure gauge, while the vector part is: the Einstein-Hilbert action propagates a TT

tensor and (as we will see in sec. 3.4.1) precisely one scalar mode, which is a mixture of the

trace and the longitudinal scalar.

3.3.6 The graviton propagator in the York decomposition

The graviton propagator ∆µνρσ(p) is the inverse of the gauge-fixed kinetic matrix Pkin = Pcl,kin+
Pgf. The TT and vector parts of this inverse may be found as we did for the ghost by simply in-

verting the coefficients. The presence of the mixing term in the scalar sector makes inverting

that piece a little less trivial, but it may still be done in an essentially algebraic way by using
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the straightforwardly-verified facts that

ΠφS ·Πφ =ΠS ·ΠφS , ΠφS ·ΠS =Πφ ·ΠφS , ΠφS ·ΠφS = d

4(d −1)

(
Πφ+ΠS

)
, (3.95)

along with the orthonormality ofΠφ andΠS . Doing so yields

∆(p) = 1

p2

{
Π⊥+2αΠV + d(1−d −2α+dα)

(d −2)(d −1−β)2
Πφ

+ d(2α−3dα+d 2α−β2)

(d −2)(d −1−β)2
ΠS − 2(2α−3dα+d 2α+β−dβ)

(d −2)(d −1−β)2
ΠφS

}
.

(3.96)

3.4 DIAGONALIZING THE SCALAR SECTOR OF THE EINSTEIN-HILBERT KINETIC TERMS

3.4.1 The Einstein-Hilbert action only propagates one scalar mode

Let’s take a look at the scalar sector of the Einstein-Hilbert kinetic terms (3.93):

Pcl,scalar =−p2
{

2−3d +d 2

d
Πφ+ d −2

d
ΠS + 2(2−3d +d 2)

d 2
ΠφS

}
. (3.97)

Now, recall from sec. 3.3.4 that the generic hµν which we are concerned with decomposing is

an element of the vector space V = Sym2(C1,3), and the longitudinal and trace modes span a

two-dimensional subspace of V, say Vscalar. Then the Einstein-Hilbert kinetic terms constitute

a symmetric operator on Vscalar, and the presence of the mixing term indicates that this oper-

ator is not diagonalized in the (φ,S) basis. In this section I will diagonalize this operator and in

the process demonstrate that the Einstein-Hilbert kinetic terms only propagate a single scalar

mode.

To start let’s look at the structure of Vscalar. The York decomposition of a generic element of

V is

hµν = h⊥µν+ i
(
pµVν+pνVµ

)−(
pµpν− 1

d
gµνp2

)
S + 1

d
gµνφ, (3.98)
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meaning that a generic element of Vscalar is an arbitrary linear combination of

uµν ≡ 1

d
gµν−

pµpν
p2

, vµν ≡ 1

d
gµν, (3.99)

using vector notation to emphasize that the above form a basis for a vector space on which we

are considering operators (even though they are themselves matrices). In terms of u and v an

arbitrary element of Vscalar is

h = p2Su+φv. (3.100)

However u and v are not normalized with respect to the inner product Gµνρσ = (gµρgνσ +
gµσgνρ)/2 on V:

G(u,u) = d −1

d
, G(v,v) = 1

d
. (3.101)

As a sidenote, this is why the “raw” mixing pseudoprojector Π̃φS of sec. 3.3.4 is not symmetric:

it was defined to directly swap two vectors of different norms, namely u and v.

Now let’s define the normalized forms of u and v:

û =
√

d

d −1
u, v̂ =

p
d v. (3.102)

Since Vscalar is a two-dimensional vector space its elements may be represented by column

vectors, and since û and v̂ are normalized we may therefore represent them as

û 7→

1

0

 , v̂ 7→

0

1

 . (3.103)

This picture makes clear another way to find the projectors onto the longitudinal and trace

modes: simply take the outer products û⊗ û and v̂⊗ v̂! Doing so and turning the crank reveals

that these are precisely the projectors we’ve already been working with, with no extra numeri-

cal factors:

û⊗ û =ΠS , v̂⊗ v̂ =Πφ. (3.104)
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These projectors may therefore be represented by the matrices

ΠS 7→

1 0

0 0

 , Πφ 7→

0 0

0 1

 . (3.105)

Similarly we may find the matrix representation ofΠφS by acting it on u and v, which reveals

ΠφSû = d

2
p

d −1
v̂, ΠφS v̂ = d

2
p

d −1
û, (3.106)

so the mixing pseudoprojector is given by

ΠφS = d

2
p

d −1

(
û⊗ v̂+ v̂⊗ û

) 7→ d

2
p

d −1

0 1

1 0

 . (3.107)

Using the above representations it follows that the Einstein-Hilbert kinetic term may be repre-

sented in this basis by

Pcl,scalar 7→ −p2

 d−2
d

2−3d+d 2

d
p

d−1

2−3d+d 2

d
p

d−1
2−3d+d 2

d

≡−p2M. (3.108)

To diagonlize the scalar sector of the Einstein-Hilbert kinetic terms we therefore wish to diago-

nalize the matrix M. Doing so yields the eigenvalues λ0 = 0 and λ1 = d −2, with corresponding

normalized eigenvectors

ê0 =−
√

d −1

d
û+ v̂p

d
, ê1 = ûp

d
+

√
d −1

d
v̂. (3.109)

These eigenvectors can be reexpressed straightforwardly in terms of the metric and the mo-
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mentum using eqs. (3.99) and (3.102):

(ê0)µν = (−u+v)µν =
pµpν

p2
,

(ê1)µν =
(

1p
d −1

u+
p

d −1v
)
µν

= 1p
d −1

(
gµν−

pµpν
p2

)
.

(3.110)

That Pcl,scalar has a zero eigenvalue is critical: it tells us that the scalar part of the Einstein-

Hilbert kinetic term is in fact a projector in its own right (or at least proportional to one), specif-

ically onto the subspace spanned by ê1, and eliminates the subspace spanned by ê0. In other

words, the only scalar mode propagated by the Einstein-Hilbert kinetic term is the mode cor-

responding to ê1, sayΦ, with any appearance of the mode corresponding to ê0, say Σ, in the

action being pure gauge. For this reason I will callΦ the physical scalar mode and Σ the gauge

scalar mode, and this basis the physical basis.

3.4.2 The physical and gauge scalars in terms of the longitudinal and trace modes

Let’s now find the new scalarsΦ and Σ in terms of the longitudinal and trace modes S and φ.

To start let’s define the transformation matrix from the York basis {û, v̂} to the normalized

physical basis {ê0, ê1} in the usual way, by arranging the eigenvectors as the rows of the matrix:

U = 1p
d

−
p

d −1 1

1
p

d −1

 . (3.111)

Since both bases are normalized this matrix is orthogonal, so M is diagonalized by M̃ = UMUT .

This transformation matrix also tells us how to find physical and gauge modes in terms of the

York modes:

Σ̃ê0 + Φ̃ê1 = p2Su+φv = p2S

√
d −1

d
û+ φp

d
v̂ =⇒

Σ̃
Φ̃

= 1p
d

U

p2S
p

d −1

φ

 , (3.112)
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from which we find

Σ̃= 1

d

(
φ− (d −1)p2S

)
, Φ̃=

p
d −1

d
(φ+p2S). (3.113)

I use tildes in the above since I will now adjust the normalization. Let’s pull the overall d-

dependent factors out of the scalars,

Σ=φ− (d −1)p2S = d Σ̃, Φ=φ+p2S = dp
d −1

Φ̃, (3.114)

and shunt them into the basis vectors,

e0 = 1

d
ê0, e1 =

p
d −1

d
ê1. (3.115)

Then the scalar sector of a generic h may be written

p2Su+φv =Σe0 +Φe1, (3.116)

or explicitly in terms of the tensor structures

1

d
gµνφ+

(
pµpν− 1

d
gµνp2

)
S = pµpν

d p2
Σ+ 1

d

(
gµν−

pµpν
p2

)
Φ. (3.117)

3.4.3 The projectors onto the physical basis

The projectors onto theΦ and Σmodes may be found by taking the outer products of the cor-

responding normalized basis vectors:

ΠΣ = ê0 ⊗ ê0, ΠΦ = ê1 ⊗ ê1. (3.118)

(N.B. we still use the normalized basis vectors to construct the projectors, even though we’ve

changed the normalization of the modes themselves, since it is only by using the normalized



76

basis vectors that we retain the property thatΠ·Π=Π.) Recalling that û⊗û =ΠS and v̂⊗v̂ =Πφ,

along with û⊗v̂+v̂⊗û ∝ΠφS (with the constant of proportionality given in eq. (3.107)), we then

straightforwardly find that the projectors onto the Σ andΦmodes may be written in terms of

the York scalar projectors as

ΠΣ = 1

d
Πφ+ d −1

d
ΠS − 2(d −1)

d 2
ΠφS , ΠΦ = d −1

d
Πφ+ 1

d
ΠS + 2(d −1)

d 2
ΠφS . (3.119)

Similarly we may construct the symmetric (Φ,Σ) mixing pseudoprojector as28

ΠΦΣ = ê0 ⊗ ê1 + ê1 ⊗ ê0 = 2
p

d −1

d
Πφ− 2

p
d −1

d
ΠS − 2(d −2)

p
d −1

d 2
ΠφS . (3.120)

The above may also be written in terms of the symmetric tensor structures (3.31), using the

expressions (3.79), (3.80), (3.81), and (3.89) for the York projectors:

ΠΣ = A, ΠΦ = d

d −1
tr+ 1

d −1
A− 2

d −1
B , ΠΦΣ =− 2p

d −1
A+ 2p

d −1
B. (3.121)

3.4.4 Decomposing the graviton kinetic terms

Now that we have physical basis for the scalar sector of the graviton we may reexpress the

graviton kinetic terms in terms of the projectors onto these modes.

The classical kinetic terms are immediate. Recall that our initial motivation in finding

theΦ and Σmodes was to diagonalize the Einstein-Hilbert kinetic terms and thus to find the

physical scalar mode which it propagates, and that in doing so we found in eqs. (3.108) and

(3.109) that the scalar sector of the Einstein-Hilbert kinetic matrix may be written −p2M, where

the matrix M has eigenvalues 0 and d −2, corresponding respectively to the Σ andΦmodes. It

follows that M may be written in terms of the projectors onto these modes as M = 0 ·ΠΣ+ (d −
28This pseudoprojector differs qualitatively from the York mixing pseudoprojectorΠφS in that in the York case

there is an overall numerical factor in front of the symmetrized outer product, which is just an artifact of its con-
struction from the nonnormalized modes. In principle one could make the two cases exactly analogous, either
by normalizingΠφS or by including some sagacious overall factor in the definition ofΠΦΣ, but this point doesn’t
actually matter in any of the calculations, so I will leave it as is.
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2)ΠΦ, so that the Einstein-Hilbert kinetic matrix may in total be written

Pcl,kin = p2
(
Π⊥− (d −2)ΠΦ

)
. (3.122)

The form (3.122) for the classical kinetic terms makes manifest the claim that the Einstein-

Hilbert action propagates only the TT andΦmodes. This form may also be found more di-

rectly by using the expression (3.81) forΠ⊥ in terms of the symmetric tensor structures to

eliminate G and C from the expression (3.39) for Pcl,kin in favor ofΠ⊥ and comparing the re-

sult to eq. (3.121).

For the gauge-fixing terms we have no similarly pretty argument available, and so must

perform the direct calculation. Doing so yields

Pgf =
p2

α

{
1

2
ΠV + (d −1)(1+β)2

d 2
ΠΦ+ (d −1−β)2

d 2
ΠΣ− (d −1−β)(1+β)

p
d −1

d 2
ΠΦΣ

}
. (3.123)

3.4.5 The graviton propagator in the physical basis

To find the graviton propagator in the physical basis one may either use the relations (3.119)

and (3.120) between the York and physical basis projectors to reexpress the scalar sector of

the graviton propagator (3.96) in the physical basis, or directly invert the total kinetic terms

Pcl,kin +Pgf in the form given by eqs. (3.122) and (3.123). Either way one obtains the result

∆(p) = 1

p2

{
Π⊥+2αΠV − 1

d −2
ΠΦ+ d 2α(d −2)− (d −1)(1+β)2

(d −2)(d −1−β)2
ΠΣ− (1+β)

p
d −1

(d −2)(d −1−β)
ΠΦΣ

}
.

(3.124)

N.B. the contribution ofΠΦ to the graviton propagator is gauge-independent, as one would

expect from the fact that it is the physical scalar mode propagated by the Einstein-Hilbert ki-

netic term.
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3.5 GAUGE CHOICES

Let me first collect the most important of the above results in one place. Any vector field A

may be decomposed into a transverse vector A⊥ and a scalar S via

Aµ = A⊥µ+ ipµS. (3.125)

The projectors onto these parts are given by

Π
µν

⊥ = gµν− pµpν

p2
, Π

µν

S = pµpν

p2
, (3.126)

and in terms of these projectors the ghost propagator is given by

S =− 1

p2

(
Π⊥+ d

2(d −1−β)
ΠS

)
. (3.127)

Similarly, any rank-two tensor h may be written in terms of a transverse-traceless tensor h⊥, a

transverse vector V , a physical scalarΦ (in the sense that this scalar is the one propagated by

the Einstein-Hilbert action), and a pure-gauge scalar Σ via

hµν = h⊥µν+ i(pµVν+pνVµ)+ 1

d

(
gµν−

pµpν
p2

)
Φ+ 1

d

pµpν
p2

Σ. (3.128)

In terms of the symmetric tensor structures

Gµνρσ = 1
2

(
gµρgνσ+ gµσgνρ

)
, trµνρσ = 1

d
gµνgρσ, Aµνρσ = pµpνpρpσ

p4
,

Bµνρσ = 1

2p2

(
gµνpρpσ+ . . .

)
, Cµνρσ = 1

4p2

(
gµρpνpσ+ . . .),

(3.129)
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in which the dots stand for “all other terms necessary for the expression to be symmetric”, the

projectors onto these modes are given by

Π⊥ = G− d

d −1
tr+d −2

d −1
A+ 2

d −1
B −2C , ΠV = 2(C − A),

ΠΦ = d

d −1
tr+ 1

d −1
A− 2

d −1
B , ΠΣ = A,

(3.130)

along with the normalized scalar mixing pseudoprojector

ΠΦΣ =− 2p
d −1

A+ 2p
d −1

B , (3.131)

and in terms of these projectors the graviton propagator is given by

∆(p) = 1

p2

{
Π⊥+2αΠV − 1

d −2
ΠΦ+ d 2α(d −2)− (d −1)(1+β)2

(d −2)(d −1−β)2
ΠΣ− (1+β)

p
d −1

(d −2)(d −1−β)
ΠΦΣ

}
.

(3.132)

The parameters α and β describe the gauge-fixing: β determines the classical gauge being

imposed, given by the gauge-fixing function

Fµ = ∂hµ− 1+β
d

∂µh, (3.133)

while α determines how strictly the gauge is imposed, since it determines the width of the

Gaussian eiSgf . In this section I will discuss three families of choices for these parameters: har-

monic gauge, in which β= (d/2)−1; diagonal gauge, in which β=−1; and the Landau limit, in

which α→ 0.

3.5.1 The gauge condition at the classical level

To begin let’s consider the gauge condition Fµ = 0 at the classical level. In momentum space

the gauge condition is

pαhαµ− 1+β
d

pµhα
α = 0. (3.134)
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Using the decomposition (3.128) in the above we find that the TT mode vanishes entirely, leav-

ing

0 = ip2Vµ+ d −1−β
d 2

pµΣ− (d −1)(1+β)

d 2
pµΦ. (3.135)

Since V is subject to the constraint p ·V = 0 it has d −1 independent components, so its com-

ponents plus the gauge scalar Σ constitute the d gauge degrees of freedom. The d equations

(3.135) are therefore precisely enough to constrain the gauge components Vµ and Σ, as they

must be in order to properly fix the gauge.

In harmonic gauge the gauge condition does not simplify a great deal in this basis: setting

β= (d/2)−1 yields

0 = ip2Vµ+ 1

2d
pµΣ− d −1

2d
pµΦ. (3.136)

As we will see in sec. 3.5.3 the popularity of harmonic gauge instead comes from the simple

form the graviton propagator takes in that gauge. By contrast in diagonal gauge β = −1 the

physical scalar is eliminated entirely from the gauge condition, yielding

0 = ip2Vµ+ 1

d
pµΣ. (3.137)

In fact in this gauge V and Σ are constrained to actually vanish, which may be seen as fol-

lowed. Taking the momentum p as given, let’s choose our spatial axes so that (pµ) = (p0,0, . . . ,0, pz)

(calling the last spatial axis the z-axis). With i referring to any spatial axis other than z the i th

component of the gauge condition then implies that Vi = 0, while the condition p ·V = 0 im-

plies Vz = p0V0/pz . The µ= 0 and µ= z components of the gauge equation then yield

Σ=− id p2V0

p0
, Σ=− id p2Vz

pz
=− id p2p0V0

p2
z

, (3.138)

which can only be simultaneously satisfied for arbitrary p if V0 = 0, immediately implying that

Vz = 0 and Σ= 0 as well.

That the gauge condition with β = −1 does not mix the physical and gauge scalars also
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manifests in the action in that with this value for β the gauge-fixing action simplifies dramati-

cally to

Pgf =
p2

α

(
1

2
ΠV +ΠΣ

)
, (3.139)

and thus the full gauge-fixed graviton kinetic matrix is

Pkin = p2
(
Π⊥− (d −2)ΠΦ+ 1

α
ΠΣ+ 1

2α
ΠV

)
. (3.140)

So with β=−1 the graviton kinetic matrix is diagonalized (hence the name for the gauge), with

no mixing between the physical and gauge scalars.

3.5.2 The Landau limit

The Landau limit α→ 0 is the strictest possible imposition of the gauge condition in the path

integral, since it is the limit in which the gauge-fixing Gaussian eiSgf is sent back to the Dirac

delta function it was introduced to eliminate.

This limit does not constitute an actual choice of gauge in the classical sense, since it says

nothing about the gauge-fixing function itself. In our generalized harmonic gauge this limit

therefore leaves all the β-dependence in the propagators. It follows that the ghost propagator

doesn’t simplify at all in this limit:

S =− 1

p2

(
Π⊥+ d

2(d −1−β)
ΠS

)
. (3.141)

The graviton propagator in this limit does undergo the slight simplification that the unphysi-

cal vector mode is eliminated:

∆(p) = 1

p2

{
Π⊥− 1

d −2
ΠΦ− (d −1)(1+β)2

(d −2)(d −1−β)2
ΠΣ− (1+β)

p
d −1

(d −2)(d −1−β)
ΠΦΣ

}
. (3.142)

However the gauge scalar Σ, and its mixing with the physical scalarΦ, still appears unless a

judicious choice of β is made.
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3.5.3 Harmonic gauge

Linearized harmonic gauge, which I will just call “harmonic gauge”, is given by the condition

that29

∂hµ− 1
2∂µh = 0, i.e. β= d

2
−1. (3.143)

This gauge choice is common in the literature (see e.g. [68, 69]) because it makes the ghost

and graviton propagators particularly simple. The ghost propagator is α-independent, so it is

entirely determined by the choice of β:

S =− 1

p2

(
Π⊥+ΠS

)
=⇒ Sµν =−ηµν

p2
, (3.144)

which is just the standard vector propagator in Feynman gauge. With α arbitrary the graviton

propagator is most conveniently expressed in terms of the symmetric tensor structures:

∆= 1

p2

(
G− d

d −2
tr+(4α−2)C

)
, (3.145)

from which we can see that the graviton propagator can be brought into its simplest form by

setting α= 1/2,

∆= 1

p2

(
G− d

d −2
tr

)
. (3.146)

In d = 4 dimensions simplifies to the common form [68, 69]

∆µνρσ = 1

2p2

(
ηµρηνσ+ηµσηνρ−ηµνηρσ

)
. (3.147)

By contrast taking the Landau limit α→ 0 leaves the momentum-dependent tensor structure

C ,

∆= 1

p2

(
G− d

d −2
tr−2C

)
. (3.148)

29As a sidenote on conventions, I define harmonic gauge with a coefficient of 1/2 in all dimensions, as op-
posed to the also-common 2/d [64], because this is the linearization of the nonperturbative harmonic gauge
condition Γµ

αβ
gαβ = 0.
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In terms of the physical decomposition of the graviton this gauge is less simple: setting

β= (d/2)−1 but leaving α and the dimension d arbitrary gives

∆= 1

p2

{
Π⊥+2αΠV − 1

d −2
ΠΦ+ 4α(d −2)−d +1

d −2
ΠΣ−

p
d −1

d −2
ΠΦΣ

}
. (3.149)

Thus in this gauge there is no strength of gauge-fixing which eliminates the mixing between

the physical and gauge scalars in the propagator, since α only affects the vector and pure Σ

contribution. Setting α= 1/2 in this form gives

∆= 1

p2

{
Π⊥+ΠV − 1

d −2
ΠΦ+ d −3

d −2
ΠΣ−

p
d −1

d −2
ΠΦΣ

}
, (3.150)

or in d = 4

∆= 1

p2

{
Π⊥+ΠV + 1

2

(
ΠΣ−ΠΦ−

p
3ΠΦΣ

)}
. (3.151)

Taking the Landau limit instead gives

∆= 1

p2

{
Π⊥− 1

d −2
ΠΦ− d −1

d −2
ΠΣ−

p
d −1

d −2
ΠΦΣ

}
. (3.152)

3.5.4 Diagonal gauge

In the diagonal gauge β=−1 the gauge condition reduces to

∂αhαµ = 0, (3.153)

or in momentum space

pαhαµ = 0. (3.154)

As foreshadowed previously this is the gauge in which the gauge-fixed graviton kinetic matrix

is diagonalized,

Pkin = p2
(
Π⊥− (d −2)ΠΦ+ 1

α
ΠΣ+ 1

2α
ΠV

)
, (3.155)
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and hence the graviton propagator is as well:

∆= 1

p2

(
Π⊥− 1

d −2
ΠΦ+αΠΣ+2αΠV

)
. (3.156)

In particular taking the Landau limit in this gauge yields the naive inverse of the original Einstein-

Hilbert kinetic matrix (3.122),

∆= 1

p2

(
Π⊥− 1

d −2
ΠΦ

)
, (3.157)

as we would expect, since in this gauge the vector and gauge scalar vanish at the classical level

and the Landau limit corresponds to the strictest possible imposition of this gauge constraint.

4 Feynman rules

In this section I provide the Feynman rules for a massive real scalar minimally coupled to

Einstein-Hilbert gravity, which is the theory in which I will compute the correlators of sec. 5.

The action for this theory is

S = SEH +Sgf +Sgh +Sφ, (4.1)

where the Einstein-Hilbert action is

SEH =− 2

κ2

∫
dd x

p−g R; (4.2)

the gauge-fixing action and ghost actions are obtained from the gauge-fixing function

Fµ = ∂hµ− 1+β
d

∂µh (4.3)

(obtained explicitly in sec. 3.1, and restated below where relevant); and the scalar action is just

its kinetic term,

Sφ = 1

2

∫
dd x

p−g
(
gµν∂µφ∂νφ−m2φ2). (4.4)
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4.1 EXPANSION PIECES

If one wishes to obtain the propagators and vertices below by hand one first needs the expan-

sions of the inverse metric, the determinant, and the scalar curvature.

4.1.1 The inverse metric

To obtain the perturbative expansion of the inverse metric let us define its expansion coeffi-

cients as

gµν =∑
n
κn g̃µνn . (4.5)

The g̃µνn ’s can be obtained order-by-order by imposing the definition gµρgρν = δ
µ
ν with gµν =

ηµν+κhµν. At zeroth order we immediately find g̃µν0 = ηµν. At first order we then have

δ
µ
ν =

(
ηµρ+κg̃µρ1

)(
ηρν+κhρν

)+O(κ2) = δµν+κ
(
g̃1

µ
ν+hµ

ν

)+O(κ2), (4.6)

from which we find g̃µν1 =−hµν. At second order we then find

δ
µ
ν =

(
ηµρ−κhµρ+κ2g̃µρ2

)(
ηρν+κhρν

)+O(κ3) = δµν+κ2(g̃2
µ
ν−hµρhρν

)+O(κ3), (4.7)

which yields g̃µν2 = hµρhρ
ν, and proceeding in this way we find

gµν = ηµν−κhµν+κ2hµαhα
ν−κ3hµαhνβhαβ+κ4hµαhνβhα

γhβγ+O(κ5). (4.8)

4.1.2 The volume factor

This proceeds from the matrix identities

ln◦det A = tr◦ ln A, det(AB) = det A detB , (4.9)
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and the Taylor expansions

ln(1+x) = x − 1
2 x2 +O(x3),

p
1+x = 1+ 1

2 x − 1
8 x2 +O(x3). (4.10)

Ignoring the square root to start and using detη=−1 we have

−det g =−det
(
η+κh

)= det
(
1+κη−1h

)= exp◦ tr◦ ln
(
1+κη−1h

)
. (4.11)

To be clear on the notation here, by η−1h I mean the matrix with elements ηµαhαν, and by 1 I

mean the identity matrix. Now let’s expand this expression from the inside out. Expanding the

logarithm and taking the trace yields

tr◦ ln
(
1+κη−1h

)= tr
{
κη−1h − 1

2κ
2(η−1h

)2 +O(κ3)
}
= κ trh − 1

2κ
2 tr

(
h2)+O(κ3). (4.12)

Then expanding the exponentiation of the above yields

−det g = 1+κ trh + 1
2κ

2
((

trh
)2 − tr

(
h2))+O(κ3). (4.13)

Finally taking the square root and expanding we obtain

√
−det g = 1+ 1

2κ trh +κ2
(

1
8

(
trh

)2 − 1
4 tr(h)2

)
+O(κ3), (4.14)

or in components and using the more standard notation h = trh and det g = g ,

p−g = 1+ 1
2κh +κ2

(
1
8 h2 − 1

4 hµνhµν
)
+O(κ3). (4.15)

One may proceed in the manner above to arbitrarily high order. Doing so introduces no

conceptual wrinkles but quickly becomes algebraically overwhelming, meaning that the de-
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tails are best left to a computer program, e.g. XACT. The result is

p−g = 1+ 1
2κh +κ2

(
1
8 h2 − 1

4 hµνhµν
)
+κ3

(
1
6 hµνhµ

αhαν− 1
8 hhµνhµν+ 1

48 h3
)

+κ4
(
− 1

8 hµνhµ
αhν

βhαβ+ 1
12 hhµνhµ

αhαν+ 1
32 (hµνhµν)2 − 1

32 h2hµνhµν+ 1
384 h4

)
+O(κ5).

(4.16)

For later reference let’s denote these expansion terms as

p−g =∑
n
κnγn . (4.17)

4.1.3 The scalar curvature

The expansion of the scalar curvature follows from its definition in terms of the Christoffel

symbols:

Γαµν = 1
2 gαβ

(
∂µgβν+∂νgβµ−∂βgµν

)
, Rα

βµν = ∂µΓανβ−∂νΓαµβ+ΓαµλΓλνβ−ΓανλΓλµβ, R = gµνRα
µαν.

(4.18)

Beyond first order the expansion gets quite lengthy, so to aid in readability I will organize the

presentation of the result as follows. Define its expansion coefficients as

R =∑
n
κnRn . (4.19)

The zeroth and first order terms can be found by hand as follows. To first order the Christoffel

symbols are

Γαµν = 1
2κ

(
∂µhα

ν+∂νhα
µ−∂αhµν

)
+O(κ2), (4.20)

N.B. there are no zeroth order terms since every term in the definition (4.18) of the Christoffel

symbols involves a partial derivative of the metric, and the partial derivatives of our flat back-

ground metric vanish. Following through the definitions (4.18) it immediately follows that the



88

Riemann tensor, and hence the scalar curvature, vanish at zeroth order:

Rα
βµν = 0+O(κ) =⇒ R0 = 0. (4.21)

It also follows that to first order in R = gµνRα
µαν we need only keep gµν = ηµν+O(κ) and the

∂Γ terms in the Riemann tensor, since the Γ2 terms start at O(κ2). Working through the pertur-

bations yields for the Riemann tensor

Rα
βµν = 1

2κ
(
∂µ∂βhα

ν−∂ν∂βhα
µ−∂µ∂αhνβ+∂ν∂αhµβ

)
+O(κ2), (4.22)

from which we find the Ricci tensor and hence the scalar curvature

Rµν = 1
2κ

(
∂µ∂αhα

ν−∂ν∂µh −∂2hµν+∂ν∂αhα
µ

)
+O(κ2)

=⇒ R = ηµνRµν = κ
(
∂µ∂νhµν−∂2hµν

)+O(κ2),

(4.23)

i.e. R1 = ∂µ∂νhµν−∂2hµν.

At higher orders the algebra quickly becomes frightening, and so for them I defer to MATH-

EMATICA. The second-order term is

R2 = hµν∂µ∂νh − 1
4∂µh∂µh −∂µhµν∂αhν

α+∂µh∂νhµν−2hµν∂ν∂αhµ
α

+hµν∂2hµν− 1
2∂αhµν∂

µhνα+ 3
4∂αhµν∂

αhµν;
(4.24)

at third order we have

R3 =−3
4 hµν∂µhαβ∂νhαβ+ 1

4 hµν∂µh∂νh −hµν∂µh∂αhν
α−hµν∂µhν

α∂αh −hµνhµ
α∂ν∂αh

+ 1
2 hµν∂αhµν∂

αh +hµν∂αhµ
α∂βhν

β+2hµν∂νhµ
α∂βhα

β−hµν∂αhµν∂βhαβ+hµνhαβ∂µ∂αhνβ

−hµνhαβ∂α∂βhµν+2hµνhµ
α∂α∂βhν

β−hµνhµ
α∂2hνα+hµν∂νhα

β∂βhµ
α+ 1

2 hµν∂αhµ
β∂βhν

α

− 3
2 hµν∂αhµβ∂

αhν
β;

(4.25)
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and at fourth order

R4 =−1
2 hµνhαβ∂νhβλ∂αhµ

λ+ 3
4 hµνhµ

α∂νhβλ∂αhβλ− 1
4 hµνhµ

α∂νh∂αh +hµνhµ
αhβλ∂ν∂αhβλ

+hµνhµ
α∂αh∂βhν

β+ 3
2 hµνhαβ∂αhµ

λ∂βhνλ−hµνhαβ∂νhµ
λ∂βhαλ+hµνhαβ∂νhµα∂βh

− 1
2 hµνhαβ∂αhµν∂βh +hµνhµ

α∂αhν
β∂βh +hµνhµ

αhν
β∂α∂βh − 1

2 hµνhµ
α∂βh∂βhνα

−hµνhµ
α∂βhν

β∂λhα
λ−2hµνhαβ∂νhµα∂λhβ

λ+hµνhαβ∂αhµν∂λhβ
λ−2hµνhµ

α∂αhν
β∂λhβ

λ

+hµνhµ
α∂βhνα∂λhβλ−2hµνhµ

αhβλ∂α∂λhνβ+hµνhµ
αhβλ∂β∂λhνα−2hµνhµ

αhν
β∂β∂λhα

λ

+hµνhµ
αhν

β∂2hαβ+hµνhαβ∂αhβ
λ∂λhµν− 1

4 hµνhαβ∂λhµν∂
λhαβ−hµνhαβ∂αhµ

λ∂λhνβ

+ 3
4 hµνhαβ∂λhµα∂

λhνβ−hµνhµ
α∂αhβλ∂

λhν
β− 1

2 hµνhµ
α∂αhβλ∂

λhν
β+ 3

2 hµνhµ
α∂λhαβ∂

λhν
β.

(4.26)

4.2 THE PROPAGATORS

4.2.1 The scalar propagator

Since the scalar field kinetic matrix in position space is just −∂2 −m2 the scalar field propaga-

tor is
p

= iD(p) = i

p2 −m2
. (4.27)

The vector ghost propagator was found in sec. 3.2. The kinetic terms are

Lgh,kin = c̄µ∂2cµ+
(
1− 2(1+β)

d

)
c̄µ∂µ∂

νcν, (4.28)

yielding the propagator

µ ν

p

= iSµν(p) = i

p2

{(
1− d

2(d −1−β)

)
pµpν− gµν

}
. (4.29)

In terms of the operators

Π
µν

⊥ = gµν− pµpν

p2
, ΠS = pµpν

p2 (4.30)
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which project an arbitrary vector onto respectively its transverse and scalar mode, the ghost

propagator may be written

S(p) =− 1

p2

(
Π⊥+ d

2(d −1−β)
ΠS

)
. (4.31)

The graviton’s kinetic terms come from the second-order expansion of the Einstein-Hilbert

action,

LEH,kin =−∂hµ∂hµ− 1

2
hµν∂2hµν+∂hν∂νh + 1

2
h∂2h, (4.32)

along with the gauge-fixing action

Lgf =
1

2α

(
∂hµ− 1+β

d
∂µh

)(
∂hµ− 1+β

d
∂µh

)
. (4.33)

The resulting propagator is most conveniently given as follows. As discussed in sec. 3.4, any

rank-two tensor may be decomposed into a transverse-traceless tensor h⊥, a transverse vector

V , a physical scalarΦ, and a pure-gauge scalar Σ. Define the symmetric tensor structures

Gµνρσ = 1
2

(
gµρgνσ+ gµσgνρ

)
, trµνρσ = 1

d
gµνgρσ, Aµνρσ = pµpνpρpσ

p4
,

Bµνρσ = 1

2p2

(
gµνpρpσ+ . . .

)
, Cµνρσ = 1

4p2

(
gµρpνpσ+ . . .),

(4.34)

in which the dots stand for “all other terms necessary for the expression to be symmetric”.

Then the projectors onto these modes are

Π⊥ = G− d

d −1
tr+d −2

d −1
A+ 2

d −1
B −2C , ΠV = 2(C − A),

ΠΦ = d

d −1
tr+ 1

d −1
A− 2

d −1
B , ΠΣ = A.

(4.35)

Also necessary is the scalar mixing pseudoprojector

ΠΦΣ =− 2p
d −1

A+ 2p
d −1

B. (4.36)
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In terms of these projectors the graviton propagator is given by

∆(p) = 1

p2

{
Π⊥+2αΠV − 1

d −2
ΠΦ+ d 2α(d −2)− (d −1)(1+β)2

(d −2)(d −1−β)2
ΠΣ− (1+β)

p
d −1

(d −2)(d −1−β)
ΠΦΣ

}
,

(4.37)

which I represent the graviton propagator diagrammatically as

µν ρσ

p

= i∆µνρσ(p). (4.38)

4.2.2 The Fourier transform convention and derivative interactions

In each case above the given propagator relates to the corresponding free position-space two-

point function via a Fourier transform in the usual way, e.g. for the scalar

〈
φ(x)φ(y)

〉
0 = iD(x, y) = i

∫
dd p

(2π)d
D(p)eip(x−y). (4.39)

Now, observe that in eq. (4.39) we are free to choose the sign of the momentum p in the expo-

nent. This choice relates to the sign of the momentum in the Feynman rule for a vertex as fol-

lows. Consider for example the tree-level contribution to the two-point function
〈
φ(x)∂µφ(y)

〉
.

Proceeding as above and using the Fourier expansion of the propagator yields

〈
φ(x)∂µφ(y)

〉= i
∂

∂yµ

∫
dd k

(2π)d

eik(x−y)

k2 −m2
=

∫
dd k

(2π)d
(−ikµ)

i

k2 −m2
eik(x−y). (4.40)

Now suppose we instead wished to arrive at this result from a diagrammatic route. The single

contributing diagram (in a free theory) is a line carrying the momentum k from x and y , corre-

sponding to the momentum-space propagator i/(k2−m2). The field at x has the trivial external

vertex factor of 1, while the derivative at φ yields a momentum factor whose sign convention

must be chosen. I choose the convention that all outgoing momenta are positive, meaning that

if the momentum k points from x to y then the vertex factor at y is −ikµ:
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= (−ikµ)
i

k2 −m2
. (4.41)

Comparing to the previous result we can see that my chosen convention does indeed corre-

spond to the exponential sign choice eik(x−y), whereas the opposite choice e−ik(x−y) corre-

sponds to writing the incoming momenta as positive.

4.3 SCALAR FIELD EXTERNAL INSERTIONS

Given a scalar field φ its invariantized form is given by eq. (2.77),

φ̂=φ−κXα1 ∂αφ+κ2
(

1
2X

α
1X

β
1∂α∂βφ+Xα1 ∂αX

β
1∂βφ−Xα2 ∂αφ

)
+O(κ3), (4.42)

where X1 and X2 are given by eqs. (2.20) and (2.23),

X
µ
1 (x) =

∫
dd x ′G(x, x ′)Jµ1 (x ′), X

µ
2 (x) =

∫
dd x ′G(x, x ′)

(
Jµ2 (x ′)+K1X

µ
1 (x ′)

)
, (4.43)

where G(x, x ′) is a Green’s function of the D’alembertian � and the J ’s and K ’s are given in turn

by eqs. (2.17) and (2.22),

Jµ1 = ∂αhαµ− 1

2
∂µh, K1 = hαβ∂α∂β+ Jα1 ∂α, Jµ2 = 1

2

(
hαβ∂

µhαβ+hαµ∂αh
)
−∂α

(
hαβhβ

µ
)
.

(4.44)

When calculating a correlator which includes the invariantized scalar field φ̂(X ) it there-

fore follows that at X we will have not only the “standard” external vertex factor (which for a

scalar field is trivial) but also an infinite series of external vertices arising from the invarianti-

zation. I’ll call these latter coordinate corrections. For a scalar field we see from eq. (4.42) that

at O(κ0) we have only the standard trivial factor, while at O(κ) and up we have only the coor-

dinate corrections. However for other observables, e.g. the volume factor (sec. 4.4) and the

scalar curvature (sec. 4.5), we will see that it is perfectly possible to have standard insertions
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and coordinate corrections at the same order.

Before proceeding we will find it useful to rewrite the above expressions for the X’s more

explicitly. Our first step is to repackage the information in J1 and J2 as constant tensors acting

on the single objects ∂αhµν and hµν∂αhρσ respectively. For J1 we have

Jµ1 = J
µαρσ
1 ∂αhρσ, J

µαρσ
1 = ηµρηασ− 1

2η
µαηρσ, (4.45)

while for J2

Jµ2 = J
µαρσλτ
2 hρσ∂αhλτ, J

µαρσλτ
2 = 1

2η
µαηρληστ+ 1

2η
µσηαρηλτ−ηµσηαληρτ−ηµτηαρησλ.

(4.46)

Writing the Green function as

G(x, x ′) =
∫

dd p

(2π)d

(
− 1

p2

)
eip(x−x ′), (4.47)

it follows that we can write X1 as

X
µ
1 (x) = J

µαρσ
1

∫
x ′,p

(
− 1

p2

)
∂αhρσ(x ′)eip(x−x ′), (4.48)

introducing the shorthand
∫

x = ∫
dd x and

∫
p = ∫

dd p /(2π)d respectively.

In principle similar logic could be applied to X2. However this is much messier, and X2 will

only contribute to a one-scalar two-graviton external vertex, of which I will not make explicit

use in this thesis, so I omit it here.

To find the vertex factor corresponding to the O(κ) term in eq. (4.42), −κXα1 ∂αφ, we can use

the above repackaging (4.48) of X1 as follows. Consider the three-point function

〈(
−κXα1 ∂αφ(x)

)
φ(y)hρσ(z)

〉
= κJαβµν1

∫
x ′,p

1

p2
eip(x−x ′) 〈∂αφ(x)∂βhµν(x ′)φ(y)hρσ(z)

〉
. (4.49)



94

There is only one Wick contraction, so

〈(
−κXα1 ∂αφ(x)

)
φ(y)hρσ(z)

〉
= κJαβµν1

∫
x ′,p

1

p2
eip(x−x ′) 〈∂αφ(x)φ(y)

〉〈
∂βhµν(x ′)hρσ(z)

〉
.

(4.50)

These two-point functions can be written in terms of the momentum-space propagators as

〈
∂αφ(x)φ(y)

〉= ∂

∂xα

∫
k

[
iD(k)

]
eik(x−y) =

∫
k

[
iD(k)

][
ikα

]
eik(x−y),

〈
∂βhµν(x ′)hρσ(z)

〉= ∂

∂x ′β

∫
p ′

[
i∆µνρσ(p ′)

]
eip ′(x ′−z) =

∫
p ′

[
i∆µνρσ(p ′)

][
ip ′
β

]
eip ′(x ′−z),

(4.51)

so the three-point function under consideration becomes

〈(
−κXα1 ∂αφ(x)

)
φ(y)hρσ(z)

〉
=−κJαβµν1

∫
x ′,p,k,p ′

1

p2
eip(x−x ′)eik(x−y)eip ′(x ′−z)kαp ′

β

[
iD(k)

][
i∆µνρσ(p ′)

]
.

(4.52)

The x ′ integral then produces a Dirac delta function which sets p = p ′,

〈(
−κXα1 ∂αφ(x)

)
φ(y)hρσ(z)

〉
=−κJαβµν1

∫
p,k

1

p2
kαpβ

[
iD(k)

][
i∆µνρσ(p)

]
eik(x−y)eip(x−z),

(4.53)

from which we can read off the one-scalar one-graviton external vertex

µνp

k

= Eµν

φh(k, p) =−κ 1

p2
J
αβµν
1 kαpβ =−κ 1

p2

(
kµpν− 1

2 (k ·p)ηµν
)
. (4.54)

4.4 VOLUME EXTERNAL INSERTIONS

From eq. (2.91) we have the expansion of the invariantized volume factor,

p
−detG = 1+κ

(
1
2 h −∂µXµ1

)
+κ2

(
1
2∂µX

µ
1∂νX

ν
1 +X

µ
1∂µ∂νX

ν
1 + 1

2∂µX1ν∂
νX

µ
1 −∂µX

µ
2

− 1
2X

µ
1∂µh − 1

2 h∂µX
µ
1 + 1

8 h2 − 1
4 hµνhµν

)
+O(κ3).

(4.55)
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Just as for the invariantized scalar field this expansion yields both standard external vertices

and coordinate corrections, but unlike the invariantized scalar field there are both types at all

orders.

4.4.1 One-point: standard

The standard term at O(κ), κh/2, yields a one-point external vertex, which we can find straight-

forwardly by considering the two-point function

〈1
2κh(x)hρσ(y)

〉= 1
2κη

µν
〈

hµν(x)hρσ(y)
〉

. (4.56)

Thus the external vertex factor for this term is

p

= i∆µνρσ(p) = 1
2η

µν.
(4.57)

4.4.2 One-point: coordinate corrections

The coordinate correction term at O(κ), −κ∂µXµ1 , also yields a one-point external vertex. Using

eq. (4.48) we can obtain this vertex also from a two-point function:

〈(
−κ∂µXµ1 (x)

)
hρσ(y)

〉
= κJαβµν1

∫
x ′,p

1

p2

〈
∂α∂βhµν(x ′)hρσ(y)

〉
eip(x−x ′)

=−κJαβµν1

∫
x ′,p,p ′

1

p2
p ′
αp ′

β∆µνρσ(p ′)eip ′(x ′−y)eip(x−x ′).
(4.58)

The x ′ integral sets p = p ′,

〈(
−κ∂µXµ1 (x)

)
hρσ(y)

〉
=−κJαβµν1

∫
p

1

p2
pαpβ∆µνρσ(p)eip(x−y), (4.59)

from which we can read off the external vertex

p

=−κ 1

p2
J
αβµν
1 pαpβ =−κ 1

p2

(
pµpν− 1

2 p2ηµν
)
. (4.60)
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4.5 SCALAR CURVATURE EXTERNAL INSERTIONS

The standard external vertices come from the expansion terms found in sec. 4.1.3. The linear

term in the expansion of R is R1 = ∂µ∂νhµν−∂2h, yielding the external vertex factor

µν

p
= Eµν

h (p) = κ(
p2ηµν−pµpν

)
. (4.61)

Similarly the quadratic term in the expansion of R is

R2 = hµν∂µ∂νh − 1
4∂µh∂µh −∂µhµν∂αhν

α+∂µh∂νhµν

−2hµν∂ν∂αhµ
α+hµν∂2hµν− 1

2∂αhµν∂
µhνα+ 3

4∂αhµν∂
αhµν.

(4.62)

I denote the resulting external vertex by

µν

ρσ

p1

p2

= Eµνρσ

h2 (p1, p2), (4.63)

and it is given explicitly by

Eµνρσ

h2 (p1, p2) = κ2
(
−pµ

2 pν
2η

ρσ−pρ
1 pσ

1 η
µν+ 1

2 (p1 ·p2)ηµνηρσ+2pµ
1 pρ

2η
νσ−pρ

1 pσ
2 η

µν−pµ
1 pν

2η
ρσ

+2pµ
2 pρ

2η
νσ+2pµ

1 pρ
1η

νσ−ηµρηνσ(
p2

1 +p2
2

)+pρ
1 pµ

2η
νσ− 3

2 (p1 ·p2)ηµρηνσ
)
.

(4.64)

The invariantized scalar curvature also receives a coordinate correction at O(κ2), given by

(2.97):

−κ2Xα1 ∂αR1 =−κ2∂β
(
∂µ∂νhµν(x)−∂2h(x)

)∫
dd x ′G(x, x ′)

(
∂αhαβ(x ′)− 1

2∂
βh(x ′)

)
. (4.65)
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This yields an external vertex

µν

ρσ

p1

p2

= Ẽµνρσ

h2 (p1, p2) = κ2

2

{
1

p2
1

(−ηµν(p1 ·p2)+pµ
1 pν

2 +pν
1 pµ

2

)(
pρ

2 pσ
2 −p2

2η
ρσ

)

+ 1

p2
2

(−ηρσ(p1 ·p2)+pρ
1 pσ

2 +pσ
1 pρ

2

)(
pµ

1 pν
1 −p2

1η
µν

)}
.

(4.66)

4.6 THE GRAVITON SELF-INTERACTIONS

Expanding the Einstein-Hilbert Lagrangian (−2/κ2)
p−g R in h yields an infinite series of gravi-

ton self-interactions. For the purposes of this thesis we need only the three- and four-graviton

vertices, which are nevertheless quite lengthy (136 and 1118 terms respectively!). In this sec-

tion I will explicitly provide the corresponding terms in the Lagrangian (which are 28 and 66

terms respectively), from which the resulting vertices may be obtained by the standard Wick

contraction algorithm.

4.6.1 Cubic

In terms of the expansion coefficients of
p−g and R given in secs. 4.1.2 and 4.1.3 the O(κ)

terms in the Einstein-Hilbert Lagrangian are

Lh3 =−2κ
(
R3 +γ1R2 +γ2R1

)
, (4.67)
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using the fact that γ0 = 1 and R0 = 0. In terms of h this is

Lh3 = κ
{

3
2 hµν∂µhαβ∂νhαβ− 1

2 hµν∂µh∂νh +2hµν∂µh∂αhν
α+2hµν∂µhν

α∂αh +2hµνhµ
α∂ν∂αh

−hhµν∂µ∂νh −hµν∂αh∂αhµν+ 1
4 h∂µh∂µh −2hµν∂αhµ

α∂βhν
β−4hµν∂µhν

α∂βhα
β

+h∂µhµν∂αhν
α+2hµν∂αhµν∂βhα

β−h∂µh∂νhµν−2hµνhαβ∂µ∂αhνβ+2hµνhαβ∂µ∂νhαβ

−4hµνhµ
α∂α∂βhν

β+2hhµν∂µ∂αhν
α+ 1

2 hµνhµν∂α∂βhαβ− 1
4 h2∂µ∂νhµν+2hµνhµ

α∂2hνα

−hhµν∂2hµν− 1
2 hµνhµν∂2h + 1

4 h2∂2h −2hµν∂µhα
β∂βhν

α−hµν∂αhµ
β∂βhν

α

+3hµν∂αhνβ∂
αhµ

β+ 1
2 h∂µhν

α∂αhµν− 3
4 h∂αhµν∂

αhµν

}
.

(4.68)

I denote the resulting vertex as

µν

ρσ

αβ

p1

p2

p3

=V µνρσαβ

h3 (p1, p2, p3). (4.69)

4.6.2 Quartic

In terms of the expansion coefficients of
p−g and R given in sec. 4.1 the O(κ2) terms in the

Einstein-Hilbert Lagrangian are

Lh4 =−2κ2
(
R4 +γ1R3 +γ2R2 +γ3R1

)
, (4.70)
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using the fact that γ0 = 1 and R0 = 0. In terms of h this is

Lh4 = κ2
{

hµνhαβ∂νhβλ∂αhµ
λ− 3

2 hµνhµ
α∂νhβλ∂αhβλ+ 3

4 hhµν∂µhαβ∂νhαβ+ 1
2 hµνhµ

α∂νh∂αh

− 1
4 hhµν∂µh∂νh −2hµνhµ

αhβλ∂ν∂αhβλ−2hµνhµ
α∂αh∂βhν

β+hhµν∂µh∂αhν
α

−3hµνhαβ∂αhµ
λ∂βhνλ+2hµνhαβ∂µhν

λ∂αhβλ−2hµνhαβ∂µhνα∂βh +hµνhαβ∂αhµν∂βh

−2hµνhµ
α∂αhν

β∂βh +hhµν∂µhν
α∂αh −2hµνhµ

αhν
β∂α∂βh +hhµνhµ

α∂ν∂αh

+ 1
2 hµνhµνhαβ∂α∂βh − 1

4 h2hµν∂µ∂νh +hµνhµ
α∂βh∂βhνα− 1

2 hhµν∂αh∂αhµν

− 1
8 hµνhµν∂αh∂αh + 1

16 h2∂αh∂αh +2hµνhµ
α∂βhν

β∂λhα
λ−hhµν∂αhµ

α∂βhν
β

+4hµνhαβ∂µhνα∂λhβ
λ−2hµνhαβ∂αhµν∂λhβ

λ+4hµνhµ
α∂αhν

β∂λhβ
λ−2hhµν∂µhν

α∂βhα
β

− 1
2 hµνhµν∂αhαβ∂λhβ

λ+ 1
4 h2∂µhµν∂αhν

α−2hµνhµ
α∂βhνα∂λhβλ+hhµν∂αhµν∂βhαβ

+ 1
2 hµνhµν∂αh∂βhαβ− 1

4 h2∂µh∂νhµν+4hµνhµ
αhβλ∂α∂λhνβ−hhµνhαβ∂µ∂αhνβ

−2hµνhµ
αhβλ∂β∂λhνα+hhµνhαβ∂α∂βhµν+4hµνhµ

αhν
β∂α∂λhβ

λ−2hhµνhµ
α∂α∂βhν

β

−hµνhµνhαβ∂β∂λhα
λ+ 1

2 h2hµν∂µ∂αhν
α− 1

3 hµνhµ
αhνα∂β∂λhβλ+ 1

4 hhµνhµν∂α∂βhαβ

− 1
24 h3∂µ∂νhµν−2hµνhµ

αhν
β∂2hαβ+hhµνhµ

α∂2hνα+ 1
2 hµνhµνhαβ∂2hαβ

− 1
4 h2hµν∂2hµν+ 1

3 hµνhµ
αhνα∂

2h − 1
4 hhµνhµν∂2h + 1

24 h3∂2h

−2hµνhαβ∂λhµν∂αhβ
λ+ 1

2 hµνhαβ∂λhµν∂
λhαβ+2hµνhαβ∂µhα

λ∂λhνβ− 3
2 hµνhαβ∂λhµα∂

λhνβ

+2hµνhµ
α∂αhβλ∂λhνβ−hhµν∂µhαβ∂βhνα+hµνhµ

α∂βhαλ∂
λhν

β− 1
2 hhµν∂αhνβ∂

βhµ
α

−3hµνhµ
α∂λhαβ∂λhν

β+ 3
2 hhµν∂αhνβ∂

αhµ
β− 1

4 hµνhµν∂λhα
β∂βhαλ+ 1

8 h2∂µhν
α∂αhµν

+ 3
8 hµνhµν∂λhαβ∂

λhαβ− 3
16 h2∂λhαβ∂

λhαβ

}
.

(4.71)

I denote the resulting vertex diagrammatically as

µν

ρσαβ

γδ p1

p2

p3

p4
=V µνρσαβγδ

h4 (p1, p2, p3, p4). (4.72)
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4.7 THE GHOST-GRAVITON VERTEX

The ghost-graviton interaction terms are given in eq. (3.36),

Lcc̄h = κ
{(

1− 2(1+β)

d

)
c̄µhνρ∇ρ∇µcν− 1+β

d

(
c̄µ∇µcν∇νh + c̄µcν∇µ∇νh

)− 2(1+β)

d
c̄µ∇µhνρ∇ρcν

+ c̄µ∇µcν∇ρhν
ρ+ c̄µcν∇ν∇ρhν

ρ+ c̄µhµν∇2cν+ c̄µ∇νhµρ∇ρcν+ c̄µ∇ρhµν∇ρcν
}

.

(4.73)

This yields a three-point vertex, which I will denote

µ

ν

ρσ

k

p
=V µνρσ

c̄ch (k, p), (4.74)

giving no name to the antighost momentum because it doesn’t appear in the vertex (since no

derivatives act on c̄ in the Lagrangian). Explicitly this vertex is

V µνρσ

c̄ch (k, p) =−iκ

{(
1− 2(1+β)

d

)
kµkρηνσ− 1+β

d

(
kµpνηρσ+pµpνηρσ

)− 2(1+β)

d
pµkρηνσ

+kµpρηνσ+pνpρηµσ+k2ηµρηνσ+kρpνηµσ+ (k ·p)ηµρηνσ
}

.

(4.75)

4.8 THE SCALAR-GRAVITON INTERACTIONS

The expansions of the metric determinant and inverse metric in the scalar action yields an

infinite series of two-scalar n-graviton interactions. For the purposes of this thesis we need

only the cases n ∈ {1,2}.
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4.8.1 Two-scalar one-graviton

The two-scalar one-graviton interaction terms are

Lφ2h = 1
2κ

(
γ1

[
(∂φ)2 −m2φ2]+ g̃µν1 ∂µφ∂νφ

)
= κ

(
1
4 h

[
(∂φ)2 −m2φ2]− 1

2 hµν∂µφ∂νφ
)
, (4.76)

and yield the vertex

µν

k1

k2 =V µν

φ2h
(k1,k2) = 1

2 iκ
(
kµ1 kν2 +kν1 kµ2 −ηµν(k1 ·k2 +m2)

)
. (4.77)

4.8.2 Two-scalar two-graviton

The two-scalar two-graviton interaction terms are

Lφ2h2 = 1
2κ

2
(
γ2

[
(∂φ)2 −m2φ2]+γ1g̃µν1 ∂µφ∂νφ+ g̃µν2 ∂µφ∂νφ

)
= κ2

{(
1

16 h2 − 1
8 hµνhµν

)[
(∂φ)2 −m2φ2]− 1

4 hhµν∂µφ∂νφ+ 1
2 hµαhα

ν∂µφ∂νφ

}
.

(4.78)

I denote the resulting vertex by

µν

ρσ k1

k2 =V µνρσ

φ2h2 (k1,k2), (4.79)

and it is given explicitly by

V µνρσ

φ2h2 (k1,k2) = 1
4 iκ2

{
−ηµνηρσ(k1 ·k2 +m2)+ηµρηνσ(k1 ·k2 +m2)+ηµσηνρ(k1 ·k2 +m2)

+ηµν(kρ1 kσ2 +kσ1 kρ2
)+ηρσ(

kµ1 kν2 +kν1 kµ2
)−ηµρ(kν1 kσ2 +kσ1 kν2

)
−ηµσ(

kν1 kρ2 +kρ1 kν2
)−ηνρ(kµ1 kσ2 +kσ1 kρ2

)−ηνσ(
kµ1 kρ2 +kρ1 kµ2

)}
.

(4.80)
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5 Correlators

We now, finally, come to the entire purpose of all of the above-developed machinery: the com-

putation of gauge-invariant correlation functions. In particular in this section I calculate the

tree-level two-point function of the invariantized volume factor in sec. 5.1; the one-loop grav-

itational correction to the scalar field mass in sec. 5.2; and the one-loop two-point function of

the invariantized scalar field in sec. 5.3. The first and third of these feature the invariantized

observables constructed in sec. 2, and in all three I perform the calculations in the general

(α,β)-parametrized gauge of sec. 3. In all three cases the dependence on α and β fully cancels

out, supporting the claimed gauge invariance of this formalism.

Before proceeding I will note that, although in secs. 5.2 and 5.3 I do perform a pair of one-

loop calculations, I do not address any renormalization in these calculations, for two reasons.

First, neither calculation requires it of me – in both cases all divergences cancel without intro-

ducing any counterterms. Second, recall from sec. 1 that the long-term goal of this program

is to obtain gauge-invariant correlators in position space whose scaling with distance can be

compared to corresponding observables on the lattice. In other words I am interested in the

long-ranged behavior of e.g.
〈
R(x)R(y)

〉
as a function of (x − y)2. In momentum space this

means that I am interested in the nonanalytic contributions to the correlators, since it is those

contributions which govern the long-ranged behavior of the position-space correlator (see e.g.

[16] in which the same logic was used to extract the one-loop correction to the Newtonian po-

tential at long range). But these nonanalytic contributions are not affected by renormalization:

the counterterm vertices themselves are local, since they arise from renormalization of the

couplings in the effective gravitational action

p−g

(
2

κ2
R + c1R2 + c2RµνRµν+ . . .

)
, (5.1)

and at one loop, i.e. at O(κ2), a diagram which features a counterterm vertex cannot also fea-
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ture a loop integration, meaning that no nonanalytic behavior can arise in such a diagram. In

other words, even if there were surviving divergences in the one-loop calculations below, those

divergences would not affect the long-ranged behavior of the corresponding position-space

observables, and would therefore be irrelevant to my purposes.

5.1 THE VOLUME TWO-POINT FUNCTION

I’ll begin with the two-point function of the volume factor
p−g , which I will do at tree level.

Let’s recall from sec. 4.1.2 that the standard expansion of the volume factor is

p−g = 1+ 1
2κh +O(κ2), (5.2)

which is augmented in the invariantized volume factor by a coordinate correction term,

p
−detG = 1+κ

(
1
2 h −∂µXµ1

)
. (5.3)

The two-point function of the invariantized volume factor therefore receives three contribu-

tions at tree level, corresponding to both external vertices being standard; one being a coordi-

nate correction and the other standard; and both being a coordinate correction:

〈√
−detG (x)

√
−detG (y)

〉
= 1+κ2

{〈(
1
2 h(x)

)(
1
2 h(y)

)〉
−2

〈(
∂µX

µ
1 (x)

)(
1
2 h(y)

)〉
+

〈(
∂µX

µ
1 (x)

)(
∂µX

µ
1 (y)

)〉}
.

(5.4)

Note that by Lorentz invariance the two cross-terms must be equal. In momentum space we

therefore find three diagrams at this order. With no coordinate corrections we have

p

= iA0 = 1
4 iκ2ηµνηρσ∆µνρσ(p).

(5.5)
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With one, and including the factor of 2 to account for the coordinate correction being on ei-

ther end, we have

p

= iA1 =−iκ2 1
p2J

αβµν
1 pαpβη

ρσ∆µνρσ(p).
(5.6)

And finally, with coordinate corrections on both ends,

p

= iA2 = iκ2 1
p4J

αβµν
1 J

γδρσ
1 pαpβpγpδ∆µνρσ(p).

(5.7)

N.B. without accounting for coordinate corrections we would only have the diagram A0, which

we will see below is not sufficient to achieve a gauge-invariant result. (This is probably not

surprising in itself, since
p−g is certainly not a gauge-invariant observable anyway.)

5.1.1 In a simple gauge

Before calculating the above diagrams for general values of the gauge parameters (α,β) let’s

work them out in a simple gauge, say harmonic gauge α = 1/2, β = (d/2)− 1. Further since

we’re only working at tree level we can safely set d = 4. In this gauge the propagator becomes

∆µνρσ(p) = 1

2p2

(
ηµρηνσ+ηµσηνρ−ηµνηρσ

)
. (5.8)

The standard diagram then becomes

iA0 = 1

8p2
iκ2ηµνηρσ

(
ηµρηνσ+ηµσηνρ−ηµνηρσ

)=− iκ2

p2
. (5.9)

We happen to find the same value for the first coordinate correction diagram,

iA1 =−iκ2 1

2p4

(
ηαµηβν− 1

2η
αβηµν

)
pαpβη

ρσ
(
ηµρηνσ+ηµσηνρ−ηµνηρσ

)=− iκ2

p2
, (5.10)
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while for the second we find

iA2 = iκ2 1

2p6

(
ηαµηβν− 1

2η
αβηµν

)(
ηγρηδσ− 1

2η
γδηρσ

)(
ηµρηνσ+ηµσηνρ−ηµνηρσ

)= iκ2

2p2
.

(5.11)

And therefore we find in this gauge that the tree-level two-point function of the invariantized

volume factor is

iA0 + iA1 + iA2 =−3iκ2

2p2
. (5.12)

5.1.2 In a general gauge

Now let’s subject our machinery to its first real test: if we leave α and β arbitrary, do we still

find a gauge-invariant result for the two-point function of the invariantized volume factor?

Here we still have the three expressions (5.5), (5.6), and (5.7) for the three relevant tree-

level diagrams, but we have the much more complicated form (3.132) for the graviton propa-

gator,

∆(p) = 1

p2

{
Π⊥+2αΠV − 1

d −2
ΠΦ+ d 2α(d −2)− (d −1)(1+β)2

(d −2)(d −1−β)2
ΠΣ− (1+β)

p
d −1

(d −2)(d −1−β)
ΠΦΣ

}
,

(5.13)

where the projectors are given by eqs. (3.130) and (3.131). Since we’re working at tree level we

can here set d = 4, which does slightly simplify the propagator – for example, in terms of the

symmetric tensor structures (3.129), the propagator simplifies to

∆(p) = 1

p2

{
G−2tr−2(β−1)(3+2α(β−5)+β)

(β−3)2
A+ 2(β−1)

β−3
B + (4α−2)C

}
. (5.14)

However this is does still massively complicate even the simplest of calculations. Accordingly I

perform these calculations in XACT.

For the standard diagram we find

iA0 = 1
4 iκ2ηµνηρσ∆µνρσ = 2(1+4(α−1)−2α)

(β−3)2

iκ2

p2
. (5.15)
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Note that this diagram is gauge-dependent! Firstly, this is what we expect – this is the only dia-

gram that occurs at tree level in
〈√−g (x)

√−g (y)
〉

without coordinate corrections, and
p−g

is not gauge-invariant, so its two-point function shouldn’t be either. Secondly this means that,

if
〈p−detG (x)

√−detG (y)
〉

is to be gauge-invariant, the gauge parameters must cancel in a

nontrivial manner.

Indeed, this is exactly what we find. For the first coordinate correction diagram we have

iA1 =−16(1+α)+2(1+β)−4(3+2α+2β)

(β−3)2

iκ2

p2
, (5.16)

and for the second

iA2 = 64(α−1)+4(β+1)2 +16(5−2α+4β)−16(2+3β+β2)

8(β−3)2

iκ2

p2
. (5.17)

Since all three prefactors share a common denominator we can focus on the sum of the nu-

merators, which simplifies nicely:

[
2(1+4(α−1)−2α)

]
−

[
16(1+α)+2(1+β)−4(3+2α+2β)

]
+ 1

8

[
64(α−1)+4(β+1)2 +16(5−2α+4β)−16(2+3β+β2)

]
=−3

2 (β−3)2.

(5.18)

This then cancels the shared denominator, as it must, leaving precisely our prior result:

iA0 + iA1 + iA2 =−3iκ2

2p2
. (5.19)

We therefore see that, even though none of the individual diagrams were gauge-invariant,

their sum is – indicating that our construction of a gauge-invariant volume correlator was suc-

cessful!



107

5.2 THE SCALAR FIELD MASS CORRECTION

As another test of the machinery thus far developed let’s consider the one-loop gravitational

correction to the mass m of a scalar φ. This was calculated in the appendix to [70]. I will pro-

vide two extensions to their analysis. First, the calculation in [70] was done in harmonic gauge,

while I will perform the calculation in our arbitrary (α,β)-parametrized gauge. Second, I claim

that their calculation suffers from a subtle error involving the dimension-dependence of the

graviton propagator.

Before proceeding I will first note that this calculation does not involve any of the gauge-

invariant observables introduced in sec. 2. Rather, as I review in sec. 5.2.1, in this section I cal-

culate the sum of the one-loop gravitational 1PI diagrams with two external legs in the limit

p2 → m2, where p is the momentum of the amputated external legs. However the gauge in-

variance of my result is still a valuable check of the validity of the propagators and vertices I’m

working with.

5.2.1 The pole mass and self-energy

Before getting into the perturbative calculation I’ll quickly review the logic which identifies

the pole in the two-point function of a field with that field’s physical mass, i.e. with the energy

eigenvalue of a zero-momentum single-particle state. (This derivation is standard quantum

field theory fare – for a textbook treatment see e.g. any of [68, 71, 72]. In my treatment here I

follow [71].)

Consider our massive scalar field φ. In the canonical formalism its two-point function is

the expectation value of its time-ordered product,

〈
φ(x)φ(y)

〉= 〈Ω|Tφ(x)φ(y) |Ω〉 , (5.20)

where |Ω〉 is the vacuum of the full (nonperturbative) theory, governed by some Hamiltonian

Ĥ . Let’s also denote by
∣∣µ,0

〉
the state which is an eigenstate both of Ĥ with eigenvalue µ and
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of p̂ with eigenvalue 0:

Ĥ
∣∣µ,0

〉=µ ∣∣µ,0
〉

, p̂
∣∣µ,0

〉= 0. (5.21)

Then the energy eigenvalue µ of
∣∣µ,0

〉
is its total mass, whatever that may be. N.B. the

∣∣µ,0
〉

’s

include not just the single-particle state with zero momentum but also a plethora of many-

particle states with zero total momentum (but whose individual particles may have arbitrarily

high momentum). We can span the Hilbert space with the boosts of these states, say
∣∣µ, p

〉
with

p̂
∣∣µ, p

〉= p
∣∣µ, p

〉
, Ĥ

∣∣µ, p
〉= E(µ, p)

∣∣µ, p
〉

, E(µ, p) =
√
µ2 +p2, (5.22)

which have total mass µ and total momentum p .

The lovely thing about the argument to come, which yields the Källen-Lehmann spectral

representation and hence the identification of the physical mass as the pole of the two-point

function, is that the actual details of the theory don’t matter at all. All that matters is that our

scalar field φ is governed by some Hamiltonian Ĥ , with eigenstates
∣∣µ, p

〉
so defined which

span the Hilbert space. With this being the case the identity operator can then be written

1 = |Ω〉〈Ω|+∑
µ

∫
d3p

(2π)3

1

2E(µ, p)

∣∣µ, p
〉〈
µ, p

∣∣ , (5.23)

where the sum is over all eigenvalues µ of Ĥ and in which we make use of the Lorentz-invariant

measure d3p /E(µ, p) with its standard normalization. One can then insert the identity in

this form into the two-point function to obtain the Källen-Lehmann spectral representation

[73, 74] 〈
φ(x)φ(y)

〉= ∫ ∞

0

d(M 2)

2π
ρ(M 2)

∫
d4p

(2π)4

i

p2 −M 2 + iε
eip(x−y), (5.24)

in which the spectral density function is

ρ(M 2) =∑
µ

(2π)δ(M 2 −µ2)
∣∣〈Ω|φ(0)

∣∣µ,0
〉∣∣2. (5.25)
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Note the appearance of the Feynman propagator of φ from x to y , with the mass integration

variable M in place of the actual mass of the field.

Let’s unpack the above. The sums are taken over all the values of µ, i.e. over all the mass

eigenvalues of Ĥ – i.e. over the energies of all the energy eigenstates which also have zero mo-

mentum. These eigenstates can feature one or many particles. A one-particle zero-momentum

eigenstate of Ĥ just describes a single φ particle at rest somewhere in the universe, and its

eigenvalue is then the physical mass of the φ field, including all quantum corrections, which

may well differ from the bare mass which appears in the Lagrangian. The many-particle zero-

momentum eigenstates can be bound or unbound. The bound states will have some discrete

spectrum of eigenvalues above the physical mass but below the minimum possible total mass

Mmin of an unbound state, above which any energy eigenvalue is achieved by some zero-

momentum state (since for any energy above this minimum there are the very least exists an

unbound state of two particles which share the energy equally and are heading off in opposite

directions from each other).30

From eq. (5.24) we can therefore see that the discrete mass eigenvalues – the energies of

the one-particle state and the bound states – contribute a set of isolated poles to the momentum-

space two-point function, all at p2 < M 2
min. The continuous mass eigenvalues yield a branch

cut which starts at p2 = M 2
min and continues out to infinity. Further the physical mass of the

field appears as the first pole in the full two-point function – hence its common name, the pole

mass.

The above is a fully nonperturbative argument which identifies the first pole in the full

two-point function with the physical mass of the field. It remains to actually calculate the

quantum corrections to this pole. Thankfully this is also standard textbook fare!31 The key ob-

servation is that any diagram which contributes to the two-point function, at any loop order,

can be written in terms of one-particle-irreducible (1PI) diagrams – every diagram features a

30So the symbol
∑
µ really stands for “sum over the discrete part of the mass spectrum and then integrate over

the continuous part”.
31I again refer to [68, 71, 72].
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finite number of lines, and is therefore n-particle reducible for some integer n, and is therefore

the result of joining n + 1 1PI diagrams with n propagators! Diagramatically, and represent-

ing by −iΣ the sum of all 1PI diagrams with two amputated external legs, it follows that the full

momentum-space two-point function is a geometric series in Σ,

∫
d4x

〈
φ(x)φ(y)

〉
e−ip(x−y) = + 1PI + 1PI 1PI + . . .

= iD(p)+ (
iD(p)

)(− iΣ(p)
)(

iD(p)
)+ (

iD(p)
)(− iΣ(p)

)(
iD(p)

)(− iΣ(p)
)(

iD(p)
)+ . . .

= iD(p)
∞∑

n=0

(
ΣD(p)

)n = iD(p)

1−ΣD(p)
= i

D(p)−1 −Σ .

(5.26)

(The extra negative sign in the definition of −iΣ is just a convention which allows the denomi-

nator to end up as it does.)

The pole mass m̄ is therefore the value of p2 at which the denominator is zero:

0 = (
D(p)−1 −Σ)

p2=m̄2 =
(
p2 −m2 −Σ)

p2=m̄2 . (5.27)

To be clear, I denote the pole mass with a bar and the “bare” mass without, as opposed to de-

noting the bare mass with an explicit subscripted 0 as is more conventional and denoting the

physical mass by m. I do this because in the calculation to come I am explicitly considering

the gravitational corrections to the scalar mass, meaning that I am assuming that this whole

process, and the accompanying mass renormalization, has already been performed in the

nongravitational sector, so that in the absence of gravity the unbarred m would already be the

full physical mass of φ to any relevant loop order.

To actually compute m̄ in terms of m let’s expand Σ in powers of the coupling. (I’ll use the

gravitational coupling κ here, but the same argument applies no matter the specific theory

under consideration.) The sum Σ of all 1PI diagrams receives contributions from all orders,

starting at κ2:

Σ(p2) = κ2Σ2(p2)+O(κ3). (5.28)
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Inserting p2 = m̄2 into the condition (5.27) we then have

m̄2 = m2 +κ2Σ2(p2 = m̄2)+O(κ3). (5.29)

It follows that m̄ = m at O(κ0) (as we would certainly hope!), meaning that Σ2(m̄2) = Σ2(m2)+
O(κ), and hence we can drop the bar on the right hand side:

m̄2 = m2 +κ2Σ2(p2 = m2). (5.30)

We therefore arrive at the well-known result that the first-order quantum corrections to the

mass of a scalar field are given by the sum of all 1PI diagrams with two amputated external

legs, evaluated at p2 = m2.

I’ll now perform this calculation to obtain the gravitational correction to the scalar mass

in three different ways: first, following [70], by using the “standard” dimension-independent

harmonic-gauge graviton propagator; second, using the same harmonic-gauge propagator,

but with the dimension dependence restored; and third, using the arbitrary parametrized

gauge.

5.2.2 Harmonic gauge with a dimension-independent graviton propagator

Given the couplings (4.77) and (4.80) between the scalar and graviton, there are four diagrams

we can draw:

−iΣA = , −iΣB = , −iΣC = , −iΣD = .
(5.31)

I’ll call these the “self-energy”, “graviton bubble”, “graviton tadpole”, and “ghost tadpole” dia-

grams respectively. The latter three feature tadpole-like momentum structures, and therefore

naively ought to vanish in dimensional regularization [75–77]. This does turn out to be the

case, although ΣC and ΣD require an IR regularization of the graviton to verify this, since they
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also feature a zero-momentum graviton leg attached to the tadpole. I’ll leave the actual analy-

sis of these diagrams for the general treatment in sec. 5.2.4 and focus on ΣA for now.

As foreshadowed, I will in this section replicate the calculation in [70], using the d-independent

harmonic gauge graviton propagator

∆µνρσ(p) = 1

2p2

(
ηµρηνσ+ηµσηνρ−ηµνηρσ

)≡ 1

p2
Tµνρσ, (5.32)

introducing the tensor structure Tµνρσ for shorthand. We also need the two-scalar one-graviton

vertex (4.77),

µν

k1

k2 =V µν

φ2h
(k1,k2) = 1

2 iκ
(
kµ1 kν2 +kν1 kµ2 −ηµν(k1 ·k2)

)
≡ 1

2 iκṼ µν(k1,k2), (5.33)

again introducing a shorthand. In terms of these ingredients the self-energy diagram is

iΣA =−
∫
`

(
i∆µνρσ(`)

)(
iD(p −`)

)
V µν(−p, p −`)V ρσ(−p +`, p) =−1

4κ
2
∫
`

TµνρσṼ µν(−p, p −`)Ṽ ρσ(−p +`, p)

(`2 + iε)((p −`)2 −m2 + iε)
.

(5.34)

Introducing a Feynman parameter via

1

AB
=

∫ 1

0
dx

(
x A+ (1−x)B

)−2 (5.35)

and defining q = `−xp and f (x) =−x(1−x)p2 +xm2 the above can be rearranged to

iΣA =−1
4κ

2
∫ 1

0
dx

∫
q

Ṽ µν(−p, p − (q +xp))Ṽ ρσ(−p +q +xp, p)Tµνρσ
(q2 − f (x)+ iε)2

. (5.36)

Performing the tensor contractions in the numerator, throwing out the terms that are odd in
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the integration momentum q , and using the identity (see e.g. [68])

∫
q

qµqν

(q2 − f )n
= 1

d
ηµν

∫
q

q2

(q2 − f )n
(5.37)

to replace all appearances of (q ·p)2 with q2p2/d , we find

iΣA =−1
4κ

2
∫ 1

0
dx

∫
q

a1q2p2 +a2p4(1−x)2 +a3m2p2(1−x)+a4m4

(q2 − f (x)+ iε)2
, (5.38)

where

a1 = 2− (d −4)(d −2)

2d
, a2 = 2− (d −4)(d −2)

2
, a3 = (d −2)2, a4 =−d(d −2)

2
. (5.39)

Note that factors of d now abound!

I use this form in part to facilitate comparison with [70]. My values of a1 and a2 agree with

theirs, while my values of a3 and a4 differ by factors of −4 and +4 respectively. However as

I follow my analysis through I obtain the same result here that they did for this diagram, so

these appear to be mere typographical errors.

As further shorthand let me define

b1 = a1p2, b2 = a2p4(1−x)2 +a3m2p2(1−x)+a4m4. (5.40)

Then the self-energy diagram becomes

iΣA =−1
4κ

2
∫ 1

0
dx

∫
q

{
b1

q2

(q2 − f + iε)2
+b2

1

(q2 − f + iε)2

}
. (5.41)

The two q-integrals have the standard pole structure and can therefore be evaluated in the

usual way via a rotation of the contour:

∫
q

q2

(q2 − f + iε)2
=−i

∫
q̄

q̄2

(q̄2 + f )2
,

∫
q

1

(q2 − f + iε)2
= i

∫
q̄

1

(q̄2 + f )2
, (5.42)
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where q̄ is the Euclidean momentum q0 = iq̄0, q i = q̄ i . Now let’s recall the general result (see

e.g. [72]) that ∫
q̄

q̄2a

(q̄2 + f )b
= Γ(b −a −d/2)Γ(a +d/2)

(4π)d/2Γ(b)Γ(d/2)
. (5.43)

Defining d = 4−2ε, and attaching the usual mass scale µ̃2ε to the integration measure to keep

fixed the dimensions of these integrals, we have

∫
q

q2

(q2 − f + iε)2
=− i f (x)

(4πµ̃2)2

(
4π

f (x)

)ε
(2−ε)Γ(−1+ε),

∫
q

1

(q2 − f + iε)2
= i

(4πµ̃2)2

(
4π

f (x)

)ε
(−1+ε)Γ(−1+ε).

(5.44)

Using these results in eq. (5.41) gives

iΣA =−1
4κ

2
∫ 1

0
dx

{
i

(4π)2

(
4πµ̃2

f (x)

)ε
Γ(−1+ε)

(
−b1 f (x)(2−ε)+b2(−1+ε)

)}
. (5.45)

Recall from eqs. (5.40) that the b’s depend on the momentum p of the amputated external

legs, and are themselves defined in terms of the a’s, which depend on the dimension d . Recall

also that our goal is not to calculate ΣA for an arbitrary value of p, but specifically for p2 = m2,

since it is at this value that we obtain the first-order gravitational correction to the scalar mass.

The next step is therefore to set p2 = m2 and d = 4−2ε in the b’s, and expand the whole result

in ε. Doing so is rather horrible, but eventually yields

(
4πµ̃2

f (x)

)ε
Γ(−1+ε)

(
−b1 f (x)(2−ε)+b2(−1+ε)

)
= 1

ε

[
2m4(3x −1)(x −1)

]
+m4

[
2(3x −1)(x −1)ln

(
4πµ̃2e−γ

m2x2

)
+x(5x +4)

]
+O(ε).

(5.46)

The integral of the 1/ε coefficient over 0 ≤ x ≤ 1 vanishes, while the finite piece integrates to 5,

yielding the final result that

iΣA =−5iκ2m4

4(4π)2
=−5iGm4

2π
, (5.47)

using κ = p
32πG in the last step. This is the result obtained in [70], and yields for the first-
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order correction to the scalar mass

m̄2 = m2 − 5Gm4

2π
. (5.48)

5.2.3 Harmonic gauge with a dimension-dependent propagator

On its face there is nothing wrong with the calculation above – we put together the diagram

from the well-known forms of the scalar and graviton propagators, along with the two-scalar

one-graviton vertex which is well known in the literature (e.g. [14–16]), and used the tried and

tested methods of Feynman parametrization and dimensional regularization to evaluate the

resulting integral, obtaining a result already obtained in [70]. In fact, starting from the integral

(5.36), every subsequent step is perfectly valid: the final result is the correct evaluation of that

integral. However I claim that this integral itself is an incorrect starting point!

The problem is that the way in which we evaluate the integral (5.36) is by considering it

in an arbitrary dimension d < 4, holding d < 4 while we do our various manipulations, and

only at the very end – once the 1/ε divergence has obligingly cancelled out of eq. (5.46) – do

we send d back up to 4. However we built the integral (5.36) out of, among other things, the

graviton propagator, and the form of the graviton propagator that we used is only valid in four

dimensions! Indeed, recall from sec. 3.5.3 that in harmonic gauge, β = (d/2)− 1 and α = 1/2,

the graviton propagator is

∆µνρσ = 1

p2

(
1

2
ηµρηνσ+ 1

2
ηµσηνρ− 1

d −2
ηµνηρσ

)
, (5.49)

and only in d = 4 dimensions does it obtain its more commonly quoted form (5.32). Thus the

analytic continuation to d dimensions above is incomplete: we have taken a physical quantity,

the gravitational correction to the scalar mass; found a mathematical expression whose result

we hope to identify with this physical quantity; and continued, in an essentially arbitrary fash-

ion, only a piece of this mathematical expression from d = 4 to d = 4−2ε dimensions, leaving
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the the rest (the graviton propagator) in d = 4 the whole time.

Seen in this light, the problem is clear – if dimensional regularization is to be a coherent

procedure, it must be applied to entire physical quantities, instead of selectively to arbitrarily-

selected pieces of a by no means unique mathematical representation of those physical quan-

tities. Stated more broadly, we should think of the whole process of dimensional regularization

as being a deformation of the entire path integral of the theory from d = 4 to d = 4− 2ε, and

hence as a deformation of all physical quantities calculated from that path integral. If we then

attempt to perturbatively evaluate some such physical quantity we will eventually, through

the usual Taylor expansions and Wick contractions, find ourselves confronted with a gravi-

ton propagator, which, being obtained from the arbitrary-d path integral, will itself be in the

arbitrary-d form (5.49). And this d-dependence in the propagator can, and as we will soon see

does, have a nontrivial effect on final results for these physical quantities.

Before proceeding I should note that this subtlety seems to be unique to gravity. In par-

ticular the propagators in theories which provide one-loop results which have actually been

compared to experiment – by which I mean the scalar, fermion, and vector propagators – do

not pick up any d-dependence when evaluated in arbitrary dimensions, and therefore this

problem has not reared its head in those fields. I should also note the somewhat disappoint-

ing fact that checking against a general gauge does not discriminate between the two forms of

the graviton propagator – if the general-gauge calculation of sec. 5.2.4 is carried with d = 4 in

the graviton propagator, but otherwise maintaining the arbitrary (α,β) gauge, then the gauge

parameters do still cancel and yield the result (5.48). Thus I cannot make the claim that main-

taining d = 4 in the propagator is demonstrably wrong; my argument instead rests on the

somewhat philosophical points raised above.

With all that being said, let’s now see what happens to the calculation of sec. 5.2.2 with

the d-dependence restored to the graviton propagator. We use the form (5.49) of the graviton
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propagator in place of (5.32), but still maintain the two-scalar one-graviton vertex (5.33),

µν

k1

k2 =V µν

φ2h
(k1,k2) = 1

2 iκ
(
kµ1 kν2 +kν1 kµ2 −ηµν(k1 ·k2)

)
≡ 1

2 iκṼ µν(k1,k2), (5.50)

and the usual scalar propagator D(p) = 1/(p2 −m2 + iε). These go together to form an integral

which looks just like (5.34),

iΣA =−1
4κ

2
∫
`

TµνρσṼ µν(−p, p −`)Ṽ ρσ(−p +`, p)

(`2 + iε)((p −`)2 −m2 + iε)
, (5.51)

but with the graviton propagator tensor structure Tµνρσ now carrying the restored d-dependence.

We proceed identically as before, introducing a Feynman parameter and shifting the integra-

tion momentum, and again obtain a form of the self-energy of the form (5.38),

iΣA =−1
4κ

2
∫ 1

0
dx

∫
q

a1q2p2 +a2p4(1−x)2 +a3m2p2(1−x)+a4m4

(q2 − f (x)+ iε)2
. (5.52)

However, the d-dependence in the propagator rears its head here in the actual values of the

a’s! Where previously these coefficients were given by eq. (5.39), the new graviton propagator

tensor structure actually yields a simpler set of results:

a1 = a2 = 2, a3 = 4, a4 =− 2d

d −2
. (5.53)

This is in fact the only material change brought about by restoring the d-dependence to the

propagator, but it is a significant one. We can proceed in a formally identical manner from eq.

(5.40), in which we define the b’s in terms of the a’s, to eq. (5.45), in which the momentum in-

tegral has been carried out and ΣA waits on the precipice of its expansion in ε. It is at this point

that we use p2 = m2 and substitute back in for the b’s in terms of the a’s, and then substitute

in for the a’s in terms of d , and then finally expand in d = 4−2ε. And since the a’s now depend
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on d in a different manner, this expansion yields a different result! As opposed to eq. (5.46), we

now find

(
4πµ̃2

f (x)

)ε
Γ(−1+ε)

(
−b1 f (x)(2−ε)+b2(−1+ε)

)
= 1

ε

[
2m4(3x −1)(x −1)

]
+2m4(x −1)

[
(3x −1)ln

(
4πµ̃2e−γ

m2x2

)
+x +1

]
+O(ε).

(5.54)

The 1/ε coefficient is unchanged, and therefore still vanishes upon performing the x-integral,

which is relieving. But the finite piece is different! In fact, we find the somewhat curious result

that the finite piece also integrates to zero, meaning that the self-energy diagram vanishes on-

shell:

ΣA(p2 = m2) = 0. (5.55)

And, since as I will show soon in sec. (5.2.4) all the previously-dismissed tadpole diagrams do

in fact also vanish, I conclude that the one-loop gravitational correction to the scalar mass

vanishes entirely:

m̄2 = m2 +0+O(κ3). (5.56)

5.2.4 General gauge

Let’s now confirm all of the above calculations by performing them in the parametrized (α,β)

gauge and tackling the three diagrams ΣB−D which I initially postponed.

First I will again address the self-energy diagram. The setup is again formally identical to

before: we have a graviton propagator and a scalar propagator joined at both ends by the two-

scalar one-graviton vertex. The major complication now is that instead of using the simple

three-term harmonic gauge propagator for the graviton, we use the full graviton propagator

(3.124),

∆(p) = 1

p2

{
Π⊥+2αΠV − 1

d −2
ΠΦ+ d 2α(d −2)− (d −1)(1+β)2

(d −2)(d −1−β)2
ΠΣ− (1+β)

p
d −1

(d −2)(d −1−β)
ΠΦΣ

}
,

(5.57)
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which there is no simple way to write. For this reason I perform every calculation in this sec-

tion in MATHEMATICA [50], using the FEYNCALC [59–61] package for the tensor contractions

and Passarino-Veltman reduction [78, 79]. Doing so and going on-shell yields

iΣA = iπ2κ2
(
− 1

2 m2 A0(m2)+ d −3

d −2
m4B0(m2,0,m2)

)
, (5.58)

where A0 and B0 are Passarino-Veltman scalar integrals, namely the tadpole and bubble re-

spectively. Note that even in just this one diagram all of the gauge parameters cancel! This is

not the case before going on-shell, which one might expect, since before going on-shell this di-

agram contributes to the very much not gauge-invariant two-point function of φ, but setting

p2 = m2 kills all of the dependence on α and β.

In the result (5.58) I have not set d = 4−2ε and investigated the limit ε→ 0. To do so I need

actual expressions for the Passarino-Veltman integrals involved, since these also contain poles

in ε which may (and do!) combine nontrivially with the explicit factors of d . The tadpole is

defined by
`

= iπ2 A0(m2) = µ̃2ε
∫

dd`

(2π)d

1

`2 −m2
,

(5.59)

while the bubble is defined by

p

`+p

`

p
= iπ2B0(p2,m2

1,m2
2) = µ̃2ε

∫
dd`

(2π)d

1

`2 −m2
1

1

(`+p)2 −m2
2

. (5.60)

The tadpole can be straightforwardly found to be

A0(m2) =− µ̃
2ε

π2
Γ(ε−1)

(m2)1−ε

(4π)2−ε = m2

16π4

{
1

ε
+1+ ln

(
µ2

m2

)
+O(ε)

}
, (5.61)

where µ2 = 4πµ̃2e−γ with γ the Euler-Mascheroni constant, while with our particular combi-
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nation of arguments the bubble of interest is

B0(m2,0,m2) = 1

16π4

{
1

ε
+ ln

(
µ2

m2

)
+2

}
. (5.62)

Also expanding the explicitly d-dependent factor in ε yields

d −3

d −2
= 1

2
− 1

2
ε+O(ε2). (5.63)

Combining all of the above confirms the previous result that the self-energy diagram van-

ishes,

ΣA = 0, (5.64)

this time with the added confidence that the calculation was done without fixing a particular

gauge.

Now let’s consider the three other diagrams,

−iΣB = , −iΣC = , −iΣD = .
(5.65)

I claimed before that these diagrams all vanish. I will now demonstrate this, again with the

copious aid of FEYNCALC.

First let’s look at ΣB. This diagram is in fact totally nonproblematic: the closed graviton

loop contracts with the two-scalar two-graviton vertex to give a (lengthy) series of massless

tadpoles, all of which vanish upon loop integration in dimensional regularization. To be as

careful as possible would could insert a small mass in the graviton propagator (5.57),

∆(p) = 1

p2 −λ2

{
· · ·

}
, (5.66)

and investigate the result as λ→ 0. This makes a lengthy calculation even longer, but the end

result – performing the loop integration but leaving the external momentum p arbitrary – is of
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the form

ΣB = κ2 A0(λ2)
{
· · ·

}
, (5.67)

where the dots stand for a ∼ 60 term sum which depends only on the gauge parameters α and

β, the scalar mass m, the dimension d , and the external momentum p. In particular the gravi-

ton mass λ appears only in A0(λ2), and since A0(λ2 → 0) → 0 this confirms that the bubble

diagram ΣB vanishes independent of gauge.

The remaining two diagrams proceed similarly. In both cases we do have a closed mass-

less loop, since should vanish on its own by the exact logic above. However also in both cases

that massless loop is attached to a zero-momentum massless tail, which, in the absence of an

IR regulator, yields the undefined result 0/0. For these diagrams we are therefore required to

insert a small graviton mass, whereas we only chose to do so for the bubble out of an abun-

dance of caution. Doing so for the graviton tadpole yields a result of the same form as (5.67),

although this result is much shorter and can therefore be written out explicitly:

−iΣC = iπ2κ2 A0(λ2)

{
p2

(
d 2

8
− 7d

8
+ 3

4

)
+m2

(
− d 3

8(d −2)
+ 7d 2

8(d −2)
− 3d

4(d −2)

)}
. (5.68)

So since the only λ dependence remaining is in A0(λ2) we can again safely take λ→ 0 to con-

firm that ΣC = 0.

Meanwhile doing so for the ghost tadpole is even easier: the small graviton mass allows

us to write down an expression for the diagram without dividing by zero, but giving the gravi-

ton mass doesn’t give the vector ghost a mass, and therefore as soon as we write down the IR-

regulated diagram we come across a massless tadpole, which vanishes immediately.

To summarize, we have now shown that all four of the one-loop diagrams which contribute

to Σ vanish in an explicitly gauge-invariant manner, and therefore at one loop the gravitational

correction to the scalar mass vanishes as well.
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5.3 THE SCALAR FIELD TWO-POINT FUNCTION

The final calculation I will present is the two-point function of the invariantized scalar field,

evaluated at one loop. This calculation was first attempted in [47]. However I take a different

calculational approach, leaning on the computational efficiency of FEYNCALC [59–61] and ob-

tain a different result than [47].32 Also, as discussed in the introduction to this section, I will

not worry about any renormalization in this calculation, both because no uncancelled diver-

gences appear for me and because they are irrelevant to my long-term goal of obtaining the

long-ranged position-space behavior of these gauge-invariant correlators.

5.3.1 Relevant diagrams

The invariantized scalar field φ̂ is an infinite series in the “plain” scalar field φ and the graviton

hµν, with the O(κn) terms containing one power of φ and n − 1 powers of hµν. To O(κ2) the

invariantized scalar field is given by eq. (2.77),

φ̂=φ◦X−1 =φ−κXα1 ∂αφ+κ2
(

1
2X

α
1X

β
1∂α∂βφ+Xα1 ∂αX

β
1∂βφ−Xα2 ∂αφ

)
+O(κ3), (5.69)

where X1 and X2 are given by eqs. (2.20) and (2.23),

X
µ
1 (x) =

∫
dd x ′G(x, x ′)Jµ1 (x ′), X

µ
2 (x) =

∫
dd x ′G(x, x ′)

(
Jµ2 (x)+K1X

µ
1 (x)

)
, (5.70)

32Having worked through [47] in their notation I have tracked our disagreement to a single factor of 2 in the
tensor structure they call I 4,1. Since my calculation is entirely automated and I have rebuilt that automation ma-
chinery multiple times in multiple ways to guard against bugs, and I have obtained the same results every time,
I am therefore inclined to trust my result. (I have also checked that, if I insert that factor of 2 by hand and then
apply my machinery to their work, I do indeed otherwise replicate their result, whereas if I remove that factor of
2 and do the same I obtain mine, which I take both as further evidence that my machinery is bug-free and as my
reasoning that this lone factor is the source of our disagreement.)
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where G(x, x ′) is a Green’s function of the D’alembertian �= ∂2 and the J ’s and K ’s are given in

turn by eqs. (2.17) and (2.22),

Jµ1 = ∂αhαµ− 1

2
∂µh, K1 = hαβ∂α∂β+ Jα1 ∂α, Jµ2 = 1

2

(
hαβ∂

µhαβ+hαµ∂αh
)
−∂α

(
hαβhβ

µ
)
.

(5.71)

As a result the diagrammatic expansion of
〈
φ̂(x)φ̂(y)

〉
contains not only the “internal” dia-

grams whose amputated on-shell values contributed to the mass correction of sec. 5.2, but

also diagrams containing the external vertices of sec. 4.3.

To completely enumerate the diagrams which could in principle contribute to
〈
φ̂(x)φ̂(y)

〉
we therefore must account for internal vertices which connect two scalars to one and two

gravitons; the three-graviton vertex, and the ghost-antighost graviton vertex; and the one-,

two- and three-point external insertions arising from eq. (5.69), which connect one scalar to

zero, one, and two gravitons respectively. At one loop the possible diagrams are then the un-

amputated and off-shell versions of the diagrams from eq. (5.2),

GA = , GB = , GC = , GD = .
(5.72)

as well as a variety of topologies with coordinate corrections at one or both external points,

GE = , GF = ,

GG = , GH = GI =

(5.73)

In sec. 5.2.4 I found that the amputated forms of GB−D, appropriately IR-regulated, vanish

in the limit of vanishing graviton mass, before sending the amputated momentum on-shell.

Thus the diagrams GB−D vanish as well, since the one-point external scalar vertex is trivial and

the only new terms are the no-longer-amputated scalar propagators. The diagrams GG−I fea-

ture identical tadpole structures but now attached to the external vertices; I will in this section
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presume these diagrams to vanish as well.33 In this section I will therefore concern myself only

with the remaining diagrams, which I’ll relabel as

G1 = , G2 = , G3 = , (5.74)

and which I dub the “sunset”, “thorn”,34 and “circle” respectively. The relevant pieces are the

scalar and graviton propagators (4.27) and (4.37),

D(p) = 1

p2 −m2
, ∆(p) = 1

p2

{
Π⊥+2αΠV − 1

d −2
ΠΦ+ d 2α(d −2)− (d −1)(1+β)2

(d −2)(d −1−β)2
ΠΣ− (1+β)

p
d −1

(d −2)(d −1−β)
ΠΦΣ

}
;

(5.75)

the two-scalar one-graviton vertex (4.77),

µν

k1

k2 =V µν

φ2h
(k1,k2) = 1

2 iκ
(
kµ1 kν2 +kν1 kµ2 −ηµν(k1 ·k2)

)
. (5.76)

and the one-scalar one-graviton external vertex (4.54),

µνp

k

= Eµν

φh(k, p) =−κ 1

p2

(
kµpν− 1

2 (k ·p)ηµν
)
. (5.77)

5.3.2 Harmonic gauge

As before I will first perform this calculation in harmonic gauge, in which

∆µνρσ(p) = 1

p2

(
1

2
ηµρηνσ+ 1

2
ηµσηνρ− 1

d −2
ηµνηρσ

)
. (5.78)

33I address this more fully in sec. 6.
34(for its resemblance to the Icelandic letter of the same name)
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Even in this gauge the calculations can become fairly lengthy – for example, the sunset dia-

gram features a ∆µνρσ sandwiched between two Vφ2h ’s, and since each of these has three terms

apiece the resulting product has twenty-seven terms. But contracting and simplifying, again

using the substitution (5.37), eventually reduces this diagram down to a single scaleless inte-

gral,

G1 =− κ2

2p2

∫
`

1

`2
= 0. (5.79)

Similarly the thorn and circle yield

G2 = κ2

2p2

∫
`

(` ·p)

`4
= 0, G3 =−κ

2

2

∫
`

1

`4
= 0. (5.80)

Thus in this gauge all three diagrams individually vanish, meaning that at one loop the invari-

antized scalar correlator vanishes.

5.3.3 General gauge

Let’s now confirm the prior result that the invariantized scalar field two-point function van-

ishes by performing the calculation in the general parametrized (α,β) gauge. With β 6= (d/2)−1

the individual diagrams no longer vanish, and in fact themselves become quite lengthy.

To organize the results I’ll first observe that each of these diagrams turns out to depend on

the same three Passarino-Veltman integrals, namely

FB (p) ≡ B0(p2,0,0), FC (p) ≡ p2C0(0, p2, p2,0,0,0), FD (p) ≡ p4D0(0,0, p2, p2,0, p2,0,0,0,0).

(5.81)
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The bubble B0 is given by (5.60) as before, while the triangle C0 and box D0 are given by

p1

`+q11 p2

`+q12

q12`

= iπ2C0

(
p2

1, p2
2

∣∣∣q2
12

∣∣∣m2
1,m2

2,m2
3

)

= µ̃2ε
∫

dd`

(2π)d

1

`2 −m1
1

1

(`+q11)2 −m2
2

1

(`+q12)2 −m2
3

,

(5.82)

and

p1

`+q11

p2
`+q12

p3

`+q13

q13

`

= iπ2D0

(
p2

1, p2
2, p2

3

∣∣∣q2
13, q2

12, q2
23

∣∣∣m2
1,m2

2,m2
3,m2

4

)

= µ̃2ε
∫

dd`

(2π)d

1

`2 −m2
1

1

(`+q11)2 −m2
2

1

(`+q12)2 −m2
3

1

(`+q13)2 −m2
4

,

(5.83)

with qmn =∑n
i=m pi .

With this shorthand we can compactly provide the diagram results as

Gi (p) = iπ2κ2
∑
a

N a
i Fa(p), (5.84)

where the coefficients N a
i depend only (and nontrivially) on the gauge parameters. In fact ev-

ery N a
i turns out to share a common β- and d-dependent factor as well, which we can factor

out:

Gi (p) = iπ2κ2 d −2(β+1)

(d −2)(β−d +1)2

∑
a

N a
i Fa(p). (5.85)

N.B. this prefactor vanishes when β= (d/2)−1, so just the fact that we can write the two-point

function as (5.85) (and that, as we will see in the moment, the N ’s are not singular) demon-
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strates consistency with the prior result that the two-point function vanishes in harmonic

gauge. In fact it also demonstrates that I could have left α arbitrary in the previous calculation

and still found that the diagrams all individually vanish.

However it remains to show that the two-point function vanishes for any value of α and β.

To see this we need the N ’s themselves. For the sunset diagram these are

N B
1 = 1

16

{
2(2α−5)(β+1)+ (3α−5)d 2 +d(−2α(β+4)+4β+15)

}
,

NC
1 =−1

8

{
4(α−1)(β+1)+ (3α−2)d 2 +d(−2α(β+4)+β+6)

}
,

N D
1 = 1

16

{
2(2α−1)(β+1)+ (3α−1)d 2 +d(3−2α(β+4))

}
.

(5.86)

For the thorn we have

N B
2 = 1

8

{
−4(α−1)(β+1)+ (2−3α)d 2 +d(2α(β+4)−β−6)

}
,

NC
2 = 1

8

{
2(4α−1)(β+1)− (1−6α)d 2 −d(4α(β+4)+β−3)

}
,

N D
2 = 1

8

{
βd −α(d −2)(3d −2(β+1))

}
.

(5.87)

Note that the thorn diagram is multiplied by an extra factor of 2 to account for the fact that

there are two such diagrams, corresponding to putting the external insertion at each side.

(The two diagrams are guaranteed to be equal by Lorentz invariance.) Finally for the circle

the coefficients are

N B
3 = 1

16

{
2(2α+1)(β+1)+ (3α+1)d 2 −d(2α(β+4)+2β+3)

}
,

NC
3 =−1

8

{
2(2α+1)(β+1)+ (3α+1)d 2 −d(2α(β+4)+2β+3)

}
,

N D
3 = 1

16

{
2(2α+1)(β+1)+ (3α+1)d 2 −d(2α(β+4)+2β+3)

}
.

(5.88)

So in a general gauge these diagrams certainly do not vanish! However their sum, and hence

the invariantized scalar two-point function, does still vanish, independent of the values of α
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and β. To see this we don’t even need to actually evaluate the Passarino-Veltman integrals – we

need only observe that each integral’s coefficients all sum to zero separately:

∑
i

N a
i = 0 for all a. (5.89)

Thus we have obtained again my prior result that the invariantized scalar two-point function

vanishes, and confirmed that this result is gauge-independent:

+ + = 0. (5.90)

6 Conclusion

I began this thesis with the goal of obtaining gauge-invariant long-range predictions of gen-

eral relativity, treated as an effective quantum field theory, to compare with corresponding

lattice observables. In sec. 2 I demonstrated how to construct gauge-invariant observables in

quantum gravity via the relational approach. In sec. 3 I carefully obtained the propagators rel-

evant to a scalar minimally coupled to Einstein-Hilbert gravity, using a parametrized gauge

in order to test the gauge invariance of my results, and in sec. 4 I obtained the rest of the nec-

essary Feynman rules, including the external vertices arising from expressing the invariant

observables as perturbative expansions of their original versions. Finally in sec. 5 I applied

this machinery to three correlation functions, namely the tree-level two-point function of the

volume factor, the one-loop gravitational correction to the mass of a scalar field, and the one-

loop gravitational correction to the two-point function of a massless scalar field. In all three

cases I found explicit cancellation of the gauge parameters, supporting the viability of the rela-

tional scheme for obtaining gauge-invariant correlation functions in quantum gravity.

However none of these correlators are the actual object of interest. Rather, as stated in the

introduction, it is the two-point function of the Regge curvature which is calculated on the lat-

tice, and therefore it is the two-point function of the invariantized scalar curvature to which
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we would hope to apply the machinery developed in this thesis. And unfortunately I must re-

port that all such attempts to date have been unsuccessful: while the gauge-fixing prefactor α

does cancel out of my results, I have been unable to eliminate the β-dependence.

Out of an abundance of caution I will first and foremost allow for the possibility that there

exist bugs or errors of some form in my calculational machinery: the contributing diagrams

feature, for example, the three-graviton internal vertex, which is extremely long. However I

have automated the calculations of the lengthiest relevant vertices and have done so in multi-

ple ways and obtained the same answers by each route. Further I have compared my vertices

to the literature (e.g. [66]) where possible and, while a by-hand comparison of 136-term-long

polynomials can only be done with so much confidence, I have not found any disagreements.

I have also successfully applied my results to the calculation of the one-loop corrections to

the Newtonian potential in harmonic gauge and found agreement with [16], which gives me

some further confidence that my machinery is free of bugs. Rather I conjecture that the miss-

ing piece is something more subtle than a typo somewhere in a MATHEMATICA notebook.

I conjecture this for two reasons, with which I will conclude my thesis.

Subtleties in the IR regulation of tadpoles attached to coordinate correction vertices

First, in my attempts at
〈
R(x)R(y)

〉
I have assumed that all tadpole diagrams vanish. This is

certainly true for the internal bubble,

,
(6.1)

while the internal tadpoles

,
(6.2)
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can be IR regulated in the usual way to deform from the apparent 0/0 before sending the IR

regulator to zero. Similarly the external bubbles and tadpoles

, ,
(6.3)

should vanish in the usual way when the external vertices are the local ones which arise from

the standard expansion of the scalar curvature. However it is unclear what to do about the

external tadpoles when the external vertex is the coordinate correction:

, .
(6.4)

In both cases we would certainly want to again insert an IR regulator λ to move away from

the undefined 0/0 behavior before returning to the massless limit λ→ 0. However the wrin-

kle is that the coordinate correction vertices (4.66) themselves contain inverse powers of the

momentum, coming directly from the Green function in (2.20) which inverts the Laplacian

in (2.16). These factors of 1/p2 take the momentum of the graviton leg which attaches to the

vertex, which for the external tadpoles certainly have momentum zero.35 However these fac-

tors of 1/p2 are not themselves propagators of the graviton, and there is therefore no a priori

reason to insert any fictitious graviton mass in these factors, even when the identical-looking

factors which do arise from the graviton propagators do get such a mass. Altering these Green

functions would instead constitute a deformation of the defining condition (2.10) of the co-

ordinate scalars themselves, and it is not at all obvious that this deformation is well-defined.

In particular if we insert a graviton mass in this factor then we are altering the background

Laplacian which appears in eq. (2.16). But this background Laplacian is not the only piece of

the defining condition (2.10) which appears in this vertex – the tensor structure of the exter-

nal vertex is due to the structure of Jµ1 (2.17), and it is not at all obvious either that altering the

35The external bubble avoids this issue since the graviton legs attached to the vertex have nonzero momenta
±`.
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one without the other maintains the coordinate invariance of the definition (2.10), or if one

chooses to also alter Jµ1 , how such an alteration should be done. Whatever the resolution to

this dilemma it is certainly a possibility that these diagrams do not all simply vanish on their

own, and that the remaining gauge dependence in the diagrams I have evaluated and summed

is cancelled in this way.

In fact I should note that this difficulty also arises even in the scalar field two-point func-

tion when considering the bottom three diagrams of eq. (5.73). In sec. 5 I simply set all such

diagrams to zero, and maintained a level of confidence in doing so due to the eventual gauge-

invariance of my result. However a more careful analysis, featuring IR regulation of the zero-

momentum graviton lines, would certainly be desirable, and it is not obvious how this should

be performed. In fact there is strange IR behavior even in one of the diagrams I explicitly ad-

dressed above. If one attempts to calculate the three diagrams in (5.74) in harmonic gauge

but with an IR regulator λ, the first two (the sunset and the thorn) can be successfully taken

to zero, in agreement with the unregulated results in (5.79) and the first of (5.80). However, in

disagreement with the second of (5.80), the IR regulated circle diagram does not return to zero

in the limit λ→ 0: instead, one obtains upon tensor reduction

∼ A0(λ2)

λ2
, (6.5)

which diverges. The origin of this strange IR behavior is not clear, but its resolution likely lies

in a nontrivial IR cancellation with one of the other diagrams whose subtleties I have dis-

cussed.

The measure and the Euclidean continuation

Even if I didn’t care about IR regulation for the reasons outlined above, I would likely have to

tackle it if I hoped to implement the Euclidean contination. As previously mentioned the Eu-

clidean continuation of Einstein-Hilbert gravity is made subtle by the wrong-sign kinetic term
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of the scalar modeΦ, and any attempt to make contact between my Minkowski-space calcu-

lations and the Euclidean lattice will have to surmount this difficulty. It is likely that any such

technique will involve analytically continuing theΦ propagators which appear in loop inte-

grals differently than the loop propagators of other fields. One possibility for distinguishing

Φ’s from the TT and gauge modes in loops is to give a small mass to only theΦ piece of the

graviton propagator, since such a mass would “follow” theΦ propagator through any tensor

reduction process, allowing one to automate the reduction while keeping track of theΦ con-

tributions for later continuation. However if such a procedure is well-defined it should also

yield the already-established Minkowski-space results if one does not apply any experimental

new continuation but simply inserts theΦmass at the start of the calculation and then sends

that mass to zero at the end. That the IR regulation of the invariantized scalar two-point func-

tion is not yet understood therefore presents an obstacle to any such attempt at a Euclidean

continuation.

The question of the Eucliean continuation of the conformal mode was addressed in [39], in

which it was proposed that the resolution to the problem lies in a nonlocal field redefinition of

the conformal mode by χ =
√
−∇2Φ; by analytically continuing χ, instead ofΦ, the Euclidean

path integral is rendered convergent. This field redefinition arises from explicitly integrating

out the gauge degrees of freedom from the path integral, which leaves behind a Jacobean fac-

tor in the gravitational measure whose effect is to convert the functional integral overΦ into a

functional integral over χ. Not only does this result indicate that a correct Euclidean continu-

ation, and hence a correct identification of predictions of the low-energy effective theory with

lattice calculations, must take into account this Jacobean factor – it may in fact be the case

that to perform correct gravitational loop calculations, even in Minkowski space, one must

incorporate this Jacobean factor into the measure, since, to quote the authors, “the correct Eu-

clidean continuation depends on the correct functional measure”.

To see why this subtlety in the Euclidean continuation could affect Minkowski-space re-

sults let’s recall (see e.g. [71]) that, in the path integral formulation, the pole structure of the
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standard propagator arises from the issue of actually defining the path integral. In Minkowski

space and with a purely real action the free path integral is a divergent purely imaginary Gaus-

sian,

Z ∼
∫

Dφei
∫

k k2φ2
. (6.6)

To make the path integral convergent the action is given a small imaginary part,

Z ∼
∫

Dφei
∫

k (k2+iε)φ2 ∼
∫

Dφei
∫

k k2φ2
e−ε

∫
k φ

2
, (6.7)

which if ε> 0 provides a real Gaussian factor with which the path integral converges. One then

calculates whatever quantity one wishes in perturbation theory and sends ε→ 0 at the end,

obtaining well-defined results. The key thing is that this iε is precisely the same iε which ap-

pears in the propagator,

D(k) = i

k2 + iε
, (6.8)

which in turn determines the location of the poles of D . And the location of these poles gov-

erns the actual calculation of D(k), and of all the scattering amplitudes, correlation functions,

loop integrals, etc. constructed out of it.

The above indicates the problem posed by a wrong-sign kinetic term: in order to define a

convergent path integral with a wrong-sign kinetic term, the action must be deformed in the

opposite direction, i.e. via k2 7→ k2 − iε. It follows that, in fact, any loop calculation featuring

a field with a wrong-sign kinetic term should not be performed under the assumption that all

propagators have a standard pole structure, since the propagator of such a field should have

a denominator of the form k2 − iε instead of k2 + iε. This issue seems to be generally ignored

in the literature, and I have followed suit in my work, in no small part because I do not know

of any tools by which to implement this nonstandard pole structure in an automated loop cal-

culation. However it seems at the very least possible that the challenges of obtaining sensible

gauge-invariant loop results for gravitational correlators stems from this very oversight.

That this is the source of my difficulties is also supported by the pattern of my successes
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and failures to date. Thus far I have successfully calculated the three correlators discussed

in sec. 5, and I have also had success in a variety of harmonic gauge calculations with which

I have tested my machinery against the literature. By contrast the two calculations attempted

thus far in a general gauge and which feature potentially nonvanishing ghost loops have failed.36

In other words I have so far been challenged by precisely those calculations in which the gravi-

tational measure is manifestly relevant in the form of ghosts, and as argued in [39], incorrectly

continuing the wrong-sign field amounts to a misidentification of the gravitational measure

itself. Thus it might be hoped that, if one incorporates the results of [39] to correctly define

the gravitational measure, then the loop calculations performed and attempted to date might

yield different and more well-behaved results, and further that the correct method of compar-

ison of those results to the Euclidean lattice will become more apparent. However significant

challenges remain in this direction, including but not limited to the actual calculation of the

Passarino-Veltman integrals with this altered pole structure and the automation of gravita-

tional loop calculations featuring these nonstandard propagators.

36The other is the one-loop contribution to
〈p−detG (x)

√−detG (y)
〉

. This calculation involves the three-

point coordinate correction to
p−detG , which features X2, which is both lengthy and resistant to my attempts at

automation, and so I am less confident that my attempts at this result are bug-free.
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A Coordinate transformations

This appendix arose out of a set of personal notes which I maintained to keep clear the precise

nature of the geometric objects involved in the relational approach. I include it here so that I

can reference it where necessary in the main text, and to provide a detailed exposition of the

often very dense notation I employ. In compiling these notes I mostly referenced [63, 65] for

mathematical exposition.

A.1 DIFFERENTIALS, PUSHFORWARDS, AND PULLBACKS

In this section I review some machinery which will be useful for our discussion of coordinate

transformations, wfhich will begin in earnest in sec. A.2.

Throughout this section we will consider two manifolds M and M ′, with a generic smooth

map between them denoted by F : M → M ′. All objects on M ′ are denoted with a prime in or-

der to keep it notationally clear where each objects lives. Otherwise I abide by the conventions

laid out in sec. 1.

A.1.1 Pointwise operations: the differential and the pointwise pullback

Let F : M → M ′ be a smooth map between smooth manifolds. Given any p ∈ M the map F

defines a linear map between the tangent spaces Tp M and TF (p)M ′, called the differential or

pointwise pushforward, as follows:

dF p : Tp M → TF (p)M ′,
(
dF p v

)
f ′ = v( f ′ ◦F ) (A.1)

for any f ′ ∈ C∞(M ′). Keep in mind that the differential maps a single vector at p ∈ M to an-

other single vector at F (p) ∈ M ′ – we’re not saying anything about vector fields yet.

Since the differential of F : M → M ′ at p is a linear map between vector spaces it certainly
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has a dual,37 called the pointwise pullback:

dF∗
p : TF (p)M ′ → Tp M ,

(
dF∗

p ω
′
)

v =ω′ (dF p v
)

. (A.2)

So the differential dF p moves vectors at p ∈ M to F (p) ∈ M ′, while the pointwise pullback dF∗
p

moves one-forms from F (p) ∈ M ′ to p ∈ M .38

This definition of the pointwise pullback generalizes straightforwardly to the pointwise

pullback of covariant tensors of arbitrary rank:

B ′ ∈ (
Tk

)
F (p)M ′ =⇒

(
dF∗

p B ′
)

(u, . . . , v) = B ′ (dF p u, . . . ,dF p v
)

. (A.3)

To see the corresponding generalization of the pushforward observe first that we can obtain

a relation for the pointwise pushforward which mirrors the definition (A.2) of the pointwise

pullback as follows. Recall that, given any vector v and one-form ω, the vector v may be de-

fined to act on the one-form ω by the action of ω on v , i.e. vω=ωv . Acting dF p v ∈ TF (p)M ′ on

ω′ ∈ T ∗
F (p)M ′ in this way then yields

(
dF p v

)
ω′ =ω′ (dF p v

)= (
dF∗

p ω
′
)

v = v
(
dF∗

p ω
′
)

. (A.4)

This last equality, (dF p v)ω′ = v(dF p ω
′), then generalizes to contravariant tensors straightfor-

wardly:

A ∈ (
T k)

p M =⇒ (
dF p A

)(
ω′, . . . ,η′

)= A
(
dF∗

p ω
′, . . . ,dF∗

p η
′
)

. (A.5)

To keep clear the logical progression here: we first define the pointwise pushforward of vectors

via the explicit action of vectors on functions; we then obtain the pointwise pullback of one-

forms from the pointwise pushforward of vectors; and then one we know how to push and pull

37(the dual of a linear map A : V →V ′ being the map A∗ : V ′∗ →V ∗ given by (A∗ω′)v =ω′(Av))
38When F is invertible I’ll sometimes refer to the pullback of a one-form by F−1 as its “pushforward” by F .

This will mostly come up when we’re simultaneously pushing forward vectors by F and pulling back one-forms
by F−1, just as a vague gesture in the direction of concision.



137

vectors and one-forms around we can do the same for arbitrary-rank tensors by pushing and

pulling their arguments. Further, if F is a diffeomorphism, we can define the pullback39 of a

mixed-rank tensor C ′ ∈ (
T k
`

)
F (p)M ′:

(
dF∗

p C ′)(ω, . . . ,η
∣∣u, . . . , v

)=C ′
(

d
(
F−1)∗

F (p)ω, . . . ,d
(
F−1)∗

F (p)η
∣∣∣dF p u, . . . ,dF p v

)
. (A.6)

In other words, the pullback of C ′ by F acts on a collection of one-forms and vectors on M in

the same way that C ′ acts on the pullbacks of the one-forms by F−1 and the pushforwards of

the vectors by F .

Finally I will note that all the pushforwards and pullbacks defined above may all be straight-

forwardly shown to be (multi)linear, considering every tensor space acted on above as a vector

space over the real numbers.

A.1.2 Maps of fields: the pushforward and the pullback

Now suppose that, instead of a single vector at a point in M , we have a vector field v ∈ X(M).

Then we could certainly pick any point p ∈ M , evaluate vp , and apply dF p to vp to obtain a

vector in TF (p)M ′. However we can not necessarily in this way obtain a vector field on M ′. To

see this note that if F is not surjective then there exists a point in M ′ to which F assigns no

point in M , and hence which this process does not map to any vector in its tangent space; and

if F is not injective then there exists a point in M ′ to which F assigns multiple points in M , and

hence which this process may map to multiple vectors in its tangent space.

However if F is a diffeomorphism then we are guaranteed that the differential of F maps a

vector field on M to a vector field on M ′, which we can define by

p ′ ∈ M ′ 7→ dF F−1(p ′) vF−1(p). (A.7)

39Note that there isn’t any distinct notion of the pushforward of a mixed tensor – we could just as easily refer
to the about-to-be-defined operator as the pushforward of C by F−1 (which is indeed what the definition reduces
to in the case where C is fully contravariant).
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In other words, for each p ′ ∈ M ′ we travel back to F−1(p ′) ∈ M , evaluate v at that point, and use

the differential of F to push that vector to M ′. We can therefore use F to define a map not just

between the individual tangent spaces of M and M ′, but between the spaces of vector fields:

F∗ :X(M) →X(M ′), (F∗v)p ′ = dF F−1(p ′) vF−1(p ′). (A.8)

We call F∗v the pushforward of v by F .

The pullback is a little less subtle, in that F need not be a diffeomorphism: for any smooth

F : M → M ′ we can use the pointwise pullback to define a map of one-form fields by

F∗ :X∗(M ′) →X∗(M),
(
F∗ω′)

p = dF∗
p ω

′
F (p). (A.9)

We call F∗ω′ the pullback of ω′ by F .

Finally we can in a precisely analogous way define the pullbacks and pushforwards of ten-

sor fields of arbitrary rank:

A ∈ Γk M =⇒ (
F∗A

)
p ′ = dF F−1(p ′) AF−1(p ′),

B ′ ∈ Γ`M ′ =⇒ (
F∗B ′)

p = dF∗
p B ′

F (p),

C ′ ∈ Γk
`M ′ =⇒ (

F∗C ′)
p = dF∗

p C ′
F (p).

(A.10)

As before the pushforward is defined only when F is as diffeomorphism (as can be seen by

the explicit reference to F−1 in the definitions), while the pullback is defined for any smooth

F . Also as before every map defined in this section is (multi)linear, this time considering the

relevant section space Γk
`

M to be a module over the ring of smooth functions C∞(M) (or iden-

tically for M ′ in the case of the pullback).
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A.1.3 Basis frames and coframes

A nice example of the use of the above machinery is in the abstract definition of the frame and

coframe defined by a coordinate system, namely that the frame defined by a coordinate sys-

tem x is the pushforward by x−1 of the canonical coordinate frame on Euclidean space and the

coframe defined by x is simply the differentials of the component functions xµ.40

Let’s start with the coordinate frame. Consider some coordinate system x : U ⊆ M → Rd .

For any x ∈ Rd the tangent space to Rd at x is isomorphic to Rd , and the canonical basis for

this tangent space is the set of partial derivatives ∂
/
∂xµ

∣∣
x at this point with respect to the

canonical coordinates {x1, . . . , xd } on Rd . Further, the coordinate system x is by definition a

diffeomorphism between U ⊆ M and its image x(U ) ⊆ Rd , and therefore at any point p ∈U the

differential dxp is an isomorphism between the tangent spaces Tp M and Tx(p)R
d ∼= Rd . Thus

the preimages of the basis vectors ∂
/
∂xµ

∣∣
x(p) for Tx(p)R

d under dxp provide a basis for Tp M .

This is the familiar coordinate basis41

∂µ
∣∣

p = d
(
x−1)

x(p)

∂

∂xµ

∣∣∣∣
x(p)

, (A.11)

and it defines the coordinate frame

∂µ =
(
x−1)

∗
∂

∂xµ
. (A.12)

To see that this object is in fact the familiar coordinate partial derivative consider acting it on

some f ∈C∞(M) at some p ∈U , whose coordinate we will for convenience denote by x(p) = x.

Then we have

(∂µ f )p =
(
d
(
x−1)

x

∂

∂xµ

∣∣∣∣
x

)
f = ∂

(
f ◦x−1

)
∂xµ

∣∣∣∣
x

. (A.13)

And the composition being differentiated, f ◦ x−1, is just the coordinate representation of f in

40Proofs of the claims I make in this section may be found in most any text on differential geometry, e.g.
[63, 65].

41That (dxp )−1 = d(x−1)x(p) follows directly from Lemma A.2 in the next section.
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the coordinate system x: while f eats a point p ∈ M and returns a number f (p), the composi-

tion f ◦x−1 eats the coordinates x = x(p) and returns the number f ◦x−1(x) = f (p). Thus acting

∂µ
∣∣

p on f yields the partial derivative with respect to xµ of the coordinate representation of f ,

which is precisely what it should do.

The pushforward may also be used to define the coordinate coframe. To see this consider

some function f ∈ C∞(M), which is itself a smooth map between manifolds f : M → R. The

differential d f p at some p ∈ M is then a linear map from Tp M to T f (p)R
∼= R, and is therefore a

one-form at p:

f ∈C∞(M) =⇒ d f p ∈ T ∗
p M for all p ∈ M . (A.14)

This holds in particular for the component functions xµ : U ⊆ M → R of our coordinate system

x, and it may be shown that dxµ
∣∣

p is the basis for T ∗
p M dual to the basis ∂µ

∣∣
p for Tp M , in terms

of which the differential of any other function may be written

d f p = (
∂µ f

)
p dxµ

∣∣
p . (A.15)

The above also translates directly to the standard statements about one-form fields, namely

that the map d f : p 7→ d f p is a one-form field,

d f ∈X∗(M), (A.16)

and the maps dxµ ∈X∗(M) form the coframe dual to ∂µ, in terms of which

d f = (
∂µ f

)
dxµ . (A.17)

A.1.4 The tensor transformation law

In this section I provide a derivation and statement of the standard rule for the transformation

of the components of a tensor under a diffeomorphism. In the interest of readability I’ll first
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summarize the results.

• In Lemma A.1 I write the linearity of the pushforward and pullback in terms of func-

tions,

F∗( f v) = f F∗v and F∗( f ′ω′) = ( f ′ ◦F )F∗ω′, (A.18)

and in Lemma A.2 I show their composition rules,

(F ′ ◦F )∗ = F ′
∗ ◦F∗ and (F ′ ◦F )∗ = F∗ ◦F ′∗. (A.19)

• In Theorems A.1 and A.2 I demonstrate that the pushforward of a vector and the pull-

back of a one-form by a diffeomorphism F : M → M ′ can both be written in coordinates

in terms of the matrix of partial derivatives of F :

(F∗v)µ = (
∂νFµvν

)◦F−1, and (F∗ω′)µ = (
∂µFν

)
(ω′

ν ◦F ) (A.20)

• Finally in Theorem A.3 I apply the previous theorems to obtain the rule by which the

pullback of a generic mixed-rank tensor may be written in coordinates in terms of that

same matrix of partial derivatives:

(
dF∗

p C ′)µ
ν =

(
∂′α

(
F−1)µ)

F (p)

(
∂νFβ

)
pC ′α

β. (A.21)

This final theorem is, in a sense, the only point of this subsection, in that it is the precise

statement of the familiar tensor transformation law

Cµ
ν = ∂xµ

∂x ′α
∂x ′β

∂xν
C ′α

β (A.22)

with which we will be concerned in our coming discussion of passive and active trans-

formations.
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Lemma A.1. LINEARITY OF PUSHFORWARDS AND PULLBACKS.

Let F : M → M ′ be a diffeomorphism; v ∈ X(M) and ω′ ∈ X∗(M ′); and f ∈ C∞(M) and

f ′ ∈ C∞(M ′). Then F∗( f v) = f F∗v and F∗( f ′ω′) = ( f ′ ◦F )F∗ω′, the latter also holding if F is

smooth but not a diffeomorphism.

Proof. First note that the linearity of the pointwise pushforward follows from its definition:

dF p (av) f = av( f ◦F ) = a dF p v for any v ∈ Tp M , f ∈C∞(M), and a ∈R; and the linearity of the

pullback is then guaranteed by construction, since the dual of any linear map is also linear.

The given forms, F∗( f v) = f F∗v and F∗( f ′ω′) = ( f ′ ◦F )F∗ω′, for the linearity of the push-

forwards and pullbacks of fields now follow straightforwardly from pointwise evaluations. For

the pushforward we have

(
F∗( f v)

)
p = dF p

(
f (p)vp

)= f (p)dF p vp = (
f F∗v

)
p . (A.23)

The first step uses the fact that the scalar multiplication C∞(M)×X(M) → X(M) which pro-

vides the module structure of X(M) is defined pointwise, ( f v)p = f (p)vp , and the second

uses the fact that for any f ∈ C∞(M) the value f (p) is just a real number and may therefore

be pulled out of the linear map dF p . Similarly for the pullback

(
F∗( f ′ω′)

)
p = dF∗

p

(
f ′(F (p)

)
ω′

F (p)

)
= f ′(F (p)

)
dF∗

p ω
′
F (p) =

(
( f ′ ◦F )F∗ω′)

p , (A.24)

by the exact same logic.

Lemma A.2. COMPOSITION OF PUSHFORWARDS AND PULLBACKS.

Let F : M → M ′ and F ′ : M ′ → M ′′ be smooth. Then for any p ∈ M we have d(F ′ ◦F )p =
dF ′

F (p)◦dF p and d(F ′ ◦F )∗p = dF∗
p◦dF ′∗

F (p). These imply (F ′◦F )∗ = F ′∗◦F∗ and (F ′◦F )∗ = F∗◦F ′∗,

the former holding only if F and F ′ are diffeomorphisms.

Proof. We need prove only the pointwise statements, since the others follow immediately.

Let’s begin with the pushforward. Given any v ∈ Tp M the quantity d(F ′ ◦F )p v is a vector



143

on M ′′ at F ′ ◦F (p) and may therefore act on any f ′′ ∈C∞(M ′′). Unraveling the definition of the

pushforward we find

(
d(F ′ ◦F )p v

)(
f ′′)= v

(
f ′′ ◦F ′ ◦F

)= (
dF p v

)(
f ′′ ◦F ′)= (

dF ′
F (p) ◦dF p v

)(
f ′′). (A.25)

Similarly for the pullback, given any ω′′ ∈ TF ′◦F (p)M ′′ the quantity d(F ′ ◦F )∗p ω′′ is a one-form

on M at p and may therefore act on any v ∈ Tp M :

(
d(F ′ ◦F )∗p ω

′′)v =ω′′(d(F ′ ◦F )p v
)=ω′′

(
dF ′

F (p) ◦dF p v
)
= dF ′∗

F (p)ω
′′(dF p v

)= (
dF∗

p ◦dF ′∗
F (p)ω

′′)v.

(A.26)

And in the above v , ω′′ and f ′′ are all arbitrary, so these hold as identities of pointwise pushfor-

wards and pullbacks respectively, as desired.

Theorem A.1. THE MATRIX REPRESENTATION OF THE PUSHFORWARD OF A VECTOR.

Let F : M → M ′ be smooth and let x : M → Rd and x′ : M ′ → Rd ′
be coordinate systems on

the domain and codomain with coordinate frames ∂µ and ∂′µ respectively. Then for any p ∈ M

and v ∈ Tp M we can expand dF p v in the coordinate frame of x′ as
(
dF p v

)µ = (∂νFµ)p vν, where

Fµ = x′µ ◦F . If instead v ∈ X(M) and F is a diffeomorphism then we have (F∗v)µ = (∂νFµvν) ◦
F−1.

Proof. We will prove the above by demonstrating that

dF p
(
∂µ|p

)= (
∂µFν

)
p

(
∂′ν|F (p)

)
, (A.27)

since given eq. (A.27) the first claim follows immediately from expanding v as v = vµ∂µ|p , and

the second claim is just the first in the case of a vector field. Further we will demonstrate eq.

(A.27) in steps as follows.

• THE DIFFERENTIAL OF THE COORDINATE REPRESENTATION OF THE MAP. Denote by F̂ =
x′ ◦F ◦ x−1 : x(M) → x′(M ′) the coordinate representation of F . In other words, if F eats a
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point p ∈ M and returns F (p) ∈ M ′, then F̂ eats the coordinates of p in x and returns the

coordinates of F (p) in x′.

Applying the differential of F̂ to a canonical basis vector on Rd and applying the chain

rule of multivariable calculus we have

dF̂ x

(
∂

∂xµ

∣∣∣∣
x

)
f ′ = ∂

(
f ′ ◦ F̂

)
∂xµ

(x) = ∂ f ′

∂x ′ν
(
F̂ (x)

)∂F̂ν

∂xµ
(x), (A.28)

with f ′ ∈ C∞(
Rd ′)

and denoting by x and x ′ the canonical coordinates on Rd and Rd ′

respectively (and, in what could pedantically be considered a slight abuse of notation,

also using x to denote an arbitrary point in Rd ). Thus the differential of the coordinate

representation of F is represented by the matrix ∂F̂ν
/
∂xµ :

dF̂ x

(
∂

∂xµ

∣∣∣∣
x

)
= ∂F̂ν

∂xµ
(x)

∂

∂x ′ν

∣∣∣∣
F̂ (x)

. (A.29)

• SIMPLIFYING THE MATRIX. Suppose that instead of just evaluating the matrix of partial

derivatives ∂F̂
/
∂xµ at some x ∈ Rd we choose a point p ∈ M and evaluate the matrix at

its coordinates x(p). We then have, recalling the definition of the coordinate frame and

that Fν = x′ν ◦F ,

∂F̂ν

∂xµ
(
x(p)

)= ∂
(
x′ν ◦F ◦x−1

)
∂xµ

(
x(p)

)= d
(
x−1)

x(p)

(
∂

∂xµ

∣∣∣∣
x(p)

)
Fν = (

∂µFν
)

p . (A.30)

So we can rewrite our previous result in this instance as

dF̂ x(p)

(
∂

∂xµ

∣∣∣∣
x(p)

)
= (

∂µFν
)

p

∂

∂x ′ν

∣∣∣∣
x′◦F (p)

. (A.31)

• THE DIFFERENTIAL OF THE MAP ITSELF. Now consider the actual object of interest. Using
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the definition of the coordinate frame and Lemma A.2 we have

dF p
(
∂µ|p

)= d
(
F ◦x−1)

x(p)

(
∂

∂xµ

∣∣∣∣
x(p)

)
. (A.32)

Since the coordinate representation of F is defined by F̂ = x′ ◦F ◦ x−1 we have F ◦ x−1 =
x′−1 ◦ F̂ , so from our previous result and again using Lemma A.2 this becomes

dF p
(
∂µ|p

)= (
∂µFν

)
p d

(
x′−1)

x′◦F (p)

(
∂

∂x ′ν

∣∣∣∣
x′◦F (p)

)
= (

∂µFν
)

p∂
′
ν

∣∣
F (p), (A.33)

as desired.

And now, as promised, consider some v ∈ Tp M . We can expand in x as v = vµ∂µ|p , and thus

dF p v = (
dF p v

)µ
∂′µ

∣∣
F (p),

= dF p
(
vµ∂µ|p

)= vµ
(
∂µFν

)
p∂

′
ν

∣∣
F (p),

(A.34)

and hence (
dF p v

)µ = (
∂νFµ

)
p vν, (A.35)

as desired.

Theorem A.2. THE MATRIX REPRESENTATION OF THE PULLBACK OF A ONE-FORM.

Let F : M → M ′ be smooth and let x : M → Rd and x′ : M ′ → Rd ′
be coordinate systems on the

domain and codomain. Then F∗ω′ = (∂µFν)(ω′
ν ◦F )dxµ for any ω′ ∈X∗(M ′), where Fµ = x′µ ◦F .

Proof. Begin by expanding ω′ in components as ω′ =ω′
µdx′µ. Then we have

F∗ω′ = F∗(
ω′
µdx′µ

)= (
ω′
µ ◦F

)
F∗ dx′µ = (

ω′
µ ◦F

)
d
(
x′µ ◦F

)= (
ω′
µ ◦F

)
dFµ . (A.36)

using Lemma A.1 for pullbacks in the second step and Lemma A.2 for pushforwards in the

third.42 And the map Fµ = x′µ ◦F : M → R is just another smooth function in C∞(M), and it

42In a little more detail: acting F∗ dx′µ on some v ∈ Tp M gives (F∗ dx′µ)p v = dx′µ
∣∣
F (p) ◦dF p v at which point we
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may therefore be expanded in the coordinate coframe in the usual way as dFµ = (∂νFµ)dxν,

yielding

F∗ω′ = (
ω′
µ ◦F

)(
∂νFµ

)
dxν (A.37)

as desired.

Theorem A.3. THE MATRIX REPRESENTATION OF THE PULLBACK OF AN ARBITRARY TENSOR.

Let F : M → M ′ be a diffeomorphism and let x : M → Rd and x′ : M ′ → Rd ′
be coordinate sys-

tems on the domain and codomain. Also let C ′ ∈ Γk
`

M ′. The components of F∗C ′ in x are related

to those of C ′ in x′ in the usual way (given in eq. (A.41) below).

Proof. This result follows directly from applying Theorems A.1 and A.2 to the frame and coframe

of dF∗
p C ′. By definition we have (considering a rank

(1
1

)
tensor for notational clarity)

(
dF∗

p C ′)µ
ν = dF∗

p C ′
(

dxµ
∣∣

p ,∂ν
∣∣

p

)
=C ′

(
d
(
F−1)∗

F (p) dxµ
∣∣

p ,dF p ∂ν
∣∣

p

)
. (A.38)

(Keep in mind that d(F−1)
∗
F (p) dxµ

∣∣
p refers to the pullback of the one-form dxµ from p ∈ M to

F (p) ∈ M ′ via F−1 : M ′ → M .) Applying Theorem A.1 to the vector argument gives

dF p ∂ν
∣∣

p = (
∂νFβ

)
p∂

′
β

∣∣
F (p), (A.39)

and applying Theorem A.2 to the one-form argument gives

d
(
F−1)∗

F (p) dxµ
∣∣

p =
(
∂′α

(
F−1)µ)

F (p)
dx′α

∣∣
F (p), (A.40)

from which we obtain the desired result:

(
dF∗

p C ′)µ
ν =

(
∂′α

(
F−1)µ)

F (p)

(
∂νFβ

)
pC ′α

β. (A.41)

In the interest of clarity let’s express the above matrices in terms of the coordinate representa-

apply Lemma A.2 to obtain the expression above.
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tion of F :

F̂ = x′ ◦F ◦x−1, F̂−1 = x◦F−1 ◦x′−1. (A.42)

Then we find

(
∂µFν

)
p = d

(
x−1)

x(p)

(
∂

∂xµ

∣∣∣∣
x(p)

)
Fν = ∂F̂ν

∂xµ

∣∣∣∣
x(p)

,

(
∂′µ

(
F−1)ν)

F (p)
= d

(
x′−1)

x′◦F (p)

(
∂

∂xµ

∣∣∣∣
x′◦F (p)

)(
F−1)ν = ∂

(
F̂−1

)ν
∂xµ

∣∣∣∣
x′◦F (p)

.

(A.43)

We can think of F̂ as a rule which sends the “old coordinate” value x ∈ Rd to a “new coordi-

nate” value x ′ ∈ Rd ′
, so in more conventional notation we wouldn’t give the map F̂ : x 7→ F̂ (x) ≡

x ′ a special symbol at all and would just write x ′(x), and similarly we would write x(x ′) in place

of F̂−1. Thus in more conventional notation we would write the above as

∂µFν→ ∂x ′ν

∂xµ
, ∂′µ

(
F−1)ν→ ∂xν

∂x ′µ , (A.44)

and in this form the transformation law (A.41) becomes the one with which a physicist is likely

already intimately familiar.

A.2 PASSIVE TRANSFORMATIONS IN GENERAL

Now we turn to the main topic of discussion, namely coordinate transformations. Let M be a

smooth manifold and x : M → Rd a coordinate system on M .43 The component functions of

x are xµ, i.e. x(p) = (
xµ(p)

) ∈ Rd . The more conventional italic symbols xµ are reserved for the

canonical Cartesian coordinates on Rd itself, i.e. x(p) = x = (xµ).

A.2.1 Definition and the transition map

Suppose that we also have a second coordinate system x̃ : M → Rd . This is a passive coordi-

nate transformation: we aren’t actually transforming any tensors, we’re just exchanging their

43Here as in the main text I ignore the fact that coordinate systems are generally defined only on subsets of M .
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component expansions in the old coordinates for the new, e.g. for a rank
(1

1

)
tensor

C =Cµ
ν∂µ⊗dxν = C̃µ

ν∂̃µ⊗dx̃ν , (A.45)

where ∂̃µ and dx̃µ are the frame and coframe of the new coordinates.

N.B. the frame ∂̃µ of the new coordinates is given by the pushforward of the same canoni-

cal frame ∂
/
∂xµ on Rd by the inverse of the new coordinate map, ∂̃µ = (

x̃−1
)
∗
(
∂
/
∂xµ

)
. This is

a point at which the distinction between the coordinate maps x, x̃ : M →Rd and the coordinate

values x ∈ Rd is important, since if we were conflating the two it would be tempting to also

include a tilde in the denominator of the ∂
/
∂xµ that we’re pushing forward, and this would

incorrectly imply that we need an extra factor of ∂x̃µ
/
∂xν to relate the coordinate frames.

Since by definition a coordinate system is an injection it follows that we can construct a

transition map from the original coordinates to the new:

T≡ x̃◦x−1 : x(M) ⊆Rd → x̃(M) ⊆Rd . (A.46)

Note that T : x(M) → x̃(M) is what is commonly denoted as x̃(x): it’s the value of the new co-

ordinates at the point whose old coordinates were x. Similarly its inverse T−1 : x̃(M) → x(M) is

what is more commonly denoted as x(x̃).

In secs. A.2.2 and A.2.3 we will come across the matrices ∂µx̃ν and ∂̃µxν, so I will here show

how to write these matrices explicitly in terms of the transition map. Let’s evaluate the first at a

point p ∈ M : (
∂µx̃

ν
)

p = (
x−1)

∗

(
∂

∂xµ

∣∣∣∣
x(p)

)
x̃ν = ∂

(
x̃ν ◦x−1

)
∂xµ

(
x(p)

)
. (A.47)

Using the fact that x̃ν ◦x−1 is just the νth component function of the transition map:

(
∂µx̃

ν
)

p = ∂Tν

∂xµ
(
x(p)

)
. (A.48)

In other words (as I’m sure you already knew) we can write the matrix
(
∂µx̃

ν
)

p , which is con-
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structed in terms of geometrical objects on M and evaluated at a point p ∈ M , entirely in terms

of a standard partial derivative of a real-valued function of a vector variable, Tν : Rd → R, eval-

uated at the image of p in Rd under the old coordinates x.

An exactly analogous argument also yields

(
∂̃µx

ν
)

p = ∂
(
T−1

)ν
∂xµ

(
x̃(p)

)
. (A.49)

The results (A.48) and (A.49) are more commonly written as ∂µx̃ν = ∂x̃ν
/
∂xµ and ∂̃µxν =

∂xν
/
∂x̃µ respectively. However note that I have not dropped a tilde in the denominator of the

right-hand side of eq. (A.49):
(
T−1

)ν is a map Rd → R like any other, and we are applying to it

the same canonical coordinate frame vector ∂
∂xµ on Rd that appears in eq. (A.48). What the x̃µ

in the denominator of the more standard expression actually denotes is that we evaluate this

derivative at a different point in Rd , namely the image of p under the new coordinates x̃.

A.2.2 Relating the frames via the transition map

To obtain the standard frame transformation law let’s recall that each frame is the pushfor-

ward of the canonical frame on Rd by the corresponding coordinate system:

∂µ =
(
x−1)

∗

(
∂

∂xµ

)
, ∂̃µ =

(
x̃−1)

∗

(
∂

∂xµ

)
. (A.50)

To write ∂µ in terms of ∂̃µ we use the fact that the definition T = x̃ ◦ x−1 of the transition map

implies that x−1 = x̃−1 ◦T. Then from Lemma A.2, specifically the result (F ′ ◦F )∗ = F ′∗ ◦F∗, it

follows that

∂µ =
(
x̃−1 ◦T)

∗

(
∂

∂xµ

)
= (

x̃−1)
∗

(
T∗

∂

∂xµ

)
(A.51)

For clarity let’s consider the above at some p ∈ M :

∂µ
∣∣

p = d
(
x̃−1)

x̃(p) ◦dTx(p)
∂

∂xµ

∣∣∣∣
x(p)

(A.52)
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Now let’s apply Theorem A.1 to represent the action of dTx(p) on ∂
∂xµ . In fact we need only the

intermediate step eq. (A.29), with T playing the role of F̂ and x(p) playing the role of x:

dTx(p)
∂

∂xµ

∣∣∣∣
x(p)

= ∂Tν

∂xµ
(
x(p)

) ∂

∂xν

∣∣∣∣
x̃(p)

, (A.53)

using the fact that T◦x= x̃. Using this in the previous expression we then find

∂µ
∣∣

p = ∂Tν

∂xµ
(
x(p)

)
d
(
x̃−1)

x̃(p)

∂

∂xν

∣∣∣∣
x̃(p)

= ∂Tν

∂xµ
(
x(p)

)
∂̃ν

∣∣
p , (A.54)

And this is the standard result: to obtain the old frame at a point p in terms of the new at that

same point, take the function T which gives the new coordinates in terms of the old and eval-

uate its matrix of partial derivatives at the old coordinates of p. Via eq. (A.48) this also be writ-

ten in its more compact and conventional form:

∂µ =
(
∂µx̃

ν
)
∂̃ν. (A.55)

A.2.3 Relating the coframes via the transition map

The coframe transformation law follows straightforwardly from the frame transformation.

Consider the action of the old coframe on a generic v ∈ X(M). Expanding v in the new coor-

dinates as v = ṽµ∂̃µ we have

dxµ (v) = ṽνdxµ (∂̃ν). (A.56)

Using the frame transformation rule (A.55) with x ↔ x̃ and the fact that ṽν = dx̃ν (v) this be-

comes

dxµ (v) = (
∂̃νx

ρ
)
ṽνdxµ (∂ρ) = (

∂̃νx
µ
)

dx̃ν (v). (A.57)

And since this holds for all v ∈X(M) we can drop the v entirely to obtain the relation between

the coframes:

dxµ = (
∂̃νx

µ
)

dx̃ν . (A.58)
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Again evaluating at p ∈ M and expressing in terms of the transition map for clarity:

dxµ
∣∣

p = ∂
(
T−1

)µ
∂xν

(
x̃(p)

)
dx̃ν

∣∣
p . (A.59)

So whereas the old frame is given in terms of the new at a point p by the matrix of partial deriva-

tives of T at the old coordinates x(p), the old coframe is given in terms of the new at p by the

matrix of partial derivatives of T−1 at the new coordinates x̃(p).

A.2.4 The transformation of the components of a generic tensor field

The transformation rule for the components of a generic tensor C ∈ Γk
`

M follow immediately

from the frame and coframe transformation rules. In the new coordinates we have

C = C̃µ
ν∂̃µ⊗dx̃ν (A.60)

and in the old coordinates

C =Cµ
ν∂µ⊗dxν =Cα

β

(
∂αx̃

µ∂̃µ
)⊗ (

∂̃νx
βdx̃ν

)
, (A.61)

so we find

C̃µ
ν =Cα

β∂αx̃
µ∂̃νx

β, (A.62)

i.e. the normal rule: raised indices transform with ∂µx̃ν, and lowered indices transform with

∂̃µx
ν.

A.3 INDUCED PASSIVE TRANSFORMATIONS

In the previous section we considered a generic passive coordinate transformation. We now

restrict ourselves to what I will call induced passive transformations, i.e. those in which the

coordinate systems are related by an automorphism F : M → M of the manifold under consid-
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eration:44

x̃= x◦F−1. (A.63)

In other words the new coordinates of a point p are given by the old coordinates of the point

F−1(p) which is mapped to p by F .

A.3.1 The transition map and the inducing diffeomorphism

A first, very important point is that induced passive transformations are a subset of all passive

transformations: given an arbitrary passive transformation there is no guarantee that there

exists any diffeomorphism (not even a local diffeomorphism!) satisfying the definition (A.63).

To see this let’s (for this section only) take into account the fact that coordinate systems are

generally only locally defined by writing x, x̃ : U ,Ũ ⊆ M →Rd , with the assumption that U ∩Ũ 6=
;.

Even with this additional wrinkle the transition map T= x̃◦x−1 is always defined on U ∩Ũ :

no matter what, we can pick some x ∈ x(U ∩Ũ ), follow x−1 back to U ∩Ũ , and then follow x̃ into

x̃(U ∩Ũ ).

Now let’s solve for F from eq. (A.63):

F = x̃−1 ◦x. (A.64)

We can feed x any p ∈U and end up in x(Ũ ), but we can only feed x(p) into x̃−1 if x(p) ∈ x̃(U ) as

well. In other words F is only defined on a nonempty set if x(U )∩ x̃(Ũ ) 6= ;, i.e. if there is some

common ground between the ranges of coordinate values mapped into by the old and new

coordinate systems, and this is not guaranteed, even though we do assume that U ∩Ũ 6= ;.

To emphasize the difference between T and F let’s contrast their actions. We can write the

44The term “induced” what I’m choosing to call it for the sake of conciseness. I’m unaware of broadly agreed-
upon terminology to make this distinction.
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new coordinate system in terms of the old and the transition map as

x̃=T◦x : M
x−→Rd T−→Rd , (A.65)

or in terms of the old and the inducing diffeomorphism as

x̃= x◦F−1 : M
F−1

−−→ M
x−→Rd . (A.66)

In other words: in the former x takes us from M into Rd , and then T moves us around in Rd ;

while in the latter F−1 first moves us around in M , and then x takes us from M to Rd . And we

are guaranteed to be able to do the former so long as U ∩Ũ is nonempty (and this is a trivial

condition to impose in this context, because if U ∩Ũ is empty then there’s no coordinate trans-

formation of which to speak), while this is not sufficient to guarantee that we can do the latter.

All that being said: we are in this section restricting our considerations to those transfor-

mations for which F does exist, since technically speaking it’s diffeomorphisms of spacetime,

not coordinate transformations, which are the gauge transformations of general relativity. We

will also from here on out return to ignoring the locality of coordinate systems and just write

x, x̃ : M →Rd for simplicity.

Finally observe that, since by definition T = x̃ ◦ x−1 and x̃ = x ◦F−1, when F does exist the

transition map from x to x̃ is the coordinate representation of F−1 in x:

T= x̃◦x−1 = x◦F−1 ◦x−1. (A.67)

And by exactly analogous logic, since x̃ = x ◦F−1 =⇒ x = x̃ ◦F , the transition map is also the

coordinate representation of F−1 in x̃:

T= x̃◦x−1 = x̃◦ (
x̃◦F

)−1 = x̃◦F−1 ◦ x̃−1. (A.68)
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A.3.2 Relating the frames and the coframes via the inducing diffeomorphism

For an induced passive transformation we can straightforwardly rewrite the relationships be-

tween the frames and coframes in terms of the inducing diffeomorphism. Let’s start with the

frame. Since x̃= x◦F−1 implies that x̃−1 = F ◦x−1 we have via lemma A.2

∂̃µ =
(
x̃−1)

∗
∂

∂xµ
= (

F ◦x−1)
∗
∂

∂xµ
= F∗

((
x−1)

∗
∂

∂xµ

)
= F∗∂µ. (A.69)

To relate the coframes via F we the same lemma:

dx̃µ = d
(
xµ ◦F−1)= dxµ ◦d

(
F−1) . (A.70)

And this we can recognize as the pullback by F−1:

dx̃µ = (
F−1)∗ dxµ . (A.71)

So, in short: the new frame is obtained from the old via the pushforward by F , and the new

coframe is obtained from the old via the pullback by F−1. Expressed pointwise the above are

∂̃µ
∣∣

p = dF F−1(p)∂µ
∣∣
F−1(p), dx̃µ

∣∣
p = d

(
F−1)∗

p dxµ
∣∣
F−1(p). (A.72)

A.3.3 Relating the frame and coframe transformation rules of sec. A.3.2 to those of secs.

A.2.2 and A.2.3

In sec. A.3.2 we wrote the new frame and coframe in terms of the old and the inducing diffeo-

morphism:

∂̃µ = F∗∂µ, dx̃µ = (
F−1)∗ dxµ , (A.73)
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while in secs. A.2.2 and A.2.3 we related the frames and coframes via the transition map T =
x̃◦x−1,

∂µ = ∂µx̃ν∂̃ν with
(
∂µx̃

ν
)

p = ∂Tν

∂xµ
(
x(p)

)
,

dxµ = ∂̃νxµdx̃ν with
(
∂̃νx

µ
)

p = ∂
(
T−1

)µ
∂xν

(
x̃(p)

)
.

(A.74)

It follows that in the case of an induced passive transformation eq. (A.73) ought to imply eq.

(A.74). And indeed it does!

To see this let’s start with the inverses of the first:

∂µ =
(
F−1)

∗∂̃µ, dxµ = F∗ dx̃µ . (A.75)

Evaluating at a point p ∈ M for clarity these become

∂µ
∣∣

p = d
(
F−1)

F (p) ∂̃µ
∣∣
F (p), dxµ

∣∣
p = dF∗

p dx̃µ
∣∣
F (p). (A.76)

Now let’s restate the matrix representations of the pushforward and pullback from Theo-

rems (A.1) and (A.2), which are

dG p v = (
∂νGµ

)
p vν∂′µ

∣∣
G(p), dG∗

p ω
′ = (

∂µGν
)

pω
′
νdxµ

∣∣
p , (A.77)

recalling that in the notation of those theorems x and x′ are coordinates on the domain and

codomain of some smooth G : M → M ′ and v ∈ Tp M and ω′ ∈ TG(p)M ′ are a single vector

and one-form respectively (as opposed to fields). Using the coordinate representation Ĝ =
x′ ◦G ◦ x−1 of G , whose component functions are related to the Gµ’s as Ĝµ = Gµ ◦ x−1, we can

rewrite the matrix in the above as

(
∂νGµ

)
p = ∂Ĝµ

∂xν
(
x(p)

)
. (A.78)

Now let’s apply the first of eqs. (A.77) to the first of eqs. (A.76), using the representation
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(A.78). We wish to express ∂µ as a sum of the ∂̃µ’s, so since it’s the x′ of the theorems’ notation

which determines the frame which is summed over in eq. (A.77) it follows that we should iden-

tify the theorems’ x′ with our new coordinates x̃, so that e.g. Gµ = x′µ ◦G 7→ x̃µ ◦F−1 = (
F−1

)µ.

We also need to expand the vector v of the theorem’s notation in components, and the coor-

dinate frame in which we expand v is the same frame which will act on Gµ 7→ (
F−1

)µ in the

matrix. Since the whole point of this exercise is that we don’t already know how to expand the

new frame in terms of the old, and since the role of the v of the theorem is being played by

∂̃µ, it follows that all we can do is also use x̃ for this expansion, meaning that x̃ is playing the

role of both of the theorem’s coordinate systems. It follows that the coordinate representation

of F−1 which will appear when we apply eq. (A.78) is the transition map, Ĝ = x′ ◦G ◦ x−1 →
x̃ ◦F−1 ◦ x̃−1 = T, and thus as promised we do indeed obtain the frame transformation law in

terms of the transition map,

∂µ
∣∣

p = d
(
F−1)

F (p) ∂̃µ
∣∣
F (p) =

(
∂̃ρ

(
F−1)ν)

F (p)
δ
ρ
µ ∂̃ν

∣∣
p = ∂Tν

∂xµ
(
x(p)

)
∂̃ν

∣∣
p , (A.79)

using also the fact that x̃◦F = x.

The second of eqs. (A.76) goes through analogously. We wish to expand dxµ
∣∣

p in terms of

dx̃µ
∣∣

p , so we again identify the x′ of the theorems with x̃, and we need to expand the dx̃µ on

which dF∗
p acts in eq. (A.76) in components, and again our only option is to also choose x̃ for

those coordinates. It follows that here we end up with the coordinate representation of F when

we apply eq. (A.78), i.e. T−1. Thus, again as promised, we obtain the coframe transformation

law in terms of the transition map:

dxµ
∣∣

p = dF∗
p dx̃µ

∣∣
F (p) =

(
∂̃ρFν

)
pδ

µ
ν dx̃ρ

∣∣
p = ∂

(
T−1

)µ
∂xν

(
x̃(p)

)
dx̃ν

∣∣
p . (A.80)
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A.3.4 The transformation of the components of a generic tensor field

We now come, after an exorbitant amount of notation, to the point of this section: the rule

for the transformation of the components of a generic tensor field C ∈ Γk
`

M , in terms of the

inducing diffeomorphism F . Let’s start with the components in the new coordinates:

(
C̃µ

ν

)
p =Cp

(
dx̃µ

∣∣
p , ∂̃ν

∣∣
p

)
=Cp

(
d
(
F−1)∗

p dxµ
∣∣
F−1(p),dF F−1(p)∂ν

∣∣
F−1(p)

)
. (A.81)

And from eq. (A.6) we recognize this last as the pullback of the generic mixed tensor C by the

inducing diffeomorphism F from p to F−1(p):

(
C̃µ

ν

)
p =

(
dF∗

F−1(p) Cp

)(
dxµ

∣∣
F−1(p),∂ν

∣∣
F−1(p)

)
=

((
F∗C

)
µ
ν

)
F−1(p)

, (A.82)

or without reference to the point p

C̃µ
ν =

(
F∗C

)
µ
ν ◦F−1. (A.83)

In other words the components of C at p in the new coordinates are the components of F∗C at

F−1(p) in the old coordinates.

From eq. (A.82) we can use Theorem A.3 to obtain the more familiar form of the transfor-

mation law in terms of the matrix of partial derivatives of F :

(
C̃µ

ν

)
p = (

dF∗
F−1(p) Cp

)
µ
ν =

(
∂α

(
F−1)µ)

p

(
∂νFβ

)
F−1(p)

(
Cα

β

)
p . (A.84)

Note that the derivative on F−1 is the frame of the old coordinates, and therefore the same as

the derivative on F , since by evaluating the components of F∗C in the old coordinates we’re

thinking of F∗C as the pullback of C from M with coordinates x to M with the same coordi-

nates x. In other words the old coordinates x are playing the role of both coordinate systems in

the notation of Theorem A.3. That being said, observe that when we write the matrices explic-
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itly in terms of the transition map (i.e. the coordinate representation of F ) we obtain

(
∂µFν

)
F−1(p) =

∂
(
Fν ◦x−1

)
∂xµ

(
x◦F 1 (p)

)= ∂
(
T−1

)ν
∂xµ

(
x̃(p)

)
,(

∂µ
(
F−1)ν)

p
= ∂

(
(F−1)ν ◦x−1

)
∂xµ

(
x(p)

)= ∂Tν

∂xµ
(
x(p)

)
,

(A.85)

i.e. precisely the matrices which are more typically written ∂xν
/
∂x̃µ and ∂x̃ν

/
∂xµ , so we do

recover the familiar result that (in standard physics parlance) raised indices transform with

∂x̃ν
/
∂xµ and lowered indices transform with its inverse ∂xν

/
∂x̃µ .

Note finally that the point F−1(p) at which we evaluate the right hand side of eq. (A.82) is

precisely the point whose old coordinates (under x) are the same as the new coordinates of p

(under x̃), which we can also see by noting that eq. (A.83) implies that

C̃µ
ν ◦ x̃−1 = (

F∗C
)
µ
ν ◦x−1. (A.86)

Thus, in short: if you want to know the new components of C at some p ∈ M , go to the point

F−1(p) whose old coordinates agree with the new coordinates of p, and find the old compo-

nents of F∗C there.

A.4 ACTIVE TRANSFORMATIONS

In the previous sections we considered passive coordinate transformations. In other words we

left the tensor fields themselves unchanged and only swapped out the coordinates in which

we expressed them. In sec. A.2 we considered a general such transformation, only exchanging

one coordinate system x for another x̃, while in sec. A.3 we considered the case in which x̃ is

obtained from x via a diffeomorphism F of the manifold.

In this section we consider instead active transformations: as in sec. A.3 we begin with a

coordinate system x : M → Rd and a diffeomorphism F : M → M , but we now leave the co-

ordinate system alone and instead think of F as acting on the various tensor fields of interest
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themselves,

C ∈ Γk
`M 7→ C̃ ≡ F∗C . (A.87)

In other words instead of being interested in the relationship between the components of a

single tensor field C ∈ Γk
`

M in two different coordinate systems, we’re now interested in the

relationship between the components of the distinct tensor fields C ,F∗C ∈ Γk
`

M in the same

coordinate system x. However it’s immediately apparent that this relationship is (almost) pre-

cisely the same, formally speaking, as the passive transformation law (A.83):

C̃µ...ν
ρ...σ = (

F∗C
)
µ...ν

ρ...σ. (A.88)

The only difference between this and the passive transformation rule is the lack of a “◦F−1” on

the end of the active version. But the similarity becomes even more apparent when we con-

sider the coordinate version and compare to eq. (A.86):

C̃µ...ν
ρ...σ ◦x−1 = (

F∗C
)
µ...ν

ρ...σ ◦x−1. (A.89)

The only difference here is the lack of a tilde on the left hand side, which just comes down to

the fact that we are here relating the components of two different tensor fields in the same

coordinate system, whereas in the passive case we are relating the components of the same

tensor field in distinct coordinate systems.

Finally observe that, through Theorem A.3, we can immediately obtain the transformation

law for the active case, which I will again give in the case of a
(1

1

)
tensor for notational brevity:

(
C̃µ

ν

)
p = (

dF∗
p CF (p)

)
µ
ν =

(
∂α

(
F−1)µ)

F (p)

(
∂νFβ

)
p

(
Cα

β

)
F (p), (A.90)

i.e. precisely the passive transformation rule (A.84), just with p 7→ F (p), which manifests in the
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explicit coordinate expressions as

(
∂µFν

)
p = ∂

(
T−1

)ν
∂xµ

(
x̃◦F (p)

)
,

(
∂µ

(
F−1)ν)

F (p)
= ∂Tν

∂xµ
(
x◦F (p)

)
. (A.91)

In other words, the passive and active transformation rules are nearly identical in their coordi-

nate expressions, with the sole difference being that both sides of the passive transformation

rule are evaluated at the same point p, while the right hand side of the active transformation

rule is evaluated at F (p). And this is, once again, emblematic of the sole difference between

active and passive transformations: in a passive transformation we consider F to act on the

observer, whereas in an active transformation we consider it to act on the fields themselves.

A.5 INFINITESIMAL TRANSFORMATIONS

In secs. A.3 and A.4 we showed that, given any coordinate system x : M →Rd and any automor-

phism F : M → M , we can define a passive transformation by constructing a new coordinate

system via x̃ = x ◦ F−1, and equivalently we can define an active transformation by pushing

forward all tensor fields via C 7→ F∗C . In the former we think of the tensor fields as staying the

same while we push the frame and coframe45 forward by F , while in the latter we think of the

observer as staying the same while we pull all tensor fields back by F .

In this section I will provide a rigorous discussion of infinitesimal coordinate transforma-

tions by considering those automorphisms which are parametrized as flows. I will then define

the infinitesimal variation of a tensor under such an infinitesimal coordinate transformation

in terms of the Lie derivative, and interpret this infinitesimal variation in the passive and ac-

tive pictures.

45(the “pushforward” of the coframe by F being its pullback by F−1)
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A.5.1 Flows

Requisite for the definition of infinitesimal coordinate transformations is the notion of flows,

which I will here quickly review in bullet points.

• Given a smooth manifold M a flow domain on M is an open subset DM ⊆ R× M such

that each Dp ≡ {
t ∈R ∣∣ (t , p) ∈ D

}
is an open interval in R containing 0.

• A flow on M is a smooth map F : DM → M for some flow domain DM on M which satis-

fies the following:

– For all p ∈ M we have F (0, p) = p.

– For all t ∈ Dp and t ′ ∈ DF (t ,p) – i.e. for all t ∈ R such that F (t , p) exists, and for all

t ′ ∈ R such that F (t ′,F (t , p)) exists – we have F (t ′,F (t , p)) = F (t + t ′, p). In other

words, thinking of the R-valued argument of F as time, flowing from p for a time t

and then from that point for a further t ′ is equivalent to flowing from p for a time

t + t ′.

A flow is maximal if it cannot be extended to a flow on a larger flow domain, and a flow

is global if its domain is R×M .

• Given a flow F : DM → M and a point p ∈ M define the curve Fp : Dp ⊆ R→ M by Fp (t ) =
F (t , p). Then the generator of F is the vector field p 7→ Ḟp (0).46

• The above assigns to each flow a unique smooth vector field as its generator. However it

does not guarantee that for every smooth vector field there exists a unique flow. This is a

nontrivial result, known as the fundamental theorem of flows (e.g. theorem 9.12 of [? ]):

given any smooth vector field v ∈X(M) there exists a unique maximal flow F : DM → M

whose generator is v and which satisfies the following properties.

46For the heck of it I’ll here remind the reader that the tangent γ̇ to a curve γ : I ⊆ R→ M is given at each t ∈ R
by γ̇(t ) = dγt

(
d
/

dt
∣∣

t

) ∈ Tγ(t )M , and that writing γµ = xµ ◦γ : R→ R in a coordinate system x : M → Rd and unrav-
eling this definition gives the familiar coordinate expression γ̇µ = dγµ

/
dt .
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– For each p ∈ M the curve Fp : Dp → M is the unique maximal integral curve of v

starting at p.

– If t ∈ Dp then DF (t ,p) = Dp − t . In other words suppose that Dp = (−a,b) for some

0 ≤ a,b ∈ R, i.e. that at p we can flow forward in time by an amount b or backward

in time by an amount a. Then if we flow forward by an amount t to F (t , p) it follows

that DF (t ,p) = (−a−t ,b−t ), i.e. from F (t , p) we can flow forward by b−t or backward

by a + t . Even more colloquially: if we start with a past of length a and a future of

length b, and then a time t passes, our past is now longer and our future shorter,

both by that amount of time t .

– Let Mt =
{

p ∈ M
∣∣ (t , p) ∈ DM

} ⊆ M (i.e. the slice of DM defined by t , analogous to

the slice Dp of DM defined by p). Then for each t ∈ R the map47 Ft : Mt → M−t is a

diffeomorphism with inverse F−t : M−t → Mt .

Note in particular that the final bullet point tells us that if Mt = M then Ft is an automor-

phism of M .

A.5.2 Infinitesimal coordinate transformations

The point of the above is that flows provide us with a concrete notion of parametrized diffeo-

morphisms. In previous sections we considered the passive and active transformations de-

fined by individual diffeomorphisms F . By now considering those diffeomorphisms which are

embedded in flows we can consider transformations which are not just individual instanta-

neous transformations between configurations, but rather continuous evolutions which begin

at the identity and smoothly reconfigure the coordinates/tensors (in the passive/active pic-

tures) as the flow parameter evolves. For this reason I will also refer to a flow on M as a contin-

uous transformation of M , and if there exists a neighborhood (−ε,ε) of 0 such that Mt = M for

47To make sense of the domain and codomain observe first that p ∈ Mt implies that t ∈ Dp , and recall from the
previous bullet point that DF (t ,p) = Dp − t . Then in particular −t ∈ DF (t ,p) for all p, since 0 ∈ Dp by definition,
and thus F (t , p) ∈ M−t . In other words: the domain Mt is the set of all points in M which F is capable of pushing
forward by an amount t , i.e. the set of all points in M on which Ft : p 7→ F (t , p) is defined, and F−t is therefore de-
fined on every point in Ft (Mt ), meaning that Ft sends points in Mt to points in M−t .
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all t ∈ (−ε,ε) then any such Ft : M → M is a continuous diffeomorphism on M .

In particular we can now sensibly consider infinitesimal diffeomorphisms, which are those

diffeomorphisms defined by evaluating a continuous diffeomorphism F on M at infinitesimal

values of the flow parameter, i.e. the resulting diffeomorphisms Fε : M → M with ε¿ 1.

These infinitesimal diffeomorphisms yield infinitesimal passive and active transforma-

tions as follows. Let x : U ⊆ M →Rd be a coordinate system and F : DM → M a flow on M .

• PASSIVE. For all t ∈ R such that U ⊆ Mt (i.e. for all t such that Ft is defined on U ) define

Ũt = Ft (U ). Then since by the fundamental theorem of flows Ft is a diffeomorphism

Mt → M−t it follows that the map x̃t : Ũt → Rd defined by x̃t = x ◦ F−t is a coordinate

system on Ũt . The “new” coordinates of some p ∈U ∩Ũt can then be written in terms of

the “old” coordinate representation of the flow as

x̃
µ
t (p) = xµ ◦F−t (p) = Fµ

p (−t ), (A.92)

merrily swapping between notations F (t , p) = Ft (p) = Fp (t ). Now, each Fµ
p : R→ R is

a smooth function and therefore admits a Taylor expansion. Evaluating at infinitesimal

parameter values gives

Fµ
p (−ε) ≈ Fµ

p (0)−εdFµ
p

dt
(0). (A.93)

The first term is just the “old” coordinates Fµ
p (0) = xµ(p) of the point p, while the second

is the components of the generator v ⊆X(M), v : p 7→ vp = Ḟp (0) of the flow:

x̃
µ
ε (p) ≈ xµ(p)−εvµp . (A.94)

• ACTIVE. In the active perspective we think of the flow as acting on the manifold itself,

not on the coordinate system. Thus instead of defining a new coordinate system via x̃ =
x ◦F−ε we define a new point via p̃ = F−ε(p), and compute the coordinates of this point

in the same system x. However these coordinates are just x(p̃) = x◦F−ε(p), and so turning
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the crank yields the exact same steps and the exact same result as before:

x
µ
ε (p̃) ≈ xµ(p)−εvµp , (A.95)

the only difference being the location of the tilde on the left hand side, which is again

reflective of the difference between the active and passive pictures: in the passive pic-

ture we think of xµ− εvµ as the new coordinates of the same point p, which is given by

the old coordinates of the point p̃ which is mapped to p by the diff; while in the active

picture we think of it as the coordinates of p̃ itself in the same unchanged coordinate

system. And these perspectives are quite evidently equivalent.

A.5.3 The infinitesimal variation of a tensor

We now come to the point of this section, which to obtain the infinitesimal variation of a ten-

sor field under the (active or passive) transformation defined by a continuous transformation

F : D → M . As before this variation is in practice equivalent from either perspective and differs

only in its interpretation.

Let’s begin by reiterating the (certainly familiar) expression for the variation of a smooth

function f :R→R under an infinitesimal change x 7→ x +ε of its argument:

δ f (x) ≡ f (x +ε)− f (x) ≈ εd f

dx
(x). (A.96)

This expression is typically thought of as a truncation of the Taylor series of f , but may in fact

be considered to be a direct result of the limit definition of the derivative, evaluated at small

but nonzero ε. This latter perspective is more useful for generalization, since for a generic ten-

sor field C ∈ Γk
`

M on a smooth manifold we do not have an intrinsic Taylor series expansion
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available to us.48 But we do have the Lie derivative, whose limit definition I’ll here recall:

LvC = lim
ε→0

1

ε

((
Fε

)∗C −C
)
, (A.97)

where v is the generator of the continuous transformation F . Considering the difference quo-

tient at small but nonzero ε then gives us our infinitesimal tensor variation:

δC ≡ (
Fε

)∗C −C ≈ εLvC . (A.98)

Let’s interpret this in the active and passive pictures.

• ACTIVE. In the active picture the flow F induces a transformation of the tensor field C

by the pullback C 7→ C̃ = (
Fε

)∗C . The definition above is therefore straightforward: the

infinitesimal variation δC is the difference between the old and new values of the tensor

field at each point,

(δC )p = C̃p −Cp , (A.99)

where the new value at p is found by pulling back the old value at Fε(p) by Fε. Given a

coordinate system x : M → Rd we can write this in components and as a function of the

coordinates as

(δC )µν ◦x−1 = C̃µ
ν ◦x−1 −Cµ

ν ◦x−1. (A.100)

• PASSIVE. In the passive picture the interpretation is a little more subtle. Recall from sec.

A.3 that the coordinate transformation x̃= x◦F−1 induced by a diffeomorphism F results

in a transformation of the components of C as C̃µ
ν = (F∗C )µν ◦F−1. It follows that in the

passive picture the quantity (Fε)∗C , evaluated at any point p, gives the components of

C in the new coordinates x̃ε = x ◦F−ε at the different point Fε(p), and hence the varia-

tion (δC )p compares the components of the same tensor field C in different coordinates

48We could of course treat each component in some coordinate system as a real-valued function of some
number of real variables and use the multivariable Taylor expansion, but the route we text in the main text is
much more transparent and geometrically meaningful.
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systems and at different points. To make this clear let’s consider the components of δC :

(δC )µν = C̃µ
ν ◦Fε−Cµ

ν. (A.101)

To express this as a function of the coordinates let’s compose both sides of the above

with x−1. Using the fact that x̃ε = x◦F−ε we then find

(δC )µν ◦x−1 = C̃µ
ν ◦ x̃−1

ε −Cµ
ν ◦x−1. (A.102)

In other words, to compute δC at the point p ∈ M which corresponds to x ∈ Rd via the

old coordinates x: calculate the components of C in x at p = x−1(x); calculate the com-

ponents of C in the new coordinates x̃ at the point p̃ = x̃−1
ε (x) which corresponds to the

same coordinate value x via the new coordinate system x̃ε; and subtract the former from

the latter.

To emphasize the equivalence of the above perspectives I will note that, in the standard nota-

tions in which all fields are expressed in components as a function of the coordinates and the

explicit maps between spacetime points and coordinate values are suppressed, the active and

passive coordinate representations (A.100) and (A.102) become identical,

(
δC

)
µ
ν(x) = C̃µ

ν(x)−Cµ
ν(x). (A.103)

I will also note that the first of eqs. (A.98) is in fact not specific to infinitesimal variations: given

any diffeomorphism F : M → M we may define the (not necessarily infinitesimal) variation of

the tensor C by

δC = F∗C −C , (A.104)

with the same interpretations as above. It is only in writing δC ≈ ε LvC that we use the as-

sumption that F is infinitesimal.
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A.5.4 Infinitesimal variations in practice

Here I’ll mention two points which are relevant in applying the above to physics.

• THE GENERATOR OF THE COORDINATE TRANSFORMATION. In this appendix I have de-

noted the generator of a continuous transformation F : DM → M as v ∈X(M), in terms of

which an infinitesimal coordinate transformation is given by

x̃µ(p) ≈ xµ(p)−εvµp (A.105)

with |ε| ¿ 1 an infinitesimal value of the flow parameter. In the physics literature it is

standard to absorb the infinitesimal flow parameter into the generator, ξ≡ εv , so that

x̃µ(p) = xµ(p)−ξµp . (A.106)

This is essentially just cosmetic. However it’s useful to keep in mind because in many

contexts, such as the main text of this thesis, it is also common to pull a factor of the

gravitational coupling κ out of ξ:

x̃µ(p) = xµ(p)−κξµp . (A.107)

Eqs. (A.105) and (A.107) are formally identical, and it’s standard (and perfectly legal)

practice to therefore treat κ as the parameter controlling the transformation. I just bring

this up to point out that, if one wants to imagine such a transformation as actually oc-

curring in a physical world like ours in which κ has a single value, then as the contin-

uous transformation smoothly departs the identity what’s really happening is that the

generator ξµ in eq. (A.107) is smoothly growing from zero, due to having an infinitesimal

ε buried in its definition as ξ = εv (with v the actual fixed generator of the transforma-

tion).
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• CALCULATING THE LIE DERIVATIVE. When it comes to actually calculating the Lie deriva-

tive of a tensor field we do not use the limit definition any more than we do for the deriva-

tive of normal functions R→ R. Rather we use the following properties, all of which can

be found in any standard text on differential geometry (e.g. [? ] or [? ]).

– Let u, v ∈X(M). Then Lu v = [u, v]. Given a coordinate frame ∂µ this becomes

Lu v = [u, v] = (
uα∂αvµ− vα∂αuµ

)
∂µ. (A.108)

– Let additionally f ∈C∞(M). Then

Lv f = v( f ), Lv d f = d
(
Lv f

)= d
(
v( f )

)
. (A.109)

– Finally let A and A′ be tensor fields on M of the same (covariant, contravariant, or

mixed) type, and B another tensor field on M (of not necessarily the same type as A

and A′). Then

Lv
(

A+ A′)=Lv A+Lv A′, Lv
(

A⊗B
)= (

Lv A
)⊗B + A⊗ (

Lv B
)
. (A.110)

From these properties the Lie derivative of any tensor field of any type may be obtained.

For example if g ∈ Γ2M then it may be shown that, given some coordinate coframe dxµ,

(
Lv g

)
µν = vα∂αgµν+ gαν∂µvα+ gµα∂νvα. (A.111)

A.6 COORDINATE TRANSFORMATIONS IN PERTURBATION THEORY

In this final section I adapt the ideas developed in Mukhanov, Feldman, and Brandenberger

[80] to the notation and perspective taken so far in this appendix.
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A.6.1 The passive perspective

In the passive perspective of perturbation theory we, per usual, suppose that we have one

spacetime manifold M and multiple coordinate systems x, x̃ : M → Rd . The passive perspec-

tive is defined by associating with every tensor field C ∈ Γk
`

M a background value C̄ ∈ Γk
`
Rd , i.e.

a rank
(k
`

)
tensor field on Rd .

N.B. this background value is not a geometrical object on M : in order to assign a back-

ground value of C to any p ∈ M we first need a way to assign a value of x ∈ Rd to p ∈ M , i.e. a

coordinate system x : M →Rd . Given any such coordinate system we may assign a background

value of C to each p ∈ M by pulling C̄ back by x, and the perturbation of C in this coordinate

system is then defined to be

∆xCp =Cp −dx∗p C̄x(p). (A.112)

In other words an observer with these coordinates would pick a point p ∈ M , use x to pull C̄

back from x(p) ∈ Rd to p, and then subtract this value from the actual value of C at p. In an-

other coordinate system x̃ the perturbation is defined identically, ∆x̃Cp = Cp −dx̃∗p C̄x̃(p), and

the passive transformation from x to x̃ manifests as a transformation of the perturbations,

∆xC 7→∆x̃C .

Before proceeding to the explicit transformation rule for the perturbation I will note that

our definition, p 7→ (
x∗C̄

)
p = dx∗p C̄x(p), of the assignment of a background value of C to the

spacetime point p does indeed reproduce the more familiar statement that the background

value of a tensor field has the same components at the same coordinate values in any coordi-

nate system. To see this let’s consider calculating the components of x∗C̄ :

(
x∗C̄

)
µ
ν(p) = dx∗p C̄x(p)

(
dxµ

∣∣
p ,∂ν

∣∣
p

)
= C̄x(p)

(
d
(
x−1)∗

x(p) dxµ
∣∣

p ,dxp ∂ν
∣∣

p

)
. (A.113)
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To evaluate the arguments we use the facts that49

∂µ
∣∣

p = d
(
x−1)

x(p)

∂

∂xµ

∣∣∣∣
x(p)

, dxµ
∣∣

p = dx∗p dxµ
∣∣
x(p), (A.114)

along with the composition rules (Lemma A.2) for the pushforward and pullback, to find

(
x∗C̄

)
µ
ν(p) = C̄x(p)

(
dxµ

∣∣
x(p),

∂

∂xν

∣∣∣∣
x(p)

)
= C̄µ

ν ◦x(p), (A.115)

where C̄µ
ν refers to the components of C̄ ∈ Γk

`
Rd in the canonical coordinate system of Rd .

Written as a function of the coordinates the above is

(
x∗C̄

)
µ
ν ◦x−1 = C̄µ

ν, (A.116)

meaning that, if two different observers calculate the components of C̄ in their respective co-

ordinate systems x and x̃ at the same coordinate value x (and hence at different points p =
x−1(x) and p̃ = x̃−1(x)), they’ll find the same components, namely the components of C̄ in the

canonical coordinate system on Rd .

In fact, the perturbation ∆xC of C as given in eq. (A.112) is a perfectly well-defined tensor

field in its own right, and we may therefore describe its variation under a change in coordi-

nates x̃= x◦F−1 via eq. (A.98) as we would for any other tensor field:

δ
(
∆C

)
p = dF∗

p

(
∆x̃C

)
F (p) −

(
∆xC

)
p . (A.117)

(Keep in mind that a capital ∆ refers to the perturbation of a tensor in a particular coordinate

system, while a lowercase δ refers to the variation of a tensor under a change of coordinates.)

A convenient feature of this formulation is that the variation of ∆C is identical to the vari-

49To see the latter note that, thinking of the right hand side as a map from Tp M to R, we have dx∗p dxµ
∣∣
x(p) =

dxµ
∣∣
x(p) ◦ dxp = d

(
xµ ◦x)p = dxµ

∣∣
p , since xµ ◦ x = xµ (thinking of xµ as the map which eats a point in Rd and

returns the µth component of its canonical component value).
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ation of C itself, since the background value (by construction) doesn’t change. To see this let’s

evaluate the first term on the right hand side of eq. (A.117):

dF∗
p

(
∆x̃C

)
F (p) = dF∗

p CF (p) −dF∗
p ◦dx̃∗F (p) C̄x̃◦F (p). (A.118)

Since x̃◦F = x this reduces to

dF∗
p

(
∆x̃C

)
F (p) = dF∗

p CF (p) −dxp C̄x(p), (A.119)

and hence the variation of the perturbation becomes

δ
(
∆C

)
p = dF∗

p CF (p) −Cp = (
δC

)
p , (A.120)

as promised. And, via eq. (A.98), this further yields the useful result that the variation of a per-

turbation under an infinitesimal coordinate transformation is given by the Lie derivative of the

full field with respect to the generator of that transformation:

δ
(
∆C

)= δC ≈ εLvC . (A.121)

A.6.2 The active perspective

In the active perspective we consider only one coordinate system x : M → Rd and think of dif-

feomorphisms F : M → M as moving around the tensor fields themselves via C 7→ C̃ = F∗C (as

discussed above). From the active perspective the degrees of freedom of a diffeomorphism-

invariant theory are then in fact equivalence classes of tensor fields, say [C ] = {F∗C |F : M →
M is a diff} for C ∈ Γk

`
M , and with each such equivalence class we associate a background

value C̄ ∈ Γk
`

M .

N.B. unlike the passive perspective we here seem to have constructed the background

value as an actual geometric object on M . However in this case the “non-geometric-ness” of
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C̄ is in fact preserved, and manifests here in the fact that, while the tensor fields themselves

transform under diffeomorphisms as C 7→ F∗C , the background values do not, C̄ 7→ C̄ . In

other words, the physical content of a set of tensor fields is in the equivalence classes to which

they belong, and we are therefore free to change the actual tensor fields at hand by any diffeo-

morphism we please. However we have associated a single background value to each equiv-

alence class, not to each individual tensor field value, and thus any diffeomorphism by which

we change our physical tensor field does not change the background value of that field.

Note also that, since in this perspective the background value doesn’t change under dif-

feomorphisms and neither does the coordinate system, we also preserve (in a much simpler

way) the statement that under diffeomorphisms the components of the background value are

unchanged at a given coordinate value.

In the active perspective we define the perturbation of C by

∆C =C − C̄ . (A.122)

Under a diffeomorphism F : M → M the actual field C changes as C 7→ C̃ = F∗C while the

background value is unchanged, so the perturbation also changes:

∆C̃ = C̃ − C̄ = F∗C − C̄ . (A.123)

The variation of the perturbation under this diffeomorphism is therefore identical to the varia-

tion of the full field, just as we found in eq. (A.120) for the passive case:

δ
(
∆C

)= F∗C −C = δC . (A.124)

And by the same logic the variation under an infinitesimal active transformation is given by
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the Lie derivative with respect to the generator of that transformation,

δ
(
∆C

)= δC ≈ εLvC , (A.125)

as in eq. (A.121).

A.6.3 The infinitesimal variation of the metric perturbation

The above construction of a background value and perturbation for any tensor field applies

to any smooth manifold M , and in particular makes no reference to any metric on M . Thus if

we do have a metric g on M then the whole construction applies to g as it would for any other

rank
(0

2

)
tensor field on M , so we can write (in e.g. the active perspective)

g = ḡ +∆g ≡ ḡ +κh, (A.126)

pulling out a factor of the gravitational coupling κ to give the metric perturbation h its canoni-

cal mass dimension of one.

In the main text we’ll be interested in an expression for the variation of h under an in-

finitesimal transformation x̃µ = xµ−κξµ (in the language of sec. A.5.4) in terms of h itself (as

opposed to the full metric g ) in the particular case where the background metric is flat, ḡ = η.

In terms of the Lie derivative this is

δh = 1

κ
δ
(
∆g

)=Lξg . (A.127)

This can be evaluated straightforwardly from eq. (A.111), which tells us the Lie derivative of

the full metric: (
Lξg

)
µν = ξα∂αgµν+ gαν∂µξ

α+ gµα∂νξ
α. (A.128)
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Using gµν = ηµν+κhµν we then find50

δhµν = ∂µξν+∂νξµ+κ
(
ξα∂αhµν+hαν∂µξ

α+hµα∂νξ
α
)
. (A.129)

In fact an identical expression holds for an arbitrary background metric with the partial

derivatives replaced by the covariant derivative with respect to the background. We can see

this by keeping track of the partial derivatives of the background metric in the Lie derivative of

the full expanded metric:

δhµν = ξρ∂ρ
(
ḡµν+κhµν

)+ ((
ḡρν+κhρν

)
∂µ+

(
ḡρµ+κhρµ

)
∂ν

)
ξρ

= ξρ∂ρ ḡµν+ ḡρν∂µξ
ρ+ ḡρµ∂νξ

ρ+κ
(
ξρ∂ρhµν+hρν∂µξ

ρ+hρµ∂νξ
ρ
)
.

(A.130)

Now recall that the covariant derivative ∇̄ with respect to the background metric acts on ξ and

h as

∇̄αξβ = ∂αξβ+Γβαγξγ, ∇̄αhβγ = ∂αhβγ−Γδαβhδγ−Γδαγhβδ. (A.131)

Hence if we write down the κ coefficient with ∇̄’s in place of ∂’s and expand we find

ξρ∇̄ρhµν+hρν∇̄µξρ+hρµ∇̄νξρ =
(
ξρ∂ρhµν−ξρΓαρµhαν−ξρΓαρνhµα

)
+

(
hρν∂µξ

ρ+hρνΓ
ρ
µαξ

α
)
+

(
hρµ∂νξ

ρ+hρµΓ
ρ
ναξ

α
)

= ξρ∂ρhµν+hρν∂µξ
ρ+hρµ∂νξ

ρ

(A.132)

with the second term in the first set of brackets cancelling with the second term in the second,

and the third in the first cancelling with the second in the third. So in other words we recover

the κ coefficient.

To rewrite the κ0 coefficient in terms of ∇̄ we need to dig into the actual definition of the

Christoffel symbol. Considering the Christoffel symbol part of the ∂ 7→ ∇̄ version of the last

50Keep in mind that δhµν are the components of the variation δh of h, not the variation of the components
hµν of h.
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term in that coefficient, we have

ḡµρΓ
ρ
νσξ

σ = 1
2 ḡµρgρα

(
∂νgασ+∂σgαν−∂αgνσ

)
ξσ = 1

2ξ
ρ
(
∂νgµρ+∂ρgµν−∂µgνρ

)
. (A.133)

If we symmetrize in µ↔ ν the antisymmetric part (the first and third terms) vanishes, yielding

ḡρνΓ
ρ
µσξ

σ+ ḡρµΓ
ρ
νσξ

σ = ξρ∂ρgµν, (A.134)

i.e. the first term in the κ0 coefficient. And since the partial derivative parts of ḡρν∇̄µξρ+ḡρµ∇̄νξρ

are precisely the second and third terms in this coefficient it follows that this coefficient is

given in terms of the covariant derivative by

ξρ∂ρ ḡµν+ ḡρν∂µξ
ρ+ ḡρµ∂νξ

ρ = ḡρν∇̄µξρ+ ḡρµ∇̄νξρ = ∇̄µξν+∇̄νξµ. (A.135)

So in sum the gauge transformation of the metric perturbation is given by

hµν 7→ h′
µν = hµν+

(
∇̄µξν+∇̄νξµ

)
+κ

(
ξρ∇̄ρhµν+hρν∇̄µξρ+hρµ∇̄νξρ

)
, (A.136)

as promised.
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