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Abstract

We characterize different classes of Cohen-Macaulay local rings (R,m,k) with positive Krull di-

mension in terms of MCM approximations of finitely-generated R-modules.

Assume R has a canonical module. For each finitely-generated R-module M, Auslander’s δ -

invariant δR(M) equals the rank of a maximal free direct summand of the minimal MCM approxi-

mation XM of M. We have δR(R/m) = 1 if and only if R is a regular local ring. Auslander defined

the index of R, denoted index(R), as the infimum of positive integers n such that δR(R/mn) = 1.

When R is Gorenstein, we have index(R)≤ gℓℓ(R)< ∞, where gℓℓ(R) denotes the generalized

Loewy length of R, the smallest positive integer n such that mn ⊆ xR for some system of parameters

x for R. We call such a system of parameters a witness to the generalized Loewy length of R.

In Chapter 3, we generalize a theorem of Ding, who proved that if R is Gorenstein with infinite

residue field k and Cohen-Macaulay associated graded ring grm(R), then gℓℓ(R) = index(R). We

prove that if R is a one-dimensional Cohen-Macaulay local ring with finite index and nonzerodivi-

sor x of order t with grm(R)-regular initial form x∗, then gℓℓ(R)≤ index(R)+ t −1.

We use this estimate to derive a formula for the generalized Loewy length of a one-dimensional

hypersurface R = kJx,yK/( f ). If z is a witness to gℓℓ(R) such that z∗ is grm(R)-regular, then

gℓℓ(R)= ordR(z)+e(R)−1, where e(R) denotes the Hilbert-Samuel multiplicity of R. We compute

the generalized Loewy lengths of several families {Rn}∞
n=1 of one-dimensional hypersurfaces over

finite and infinite fields such that gℓℓ(Rn) = index(Rn) for all n ≥ 1 or gℓℓ(Rn) = index(Rn)+ 1

for all n ≥ 1. Lastly, we study a graded version of the generalized Loewy length of a Noetherian

local ring for Noetherian k-algebras (R,m,k), where k is an arbitrary field and m is the irrelevant



ideal of R. This invariant is called the generalized graded length of R and denoted ggl(R). After

determining bounds for ggl(R) in terms of gℓℓ(R) and the degrees of generators for R, we compute

the generalized graded length of numerical semigroup rings. We also characterize witnesses to the

generalized graded length of numerical semigroup rings for semigroups with two generators.

In Chapter 4, we study criteria for when an MCM module over a Gorenstein complete local

ring R is stably isomorphic to an MCM approximation of a finitely-generated R-module of some

fixed positive codimension r. If this condition holds for an MCM R-module M, we say with Kato

that M satisfies the SCr-condition. If this condition holds for every MCM R-module, we say that

R satisfies the SCr-condition.

Only the SC1- and SC2- conditions have been characterized for Gorenstein complete local rings

R. Kato proved that R satisfies the SC1-condition if and only if R is a domain, and R satisfies the

SC2-condition if and only if R is a UFD. For rings of dimension d ≥ 3 and 3 ≤ r ≤ d, we prove an

inductive criterion for when an MCM R-module satisfies the SCr-condition when its first syzygy

module Ω1
R(M) satisfies the SCr−1-condition. We use this criterion to prove the equivalence of the

SCd- and SCd−1-conditions for Gorenstein complete local rings of dimension d ≥ 3 that remain

UFDs when factoring out certain regular sequences of length d −2.
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1 | Introduction

The unifying theme of this dissertation is the theory of maximal Cohen-Macaulay (MCM) approx-

imations, originally constructed by Auslander and Buchweitz in the context of abelian categories

[1]. We apply this theory to the category of finitely-generated modules over a Cohen-Macaulay

local ring (R,m,k) with canonical module. Every module M has a unique short exact sequence

0 −→ YM
ι−−→ XM

π−−→ M −→ 0

where XM is an MCM R-module, YM has finite injective dimension over R, and the modules XM

and YM have no direct summand in common via ι , called the minimal MCM approximation of M.

The module XM is called the minimal MCM approximation of M as well.

The construction of MCM approximations is motivated in part by the orthogonality relation

between MCM modules and modules of finite injective dimension, described in Proposition 2.2.3.

In particular, for each integer i > 0, we have ExtiR(Z,W ) = 0 for each MCM R-module Z and each

finitely-generated R-module W of finite injective dimension. Moreover, for each MCM R-module

Z, every R-map Z −→ M factors through XM. We are able to characterize different classes of

Cohen-Macaulay rings in terms of minimal MCM approximations.

Assume R has positive dimension d and let 0 ≤ r ≤ d. With Kato, we say that an MCM

R-module X satisfies the SCr-condition if X is stably isomorphic to the minimal MCM approxima-

tion of a finitely-generated R-module of codimension r. We say that R satisfies the SCr-condition

if every MCM R-module is stably isomorphic to the minimal MCM approximation of a finitely-

generated R-module of codimension r [15]. Every Cohen-Macaulay local ring with canonical
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module satisfies the SC0-condition, since every MCM module is its own minimal MCM approxi-

mation.

In their 2000 paper, Yoshino and Isogawa proved that Gorenstein complete local domains sat-

isfy the SC1-condition. They also proved that a normal Gorenstein complete local ring of dimen-

sion two satisfies the SC2-condition if and only if it is a UFD [25].

In her 2007 paper, Kato proved that a Gorenstein complete local ring satisfies the SC1-condition

if and only if it is a domain, and satisfies the SC2-condition if and only if it is a UFD [15]. More

generally, Leuschke and Wiegand proved that a Cohen-Macaulay local ring with canonical module

satisfies the SC1-condition if and only if it is a domain [17].

For Gorenstein complete local rings R of dimension d, the SCr-conditions for 3 ≤ r ≤ d have

not yet been characterized. Since the SCr+1-condition implies the SCr-condition, rings that satisfy

the SCr-condition for 3 ≤ r ≤ d must be UFDs. In chapter 4, we give a criterion for when an MCM

R-module satisfies the SCr-condition when its first syzygy module satisfies the SCr−1-condition.

With this criterion, we prove the equivalence of the SCd- and SCd−1-conditions for rings that

remain UFDs when we factor out certain regular sequences of length d −2.

Let R be a Cohen-Macaulay local ring with canonical module. In chapter 3, we study a ring

invariant that can be computed using minimal MCM approximations. For each finitely-generated

R-module M, Auslander’s δ -invariant, denoted δR(M), is the rank of a maximal free direct sum-

mand of XM. Consider the δ -invariants of the quotients {R/mn}∞
n=1. For n ≥ 1, we have

0 ≤ δR(R/mn)≤ δR(R/mn+1)≤ 1.

Auslander defined the index of R, denoted index(R), as the infimum of positive integers n for which

δR(R/mn) = 1. By a result of Auslander, a Cohen-Macaulay local ring is a regular local ring if and

only if index(R) = 1 [17, Proposition 11.37].

The index of a Gorenstein local ring R is bounded above by the generalized Loewy length

gℓℓ(R). The generalized Loewy length is more elementary than the index, being defined for a
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Noetherian local ring (R,m) as the smallest positive integer n such that mn ⊆ xR for some system

of parameters x of R. We call such a system of parameters a witness to the generalized Loewy

length of R.

Ding proved that if R is a Gorenstein local ring with infinite residue field and Cohen-Macaulay

associated graded ring grm(R), then index(R) = gℓℓ(R) [8, Theorem 2.1].

It is natural to ask about the relation between the index and generalized Loewy length of R

when either its residue field is finite or the associated graded ring is not Cohen-Macaulay. In [4],

De Stefani gave examples of one-dimensional Gorenstein rings R with infinite residue field and

non-Cohen-Macaulay associated graded ring for which gℓℓ(R) = index(R)+1.

All hypersurfaces have Cohen-Macaulay associated graded ring. Moreover, the index of a

hypersurface is easy to compute, since it equals the Hilbert-Samuel multiplicity e(R). However,

we do not obtain equality of the index and generalized Loewy length for hypersurfaces over finite

fields. In [11], Hashimoto and Shida proved that for R = F2Jx,yK/(xy(x+ y)), index(R) = 3 and

gℓℓ(R) = 4. The inequality between the index and generalized Loewy length results from the fact

that R has no homogeneous linear nonzerodivisors.

Since we have index(R)≤ gℓℓ(R) for any Gorenstein ring R, it is natural to seek an upper bound

for the generalized Loewy length in terms of the index that holds when the residue field is either

finite or infinite. In [8, Theorem 2.1], Ding uses the hypothesis that k is infinite to obtain a maximal

regular sequence consisting of linear forms in (grm(R))1. When k is finite and grm(R) is Cohen-

Macaulay, a maximal regular sequence in grm(R) may consist of homogeneous elements of degrees

greater than one, which cannot be used in Ding’s argument to prove index(R) = gℓℓ(R). However,

if R is a one-dimensional Cohen-Macaulay local ring with finite index and Cohen-Macaulay asso-

ciated graded ring, then we can use a homogeneous grm(R)-regular element of minimal degree to

obtain an upper bound for gℓℓ(R) in terms of index(R). In Theorem 3.2.4 we prove that if grm(R)

has a regular homogeneous element of degree t, then gℓℓ(R) ≤ index(R)+ t − 1. Using this es-

timate, we obtain the following formula for the generalized Loewy length of a one-dimensional

hypersurface.
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Proposition. Let k be a field and S = kJx,yK. Let R = kJx,yK/( f ) with ordS( f ) = e and z ∈ R such

that the initial form z∗ is grm(R)-regular. If z is a witness to gℓℓ(R), then

gℓℓ(R) = ordR(z)+ e−1.

We then compute the generalized Loewy length of infinite families of hypersurfaces over fi-

nite fields, generalizing Hashimoto and Shida’s example of a hypersurface R for which gℓℓ(R) =

index(R)+1. We also give examples of hypersurfaces of the form R = kJx,yK/(xy(xn+yn)) where

k is a finite field and gℓℓ(R) = index(R). Lastly, we study an invariant for Noetherian algebras

over an arbitrary field k that is a graded version of the generalized Loewy length of a Noetherian

local ring. Let (R,m) denote a Noetherian k-algebra R =
∞⊕

i=0
Ri with irrelevant ideal m =

∞⊕
i=1

Ri.

For n ≥ 1, define mn :=
∞⊕

i=n
Ri. The generalized graded length of R, denoted ggl(R), is the smallest

positive integer n such that mn ⊆ xR, where x is a homogeneous system of parameters for R.

In this setting, it is natural to define the generalized Loewy length gℓℓ(R) of R as the smallest

positive integer n such that mn ⊆ xR, where x is a homogeneous system of parameters for R.

Since mn ⊆mn for each n, we have gℓℓ(R)≤ ggl(R). Let x1, ...,xn ∈m be homogeneous elements

generating R. In Proposition 3.4.3, we prove that

a(gℓℓ(R))− (a−1)2 ≤ ggl(R)≤ b(gℓℓ(R))−b+1,

where min{deg(xi)}n
i=1 = a ≤ b = max{deg(xi)}n

i=1. In particular, we have ggl(R) = gℓℓ(R) if

a = b = 1. We compute the generalized graded length of numerical semigroup rings k[H] :=

k[ta1, ..., tan] ⊆ k[t], where |ta| = a and H = ⟨a1, ...,an⟩ is the numerical semigroup generated by

positive integers a1 < · · · < an with gcd(a1, ...,an) = 1. For R = k[H], we have ggl(R) = C+ a1,

where C denotes the conductor of H. When n = 2, the conductor of ⟨a,b⟩ with a < b coprime is

ba−a−b+1, so ggl(R) = ba−b+1.

A homogeneous system of parameters x for a Noetherian k-algebra (R,m) is a witness to the

generalized graded length of R if mg ⊆ xR, where g = ggl(R). We prove that a witness z to the
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generalized graded length of k[ta, tb] satisfies (z) = (t ia), where 1 ≤ i ≤ b−a+1.
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2 | Background

In this chapter, we give definitions and preliminary results required for the results in chapters 3

and 4. Throughout, (R,m,k) is a Noetherian local ring R with unique maximal ideal m and residue

field k = R/m.

2.1 Cohen-Macaulay rings and modules

2.1.1 Krull dimension

Given a prime ideal p⊆m, the height of p, denoted heightp or htp, is the supremum of integers t

such that there exists a chain of prime ideals

p= p0 ⊋ p1 ⊋ p2 ⊋ · · ·⊋ pt ,

where pi is a prime ideal for i = 0, ..., t. The Krull dimension of R, or simply the dimension of R,

denoted dimR, is the supremum of the heights of prime ideals of R.

dimR := sup{heightp |p⊆m is prime}

Since R is Noetherian local, the dimension of R is equal to the height of m, and therefore finite. If

M is a finitely-generated R-module, then the Krull dimension of M, denoted dimR M, is defined as

dimR M := dim(R/AnnR(M)),
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where AnnR(M) denotes the annihilator of M in R [19, Chapter 2].

2.1.2 System of parameters

Let (R,m) be a d-dimensional Noetherian local ring, where d > 0. A sequence of d elements

x = x1, ...,xd in R is a system of parameters (s.o.p.) for R if
√

xR =m. Every Noetherian local ring

has a system of parameters [19, Chapter 5, Theorem 13.4].

2.1.3 Depth

Definition 2.1.1. [2, Chapter 1] Let M be a finitely-generated R-module. An element x ∈ R is a

nonzerodivisor on M if xm ̸= 0 for all nonzero m ∈ M. If also xM ̸= M, then we say x is M-regular.

Definition 2.1.2. [2, Definition 1.1.1] Let t be a positive integer. A sequence of t elements x =

x1, ...,xt in R is an M-regular sequence if the following two conditions hold.

(1) x1 is M-regular.

(2) xi is regular on M/(x1, ...,xi−1)M for each i = 2, ..., t.

When M = R, we simply say that x is a regular sequence. Since xM ̸= M for an M-regular

element x, we have x ∈ m for every M-regular sequence x by Nakayama’s lemma [19, Chapter

1, Theorem 2.2]. Since every regular sequence is part of a system of parameters, we obtain the

following.

Proposition 2.1.3. Let (R,m) be a Noetherian local ring and M ̸= 0 a finitely-generated R-module.

If x = x1, ...,xi ∈m is an M-regular sequence, then

dimR(M/xM) = dimR(M)− i.

Definition 2.1.4. [2, Theorem 1.2.5] An M-regular sequence is maximal if it cannot be extended

to a longer M-regular sequence. Since R is Noetherian, all maximal M-regular sequences have the
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same finite length, which is

min{i |ExtiR(R/m,M) ̸= 0}.

This length is called the depth of M, and denoted depthR M. When M = R, we write depthR for

the depth of the ring R as an R-module.

Lemma 2.1.5. [2, Proposition 1.2.9] Given an exact sequence of finitely-generated R-modules

0 −→ M′ −→ M −→ M′′ −→ 0

we have the following inequalities.

(1) depthR(M)≥ min{depthR(M
′), depthR(M

′′)}

(2) depthR(M
′)≥ min{depthR(M), depthR(M

′′)+1}

(3) depthR(M
′′)≥ min{depthR(M

′)−1, depthR(M)}

2.1.4 Projective dimension

Definition 2.1.6. [2, Chapter 1] Let M be a finitely-generated R-module. A projective resolution

of M is an exact sequence of the form

· · · dn+1−−−→ Pn
dn−−→ · · · −→ P1

d1−−→ P0
d0−−→ M −→ 0 (2.1)

where Pn is a projective R-module for each n ≥ 0. The projective dimension of M, denoted pdR M,

is the infimum of lengths of projective resolutions of M.

Since R is local, projective R-modules and free R-modules are the same, and we also refer to

(2.1) as a free resolution of M.

Definition 2.1.7. [2, Chapter 1] Let M be a finitely-generated R-module. The projective resolution

(2.1) is minimal if dn(Pn)⊆mPn−1 for all n ≥ 1. Every finitely-generated R-module has a minimal

projective resolution which is unique up to isomorphism of chain complexes of R-modules.
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Definition 2.1.8. [2, Chapter 1] Let M be a finitely-generated R-module. For n ≥ 1, the nth syzygy

of M, denoted Ωn
R(M), is the kernel of the (n−1)st chain map in the minimal projective resolution

of M.

Ω
n
R(M) := ker dn−1 for n ≥ 1.

Theorem 2.1.9. [2, Theorem 1.3.3 (Auslander-Buchsbaum)] Let R be a Noetherian local ring, and

M a non-zero finitely-generated R-module with finite projective dimension. Then

pdR M+depthR M = depthR.

2.1.5 The Cohen-Macaulay property

Definition 2.1.10. [2, Definition 2.1.1] Let R be a Noetherian local ring and M a finitely-generated

R-module. If depthR M = dimR M, we say that M is a Cohen-Macaulay R-module. If dimR =

depthR, we say that R is a Cohen-Macaulay local ring, or simply that R is a Cohen-Macaulay

ring. A finitely-generated R-module is a maximal Cohen-Macaulay R-module (MCM R-module)

if depthR M = dimR M = dimR.

Equality of the depth and dimension of a Cohen-Macaulay module is preserved when factoring

out a regular sequence.

Proposition 2.1.11. [2, Theorem 2.1.3] Let R be a Noetherian ring, and M a finitely-generated

R-module. Suppose x is an M-regular sequence. Then M is Cohen-Macaulay if and only if M/xM

is Cohen-Macaulay (over R or R/xR).

The Cohen-Macaulay property makes ring and ideal invariants more tractable. For example, if

R is a Noetherian local ring and p is a prime ideal of R, then

heightp+dimR/p≤ dimR

[19, Chapter 2]. The Cohen-Macaulay property is sufficient for equality to hold.
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Proposition 2.1.12. [2, Corollary 2.1.4] Let R be a Cohen-Macaulay local ring and let p be a

prime ideal of R. Then

heightp+dimR/p= dimR.

For an R-module M, we let AssR(M) or Ass(M) denote the set of associated primes of M.

Proposition 2.1.13. [2, Corollary 2.1.4] Let R be a Noetherian local ring and M a finitely-generated

R-module. If M is Cohen-Macaulay, then for each p ∈ AssR(M), we have

dimR/p= dimR(M) = depthR(M).

2.2 MCM approximations and the canonical module

2.2.1 Cohen-Macaulay local rings with canonical module

Definition 2.2.1. [2, Definition 3.1.7] Let M be a finitely-generated R-module. An injective reso-

lution of M is an exact sequence of the form

0 −→ M −→ I0 −→ I1 −→ · · · −→ In −→ · · ·

where In is an injective R-module for each n ≥ 0.

It is well-known that every R-module has an injective resolution.

Definition 2.2.2. [2, Chapter 3] Let M be an R-module. The injective dimension of M, denoted

idR M, is the infimum of lengths of injective resolutions of M.

When R is Cohen-Macaulay, we can characterize maximal Cohen-Macaulay modules and mod-

ules of finite injective dimension in terms of the vanishing of Ext modules in positive homological

dimension.

Proposition 2.2.3. [17, Theorem 11.2] Let R be a Cohen-Macaulay local ring and let M and N be

non-zero finitely-generated R-modules. The following statements hold.



11

(1) M is MCM if and only if ExtiR(M,Y ) = 0 for all i > 0 and all finitely-generated R-modules Y

of finite injective dimension.

(2) N has finite injective dimension if and only if ExtiR(X ,N) = 0 for all i > 0 and all MCM

R-modules X.

Informally, we can think of MCM modules and modules of finite injective dimension over a

Cohen-Macaulay local ring as orthogonal sets, with the Ext functor in positive homological degree

as an inner product.

Definition 2.2.4. [17, Definition 11.4] Let (R,m,k) be a Cohen-Macaulay local ring. A canonical

module is a finitely-generated R-module ω with the following properties.

(1) ω is MCM.

(2) ω has finite injective dimension over R.

(3) dimk ExtdR(k,ω) = 1.

Theorem 2.2.5. [10, 20] A Cohen-Macaulay local ring R has a canonical module if and only if R

is a homomorphic image of a Gorenstein local ring.

Proposition 2.2.6. [17, Theorem 11.5] Let R be a Cohen-Macaulay local ring. If a Cohen-

Macaulay local ring R has a canonical module, then it is unique up to isomorphism.

The canonical module of a Cohen-Macaulay local ring has the following properties.

Theorem 2.2.7. [17, Theorem 11.5] Let R be a Cohen-Macaulay local ring with canonical module

ω . Let M be a Cohen-Macaulay R-module of codepth t and let M∨ := ExttR(M,ω). The following

properties hold.

(1) EndR(ω)∼= R.

(2) M∨ is also Cohen-Macaulay of codepth t.
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(3) M∨∨ is naturally isomorphic to M.

(4) ω is well-behaved with respect to factoring out a regular sequence, completion, and local-

ization.

The only finitely-generated modules over a Cohen-Macaulay local ring with canonical module

that are both MCM and of finite injective dimension are finite direct sums of copies of the canonical

module [17, Proposition 11.7]. We now define the Cohen-Macaulay rings that we study in this

thesis.

Definition 2.2.8. [2, Definition 3.1.18] A Noetherian local ring R is Gorenstein if R has finite

injective dimension as an R-module.

The canonical module of a Gorenstein local ring R is the ring itself as an R-module. In fact,

a Cohen-Macaulay local ring with canonical module ω is Gorenstein if and only if ω ∼= R [17,

Theorem 11.5]. One advantage of working with a Gorenstein ring R is that an R-module has finite

injective dimension if and only if it has finite projective dimension.

Our first proper class of Gorenstein local rings is the class of complete intersections. Recall that

a Noetherian local ring (R,m) is a regular local ring if m is generated by a system of parameters,

and such a system of parameters is called a regular system of parameters. For a nonzero finitely-

generated R-module M, the minimal number of generators of M is denoted µR(M) and defined as

follows.

µR(M) := dimk(M/mM)

The number µR(m) is called the embedding dimension of R. Since dimR ≤ µR(m), we have R is a

regular local ring if and only if dimR = µR(m) [2, Chapter 2].

Theorem 2.2.9. [2, Theorem 2.2.7] Let (R,m,k) be a Noetherian local ring. The following state-

ments are equivalent.

(1) R is a regular local ring.
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(2) k has finite projective dimension over R.

(3) Every finitely-generated R-module has finite projective dimension over R.

We restrict our attention to a particular class of regular local rings in this thesis-rings of power

series kJx1, ...,xmK in finitely-many variables x1, ...,xm over a field k.

Definition 2.2.10. [2, Definition 2.3.1] A Noetherian local ring (R,m) is a complete intersection if

its m-adic completion R̂ is isomorphic to the quotient of a regular local ring by an ideal generated by

a regular sequence. That is, for some regular local ring S and a regular sequence x = x1, ...,xn ∈ S,

we have R̂ ∼= S/xS.

We focus on complete intersections of the form R = kJx1, ...,xmK/( f1, ..., fn), where k is a

field and f1, ..., fn ∈ kJx1, ...,xmK is a regular sequence. A complete intersection of the form

kJx1, ...,xmK/( f ), where f ∈ (x1, ...,xm) is nonzero, is called a hypersurface ring, or hypersurface.

In summary, we have the following nested classes of Cohen-Macaulay local rings [2, Propo-

sition 3.1.20]. Below, we use the abbreviations “CM local rings” for Cohen-Macaulay local rings

and “local CI rings” for local complete intersection rings.

CM local rings ⊋ Gorenstein local rings ⊋ local CI rings ⊋ local hypersurface rings

2.2.2 MCM approximations

Let R be a Cohen-Macaulay local ring with canonical module ω . We consider an exact sequence

construction that arises from the orthogonality relation between MCM modules and modules of

finite injective dimension. This construction is called a maximal Cohen-Macaulay approxima-

tion, or MCM approximation, and is defined for each finitely-generated R-module. In chapter 3,

we study a ring invariant defined in terms of MCM approximations of the sequence of quotient

modules {R/mn}∞
n=1.
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Definition 2.2.11. [17, Definition 11.8] Let M be a finitely-generated R-module. An MCM ap-

proximation of M is an exact sequence of R-modules

0 −→ Y −→ X −→ M −→ 0

where X is an MCM R-module and Y has finite injective dimension over R.

The following construction is dual to the MCM approximation.

Definition 2.2.12. [17, Definition 11.8] Let M be a finitely-generated R-module. A hull of finite

injective dimension, or FID hull, of M is an exact sequence of R-modules

0 −→ M −→ Y ′ −→ X ′ −→ 0

where Y ′ has finite injective dimension over R and either X ′ is an MCM R-module or X ′ = 0.

The vanishing of Ext1R(X ,Y ) when X is MCM and Y has finite injective dimension yields the

following lifting properties for MCM approximations and FID hulls.

Proposition 2.2.13. [17, Proposition 11.9] Let M be a finitely-generated R-module with MCM

approximation

0 −→ Y ι−−→ X π−−→ M −→ 0.

Let Z
φ−−→ M be an R-map, where Z is an MCM R-module. Then there exists a lifting Z

ψ−−→ X such

that πψ = φ ; i.e., the following diagram commutes.

X π M

φ

Z

ψ

Any two liftings of φ are homotopic, i.e. their difference factors through Y .
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Proposition 2.2.14. [17] Let M be a finitely-generated R-module with FID hull

0 −→ M ι−−→ Y ′ π−−→ X ′ −→ 0.

Let M
φ−−→ Z be an R-map, where Z is an R-module of finite injective dimension. Then there exists

a lifting Y ′ ψ−−→ Z such that ψι = φ ; i.e., the following diagram commutes.

M ι
Y ′

φ

Z

ψ

Any two liftings of φ are homotopic, i.e. their difference factors through X ′.

Although each finitely-generated module has an MCM approximation and FID hull, these are

not unique. We define minimality conditions that give us a unique MCM approximation and FID

hull from which all others are built.

Definition 2.2.15. [17, Definition 11.10] Let s : 0 −→ Y ι−−→ X π−−→ M −→ 0 be an MCM approx-

imation of a non-zero, finitely-generated R-module M. We say that s is minimal if, given any

direct-sum decomposition X = X0 ⊕X1 with X0 ⊆ Im ι , we have X0 = 0.

Definition 2.2.16. [14] Let s′ : 0 −→ M ι−−→Y ′ π−−→ X ′ −→ 0 be an FID hull of a non-zero, finitely-

generated R-module M. We say that s′ is minimal if, given any direct-sum decomposition Y ′ =

Y0 ⊕Y1 such that π(Y0) is a direct summand of X ′, we have Y0 = 0.

Theorem 2.2.17. [17, Proposition 11.13, Theorem 11.17] Let R be a Cohen-Macaulay local ring

with canonical module ω , and let M be a finitely-generated R-module. Then M has a minimal

MCM approximation and minimal FID hull that are unique up to isomorphism of exact sequences

inducing the identity on M. We denote the minimal MCM approximation s and the minimal FID

hull s′ of M as follows.

s : 0 −→ YM −→ XM −→ M −→ 0
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s′ : 0 −→ M −→ Y M −→ XM −→ 0

We sometimes refer to the module XM as the minimal MCM approximation of M. Each MCM

approximation of M can be written as follows for some non-negative integer m [5, Proposition 1.5].

0 −→ ω
m ⊕YM −→ ω

m ⊕XM −→ M −→ 0

Likewise, each FID hull of M can be written as follows for some non-negative integer n [5, Propo-

sition 1.6].

0 −→ M −→ ω
n ⊕Y M −→ ω

n ⊕XM −→ 0

Definition 2.2.18. [15] Two finitely-generated R-modules M and N are stably isomorphic if there

are projective (i.e. free) R-modules P and Q such that M⊕P ∼= N ⊕Q. This is denoted M
st∼= N.

Definition 2.2.19. [25] Let R be a Cohen-Macaulay local ring with canonical module ω . Let

DR(−) := HomR(−,ω) and let M be an MCM R-module. For each integer i < 0, we define the

R-module Ωi
R(M) by Ωi

R(M) := DR(Ω
−i
R (DR(M))).

Lemma 2.2.20. [25] Let R be a d-dimensional Cohen-Macaulay local ring with canonical module.

Let M be a finitely-generated R-module. Then XM
st∼= Ω

−d
R (Ωd

R(M)).

Proposition 2.2.21. [17, Proposition 11.19] Let R be a Cohen-Macaulay local ring with canonical

module ω . Let M be a finitely-generated R-module. Up to adding or deleting direct summands

isomorphic to ω , we have the following.

(i) YM ∼= Y Ω1
R(M)

(ii) XM ∼= XXM

(iii) There is an exact sequence 0 −→ F −→ XM −→ XΩ1
R(M) −→ 0 where F is free.

(iv) If R is Gorenstein, then we also have the following.

• XM
st∼= XΩ1

R(M)
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• XM
st∼= Ω1

R(X
M)

• YM
st∼= Ω1

R(Y
M)

In chapter 4, we study an existence property of minimal MCM approximations motivated by

a uniqueness property of minimal FID hulls [15, Theorem 1.2]. If R is Gorenstein and a finitely-

generated R-module M has finite projective dimension, then the minimal MCM approximation of

M is obtained by truncating its minimal projective resolution.

Proposition 2.2.22. [17, Proposition 11.20] Let R be a Gorenstein local ring and M a finitely-

generated R-module of finite projective dimension. The minimal MCM approximation of M is

0 −→ Ω
1
R(M)−→ F −→ M −→ 0

where F is a free module of minimal rank mapping onto M.

2.2.3 Auslander’s δ -invariant

Definition 2.2.23. [17, Chapter 11] Let Z be a finitely-generated R-module. The free rank of

Z, denoted f-rankZ, is the rank of a maximal free direct summand of Z. In other words, Z ∼=

Z ⊕Rf-rankZ with Z stable, i.e. having no non-trivial free direct summands.

Definition 2.2.24. Let R be a Cohen-Macaulay local ring and M a finitely-generated R-module.

We define δR(M) as the minimum free rank of all MCM R-modules Z for which there exists a

surjective R-map Z −→ M. We refer to δR(−) as Auslander’s δ -invariant.

If R has a canonical module, then Auslander’s δ -invariant is the free rank of the minimal MCM

approximation of a module.

Proposition 2.2.25. [17, Definition 11.24, Proposition 11.27] Let R be a Cohen-Macaulay local

ring with canonical module and M a finitely-generated R-module. Then δR(M) = f-rank XM.

Proposition 2.2.26. [17, Corollary 11.28] For finitely-generated R-modules M and N, Auslander’s

δ -invariant satisfies the following properties.
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(1) δR(M⊕N) = δR(M)+δR(N)

(2) δR(N)≤ δR(M) if there is a surjective R-map M −→ N

(3) δR(M)≤ µR(M)

Consider the sequence of non-negative integers {δR(R/mn)}∞
n=1. For n ≥ 1, we have the ex-

pansion of cosets map R/mn+1 −→ R/mn. By (2), we have δR(R/mn) ≤ δR(R/mn+1). By (3),

we have δR(R/mn) ≤ 1. Therefore, if δR(R/mno) = 1 for some no, then δR(R/mn) = 1 for all

n ≥ no. By a result of Auslander, regular local rings are the Cohen-Macaulay local rings for which

δR(R/mn) = 1 for all n ≥ 1. To prove this, we require the following well-known application of

Theorem 2.2.9.

Lemma 2.2.27. Let R be a d-dimensional Cohen-Macaulay local ring. If every MCM R-module is

free, then R is regular.

Proof. Suppose every MCM R-module is free. Let M be a finitely-generated R-module and let

· · · −→ Pn −→ · · · −→ P0 −→ M −→ 0

be a minimal projective resolution of M. By successive applications of the Depth Lemma, we see

that Ωd
R(M) is MCM, and therefore free. Therefore, the exact sequence

0 −→ Ω
d
R(M)−→ · · · −→ P1 −→ P0 −→ M −→ 0

is a projective resolution of M of finite length. So M has finite projective dimension. By Theorem

2.2.9, R is regular.

Proposition 2.2.28. [17, Proposition 11.37] Let (R,m,k) be a Cohen-Macaulay local ring. The

following are equivalent.

(1) R is a regular local ring
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(2) δR(k) = 1

Proof. Suppose R is regular. By Theorem 2.2.9, the residue field k has finite projective dimension

over R. Since R is a regular local ring, it is Gorenstein, and by Proposition 2.2.22, the minimal

MCM approximation of k is

0 −→m−→ R −→ k −→ 0.

Since f-rankXk = f-rankR = 1, we have δR(k) = 1. Now suppose R is not regular. By Lemma

2.2.27, there is an MCM R-module M that is not free. Write M = N ⊕F , where F is a free R-

module and N has no non-trivial free direct summand. Since N is a nonzero direct summand of

an MCM R-module, it is also MCM. Let n = µR(N). Then N/mN ∼= kn as k-vector spaces and as

R-modules. the following composition of surjective maps gives us a surjection N −→ k.

N −→ N/mN −→ kn −→ k

Since f-rankN = 0, we have δR(k) = 0.

In light of this result, it is natural to ask when the sequence {δR(R/mn)}∞
n=1 stabilizes at one for

different classes of Cohen-Macaulay rings. The smallest positive integer n for which δR(R/mn)= 1

is the following invariant defined by Auslander.

Definition 2.2.29. [17, Chapter 11] Let (R,m) be a Cohen-Macaulay local ring. The index of R,

denoted index(R), is defined as follows.

index(R) := inf{n ≥ 1 |δR(R/mn) = 1}

If δR(R/mn) = 0 for all n ≥ 1, we say that index(R) = ∞.

Proposition 2.2.30. [7, Theorem 1.1] Let R be a Cohen-Macaulay local ring with canonical mod-

ule. Then the index of R is finite if and only if Rp is Gorenstein for each non-maximal prime ideal

p of R.
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Definition 2.2.31. [17, Lemma 11.41] Let R be a Cohen-Macaulay local ring with canonical mod-

ule ω . The trace of ω in R, denoted τω(R), is the ideal of R generated by all R-homomorphic

images of ω in R.

We let e(R) denote the Hilbert-Samuel multiplicity of a ring R.

Proposition 2.2.32. [7, Proposition 2.3] Let R be a d-dimensional Cohen-Macaulay local ring

with canonical module ω such that m⊆ τω(R). Then µR(m)≤ e(R)+d − index(R)+1 and

index(R)≤ e(R).

Theorem 2.2.33. [6, Theorem 3.3] If R is a hypersurface, then index(R) = e(R).
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3 | Generalized Loewy length of Cohen-Macaulay

local and graded rings

We generalize a theorem of Ding relating the generalized Loewy length gℓℓ(R) and index of a

one-dimensional Cohen-Macaulay local ring (R,m,k). Ding proved that if R is Gorenstein, the

associated graded ring is Cohen-Macaulay, and k is infinite, then the generalized Loewy length

and index of R are equal. However, if k is finite, equality may not hold. We prove that if the

index of a one-dimensional Cohen-Macaulay local ring is finite and the associated graded ring has

a homogeneous nonzerodivisor of degree t, then gℓℓ(R)≤ index(R)+ t −1.

Next we prove that if R is a one-dimensional hypersurface ring with a witness to the generalized

Loewy length that induces a regular initial form on the associated graded ring, then the generalized

Loewy length achieves this upper bound. We then compute the generalized Loewy lengths of

several families of examples of one-dimensional hypersurface rings over finite fields. Finally, we

study a graded version of the generalized Loewy length and determine its value for numerical

semigroup rings.

3.1 Ding’s conjecture

Throughout this section, (R,m,k) is a Cohen-Macaulay local ring. Recall that the maximal ideal

of an Artinian local ring is nilpotent.

Definition 3.1.1. Let (R,m) be an Artinian local ring. The Loewy length of R, denoted ℓℓ(R), is
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the smallest positive integer n such that mn = 0.

Suppose R be a d-dimensional Noetherian local ring. If d = 0, then R is Artinian. If d > 0, then

R has a system of parameters x and the ring R = R/xR is Artinian. Let m = m/xR and suppose

ℓℓ(R) = n. Then mn = 0, or equivalently, mn ⊆ xR.

Definition 3.1.2. [17, Chapter 11] Let (R,m) be a Noetherian local ring. The generalized Loewy

length of R, denoted gℓℓ(R), is the smallest positive integer n such that mn is contained in an ideal

generated by a system of parameters for R.

gℓℓ(R) := min{n ≥ 1 |mn ⊆ xR for some s.o.p. x ∈ R}

Proposition 3.1.3. [17, Chapter 11] Let (R,m) be a Gorenstein local ring. Then

index(R)≤ gℓℓ(R).

Proof. Let g = gℓℓ(R). Then there is a system of parameters x ∈m such that mg ⊆ xR. Since R is

Cohen-Macaulay, x is a regular sequence. Consider the expansion of cosets map

R/mg −→ R/xR. (3.1)

The R-module R/xR has finite projective dimension, with truncated minimal projective resolution

0 −→ xR −→ R −→ R/xR −→ 0. (3.2)

Since R is Gorenstein, it follows from Proposition 2.2.22 that (3.2) is the minimal MCM ap-

proximation of R/xR. Therefore, δR(R/xR) = 1. By Proposition 2.2.26 and (3.1), we have

δR(R/mg) = 1. Therefore, index(R)≤ g.

Ding proved the following generalization of Proposition 3.1.3.
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Proposition 3.1.4. [7, Proposition 2.4] Let R be a Cohen-Macaulay local ring with canonical

module ω such that m⊆ τω(R). Then index(R)≤ gℓℓ(R).

If R is Gorenstein with infinite residue field and Cohen-Macaulay associated graded ring grm(R),

then we have equality in Proposition 3.1.4.

Theorem 3.1.5. [8, Theorem 2.1] Let (R,m,k) be a Gorenstein local ring. If k is infinite and

grm(R) is Cohen-Macaulay, then index(R) = gℓℓ(R).

In general, if R is a Cohen-Macaulay local ring that satisfies the equality in Theorem 3.1.5, we

say that R satisfies Ding’s conjecture. Below, we study how the finiteness of the residue field can

cause Ding’s conjecture to fail. In particular, we prove that there are infinitely-many hypersurfaces

with Cohen-Macaulay associated graded ring and finite residue field that do not satisfy Ding’s con-

jecture. Each of our families of hypersurfaces generalizes the following example from Hashimoto

and Shida.

Example 3.1.6. [11, Example 3.2] Let R = F2Jx,yK/(xy(x+y)). Then index(R) = 3 and gℓℓ(R) =

4. Refer to Proposition 3.3.5 for proofs of these claims.

When k is finite, the assumption that grm(R) is Cohen-Macaulay does not guarantee the ex-

istence of a homogeneous system of parameters of degree one x∗1, ...,x
∗
d in (grm(R))1. If a ho-

mogeneous system of parameters in gr(R) does not consist of linear elements, it cannot be used

in Ding’s argument to prove that index(R) = gℓℓ(R). However, if R is a one-dimensional Cohen-

Macaulay local ring with finite index and grm(R) is Cohen-Macaulay, then we can use a homoge-

neous grm(R)-regular element of minimal degree to obtain an upper bound for gℓℓ(R) in terms of

index(R). In Theorem 2.3, we prove that if R is one-dimensional Cohen-Macaulay and grm(R) has

a homogeneous nonzerodivisor z∗, where z ∈ mt \mt+1, then gℓℓ(R) ≤ index(R)+ t − 1. If R is

Gorenstein, then index(R)≤ gℓℓ(R)≤ index(R)+ t −1.

By Theorem 2.2.33, index(R) = e(R) when R is a hypersurface. Therefore, the index of hy-

persurface rings is easy to compute: if R = kJx1, ...,xnK/( f ), m= (x1, ...,xn)R, and f ∈mr \mr+1,



24

then index(R) = e(R) = r. In section 3, we prove that if R is a one-dimensional hypersurface with

a witness z to its generalized Loewy length that induces a regular initial form on grm(R), then

gℓℓ(R) = ordR(z)+ e(R)−1.

We then compute the generalized Loewy lengths of families of examples of one-dimensional hyper-

surface rings with finite residue field and Cohen-Macaulay associated graded ring. These examples

illustrate differences between hypersurface rings R with finite residue field and Cohen-Macaulay

associated graded ring for which gℓℓ(R) = index(R) and gℓℓ(R) = index(R)+ 1. In [4], De Ste-

fani gave examples of one-dimensional Gorenstein local rings with infinite residue field for which

gℓℓ(R) = index(R)+1.

In section 4, we let R be a positively-graded Noetherian k-algebra, where k is an arbitrary field.

We show that several families of one-dimensional standard graded hypersurfaces attain the graded

version of the upper bound for the generalized Loewy length from Theorem 2.3. We then study

a graded version of the generalized Loewy length: the generalized graded length of R, denoted

ggl(R). After determining bounds for ggl(R) in terms of gℓℓ(R) and the minimum and maximum

degrees of generators of R, we compute the generalized graded length of numerical semigroup

rings. For R = k[ta, tb], where a < b, we prove that ggl(R) = ba− b+ 1 and if z is a witness to

ggl(R), then (z) = (t ia) for some 1 ≤ i ≤ 1+b−a.

3.2 Estimating the generalized Loewy length of one-dimensional

Cohen-Macaulay rings

Throughout this section, (R,m,k) is a Noetherian local ring. We assume that R has a nonze-

rodivisor x of order t such that multiplication by x is injective on graded components of the

associated graded ring in degrees less than index(R). Generalizing [8, Lemma 2.3] to this con-

text, we prove that if R is a one-dimensional Cohen-Macaulay local ring with finite index, then
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gℓℓ(R)≤ index(R)+ t −1.

Lemma 3.2.1. Let s and t be positive integers and x ∈ mt \mt+1 an R-regular element. Suppose

the induced map x : mi−1/mi −→mi+t−1/mi+t is injective for 1 ≤ i ≤ s. Then

(ms+t−1,x)/xms ∼= R/ms ⊕ (ms+t−1,x)/xR.

Proof. Let I = xR∩ms+t−1 and W = (I +ms+t)/ms+t . Since W is a k-subspace of ms+t−1/ms+t ,

there is a direct sum decomposition

ms+t−1/ms+t =W ⊕V

for some subspace V ⊆ ms+t−1/ms+t . Let e1, ...,en be a k-basis for V . For each i, let ei = yi,

where yi ∈ms+t−1. Let B denote the R-submodule of (ms+t−1,x)/xms generated by [y1], ..., [yn] ∈

(ms+t−1,x)/xms. We will prove that (ms+t−1,x)/xms = A⊕B, where A = xR/xms. First we show

that

A+B = (ms+t−1,x)/xms.

Choose r1, ...,rα ∈ R such that I = (r1x, ...,rαx). Then ms+t−1/ms+t is generated as a vector

space by {rix}α
i=1 ∪{y j}n

j=1, and by Nakayama’s lemma, ms+t−1 is generated as an R-module by

{rix}α
i=1 ∪{y j}n

j=1. Let [z] ∈ (ms+t−1,x)/xms. Then [z] = r[x]+ r′[v], where r,r′ ∈ R, v ∈ ms+t−1,

and v = r′′x+∑
n
i=1 ρiyi, where r′′,ρi ∈ R. So

[z] = (r+ r′r′′)[x]+
n

∑
i=1

r′ρi[yi] ∈ A+B.

Now we show that A∩B = 0. Let [z] ∈ A∩B. Then [z] = a[x] = ∑
n
i=1 ai[yi], where a,ai ∈ R, and

ax−∑
n
i=1 aiyi ∈ xms. Let ax−∑

n
i=1 aiyi = xy, where y ∈ms. Then ∑

n
i=1 aiyi = (a− y)x ∈ I, so

(a− y)x = 0 ∈ms+t−1/ms+t .



26

If a = y we are done, so assume a− y ̸= 0. Then there is a nonnegative integer l such that a− y ∈

ml \ml+1. Suppose 0 ≤ l < s. Since (a− y)x = 0 in ml+t/ml+t+1, it follows from the injectivity

of the induced map x that a− y ∈ml+1, a contradiction. Therefore, a− y ∈ms, and ax− xy ∈ xms.

Since xy ∈ xms, ax ∈ xms, and [z] = a[x] = [0]. It follows that (ms+t−1,x)/xms = xR/xms ⊕B and

B∼=(ms+t−1,x)/xR. Since x is R-regular, it follows that (ms+t−1,x)/xms ∼=R/ms⊕(ms+t−1,x)/xR.

Lemma 3.2.2. Let (R,m) be a local ring, I ⊆ R an ideal, and x,y ∈m such that (x, I) = (y). If I is

not a principal ideal, then (x) = (y).

Proof. Let a,b ∈ R and z ∈ I such that y = ax+bz. Let c ∈ R such that x = cy. Then y = acy+bz

and (1−ac)y = bz. Suppose c ∈m. Then 1−ac is invertible and y = (1−ac)−1bz ∈ I, so (y) = I,

which is false. Therefore c is invertible and (x) = (y).

Lemma 3.2.3. [16, Lemma 2.5] Let R be a one-dimensional Cohen-Macaulay local ring and let I

be an m-primary ideal of R. If δR(I)> 0, then I is generated by a regular element.

Theorem 3.2.4. Let (R,m) be a one-dimensional Cohen-Macaulay local ring for which index(R)

is finite. Let s = index(R) and x ∈mt \mt+1 a nonzerodivisor, where t ≥ 1. If the induced map

x : mi−1/mi −→mi+t−1/mi+t

is injective for 1 ≤ i ≤ s, then

gℓℓ(R)≤ index(R)+ t −1.

If ms+t−1 is not a principal ideal, then ms+t−1 ⊆ (x).

Proof. By Lemma 3.2.1, (ms+t−1,x)/xms ∼= R/ms ⊕ (ms+t−1,x)/xR, so there is a surjection

(ms+t−1,x)−→ R/ms.

Therefore, δR((m
s+t−1,x)) > 0. By Lemma 3.2.3, (ms+t−1,x) is a parameter ideal of R. Let
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(ms+t−1,x) = (y), where y ∈ m is a regular element. Since ms+t−1 ⊆ (y), we have gℓℓ(R) ≤

s+ t −1. If ms+t−1 is not a principal ideal, then by Lemma 3.2.2 we have ms+t−1 ⊆ (x).

Corollary 3.2.5. Let (R,m) be a one-dimensional Cohen-Macaulay local ring with canonical mod-

ule ω such that m⊆ τω(R). Let x ∈mt \mt+1 such that x∗ ∈ grm(R) is a regular element. Then

index(R)≤ gℓℓ(R)≤ index(R)+ t −1.

Proof. This follows from Proposition 3.1.4 and Theorem 3.2.4

3.3 Examples

In this section we derive a formula for the generalized Loewy length of one-dimensional hyper-

surface rings and compute the generalized Loewy lengths of several families of examples of one-

dimensional hypersurfaces. The associated graded ring of each of these hypersurface rings has a

homogeneous nonzerodivisor of degree one or two, so the index and generalized Loewy length

differ by at most one.

Using techniques from the proof of [11, Example 3.2], we prove that for several families of

hypersurfaces {Rn}∞
n=1,

gℓℓ(Rn)− index(Rn) = 1

for n ≥ 1. This difference is positive for each n because of the absence of a regular linear form in

certain one-dimensional hypersurface rings over finite fields.

Throughout this section, S = kJx,yK, where k is a field and n = (x,y)S. We say that the order

of an element f ∈ S is r if f ∈ nr \ nr+1, and write ordS( f ) = r. Let R = S/( f ), where f ∈ n.

Let m = (x,y)R. The order of an element z ∈ R is r if z ∈ mr \mr+1, and we write ordR(z) = r.

Recall that index(R) = e(R). Finally, if (R,m) is any local ring of embedding dimension n, then

µR(m
r)≤

(n+r−1
r

)
.
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Lemma 3.3.1. Let R= kJx,yK/( f ), where ordS( f )= e and g= gℓℓ(R). Let z∈m such that mg ⊆ (z)

and i ≥ 0. If gℓℓ(R)≤ e+ i, then ordR(z)≤ i+1.

Proof. Let ordR(z) = r and ζ ∈ nr \nr+1 such that ζ = z. Then ng ⊆ ( f ,ζ ). Let M be the k-vector

space of leading forms of degree g of elements of ( f ,ζ ). Since ordS(ζ ) = r, we obtain leading

forms of degree g from this element by multiplying ζ by generators of ng−r. Similarly, we multiply

f by generators of ng−e to obtain leading forms of degree g. Therefore,

dimk M ≤
(

2+(g− e)−1
g− e

)
+

(
2+(g− r)−1

g− r

)
= 2g− (e+ r)+2.

On the other hand, the vector space of forms of degree g in ng has dimension g+ 1. Therefore,

g+1 ≤ 2g− (e+ r)+2 and e+ r ≤ g+1. The result follows from this inequality.

Definition 3.3.2. Let (R,m) be a d-dimensional local ring. A system of parameters x = x1, ...,xd ∈

m is a witness to g = gℓℓ(R) if mg ⊆ (x).

If R is a one-dimensional hypersurface with a witness z to gℓℓ(R) that induces a regular initial

form on grm(R), then we can compute gℓℓ(R) using the following formula. We see that the order

of z is uniquely determined by gℓℓ(R) and e(R).

Proposition 3.3.3. Let R= kJx,yK/( f ), where ordS( f )= e and z∈m such that z∗ is grm(R)-regular.

If z is a witness to gℓℓ(R), then

gℓℓ(R) = ordR(z)+ e−1.

Proof. Recall that index(R) = e. Let g = gℓℓ(R) and n = g− e. Then g = e+ n and by Lemma

3.3.1, ordR(z)≤ n+1. By Theorem 3.2.4, g ≤ e+ordR(z)−1 ≤ e+n = g.

If we cannot find an element of a one-dimensional hypersurface that is a witness to gℓℓ(R) and

induces a regular form on gr(R), then we can use the following lemma to estimate the generalized

Loewy length.

Lemma 3.3.4. Let R = kJx,yK/( f ), where ordS( f ) = e ≥ 2. If R has no nonzerodivisors of the

form αx+βy, where α,β ∈ k, then gℓℓ(R)> e.



29

Proof. Since index(R) = e, we have e ≤ gℓℓ(R) by Proposition 3.1.4. Suppose gℓℓ(R) = e. Let

z ∈ m such that me ⊆ (z). By Lemma 3.3.1, we have ordR(z) = 1. Let ζ ∈ n \ n2 be a preimage

of z. Note that for each invertible matrix

a b

c d

 ∈ GL2(k), the map φ : S −→ S defined by

φ(x) = ax+by and φ(y) = cx+dy is a k-algebra automorphism. Letting an appropriate invertible

matrix in GL2(k) act on S, we may assume without loss of generality that ζ = x− h for some

nonzero element h ∈ S with ordS(h)≥ 2. Since x is a zerodivisor on R, there is an element g ∈ ne−1

such that f = xg.

Let R′ = S/(ζ ). Since S is a regular local ring and ordS(ζ ) = 1, it follows that R′ is a one-

dimensional regular local ring, and thus a discrete valuation ring. Let f denote the image of f in

R′. Then

R/(z)∼= R′/( f ).

Since g∈ (x,y)e−1R′ and x= h∈ (x,y)2R′, it follows that f ∈ (x,y)e+1R′, so lR′(R′/( f ))= ordR′( f )≥

e+1 and lR(R/(z))≥ e+1. Now let R1 := R/(z) and m1 :=m/(z). Then

0 =me
1 ⊆me−1

1 ⊆ · · · ⊆m1 ⊆ R1

is a composition series for R1, so lR(R/(z)) = e. This is a contradiction.

If (R,m,k) is a one-dimensional local ring with Cohen-Macaulay associated graded ring and

infinite residue field, then grm(R) has a homogeneous linear nonzerodivisor. We now consider one-

dimensional hypersurface rings with finite residue field such that the associated graded ring does

not have a homogeneous linear nonzerodivisor. If the associated graded ring has a homogeneous

quadratic nonzerodivisor, then it follows from Theorem 3.2.4 and Lemma 3.3.4 that the difference

between the generalized Loewy length and index is one.

Proposition 3.3.5. Let k be a finite field and R = kJx,yK/y( ∏
α∈k

(x+αy)). Then

gℓℓ(R) = index(R)+1 = |k|+2.
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Proof. We construct a homogeneous nonzerodivisor of degree 2 in grm(R). Let f ∈ k[x] be a degree

2 irreducible polynomial. Define g(x,y) ∈ k[x,y] by g(x,y) := y2 f (x
y). We claim that the element

g = g(x,y) ∈ grm(R) = k[x,y]/y(∏
α∈k

(x+αy))

is grm(R)-regular. Let h ∈ k[x,y] such that gh = 0. Then there exists a polynomial p(x,y) ∈ k[x,y]

such that

gh = py(∏
α∈k

(x+αy)).

Let α ∈ k. Suppose (x+αy) | g and q(x,y) ∈ k[x,y] such that (x+αy)q(x,y) = g(x,y). Then

(x+α)q(x,1) = g(x,1) = f (x). This contradicts the irreducibility of f . It follows that (x+αy) | h.

Clearly y ∤ g, so y | h as well, and y( ∏
α∈k

(x+αy)) | h. Therefore we have h = 0, and g is grm(R)-

regular. By Theorem 3.2.4 and Lemma 3.3.4, we have gℓℓ(R) = index(R)+1.

Remark 3.3.6. When k =F2, Proposition 3.3.5 is Hashimoto and Shida’s counterexample to Ding’s

conjecture: F2Jx,yK/(xy(x+y)). In the following propositions, we compute the generalized Loewy

lengths of families of one-dimensional hypersurface rings of the form kJx,yK/(xy(xn+yn)), where

k is a finite field and n is a positive integer.

Proposition 3.3.7. Let n ≥ 1 and k a field such that chark ̸= 2 and chark ∤ 1+(−2)n. Let R =

kJx,yK/(xy(xn + yn)). Then mn+2 = (x+2y)mn+1 and

gℓℓ(R) = index(R) = n+2.

Proof. Since mn+1 is generated by {xn+1−iyi}n+1
i=0 , it follows that (x+ 2y)mn+1 is generated by

{xn+2−iyi +2xn+1−iyi+1}n+1
i=0 . Let

zi = xn+2−iyi +2xn+1−iyi+1 for 0 ≤ i ≤ n+1.
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Since xyn+1 =−xn+1y, we have

n

∑
i=1

(−2)i−1zi = xn+1y+2(−2)n−1xyn+1

= xn+1y−2(−2)n−1xn+1y

= (1+(−2)n)xn+1y.

Since zi ∈ (x+2y)mn+1 for 0≤ i≤ n+1, we have xn+1y∈ (x+2y)mn+1 and mn+2 ⊆ (x+2y)mn+1.

Therefore, gℓℓ(R)≤ n+2 = index(R)≤ gℓℓ(R).

Corollary 3.3.8. Let k be a field of characteristic p > 2 and R = kJx,yK/(xy(xpn
+ ypn

)), where

n ≥ 0. Then mpn+2 = (x+2y)mpn+1, and

gℓℓ(R) = index(R) = pn +2.

Proof. Suppose p | 1+(−2)pn
. Since 1+(−2)pn

= 1−2pn
, we have 2pn

= 1 mod p. Since 2pn
=

2 mod p, it follows that 2 = 1 mod p, which is false. Therefore, p ∤ 1+(−2)pn
. The result now

follows from Proposition 3.3.7.

If we let p = 2 in Corollary 3.3.8, then the generalized Loewy length and index of R differ

by one. This is a special case of Proposition 3.3.12. To prove Proposition 3.3.12, we require

the following results about the reducibility of cyclotomic polynomials modulo prime integers and

primitive roots of powers of prime integers.

Lemma 3.3.9. [18, Theorem 2.47] Let K = Fq, where q is prime and q ∤ n. Let ϕ denote Euler’s

totient function and d the least positive integer such that qd = 1 mod n. Then the nth cyclotomic

polynomial Φn factors into ϕ(n)/d distinct monic irreducible polynomials in K[x] of degree d.

Lemma 3.3.10. [18, Example 2.46] Let p be prime and m ∈ N. Then the pmth cyclotomic polyno-

mial Φpm equals

1+ xpm−1
+ x2pm−1

+ · · · + x(p−1)pm−1
.
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Lemma 3.3.11. [3, Proposition 3.4.1] Let p be a prime and g a positive integer. Then the following

three assertions are equivalent:

(1) g is a primitive root modulo p and gp−1 ̸= 1 mod p;

(2) g is a primitive root modulo p2;

(3) For every i ≥ 2, g is a primitive root modulo pi.

Proposition 3.3.12. Let R = F2Jx,yK/(xy(x2n pm
+ y2n pm

)), where m,n ≥ 0 and p > 3 is a prime

such that 2 is a primitive root modulo p2. Then

gℓℓ(R) = index(R)+1 = 2n pm +3 and

m2n pm+3 ⊆ (x2 + xy+ y2).

If m = 1, then we need only assume that 2 is a primitive root modulo p.

Proof. First assume m > 0. We show that x2 + xy+ y2 is grm(R)-regular. Suppose f ,g ∈ F2[x,y]

such that

(x2 + xy+ y2) f = g(xy(x2n pm
+ y2n pm

)) = g(xy(xpm
+ ypm

)2n
). (3.3)

By Lemmas 3.3.9 through 3.3.11, Φpi(x) is an irreducible polynomial over F2 of degree pi − pi−1

for 1 ≤ i ≤ m. We obtain the following factorization of xpm
+1 into irreducible polynomials over

F2.

xpm
+1 = (x+1)

m

∏
i=1

Φpi(x).

Let hi(x,y) := ypi−pi−1
Φpi(x/y) for i = 1, ...,m. Then hi(x,y) is a homogeneous polynomial of

degree pi − pi−1, and

xpm
+ ypm

= (x+ y)
m

∏
i=1

hi(x,y). (3.4)

We claim that each hi(x,y) is irreducible over F2. Suppose p,q ∈ F2[x,y] such that

hi(x,y) = p(x,y)q(x,y).



33

Since hi is homogeneous, p and q are homogeneous. Let y = 1 in the above equation. Then

Φpi(x) = hi(x,1) = p(x,1)q(x,1).

Since Φpi is irreducible over F2, p(x,1) = Φpi(x) or q(x,1) = Φpi(x). Assume p(x,1) = Φpi(x).

Then p(x,y) = hi(x,y), so hi(x,y) is irreducible. By equations (3.3) and (3.4), we have

hi | (x2 + xy+ y2) or hi | f .

Since the degree of hi is

pi − pi−1 = pi−1(p−1)≥ pi−13,

it follows that hi | f . It is clear that x, y, and x+ y divide f as well, so f ∈ (xy(xpm
+ ypm

)2n
),

and x2 + xy+ y2 is a nonzerodivisor on grm(R). By Theorem 3.2.4 and Lemma 3.3.4, gℓℓ(R) =

index(R)+1 and m2n pm+3 ⊆ (x2 + xy+ y2). If m = 0, then (3.3) becomes

(x2 + xy+ y2) f = g(xy(x2n
+ y2n

)) = g(xy(x+ y)2n
).

It follows that f ∈ xy(x2n
+y2n

), so x2+xy+y2 is a nonzerodivisor on grm(R). Therefore, m2n+3 ⊆

(x2 + xy+ y2) and gℓℓ(R) = index(R)+1.

Remark 3.3.13. Whether there are infinitely many primes p such that 2 is a primitive root modulo

p is an open question. This is a special case of Artin’s conjecture on primitive roots [2, p.66]. A

list of the first primes p for which 2 is a primitive root modulo p is sequence A001122 in the OEIS.

3.4 Generalized Loewy length of graded algebras

We now consider positively-graded Noetherian k-algebras and a graded analogue of the generalized

Loewy length of a local ring. Throughout this section, k is an arbitrary field.
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Definition 3.4.1. Let R =
⊕
i≥0

Ri be a positively-graded Noetherian k-algebra, where R0 = k and

m=
⊕
i≥1

Ri is the irrelevant ideal. For n ≥ 0, let mn :=
⊕
i≥n

Ri. The generalized graded length of R,

denoted ggl(R), is the smallest positive integer n for which mn is contained in the ideal generated

by a homogeneous system of parameters.

In this context, the generalized Loewy length, gℓℓ(R), is the smallest positive integer n for

which mn is contained in the ideal generated by a homogeneous system of parameters. With

Herzog, we note that all of the above definitions can be transferred accordingly to standard graded

Gorenstein k-algebras [12, page 98]. For R = k[x,y]/( f ), one can prove that index(R) = deg( f )

by using Ding’s arguments in [6] to prove the standard graded version of [6, Theorem 3.3]. By the

standard graded version of Proposition 3.3.3, the generalized Loewy length of k[x,y]/( f ) is one

less than the sum of the degree of f and the degree of a witness to gℓℓ(R).

Proposition 3.4.2. Let R = k[x,y]/( f ) be standard graded, where f ∈ k[x,y] is a form of degree e.

Let z ∈ (x,y)R be a witness to gℓℓ(R). Then gℓℓ(R) = degR(z)+ e−1.

Let (R,m) be a positively-graded Noetherian k-algebra. It is clear that for each n ≥ 1, we have

mn ⊆mn, so gℓℓ(R)≤ ggl(R). We now determine upper and lower bounds for ggl(R) in terms of

gℓℓ(R) and the minimum and maximum degrees of generators of R.

Proposition 3.4.3. Let (R,m) be a positively-graded Noetherian k-algebra, where R0 = k and m

is the irrelevant ideal. Suppose x1, ...,xn ∈m are homogeneous elements such that R = k[x1, ...,xn].

Let

min{deg(xi)}n
i=1 = a ≤ b = max{deg(xi)}n

i=1.

Then

a(gℓℓ(R))− (a−1)2 ≤ ggl(R)≤ b(gℓℓ(R))−b+1.

If a = b = 1, then ggl(R) = gℓℓ(R).

Proof. We claim that for n ≥ 0, mnb+1 ⊆ mn+1. This is trivial when n = 0. Suppose the in-

clusion holds for some n ≥ 0. Let x ∈ m(n+1)b+1 be homogeneous, and suppose x =
n
∑

i=1
sixi,
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where each si ∈ R is homogeneous. Then deg(si) ≥ (n+ 1)b+ 1− deg(xi) ≥ nb+ 1. Therefore,

si ∈ mnb+1 ⊆ mn+1, and x ∈ mn+2. This proves the claim. Let n = gℓℓ(R)−1. Then by the above

inclusion, ggl(R)≤ b(gℓℓ(R)−1)+1.

Let m = ggl(R). There exists an integer c ≥ 0 and an integer 0 ≤ l < a such that m = ac+ l.

It is clear that mi ⊆ mia for i ≥ 0. We claim that mi+ j ⊆ mia+ j for i, j ≥ 0. Fix i. If the inclusion

holds for some j ≥ 0, then

mi+ j+1 =m ·mi+ j ⊆m ·mia+ j ⊆mia+ j+1.

It follows that mc+l ⊆mm and c+ l ≥ n = gℓℓ(R). Since ac+al ≥ an, we have

ggl(R)≥ a(gℓℓ(R))− (a−1)l and

ggl(R)≥ a(gℓℓ(R))− (a−1)2.

Let H = ⟨a1, ...,an⟩ be the numerical semigroup with unique minimal generating set 0 < a1 <

a2 < · · · < an, where gcd(a1, ...,an) = 1. Let C denote the conductor of H, the smallest integer

n ∈ H for which every integer larger than n is also in H. Define k[H] := k[ta1 , ..., tan]⊆ k[t], where

k[H] is positively-graded via |ta|= a.

Proposition 3.4.4. Let R = k[H], where H = ⟨a1, ...,an⟩. Then ggl(R) =C+a1.

Proof. Let m = (ta1, ..., tan). It is clear that mC+a1 ⊆ (ta1), so ggl(R) ≤ C+ a1. Let n,d ≥ 0 and

suppose mC+n ⊆ (td). This inclusion holds if and only if tC+n+i ∈ (td) for all i ≥ 0, which is true

if and only if C+n+ i−d ∈ H for all i ≥ 0. This is equivalent to the inequality C+n−d ≥C, or

n ≥ d. Therefore, mC+a1−1 ̸⊆ (td) for all d ∈ H \{0}. It follows that ggl(R) =C+a1.

Corollary 3.4.5. Let R = k[ta, tb], where a < b. Then ggl(R) = ba−b+1.
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Proof. The conductor of ⟨a,b⟩ is ba−a−b+1 [21, page 201].

Veliche notes that for R= kJta, tbK, where a< b and k is infinite, we have gℓℓ(R)= index(R)= a

[24, page 3]. She then determines formulas for the generalized Loewy lengths of Gorenstein

local numerical semigroup rings of embedding dimension at least three over infinite fields. [24,

Corollary 2.4, Corollary 3.3, Proposition 3.9]. If we know the conductor of the semigroup that

determines one of these rings, then the generalized graded length of the corresponding graded ring

is easier to compute than the generalized Loewy length of this local ring.

Proposition 3.4.6. Let R = k[H], where H = ⟨a,b⟩ and a < b. Suppose z is a witness to ggl(R).

Then (z) = (t ia) for some 1 ≤ i ≤ 1+b−a.

Proof. We have R ∼= k[x,y]/(xb − ya) = k[x,y], where deg(x) = a, deg(y) = b, and m= (x,y). Let

z∈m be a witness to ggl(R). Suppose z∈ (y). By Proposition 3.4.4, x is also a witness to ggl(R), so

mab−(b−1) ⊆ (x)∩ (y). Since a < b are coprime, we have b = as+ r for some s > 0 and 0 < r < b,

so

ab− (b−1) = a(as+ r)− (as+ r−1) = a((a−1)s+ r)− (r−1).

It follows that x(a−1)s+r ∈ (x) ∩ (y) = (xy,xb). Since (a−1)s+ r < b, we have x(a−1)s+r = f xy for

some f ∈ k[x,y] and x(a−1)s+r − f xy = gxb −gya for some g ∈ k[x,y]. It follows that f xy−gya =

x(a−1)s+r −gxb. Therefore, y |(x(a−1)s+r −gxb). Since (a−1)s+ r < b, this is false. We conclude

that z ̸∈ (y). Therefore, z = xi for some 1 ≤ i < b. For each n ≥ 1, we have mn ⊆mna, so

mb ⊆mab ⊆mab−(b−1).

It follows that nb ⊆ (xi,xb − ya)S = (xi,ya)S, where n = (x,y)S, and S denotes k[x,y] with the

standard grading. Let M denote the k-vector space generated by monomials of degree b in (xi,ya)S.

Then

dimkM ≤
(

2+(b− i)−1
b− i

)
+

(
2+(b−a)−1

b−a

)
= 2+2b− (a+ i).



37

On the other hand, the k-vector space generated by monomials of degree b in nb has dimension

b+1. It follows that b+1 ≤ 2+2b− (a+ i) and i ≤ 1+b−a.

Definition 3.4.7. Let (R,m) be a positively-graded Noetherian k-algebra, where R0 = k and m is

the irrelevant ideal. Let I ⊆ R be a graded ideal. We say that I is a graded reduction of m of degree

d if there is a positive integer i such that Imi =mi+d .

It is clear that for a numerical semigroup ring k[ta1, ..., tan], the ideal (ta1) is a graded reduction

of m of degree a1. We therefore ask the following questions, which parallel a question asked by

De Stefani [4, Questions 4.5 (ii)].

Questions 3.4.8. Suppose R is a positively-graded Noetherian k-algebra. Is there a witness to

ggl(R) that generates a graded reduction of m? What can be said about the degree of such a graded

reduction?
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4 | SCr-conditions

We study criteria for when MCM modules are MCM approximations of finitely-generated modules

of some fixed codimension. Let R be a d-dimensional Cohen-Macaulay local ring with canonical

module and let M be an MCM R-module. For 0 ≤ r ≤ d, we say that M satisfies the SCr-condition

if M is stably isomorphic to the minimal MCM approximation of a finitely-generated R-module of

codimension r. If each MCM R-module satisfies the SCr-condition, we say R satisfies the SCr-

condition.

Yoshino, Isogawa, and Kato determined the classes of rings which satisfy the SC1- and SC2-

conditions. For d ≥ 3 and 3 ≤ r ≤ d, we prove a criterion for when an MCM R-module M satisfies

the SCr-condition when Ω1
R(M) satisfies the SCr−1-condition. We use this criterion to prove the

equivalence of the SCd- and SCd−1-conditions for Gorenstein complete local rings of dimension

d ≥ 3 that remain UFDs when factoring out certain regular sequences of length d−2. Throughout

this chapter, (R,m) is a Cohen-Macaulay local ring with canonical module.

4.1 The SC1- and SC2-conditions

The minimal MCM approximation and minimal FID hull of a finitely-generated R-module are

unique up to isomorphism by Theorem 2.2.17. By restricting our attention to modules of positive

codimension, we obtain the following uniqueness result for minimal FID hulls.

Theorem 4.1.1. [15, Theorem 1.2] Let R be a Gorenstein complete local ring and M a finitely-

generated R-module with positive codimension. If N is a finitely-generated R-module such that
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XN ∼= XM and Y N ∼= Y M, then M ∼= N.

Since MCM approximations and FID hulls are dual constructions, it is natural to ask if the

map M 7→ XM from finitely-generated modules of positive codimension to isomorphism classes of

MCM modules is surjective. This leads to the following definition.

Definition 4.1.2. [15, Definition 2.1] Let R be a d-dimensional Cohen-Macaulay local ring with

canonical module and let 0 ≤ r ≤ d. An MCM R-module X satisfies the SCr-condition if there is

a finitely-generated R-module M of codimension r such that XM
st∼= X . If every MCM R-module

satisfies the SCr-condition, we say that R satisfies the SCr-condition.

The following result also motivates our study of the SCr-condition.

Proposition 4.1.3. [15, Proposition 2.5] Let R be a Gorenstein complete local ring and let r be a

positive integer. If R satisfies the SCr-condition, then Rp is regular for each prime ideal p of R with

heightp< r.

In the definition of the SCr-condition, it suffices to consider Cohen-Macaulay modules of codi-

mension r, instead of all finitely-generated R-modules of codimension r.

Proposition 4.1.4. [15, Proposition 2.2] Let R be a Gorenstein complete local ring and let X be an

MCM R-module. Let r be a positive integer. The following are equivalent.

(1) X satisfies the SCr-condition; there is a finitely-generated R-module M of codimension r

such that XM
st∼= X.

(2) There is a Cohen-Macaulay R-module C of codimension r such that XC
st∼= X.

Let R be a Gorenstein complete local ring and let X be an MCM R-module that satisfies the

SCr-condition. By Proposition 4.1.4, we have X
st∼= XC, where C is a Cohen-Macaulay R-module of

codimension r. Let C∨ = ExtrR(C,R). Then XC ∼= HomR(Ω
r
R(C

∨),R) and X
st∼= HomR(Ω

r
R(C

∨),R)

[17, Proposition 11.15].
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Since every MCM module is its own minimal MCM approximation, every Cohen-Macaulay

local ring with canonical module satisfies the SC0-condition. We next quote a characterization of

the SC1-condition. Recall that a ring R is generically Gorenstein if the ring Rp is Gorenstein for

each minimal prime p of R [17, page 177].

Proposition 4.1.5. [17, Corollary 11.23] Let R be a Cohen-Macaulay local ring with canonical

module. Assume R is generically Gorenstein. Then the following statements are equivalent.

(1) R satisfies the SC1-condition; that is, every MCM R-module is stably isomorphic to the

minimal MCM approximation of a Cohen-Macaulay R-module of codimenion 1.

(2) R is a domain

Yoshino and Isogawa proved that a Gorenstein complete local ring satisfies the SC1-condition if

it is a domain [25, Section 2]. Kato then proved that these conditions are equivalent for a Gorenstein

complete local ring [15]. Throughout the rest of this chapter, R is a Gorenstein complete local ring.

We first note that the SCr-condition implies the SCi-condition for all i < r.

Proposition 4.1.6. [15, Proposition 2.5] Let R be a Gorenstein complete local ring and let X be an

MCM R-module. Let r > 0. If X satisfies the SCr+1-condition, then X satisfies the SCr-condition.

Therefore, if R satisfies the SCr+1-condition, then R satisfies the SCr-condition.

Suppose R satisfies the SC2-condition. By Proposition 4.1.6, R also satisfies the SC1-condition.

Therefore, R is a domain by Proposition 4.1.4. In [15], Kato proved that R satisfies the SC2-

condition if and only if R is a UFD. Yoshino and Isogawa first proved that the following statements

are equivalent for a normal Gorenstein complete local ring R of dimension two.

(1) R is a UFD.

(2) For any MCM R-module, there is an R-module L of finite length (hence a Cohen-Macaulay

R-module of codimension 2) such that M
st∼= Ω2

R(L).

(3) R satisfies the SC2-condition.



41

Theorem 4.1.7. [15, Theorem 2.9] A Gorenstein complete local ring R satisfies the SC2-condition

if and only if R is a UFD.

4.2 SCr-conditions for MCM modules

In this section, R is a Gorenstein complete local ring. Using arguments from the proof of The-

orem 4.1.7, we prove an inductive criterion for determining when an MCM module satisfies the

SCr-condition. For r > 0, we let CMr(R) denote the class of all Cohen-Macaulay R-modules of

codimension r. We let CM(R) denote the class of MCM R-modules.

Lemma 4.2.1. [25, Theorem 1.4] Let x be a regular sequence in R, and let M be a finitely-

generated R/xR-module. For n ≥ 0, we have Ω
n+1
R (M)

st∼= Ωn
R(Ω

1
R/xR(M)).

Proposition 4.2.2. Let R be a Gorenstein complete local ring of dimension d ≥ 3 and 3 ≤ r ≤ d.

Let M be an MCM R-module and suppose Ω1
R(M) satisfies the SCr−1-condition. Let L∈CMr−1(R)

such that XL
st∼= Ω1

R(M). If there is a regular sequence x ∈ AnnR(L) of length r−2 such that R/xR

is a UFD, then M satisfies the SCr-condition.

Proof. We first prove that Ω
r−1
R (L)

st∼= Ωr
R(M). Taking minimal projective resolutions of L and YL,

we apply the Horseshoe Lemma to the minimal MCM approximation of L and obtain the following
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diagram with exact rows, and columns that are truncated projective resolutions.

0 Ω
r−1
R (YL) Zr−1 Ω

r−1
R (L) 0

0 P′
r−1 Pr−1 P′′

r−1 0

...
...

...

0 P′
0 P0 P′′

0 0

0 YL XL L 0

0 0 0

By the Depth Lemma (Lemma 2.1.5) we have depthR(YL) ≥ min{depthR(XL),depthR(L) + 1}.

Since XL is MCM and depthR(L) = d − (r − 1), we have depthR(YL) > d − (r − 1). By succes-

sively applying the Depth Lemma, we see that Ω
r−1
R (YL) is an MCM R-module of finite projective

dimension. Therefore, Ω
r−1
R (YL) is free by [17, Proposition 11.7]. Likewise, Ω

r−1
R (L) is an MCM

R-module. Applying HomR(Ω
r−1
R (L),−) to the top row in the diagram, we obtain the following

exact sequence.

HomR(Ω
r−1
R (L) , Zr−1)−→ HomR(Ω

r−1
R (L) , Ω

r−1
R (L))−→ Ext1R(Ω

r−1
R (L) , Ω

r−1
R (YL))

Since Ω
r−1
R (L) is MCM and Ω

r−1
R (YL) has finite projective dimension, it follows from Proposition

2.2.3 that

Ext1R(Ω
r−1
R (L) , Ω

r−1
R (YL)) = 0.

Therefore, the top row of the diagram splits and we have Ω
r−1
R (XL)

st∼= Zr−1
st∼= Ω

r−1
R (L). Since

XL
st∼= Ω1

R(M), it follows that Ω
r−1
R (L)

st∼= Ωr
R(M).



43

Let S = R/xR. Then L ∈ CM1(S). Let Ass(L) = {p1, ...,pm} and let Γ := S−
m⋃

i=1
pi. Since L is

a Cohen-Macaulay S-module of codimension 1, we have ht pi = 1 for each i by Proposition 2.1.12

and Proposition 2.1.13. Since S is a UFD, pi is a principal ideal for each i [2, Lemma 2.2.17].

Write pi = (pi), where pi ∈ S. Let q be a nonzero prime ideal of Γ−1S and let h : S −→ Γ−1S

be the localization map. Then h−1(q) ⊆
m⋃

i=1
(pi) is a nonzero prime ideal, and by prime avoid-

ance, h−1(q) ⊆ (pi) for some (pi). Therefore, h−1(q) = (pi) and q = piΓ
−1S. We conclude that

every prime ideal of Γ−1S is principal. Therefore, Γ−1S is a PID. Since Γ−1L is a finitely gen-

erated Γ−1S-module, there are elements a1, ...,at ∈ Γ−1S such that Γ−1L ∼=
t⊕

k=1
Γ−1S/akΓ−1S as

Γ−1S-modules. Let φ : Γ−1L −→
t⊕

k=1
Γ−1S/akΓ−1S be the corresponding isomorphism. Since

L ∈ CM1(S), it follows that L is a torsion S-module, and Γ−1L is a torsion Γ−1S-module. There-

fore, ak ̸= 0 for all k.

Fix k. We claim that each associated prime ideal of I = h−1(akΓ−1S) has height one. Since

I ̸= 0, the associated primes of I have height at least one. Suppose I has an associated prime q of

height greater than one. Then Γ∩ q ̸= /0. Let s ∈ Γ∩ q. Since q is an associated prime of I, there

exists an element x ∈ S \ I such that q = AnnS(x), with x ∈ S/I. Therefore, qx ⊆ I and sx ∈ I. It

follows that sx
1 ∈ akΓ−1S, so x

1 ∈ akΓ−1S and x ∈ I, which is a contradiction. We conclude that

every associated prime of I has height one, and is therefore principal. Let Ass(I) = {(q1), ...,(qm)}.

Take an irredundant primary decomposition of I. Then

I = Q1 ∩Q2 ∩ ...∩Qv,

where for each l,
√

Ql = (ql). We claim that each Ql is a principal ideal. Fix 1 ≤ l ≤ v. We

have Ql ⊆ (ql). Since
⋂

α≥0
(qα

l ) = 0, there is a positive integer α such that Ql ⊆ (qα
l ) and Ql ̸⊆

(qα+1
l ). Since S is Noetherian, Ql is finitely-generated. Write Ql = (y1, ...,yr), where y1, ...,yr ∈ S.

Since Ql ⊆ (qα
l ), there are elements c1, ...,cr in S such that y j = c jqα

l for j = 1, ...,r. So Ql =

(c1qα
l , ...,crqα

l ). Since Ql ̸⊆ (qα+1
l ), there is an index j such that c j ̸∈ (ql). Since c jqα

l ∈ Ql
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and Ql is a primary ideal, qα
l ∈ Ql or cβ

j ∈ Ql for some β > 0. If cβ

j ∈ Ql for some β > 0, then

c j ∈
√

Ql = (ql), which is false. Therefore, qα
l ∈ Ql ⊆ (qα

l ), whence Ql = (qα
l ). We conclude that

Ql is a principal ideal for l = 1, ...,v. Therefore, I is an intersection of principal ideals, and since S

is a UFD, I is also a principal ideal.

Let bk ∈ S such that I = (bk). Then akΓ−1S = bkΓ−1S. We claim that Ass(bk) = Ass(I) ⊆

Ass(L) = {(p1), ...,(pm)}. Suppose q ∈ Ass(I)−Ass(L). Since q has height 1, q∩Γ ̸= /0. Let

s ∈ q∩Γ, and let x ∈ S− I such that q = AnnS(x), with x ∈ S/I. Then sx ∈ I, so sx
1 ∈ akΓ−1S and

x ∈ I, a contradiction. We conclude that Ass(bk)⊆ Ass(L). We may therefore assume that ak ∈ S

and that every associated prime of ak is an associated prime of L. Since there is an isomorphism of

Γ−1S−modules

Γ
−1HomS(L,

t⊕
k=1

S/akS)∼= HomΓ−1S(Γ
−1L,

t⊕
k=1

Γ
−1S/akΓ

−1S),

there is an S-map f : L −→
t⊕

k=1
S/akS such that Γ−1 f = φ . We claim that f is a monomor-

phism. Suppose not. Then ker f ̸= 0, and Ass(ker f ) ̸= /0. Let p ∈ Ass(ker f ). Since Ass(ker f )⊆

Supp(ker f ), we have (ker f )p ̸= 0. Also, since ker f ⊆ L, we have p ∈ Ass L = {p1, ...,pm}. Let

T = S− p and let T ′ be the image of T in Γ−1S. Since Γ = S−
m⋃

i=1
pi, we have Γ ⊆ T . Starting

with our Γ−1S-isomorphism Γ−1 f : Γ−1L −→
t⊕

k=1
Γ−1S/akΓ−1S, we localize at T ′, obtaining the

T−1S-isomorphism

T−1 f : T−1L −→
t⊕

k=1

T−1S/akT−1S.

But this map is just fp : Lp →
t⊕

k=1
Sp/akSp. Therefore, we have 0 = ker( fp) = (ker f )p ̸= 0, a

contradiction. Therefore, ker f = 0 and we have an exact sequence of S-modules

0 −→ L
f−−→

t⊕
k=1

S/akS −→ L′ −→ 0. (4.1)
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Taking minimal projective resolutions of L and L′, the Horseshoe Lemma gives us the following

diagram with exact rows, and columns that are truncated projective resolutions.

0 // Ω1
S(L) //

��

Z1 //

��

Ω1
S(L

′) //

��

0

0 // P0 //

��

P0
⊕

P′
0

//

��

P′
0

//

��

0

0 // L //

��

t⊕
k=1

S/akS //

��

L′ //

��

0

0 0 0

Since pdSS/akS = 1 for each k, we have Ω1
S(S/akS)

st∼= S, and therefore Z1 is stably isomorphic to a

free S-module. Therefore, Ω2
S(L

′)
st∼= Ω1

S(L). Since Ω
r−1
R (L)

st∼= Ωr
R(M), by Lemma 4.2.1 we have

Ω
r−2
R (Ω2

S(L
′))

st∼= Ω
r−2
R (Ω1

S(L))
st∼= Ω

r−1
R (L)

st∼= Ω
r
R(M).

On the other hand,

Ω
r−2
R (Ω2

S(L
′))

st∼= Ω
r−1
R (Ω1

S(L
′))

st∼= Ω
r
R(L

′).

Therefore, Ωr
R(L

′)
st∼= Ωr

R(M). We claim that L′ is Cohen-Macaulay. We have

Supp(L′)⊆ Supp(
t⊕

k=1

S/akS)⊆
t⋃

k=1

Supp(S/akS).

Applying the Depth Lemma to 4.1, we have depthS(L
′)≥ depth(S)−2 = d − r. Since

dimS(
t⊕

k=1

S/akS) = dim(S)−1 = d − r+1,

we have dimS(L′) ≤ d − r + 1. Suppose dimS(L′) = d − r + 1. Then there is a chain of prime

ideals q0 ⊊ q1 ⊊ · · ·⊊ qd−r+1 in Supp(L′). Since q0 ∈ Supp(L′), there exists an index k such that
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q0 ∈ Supp(S/akS). Therefore, q0 ⊊ q1 ⊊ · · · ⊊ qd−r+1 is a chain of prime ideals in Supp(S/akS).

Since the Krull dimension of Supp(S/akS) is d − r + 1, it follows that q0 is a minimal prime in

Supp(S/akS). Therefore, q0 = pi ∈ Ass(L) for some 1 ≤ i ≤ m. Since fpi : Lpi −→
t⊕

k=1
Spi/akSpi is

an isomorphism, we have 0 ̸= L′
q0
= L′

pi
= 0, a contradiction. We conclude that dimS(L′) = d − r

and

L′ ∈ CM2(S)⊆ CMr(R).

Since Ωr
R(L

′)
st∼= Ωr

R(M), by Lemma 2.2.20, we have

XL′
st∼= Ω

−r
R (Ωr

R(L
′))

st∼= Ω
−r
R (Ωr

R(M))
st∼= M.

.

Let Spec(R) denote the set of prime ideals of R and let UR := Spec(R)\{m} denote the punc-

tured spectrum of R. Let Pic(UR) denote the Picard group of UR [9, Chapter 5].

Definition 4.2.3. [9, Chapter 5] A Noetherian local ring R is parafactorial if depth(R) ≥ 2 and

Pic(UR) = 0.

This weaker notion of factoriality gives us the following criterion for determining when a ring

is a UFD. We use this criterion and Kato’s result on regular localizations of rings satisfying the

SCr-condition to study the relation between the SCr-condition and UFDs obtained by factoring

out a regular sequence.

Proposition 4.2.4. [9, Corollary 18.11] Suppose R is a Noetherian local ring such that dim(R)≥ 2.

Then R is a UFD if and only if R is parafactorial and Rp is a UFD for all p ∈UR.

Corollary 4.2.5. Let (R,m) be a Gorenstein complete local ring of dimension d ≥ 3. The following

are equivalent.

(1) R satisfies the SCd−1-condition and for each M ∈ CM(R), there is a module L ∈ CMd−1(R)

such that XL
st∼= Ω1

R(M) and AnnR(L) contains a regular sequence x of length d−2 such that

R/xR is a UFD.
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(2) R satisfies the SCd-condition and for each M ∈ CM(R), there is a module L ∈ CMd−1(R)

such that XL
st∼= Ω1

R(M) and AnnR(L) contains a regular sequence x of length d − 2 that

satisfies the following.

(i) x is a subset of a regular system of parameters for Rp for all prime ideals p ∈ UR

containing x

(ii) Pic(UR/xR) = 0

Proof. (1)⇒ (2). By Proposition 4.2.2, R satisfies the SCd-condition. Let M ∈ CM(R), and let L

and x be as in (1). Let p∈UR be a prime ideal that contains x. Let π : R −→ R/xR be the quotient

map, and let P = π(p). Then P is a prime ideal and height(P) < 2. Since height(p) < d and R

satisfies the SCd-condition, the localization Rp is regular by Proposition 4.1.3. Since R/xR is a

Gorenstein complete local UFD, it satisfies the SC2-condition by Theorem 4.1.7. By Proposition

4.1.3, we have (R/xR)P ∼= Rp/xRp is a regular local ring. Thus, x is a subset of a regular system

of parameters for Rp. Finally, we have Pic(UR/xR) = 0 by Proposition 4.2.4.

(2)⇒ (1) Since R satisfies the SCd-condition, R satisfies the SCd−1-condition by Proposition

4.1.6. Let M ∈ CM(R), and let L and x be as in (2). We prove that R/xR is a UFD. Let P ∈UR/xR

and let p= π−1(P). Then p is a prime ideal containing x and height(p)< d. Since R satisfies the

SCd-condition, Rp is a regular local ring. Since x is a subset of a regular system of parameters for

Rp, we have Rp/xRp
∼= (R/xR)P is a regular local ring, and therefore a UFD [2, Theorem 2.2.19].

Therefore, R/xR is a UFD by Proposition 4.2.4.

Corollary 4.2.6. Let R be a Gorenstein complete local ring of dimension 3. Assume that R is a

UFD and for each M ∈ CM(R) there exists L ∈ CM2(R) such that XL
st∼= Ω1

R(M) and a nonzerodi-

visor x ∈ AnnR(L) such that R/(x) is also a UFD. Then R satisfies the SC3-condition.
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Syracuse University Fall and Spring 2022

○
MAT 295-Calculus I
Syracuse University Spring 2024 and Fall 2023

Recitation Instructor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

○
MAT 397-Calculus III
Syracuse University Spring 2023

○
MAT 296-Calculus II
Syracuse University Spring 2019

○
MAT 295-Calculus I
Syracuse University Fall 2019 and 2018

Service and Mentorship

○
WALKS Founder and Coordinator WALKS website
Syracuse University Spring 2024, Fall and Spring 2023

○
Directed Reading ProgramMentor DRP website
Syracuse University Spring 2024, Fall and Spring 2023, Spring 2021
Spring 2024-Hilbert space theory

Fall 2023-Category theory
Spring 2023-Commutative algebra
Spring 2021-Real analysis

Tutoring Experience

○
Undergraduate Math Tutor
Syracuse University Spring 2024, Fall and Spring 2022, Spring 2021
I worked as a private tutor for the following courses.
- MAT 517-Partial Differential Equations and Fourier Series
- MAT 485-Differential Equations and Matrix Algebra for Engineers
- MAT 414-Ordinary Differential Equations
- MAT 412-Introduction to Real Analysis I
- MAT 397-Calculus III
- MAT 296-Calculus II
- MAT 295-Calculus I
- MAT 286-Calculus for the Life Sciences II
- MAT 285-Calculus for the Life Sciences I
- MAT 284-Business Calculus
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https://sites.google.com/view/walks-algebra-seminar/home
https://artsandsciences.syracuse.edu/mathematics/undergraduate-studies/directed-reading-program/


○
Math and English Tutor Doylestown, PA
C2 Education Fall 2021
I tutored students in Calculus, Pre-Calculus, the SAT and ACT.

○
Math Clinic Tutor
Syracuse University Summer and Spring 2019, Fall and Summer 2018

Professional Memberships
○ American Mathematical Society
○ Mathematical Association of America

4/4


	Numerical invariants of Cohen-Macaulay local and graded rings
	Recommended Citation

	Introduction
	Background
	Cohen-Macaulay rings and modules
	Krull dimension
	System of parameters
	Depth
	Projective dimension
	The Cohen-Macaulay property

	MCM approximations and the canonical module
	Cohen-Macaulay local rings with canonical module
	MCM approximations
	Auslander's -invariant


	Generalized Loewy length of Cohen-Macaulay local and graded rings
	Ding's conjecture
	Estimating the generalized Loewy length of one-dimensional Cohen-Macaulay rings
	Examples
	Generalized Loewy length of graded algebras

	SCr-conditions
	The SC1- and SC2-conditions
	SCr-conditions for MCM modules

	Education
	Research
	Research Interests
	Papers
	Talks and Posters

	Conferences and Workshops Attended
	Awards and Fellowships
	Teaching Experience
	Instructor of Record
	Recitation Instructor

	Service and Mentorship
	Tutoring Experience
	Professional Memberships

