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Abstract

In this thesis, we aim to develop classical and quantum simulations to test holog-

raphy. Holography can be thought of in its most basic form as a duality that

relates a d + 1 dimensional theory to a d dimensional one and the most famous

holographic correspondence is the AdS/CFT duality where d + 1 dimensional

weakly coupled gravity theory is related to a d dimensional CFT.

We start by developing lattice simulations for the N = 4 super Yang-Mills model

and explore an improved supersymmetric lattice action showing that it is free

of the lattice artifacts that plagued earlier lattice theories. We use it to calcu-

late supersymmetric Wilson loops and the non-Abelian Coulomb potential using

Polyakov line correlators. For both of these observables, we demonstrate the

excellent agreement between lattice results and analytical results obtained from

the holographic dual. This constitutes a very non-trivial check for the AdS/CFT

correspondence using non-perturbative classical simulation methods.

In the latter part of this thesis, we extend these ideas to quantum simulations

for a simpler class of model the transverse Ising Model living in an AdS2 space.

We obtain the ground state of this model and explore the phase structure of the

theory using the Density Matrix Renormalization Group (DMRG) . We then ob-

tain the time-evolution of this system using both classical methods such as Time

Evolving Block Decimation (TEBD) and usual quantum simulation techniques.

The most interesting aspects of this model appear when we calculate the out-

of-time-ordered correlators (OTOCs) to investigate the information propagation

and scrambling in this model. We find a region where these OTOCs have a log-

arithmic dependence on the number of degrees of freedom of the system. This

behavior has only been seen previously for models that are all to all or have infi-

nite or long-range interactions. Yet our simple model with only nearest-neighbor

interactions manages to capture this behavior.



This makes this model a very interesting candidate to study information propa-

gation and scrambling using quantum simulations.
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Chapter 1

Introduction

Holography and the AdS/CFT correspondence have been one of the most attractive and well-

studied topic in high-energy physics in the last couple of decades.[1–3] This correspondence

in its most basic form relates a strongly coupled critical system that lives in d-dimensions to

a gravitational theory that lives in d+ 1-dimensions. This very powerful duality has allowed

us to calculate observables in these theories that were previously inaccessible by relating

the strongly coupled gauge theory to a weakly interacting essentially classical gravity theory

where the calculations are tractable. However, one big caveat of AdS/CFT is that it has

only been tested and used in the large N , strong coupling limit where the dual theory is

a classical gravitational system. This hinders our ability to deeply understand the nature

of this duality and use it to predict quantum gravity effects. So the question is, is there a

way to understand this duality outside of this regime? One of the classical approaches to

understanding nonperturbative regimes of high-energy physics models is to develop lattice-

regularized versions of these models and study them via lattice simulations [4]. This approach

has been very successful in probing the phase diagram of many gauge theories including

QCD [5–8]. And naturally many lattice gauge theorists have tried to implement a similar

approach to study holography and AdS/CFT [9–11]. However, there were major obstacles

mainly because lattice discretization breaks Poincare invariance which is essential to preserve

1



supersymmetry. There have been many attempts to solve these problems but we will focus on

the approach of using twisted symmetries or orbifolding which has been developed by Simon

Catterall, David Kaplan, and Mithat Unsal [12] in this thesis. This approach made the

lattice simulation of supersymmetric models possible. However, there were still considerable

obstacles to connecting with the holographic results specifically those that have been derived

for N = 4 SYM model which is dual to a AdS5 × S5 gravitational theory. In this thesis,

we will show how these problems are solved with the inclusion of a new term in the action

[13, 14].

Another way one could use to study non-perturbative physics is to use a Hamiltonian

approach instead of an Euclidean lattice regularization. One main advantage of this approach

is that it makes it possible to use tensor network and quantum computing approaches to

study these models. Also, using tensor network and quantum computing methods makes

real time dynamical simulations of these models possible. Which then can be used to study

the time dependent properties of these models. [15–20]

In this thesis, we will use both of these approaches to study holography using simulations.

First, we will start with investigating one of the most famous models that exhibit AdS/CFT

duality which is the N = 4 super Yang-Mills (SYM) model using lattice simulations. We

will show that with the inclusion of a new term in the lattice action we were successful in

simulating the theory up to arbitrarily large values of its coupling. We then show the excel-

lent agreement between analytical calculations that were done for supersymmetric Wilson

Loops and the non-Abelian coulomb potential of the N = 4 SYM model and the lattice

results. These results constitute a very non-trivial check of holography obtained through

nonperturbative methods.

In the latter part of this thesis, we will focus on the Hamiltonian simulation of an Ising

chain that lives in the discretization of an AdS2 space using Tensor Network methods and

quantum computers. This Ising model is another model that exhibits holographic duality.

We will obtain the ground state and do dynamical simulations to investigate the information
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propagation and scrambling in the context of this model. We will show that this model

can propagate information in a time that depends only logarithmically on the number of

degrees of freedom which puts it in a class of models that are called fast scramblers. The

most interesting aspect of this classification is that all the other models that exhibit such

properties are either all-to-all models like the SYK model or models that have infinite or very

long-range interactions. Our simple model with only nearest-neighbor interactions captures

that behavior which makes this a very interesting model to study further.

Before moving on with discussing our results, we will introduce the major concepts and

techniques that establish the basis of this thesis.

1.1 AdS/CFT Correspondence

AdS/CFT correspondence or the gauge/gravity duality was conjectured by Maldacena in

1997 [21]. Ever since then, it has had a great impact on various fields of physics including

condensed matter, nuclear physics, and quantum information theory. In this section, we will

introduce the basic concepts of this duality.

While Maldacana’s initial conjecture was rooted in string theory however it’s also possible

to motivate this duality independent of string theory. After a brief review of Maldacana’s

original construction, we will also motivate this duality independent of the string theory. The

starting point of this duality from the string theory perspective was to develop a description

of D1-D5 brane unraveling in terms of D3-branes. D-branes are extended objects in string

theory where strings have their end points. The development of D-branes played a crucial

role in many of the successes of string theory. One can start by considering N coincident

D3-branes which have two distinct asymptotic regions, first at weak coupling gsN � 1 these

branes exists on a flat 10-dimensional space-time, secondly in the strong coupling limit of this

system where gsN � 1 these branes describe a highly curved spacetime [22]. Maldacena’s

brilliant insight was to consider a theory where the gravity is decoupled on the branes which
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can be achieved by taking a low-energy limit. This results in the following, a 4-dimensional

SU(N) super Yang-Mills (SYM) model that describes the dynamics of the branes and a near

horizon geometry that is described by an AdS5 × S5 for the 10-dimensional models.

Then the low energy sector of the initial D3 brane construction can be described by the

4-dimensional SU(N) SYM model for weak coupling and the 10-dimensional string theory

in AdS5 × S5. And by using the fact that gauge theories are well-defined for any value of

the coupling one can generalize this correspondence even for the strong coupling limit. This

leads to the famous conjecture that is known as the AdS/CFT duality,

String theory on AdS5 × S5 ' N = 4 SU(N) gauge theory in 4D (1.1)

This correspondence also established how to relate the parameters on both sides of this

duality. For the gauge theory side, we have the following couplings, the Yang-Mills coupling

gym and the rank of the gauge group N and on the string theory side, we have the curvature

scale `/`s and the string coupling gs. These couplings can be related in the following way,

4πgs = g2
ym ∼

λ

N
(1.2)

`

`s
= (4πgsN)

1
4 ∼ λ

1
4 (1.3)

An alternative way to establish this correspondence one can start by thinking about

relating a gauge theory to a gravitational theory through their matter content. Such a

relation can be obtained by considering the spin two graviton that arises as a composite

of two spin one gauge bosons. Usually, this would be impossible due to the famous no-

go theorem of Weinberg and Witten [23], however, one can get around that by using the

holographic principle and allowing the graviton to propagate in higher dimensions. Then

this gauge theory consists of a graviton in addition to an extra dimension.

The next step in our construction for the gauge/gravity duality is to ensure that this extra
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dimension can be macroscopic. To achieve that we start by noticing the complete dissimi-

larity between a perturbative gauge theory and classical gravity which forces us to consider

that the gauge theory should be strongly coupled to reproduce gravity. This naturally leads

us to consider a gauge theory where we can have a coupling that remains strong over various

ranges of energies and a natural candidate for such a gauge theory is to consider a conformal

field theory where the coupling doesn’t run. However, there is still a discrepancy between

the number of degrees of freedom between the two sides of this correspondence. To solve

this one can consider a gauge theory that consists of a large number of degrees of freedom

meaning a large gauge group like SU(N) where N →∞.

Then we can introduce supersymmetry in this strongly coupled gauge theory to keep it

under control. The natural choice for the set of supersymmetric operators is to use N = 4

which is the most supersymmetric case and it also ensures that the theory is invariant

under confromal transformations. Imposing these choices leads us to the 4-dimensional

N = 4 SU(N) SYM theory. This theory has the following symmetries when formulated on a

Minkowski space. First, the vacuum is invariant under Poincare transformations, specifically,

it is invariant under rigid scale transformations xµ → αxµ. This transformation also rescales

the energy as E → E/α. Then one can identify the extra dimension by the inverse energy

and write down the most general metric that is consistent with the symmetries identified

above which results in the 5-dimensional metric of AdS5,

ds2 =
`2

z2
(ηµνdx

µdxν + dz2) (1.4)

where z is the extra dimension that was identified with the inverse energy. This shows

us that we can relate a 4-dimensional N = 4 SU(N) SYM theory to a theory of gravity

on 5-dimensional AdS provided that the number of colors N related to the size of AdS `.

However, it is also possible to take this relation even further by matching the supersymmetric

content of the gauge theory to the gravity side by extending the gravity to a supergravity

theory. This extension to the supergravity is naturally formulated in 10-dimensions with
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AdS5 × S5 as its solution. Then the additional extra dimensions can be identified with the

scalars of the SYM model. This brings us into a full circle where we identify the N = 4

SU(N) model with a gravity theory on AdS5 × S5 [24, 25] .

We will conclude this section by pointing out some key properties of the AdS/CFT

duality,

1. AdS/CFT duality is a duality between a strong and a weak coupling. This allows us

to study gauge theories in the strong coupling limit even though perturbation theory

fails by employing the fact that it is dual to a weakly coupled gravitational theory.

2. AdS/CFT has a holographic nature. This means that it relates a theory that lives in

higher dimensions to a lower one.

3. Finally, AdS/CFT duality is a mapping between a regular quantum field theory to a

quantum theory of gravity.

With this we conclude our brief introduction into AdS/CFT correspondence in the next

two sections we will introduce the two sides of this duality namely the N = 4 SYM model

and the AdS space further.

1.2 Brief introduction to N = 4 SYM

In this section, we will introduce the N = 4 super Yang-Mills model further.

N = 4 SYM theory in 4 dimensions is one of the most well-studied supersymmetric

models in physics. It can be obtained through dimensional reduction of d = 10 N = 1 SYM

model to 4 dimensions [26]. One of the most interesting and useful properties of this model

is that it possesses a coupling constant that doesn’t run. It is conformal. And finally, it has

maximal symmetry in four dimensions.

The field content of this model consists of 16 fermions that live in the adjoint represen-

tation of the SU(N) gauge group and 6 scalars. It also possesses a SO(6) R-symmetry. The

symmetry group of this model which includes supersymmetry and conformal transformations

6



can be denoted as the SU(2, 2|4) and is known as the superconformal group.

Now let’s investigate the dimensional reduction from d = 10 back to d = 4 a little bit

more in detail. The N = 1, d = 10 theory has the following action,

SN=1 =
1

g2

∫
d10xTr

(
−1

4
FMNF

MN +
i

2
Ψ /DΨ

)
(1.5)

Where the Ψb are the Majorana-Weyl spinors and b ranges between 1 − 16. And FMN

denotes the usual field strength tensor. They are both valued in the adjoint representation

of the gauge group. Finally, /D = ΓD is the Dirac operator, and its action on fermions can

be given as,

(DµΨ)a = ∂µΨa + gfabcA
b
µΨc (1.6)

The set of supersymmetric transformations that leave the action 1.5 invariant can be

given by,

δεΨ
a = −ε1

4
F a
µνΓ

µν (1.7)

δεΨ
a = ε̄

1

4
F a
µνΓ

µν (1.8)

δεA
a
µ = ε̄

i

2
ΓµΨa (1.9)

The fact that the bosonic and fermionic degrees of freedom match can be realized by

observing that in dimensions d where d mod8 = 2 it is possible to have a Majorana-Weyl

representation for the fermions by imposing the Majorana-Weyl condition which reduces the

32 complex components of fermions to 16 components which matches the number of degrees

of freedom of the bosonic sector.

We can dimensionally reduce this theory from ten dimensions to four by compactifying

the 6 extra dimensions. Then the gauge degrees of freedom from these compactified directions
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behaves as scalars Xi where i ranges between 1 to 6. Using these scalars we can write the

new field strength tensor that can be decomposed as

FAB = −i [XA, XB] (1.10)

FµA = ∂µXA − i [Aµ, XA] = DµXA (1.11)

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] (1.12)

Following the same fashion we can write the kinetic term in this dimensionally reduced

space as

− 1

4
FMNF

MN =
−1

4
FµνF

µν +
1

2

∑
I

(DµXI)
2 − 1

4

∑
A.B

[XA, XB]2 (1.13)

and the fermionic content of the action can be written as

i

2
Ψm /DΨm =

i

2
Ψµ /DΨµ +

1

2
ΨΓA [XA,Ψ] (1.14)

This concludes the field content of the dimensionally reduced action to 4 dimensions.

We should also mention one of the properties of N = 4 SYM model explicitly. Due

to the commutation relations of the scalars Xi where [Xi, Xj] = 0, N = 4 SYM model

has flat directions which leads to a moduli space of vacuum solutions. This leads to only

the adjoint scalars of N = 4 getting a vacuum expectation value (vev) while breaking the

gauge symmetry to U(1). We will show in the following sections that controlling these flat

directions is essential in obtaining reliable simulations of this model on the lattice.

1.3 Review of Anti-de Sitter Spaces

Anti-de Sitter (AdS) spacetimes are the maximally symmetric solutions of the Einstein equa-

tions with a negative cosmological constant [27, 28].
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S =
1

16πG

∫
ddx
√−g(R− 2Λ) (1.15)

For different choices of Λ, we can obtain different asymptotic characteristics for the

solutions of this model.

• Λ = 0 gives asymptotically flat solutions

• Λ > 0 gives asymptotically de-Sitter(dS) solutions

• Λ < 0 gives the desired AdS solution.

After varying this equation with respect to the metric we get the following solution

Rµν −
gµν
2
R = −Λ

2
gµν (1.16)

For d = 5 Ricci Tensor R = 5
3
Λ is proportional to the metric and can be given as,

Rµν =
Λ

3
gµν (1.17)

If we impose a further restriction in the form of

Rµντρ =
Λ

12
(gµτgρ̂ − gµρgντ ) (1.18)

We can obtain a maximally symmetric space as the solution for these equations. For

the Minkowski signature corresponds to AdS5 and for the Euclidean signature this gives a

Hyperbolic space H5 given that Λ < 0.

Then these can be embedded in a flat space to further investigate their properties,

XAX
A ≡ X2

0 +X2
d+1 −

d∑
i=1

X2
i = R2 (1.19)

A very useful set of coordinates for this embedding can be given for the case of AdS5 as,
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xi = R sinh(ρ)x̂i,
4∑
i=1

x̂2
i = 1 (1.20)

x0 = R cosh(ρ) cos(τ) (1.21)

x5 = R cosh(ρ) sin(τ) (1.22)

The metric that corresponds to this choice of coordinates is given as

ds2 = R2
(
− cosh2(ρ)dτ 2 + dρ2 + sinh2(ρ)dΩ3

)
(1.23)

Following the same procedure above for AdS3 we can also obtain the metric that is of

interest in Chapter 4 which has a very similar form to Eq. 1.23.

Before concluding the section we want to point out some of the symmetry properties

of the AdS5 the isometry group of AdS5 is SO(2, 4) which is the conformal group in four

dimensions which was a cornerstone in the AdS/CFT correspondence.

1.4 Lattice Construction of N = 4 SYM

In this section, we will review the lattice construction of the N = 4 SYM model [12]. As

we have stated in the introduction many attempts at constructing the lattice formulation

of supersymmetric theories have run into the problem that naive discretization of spacetime

doesn’t preserve Poincare algebra. So let’s start our discussion by explicitly writing the

Poincare transformations.

The Poincare transformations can be thought of as the combination of Lorentz transfor-

mations and translations. Its algebra can be given by the following,
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[P µ, P ν ] = 0, (1.24)

[Mµν , P ρ] = i (P µηνρ − P νηµρ) (1.25)

[Mµν ,Mρσ] = i (Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ) (1.26)

Where P denotes the generators for the translations and M are the anti-symmetric

generators for the Lorentz group. Further, if we impose supersymmetry in our model the

Poincare generators P andM become bosonic generators of the new supersymmetry algebra

with the inclusion of new fermionic generators Q and Q̄ then the new commutation relations

for the susy algebra can be given as

[P,Q] = 0 (1.27){
QL
α, Q

M
β

}
= εαβZ

LM (1.28)[
QL
α,Mµν

]
=

1

2
(σµν)

β
αQ

L
β (1.29){

QL
α, Q̄

M
β

}
= δLMσµαβPµ (1.30)

Where the new indices L,M denotes the number of supercharges N and they range from

L,M = 1, 2, . . .N . Let’s focus on the last commutation relation of two supersymmetry

transformations looking at this anti-commutation relation it’s easy to see that the combi-

nation of these two transformations corresponds to an infinitesimal space-time translation.

Which is broken under lattice discretization meaning that any naive discretization will not

preserve the supersymmetry algebra.

The first step in getting around this major obstacle in obtaining a discretization of N = 4

SYM model is to start with a twisted version of the theory instead of the usual version. The

initial idea of twisted models was proposed by Witten in the 1980s and it has very close
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connections to topology [29]. The main idea is to relate a topological field theory to a

supersymmetric one. This twisting procedure can be viewed as the combination of the

Lorentz symmetry with the R-symmetry of the model.

For the case of N = 4 SYM model, there are three different twisting procedures but

the one we’ll be interested in is the Marcus or GL twist of this model [30]. This procedure

combines the global SO(4)E ∼ SU(2)×SU(2) symmetry with the SO(4)R×U(1) subgroup

global SO(6) R-symmetry to obtain a new rotational group that can be given as the diagonal

subgroup of SO(4)E × SO(4)R. After this twisting procedure bosons and fermions of the

theory become integer spin representations of the new rotation group which can be thought

of as p-form tensors of the new rotation group.

This brings us to the second crucial part of the lattice construction for the N = 4 SYM

model which is to find representations for fermions and bosons where they can be naturally

represented as p-form fields.

Let’s start with the fermions. To express fermions as p-form fields, we will use what

is known as Kähler-Dirac fermions [31]. This construction by Kähler provides a geometric

interpretation for the fermions in which it is natural for them to be valued as p-form fields.

The Kähler-Dirac equation can be written as

(∂ − δ +m) Φ = 0 (1.31)

Where δ denotes the co-boundary operator and ∂ is the boundary operator both satisfy

δ2 = ∂2 = 0. For d = 4, the Kähler-Dirac equation describes 16 fermions which matches

the number of bosonic degrees of freedom. Another property of Kähler-Dirac fermions is

that in flat space they are equivalent to the staggered fermion construction that is used in

QCD calculations. We have demonstrated that Kähler-Dirac fermions are also very useful

in investigating symmetric mass generation, anomaly cancellation, and constructing chiral

fermion models in lattice gauge theories but since these works don’t fit with the general

theme of the thesis we will not include them in our discussion [32–36].
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To preserve the symmetry between fermions and bosons while retaining supersymmetry

the next step is to choose a lattice structure that would be able to contain all these degrees

of freedom in it. This can be achieved by using an unusual lattice called A∗4 lattice which

includes a diagonal link in addition to the hypercubic links. These links can be given as

µ̂1 = (1, 0, 0, 0) (1.32)

µ̂2 = (0, 1, 0, 0) (1.33)

µ̂3 = (0, 0, 1, 0) (1.34)

µ̂4 = (0, 0, 0, 1) (1.35)

µ̂5 = (−1,−1,−1,−1) (1.36)

As can be seen from the above equations this lattice construction has 5 links which can

also be related to the 5 complex gauge fields of the SYM model which are obtained through

the combination of 6 scalars and 4 gauge fields. Also choosing such a lattice that treats

all 5 links equally and preserves the S5 symmetry which provides us a set of irreducible

representations to match the twisted SO(4) group of the SYM model.

With the two main ingredients of the lattice construction in hand, we are ready to

explicitly discretize the N = 4 SYM theory. We start with the supersymmetric lattice

action from [13].

S =
N

4λ
Q
∑
x

Tr

[
χabFab + η

(
DaUa + κ (Re detUa(x)− 1) IN

)
+

1

2
ηd

]
+ Sclosed (1.37)

where the lattice field strength in terms of complexified gauge fields Ua(x) is given as

Fab(x) = Ua(x)Ub(x+ â)− Ub(x)Ua(x+ b̂) (1.38)

These complexified gauge fields live on the lattice link running from x → x + â and â

denotes one of the five basis vectors of an underlying A∗4 lattice. As we mentioned before the
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basis vectors for the A∗4 lattice constitute a set of five unit vectors that are proportional to

the vectors drawn from the center of an equilateral 4-simplex to its 5 vertices.

Then the action of the covariant difference operator on the complexified gauge fields can

be given as,

DaUa = Ua(x)Ua(x)− Ua(x− â)Ua(x− â). (1.39)

Now we can focus on the fermionic field content. Starting with the scalar fermion η(x)

lives on the lattice site x and is associated with a conserved supercharge Q. Then we have

five fermion fields ψa, that are superpartners of the (complex) gauge fields. Which live on

the corresponding links x→ x+ â Finally, the ten fermion fields χab(x) are associated with

new face links running from x+ â+ b̂→ x.

The action of the supercharge Q on the field content can be given as,

QUa → ψa (1.40)

Qψa → 0 (1.41)

Q η → d (1.42)

Q d→ 0 (1.43)

Qχab → Fab (1.44)

QUa → 0 (1.45)

Notice that the idempotent nature of the supercharge Q2 = 0 guarantees the supersym-

metric invariance of the first part of the lattice action. We include the auxiliary site field

d(x) which is needed for satisfying the nilpotency of Q offshell.

The second term in our action Sclosed is given by

Sclosed = − N

16λ

∑
x

Tr εabcdeχabDcχde (1.46)
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which contains the action of the covariant difference operator on the fermion field χde

which can be given as the following,

Dcχde(x) = U c(x− ĉ)χde(x+ â+ b̂)− χde(x− d̂− ê)U c(x+ â+ b̂) (1.47)

The invariance of this term under the supersymmetry transformations can be shown with

the use of an exact lattice Bianchi identity εabcdeDcFde = 0.

Now we can carry out the Q variation and integrate out the auxiliary field d. And

obtain the final supersymmetric lattice action that’s decomposed in terms of its bosonic and

fermionic part S = Sb + Sf . The bosonic part takes the following form,

Sb =
N

4λ

∑
x

Tr
(
FabFab

)
+

1

2
Tr
(
DaUa + κ(Re detUa − 1)IN

)2 (1.48)

and the fermionic part is given as follows,

Sf = −N
4λ

∑
x

(
TrχabD[aψ b] + Tr ηDaψa +

1

4
Tr εabcdeχabDcχde

)
− (1.49)

κN

8λ

∑
x,a

Tr(η) detUa(x) Tr
(
U−1
a (x)ψa(x)

)
(1.50)

By taking the naive continuum limit as Ua = I+Aa+ . . . one can show that this action is

equivalent to the discretization of the Marcus or GL twist of N = 4 Yang-Mills in flat space

[37, 38]. In the continuum, this twisted formulation is used to construct a topological field

theory but here the twisted construction is used as just a change of variables that allows for

discretization while preserving the single exact supersymmetry Q.

The fact that A∗4 lattice has a larger set of discrete rotational symmetries which corre-

sponds to the S5 can be used to control the renormalization of the theory [39]. By using

this property it has been shown that the combination of gauge symmetry, Q supersymmetry

and S5 invariance ensures that the only relevant counterterms that can appear via quantum
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corrections correspond to operators that are already contained within the classical lattice

action together with a single new marginal operator of the form α
∑

x,a Tr (ηUaUa). Then

it’s possible that one can add such a term to the lattice action and tune its coupling loga-

rithmically with the lattice spacing to achieve a continuum limit with full supersymmetry

but we have not investigated this in detail and set the coefficient equal to zero - its classical

value in all our simulations.

Another interesting property of this construction arises when we impose the exact super-

symmetry, all fields must reside in the algebra of the gauge group while being valued in the

adjoint representation of U(N): f(x) =
∑N2

A=1 T
AfA(x) with Tr

(
TATB

)
= −δAB.

Usually, this would be incompatible with lattice gauge invariance due to the measure

not being gauge invariant for link-based fields. However, in this N = 4 construction, the

problem is not an issue since the fields are complexified which ensures that the Jacobians

that arise after gauge transformation of U and U cancel.

Finally, we can focus on the term involving the coupling κ which suppresses the trou-

blesome U(1) modes while leaving the important SU(N) gauge symmetry intact. On top

of that, another advantage of this term is it selects out gauge fields with unit determinants

and it ensures that the gauge field has the expansion Ua(x) = I +Aa(x) + . . . where Aa are

traceless complex fields. Which ensures the correct naive continuum limit.

The resultant action still possesses a degeneracy for the scalars which needs to be lifted

by giving masses to the scalars this is achieved by the inclusion of the following term in the

action,

Smass = µ2
∑
x

Tr
(
Ua(x)Ua(x)− I

)2 (1.51)

While this breaks the exact supersymmetry softly all counter terms induced by this breaking

will have couplings that are multiplicative in µ2 and hence vanishing as µ2 → 0.

We also still have a set of flat directions corresponding to constant gauge fields that are

valued in the Cartan subalgebra which is a known issue for N = 4 SYM model. We will
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show in the next chapters that the inclusion of the new link determinant term will regulate

these flat directions as well.

1.5 Review of Quantum Computing and Tensor Network

Methods

In this final section of this chapter, we will diverge from our discussion on holography and

super Yang-Mills models and review the simulation techniques and approaches we used in

Chapter 4 of this thesis. Starting with introducing the circuit-based approach to quantum

computing.

1.5.1 Circuit Based Quantum Computing

Circuit based quantum computing is a model of quantum simulation that has similar charac-

teristics to classical circuits [40]. Computations in this model are carried out by application

of a sequence of quantum gates together with measurements and initialization of qubits to the

desired state. These crucial components of the circuit quantum model can be summarized

as,

• State preparation: Initializing the qubits to the needed input state to start the com-

putation.

• Quantum bit: These represent the data for the computation.

• Quantum gates: Acts on quantum bits to manipulate the data as desired

• Measurements: To read out the final result after the application of quantum gates.

The most basic unit of information on a quantum computer is a quantum bit which is

also known as a qubit. A qubit describes a two-level quantum system where one of these

levels is usually a ground state that’s represented as |0〉 and an excited state |1〉. Unlike the

classical bit which can only be in a 0 or 1 state quantum bit lives in a superposition state of

both |0〉 and |1〉,

17



|ψ〉 = α |0〉+ β |1〉 (1.52)

where α and β are complex numbers and they satisfy |α|+|β|2 = 1. Then if we measure

this qubit in the basis of |0〉 and |1〉 we will find that it gives the 1 state with a probability of

|β|2 and a 0 state with a probability |α|2. A very useful way of visualizing a qubit is to use

what is known as a Bloch sphere which can be seen in Fig. 1.1. Here the qubit is represented

as a point on the surface of this sphere and |0〉 , |1〉 corresponds to north and south poles.

Operations on the |ψ〉 can be thought of as modifications of this vector on the Bloch sphere.

|ψ〉

x

y

|0〉

|1〉

φ

θ

Figure 1.1: Bloch Sphere representation of a qubit

The basic ingredient of operations on a qubit is the use of single-qubit gates which changes

the state of the qubit from |ψ〉 = α |0〉 + β |1〉 to |ψ′〉 = α′ |0〉 + β′ |1〉 while preserving the

norm. These single qubit operations are described by 2×2 unitary matrices. Some examples

of the single qubit gates are the Pauli matrices which are used to generate rotations around

their corresponding axes on the Bloch sphere after exponentiation. For example, a rotation

around the x-axis can be achieved as
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Rx(φ) = exp(−iφZ/2) =

 cos(φ/2) −i sin(φ/2)

− sin(φ/2) cos(φ/2)

 (1.53)

Another example of a highly used single qubit operator is the Hadamard gate which is

used to transform the qubit state from the |0/1〉 basis to a |+/−〉 basis, the quantum version

of the classical NOT gate that is denoted as an X and the phase gate T. These are also

defined as 2× 2 unitary matrices and can be seen from below equations.

H =
√

2

1 1

1 −1

 (1.54)

X =

0 1

1 0

 (1.55)

T =

1 0

0 exp(iπ/4)

 (1.56)

However single-qubit gates by themselves are not enough to realize useful quantum al-

gorithms without the use of multi-qubit gates. These are used to make two or more qubits

interact with each other. The total state of two qubits can be given by taking the tensor

product of their individual states

|ψ〉 ⊗ |φ〉 =

aψ
aφ

⊗
bψ
bφ

 = aψbψ |00〉+ aψbφ |01〉+ aφbψ |10〉+ aφbφ |11〉 (1.57)

Then multiqubit or 2 qubit gates can be defined as operations acting on this product

state. Now we’ll give some examples for the most commonly used 2 qubit gates. Our first 2

qubit gate is the controlled-NOT (CNOT) gate where one of the qubits controls if the single

qubit gate is applied to the other qubit. It can be given as
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CNOT =



1 0 0 0

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


(1.58)

The action of this CNOT gate can be summarized as doing nothing if the first qubit is in

state |0〉 and applying the NOT gate if the first qubit is in state |1〉. This control procedure

can be applied to any single qubit unitary U where the application of operator U depends

on the state of the first qubit.

A second example of a heavily used 2 qubit gate is the SWAP gate which swaps the

|01〉 , |10〉 to |10〉 , |01〉 and its matrix form can be given as

SWAP =



1 0 0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


(1.59)

Through combining two and single-qubit gates we can define a Universal gate set {CNOT,H,T}

that can implement any unitary operation on a given number of qubits [41].

We can use this machinery to simulate quantum systems via Hamiltonian simulation

where the basic idea is to get the time-evolved state |ψ(t)〉 by the application of the time-

evolution operator e−iHt on the initial state where H is a time-independent Hamiltonian

[42, 43]

|ψ(t)〉 = e−iHt |ψ(0)〉 (1.60)

Then we can use the fact that any unitary operator can be applied to a quantum state via

20



the use of the Universal gate set to simulate this model on quantum computers. However,

the operator H is usually very hard to exponentiate so we employ an approximate technique

to achieve this time-evolution. This approximate method is known as Suzuki-Trotter de-

composition and it relies on the fact that for most physical systems the Hamiltonian can be

written as a sum over local interactions

H =
L∑
i=1

Hi (1.61)

where Hi only acts on a certain number of degrees of freedom. Since Hi acts on a much

smaller subset than the full Hamiltonian it can be easily exponentiated to use in the quantum

circuit. But a major obstacle in obtaining the full time evolution operator through this way

is that for [Hi, Hj] 6= 0 which holds in general e−iHt 6= ∏
i e
−iHit. However, we can use the

Suzuki-Trotter formula to solve this issue.

e−iHt =
(
e−iH1t/ne−iH2t/n . . . e−iHLt/n

)n
+O(L2t2/n) (1.62)

which gives a good approximation when n� Lt. We will use this approach to obtain a

quantum simulation of an Ising model that lives in an AdS2 space in Chapter 4.

1.5.2 Quantum Inspired Tensor Networks

Even though quantum computers have come a very long way in the last couple of years. We’re

still currently in the Noisy Intermediate Scale Quantum (NISQ) era of quantum computation.

Which makes it very hard to access regimes with interesting physics by just using quantum

computers. Instead what we can do is while demonstrating quantum simulations on small

system sizes using quantum computers, carry out larger simulations of these systems using

Quantum Inspired Tensor Networks and simulate these quantum circuits classically. This

approach allows us to probe system sizes and simulation times that are inaccessible with

today’s quantum computers. [44, 45]
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The main building block of this approach is to approximate a quantum state |ψ〉 as a

Matrix Product State(MPS). This is achieved by noticing that we can describe a general

quantum state as

|ψ〉 =
∑
si

Ts1s2...sL |s1s2 . . . sL〉 (1.63)

Where T is a tensor with L indices. Then by consecutive applications of singular value

decompositions and reshapings, this tensor can be approximated by a product of matrices

with a given bond dimension.

|ψ〉 =
∑
si

M s1M s2 . . .M sL |s1s2 . . . sL〉 (1.64)

Where M ’s are now describing matrices. The biggest advantage of this decomposition is

that it brings down the number of parameters needed to describe a tensor with L indices from

dL to dLm2 where d denotes the dimension and m is the bond dimension. This reduces the

number of parameters from an exponential to just a polynomial dependence. This scaling is

crucial for the remarkable success these algorithms have achieved in simulating 1d systems.

It is also very useful to visualize these tensor network formulations and the decomposition

of a general tensor into an MPS can be visualized in Fig. 1.2

Figure 1.2: Decomposition of a Tensor into an MPS

Using the MPS description for the quantum state we can do any of the usual operations

one would do to a quantum state. Starting with taking an inner product which can be

written as
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〈φ|ψ〉 =
∑
~s

M̃ sL† . . . M̃ s1†M s1 . . .M sL (1.65)

and can visualized as in Fig. 1.3

Figure 1.3: Inner Product of two MPS

We can also calculate expectation values for a general operator σ located in a site i

〈Ψ|σi |Ψ〉 =
∑
si,s′i

σ̂si,s
′
iM si†M s′i (1.66)

Again this process can be visualized as in Fig. 1.4

Figure 1.4: Calculating expectation values using MPS

The second main ingredient of this construction is to describe operators like the Hamilto-

nian in this formalism. That is achieved by representing them as Matrix Product Operators

(MPO). To obtain this representation we start with a general operator acting on the L-

site system and then follow the same procedure we did in obtaining the MPS where s, s′

corresponds to the physical indices.

Ĥ =
∑
s,s′

cs,s′ |s〉 〈s′| (1.67)
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Then following the same procedure we did in obtaining the MPS

Ĥ =
∑
s,s′

Hs1,s′1 . . .sL,s
′
L |s〉 〈s′| (1.68)

Where Hsis
′
i are a set of d2 matrices. And this operator can be visualized as in Fig. 1.5

Figure 1.5: MPO representation of an operator H

Now that we have a description for a quantum state and a Hamiltonian H in terms

of MPS and MPO. We are ready to find the ground state of our system. To find the

ground state of a system that’s described by an MPS we use a very powerful algorithm that

is called Density Matrix Renormalization Group(DMRG). This is a variational algorithm

that has been developed independently from the MPS techniques as a generalization of

renormalization group to density matrices by S. White [46]. However, the inclusion of MPS

in the context of DMRG simplified this algorithm considerably [45]. The basic idea behind

the DMRG algorithm is to reduce the problem of minimizing ground state energy to a local

minimization problem which can be done effectively this corresponds to solving the following

equation one site at a time

〈ψi|Ĥ|ψi〉 − λ 〈ψi|ψi〉 (1.69)

Where λ is a Lagrange multiplier. This minimization procedure corresponds to solving

a generalized eigenvalue problem where the entries of the matrices M that describe our

quantum state is minimized with respect to this equation which minimizes the energy. This

minimization can be done one site at a time and sweeping across the chain multiple times

until we reach the desired convergence for the approximate ground state energy. When the
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desired convergence is reached the resulting MPS will give an approximation for the ground

state of the model. Once we obtain the ground state of the system in terms of a MPS then

it’s possible to perform measurements by following the operations we described above.

This brings us to the question. Is it possible to achieve an efficient simulation of time

evolution within this construction to investigate the dynamical properties of our system?

The answer to that is yes and many different algorithms have been developed to achieve the

time evolution of MPSs. [47, 48]

The algorithm we will use in our work is known as the Time Evolving Block Decimation

(TEBD) algorithm. [47, 49] This algorithm can be thought of as a generalization of the usual

Suzuki-Trotter decomposition for the MPS/MPO states. The time evolution is achieved by

representing the Trotterized version of the time evolution operator e−iHδt in terms of an MPO

and then successively applying this operator till we reach the desired t. This procedure can

be visualized as in Fig. 1.6

Figure 1.6: TEBD algorithm

All our discussions on tensor networks so far have been focused on quantum-inspired

tensor networks to simulate quantum circuits on large scales. However, there are also Eu-

clidean approaches to tensor networks mainly tensor network renormalization group (TRG)

for bosonic theories and Grassmann TRG with the fermions included. We have also investi-

gated these approaches in the context of lattice gauge theories but we will not include them
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in our main discussion since they fall outside of the main scope of this thesis. [32, 33]
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Chapter 2

Lattice N = 4 super Yang-Mills at

Strong Coupling

2.1 Introduction

In this chapter we use numerical simulation to explore the phase structure and Wilson loops

of a lattice formulation of N = 4 super Yang-Mills. The lattice action is a generalization

of the formulation described in [12]. The theory preserves both SU(N) gauge invariance, a

S4 point group symmetry associated with the underlying A∗4 lattice and most importantly a

single exact supersymmetry.

The original supersymmetric lattice formulation of N = 4 SYM has been the subject of a

great deal of both numerical and analytical work [39, 50–52]. General arguments have been

put forward that the theory should approach the continuum N = 4 theory after tuning a

single marginal operator. However, after some initial successes the numerical work has been

handicapped by two problems: the existence of a chirally broken phase for ’t Hooft couplings

λ > 4 and the observation of a sign problem which develops in a similar region of coupling

[53]. While these problems are not present in dimensionally reduced versions of the theory

[54–62], they have prevented the systematic investigation of the four dimensional theory.

27



The chirally broken phase has been linked to the condensation of monopoles associated with

the U(1) sector of the theory [63]. We will show that the situation is markedly improved if

one adds a new operator to the lattice action which preserves the S4 symmetry and exact

supersymmetry but explicitly breaks the U(N) gauge symmetry down to SU(N).

2.2 The new action

It has been observed that for couplings λ > 2 the action described in the previous section

undergoes a phase transition to a regime in which both the Polyakov line and the Wilson

loop fall abruptly toward zero. Associated with this is a growth in the density of lattice

U(1) monopoles [52]. These features are inconsistent with the expected superconformal

phase of N = 4 Yang-Mills. Actually, in pure compact QED in four dimensions, this

monopole transition is a well known lattice artifact. Various efforts have been made over the

intervening years to remove this monopole phase - typically this has been done by adding

supersymmetric or non-supersymmetric terms to the action that force the determinant of

the plaquette operator to unity. Such a procedure retains the full U(N) gauge symmetry but

restricts the fluctuations of the field strength in the U(1) directions. The supersymmetric

plaquette term introduced in [64] represents the best of these approaches but can only allow

simulation up to λ ∼ 6.0. It also suffers from a sign problem for λ > 4 [53] - that is, the

Pfaffian arising after fermion integration, exhibits strong phase fluctuations which prohibit

Monte Carlo sampling.

Here we explore an approach in which a new supersymmetric term is introduced which

drives the determinant of each individual gauge link to unity. The new term takes the form

N

4λ
κQ
∑
x,a

Tr(η) (Re det (Ua(x)− 1)) (2.1)

After Q variation and integration over d this modifies the second term in the bosonic action
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Sb to:
N

4λ

∑
x,a

1

2
Tr
(
DaUa(x) + κRe det(Ua(x))In

)2 (2.2)

where IN denotes the N ×N unit matrix. A corresponding new fermion term is generated

δSf = −N
8λ
κ
∑
x,a

Tr(η)det (Ua(x)) Tr
(
U−1
a (x)ψa(x)

)
(2.3)

The new term has the effect of suppressing the U(1) phase fluctuations of the complex gauge

links that were the origin of the monopole problem. Of course this term explicitly breaks

the U(1) gauge symmetry. However since the U(1) is simply a decoupled free theory in the

continuum limit this should cause no real harm since SU(N) gauge invariance is preserved.

Indeed, close to the continuum limit, it should be apparent that the new terms merely

generate mass terms for the trace components of the fields.

In the original theory the gauge links were valued in GL(N,C). After this term is added

the moduli space of the theory is reduced to SL(N,C). Notice that since any matrix in

SL(N,C) can be written as the exponential of a traceless matrix the presence of this term

guarantees that gauge links can be expanded about the unit matrix for vanishing values of

the lattice spacing. In this light the remaining rationale for keeping Smass is simply to lift

the usual SU(N) flat directions. Indeed, as the reader will see, for most of our results µ2 is

taken very small.

The breaking of U(1) gauge invariance also clarifies a delicate issue concerning the invari-

ance of the fermion measure in the original formulation. Consider the integration measure

for the five link fermions
∏

x,a dψa(x) in the U(N) theory. Under a gauge transformation

ψa(x)→ G(x)ψa(x)G†(x+ â) this measure transforms by a non-trivial Jacobian correspond-

ing to the product of the determinants of the gauge factors G(x) and G†(x + â). On the

torus one can arrange an ordering of the fermion fields in the path integral measure such

that these factors will cancel out along closed loops but this will not be possible for all lattice

topologies. Thus the question of the invariance of the measure under the full U(N) group
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Figure 2.1: Expectation value of the determinant vs λ for 84 lattices at µ = 0.1, 0.05, 0.01

is a delicate one. However these problems are completely avoided if G is restricted to lie in

just SU(N) as in the new action and the fermion measure is then unambiguously defined

for an arbitrary lattice.

Of course the main question is whether such a term is effective at eliminating the

monopole phase seen at strong coupling. In the next section we shall show evidence that

this is true and at least in the case of 2 colors we see no sign of phase transitions out to

arbitrarily large ’t Hooft coupling.

2.3 Phase structure

Our simulations utilize the rational hybrid Monte Carlo (HMC) algorithm where the Pfaffian

resulting from the fermion integration is replaced by

Pf (M) =
(
detM †M

) 1
4 (2.4)
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Figure 2.2: Expectation value of the bosonic action vs λ for 84 lattices at µ = 0.1, 0.05, 0.01

whereM is the fermion operator. Notice that this representation neglects any Pfaffian phase

which is a key issue which we will return to later. Typical ensembles used in our analysis

consist of 5000 HMC trajectories with 1000− 2000 discarded for thermalization. Errors are

assessed using a jackknife procedure using 20− 40 bins.

As a test of the new action we first plot the expectation value of the link determinant as a

function of ’t Hooft coupling. We show results in Fig. 2.1 for 84 lattices at µ = 0.1, 0.05, 0.01.

Clearly the expectation value is close to unity out to very large λ provided µ2 is small enough

confirming that we have effectively reduced the gauge fields to SU(2). We note that we scan

out to λ = 30 in order to go beyond the self-dual point λSD = 4πN = 8π.

In Fig. 2.2 we plot the expectation value of the bosonic action as a function of λ for 84

lattices at µ = 0.1, 0.05, 0.01. This expectation value can be calculated exactly by exploiting

the (almost) Q-exact nature of the lattice action and yields 1
V
< Sb >= 9N2

2
for an N color

theory on a system with (lattice) volume V independent of coupling λ. For SU(2) this implies

SB = 18.0 for all λ. The results are clearly consistent with this prediction to a fraction of

a percent as µ2 → 0 even for very large values of the coupling confirming the presence of
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an exact supersymmetry. Even more important there is no sign of the phase transition that

had been seen before in the U(2) theory. Indeed all the observables we have looked at show

smooth dependence on λ providing evidence that the lattice theory possesses only a single

phase out to arbitrarily arbitrarily strong coupling. It is interesting to note that the bosonic

action is proportional to N2 and not N2−1 even though we suppress the U(1) modes. That is

because they are still present in this formulation; rather than being removed, they are being

tamed. The new terms added to the action mostly affect the vacuum of these fields—which

is why they still contribute to the counting of degrees of freedom.

Further confidence in this finding comes from studying a simple bilinear Ward identity

given by
〈
QTr

(
ηUaUa

)〉
= 0. Fig. 2.3 shows this quantity as a function of λ for several µ

at L = 8. It falls slowly with λ and decreases more quickly with decreasing µ. To clarify its

dependence on lattice size we plot the Ward identity for λ = 10.0 vs L for two values of µ in

Fig. 2.4. This plot makes it clear that the Ward identity decreases with increasing L. Indeed

comparing L = 6 at µ = 0.025 with L = 12 at µ = 0.005 suggests a roughly 1/L2 dependence

on lattice size. Notice that to see this scaling requires decreasing µ with increasing L. But

this is to be expected if the main purpose of this term is to lift the bosonic flat directions.

The normalization of these bosonic zero modes brings in a factor of 1/V corresponding to a

scaling of 1/
√
V in µ. This is roughly consistent with the data in this plot.

2.4 Absence of a sign problem

Of course these results are derived from simulations of a model in which the phase of the

Pfaffian that results from fermion integration is neglected. To check for the presence of such

a phase we have computed it using the ensemble of configurations generated in our phase

quenched Monte Carlo. Writing the Pfaffian phase as eiα(λ,U) we plot the quantity 1− cosα

as a function of µ at λ = 10.0 and κ = 1.0 in Fig. 2.5. The different data points correspond

to lattices of size 24, 32×42, 33×4 and 3×43 respectively. When measuring the phase of the
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Figure 2.5: Pfaffian phase vs µ at λ = 10.0

Pfaffian we set κ = 0 in the fermion operator. Clearly the phase angle is driven towards very

small values for small enough µ. We have observed this for all values of λ – the analogous

plot fig. 2.11 for λ = 30 is shown in the appendix. Of course the lattices used in these tests

are quite small and one should worry whether the sign problem returns on larger volumes.

Our results suggest that this is not the case – the average phase appears to saturate as

the volume increases. Systems with sign problems typically exhibit phase fluctuations that

increase exponentially with volume. This lattice model seems very different in this regard.

Retaining the new U(1) breaking fermion term in the evolution but neglecting it when

measuring the phase is clearly a questionable procedure. However, the modification that

is neglected relates to the trace modes, which decouple from the SU(N) theory in the

continuum in any case. So, in some sense we are discarding an irrelevant piece. Nevertheless,

we have also generated ensembles in which the new fermion term is dropped from the fermion

action in both the evolution and the measurement of the phase. A typical plot of the resultant

phase versus for µ at λ = 10.0 is shown in Fig. 2.6 for several lattice volumes. The observed

behavior is very similar to that seen in Fig. 2.5 and lends confidence to the assertion that
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the system does not suffer from a sign problem. Since this procedure breaks Q-symmetry

softly (proportional to κ) it leads to larger deviations in the Ward identities and so we have

reinstated the new fermion term in our later simulations used for studying Wilson loops.

The fact that eliminating the new fermion term from both the Pfaffian measurement and

the simulation still preserves the good behavior can be understood as the new bosonic term

accomplishing the most important task: stabilizing and suppressing the U(1) modes of the

link fields in a Q-symmetric way that is only softly broken.

It is interesting to try and understand theoretically why the observed phase fluctuations

are so small. We start by writing the expectation value of the phase measured in the phase

quenched ensemble as

< eiα(λ,κ,U) >phase quenched=

∫
DUDU eiα(κ,λ,U)|Pf(U)|e−SB(λ,κ,U) = 1 (2.5)

where we have chosen the normalization of the measure so that the full partition with

susy preserving periodic boundary conditions (the Witten index) is unity. Furthermore,
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Q-invariance ensures that this expectation value of the phase factor is independent of κ and

can be computed for κ → ∞ where the partition function is saturated by configurations

with unit determinant - the SU(2) theory. Finally, the topological character of this partition

function can be exploited to localize the integral to configurations which are constant over

the lattice – the integral reducing to a Yang-Mills matrix model integral. The resultant

Pfaffian for the SU(2) matrix model is known to be real, positive definite [65]. Of course

our simulations are performed at finite κ, and use a thermal boundary condition, but the

numerical results strongly suggest that as a practical matter the phase fluctuations are small

for the relevant range of parameters.

The encouraging results for the phase of the Pfaffian may also be related to the fact that

out to very large λ the center symmetry is unbroken, so that Eguchi-Kawai reduction [66]

may be valid. In that case the theory is equivalent to a single-site lattice, where the gauge

theory is in fact just the matrix model that has been indicated in the previous paragraph.

This may also explain why we are able to obtain results consistent with large N predictions

(below), since the fact that we are in volumes larger than a single site may in fact translate

into larger N in the reduced model.

2.5 Supersymmetric Wilson loops

The previous results provide strong evidence that the lattice theory exists in a single phase

with unbroken supersymmetry out to very large values of the gauge coupling and that the

model can be simulated with a Monte Carlo algorithm without encountering a sign problem.

With this in hand we turn to whether the lattice simulations can provide confirmation of

known results for N = 4 Yang-Mills at strong coupling. Most of these analytic results were

obtained by exploiting the AdS/CFT correspondence which allows strong coupling results

in the gauge theory to be obtained by solving a classical gravity problem in anti-de Sitter

space. Using this duality a variety of results for supersymmetric Wilson loops have been
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Figure 2.7: Supersymmetric n× n Wilson loops on 124 lattice at µ = 0.025

obtained over the last twenty years. Such Wilson loops generalize the usual Wilson loops

by including contributions from the scalars and are realized in the twisted construction by

forming path ordered products of the complexified lattice gauge fields Ua. In the continuum

the generic feature of such Wilson loops is that for strong coupling they depend not on λ

as one would expect from perturbation theory but instead vary like
√
λ. In Fig. 2.7 we

show the logarithm of the n × n supersymmetric Wilson loops W (n, n) for a 124 lattice at

κ = 1.0 plotted as a function of
√
λ. The straight lines correspond to fits with

√
λ ≥ 3.

It is clear that all the loops show a
√
λ dependence at strong coupling in agreement with

the holographic prediction. This is encouraging. It is also clear that the fits show a linear

dependence on the length of the perimeter of the loop. If we parametrize the static potential

defined by W (R, T ) = e−V (R)T in the form

V (R) = σ(λ)R + α(λ)/R +M(λ) (2.6)

The presence of the constant term M(λ) will yield the observed perimeter scaling provided

the string tension is small or zero. Such a perimeter term also occurs in continuum treatments
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where it corresponds to the energy of a static probe source in the fundamental representation

and has to be explicitly subtracted out to see the non-abelian Coulomb behavior hidden in

α(λ) [67].

One way to remove the perimeter dependence is to consider Creutz ratios defined by

χ(R, T ) =
W (R, T )W (R− 1, T − 1)

W (R, T − 1)W (R− 1, T )
(2.7)

For a theory with Wilson loops containing both perimeter, area and Coulomb behaviors one

finds

lnχ(R,R) ∼ −σ(λ) + α(λ)/R2 (2.8)

Thus we can read of the string tension by examining the large R behavior of lnχ(R,R). In

Fig. 2.8 we plot lnχ(6, 6) = −σ versus λ for a 124 lattice at λ = 10.0 and µ = 0.025.

Clearly, the string tension is very small even at strong coupling which is consistent with

the existence of a single superconformal phase in the theory in the IR. Of course the most

interesting question is whether we can see evidence for a non-abelian Coulomb potential at
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small R. Direct fits to the Creutz ratio are consistent with the presence of such a term but

the errors in α(λ) are large.

An alternative way to probe for this is is to divide the original Wilson loops by an

appropriate power of the measured Polyakov line P which is given by product of gauge links

along a thermal cycle. The (logarithm of the) Polyakov line also picks up a term linear in

the length of the lattice due to a massive source and hence can used to subtract the linear

divergence in the rectangular Wilson loop. We thus define a renormalized Wilson loop on a

L4 lattice of the form

WR(R,R) =
W (R,R)

P
2R
L

(2.9)

These are shown in Fig. 2.9 for a 84 lattice. Notice that the 2 × 2 and 4 × 4 loops now

lie near to each other which is consistent with conformal invariance and the presence of a

non-abelian Coulomb term while the strong coupling behavior still exhibits a dependence

on
√
λ. This result can also be seen on the larger 124 lattice shown in Fig. 2.10. Notice

that the average slope in this case is somewhat larger than the data on 84. This presumably

39



reflects the residual breaking of conformal invariance due to finite volume as well as finite

lattice spacing. However it may also indicate that our definition of a renormalized Wilson

loop does not do a perfect job of subtracting all the linear divergences needed to reveal an

underlying Coulombic term. Further work is needed on larger lattices to clarify this issue.
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Figure 2.10: Renormalized supersymmetric 6× 6 and 3× 3 Wilson loops on 124 lattice at
µ = 0.025

Details of the fits for the different Wilson loops and lattice are shown in tables 2.1,2.2.

The square root behavior at large λ is consistent with the result for circular Wilson loops

in N = 4 SYM derived by Gross and Drukker [68] and Maldacena’s holographic argument

[69]. There are also explicit calculations using holography for the rectangular Wilson loop in

[67]. The strange
√
λ dependence cannot be seen in perturbation theory and this (admittedly)

very preliminary result is a very non-trivial test of the correctness of the lattice approach in

a non-perturbative regime.
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Loop Size a
√
λ+b Reduced-χ2

4× 4 0.6(1)
√
λ + 8.0(4) 8.11

2× 2 0.59(4)
√
λ + 8.8(2) 2.25

Table 2.1: Normalized Supersymmetric Wilson loop fits on 84 lattice at µ = 0.025 for
f(λ) = a

√
λ+ b

Loop Size a
√
λ+b Reduced-χ2

6× 6 0.88(7)
√
λ + 12.4(3) 6.58

3× 3 0.86(2)
√
λ +12.94(9) 0.90

Table 2.2: Normalized Supersymmetric Wilson loop fits on 124 lattice at µ = 0.025 for
f(λ) = a

√
λ+ b

2.6 Conclusions

We have found that a supersymmetric modification of the lattice action enables us to extend

our simulations to what seem to be arbitrarily large values of the ’t Hooft coupling without

encountering difficulties that had previously limited our studies to modest λ. This seems to

be attributable to stabilizing the potential for the U(1) modes in a way that preserves the

essential Q supersymmetry of the construction. The current study has been limited to gauge

group SU(2). It is natural to inquire what occurs for this construction for other SU(N). We

will investigate this in future studies; however, we expect that a sign problem will reemerge

since in the zero-dimensional matrix models for N > 2 the Pfaffian is no longer strictly

positive.
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2.7 Appendix
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Figure 2.11: Pfaffian phase vs µ at λ = 30.0
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Chapter 3

Holography from lattice N = 4 super

Yang-Mills

3.1 Introduction

N = 4 super Yang-Mills is both a fascinating and non-trivial quantum field theory. It

possesses a line of conformal fixed points, is conjectured to be invariant under a strong-

weak coupling duality, and most importantly, furnishes the original example of holographic

duality by providing a description of type IIb string theory on five dimensional anti-de Sitter

space. The holographic description is most easily understood in the planar Nc →∞ strong

coupling limit where the five dimensional theory reduces to classical supergravity. However,

string loop corrections arise at O( 1
Nc

) and are difficult to access analytically. This provides

motivation to study the theory using numerical simulation.

Naive approaches to constructing a lattice theory break supersymmetry completely and

lead to a large number of relevant supersymmetry breaking counterterms whose couplings

would need to be tuned to take a continuum limit. This stymied progress for many years until

models were constructed that preserved one or more supercharges at non-zero lattice spacing

- see the review [12] and references therein. The key idea underlying these constructions
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is to find linear combinations of the continuum supercharges that are nilpotent and hence

compatible with finite lattice translations. This may be accomplished either by discretization

of a topologically twisted version of the supersymmetric theory [70] or by building a lattice

theory from a matrix model using orbifolding and deconstruction techniques [71–73].

While these developments have led to many numerical studies providing evidence sup-

porting holography for dimensional reductions of N = 4 Yang-Mills [54–62, 74] it has proven

difficult until recently to test holography directly in four dimensions. The original super-

symmetric construction in four dimensions produced lattice artifacts in the form of U(1)

monopoles that condense and lead to a chirally broken phase for ’t Hooft couplings λ > 4

[51, 52]. Recently we have constructed a new lattice action that appears to avoid these

problems [13]. It differs from both the original and improved [64] actions for N = 4 SYM by

the addition of a new supersymmetric term that breaks the gauge symmetry from U(N) to

SU(N). This removes the monopoles completely and, as we will show in this paper, yields

a single non-Abelian Coulomb phase.

3.2 Testing Holography with SU(3) SYM )

Our simulations utilize the rational hybrid Monte Carlo (HMC) algorithm where the Pfaffian

resulting from the fermion integration is replaced by

Pf (M) = det
[(
M †M

) 1
4

]
(3.1)

where M is the fermion operator and the fractional power is replaced by a rational fraction

approximation [75]. In principle this throws away any phase in the fermion operator. In

the appendix of this chapter (Fig. 3.6) we show that this phase is always small even at

strong coupling for sufficiently small µ2. Typical ensembles used in our analysis consist of

3500−4000 HMC trajectories with 750−800 discarded for thermalization. Errors are assessed

using a jackknife procedure using 20− 40 bins. We also fix κ = 1 for all our simulations.
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Figure 3.1: Bosonic Action vs λ for 84 lattice at κ = 1.0 for various values of µ
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One of the simplest observables that can be measured is the expectation value of the

bosonic action. This can be calculated exactly at any coupling by exploiting the exact

lattice supersymmetry. We start by rescaling the fermions to remove the dependence of the

Q-closed term on β = N
4λ

so that the partition function Z is given by

Z = β
−6N2V

2

∫
DηDψDχDUDUDd e−βQΛ−χDχ (3.2)

where Λ generates the Q-exact terms in the action and V is the number of lattice points.

After integrating over the auxiliary field d one finds that the coefficient −6
2
N2V is shifted to

−7
2
N2V . But

− ∂ lnZ

∂β
=< SB > − < SF >= −7N2V

2β
+ < QΛ > (3.3)

Using the Q Ward identity < QΛ >= 0 and the fact that the expectation value of the

fermion action can be trivially found by a scaling argument since the fermion fields appear

only quadratically one finds the final result

1

V
βSB =

9N2

2
(3.4)

Fig.3.1 shows the bosonic action density as a function of λ for several values of the susy

breaking mass µ. It should be clear that the measured values approach the exact result

< β SB
V
>= 40.5 independent of λ as µ→ 0.

To check that we have indeed suppressed the U(1) modes we plot the expectation value

of the link determinant in Fig. 3.2. Clearly the observed value of the link determinant lies

close to unity for all ’t Hooft couplings provided that µ is small enough. Notice that both the

bosonic action and the link determinant show no sign of a phase transition over the range

0 < λ < 40. This is consistent with the continuum expectation that the N = 4 SYM theory

exists in a single phase out to arbitrarily strong coupling.

The conclusion is strengthened further by examining a variety of supersymmetric Wilson
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Figure 3.2: Link Determinant vs λ for 84 lattice and κ = 1.0
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loop corresponding to the product of complexified lattice gauge fields around a closed loop

on the lattice. We have plotted the logarithm of such Wilson loops as a function of
√
λ

in Fig. 3.3. Clearly the behavior is smooth as λ varies and again there is no sign of any

phase transition. Furthermore the linear dependence of W seen for large λ is consistent with

holography. Indeed, both square and circular Wilson loops can be computed in the strong

coupling planar limit and show a
√
λ dependence on the ’t Hooft coupling [68, 69]. It should

Figure 3.3: R×R Wilson Loops vs
√
λ for 84 lattices at µ = 0.025 and κ = 1.0

be noted that this λ dependence cannot be seen in perturbation theory and constitutes a

non-trivial test that the lattice model is able to reproduce the non-perturbative physics of

the continuum theory.

However Fig. 3.3 makes it clear that there is also a perimeter dependence to the Wilson

loop. This is not unexpected and arises also in the continuum calculations as a regulator

term associated with a bare quark mass. In general the Wilson loop arises as the amplitude
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for the propagation of heavy fundamental sources that interact via a static potential of the

form

V (r) = −α
r

+M (3.5)

whereM represents the static quark mass. To subtract the perimeter term from our analysis

and look for the presence of an underlying non-abelian Coulomb term in the static potential

we have turned to another related observable – the correlation function of two Polyakov lines.

These are just Wilson lines that close via the toroidal boundary conditions. The measured

correlator is defined by

P (r) =
∑
x,y

[
< P (x)P †(y) > − < P (x) >< P †(y) > δ(r, |x− y|)

]
(3.6)

where |x− y| is the distance in the A∗4 lattice. As for the Wilson loop it is expected to vary

like

P (r) ∼ e−V (r)t (3.7)

with V (r) the static potential. In practice we have computed this correlator on ensembles of

Figure 3.4: − ln< P (x)P (y) > vs R for 124 lattices at µ = 0.05 and κ = 1.0
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smeared Polyakov lines. Smearing the lattice gauge fields is a procedure for replacing each of

the lattice gauge links by an average over neighboring link paths or staples. This smearing

procedure has the effect of reducing U.V effects and increasing the signal to noise ratio in

observables that depend on the gauge field. It also suppresses the contribution of any bare

quark mass. We have used the APE smearing procedure which replaces the link fields U in

the following way

Ua(x)(Nsmear) = (1− α)Ua(x)(Nsmear−1) +
α

8(1− α)
Sa(x)(Nsmear−1) (3.8)

where S denotes the sum over directional staples, Nsmear denotes the number of iterative

smearing steps and α is the smearing coefficient [76].

We have fitted the correlator for a range of smearing parameters at each value of λ

assuming a non-abelian Coulomb form for V (r) – see the tables 3.1-3.3 in the appendix. In

practice we find that Nsmear = 5 and 0.45 ≤ α ≤ 0.55 yields good, robust fits to the data

over the range 2 < r < 5 on a 124 lattice. Fig. 3.4 shows the logarithm of this correlator for

a lattice of size L = 124 with µ = 0.05 with Nsmear = 5, α = 0.50.

Taking the coefficients from these Coulomb fits and plotting them as a function of
√
λ we

again see a linear dependence on
√
λ which is consistent with the holographic expectation [77]

. Indeed, even the numerical coefficient in the fit lies within 10% or so of the holographic

prediction which can be seen in Fig. 3.5. Note that the holographic prediction has been

expressed in terms of the lattice coupling λ and not the continuum coupling. In the appendix

3.5 we include equivalent fits (Figs. 3.9 and 3.10) for a range of different smearing parameters

thereby verifying that the agreement with the holographic prediction is robust.

3.3 Conclusions

We have studied a new supersymmetric lattice action for N = 4 super Yang-Mills in four

dimensions at strong ’t Hooft coupling. We have focused on the case of three colors N = 3

50



Figure 3.5: Coefficient of the 1/r vs
√
λ for 124 lattices at µ = 0.05

and utilized lattices as large as 124. Our results provide strong evidence for the existence

of a single deconfined phase for all ’t Hooft couplings consistent with the expected con-

formal phase of N = 4 super Yang-Mills. In particular the new action shows no sign of

lattice monopole condensation at strong coupling which plagued earlier actions with exact

supersymmetry. The way is now open for using numerical simulation to explore a wide

set of non-perturbative features of N = 4 super Yang-Mills such as anomalous dimensions,

S-duality and the computation of stringy corrections to holography.

As a first step in these directions we have computed correlators of (smeared) Polyakov

lines that can be used to extract the static potential. We find that it exhibits the expected

non-Abelian Coulomb form V (r) = α
√
λ

r
where the value of α and the square root dependence

on the ’t Hooft coupling match expectations from holography.
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3.4 Appendix - Phase of the Pfaffian

Figure 3.6: 1− cos(α) vs µ for L = 24, 33 × 4, 32 × 42, 43 × 3

3.5 Appendix – Dependence of the fits on smearing pa-

rameters

λ a+ b/R Reduced-χ2

5 6.51(1) + 0.76(3)/R 0.18
10 6.29(1) + 0.78(5)/R 0.085
15 6.03(4) + 0.79(1)/R 1.6
20 6.06(1) + 0.80(5)/R 0.13
25 5.92(1) + 0.81(2)/R 1.4
30 5.91(1) + 0.92(1)/R 1.8
35 5.96(1) + 0.93(2)/R 1.2
40 6.22(2) + 0.97(1)/R (3.5 < R < 5.0) 2.3

Table 3.1: 1/R Fitting results for L = 124, µ = 0.05, Nsmear = 5, α = 0.45
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Figure 3.7: − ln< P (x)P (y) > for α = 0.45 Figure 3.8: − ln< P (x)P (y) > for α = 0.55

Figure 3.9: Coefficient of the 1/r vs
√
λ for

α = 0.45
Figure 3.10: Coefficient of the 1/r vs

√
λ for

α = 0.55

λ a+ b/R Reduced-χ2

5 6.67(1) + 0.79(4)/R 0.16
10 6.44(2) + 0.83(5)/R 0.07
15 6.17(1) + 0.82(1)/R 1.50
20 6.51(3) + 0.81(8)/R 0.04
25 6.09(1) + 0.86(2)/R 2.10
30 6.09(1) + 0.937(1)/R 1.34
35 6.05(1) + 0.934(2)/R 0.92
40 6.25(1) + 1.07(2)/R (3.0 < R < 5.0) 3.03

Table 3.2: 1/R Fitting results for L = 124, µ = 0.05, Nsmear = 5, α = 0.50
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λ a+ b/R Reduced-χ2

5 6.76(1) + 0.85(3)/R 0.17
10 6.54(1) + 0.87(5)/R 0.09
15 6.28(1) + 0.87(1)/R 1.23
20 6.47(2) + 0.88(6)/R 0.06
25 6.09(1) + 0.88(1)/R 1.53
30 6.13(1) + 0.96(1)/R 1.47
35 6.14(1) + 0.97(2)/R 0.90
40 6.28(1) + 1.07(2)/R (2.5 < R < 5.0) 2.48

Table 3.3: 1/R Fitting results for L = 124, µ = 0.05, Nsmear = 5, α = 0.55
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Chapter 4

Simulations of Quantum Ising Model on

AdS2

4.1 Introduction

One of the most fruitful ideas in theoretical physics developed over the last twenty-five years

has been the concept of holographic duality – that the physical content of a gravitational

theory in anti-de Sitter space can be captured by a non-gravitational conformal field theory

(CFT) living on the boundary of that space. Since the duality maps strong coupling to

weak coupling, it has frequently been used to probe the strong coupling dynamics of a CFT

living at the boundary by solving a classical gravity problem in the bulk [78, 79]. To gain

insight into quantum gravity, one would like to invert the direction of this logic and use the

non-perturbative quantum dynamics of the CFT to infer aspects of bulk quantum gravity.

As a first step in this direction, one performs a Wick rotation on anti-de Sitter space to

obtain hyperbolic space, followed by a discretization of the latter to obtain a lattice theory.

There have been recent efforts to perform classical simulations of such theories using

Monte Carlo methods [80–83], tensor network methods [84–87] and other numerical tech-

niques [88]. However such studies cannot probe the real-time dynamics of such systems, and
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in this manuscript, we return to a simple toy model that can be quantum simulated directly

in anti-de Sitter space – the transverse Ising model formulated in two-dimensional anti-de

Sitter space (AdS2).

In this chapter we will study this model using exact diagonalization, tensor network

methods, noiseless quantum simulators, and simulation on superconducting quantum devices.

Since the boundary theory is conformal quantum mechanics, a prime focus of our work will

be time-dependent correlation functions and, in particular, so-called “out-of-time-ordered"

correlators (OTOCs). These provide information on how fast quantum information can

propagate through the lattice and how long thermalization takes in such an interacting

quantum system.

Contrary to naive expectation it is possible for a quantum mechanical system to un-

dergo thermalization locally [89, 90]. Indeed such thermalization has also been observed

experimentally [91].

The key idea is that one needs to focus on a subset A of the composite system comprising

A and its environment B. If A is entangled with B then one naturally obtains a density

matrix for A by tracing out the degrees of freedom in the Hilbert space of B. If |ψ〉 〈ψ|

denotes a pure state of the combined system, the density matrix of A is given by

ρA = TrHB |ψ〉 〈ψ| . (4.1)

This density matrix corresponds to a mixed state if there is entanglement between A and

B, and this is manifested by a non-zero entanglement entropy given by the von Neumann

formula:

S = −TrHA ρA ln ρA. (4.2)

In this paper, we are particularly interested in mixed states corresponding to thermal

systems. One simple way to construct a thermal density matrix for A is to start from a
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composite system comprising two identical copies of A

|Ψ〉 =
1

Z
1
2

∑
n

e−
β
2
En |nA〉 |nB〉 . (4.3)

In this case, tracing out B yields

ρA =
1

Z

∑
n

e−βEn |n〉 〈n| , (4.4)

in the case where the quantum mechanical system corresponds to a conformal field theory

there is a holographic interpretation of the density matrix as describing a black hole in a

dual geometry which contains the CFT on its boundary. Indeed the entanglement entropy

in this case can then be shown to correspond to the Bekenstein-Hawking entropy associated

with the area of the event horizon of the black hole [92–95].

The next most obvious question that arises is how long it takes to realize this density

matrix under Hamiltonian evolution starting from some pure non-generic state |ψ〉. In

general, this process resembles classical chaotic dynamics with initial states that differ only

by small perturbations yielding radically different states at large times. This thermalization

process is called scrambling and has been the focus of many previous studies [96–106]. The

scrambling time τS is determined by the speed at which information can propagate across

the system under time evolution and is related to the dimensionality of the system and the

locality of the Hamiltonian. There are theoretical bounds on the scrambling time τS which

is bounded from below by

τS ∼ β lnV,

where, V counts the number of microscopic degrees of freedom. Attaining this bound depends

on an exponentially fast spread of information through the system [107–111].

It has been conjectured that CFTs with black hole duals provide one example of a system

capable of such “fast scrambling" [112, 113]. Systems that show fast scrambling typically
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involve non-local Hamiltonians and all-to-all interactions such as the SYK model [114–118].

In this paper we will show that in certain regions of the parameter space the transverse

quantum Ising model with nearest neighbor interactions living on a discretization of two

dimensional anti-de Sitter space appears to exhibit similar behavior. However one should be

careful with this interpretation – the spatial boundary of our system is just two points and

our quantum spins populate the bulk space as well as the boundary. So we are primarily

looking at information spread in the bulk. To understand the thermalization properties

better one would need to extend the model to three dimensional anti-de Sitter space which

possesses a non-trivial spatial boundary.

We have performed both classical and quantum simulations of this system. In Sec. 4.2,

we find the ground state of this model using the density matrix renormalization (DMRG)

algorithm [119–121] and time-evolve it with the time evolving block decimation (TEBD)

algorithm using the ITensor library [122–125]. In Sec. 4.3, real time evolution of the mag-

netization is discussed and implemented for a thirteen qubit system and compared to the

tensor method results. We discuss the information propagation in this model in Sec. 4.4. To

study the scrambling properties of the model we have used matrix product operator (MPO)

methods to calculate the OTOCs [126, 127] in Sec. 4.4.1. In the next subsection 4.4.2, the

computation of OTOCS using a protocol developed by Vermersch et al. [128] is discussed

and implemented for a model with seven qubits. Successful implementation of the model on

quantum devices required applying some additional error mitigation techniques. We discuss

the influence of the mitigation techniques on the results and other numerical aspects of the

digital quantum simulation in Appendix 4.6. We also sketch out how to implement this

Hamiltonian via analog quantum devices like Rydberg arrays and perform simulations of the

system on the Bloqade simulator developed by QuEra in Sec. 4.3.2. In Appendix 4.7, we

include some details of the protocol used for the computation of the OTOC using a quantum

computer.
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4.2 Transverse Ising Model on a Hyperbolic Space

In this section, we describe the Transverse Field Ising (TFI) model formulated on a one

dimensional hyperbolic space. The model is an analogue of the classical Ising model on a

two dimensional tessellation of hyperbolic space [129, 130]. The Hamiltonian that describes

this Ising chain can be represented as a sum of local terms [131–133]

Ĥ =
−J
4

∑
i

cosh(li) + cosh(li+1)

2
σzi σ

z
i+1

+
h

2

∑
i

cosh(li)σ
x
i +

m

2

∑
i

cosh(li)σ
z
i . (4.5)

Here, σpi is a local Pauli operator at site i with p = {x, y, z}. The first term corresponds

to a nearest neighbour interaction term coupling neighboring sites. The deformation factors

ηi = cosh li arise from the metric of Euclidean AdS2 given in Eq. (4.6) and give rise to a

site-dependent coupling for the Ising chain

ds2 = `2(cosh2(ρ)dt2 + dρ2). (4.6)

For an N site lattice the site-dependent deformation scale li is given by

li = −lmax + i
2lmax

N − 1
, (4.7)

where lmax denotes a length scale that determines the degree of deformation. In the limit of

lmax → 0, the planar transverse Ising model is recovered. In the rest of the paper we will

be using system sizes where N is a odd number. This ensures that there is a true middle

point where the coupling is symmetrical which ensures the dynamics of propagation are same

towards to the left and right of this middle point. Obviously, for infinite chain limit N →∞,

the distinction between choosing odd or even number of site will disappear.
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We start the discussion of our numerical results with the von Neumann entropy Eq. (4.2)

calculated from the reduced density matrix obtained by dividing the spin chain in two and

tracing out one half. Fig. 4.1 shows a plot of the half chain entropy and Fig. 4.2 shows the

magnetic susceptibility at lmax = 3.0 h = 3.0 and m = 0.25 using N = 37 spins as a function

of J .

For our DMRG calculation we used 50 sweeps of the chain with a cutoff of order ε = 10−12

which resulted in a bond dimension of order χ = 10 on average. We see that there are peaks

in the entropy and the susceptibility signaling a possible phase transition in the model. In

our later work on OTOCs we will always tune our couplings to be close to their critical

values.

Figure 4.1: von Neumann Entropy versus J for N = 37, lmax = 3.0, h = 3.0,m = 0.25.

4.3 Time evolution of the magnetization

In this section, we show results on the time evolution of the magnetization 〈Sz〉 = 1
2
〈σz〉

computed using tensor methods compared with simulation on quantum devices.

We start by time evolving the system using the Time Evolving Blocked Decimation

(TEBD) algorithm [134]. Historically, TEBD was adapted from the Suzuki-Trotter approx-
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Figure 4.2: Magnetic susceptibility versus J for N = 37, lmax = 3.0, h = 3.0,m = 0.25.

Figure 4.3: 〈Sz〉 for a lattice with N = 37 spins and parameters set at
J = 2.0, h = 2.0,m = 0.25, lmax = 3.0.

imation for the Matrix Product State (MPS) [135]. In Fig. 4.3, the Trotter evolution of the

magnetization 〈Szi (t)〉 is plotted at each lattice site i for a lattice chain with N = 37 sites,

and lmax = 3.0, h = 2.0, J = 2.0, and m = 0.25 starting with all spins in the down state.

Clearly, the dynamics of the magnetization shows warping effects in the bulk due to the

curved background. One can think of this warping effect as due to time dilation effects in

the bulk.
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4.3.1 Time evolution of Magnetization with Universal Quantum

Computers

Next, we attempt to investigate the model using a quantum platform – namely the IBM

Guadalupe machine. Currently, quantum devices experience both large coherent and inco-

herent noise in any given computation. Thus, we have attempted to investigate a system

with modest system size of N = 13 spins where there is limited device noise and the warping

effects can be observed∗. We have computed the time-dependent expectation value of the

magnetization 〈Szi (t)〉 = 〈0|U †(t)Szi U(t)|0〉, in the massless limit m = 0, using a first order

Trotter approximation for the time evolution operator

U(t) = exp(−iHt) '
(
N−1∏
i=0

Ri
x(θi)

N−2∏
j=0

Rj
zz(φj)

)n

. (4.8)

q0 : Rx (θ0) •
Rzz (φ0)

q1 : Rx (θ1) • •
Rzz (φ1)

q2 : Rx (θ2) •
Rzz (φ1)

•
q3 : Rx (θ1) • •

Rzz (φ0)
q4 : Rx (θ0) •

Figure 4.4: Trotter evolution circuit for the first Trotter step for a 5-Qubit spin chain in
the hyperbolic lattice. Here, θi = −Jδt

4
(ηi + ηi+1) and φi = hδtηi.

Using first order trotter evolution we can measure observables at discrete steps δt of time.
∗IBM Guadalupe is a 16 qubit machine, where the longest possible chain of Ising spin that can be

constructed without additional SWAP gates is of 13 qubits due to the connectivity constraints.
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Figure 4.5: Local magnetization 〈Siz(t)〉 at site i for TFI model on hyperbolic lattice chain
with 13 lattice sites. Parameters: J = 2.0, h = 1.05, lmax = 3.0. We took advantage of the

symmetry of the lattice Hamiltonian to find the average magnetization:
〈Szi 〉 → (〈Szi 〉+ 〈SzN−i〉)/2. This played an important role since some of the physical qubits
of the Guadalupe machine have smaller energy relaxation (T1) and dephasing(T2) times.

The quantum circuit representation for the time-evolution operator for one Trotter step is

shown in Fig. 4.4. We need to repeat the circuit n times to obtain time evolution operator

at time t = nδt. Thus, n denotes the number of Trotter steps in the calculation. In general,

the quantum circuit representation for the computation of observables involves initial state

preparation, time-evolution, and measurement. Due to our choice of a simple initial state

(vacuum state |0〉 = |0〉⊗N) and simple operator Sz = σz
2

we do not need any additional

quantum operations for the initial state preparation and the measurements.

Different orderings of the operators can be used for this approximation, see the discussion

in the Appendix 4.6.2. In this section, all the results presented use what we denote as ‘odd-

even’ ordering in the Appendix.

Local magnetization results are shown for three different sites in the Fig. 4.5 and com-

pared against classical simulation results obtained from TEBD. The parameters used were

J = 2.0, h = 1.05 and lmax = 3.0. The gate cost of such a circuit is similar to that of the Ising

spin chain on a flat lattice [136]. The difference in our Trotter evolution of the deformed

Hamiltonian lies in the site dependent phase factors of the rotation and entangling gates.

This brings an inherent complication to the problem of selecting the optimal Trotter step δt.

Previous studies have shown that theoretical bounds of the first-order Trotter approximation

can be relaxed for observing time evolution with current NISQ-era machines [136–138]. The

phases (θi, φi) of the rotation and entangling gates are of the form Ci × δt and the optimal
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Figure 4.6: Trotter evolution of local magnetization 〈Szi (t)〉 with exact diagonalization.
Parameters: N = 13, J = 2.0, h = 1.05, lmax = 3.0.

choice for the Trotter step is different for local operators 〈Siz〉 at different sites. Thus, one

constraint for choosing the optimal Trotter step (δt)optimal comes from the local couplings

Ci. In NISQ-era devices, the other constraint comes from the maximum possible circuit

depth dmax that can be simulated before the noise swamps the signal. Naively, we can use a

maximum of dmax number of q-qubit gate before the information is completely lost

dmax =
ln(1/2q)

ln(ε)
,

due to the accumulation of gate errors of size ε. In practice, the practical circuit depth

dpractical << dmax due to different sources of noise other than the gate errors. Hence we

can not go beyond a maximum number of nmax Trotter steps in current devices. We found

that a value of (δt)optimal ∼ 0.2 and tmax ∼ 1.2 is a good choice for time evolution of the

magnetization. To see key features of an observable the optimal choice of the trotter step can

depend on the type of the observable, and the parameters (J, h,m, lmax). For the computation
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Figure 4.7: Trotter evolution of local magnetization 〈Szi (t)〉 computed using guadalupe
Quantum Processing Unit (QPU). Parameters: N = 13, J = 2.0, h = 1.05, lmax = 3.0.

Magnetization data on the edges of the lattice chain are omitted due to the large
Trotter-error associated with it. Note that the deformation strength is stronger on the

edges.

of the local magnetization, the number of shots used is Nshots = 1000. See Appendix. 4.6.1

for a discussion of the statistical noise associated with different Nshots.

In Fig. 4.5, classical simulation results of the local magnetization with the TEBD al-

gorithm are compared with the mitigated results obtained from the Guadalupe machine.

The error-bars in the figures represent statistical errors associated with six different mea-

surements. The measurements were performed on different days to demonstrate reliable

systematic error on the current devices. Various error mitigation techniques were applied to

obtain the results.

Dynamical Decoupling (DD) [139, 140] was applied to reduce the coherent noise and the

M3 method [141] was used to reduce readout errors. We also created noise-scaled circuits

with three-fold and five-fold amplification of the noise in comparison to the original circuit

and applied the Zero Noise Extrapolation (ZNE) mitigation technique to reduce the inco-
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herent noise [142, 143]. We used the built-in features of the IBM runtime system to apply

DD and M3 while noise-scaled circuits were created by inserting an appropriate number of

identity operators for each CNOT gate. This choice is justified for current IBM devices,

where two-qubit gates have significantly larger errors than single-qubit rotation gates†. See

Appendix. 4.6.3 for the discussion of how different error mitigation techniques improved our

results.

After post-processing the data with different error mitigation techniques, we found that

the magnetization results obtained from the Guadalupe machine Fig. 4.7 show good evidence

of the warping expected for this geometry. For comparison purposes, the TEBD results are

plotted in Fig. 4.6. The CNOT gate cost for computing time-evolution with first order

Trotter approximation of a N -qubit quantum spin chain is 2(N−1) per Trotter-step and the

circuit depth at Trotter step n = 6 is d = 48. The results from the QPU track the peak of

the local magnetization quite well. The QPU results also demonstrate that the initial state

with all-down spins is disrupted by the boundary at a slower rate as we move from the edge

to the center of the lattice chain. While the quantum simulation results align qualitatively

with tensor methods, it is clear that larger numbers of qubits would be needed to identify

the warping effects in a greater detail. We have also explored a possible implementation

of the real-time magnetization evolution on QuEra’s analog quantum computers based on

Rydberg arrays which can be seen in the next subsection.
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Figure 4.8: Time evolution of the Rydberg density

4.3.2 Magnetization results using Rydberg Arrays

In this subsection, we report on quantum simulations of this model using Rydberg arrays.

The Hamiltonian that governs the Rydberg simulator can be written as,

ĤR(t) =
∑
j

Ωj(t)

2
(eiφj(t) |gj〉 〈rj|+ e−iφj(t) |rj〉 〈gj|)

−
∑
j

∆j(t)n̂j +
∑
j<k

Vjkn̂jn̂k, (4.9)

where, Ωj(t) is the Rabi frequency, φj(t) denotes the laser phase, ∆j(t) the detuning pa-

rameter at site j. Van der Walls interaction Vjk = C6/|rj − rk|6 is known as the Rydberg

interaction term with C6 = 2π × 862690MHzµm6 [144–146].

Different operators in the hyperbolic Ising Hamiltonian can be mapped to different op-
†For the Guadalupe machine, the ratio of the median-errors for the two-qubit and single-qubit gates is
εCNOT

ε1qubit−gate ∼ 25.
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erators of the Rydberg Hamiltonian with the choice of zero laser phase φj(t) at all sites,

ĤR(t) =
∑
j

Ωj(t)

2
(|gj〉 〈rj|+ |rj〉 〈gj|)︸ ︷︷ ︸

σxj

−
∑
j

∆j(t) n̂j︸︷︷︸
(1−σzj )

+
∑
j<k

Vjk n̂jn̂k︸︷︷︸
(1−σzj )(1−σzk)

. (4.10)

The Rydberg interaction potential, Vjk determines the position of the atoms to quantum

simulate the hyperbolic Hamiltonian. Due to the hyperbolic deformation, it is expected that

we need to position the atoms non-uniformly. This is achieved by placing the atoms starting

at location (0, 0) and using Eq. (4.11) to find the distances between successive spins:

δi+1 = (A/ηi)
1/6 + ri. (4.11)

This equation is just the rearranged form of A
(ri+1−ri)6 = cosh li which is the form of the

Rydberg potential. Here, A = 2π × 512 is a constant for adjusting the scale, ηi = J cosh(li)

is the hyperbolic deformation and ri is the location for the ith site. We set J = 1 for the rest

of our discussion of Rydberg simulations.

Using this procedure we get the following locations for the Rydberg atoms for lmax = 3.0

where the resulting distances between atoms range from 12.13µm, to 17.72µm with the

furthest atom located at 180.77µm from the origin.

The form of ∆j and Ωj is then given by equating the coefficients to the form of the

Rydberg potential between the atoms

∆j = Ωj =
10× C6

(rj+1 − rj)6
. (4.12)

However, currently commercially available Rydberg machines are constrained to have

only global laser parameters. Hence we have turned to the Bloqade Simulator developed by

QuEra to perform simulations [147]. Fig. 4.8 shows a picture of the time evolution of the
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Rydberg density (essentially 〈Sz〉). Notice that Fig. 4.8 exhibits similar warping effects

to those seen in the TEBD simulations of the model. This shows us that our model can

be simulated with Rydberg Arrays. We hope that in the future with advancements in the

Rydberg array technologies, we will be able to probe information propagation in this model

with Rydberg simulators. However even with a local detuning it might not be possible to

probe the whole spectrum of the model due to limitations in chain length and largeness of

the Rabi and detuning term.

4.4 Out-of-time-ordered Correlators

We now turn to the question of how information spreads in the model. To answer that, we

computed an out-of-time-ordered-correlator (OTOC). This observable is known to capture

information spread and scrambling in quantum systems [148–151] and can be thought of as a

quantum mechanical counterpart of the Loschmidt echo [152]. To construct the OTOC, we

use two operatorsWi(t) and Vj whereW (t) = expiHtW (0) exp−iHt. From these we construct

the commutator of these operators

C(t) = 〈||[Wi(t), Vj]||2〉 = 2(1− Re[Fij(t)]), (4.13)

where Fij(t) is the the required out of time ordered correlator (OTOC)

Fij(t) = 〈Wi(t)
†Vj(0)†Wi(t).Vj(0)〉. (4.14)

This equality is obtained under the assumption that W and V are unitary and that terms

that correspond to local observables thermalize to a constant after a short time and hence

can be omitted. The connection between Fij(t) and the information spread can be made clear

by considering W as a simple local perturbation. Under time evolution this perturbation

becomes more and more non-local. The growth of these non-local effects can be captured
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by calculating the commutator of W (t) with another local operator V . When the operators

commute, C vanishes and F is one. So by measuring the double commutator or the OTOC

we can track the propagation of W (t) along the system.

The relationship between the double commutator and operator growth can be made clear

by considering a simpler setup. Let’s start by representing a unitary time evolution operator

out of local two qubit unitaries. Using this representation we can obtain the Heisenberg time

evolution for a local operator A(t) = U †AU .

Figure 4.9: Heisenberg time evolution for a local operator.

Where in Fig. 4.9 blue and red boxes represent U † and U while the green circle represents

the operator A. One can clearly see from the above figure that any contraction that doesn’t

involve the operator A will be the identity so we can ignore those and focus on the contrac-

tions that involve the operator. This clearly shows us the lightcone for the operator growth

in the Heisenberg picture and demonstrates that the OTOCs capture the characteristics of

the operator spread in the system.

However, this general form of the OTOC is not the easiest to deal with in our simulations.

Instead, we choose the following form for the OTOC operator which can be seen from Eq. 4.15
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[128, 153]

Oi(t) =
Tr(ρW (t)N+1

2
V †i W (t)N+1

2
Vi)

Tr(ρW (t)2V †V )
. (4.15)

In our calculations, we take W (t) = σz(t), V = σz and fix the position of W (t) operator

at the center of the lattice chain. To see the effect of the interaction of two local operators,

we then place the operator V at different lattice sites i. We have focused on the infinite

temperature limit which corresponds to taking a density matrix ρ ∼ I in Eq. 4.15. Infinite-

temperature OTOCs bear the signature of entanglement growth after a quench is applied to

an energy eigenstate [154] and are easier to compute. Furthermore, many of the protocols

used in finite-temperature-OTOCs can be developed from the corresponding protocols used

in the infinite temperature case [128, 155]. Additionally, the exponents computed from the

infinite-temperature OTOCs are insensitive to slightly different OTOC definitions that exist

in the literature, see the appendix in [155].

4.4.1 Classical Simulations of OTOCs

For computing the Out-of-Time-Ordered Correlators (OTOC) using classical methods, we

utilize a Matrix product Operator (MPO) representation of the operators W and V . We

consider Heisenberg time evolution representation of the W operator to obtain W (t) =

exp(iHt)W exp(−iHt) through the Time-Evolving Block Decimation (TEBD) algorithm.

Fig. 4.10 illustrates the application of Heisenberg time evolution to a generic operator W

for one Trotter step. In this figure, the blue blocks denote the MPO representation of the

operator W , while the green blocks constitute the MPO representation of unitary evolution

operator eiHijδt, where i and j represent the neighboring site indices. Then the resulting

time evolved operator W (t) can be plugged into the OTOC calculation.

In the absence of deformation of the coupling paramters, the flat space transverse Ising

model is recovered and a linear light cone is observed (Fig. 4.11). If we turn on the hyperbolic

deformation by tuning lmax to a non-zero value, we observe that the system develops a warped
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Figure 4.10: Heisenberg time evolution for an operator W(t).

Figure 4.11: OTOC (Oi(t)) for the planar Ising model can be obtained by setting the
deformation scale lmax to zero. Parameters: J = 6.0, h = 3.05, m = 0.25.

lightcone. In Fig. 4.11, Fig. 4.12 and the rest of the plots of OTOCs, the red dots in the out

of time ordered correlator plotsrepresent the times where the OTOC at that lattice site first

deviates from 1.0 by some amount ε = 0.25. These resultant points trace out the lightcone

shown in the plot. The purple line which is shown to guide the eye corresponds to a curve

of the form

t = log
∣∣∣x− N + 1

2

∣∣∣+B,
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where, B is a constant.

Figure 4.12: OTOC (Oi(t)) in the hyperbolic Ising model. Parameters: lmax = 3.0, J = 6.0,
h = 3.05, m = 0.25.

We found that to access the logarithmic regime of the model the physical couplings J

and h need to be tuned to be close to their critical values. The remaining physical coupling

m then controls the thermalization dynamics. In Fig. 4.14 we plot the time evolution of the

half-chain von Neumann entropy which shows how m controls the thermalization. We can

also look at the site-averaged OTOCs which are plotted in Fig. 4.13. This clearly show a

power-law dependence on t as the system thermalizes.

Note that the value of m doesn’t affect the structure of the light cone and only controls

the thermalization time. In fact the shape of the lightcone is determined by the value of

lmax. For N = 37 we found four distinct behaviors for the lightcone. For 0.0 < lmax < 1.0

we find a linear lightcone. Then for 1.0 < lmax < 2.0 we see a power-law behavior while

for 2.0 < lmax ≤ 3.0 the light cone takes on a logarithmic behavior. Finally for lmax > 4.0

the system confines and an excitation that has been initialized in the bulk never reaches the

boundaries of the chain. We summarize this structure in the cartoon of the OTOC phase

diagram of the model in Fig 4.15 and more figures that show these distinct propagation

patterns can be seen in Appendix. 4.8
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Figure 4.13: Site averaged OTOC for J = 6, h = 3.05,m = 0.25, lmax = 3.0

Figure 4.14: von Neumann entropy for J = 6, h = 3.05, lmax = 3.0

The dependence on lmax can be clearly seen in Fig.4.16 where we plot the local light-cone

time obtained from OTOC calculations vs the lattice site, starting from the middle of the

chain and ending at the first site. The black curves show the logarithmic fits for l ≥ 3.0.

Error bars on the points are obtained by taking multiple cutoff values and averaging over
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Figure 4.15: OTOC Phase Diagram for N = 37 lattice spins.

them.

Figure 4.16: Curvature dependence of the propagation behavior of OTOC for
N = 37, J = 6.0, h = 3.05,m = 0.25

Even though we focused solely on the choice of W (t) = σz(t) and V = σz for the
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OTOC calculations, it is possible to choose other combinations of operators. One such

choice corresponds to taking σx operators for both W (t) and V operators which results in

the plot shown in Fig. 4.17. We observe the shell-like structure of the XX-OTOC which is

similar in behavior with the flat-space transverse Ising model analyzed by Lin and Motrunich

in [149]. As can be seen from the Fig. 4.17, the points inside the light cone are significantly

less prominent as compared to their ZZ-OTOC counterparts. The authors attributed this

behaviour to the commutation structures of the time evolved operators [149].

Figure 4.17: XX-OTOC for N = 37, J = 6.0, h = 3.05,m = 0.25

4.4.2 Quantum Simulation of OTOCs

In this subsection, the computation of the OTOC with digital quantum computers is dis-

cussed. First, let us write down an alternative definition of the OTOC for a N -qubit system

Oeig
i (t) =

〈ψ| (W (t)N+1
2
V †i W (t)N+1

2
Vi) |ψ〉

〈ψ| (WN+1
2

(t)2V †i Vi) |ψ〉
, (4.16)

where |ψ〉 represents an arbitrary state. The schematic circuit diagram to compute this

quantity is shown in the Fig 4.18. From this schematic diagram and the discussion of the

Trotter evolution in the previous section, it is evident that to compute the OTOC with
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Figure 4.18: Schematic circuit diagram of OTOC using the definition at Eq. (4.16).

Arbitrary
State

1 2 3

(a)

Arbitrary
State

(b)

Figure 4.19: Modified OTOCs are computed from the correlation of the measurement of
two different operators (a) 〈W (t)〉 and (b) 〈V †W (t)V 〉. The same set of unitaries are

required to find the correlation between the measurements. The procoess is repeated for
many different sets of unitaries.

Trotterized evolution operator requires 8n(N − 1) CNOT gates for the nth Trotter step. In

our work we considered a spin chain of length N = 7, and used a trotter step δt = 0.5 up to

a maximum time tmax = 3.5. This indicates that a quantum computation of the OTOC with

a quantum circuit like that of Fig. 4.18 would require more that 200 CNOT gates in just four

Trotter steps. Hence extracting any useful results would become impossible at early times

due to coherent and incoherent noise in the device. Using a weaved Trotterization technique,
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(a) (b) (c)

Figure 4.20: Change in correlation of the operators 〈W (t)〉 = 〈σz3(t)〉 and
〈VW (t)V 〉 = 〈σz2σz3(t)σz2〉 over time. Parameters: lmax = 3.0, J = −0.5, h = −0.525,

W (t) = σz3(t), and V = σz2.

Figure 4.21: Modified OTOC of the zeroth order, O0(t) for lmax = 3.0, J = −0.5,
h = −0.525, W (t) = σz3(t), and V = σz2.

similar circuits were implemented to compute OTOCs for a small system of four qubits in

[156].

Our goal in this section is to investigate if we can extract the scrambling time at infinite

temperature (ρ ∝ I) with the current IBM devices for a system with 7 spins. As for tensor

network simulations we position the W operator at the center of the lattice chain and vary
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Figure 4.22: Modified OTOC as the position i of the V operator varies. Parameters:
lmax = 3.0, J = −0.5, h = −0.525, W (t) = σz3(t), and V = σzi .

the position i of the V operator. Our choice for the W and V operators remains the same

as that of the previous section. With quantum simulation, we also would like to see if the

simulation can identify the difference in the scrambling time as we vary the position of the

V operator. Many protocols for computing OTOCs have been proposed [128, 157–161] and

many authors have also suggested some modified quantities that also contain scrambling in-

formation [156, 159]. For example, to reduce the computational cost the magnitude-squared

of OTOC (|F |2, see Eq. (4.14) for definition of F ) can be computed ignoring the phases [159].

In this paper, we have used the protocol proposed by Vermersch et. al. to compute both

the OTOC and the modified OTOC [162]. The gate cost per circuit for computing the mod-

ified OTOC of zeroth order using this protocol is ∼ 2n(N − 1), which is significantly lower

than the gate-count needed in the straightforward evaluation presented by Fig. 4.18. Also

the protocol we have chosen does not require any ancilla qubits unlike some other OTOC

computation protocols.
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Vermersch et. al. [163] discussed a ‘global protocol’ to compute the OTOC and a

‘local protocol’ for computing modified OTOCs. Both protocols require state preparation of

random states created from random unitary operators. The idea is to sample enough random

states to mimic a thermalized scenario for the computation of the OTOC. Mathematically,

the global protocol relies upon the following equation

Tr
[
W (t)V †W (t)V

]
=

1

D(D + 1)
〈W (t)〉u,k0 〈V †W (t)V 〉u,k0 , (4.17)

where, D is the dimension of the Hilbert space. On the right hand side, the overline denotes

an ensemble average of measurements over a set U = {u0, u1, · · ·uNU} of random unitary

operators and k0 is an abitrary initial state. Each unitary in the set U is a N -qubit unitary.

Implementation of the global protocol requires creating a N -qubit random unitary operator

that is applied to an input state of N qubits. Decomposition of an N -qubit unitary is costly

in terms of the entangling gates. Moreover, for a specific precision, the local protocol needs a

smaller number of measurements [128]. As a result, we have found it convenient to implement

the local protocol in Fig. 4.19 which requires just N random unitaries per run. Depending

on the number of initial states |ki〉 = {k0, k1, · · · k2n} being used, the modified OTOCs of

different orders n can be computed. The larger the order n of the modified OTOC, the better

it approximates the original OTOC while the specific n needed is model dependent. Indeed,

there is evidence that the modified OTOCs contain the needed information on entanglement

spreading [128].

For numerical justification of the Eq. (4.17) and for the connection of the different OTOC

definitions, readers are advised to consult Appendix 4.7. Here, for completeness, we outline

the steps to compute the modified OTOC of zeroth order:

• We prepare an arbitrary initial state |k0〉 (position 1 in Fig 4.19a). The initial state
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preparation step can be avoided if the all-zero state |0〉 = |0000000〉 is chosen as

the starting quantum state. Then, a set of unitary gates ui = {U i
0, U

i
1, · · · , U i

N , } are

applied to each qubit, which results in a random state |ψ1〉 = U i
0 ⊗ U i

1 ⊗ · · · ⊗ U i
N |0〉

at position 2 in the Fig. 4.19a.

• Next the time evolution of the random state is computed using the Trotterized evolution

operator U(n) =
[

exp
(
−iĤδt

)]n
. This yields |ψ2〉 = U(n)|ψ1〉 at position 3 in the

Fig. 4.19a.

• The necessary gates are then applied to compute the observable W in the computa-

tional basis. In our case, since W = σzi , projective measurements of qubit i allows us

to compute 〈W (t)〉 = p0 − p1, where p0(1) is the probability of measuring the qubit in

the zero (one) state. We use Nshots = 200 for computing the expectation value of the

operator.

• In a similar fashion, if we include the V operator after creating the random state |ψ1〉

(Fig. 4.19b), the previous two steps can be applied to compute 〈V †W (t)V 〉.

• The process is repeated NR = 180 times. Thus, measuring 〈W 〉 (or 〈VWV 〉) requires

generating a total of NU = NR × N unitary matrices of size 2 × 2, with each unitary

matrix drawn randomly from the Circular Unitary Ensemble (CUE) [164]. CUE(n)

represents a uniform distribution over the unitary square matrices of dimension n –

the Haar measure of the unitary group U(n).

• Finally, an ensemble average of the quantity 〈W (t)〉u,k0〈VW (t)V 〉u,k0 is computed

which is a measure of the modified OTOC of the zeroth order.

With the proper normalization, the modified OTOC of the zeroth order O0(t), can be de-

scribed by the following equation

O0(t) =
〈W (t)〉u,k0〈VW (t)V 〉u,k0

〈W (t)〉u,k0〈W (t)〉u,k0

. (4.18)

Using the steps described above, operator expectation values 〈W (t)〉 and 〈VW (t)V 〉 are

81



computed with the same set of unitaries. Fig. 4.20 shows measurements of these operators.

Initially the operators are correlated (Fig. 4.20a) while over time due to operator spreading

the operators become decorrelated (Fig. 4.20c) which signifies a loss of memory of the initial

state. As the resources required for the computation of higher order OTOCs is large we have

only computed the zeroth order OTOC in this study corresponding to the plot in Fig 4.21.

NU = 180 × N unitaries were used for this simulation and each measurement required

NM = 200 shots. These numbers were chosen carefully using a noise model simulation

so as to minimize the overall cost for implementing the protocol with current quantum

devices. From the figure, it is seen that mitigated results with the IBM Sherbrooke machine

compare well with results from exact diagonalization. Dynamical decoupling (DD) was

used to compensate coherent noise and M3 was used for the readout error mitigation. Our

studies show that applying noise mitigation techniques is important in recovering scrambling

information with current NISQ-era devices.

The dependence of the speed of information spread on the position of the V operator

can be seen in Fig. 4.22 where it is compared with classical Python-Trotter simulations.

The error bars in the simulation indicate the jackknife error due to the choice of different

sets of random unitaries. For a fixed number of unitaries NU , the error can be reduced

at the expense of increased computational resources, that is, by increasing the number of

shots Nshots. On the other hand, increasing the number of unitaries NU also reduces the

error, allowing us to better approximate the trace in Eq. (4.17) with the ensemble average

on the right-hand side. Clearly, the measured values obtained with the IBM device without

mitigation deviate from the ideal Python Trotter results, indicating the presence of different

sources of noise in the device. The mitigated results agree rather well and can depict the

difference in speed due to the varied distance d = |j − i| of the Wi and Vj operators. It

would be intriguing to see in the future whether we can use more computational resources

to compute higher-order modified OTOCs.

Additionally, investigating the scrambling time and quantum Lyapunov exponents with
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quantum computers could be an exciting avenue for the future research.

4.5 Conclusion

In this chapter, we have investigated the transverse quantum Ising model discretized on two

dimensional anti-de Sitter space. In practice this is implemented by using site dependent

couplings which mock up the metric factors corresponding to a one dimensional hyperbolic

space. We computed the time evolution and OTOCs of the model using both tensor network

methods and quantum simulations using both gate based quantum computers as well as

simulation on analog quantum computers that use Rydberg arrays. We showed that the

time evolution and OTOCs obtained from the quantum simulations agree well with the

tensor network calculations.

The use of new publicly available universal quantum computers and new mitigation

techniques allowed reliable time-evolution calculations with up to 13 qubits. In previous

work on related real time evolution of systems of comparable difficulty [136, 138, 165, 166],

reliable 4 qubit calculations were reported but extensions to 8 qubits were unsuccessful.

Additionally, to the authors’ best knowledge, this is the first time a protocol to compute

OTOCs has been implemented for a seven qubit system using an IBM QPU, superseding a

previous attempt with four qubits. From this perspective, the results presented here give a

sense of the progress in quantum hardware and software in the last few years. Nevertheless,

this remains a relatively small number of qubits and the boundary effects are significant.

These boundary effects are of potential interest [167–169] and could be studied in more

detail for their own sake.

We found that depending on the parameters of the model it’s possible to have differ-

ent profiles for the light cones that describe the propagation of information in the system.

Perhaps most intriguingly we find a regime of the critical system where the direction of the

light cones in global coordinates displays a logarithmic dependence on bulk distance. This
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behavior implies that the scrambling time characterizing thermalization in this system de-

pends only logarithmically on the number of degrees of freedom. Such a behavior is usually

seen in models with long or even infinite range interactions while our model has only nearest

neighbor interactions. We believe that this makes this model a very interesting candidate

for future studies of scrambling in quantum spin models.

4.6 Appendix-Digital Quantum Simulation of the Mag-

netization

In this appendix, we present some observations of the simulation with digital quantum

computing processors which would be useful for investigation of quantum field theories with

quantum computers for interested readers.

4.6.1 Statistical error

In this subsection, we discuss statistical errors associated with different number of shots.

Fig. 4.23 shows magnetization results obtained from the Guadalupe quantum computer with

200, 500 and 1000 shots. With our choice of the parameters, we find that the information

about the magnetization is completely lost after ∼ 7 Trotter steps for some of the cases. As

a result, for the followup discussion, we considered data up-to the sixth trotter step. Varying

the number of shots (Nshots) reduces the statistical error (εstat) and is roughly consistent with

the relation εstat ∝ 1/
√
Nshots. Statistical errors were computed from data obtained from the

six measurement sessions at different times. It’s noteworthy that we do not see significant

differences in the central value of the measurements. The central value stabilizes with the

increase in the number of sessions. From our analysis, we find that the systematic error

is much larger than the shot noise error. Hence, it is necessary to develop error-correction

routines to recover correct results. With the NISQ-era devices, fault-tolerant computation is

not feasible due to conflicting requirements of low fidelity of the qubits and the large qubit
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(a) (b)

(c) (d)

Figure 4.23: Shot noise analysis at Guadalupe machine is presented with local
magnetization data. Shot noise associated for each trotter step is demonstrated in the

bottom panel for the better visualization. The number in the labels denote the number of
shots applied for measurements. Gap between the corresponding classical TEBD

simulation results and QPU results indicate the presence of other coherent and incoherent
sources of noise. Parameters: J = 2.0, h = 1.05, lmax = 3.0.
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Figure 4.24: Comparison of Trotter evolution of magnetization results with different
operator ordering. Parameters: J = 2.0, h = 1.05, lmax = 3.0.

85



0.0 0.5 1.0

time, t

−0.4

−0.2

0.0

0.2

0.4

〈0
|S

z 2
(t

)|0
〉

(a)

0.0 0.5 1.0

time, t

−0.4

−0.2

0.0

0.2

0.4

〈0
|S

z 3
(t

)|0
〉

(b)

0.0 0.5 1.0

time, t

−0.4

−0.2

0.0

0.2

〈0
|S

z 5
(t

)|0
〉

TEBD

no mitigation

DD

DD+M3

DD+M3+ZNE

(c)

Figure 4.25: Comparison of magnetization results with different mitigation techniques and
their combinations. Parameters: J = 2.0, h = 1.05, lmax = 3.0.

0.0 0.5 1.0

time, t

−0.4

−0.2

0.0

0.2

0.4

〈0
|S

z 3
(t

)|0
〉

TEBD

noise-scale=1

noise-scale=3

noise-scale=5

(a)

0.0 0.5 1.0

time, t

−0.4

−0.2

0.0

0.2

〈0
|S

z 5
(t

)|0
〉

TEBD

noise-scale=1

noise-scale=3

noise-scale=5

(b)

0.0 0.5 1.0

time, t

−0.4

−0.2

0.0

0.2

〈0
|S

z 6
(t

)|0
〉

TEBD

noise-scale=1

noise-scale=3

noise-scale=5

(c)

Figure 4.26: Comparison of Trotter evolution of magnetization results in different noise
scaled circuits. Noise scale=n indicates n-fold noise compared to the original circuit for the
Trotter evolution of the local magnetization. Parameters: J = 2.0, h = 1.05, lmax = 3.0.

(a) (b) (c)

Figure 4.27: (a-b) Example of the extraction of the zero noise extrapolated data (red cross)
at the second and the sixth trotter step, obtained from the measurements of the

noise-scaled-circuits at guadalupe machine. (c) Extrapolated values are obtained for all
trotter steps to plot ZNE data of the local magnetization. Parameters: J = 2.0, h = 1.05,

lmax = 3.0, δt = 0.2.

overhead for error-correction protocols. However, different error mitigation techniques can

be applied to scale up the number of qubits for simulation in the current NISQ-devices. In

the following section, we discuss the application of the different error mitigation techniques
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to improve results obtained from the quantum processing units.

4.6.2 Operator ordering

Fig. 4.24 demonstrates how the local magnetization of N = 13 qubit lattice chain obtained

from the Guadalupe QPU compares with different operator-ordering. To address the ques-

tion of the operator-ordering we exclude mitigation techniques and circuit optimization tech-

niques. Each data point was obtained from the average of six experiments each with 200

shots. Here, the label ‘sequential’ implies that the continuum evolution operator is approxi-

mated as

Useq =
∏
l

hlint

∏
k

hkx, (4.19)

whereas, the following ordering of operator denotes ‘odd-even’ ordering of operators

Uodd−even =
∏
l, even

hlint

∏
l, odd

hlint

∏
k

hkx. (4.20)

Local operators are defined as hkx = exp
(
−ih

2
ηkσ

x
k

)
and hlint = exp

(
iJ

4

(ηl+ηl+1)

2
σzl σ

z
l+1

)
.

We did not find a particular choice of the operator ordering to be an important factor in

the noisy Guadalupe device. Indeed, it is likely that the systematic errors will much larger

than the differences in measurements associated with different choices of operator ordering

in the current NISQ devices.

4.6.3 Error mitigation

In this subsection, we discuss the importance of different error mitigation techniques in the

context of computations of the real time evolution of the magnetization of our model. We

first analyze results obtained with dynamical decoupling (DD), then with a combination of

dynamical decoupling and M3 (DD+M3) mitigation techniques, and finally with a combina-

tion of dynamical decoupling, M3 and Zero Noise Extrapolation (DD+M3+ZNE) techniques.
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Further observation on the combined cases of error mitigation revealed that for some

cases like 〈Sz3(t)〉 in Fig 4.25a, local magnetization data did not improve the results much.

In contrast, for some cases like Fig 4.25b, the results were significantly improved and for the

rest (Fig 4.25c), it is found that the results were improved only for large trotter steps.

On top of the dynamical decoupling and readout error correction technique, we applied

Zero Noise Extrapolation (ZNE) to mitigate incoherent noise. The first step in the process is

to scale up the noise systematically by generating unitary gate-folding or pulse-stretching ‡.

We used unitary folding by mapping a two-qubit operator U → UU †U . For pair of CX gates

that are added one increases the noise-level by a factor of three. The second step is to perform

measurements in the folded circuits and finally use these measurements with different noise

levels to extrapolate a zero noise limit of the observables. Fig. 4.26 clearly demonstrates

that increasing the noise by adding more unitaries causes the experimental values to deviate

further away from the classically computed results with TEBD. The noise scaled values that

are obtained for local magnetization 〈Szi 〉 at a time t0 are then used to extrapolate zero-noise

value by linear extrapolations (Fig 4.27a,4.27b). Extrapolated values obtained at different

trotter step are then combined to produce the time dependent magnetization curve Fig 4.27c.

4.7 Appendix-Digital Quantum Simulation: OTOC

In this section of the appendix, we will discuss some of the details of the OTOC computation

with quantum simulators and quantum processing units.

Just like the magnetization, we need to pick a suitable Trotter step to observe physics

with current NISQ era machines. Fig 4.28 demonstrates that δt = 0.5 is a suitable choice.

As the OTOC drops from one to zero in four Trotter steps, the entangling gate-cost for

the measurements of 〈W 〉 and 〈VWV 〉 (see Fig 4.19 in the main text) is manageable with
‡Pulse stretching needs pulse level access to device where the amount of noise introduced is controlled

by the duration of the pulse applied to implement different gates.

88



Figure 4.28: Choice of the Trotter step δt ∼ 0.5 seems a good choice for the OTOC
computation with our choice of parameters

Figure 4.29: OTOC computed with the protocol with global unitaries match with traced
data of products of operators.

89



current NISQ devices and a comparison of the Trotterized version (without shot noise) of

the results and the exact-diagonalized results reveal that the Trotter error associated with

the trotter step is not large enough to obscure the physics we are interested in (Fig 4.28).

We conclude this section of the appendix by justifying Eq. (4.17) numerically. In Fig 4.29,

we compared the OTOC computed from the trace definition with the results obtained from

the global protocol developed by Vermersch et. al. [128] with numerics . For a mathemat-

ical proof of the identity, please see the appendix in [170]. Higher order modified OTOCs

computed from the local protocol yields the same result as that of global protocol [163].

4.8 Appendix-Examples of different propagation patterns

of OTOCs

As shown in the cartoon phase diagram for the OTOCs in Fig. 4.15 there are many distinct

characteristics for the propagation of the OTOCs. Here we give more examples for these

different behaviours starting from the power law spreading.

Figure 4.30: ZZ OTOC for J = 6, h = 3.05,m = 0.25, l = 2.0

And finally we also give an example for the confined behaviour of the OTOC propagation.
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Figure 4.31: ZZ OTOC for J = 6, h = 3.05,m = 0.25, l = 5.0
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Chapter 5

Conclusions

In this thesis, our main goal was to investigate holography and the AdS/CFT correspondence

using both classical and quantum computational methods. For our classical computational

studies, we have developed lattice simulations for the N = 4 SYM model with a new term

in the action that suppressed the well-known problems of the original action. This new

action allowed us to simulate this model up to very strongly coupled regimes of the model

where holographic predictions can be tested. We showed that the lattice model exists in a

single phase with unbroken supersymmetry even at very strong coupling by calculating the

Polayakov lines and Ward Identities. We also demonstrated that our lattice model is free of

sign problems which can have catastrophic effects on Monte Carlo simulations.

To connect with holographic physics, we calculated the supersymmetric Wilson Loops

for a SU(2) and SU(3) N = 4 SYM model and showed that they exhibit the expected
√
λ

dependence from holography. We then calculated the correlators of smeared Polyakov lines

to calculate the non Abelian potential for this model using SU(3) N = 4 SYM model. These

correlators exhibited the expected 1/R dependence and the results of the fits for the 1/R

dependence of these correlators also showed the expected
√
λ dependence. These results

constitute a very nontrivial check of the AdS/CFT correspondence using lattice simulations

and open up the way to study N = 4 SYM models wide array of non-perturbative features
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such as anomalous dimension, corrections of stringy corrections to holography, and S-duality

further in future studies.

In the final chapter of this thesis, we developed tensor network and quantum simulations

for a transverse Ising Model that lives in AdS2 space. We investigated this Ising model’s

ground state properties using DMRG and located the phase transition point. We also devel-

oped quantum simulations for this model for both universal and analog quantum computers.

We ran our quantum circuit for the time evolution of this model on IBMQ-Guadalupe using

13 qubits (the longest chain that can be done with this architecture) and showed that after

some error-mitigation they show excellent agreement with the expected results. This shows

us that this model is suitable to simulate on current NISQ hardware. For the analog side of

the quantum simulations, we developed a Rydberg construction for this model by carefully

engineering the right interactions between Rydberg atoms and we tested our construction

using a Rydberg simulator. We couldn’t do actual Rydberg simulations of this model on

quantum hardware due to current Rydberg computers not having access to the site depen-

dent detuning factors. However, our the simulator results showed the expected behavior for

the time evolution of the magnetization showing us that it’s possible to use Rydberg arrays

for quantum simulating this model in the future.

In the latter part of the Chapter. 4 we calculated OTOCs for this model using classical

and quantum simulation techniques. These correlators are used to measure information

propagation and scrambling in quantum systems. When we calculated OTOCs we saw a very

interesting propagation pattern that changed with respect to the background curvature and

the strength of nearest neighbor coupling. This dependence can be classified into 4 distinct

regions where we have linear, power law, logarithmic, or confining propagation patterns

depending on these two parameters. The most interesting region for this propagation is the

logarithmic regime where models that exhibit such behavior are classified as fast scramblers.

Previously, all models that were classified as fast scramblers were either all-to-all models

like the SYK model or they have infinite or very long-range interactions. Our model with
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only site-dependent couplings and a nearest-neighbor interaction managed to capture this

interesting behavior which makes it a very interesting test bed to study scrambling and

information propagation in quantum systems due to its natural implementation on quantum

computers. We also implemented a randomized measurement algorithm to measure OTOCs

on quantum computers that was developed by Vermersch et al. [163]. We implemented

their algorithm on the IBMQ Sherbrooke and obtained excellent agreement for the OTOC

operator compared to their classial counterparts using 7-qubits. An interesting of this 1+1d

Ising model would be to consider the 2 + 1 dimension and study the scrambling behavior

and boundary boundary correlators again using tensor network and quantum computing

methods.
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