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ABSTRACT

Circuit quantum electrodynamics (cQED) systems with superconducting qubits
coupled to linear microwave resonators are a prominent platform for realizing scalable
quantum information processors. Combining cQED architectures with multimode
resonators leads to a broad set of applications for performing analog quantum sim-
ulation, implementing dense quantum memory, and generating multimode entangled
states between physically distant qubits. Microwave resonators in cQED are typically
formed from distributed transmission lines that exhibit conventional dispersion with
harmonic mode spacing; in such systems, usually only a single resonant mode can
be strongly coupled to a qubit. Superconducting metamaterial resonators comprised
of lumped circuit elements can be designed to produce a left-handed dispersion that
results in a dense mode structure in the typical frequency range for operating su-
perconducting qubits, thus allowing for a qubit to couple strongly to multiple modes
simultaneously. Forming these metamaterial structures into a ring with qubits cou-
pled at certain points around the ring results in a multi-mode bus with a compact
physical footprint. In this thesis, we present a review of the design and fabrication
of superconducting left-handed metamaterial ring resonators. We show, through low-
temperature measurements, that when we couple two flux-tunable transmon qubits
to such a ring resonator, the system shows extreme versatility in coupling parameters
due to the unique wave structure of the modes in the ring. We measure and model
the interactions between the qubits and the ring resonator modes, as well as the inter-
qubit entangling interactions mediated by the multimode system. We describe how
this platform could be used to implement two-qubit gates and generate entanglement
between physically distant qubits.
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Chapter 1

Introduction

Quantum computing is an emergent field that leverages quantum mechanics to solve
complex problems that are not practically solvable by a classical computer. The mod-
ern premise of classical computation was developed by Alan Turing in 1936 when he
conceptualized an abstract machine, now called the Turing machine for his namesake,
that could be programmed to perform a task. He asserted, in what is now known
as the Church-Turing thesis, that there exists a universal Turing machine that could
simulate any other Turing machine and completely capture the meaning of algorith-
mically performing a task [3]. The premise of the Turing machine laid the groundwork
for the first electrical computers. The fundamental unit of computation in a modern
classical computer is the transistor bit, a digital semiconducting device that encodes a
binary bit of information. The rapid scaling of the processing power of classical com-
puters was codified by Moore’s law in 1965, which predicted that, for constant cost,
computational power would double approximately once every two years [4]. Moore’s
Law held true for decades after his prediction [5]. Over time, transistors have shrunk
in size and the density of transistors on a processing chip has risen exponentially.
Single transistors are now on the nanometer scale, and face fabrication limitations
and undesired quantum effects that make it challenging to scale transistor size down
or, equivalently, scale the density higher. Even as these limitations arise, innovations
in transistors, such as fabricating 3D stacked arrays of transistors using complemen-
tary metal oxide semiconductor (CMOS) methods [6], mean that such a fundamental
limit has not been reached. But, despite these innovations, the quantum effects and
scaling of transistors remains a challenge. There are also fundamental limitations on
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problems that are solvable by classical computers. Quantum computers are being de-
veloped as an alternative to classical computers for solving specific classes of problems
that are particularly challenging for classical computers.

Early conceptualization of a quantum computer began in the 1980s [7]. Richard
Feynman gave a talk in 1981 in which he proposed using a quantum computer to solve
certain difficult problems that are too complex for classical computers to solve [8]. In
1985, David Deutsch formally developed the notion of a quantum computer and posed
the question of what advantage a quantum computer could practically have over clas-
sical computers [9]. One early conceptual answer to this question was developed by
Peter Shor in 1994, who showed that factoring large numbers into primes, a problem
where the computational time scales exponentially with the size of the number for a
classical computer, could be solved in polynomial time with a quantum computer [10].
Physical implementations of a quantum computer utilize qubits, or quantum bits, in
place of classical transistor bits. The field is still relatively young, and there are many
competing platforms working towards developing a fault-tolerant quantum computer
capable of implementing algorithms like the one proposed by Shor. Qubits have been
implemented in quantum systems using a range of systems, including superconduct-
ing qubits [11, 12, 13], ion traps [14], photons [15, 16], neutral atoms [17, 18], and
semiconductors [19, 20]. Superconducting qubits are a promising platform because
of their compatibility with existing microfabrication techniques. Superconducting
qubits are fabricated as integrated circuits that can have wires directly connected to
quantum processor chips allowing for fast gate times and readout. These properties
have made superconducting qubits a focus of many large industrial computing labs
and state-of-the-art quantum processors have been made with more than 1000 qubits
on a single chip [21]. In 2019, a processor with 53 operational qubits, called Sycamore,
was shown to perform a computation on the scale of minutes that would require at
least days for the fastest known classical algorithm at the time running on the most
powerful existing supercomputer to solve [22]. This experimental demonstration of
quantum supremacy is an important milestone in the field of quantum computing,
but this experiment also shows the current limitations of quantum computation. The
infidelities compound as the number of qubits in a quantum processor increases,
meaning that for an experiment with 53 qubits, millions of repetitions are needed to
obtain statistically useful output. In the current era of quantum computing, the noisy



3

intermediate-scale quantum (NISQ) era [7], initial steps towards implementing quan-
tum error correction have been made, but the limited current state-of-the-art qubit
coherence makes implementation of fault-tolerant quantum computation a daunting
challenge [23]. Additionally, quantum algorithms are often derived under the assump-
tion that gates can be implemented between arbitrary pairs of qubits in a quantum
processor, but scaling quantum computers to allow for all-to-all connectivity between
large numbers of qubits is a challenge, particularly for most solid-state qubit systems.

Circuit Quantum Electrodynamics (cQED) involves the coupling of circuit-based
qubits to quantized photonic modes in linear resonant structures. In cQED, waveguide
resonators are commonly used for readout of artificial atom qubits, and in some cases,
as bus cavities for coupling between qubits [24, 25]. Variants on this architecture are
the dominant paradigm for current superconductor-based quantum processors. The
superconducting resonators are often formed from planar transmission lines with a
single mode near the frequency range of the qubits. In general, coupling between
superconducting qubits and resonators is designed to be in the strong regime, where
the coupling strength of the qubit to a mode, g, is larger than the cavity and qubit
linewidths. Coupling can also be scaled to the ultra-strong regime, such that the
coupling strength is comparable to the transition energy scales of the cavity or qubits
[26, 27]. Implementing a single resonance cavity in the frequency range of the qubit
requires a physically large footprint of several millimeters. Utilizing an even larger
physical footprint, devices with dense mode spectra near the qubit frequency range
have been realized using ultra-long resonators [28]. Superstrong coupling is achievable
in a multimode system if the modes are sufficiently closely grouped and a single
qubit is engineered to couple strongly to multiple modes simultaneously [29]. These
multimode cQED systems have been studied for implementing quantum memories
[30] and quantum simulations [31, 32].

Metamaterials, formed from lumped-element inductors and capacitors, allow for
the implementation of transmission lines with unconventional wave dispersion. In
the case of left-handed dispersion [33], the wave frequency is a falling function of
wavenumber above an infrared cutoff frequency fIR, below which waves are unable
to propagate [34, 35]. In the context of cQED, left-handed metamaterials produce a
dense spectrum of orthogonal microwave modes above fIR, which can be engineered
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to fall in the frequency range of conventional superconducting qubits [36]. Supercon-
ducting qubits coupled to a resonator formed from a left-handed metamaterial have
predictable coupling to the dense set of resonant modes [37].

Ring resonators have been used in integrated photonics systems to form compact
optical resonances, called whispering gallery modes, for a broad range of applications
including microwave-optical transducers, microwave frequency combs, and multimode
nonlinear optics [38, 39, 40, 41, 42]. Superconducting ring resonators with right-
handed dispersion have also been used in cQED applications for implementing non-
nearest neighbor qubit coupling for multiqubit systems [43]. These superconducting
ring resonators require a large footprint, as the circumference of the ring must be a
minimum of one wavelength of the resonant frequency.

In this thesis, a superconducting left-handed metamaterial ring resonator is de-
scribed, formed from a left-handed metamaterial transmission line with two transmon
qubits coupled at different points around the ring. Detailed modeling of the standing-
wave structure and degeneracy breaking in the ring resonator is performed, allowing
the coupling energy scales between the qubits and each ring resonator mode to be
predicted [44]. The multimode coupling between the qubits with the ring resonator
serving as a bus results in significant variations in both the transverse exchange cou-
pling between the qubits as well as higher order ZZ interactions as the qubits are
tuned between different frequency regimes. This architecture has broad applications
for quantum random access memory, multipartite entanglement, and, as we will de-
scribe, as an entangling bus for performing two-qubit gates on physically distant
qubits. In the next chapter, Ch. 2, qubits and quantum information are described
from an abstract perspective, with an explanation of quantum logic and quantum
gates for one- and two-qubit systems. In Chapter 3, a practical description of a qubit
realized with a superconducting transmon is given, as well as a discussion of cQED
and superconducting cavities. Chapter 4 introduces the concept of a metamaterial
fabricated using lumped circuit elements, and shows that some metamaterials exhibit
left-handed dispersion. Following this general discussion of metamaterials, in Ch. 5,
a left-handed metamaterial ring resonator is introduced and an expression is derived
for the coupling of two transmon qubits to the modes of the ring resonator. The next
chapter, Ch. 6 describes the device design, while Ch. 7, Ch. 8, and Ch. 9 detail the
measurement and analysis of the device. Finally, in Ch. 10, a discussion of future
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work and applications is presented.
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Chapter 2

Quantum Information Processing

Since its conceptualization in the 1980s, quantum computing has expanded into an
interdisciplinary pursuit studied by countless research programs and organizations.
Quantum computing can potentially solve certain problems that are intractable on
classical supercomputers including factoring large prime numbers, which has relevance
for cryptography and data security, as well as simulating quantum systems in fields
such as quantum chemistry and pharmaceutical sciences. At the heart of quantum
computing’s transformative technology lie qubits. In classical computing, bits are the
fundamental unit for information processing, and these bits must be manipulated by
gates. Qubits are the fundamental units of a quantum computer, and the gates used
to manipulate the state of the qubit must also preserve the coherence while being
arranged in such a way to take advantage of superposition states, quantum interfer-
ence, and entanglement to do meaningful computation [5, 8]. To obtain information
about a quantum system, we must have a control architecture for performing these
operations on qubits.

This chapter deals in broad strokes with the fundamentals of quantum computa-
tion for systems comprising one or two qubits. We will discuss the concept of a qubit
and the gates we can implement to control one- and two-qubit systems. We focus on
one- and two-qubit gates because a universal quantum processor can be implemented
with the ability to do arbitrary single-qubit gates between pairs of qubits as well as
entangling two-qubit gates between pairs of qubits.
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2.1 Qubits

Figure 1: Bloch sphere representation of the quantum state |ψ⟩.

The realization of a quantum computer requires a quantum equivalent to the
digital transducer bit used in classical computers. The quantum bit, or qubit, is a
two-state system that allows for the quantum phenomenon of superposition. We can
describe a coherent superposition of the two-state system as |ψ⟩ = α|0⟩+β|1⟩, where
the eigenstates |0⟩ and |1⟩ constitute the two states that comprise our computational
basis and α and β are complex probability amplitudes, with the property |α|2+ |β|2 =
1. Unlike the classical bit, which we can measure to be in the state 0 or 1, for the
qubit we can only obtain the probability |α|2(|β|2) for a measurement to yield the
result |0⟩(|1⟩).

A useful representation of the qubit state is the Bloch sphere, which represents
the qubit state as a vector on the unit sphere. An arbitrary qubit state is given by

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩, (2.1)

where θ defines the polar angle and ϕ the azimuthal angle on the Bloch sphere, as
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shown in Fig. 1. This representation is intuitive in its presentation of the qubit state.
The two poles correspond to the two basis states, |0⟩ and |1⟩, and all other vector
directions represent a superposition of states.

2.2 One-qubit gates

We use gates to implement logical transformations on our system. For a quantum
computer, the only constraint on what constitutes a gate is that it must be described
by a unitary matrix, U , such that U †U = I [5].

One important set from an infinite number of one-qubit gates can be obtained
from the Pauli matrices, given by

σx ≡ X ≡

(
0 1

1 0

)
, (2.2)

σy ≡ Y ≡

(
0 −i
i 0

)
, (2.3)

σz ≡ Z ≡

(
1 0

0 −1

)
. (2.4)

The Pauli matrices can generate a rotation of the qubit state vector on the Bloch
Sphere. There is only one non-trivial gate that can be applied to a classical bit, the
NOT gate, which results in a bit flip from either 0 to 1 or 1 to 0. The equivalent
gate for a qubit is given by X, defined in Eq. (2.2). When an X gate operates on the
qubit state, it results in a π-rotation about the x-axis of the Bloch sphere. Similarly,
the Y and Z gates correspond to π-rotations around the y- and z-axes of the Bloch
sphere, respectively.

Another significant one-qubit gate is the Hadamard, given by

H =
1√
2

(
1 1

1 −1

)
. (2.5)

The Hadamard gate turns |0⟩ to the superposition state (|0⟩+ |1⟩)/
√
2, and |1⟩ to the

superposition state (|0⟩ − |1⟩)/
√
2. In terms of the Bloch sphere, this is equivalent

to a π/2-rotation about the y-axis followed by a π-rotation about the x-axis. By
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preparing the qubits in a superposition state, it enables quantum interference effects
to be used for quantum algorithms [5]. The implementation of quantum gates in
practice depends on the particular physical qubits. In the next chapter, we will
discuss how gates work for superconducting qubits.

2.3 Two-qubit gates

Figure 2: The controlled NOT (CNOT) gate and controlled phase (CZ or CPHASE)
gate circuit representations and truth tables for the two-qubit basis. Figure modified
from [1].

Let us expand our Hilbert space to deal with two-qubit logic that goes beyond
simple combinations of single-qubit gates. There is a set of two-qubit gates called
controlled operations in which one qubit is designated the control qubit and the other
is the target on which an action is implemented. The state of the control qubit
determines the effect of the action on the target qubit. The underlying principle of
these gates is that they can be used to generate entanglement between two qubits [1].

2.3.1 CNOT gate

The prototypical controlled operation is the CNOT gate. Figure 2 shows the circuit
model in which the control qubit is represented by the top line and the target qubit
is represented by the bottom line. The truth table demonstrates the outcome of the
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CNOT gate; the CNOT gate flips the state of the target qubit if and only if the
control qubit is in the |1⟩ state. The matrix representation of the CNOT gate is given
by

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.6)

2.3.2 CZ gate

Figure 2 shows the circuit model for the CZ gate. As can be seen from the truth table,
the outcome of the CZ gate is to introduce a phase rotation when both qubits are
initially in the |1⟩ state, and to do nothing otherwise; this means that the outcome
of the CZ gate is symmetric. The matrix representation of the CZ gate is given by

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (2.7)

2.3.3 iSWAP gate

An interaction that can arises in certain multi-qubit experimental quantum computing
systems is the transverse XY interqubit coupling. The time-evolution of a system of
two qubits coupled with such an interaction can give rise to an iSWAP or an

√
iSWAP

gate. In terms of the Pauli matrices, the interaction Hamiltonian between two qubits
QA and QB can be generally written

HX,Y
A,B =

EXY
A,B

4
(σx

Aσ
x
B + σy

Aσ
y
B) , (2.8)

where EXY
A,B gives the energy scale of the interaction, and σx

q (σy
q ) is the X(Y ) Pauli

matrix for qubit q = A,B [1]. In Eq. (2.8), the products of Pauli matrices acting on
different qubits corresponds to tensor products leading to a four-dimensional Hilbert
space. The matrix representation of the iSWAP gate for XY interaction time t = πℏ/
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EXY
A,B is given by

iSWAP =


1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

 . (2.9)

The matrix representation of the
√
iSWAP gate for XY interaction time t = πℏ/

(2EXY
A,B) is given by

√
iSWAP =


1 0 0 0

0 1/
√
2 i/

√
2 0

0 i/
√
2 1/

√
2 0

0 0 0 1

 . (2.10)

As is true for one-qubit gates, the physical qubits and system determine how these
two-qubit gates are implemented. This will be discussed in the next chapter.
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Chapter 3

Superconducting circuit quantum

electrodynamics

In this chapter, we move from the abstract to physical in our discussion of qubits
and quantum information. Qubits are the fundamental component for a quantum
computer, so the choice of a platform for a qubit is important for the applications.
Much like a classical computer is not comprised of only bits, a quantum computer
is not only comprised of qubits. We will introduce our qubit, the superconducting
artificial atom, and the field of circuit quantum electrodynamics (cQED) that provides
a framework for implementing and interfacing quantum circuits.

3.1 Superconducting Qubits

There are many platforms for implementing qubits for a quantum computer, including
trapped ion, neutral atom, semiconductor spin, photons, and superconducting qubits
[45]. Superconducting qubits are promising because they are highly compatible with
existing fabrication techniques, and are integrated circuits that can have wires di-
rectly connected to the chip allowing for fast gate times and readout. The necessary
component of these qubits is superconductivity.

Superconducting metals undergo a second-order phase transition at a critical tem-
perature, Tc, below which electrical resistance goes to zero. At this critical tempera-
ture, a phonon-mediated interaction between electrons is able to overcome the electro-
magnetic repulsion between conduction electrons. Under these conditions, electrons
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moving in a given direction distort ions within the material lattice causing charge
distortion. This resultant charge distortion attracts another electron moving in the
opposite direction within the lattice, and the electrons pair via virtual exchange of
phonons [46]. The pairing of electrons results in a gap in the single-particle excita-
tion spectrum of ±∆SC about the Fermi energy that we call the superconducting gap.
These stabilized, bound electrons are called Cooper pairs, and their pairing results
in no scattering from energy perturbations smaller than 2∆SC within the lattice, and
gives rise to a characteristic zero resistance state in the superconducting medium.
The fundamental hallmark of a superconducting state is the existence of a many-
particle condensate analogous to the Bose-Einstein condensate, comprised of these
Cooper pairs, which exhibit macroscopic phase coherence and carry current without
dissipation [47].

3.1.1 Josephson junctions

As we introduced in Ch. 2, qubits are two-state systems that behave quantum me-
chanically. With that in mind, we can build a superconducting quantum harmonic
oscillator using linear circuit elements comprised of an inductor Lr and a capacitor
Cr, as shown in Fig. 3 (a). The quadratic potential energy well and energy eigen-
values are shown in Fig. 3 (b) for this device as a function of the phase across the
superconducting inductor, which is defined in terms of the flux in the inductor nor-
malized by the flux quantum with a factor of 2π. This harmonic potential results in
evenly spaced energy levels at ℏωr energy intervals. If our goal is to isolate a two-state
system, this is not a viable option as the same drive frequency can excite the system
to higher energy levels. Instead, we require a device with asymmetric energy level
spacing that allows us to isolate a subspace that forms a two state system. Figure 3
(c) shows a modified circuit in which the inductive element has been replaced with
a non-linear inductive element, a Josephson junction. To understand the resultant
change in the energy potential and energy eigenvalues shown in Fig. 3 (d), we must
first discuss the properties of Josephson junctions.

A Josephson tunnel junction is a nonlinear circuit element that can replace the
linear inductor in our circuit. Josephson junctions are useful for constructing qubits
due to their low dissipation and their ability to be microfabricated using integrated
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Figure 3: (a) Parallel LC-circuit realization of a quantum harmonic oscillator (QHO),
with Lr and Cr being the circuit inductance and capacitance. (b) Quadratic energy
potential well for the QHO with respect to the superconducting phase across the
inductor, with evenly spaced energy eigenvalues separated by ℏωr shown with blue
horizontal lines. Squared moduli of the energy wavefunctions are shown in light blue.
(c) Circuit comprised of a Josephson junction element with non-linear inductance
LJ and capacitance CJ in parallel with a shunt capacitance CS. (d) Cosine energy
potential for the circuit shown in (c). Horizontal red lines show the unevenly spaced
eigenenergies of the system with yellow lines showing the squared moduli of the eigen-
functions. The space between the |0⟩ and the |1⟩ state is given by ℏω01 and is not
equal to the spacing between the |1⟩ and the |2⟩ states given by ℏω12

circuit processes. A Josephson junction may be formed by separating superconduct-
ing electrodes with a thin insulating region. This barrier must be designed with a
thickness that allows for a slight overlap of the electron pair wave functions for the
two superconducting electrodes, typically corresponding to a thickness of order 1 nm.
A schematic of a Josepshon junction is shown in Fig. 4, with the gray regions show-
ing superconducting metal (Al) and the blue region showing the oxide barrier (AlOx).
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Figure 4: Schematic of a Josephson junction. The superconducting electrodes shown
in gray are comprised of aluminum and are separated by a thin AlOx barrier shown in
blue. The macroscopic state of the Cooper pairs for each side of the junction are each
given by the wavefunctions |ΨL|eiϕL and |ΨR|eiϕR . Cooper pairs tunnel left to right
with no dissipation in the presence of an applied current below the critical current
with a phase difference φ = ϕL − ϕR.

The Josephson tunnel effect can be described with a set of classical equations for the
Josephson current IJ and voltage V across the junction:

IJ(t) = I0 sinφ(t) (3.11)

V (t) =
Φ0

2π

dφ(t)

dt
. (3.12)

In these expressions, Φ0 ≡ h/2e is the magnetic flux quantum, I0 is the junction
critical current, and φ = ϕL − ϕR is the superconducting phase difference across the
junction [48]. Taking the definition V = LdI(t)

dt
, we can manipulate Eqs. (3.11) and

(3.12) to obtain an expression for the inductance of the Josephson junction, given by

LJ =
Φ0

2πI0 cosφ
. (3.13)

The inductance is proportional to 1/ cosφ, making this a nonlinear circuit element
that we can use to replace the linear inductor in our quantum circuit. The energy
stored by the junction over time is given by EJ =

∫
IJV dt. If we use Eqs. 3.11 and

3.12, we get and expression for the Josephson energy:

EJ(φ) =
I0Φ0

2π
cosφ. (3.14)

The Ambegaokar- Barratoff relation allows us to relate the Josephson current to mea-
surable, physical properties of the junction, and we can produce another expression
for the Josephson energy

EJ ≈ Φ0∆SC

4eRN

, (3.15)
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where ∆SC is once again the superconducting gap energy and RN is the normal-state
resistance of the Josephson junction [49].

Going back to our discussion of Fig. 3 (d), after substituting a Josephson junction
into the QHO circuit, the energy potential is now a cosine function, and the energy
eigenvalues are no longer evenly spaced, but get increasingly closer at higher energy
levels. This is an anharmonic system, with the anharmonicity defined as α ≡ ℏω12 −
ℏω01. This anharmonicity allows the first two energy states to be isolated and used
as the computational basis for a qubit.

3.1.2 Transmons

Figure 5: Eigenenergies Em, for m = 0, 1, 2, 3 as a function of the effective offset
charge ng shown in black, red, blue, and green, respectively, for EJ/EC ratios of (a)
1 (b) 5 (c) 10 and (d) 50. As the ratio of EJ/EC increases, the charge dispersion
decreases, making the qubit insensitive to fluctuations in offset charge for sufficiently
large EJ/EC .

The superconducting transmission-line shunted plasma oscillation qubit, or trans-
mon qubit, is comprised of a superconducting island shunted to ground by a large
capacitor and a nonlinear inductance [13]. The total capacitance for this isolated
transmon circuit is given by CΣ = CJ + CS + Cg where CJ is the capacitance of the
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Josephson junction and CS is the shunting capacitance, as shown in Fig. 3. The value
Cg in this expression includes any external coupling to the qubit. The Hamiltonian
for the transmon is given by

Ĥ = ĤC + ĤJ = 4EC (n̂− ng)
2 − EJ cos φ̂ (3.16)

where EC = e2/2CΣ is the charging energy, and ng = Qr/2e+CgVg/2e is the effective
offset charge that is a function of the induced environmental offset charge Qr, and
the second term represents the offset charge coupled by an external voltage source Vg
with a gate capacitance Cg.

Figure 5 shows the eigenenergies for a transmon as a function of the charging
energy. To exponentially reduce the sensitivity of the qubit to charge noise, we can
increase the ratio of EJ to EC , as can be seen in Fig. 5(d). In doing so, we must
operate in a regime with lower anharmonicity. This sets a lower bound on the duration
of control pulses. In general, EJ/EC ≥ 50 is considered the transmon regime [13].

3.1.3 Floating-style, flux-tunable transmons

Figure 6: Circuit diagram of a flux-tunable asymmetric transmon. The gate voltage
Vg is coupled via gate capacitor Cg. A dc SQUID, comprised of two asymmetric
Josephson junctions with Josephson energies EJ1, EJ2 with associated capacitances
CJ1, CJ2, is inductively coupled to a current-bias line. The dc SQUID is shunted by
capacitor CS.

The implementation of a magnetic flux-tunable transmon qubit requires replacing
the single Josephson junctions with a superconducting quantum interference device
(SQUID), which incorporates two Josephson junctions in parallel in a superconducting



18

loop. SQUIDs exhibit a periodic modulation of the Josephson energy with a period
given by Φ0 ≡ h/2e ≈ 2.07 × 10−15 Wb, as well as the nonlinear tunneling rate of
Cooper pairs through the junctions [50].

Figure 6 shows a circuit model of a flux-tunable transmon. The device includes a
dc SQUID comprised of two asymmetric junctions with Josephson energies EJ1 and
EJ2 [51]. We can quantify the asymmetry with the expression

d ≡ EJ2 − EJ1

EJ1 + EJ2

. (3.17)

The flux coupled to the SQUID loop, Φ, can be manipulated via an inductively
coupled current-bias line. The Hamiltonian that describes the Josephson contribution
is given by

ĤJ = −EJ1 cos ϕ̂1 − EJ2 cos ϕ̂2, (3.18)

with ϕ1(ϕ2) describing the phase difference across junction 1(2). Utilizing flux quan-
tization, we can assert that ϕ1−ϕ2 = 2πn+2πΦ/Φ0, where n is an integer. This leads
to an expression for the Hamiltonian which describes the flux-tunable, asymmetric
transmon, given by

Ĥ = 4EC (n̂− ng)
2 − EJ0 cos

(
πΦ

Φ0

)√
1 + d2 tan 2

(
πΦ

Φ0

)
cos (φ̂− φ0), (3.19)

where EJ0 = EJ1 + EJ2. The effective phase difference is given by φ = (ϕ1 + ϕ2)/2,
and the value φ0 can be found using the expression tanφ0 = d tan(πΦ/Φ0) [13].

For an asymmetric transmon, the minimum transition frequency is greater than
zero. As the flux coupled to the SQUID loop is tuned, the transition energy of the
transmon modulates periodically. The slope of the transition energy is zero when
Φ/Φ0 = 0. For an asymmetric transmon, there is a non-zero minimum value for
the transition energy when Φ/Φ0 = 0.5 at which the slope is also zero, giving two
flux-insensitive sweet spots at which we can operate the qubit [51].

3.2 Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics (cQED) is the coherent integration of nonlinear
superconducting circuit elements with quantized electric fields. We have introduced
the superconducting transmon qubit as the nonlinear element for our system, but in
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order to do meaningful characterization of the quantum state, we must couple the
artificial atom to a readout circuit in a controlled manner to minimize the reduction
of qubit coherence [25, 52, 24].

First, we look at a simple, analytic model for our circuit by exploring the Jaynes-
Cummings Hamiltonian. Then, we will integrate realistic models for our circuit com-
ponents, including the flux-tunable transmon qubit and microwave cavity.

3.2.1 Jaynes-Cummings Hamiltonian

Figure 7: Avoided level crossing in the transition frequency for a system comprised
of a tunable frequency qubit and a microwave cavity shown with solid black lines.
The state vector is written as |q; c⟩, where q denotes the qubit state and c denotes
the cavity state. The uncoupled 0 → 1 base transition frequency of the qubit, ωq, is
shown with a red dotted line. The uncoupled cavity frequency, ωc, is shown with a
black dashed line.

A simple cQED system consists of an artificial atom coupled to a harmonic oscil-
lator. An effective method for analytically studying the interactions between matter
and light can be produced by restricting our atom to two levels. This system is
described by the Jaynes-Cummings Hamiltonian [53],

ĤJC = ℏωcâ
†â+

1

2
ℏωqσ̂z + ℏg

(
âσ̂+ + â†σ̂−

)
, (3.20)



20

where ωc is the frequency of the cavity, or harmonic oscillator, ωq is the frequency of
the qubit. The terms a† and a are the raising and lowering operators for the photons
in the cavity, and σ̂+ and σ̂− are the raising and lowering operators for the qubit.
The first term gives the energy of the resonator, the second term describes the energy
contribution of the qubit, and the third term defines the interaction between the qubit
and cavity with strength g, which is the rate for an excitation to swap back and forth
between the qubit and cavity. This Hamiltonian is a conceptual starting point as it
describes a wide range of platforms for a quantum device, and is analytically solvable.

We can use the Jaynes-Cummings Hamiltonian to understand fundamental dy-
namics in our system. For example, following the derivation in Ref. [5], let us look at
the time evolution of this system. First, we can rewrite Eq. 3.20 as

ĤJC = ℏωc

(
â†â+

σ̂z
2

)
+

ℏ∆
2
σ̂z + ℏg

(
âσ̂+ + â†σ̂−

)
, (3.21)

where ∆ ≡ ωq − ωc is the detuning frequency between the cavity and qubit. We
have grouped the first term as it is a conserved quantity and does not change with
time evolution. We can ignore this term when we look at the time evolution of this
Hamiltonian as it supplies only a phase contribution. The time evolution operator is
given by Û = exp

(
−iĤt/ℏ

)
. If we restrict the system to at most one excitation in

the cavity, the basis states are |00⟩, |10⟩, and |01⟩, where the first digit corresponds
to the atom and the second to the cavity excitations. In terms of the basis states
from left to right and top to bottom,

Ĥ = ℏ


∆/2 0 0

0 ∆/2 g

0 g −∆/2

 . (3.22)

The time evolution of this system is given by

Û = e−i∆t/2|00⟩⟨00|

+

(
cos(Ωt)− i

∆

2Ω
sin(Ωt)

)
|10⟩⟨10|

+

(
cos(Ωt)− i

∆

2Ω
sin(Ωt)

)
|01⟩⟨01|

− i
g

Ω
sin(Ωt) (|10⟩⟨01|+ |01⟩⟨10|) , (3.23)



21

where Ω/ℏ =
√
g2 +∆2/4. We can see from the last line of this time evolution

operator, that the exchange term between the qubit and the cavity has a sinusoidal
term with frequency Ω, signifying that the cavity and atom exchange a single quantum
of energy at this frequency, referred to as the Rabi frequency. In the case when ∆ = 0

and the qubit and cavity are exactly on resonance, Ω/ℏ is exactly g, the coupling
strength [5]. Figure 7 shows the transition frequency of a system comprised of a
frequency-tunable qubit and a microwave cavity. We can see that on resonance, the
qubit and cavity swap an excitation. The cavity and qubit frequencies are split, with
the split resonances separated by 2g in frequency. When the qubit and cavity are on
resonance at the center of the anti-crossing, a hybrid state is formed between the qubit
and cavity and the upper and lower branches become symmetric and antisymmetric
superpositions of the two single-excitation states. As the detuning increases, the
frequency of the Rabi oscillations increases, but the amplitude of the oscillations
decreases with ∆.

The dynamics of the system change depending on the respective frequencies of
the qubit and resonator, as well as the coupling strength. We have looked at the
regime in which ωc ≈ ωq. We call this regime the resonant regime. It is also feasible
to operate in a regime in which the atom and cavity frequencies are detuned from
one another. When ∆ ≫ g, the system is considered to be in the dispersive regime.

To build a quantum system, it is useful to operate in a regime in which the
measurement of the qubit does not flip the quantum state. This is called quantum
non-demolition (QND). In the dispersive regime, the principal readout of the qubit
state is performed by observing the scattering of a probe tone off of an oscillator
coupled to the qubit. We can assume that when the cavity and qubit are sufficiently
detuned, there is no direct qubit-cavity interaction. Following the derivation from the
2007 Koch paper [13], the Jaynes-Cummings Hamiltonian in the dispersive regime can
be rewritten as

Ĥ = ℏ (ω′
c + χσ̂z) â

†â+
1

2
ℏω′

qσ̂z. (3.24)

The effective dispersive shift for a transmon qubit is given by

χ = χ01 − χ12/2, (3.25)

where
χij =

g2ij
ωij − ωc

, (3.26)
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and ωij = ωj − ωi is the transition frequency of the qubit between levels i and j

and gij is the associated coupling strength. The cavity and qubit frequencies are
renormalized due to the asymmetric state-dependant cavity shift for the transmon,
such that ω′

q = ω01 − χ01 and ω′
c = ωc − 1

2
χ12. [13]. The grouped term shows that

there is an atom-state dependent shift of the cavity in the dispersive regime.
Thus far, we have constrained our system to a two-level qubit and a harmonic

oscillator. In the upcoming experiments, we will be utilizing flux-tunable transmons,
which are not two-level systems, and in which photons and qubit excitations have
finite lifetimes due to leakage. Additionally, the upcoming experiments will involve
multimode cavities, which behave like a collection of harmonic oscillators with differ-
ent frequencies. Next, we will look at a physical layout of a cavity and the limiting
factors in photon lifetime in the cavity.

3.3 Superconducting cavities

Figure 8: Geometry of a CPW. The center conductor has width w, and the gaps have
width s. The film has a thickness t, and the substrate has a thickness h.

A transmission line (or distributed transmission line) of a certain length can be
formed into a superconducting cavity by imposing boundary conditions, typically
shorts or opens, at the two ends of the transmission line. A superconducting cavity
acts as a photon mirror, reflecting photons of a narrow frequency band back and forth.
A prominent platform for a superconducting cavity is a coplanar waveguide (CPW)
resonator due to the ability to operate at frequencies in the GHz range, simplicity in
fabrication, and the ability to realize large internal quality factors [54].
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3.3.1 Transmission line quarter-wave resonator

Figure 8 shows the geometry of a CPW transmission line (TL), which consists of a
center conductor with width w separated by a gap of width s from the ground plane.
The thickness of the metal that comprises the center conductor and ground plane is
t, and the thickness of the substrate is given by h. The substrate is, in general, a low
loss dielectric crystal, typically Si or sapphire.

Figure 9: (a) Quarter-wave resonator comprised of a CPW transmission line with one
end open and one end shorted to ground. (b) Near resonance, the quarter-wave CPW
can be modeled by a simple driven parallel RLC circuit.

In this work, we utilize quarter-wave transmission line resonators as microwave
cavities, produced when a small capacitor terminates one end of the resonator, and
the other end connects to ground, shown in Fig. 9 (a). The experimental device
that will be introduced in Ch. 6 has inductively coupled resonators, with a coupling
inductor at the shorted end and an open circuit at the other end. For a quarter-wave
resonator, the resonance fr is given by

fc =
ωc

2π
=
vp
4l
(2n+ 1), (3.27)

where l is the length of the resonator, and n = 0, 1, 2, .. is an integer, with n = 0

corresponding to the fundamental harmonic. The phase velocity is given by vp =

c/
√
ϵeff , where ϵeff depends on the substrate dielectric constant ϵr, the substrate

thickness h, the conductor width w, the gap between the conductor and ground
plane s, and the frequency [55]. The phase velocity can be calculated from the
unit length capacitance CR and inductance LR of the CPW using the expression
vp = 1/

√
LRCR. This is called a quarter-wave resonator due to the factor of 1/4 in

Eq. (3.27). For a half-wave resonator, with either shorts or opens at both ends of the
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CPW transmission line, the factor is 1/2. Conformal mapping techniques can be used
to derive expressions for the unit length inductance LR and unit length capacitance
CR of a CPW resonator, given by [54]:

LR =
µ0

4

K(k′0)

K(k0)
, (3.28)

CR = 4ϵ0ϵeff
K(k0)

K(k′0)
, (3.29)

for which K denotes the elliptical integral of the first kind. The arguments are defined
by

k0 =
w

w + 2s
, (3.30)

k′0 =
√

1− k20. (3.31)

For these derivations, we are neglecting the contribution of kinetic inductance defined
by the kinetic energy of the superconducting electrons per unit length [56]. The
characteristic impedance of the CPW resonator is given by Z0 =

√
L/C.

Following the derivation in Ref. [55], near ωc, we can approximate the quarter-
wave resonator as a parallel RLC circuit, as shown in Fig. 9 (b). The impedance of
a parallel RLC circuit is given by

ZRLC =

(
1

iωL
+ iωC +

1

R

)−1

. (3.32)

Using the series expansion 1/(x+1) ≈ 1−x+ ... and the assumption that ω = ωc+δω

and δω very small, we can write Eq. (3.32) as:

ZRLC ≈ R

1 + 2iδωRC
. (3.33)

The input impedance of a transmission line of length l and load impedance Zl is given
by

Zin = Z0
Zl + Z0 tanh(γl)

Z0 + Zl tanh(γl)
, (3.34)

where γ = α + ik is the propagation constant for waves in the resonator, defined in
terms of the attenuation constant α and wavenumber k. Setting Zl = 0, we get a
quarter-wave resonance defined by Eq. (3.27), so Eq. (3.34) simplifies to

Zin = Z0 tanh(γl). (3.35)



25

Expanding Eq. (3.35) using trigonometric identities and the expression for γ, we
obtain an expression for the input impedance,

Zin = Z0
1− i tanh (αl) cot (kl)

tanh (αl)− i cot (kl)
. (3.36)

Again using ω = ωc + δω under the assumption that δω is very small, we can expand
kl as

cot (kl) = cot

(
π

2
+
πδω

2ωc

)
≈ − tan

(
πδω

2ωc

)
≈ −πδω

2ωc

. (3.37)

Here, we have used the relations l = λ/4 and λ = 2πvp/ωc. We can simplify
tanh (αl) ≈ αl when there is low loss. Plugging these expressions into Eq. (3.36),
we get

Zin = Z0
1 + iαlπδω/(2ωc)

αl + iπδω/(2ωc)
≈ Z0/(αl)

1 + iπδω/(2αlωc)
. (3.38)

We have written the right side of the expression in Eq. (3.38) in a similar form to the
expression for input impedance for a parallel RLC circuit in Eq. (3.33). We can now
write an expression for the equivalent circuit parameters, given by

R =
Z0

αl
, (3.39)

L =
1

ω2
cC

, (3.40)

C =
π

4ωcZ0

. (3.41)

From these expressions, we can characterize the internal quality factor of the res-
onator. We have shown that a parallel RLC circuit is a good approximation for the
CPW resonator near resonance, and the internal quality factor of a parallel RLC cir-
cuit is given by Qint = ωcRC. Using Eqs. (3.39 - 3.41) we get the following expression
for the internal quality factor of a quarter-wave CPW resonator,

Qint =
(2n+ 1)π

4αl
, (3.42)

where we have accounted for the higher-order harmonics n. The total quality factor
Qtot of the resonator depends on Qint as well as the coupling quality factor QC , with
the relation

1

Qtot

=
1

Qint

+
1

QC

. (3.43)
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Figure 10: (a) Quarter-wave CPW resonator inductively coupled to a CPW feedline.
(b) Circuit modeling a quarter-wave CPW near resonance as a parallel RLC circuit
inductively coupled to an external load. The inductance L of the RLC circuit is split
such that L = Lr + Lm, where Lr comprises the majority of the inductance, and
Lm comprises the portion of the total inductance that contributes to the coupling.
The mutual inductance between the RLC oscillator and external load resistance R0

is given by M . (c) Equivalent circuit model with the mutual coupling replaced with
inductive elements.

The quality factor relates to the rate of photon decay in the cavity with the expression
κ = ωc/Qtot. The internal quality factor depends on the materials that comprise the
CPW, while the coupling quality factor depends on the external coupling parameters.

To obtain an expression for QC , we must be more specific about the physical
coupling of the CPW to the external circuitry. Here, we assume a quarter-wave CPW
inductively coupled to a feedline. The derivation of the equivalent circuit parameters
was done conforming to the method used by Ref. [55], but this derivation aligns with
the resonator design used in the experiment presented in Ch. 6. This structure is
shown in Fig. 10(a). Figure 10(b) shows the CPW resonator modeled as a parallel
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RLC circuit, inductively coupled to an external load resistance R0. The mutual
inductance between the parallel RLC circuit and the external load is given by M , and
the self-inductances of the coupling inductors are given by Lm. The total inductance
of the RLC circuit is L = Lr + Lm, where Lr is the bulk of the inductance. since the
bulk of the inductance of the CPW resonator does not contribute to the coupling to
the external load. Figure 10(c) shows an effective circuit model for Fig. 10(b) [57].
The coupling quality factor gives the ratio of the energy stored by the oscillating RLC
circuit per cycle, assuming there is no dissipation from the internal resistance R, to
the power dissipated in the external load resistance R0. This is given by

Qc =
1
2
CV 2

Cωc

V 2
R/R0

, (3.44)

where VR is the voltage across R0, and VC is the voltage across C [55]. Solving
for VL in terms of VC results in an expression for the coupling quality factor for a
quarter-wave resonator inductively coupled to a feedline:

Qc =
R0Z0

2ω2M2
, (3.45)

where Z0 =
√
L/C is the characteristic impedance of the resonator.

3.4 Scattering parameters

As Fig. 10(a) shows, we can couple superconducting cavities to a feedline comprised
of a CPW transmission line to perform a measurement of the qubit. We measure the
transmission of microwave signals through these feedlines. Transmission is measured
via a scattering parameter matrix. A two-port device has a scattering matrix [55][

b1

b2

]
=

[
S11 S12

S21 S22

][
a1

a2

]
, (3.46)

with a1 and a2 denoting incident voltage waves and b1 and b2 denoting reflected waves;
the S matrix elements are complex quantities. The matrix element S21 is used for
our measurement setup to characterize transmission through the coupled resonator.
In an ideal design, the load impedance matches the source impedance at the input of
the resonator, and S21 can be written

S21 =
b2
a1

=
2V2
V1

, (3.47)
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where V1 denotes the source voltage at port 1 and V2 is the measured voltage at
port 2.

Figure 11: Transmitted (a) amplitude and (b) phase for a cavity resonator coupled to
a transmon qubit showing qubit-state dependent cavity frequency shift. The renor-
malized cavity frequency ω′

c, shown with a gray dashed line, is shifted by ±χ when
the qubit is in the ground state |0⟩ (excited state |1⟩), shown with blue (red) lines.

3.5 Mapping the qubit state to the cavity state

Quantum non-demolition measurement in cQED allows us to map the qubit state to
the cavity frequency and phase while preserving the state the qubit is projected into
following the measurement. In the dispersive regime, when the cavity and qubit are far
detuned, Eq (3.24) is valid. This expression shows that the cavity dispersively shifts,
depending on the state of the qubit [13]. Figure 11 shows the simulated transmitted
amplitude, |S21|, and transmitted phase of a superconducting cavity as a function of
frequency. For a CPW resonator coupled to a feedline, the transmission spectrum
has a dip in transmission at the resonant frequency of the CPW resonator. The
rate of photon decay κ, which we showed relates to the resonator quality factor in
Sec. 3.3.1, gives the full width half maximum (FWHM) of the resonance. Figure 11
shows that when the qubit is in the excited state |1⟩, shown in red, and the ground
state |0⟩, shown in blue, the cavity frequency shifts. Here, the cavity frequency has
been renormalized so that ω′

c = ωc − 1
2
χ12, so that the cavity resonance when the

qubit is in |1⟩ and 0⟩ is ω′
c − χ and ω′

c + χ, respectively.



29

3.6 Qubit decoherence

Figure 12: Longitudinal relaxation measurement for a transmon qubit as a function
of time. Measured data is shown in red circles. Exponential decay fit is shown with a
solid black line. The pulse sequence is shown as an inset. The measurement sequence
consists of applying an X gate on the qubit, calibrated to excite the qubit to the |1⟩
state, then implementing a variable delay before reading out the qubit state. The
x-axis is the delay time τ .

In Sec. 3.2.1, we introduced the Jaynes-Cummings Hamiltonian and showed that
under time evolution we observe Rabi oscillations in which excitations are swapped
between the qubit and cavity. Thus far, we have treated our quantum system as
deterministic, meaning that if we know the state of the system at t = 0, we can
predict the state at t = τ , where τ is some arbitrary time later. However, the system
is inescapably coupled to uncontrolled degrees of freedom within the environment.
There are a variety of noise sources that result in decoherence of a quantum state,
and the platform informs which noise sources are most detrimental. For a flux-
tunable transmon coupled to a CPW resonator, losses from quasiparticle poisoning,
two-level system (TLS) loss, and low-frequency fluctuations of magnetic flux can cause
decoherence [58].

There are two primary decoherence channels: relaxation and dephasing. Relax-
ation is the process by which a qubit exchanges energy with the environment, cor-
responding to a longitudinal decay of the qubit state in terms of the Bloch sphere
(Fig. 1). This type of decay is due to transverse noise sources at the qubit frequency,
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with the two most dominant sources being dielectric loss at the device surfaces and
quasipartcle losses in the Josephson junctions [59]. The rate at which relaxation oc-
curs is Γ1 ≡ 1/T1, where T1 is the 1/e decay time for the qubit excited state to relax
back to the ground state [1]. Figure 12 shows data for the relaxation of a qubit as a
function of time in red circles with an exponential decay fit shown in solid black.

Figure 13: Measured one-state population as a function of delay time, τ , for Ramsey
interferometry pulse sequence depicted. Red circles show measured data and black
line shows exponentially decaying sinusoidal function fit. For this measurement, the
midpoint of the oscillations is below 0.5, suggesting that the calibration of the X
pulse results in a one-state probability of less than unity.

The second process that results in non-deterministic evolution of the qubit state is
dephasing. Dephasing is a transverse decay in terms of the Bloch sphere. Dephasing
is the process by which low-frequency fluctuations in the qubit transition frequency
result in random phase shifts of the superposition state. The pure dephasing rate Γϕ of
the qubit state results in forward and backward precessions on the Bloch sphere. The
cumulative dephasing rate Γ2 accounts for the dephasing caused by energy relaxation
and pure dephasing and is given by

Γ2 ≡
1

T ∗
2

=
Γ1

2
+ Γϕ. (3.48)

Figure 13 shows the measured transverse relaxation time T ∗
2 of a qubit. This mea-

surement was performed using a standard Ramsey interferometry technique in which
the qubit is prepared in the superposition state (|0⟩ + |1⟩)/

√
2 using an X/2 pulse;

then, after a variable idle time τ , another X/2 pulse is applied and then a readout



31

pulse is performed. The measured data is shown in red and the solid black line shows
a fit to an exponentially decaying sinusoidal function from which we can extract T ∗

2 .
The carrier frequency for the X/2 pulse is detuned by an amount δ from ωq so that
the Bloch vector will precess at a rate of the detuning frequency around the z-axis.
In Fig. 13, the oscillation frequency is equal to the detuning frequency of 4.5 MHz.
In Fig. 14, the normalized one-state occupation is shown for a Ramsey interferometry
measurement taken as a function of δ.

Figure 14: One-state occupation for a Ramsey interferometry measurement as a func-
tion of detuning frequency, δ and delay time between X/2 pulses. The dashed line
shows the zero detuning point.

Another experiment, called the Hahn echo, is shown in Fig. 15. This measurement
is similar to Ramsey interferometry, but is less sensitive to quasi-static noise. The
Ramsey interferometry pulse sequence is modified such that at t = τ/2, an X gate is
applied, refocusing some of the dephasing and reducing inhomogenous broadening of
the state [1]. This decay time is called Techo.

Figures 13, 15 show measurements taken for the same qubit. Comparing the
extracted values for T ∗

2 and Techo, we can see that Techo is around 6 times longer that
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Figure 15: Measured one-state population as a function of delay time, τ , for Hahn
echo pulse sequence depicted. Red circles show measured data and black line shows
exponential decay fit.

T ∗
2 . The ratio of Techo to T ∗

2 gives information about the power spectral density of the
noise that causes dephasing. The ratio measured here is consistent with flux noise
with a 1/f power spectrum.

3.7 Two-qubit interactions

Entangling gates are routinely performed on industrial quantum processors [60, 61],
with high gate fidelities, but not as high as for single-qubit gates [62]. The limit of
gate fidelities achievable for multi-qubit gates is a barrier to implementing effective
quantum error correction. Additionally, existing 2-qubit gate schemes involve gates
between nearest neighbor qubits only. Two-qubit operations have been performed
in the field of cQED through various approaches, including direct coupling, tunable
coupling, and coupling through a shared cavity. Direct two-qubit interactions have
been realized on a variety of platforms, including capacitively coupling charge qubits
and inductively coupling flux qubits [63, 64]. Tunable couplers can be realized using
circuit divider elements [65, 66], couplers that use interference between different real
and virtual coupling pathways [67], as well as modular double transmon coupler
designs [68]. A quantum bus, generally realized using a cavity resonator, can also be
used in quantum circuits to entangle distant qubits [69].
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The two-qubit interactions described in this chapter are entangling interactions
that allow for the implementation of two-qubit gates. First, we discuss the transverse
exchange interaction, which allows for the exchange of excitations mediated by the
coupling element between two qubits.

3.7.1 Exchange coupling

Figure 16: Theoretical plot of an avoided level crossing in the transition frequency
of two qubits, QA and QB, when the transition frequency of QA is tuned through
the fixed transition frequency of QB. The uncoupled 0 → 1 transition frequency of
QA(QB), fA(fB), is shown with a red(blue) dotted line. The avoided crossing between
QA and QB is shown in black.

To discuss the exchange coupling, we will focus on a specific platform comprised
of two qubits coupled via a common resonator bus. If we have two qubits, QA and
QB, which share a resonator bus, then the Jaynes-Cummings Hamiltonian is given
by

H/ℏ = ωca
†a+

ωA

2
σz
A +

ωB

2
σz
B + gA(a

†σ−
A + aσ+

A) + gB(a
†σ−

B + aσ+
B). (3.49)

From this expression, it is not immediately clear what form the direct coupling be-
tween qubits takes. We can perform a perturbative Schrieffer-Wolff transformation
on this Hamiltonian under the dispersive regime assumption that QA and QB are far
detuned from the cavity. In the Schrieffer-Wolff transformation, the Hamiltonian can
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be divided into low-energy and high-energy subspaces. In doing so we can obtain a
low-energy effective Hamiltonian. Using the unitary transformation [52]

U = exp

{[
gA
∆A

(a†σ−
A − aσ+

A) +
gB
∆B

(a†σ−
B − aσ+

B)

]}
, (3.50)

where ∆q = ωq−ωc for q = A,B, we can adiabatically eliminate the resonant Jaynes-
Cummings interaction. A second order approximation in terms of gA/∆A and gB/∆B

gives the effective two-qubit Hamiltonian

Heff/ℏ = ωca
†a+

ω̃A

2
σz
A +

ω̃B

2
σz
B +

gAgB(∆A +∆B)

2∆A∆B

(σ+
Aσ

−
B + σ−

Aσ
+
B). (3.51)

In this expression, we assume the resonator cavity is initialized in the vacuum state
and ω̃q = ωq+χq is the dressed qubit frequency for q = A,B. This assumption is valid
only in the dispersive regime. The last term in Eq. (3.51) is the direct qubit-qubit
exchange interaction, which we can rewrite as [69]

J =
1

2
gAgB

(
1

∆A

+
1

∆B

)
. (3.52)

This J-coupling interaction depends on the strength of each qubit coupling to the
resonator, gA and gB, as well as the respective detunings between the qubits and the
resonator, ∆A and ∆B. Figure 16 shows a model of the avoided level crossing for two
qubits, QA and QB, when the transition frequency fB of QB is fixed and we tune the
transition frequency fA of QA such that it crosses fB. In this model, the two qubits
are not directly coupled, capacitively or otherwise, The subsequent splitting shows
an exchange coupling exists between the two qubits mediated by the shared cavity
bus [69].

We introduced the two-qubit iSWAP and
√
iSWAP in Ch. 2. The swap of excita-

tions between QA and QB at an anticrossing mediated by the coupling resonator bus
can be used to realize an entangling

√
iSWAP gate. For a two-qubit system coupled

via a resonator bus, moving the qubits to the anticrossing point for a time t = π/

(4J), or a quarter period of the oscillations in excitation between the qubits results
in an

√
iSWAP gate [69]. It is alternatively possible to generate an exchange interac-

tion between qubits with direct capacitive coupling instead of a common bus cavity
[70, 71]. The advantage of using cavity bus coupling over direct capacitive coupling of
two qubits is the possibility of long-distance interaction between physically separated
qubits.
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The J-coupling describes the second-order interaction between the two qubits that
exists in the computational basis of two-level qubits. However, non-computational
states, resulting from higher order interactions can also lead to entangling interactions
between two qubits.

3.7.2 ZZ Interaction

Two qubits coupled to one or more common resonant modes in general will exhibit
ZZ interactions between the qubits, where the state of one qubit shifts the transition
frequency of the other qubit. We define the ZZ interaction

ζ = E00 + E11 − E10 − E01, (3.53)

where Eij corresponds to the energy eigenvalue of state i(j) of QA(QB). Figure 17
shows the simulated energy spectrum plotted for up to two excitations for two trans-
mon qubits, QA and QB, as a function of the magnetic flux applied to QA while QB is
positioned at a fixed 0 → 1 transition frequency. As QA is biased, its frequency shifts
such that |10⟩ and |01⟩ exhibit an anti-crossing. As we discussed in Sec. 3.7.1, at this
flux position, one could implement an iSWAP or

√
iSWAP gate. However, because

of the negative anharmonicity of the two qubits, another avoided crossing occurs at a
lower flux offset between |11⟩ and |20⟩. In Fig. 17(b), |01⟩+ |10⟩ is shown with a gray
dashed line, and the strength of the ZZ interaction ζ/2π is indicated as the difference
between |11⟩ and |01⟩ + |10⟩. We can think of ζ in terms of the repulsion between
|11⟩ and |20⟩. The Hamiltonian in Eq. (3.51) is truncated to obtain an expression for
the exchange coupling between qubits. If we take a two-qubit Hamiltonian and go to
fourth order, we can derive an expression for ζ in terms of the respective g-couplings
of each of the qubits to the common cavity bus and the detuning of each of the qubits
to the bus cavity using fourth-order perturbation theory, given by [72]

ζ =
g2Ag

2
B(∆A +∆B)

∆2
A∆

2
B

. (3.54)

For a system comprised of two transmon qubits coupled via a resonator bus or
directly coupled, capacitively or otherwise, the ZZ interaction can be problematic as
it can generate unwanted and uncontrolled entanglement [73, 74]. Various approaches
have been explored for reducing [75, 76] or nulling [77, 78] these interactions. However,
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as we have indicated in Fig. 17, this interaction can also be used to intentionally
generate qubit entanglement via the CZ or CPHASE gate that was introduced in
Ch. 2.

A simple control mechanism to implement in flux-tunable transmon architectures
is fast dc flux pulses to bring qubits in and out of resonance, as is used in Ref. [72].
Using Fig. 17 as a guide, we can conceive of a two-qubit gate that uses the avoided
crossing between the non-computational state |20⟩ and the one-excitation manifold
state |11⟩. The cavity-mediated shift of ζ/2π results in this avoided crossing which
provides the mechanism for implementing the CZ gate. Once the states of the two
qubits are initialized, ideally at a magnetic flux at which the two qubits are far
detuned from each other and the shared cavity coupling bus, adiabatic (with respect

Figure 17: Theoretical energy spectrum for two transmon qubits coupled via a res-
onator bus at frequency ωc/2π as a function of the magnetic flux on one of the qubits,
QA, while the other qubit, QB, is fixed with its 0 → 1 frequency near 4 GHz. (a)
Spectrum showing |01⟩, |10⟩, |11⟩, |02⟩, and |20⟩ in blue, red, purple, teal, and orange
respectively. Flux location on QA at which iSWAP and CZ gates may be implemented
are indicated. (b) Zoom in of the |20⟩, |11⟩ avoided crossing. Gray dashed line shows
|10⟩+ |01⟩. The ZZ interaction strength is indicated by ζ/ℏ.
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to the |11⟩ → |20⟩ avoided crossing) flux pulses produce phase gates

U =


1 0 0 0

0 eiϕ10 0 0

0 0 eiϕ01 0

0 0 0 eiϕ11

 . (3.55)

Here, U is written in terms of the basis states |00⟩, |10⟩, |01⟩, and |11⟩ from left
to right and top to bottom. The matrix elements eiϕij = 2π

∫
δfij(t)dt give the

dynamical phase acquired by state |ij⟩, and δfij gives the deviation of fij from its
initialization point. To implement a CZ gate, the adiabatic flux pulse is designed
such that only |11⟩ acquires a phase of −1. A flux pulse that tunes QA to the flux
position designated "CZ" in Fig. 17, such that

∫
ζ(t)dt = (2n + 1)π with integer n,

results in a CZ gate. This is because ϕ11 = ϕ10 + ϕ01 − 2π
∫
ζ(t)dt [79].

In the next two chapters, we will switch our focus to discuss metamaterial trans-
mission lines and resonators. We will describe a multimode metamaterial ring res-
onator that can be used as a quantum bus to facilitate two-qubit entangling interac-
tions such as the exchange coupling and ZZ interaction discussed.



38

Chapter 4

Left-handed transmission line

resonators

In 1968, Viktor Veselago published a seminal paper that conceived of a material with
a simultaneously negative permittivity ϵ and permeability µ [33]. The propagation
of electromagnetic waves through matter is defined by ϵ and µ of the medium. The
dispersion relation for an isotropic electromagnetic wave in simple matter is given by

k =
ω

c
nk̂, (4.56)

where ω is the wave frequency, k is its wave vector pointing in the direction of unit
vector k̂ = k/|k|, c is the speed of light in a vacuum, and n is the refractive index of
the simple medium, with the relationship

n =
√
ϵrµr. (4.57)

Here, ϵr = ϵ/ϵ0 is the relative permittivity, µr = µ/µ0 is the relative permeability,
and ϵ0 and µ0 are the vacuum permittivity and permeability with the relationship
c = 1/

√
ϵ0µ0. Equations (4.56) and (4.57) suggest that for a lossless medium with

real n, ϵ, and µ, if ϵ and µ are both negative, there is no effect on the dispersion
relation or on n; however, Veselago postulates that if a material exists for which ϵ

and µ are both negative, then it would not have the same properties as traditional
materials.

In this chapter we will discuss Vesalago’s postulated metamaterials, or materi-
als which have both a negative permittivity and permeability. We will show that
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metamaterials have unique properties such as a negative index of refraction. We will
also discuss a subset of metamaterials that exhibit fundamentally different dispersion
from conventional transmission lines such as the CPW introduced in Ch.3. We will
refer to the unique dispersion as "left-handed" in contrast with traditional materials
that exhibit "right-handed" dispersion, and we will show that this has important
implications for cQED.

4.1 Metamaterials

S'', k''
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θ2

z

x

S, k S', k'
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ε2   0, μ2   0
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Figure 18: Electromagnetic waves incident on the boundary between two materials.
S, k are shown in blue for the wave incident θ0 from normal, S’, k’ are shown in
red for the the reflected wave θ1 from normal, and S” , k” are shown in green for the
refracted wave θ2 from normal. The first material has positive permittivity ϵ1 and
permeability µ1, and the second has (a) positive permittivity ϵ2 and permeability µ2

or (b) negative permittivity ϵ2 and permeability µ2. Figure is adapted from Ref. [2]

A naturally occurring material exhibiting both negative permittivity and per-
meability has not been found. Instead, to reach this regime, one must construct
metamaterials, which are composed of elements derived from conventional materials
arranged in repeated patterns with the size and spacing of the elements designed to
be shorter than the wavelengths of interest. The applications of metamaterials span
many fields, as a metamaterial can be engineered to have unique optical [80], acoustic
[81], or mechanical properties [82].

Going back to the discussion from the beginning of this chapter, based on Eq. (4.57),
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the following should be true for the refractive index of a metamaterial with simulta-
neously negative vales for ϵ and µ: n = c

√
ϵµ = c

√
(−ϵ)(−µ). However, following the

derivation in [83], we can show that Maxwell’s equations require that n = −c
√
|ϵ||µ|.

This can be shown by looking at Maxwell’s equations when ϵ and µ are not part
of a product. Maxwell’s equations for an infinite and spatially homogeneous medium
are given by

∇ · E = 0, (4.58)

∇ ·H = 0, (4.59)

∇× E = −µ∂H
∂t

, (4.60)

∇×H = ϵ
∂E

∂t
. (4.61)

The Poynting vector, which describes the directional flux of energy for the system, is
given by

S = E×H, (4.62)

and points in the direction of propagation in traditional materials.
We can describe the electric and magnetic field of a monochromatic plane wave

by the following equations

E(r, t) = Eei(k·r−ωt), (4.63)

H(r, t) = Hei(k·r−ωt). (4.64)

Via Maxwell’s equations given in Eq. (4.60-4.61), we can formulate two key constraints
for the monochromatic plane wave in simple matter, described by Eq. (4.63) and
Eq.( 4.64), given by

k× E = ωµH, (4.65)

k×H = −ωϵE. (4.66)

When ϵ and µ are positive, Eqs. (4.65) and (4.66) form a right-handed triplet, and
when ϵ and µ are negative, a left-handed triplet is formed. Thus, a material with
simultaneously negative values of ϵ and µ was coined a left-handed substance by
Veselago [84]. For a left-handed metamaterial, the propagation vector points in the
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negative direction. At the beginning of this chapter, we stated that Maxwell’s equa-
tions require that n = −c

√
|ϵ||µ| be true, and the fact that k is negative requires

that n < 0 for a left-handed metamaterial. The Poynting vector, which follows from
Eq. (4.62) and Eq. (4.65), is given by

S =
n

cµ
|E|2k̂, (4.67)

and it points in the opposite direction of k and the phase velocity, given by vp = ck̂/n

[83]. The vectors S, E, and H still form a right-handed orthornormal triad, despite
the direction of propagation and the phase velocity being negative, meaning that the
flow of energy is in the positive direction.

Figure 18(a) shows electromagnetic waves incident at the boundary of two right-
handed materials. The wavevectors and Poynting vectors are shown for the incident
waves that intersect the boundary at an angle of θ0 from normal to the interface. The
reflected wave is at an angle θ1 = θ0 from the normal, and the transmitted wave that
propagates through the boundary is at θ2 from the normal. Snell’s law relates θ1 and
θ2 to the velocity of the electromagnetic wave in each material v1 and v2 with the
following expression [85]:

sin θ1
sin θ2

=
v1
v2

=
n2

n1

. (4.68)

Figure 18(b) shows the reflection and refraction of electromagnetic waves at the in-
terface of a normal material and a left-handed metamaterial. The Poynting vector
and wavevector point in opposite directions for the refracted wave due to the negative
index of refraction of the metamaterial. The relationship between the angle of reflec-
tion, refraction, and the refractive indices for Fig. 18(b) are given by the left-handed
version of Snell’s Law,

sin θ1
sin θ2

= −n2

n1

, (4.69)

where n1 > 0 and n2 > 0.
As we have shown, metamaterials can exhibit left-handed dispersion while con-

ventional materials only exhibit right-handed dispersion, but the dispersion relation
of a material depends on its form. Next, we derive the dispersion for a discrete right-
handed transmission line as a basis for comparison to a left-handed transmission line.
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Figure 19: (a) Equivalent lumped-element CPW circuit comprised of series inductors
LR shunted by capacitors to ground CR. (b) Voltages and currents for a single unit
cell of length ∆x.

4.2 Right-handed transmission line (RHTL)

In Chapter 3, we introduced the CPW resonator as a superconducting cavity for
cQED. We showed that near resonance we can model the distributed CPW as a
parallel RLC circuit. In this section, we will show that a CPW transmission line
cen be modeled as a series of cells comprised of lumped circuit elements. A lumped-
element model for a CPW can be constructed with a chain of series of inductors
with inductance LR shunted to ground by capacitors with capacitance CR. Figure 19
(a) shows the effective, lossless circuit. An expression for the dispersion of such a
discrete transmission line can be easily derived by applying Kirchoff’s Law for the
circuit schematic shown in Fig. 19(b) [83]. Following the derivation from Ref. [2], we
obtain the system of equations:

Vn − Vn+1 = In(iωLR), (4.70)

Vn−1 − Vn = In−1(iωLR), (4.71)

In − In+1 = Vn+1(iωCR), (4.72)

In−1 − In = Vn(iωCR). (4.73)

By substituting the admittance of the capacitor Y = iωCR and the impedance of the
inductor Z = iωLR, these expressions can be rewritten as

Vn (2 + ZY ) = Vn−1 + Vn+1, (4.74)

In (2 + ZY ) = In−1 + In+1. (4.75)
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The solution for propagating waves through the transmission line at cell number n
can be written in the general form

Vn = V +
0 e

−ikn∆x + V −
0 e

ikn∆z (4.76)

In = I+0 e
−ikn∆x + I−0 e

ikn∆x, (4.77)

where ∆x is the length of the unit cell, and k = 2π/λ is the wavenumber magnitude.
Combining Eqs. (4.74) and (4.76), we obtain the relation(

V +
0 e

−ikn∆x + V −
0 e

ikn∆x
)
[2 cos (k∆x)− (2 + ZY )] = 0 (4.78)

that leads to the condition 2 cos(k∆x) = 2 + ZY . From this condition, we get the
dispersion relation for a CPW transmission line, given by

ωRHTL =
2√
LRCR

sin

(
k∆x

2

)
. (4.79)

When k∆x→ 0, this corresponds to either long wavelengths, or the continuum limit.
In this limit, the dispersion is a linear function given by

ωcont =
k∆x√
LRCR

. (4.80)

From the dispersion relation in Eq. (4.80), it follows that the maximum frequency
corresponding to the shortest wavelength results when k∆x = π. We can write
λ = 2π/k, and from this we can see that the shortest wavelength in this discrete
model is 2∆x, or 2 unit cells. This is the ultraviolet cutoff frequency and is given by

ωUV =
2√
LRCR

. (4.81)

The dispersion relation shown in Eq. (4.80) for a CPW is suggestively labeled ωRHTL

as it can be seen that as mode number increases, frequency increases. This type of
dispersion is characteristically right-handed, making a CPW a right-handed trans-
mission line (RHTL). Figure 20 shows ωRHTL as a function of mode number with a
blue line, with ωUV shown as a blue dashed line.

A RHTL has dispersion such that for larger frequencies, the wavenumber increases.
The phase velocity vp = ω/k and the group velocity vg = dω/dk for a discrete RHTL
point in the same direction, as is typical for materials that exhibit right-handed
dispersion.
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Figure 20: Right-handed dispersion relation as a function of normalized wavenumber
shown with a solid blue line. The maximum resonance frequency, given by ωUV , is
shown with a dashed blue line.

Figure 21: (a) LHTL circuit model comprised of series capacitors CL shunted to
ground by inductors LL. (b) Definition of current and voltage for a LHTL at cell n.

4.3 Left-handed transmission lines (LHTL)

A circuit-board based metamaterial on the mm scale, fabricated using split rings, was
one of the first experiments used to validate Veselago’s claims about left-handed meta-
material properties [86]. It is feasible to engineer a microwave transmission line to
have left-handed dispersion, in which mode frequency is a falling function of wavenum-
ber and low frequency bandgaps [35, 34]. In order to integrate a metamaterial with
qubits, the platform must be compatible with cQED architectures.

A RHTL can be realized using distributed transmission lines such as a CPW, or,
as we introduced in Sec. 4.2, with a series of lumped-element inductors capacitively
shunted to ground. If instead, the position of the inductors and capacitors is swapped,
as is shown in Fig. 21(a), so that the transmission line consists of a chain of series of
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capacitors CL shunted to ground by inductors LL, we can perform a similar derivation
as in Sec. 4.2 to obtain the dispersion relation. Figure 21(b) shows a single cell for
which we can apply Kirchoff’s Law. As derived by [36], the system of equations is
given by

Vn − Vn+1 = In

(
1

iωCL

)
, (4.82)

Vn−1 − Vn = In−1

(
1

iωCL

)
, (4.83)

In − In+1 = Vn+1

(
1

iωLL

)
, (4.84)

In−1 − In = Vn

(
1

iωLL

)
. (4.85)

Using the same methods in Eq. (4.74-4.78), we obtain an expression that must be
satisfied for all values of k∆x for solutions with propogating waves:

2 cos (k∆x) = 2 + ZY, (4.86)

where Y = 1/(iωLL) and Z = 1/(iωCL) are the admittance and impedance of the
inductor and capacitor, respectively. From this expression, the dispersion relation for
the transmission line follows:

ωLHTL(k) =
1

2
√
LLCL

1

sin
(

|k|∆x
2

) . (4.87)

This expression includes an absolute value of k in the sine expression. As introduced
at the beginning of this chapter, left-handed metamaterials have a negative index of
refraction and S and k vectors that point in opposite directions; since the direction
of k corresponds to its sign, if S is oriented in the positive direction, k will point in
the negative direction. Figure 22 shows the dispersion for the right- and left-handed
transmission lines in solid blue and orange lines, respectively. For the left-handed
transmission line (LHTL), the frequency decreases as |k| increases. For k = 0, the
frequency diverges, which is unphysical and will be discussed in more detail later in
this chapter. When |k|∆x = π, the wavelength is two unit cells of the left-handed
transmission line. This is the shortest wavelength of propagation possible, resulting
in an infrared cutoff frequency

ωIR =
1

2
√
LLCL

, (4.88)
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Figure 22: Dispersion relation for a discrete RHTL and LHTL as a function of the
normalized absolute value of the wavenumber shown in blue and orange, respectively.
The infrared cutoff frequency ωIR for the LHTL is show with a orange dashed line.
The ultraviolet cutoff frequency ωUV for the RHTL is shown with a blue dashed line.

below which, no waves can propogate. The infrared cutoff frequency ωIR for the left-
handed transmission line and the ultraviolet cutoff frequency ωUV for the right-handed
transmssion line are shown in Fig 22 in orange and blue dashed lines, respectively.
The characteristic impedance of this left-handed transmission line is given by

Z0 =

√
LL

CL

. (4.89)

The LHTL formed from the lumped-element circuit shown in Fig 21(a) produces
a fundamentally different dispersion to that of a RHTL. A unique feature is the in-
version of the standard relationship between wavelength and frequency, such that the
shortest wavelength in a LHTL corresponds to the lowest frequency. This behav-
ior was experimentally verified by observing the standing-wave patterns in a LHTL
resonator using laser-scanning microscopy (LSM) [36]. We will discuss metamaterial
resonators in the next section.

4.3.1 Resonators formed from metamaterials

One can make a resonator from a CPW by coupling a length of CPW to a feedline,
as discussed in Ch. 3, or by terminating each end of a CPW with a capacitor. It is
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also feasible to make a metamaterial resonator by terminating each end of the meta-
material TL with capacitors. The standing waves that comprise the resonant modes
in a metamaterial resonator would be integer multiples of half-waves, with the lowest
wavenumber mode having a wavelength of twice the length of the transmission-line.
The largest wavenumber mode would have the shortest possible wavelength of 2 unit
cells. For a RHTL, the same is true, but the relationship between frequency and
wavenumber is fundamentally different. For a RHTL resonator, the shortest wave-
length (largest wavenumber) mode corresponds with the highest frequency mode. For
a LHTL the shortest wavelength (largest wavenumber) mode corresponds with the
lowest frequency mode. A physical implementation of a lumped element metama-

Figure 23: (a) LHTL resonator with 24 unit cells comprised of series capacitors CL

and parallel inductors LL and input and output capacitances CC at each end of the
LHL. (b) Resonance frequency as a function of mode number for the 24-cell LHTL
resonator. Orange data points show the discrete resonance frequency for each mode.

terial LHTL has a finite number of cells and length, and a defined set of boundary
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conditions. We can relate the mode number to cell number under the resonance con-
dition that |k|l = nπ for open boundary conditions when both ends of the LHTL are
terminated by capacitors, where n = 0, 1, 2, ..., N is the relevant cell number and the
total length l = N∆x. This leads to the relation

|k∆x| = nπ

N
. (4.90)

In Fig. 23, mode frequency as a function of mode number for a 24-cell LHTL resonator
is shown. There are a discrete number of resonances corresponding to the number
of unit cells, as shown by the discrete orange data points. As the mode number
increases, the frequency spacing between the modes decreases, resulting in a dense
set of modes above the IR cutoff, shown with an orange dashed line in Fig. 23. We
have noted that the frequency diverges for the LHTL approaching n = 0, meaning
that there is no physically measurable resonant mode at k = 0. There is also no
measurable mode when n = N because the coupling quality factor diverges for this
mode number making it unmeasurable [36]. A linear LHTL resonator with N unit
cells will have N − 1 resolvable modes.

4.3.2 Stray reactance from lumped circuit elements in LHTL

Figure 24: Circuit diagram of a composite LHRHTL, where the left-handed lumped
circuit elements are CL and LL and the stray reactances that form the right-handed
circuit are CR and LR.

The divergence of the frequency in the limit of k → 0 corresponds to a divergence
in the group velocity vg = ∂ω/∂k; it is unphysical for such a divergence to exist.
Any physical implementation of the lumped-element capacitors and inductors that
comprise a LHTL will inevitably have parasitic stray reactances which arise from the



49

physical geometry of the circuit elements. These stray reactances result in a more
complex circuit, as shown in Fig. 24, where the series capacitors CL have stray series
inductances LR and the inductors to ground LL have stray shunt capacitance CR.
These naming conventions are suggestive, as the stray reactances result in a circuit
that is a composite of the lumped-element RHTL and the LHTL resonators, making
it a left-handed/right-handed transmission line (LHRHTL) resonator [35]. We can
define a self resonance of the lumped-element capacitors and inductors, given by
ωL = 1/

√
CLLR and ωC = 1/

√
LLCR, respectively.

A unit length ∆x of a composite LHRHTL cell is shown in Fig. 24. Following
the derivation in Ref. [2], the impedance and admittance per unit length are given by
Z = i (ωLR − 1/ωCL) and Y = i (ωCR − 1/ωLL). Extending the derivation for the
dispersion relation of a LHTL and substituting these expressions for Z and Y for a
composite LHRHTL in Eq. (4.86), we get an expression for the dispersion relation of
the LHRHTL given by

k(ω) =
1

∆x
cos−1

[
1− 1

2

(
ωLR − 1

ωCL

)(
ωCR − 1

ωLL

)]
. (4.91)

This expression has solutions for both positive and negative vlues of k. In Fig. 22,
the dispersion for a LHTL and RHTL are shown as a function of |k|∆x/π. Because
of the left-handedness of the metamaterial transmission line, k < 0. This is shown
explicitly in Fig. 25, which shows the dispersion for the composite LHRHTL and
a pure LHTL as a function of k∆x/π. The dispersion for the composite LHRHTL
has a discontinuity at k∆x/π = 0 if ωC ̸= ωL, where there are no propogating
wave solutions. After the zero-crossing point, the dispersion transitions from left-
handed to right-handed, where k > 0. Conversely, the pure LHTL frequency diverges
unphysically as it approaches k∆x/π = 0.

4.4 Coupling transmon qubits to a LHTL resonator

LHTL resonators provide a multi-mode architecture with the capacity for engineering
a dense spectrum in the GHz frequency range typical for superconducting qubits.
Alternative architectures for coupling qubits to multi-mode systems in the field of
cQED include using long RHTL resonators with multiple modes in the frequency
range of the qubits [29], introducing Josephson junctions in right-handed circuits
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Figure 25: Dispersion relation for a discrete RHTL and LHTL as a function of nor-
malized mode number shown in blue and orange, respectively. The infrared cutoff
frequency ωIR for the LHTL is show with an orange dashed line. The self-resonance
frequencies for the lumped-element capacitors ωC/2π and inductors ωL/2π create a
band gap with no propagating wave solutions, shown with gray dashed lines.

to generate non-linearity [87], and engineering large-scale lumped circuit elements to
produce metamaterials [88]. In contrast to these approaches, the LHTL resonator has
an IR-cutoff frequency that can be engineered such that tunable qubits coupled to
the LHTL resonator have a flux-insensitive lower sweet-spot at a frequency below the
IR-cutoff, as opposed to having resonances in the entire qubit frequency range. This
allows a location at which the qubit(s) can be detuned from the modes. Additionally,
the LHTL resonator has a relative small footprint and does not require as much
physical space on the chip to produce multiple modes in the desired frequency range.
With these advantages, a LHTL resonator can be a useful cavity for multi-mode
cQED with qubits. In cQED, qubits are typically capacitively coupled to resonant
circuits at voltage anti-nodes of a particular mode to maximize the coupling strength.
However, for a LHTL resonator, there are many modes in the frequency range of
interest, and selecting a voltage anti-node for multiple modes simultaneously is more
challenging. Figure 26 shows a schematic of a 24-cell LHTL resonator coupled to
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Figure 26: Voltage in arbitrary units as a function of node position for a 24-cell LHTL
resonator for modes 1, 12, and 23, shown in orange, green, and blue, respectively, with
an arbitrary offset in voltage added between modes. The circles correspond to the
voltage amplitude of the standing wave at a given node across the LHTL resonator.
The only node position at which the modes would be maximally coupled to a qubit
correspond to the n = 0 and n = 25 node positions of the input/output capacitors to
the LHTL resonator.

a voltage source. The theoretical waveforms of three example resonant modes are
plotted as a function of cell-number in arbitrary units of voltage, with nodes n = 0

and n = 25 corresponding to the the location of the input and output coupling
capacitors. The only coupling location at which a qubit could be maximally coupled
to all of the modes corresponds to the input and output capacitor locations. An
alternative scheme for coupling qubits to a LHTL resonator was proposed by [89], in
which a LHTL is combined with a RHTL to form a split left-handed, right-handed
transmission-line resonator. If qubits are coupled to the right-handed portion of the
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resonator, it results in simultaneous non-zero coupling of the qubits to all of the left-
handed modes. This structure has been experimentally validated and has been shown
to have predictable multi-mode coupling to a superconducting qubit [37]. The ideal
coupling scheme depends on the applications. In the next chapter, we will discuss a
metamaterial ring resonator. For this device, the coupling mechanism for the qubits
to the ring resonator is designed such that the ring resonator acts as a bus for inter-
qubit coupling, and the qubits are capacitively coupled directly to particular unit
cells of the ring resonator.
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Chapter 5

Left-handed metamaterial ring

resonators

Resonant structures with ring topology are prominently used in photonic systems to
trap and confine light in small volumes, resulting in enhanced light intensity and non-
linear effects in a compact footprint [41]. Many optical applications for ring struc-
tures have been explored, including microwave-optical transducers [38], microwave
frequency combs [38], and multimode nonlinear optics [40, 42]. Superconducting ring
resonators with right-handed dispersion have been used in cQED applications as a
resonator bus for multiple qubits [90, 43]. This application requires a large footprint,
as the circumference must be a minimum of one wavelength of the resonant frequency
of interest. The typical wavespeed for a CPW transmission line with a Si substrate
is v ≈ 0.40c, where c is the speed of light in a vacuum. So for a resonant frequency
of 5 GHz, a CPW ring would need to have a circumference of approximately 25 mm.
Superconducting metamaterial split-ring resonators have also been explored for ap-
plications such as tunable and passband filtering in the microwave frequency range
[91]. Ring resonators are produced by connecting two ends of a transmission line to
form a closed loop. By wrapping a transmission line onto itself and preserving the
symmetry of the structure, the resultant path of a signal inside the ring is uncon-
strained. Clockwise and counter-clockwise propagation has equal probability, and the
distribution of electromagnetic fields is uniform [90]. The combination of clockwise
and counter-clockwise propagation leads to degenerate ring resonator modes highly
dependent on the symmetry of the ring. Coupling external circuit elements to a ring
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Figure 27: Left-handed metamaterial ring resonator with 24 unit cells with cell length
∆x, comprised of series capacitors CL and parallel inductors LL.

enforces geometric boundaries, but does not constrain the two modes of propaga-
tion. In this chapter, we will discuss a novel metamaterial ring resonator formed from
a LHTL that can be used as a multimode bus to facilitate entangling interactions
between qubits. We will show that a metamaterial ring resonator produces a multi-
mode spectrum with pairs of degenerate frequency resonances due to the clockwise
and counter-clockwise propogation in the ring; we will then describe how these degen-
eracies can be lifted when circuit elements are placed at particular locations around
the ring.

5.1 Left-handed metamaterial ring resonator

Wrapping a linear LHTL resonator, introduced in Ch. 4, into a ring produces a unique
dispersion with counter-clockwise and clockwise modes of propagation and a small
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physical footprint. Figure 27 shows a circuit schematic for a left-handed metamaterial
ring resonator, with cell size given by ∆x and unit-cell capacitance and inductance
given by CL and LL. The dispersion relation for the left-handed material ring is
identical to that of the linear LHTL, given by

ω(k) =
1

2
√
LLCL

1

sin
(

|k∆x|
2

) . (5.92)

A left-handed metamaterial ring resonator with a finite number of cells N has a
discrete set of resonant frequencies. This results in periodic boundary conditions,
similar to Born-von Karman boundary conditions imposed on a wave function in a
lattice [92]. The lattice in the case of the left-handed metamaterial ring resonator,
or ring resonator for short, is the discrete set of cells. As we have stated, these

Figure 28: Resonance frequency as a function of mode number for a 24-cell LHTL
metamaterial ring resonator. Orange data points show the discrete resonance fre-
quency for each mode. Gray lines connect degenerate resonance modes, only differ-
entiable by phase in an ideal ring resonator

conditions result in two types of propagating waves in the ring resonator: clockwise
and counterclockwise. Given that the dispersion relation in Eq. (5.92) depends on |k|,
waves moving in opposite directions have the same frequency and only differ in phase.
In a perfect ring with identical cells and no external coupling, equal combinations of
clockwise |k⟩ and counterclockwise |−k⟩ waves define the standing wave of frequency
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ω(k), with even and odd parity |E⟩ = (|k⟩+ | − k⟩)/
√
2 and |O⟩ = (|k⟩ − | − k⟩)/

√
2,

respectively. The resonance condition for the ring resonator is given by

k∆x =
2πn

N
. (5.93)

This is enforced by the periodic boundary conditions that require continuity of the
waveform at the first and last cell of the ring resonator; thus the fundamental reso-
nance corresponds to a wavelength equal to the circumference of the ring. It is clear
that the parity is indistinguishable at k = 0. Similarly, for the mode at the IR cutoff,
when n = N , the difference between the clockwise and counterclockwise argument
k∆x is 2π, thus the two parities are again indistinguishable. This is akin to states at
the edge of the Brillouin zone in solid-state systems.

Figure 28 shows the discrete set of resonant frequencies for a 24-cell ideal ring
resonator as a function of normalized wavenumber. The ring resonator modes above
the IR-cutoff come in pairs of degenerate frequencies, with each pair differing only
in the sign of the phase constant. Like the linear LHTL resonator, the k = 0 mode
diverges for the ring resonator, so it is unmeasurable. The mode at the IR-cutoff
frequency is not paired due to the indistinguishable parity. Because of this, the
choice to assign a positive value of k∆x for the IR-cutoff mode is arbitrary. Thus,
a ring resonator with N cells will have N − 1 resonant modes with N/2− 1 pairs of
degenerate modes above the IR-cutoff.

5.1.1 Stray reactance from lumped circuit elements

As we introduced in Ch. 4, the physical implementation of the lumped circuit ele-
ments that comprise the ring resonator have parasitic stray reactances that make the
circuit a composite of a left-handed/right-handed ring resonator. The circuit shown in
Fig. 29, shows that the series capacitors CL have stray inductances LR and the induc-
tors to ground LL have stray capacitance CR. As we did for the linear LHRHTL, we
can define a self-resonance of the lumped-element capacitors and inductors, given by
ωL = 1/

√
CLLR and ωC = 1/

√
LLCR, respectively. The impedance and admittance

per unit length for the ring resonator are identical to that of the LHRHTL, so we
get an identical expression for the dispersion relation of the ring resonator, given by
Eq. (4.91). Figure 30 shows the dispersion for the composite left-handed/right-handed
ring compared to a purely left-handed ring as a function of k∆x/π. The dispersion
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Figure 29: Ring resonator circuit with 24 cells, including parasitic stray reactances.
The inset shows a single cell comprised of a series capacitor CL and inductor LR

shunted to ground by parallel inductor LL and capacitor CR.

for the composite left-handed/right-handed ring, accounting for stray reactance, has
a discontinuity at k∆x/π = 0 if ωC ̸= ωL, where there are no propagating wave solu-
tions. After the zero-crossing point, for ω > max(ωC , ωL), the dispersion transitions
from left-handed to right-handed, and k switches sign. Conversely, the ideal ring res-
onator dispersion diverges as ±k∆x/π approaches 0, but this is an unphysical effect
as this divergence implies that the group velocity diverges.

5.1.2 Stray reactance from wirebonds

For superconducting microwave devices at the chip scale, chips are mounted or glued
to a machined Al sample holder. To ensure a low-impedance microwave ground across
the chip, wirebonds are often used to connect the ground plane of the chip to the
sample holder. Wirebonds are also used to connect circuit elements on the chip to
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Figure 30: Dispersion relation for a composite left-handed/right-handed ring res-
onator as a function of normalized mode number with left-handed branches and
right-handed branches shown in solid blue and orange lines, respectively. The IR-
cutoff frequency ωIR for the ring resonator is shown with an orange dotted line. Or-
ange dashed lines show pure left-handed ring resonator dispersion. The self-resonance
of the lumped-element capacitors and inductors, ωL and ωC , are shown with gray, dot-
ted lines.

external circuitry [93]. Additional wirebonds can be used to preserve ground-plane
continuity between different parts of the chip separated by physical features such as
CPW resonators and flux bias lines.

The circuit models shown thus far for the ring resonator, like in Fig. 27, are not
optimal designs for physically implementing a ring resonator, because the designs re-
sult in a discontinuity in the ground plane depending on which direction the inductors
face with respect to the center of the ring. A better method of ensuring that there is
a common microwave ground potential across the chip is shown in Fig. 31(a), where a
double inductor circuit is used, grounding the ring resonator to both the inside of the
ring and the exterior. Similarly, Fig. 31(b) shows a ring resonator cell with double
inductors, but also accounting for parasitic stray reactances from the lumped circuit
elements. However, even using the double-sided inductor layout shown in Fig. 31(b),
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Figure 31: Single-cell circuit schematics for a ring resonator with (c), (d) and without
(a), (b) stray inductance from wirebonds and with (b), (d) and without (a), (c) stray
parasitic reactance included for the lumped circuit elements.

the lumped-element inductors are discrete and do not provide uniform microwave con-
nectivity between the center of the ring and exterior. Because of this, wirebonds can
be applied across the ring resonator to connect the center of the ring to the ground
plane exterior to the ring.

Although the superconducting wirebonds provide a zero-resistance dc path con-
necting the different sections of ground plane, they have a non-negligible inductance
and thus contribute stray reactance at microwave frequencies, thus altering the dis-
persion of electromagnetic waves in the ring resonator. Figure 31(c) and (d) show the
single-cell circuits including wirebonds, with and without parasitic reactances from
the lumped-element components. If a wirebond is placed across each cell, there is
a symmetric change in the dispersion, but as we will show later in this work, when
asymmetry is introduced in the circuit via the wirebond position, this results in a
lifting of the degeneracy of the even and odd mode frequencies.
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5.2 Coupling transmon qubits to a ring resonator

Figure 32: Ring resonator schematic and mode structure for two pairs of degenerate
ring resonator modes. The ring resonator model consists of 24 unit cells, shown
with gray squares, with each cell containing a capacitor shunted to ground by two
inductors. One pair of even (odd) modes with k∆x = 102π

N
is shown in solid (dashed)

orange lines, labeled m
(10)
E (m(10)

O ); a second pair with k∆x = 52π
N

is depicted with
solid (dashed) green lines, labeled m

(5)
E (m(5)

O ). The coupling strength of QA and QB

to each mode is determined by the amplitude of the wave at the cell where the qubit
is capacitively coupled to the resonator.

As is the case for a linear LHTL, a left-handed metamaterial ring resonator can
be used as a multimode bus to facilitate qubit entanglement, but with the benefit of a
small physical footprint and a spectrum that does not depend on matched impedance
through the metamaterial, as is the case for a LHTL resonator. The coupling scheme
we will discuss is direct, capacitive coupling of the qubits into particular positions
around the ring resonator.

Figure 32 shows a circuit comprised of a ring resonator with two qubits capacitively
coupled to the ring. In this example, the ring resonator has 24 cells, and the qubit
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separation nAB is 6 cells. The mode structures, based on the resonance condition
given in Eq. (5.93), for two pairs of degenerate modes are shown for modes with
k∆x = 102π

N
and k∆x = 52π

N
in orange and green, respectively, with even (odd)

parity modes shown with solid (dashed) lines. The g-coupling of the qubits to the
multiple modes in the ring resonator depends on the coupling location with respect to
the ring resonator cells and with respect to all other externally coupled components
around the ring. We will show that g is an oscillatory function with both even and
odd solutions corresponding to the even and odd pairs of modes.

5.2.1 Theoretical derivation of Hamiltonian and g-coupling

Given a circuit comprised of a ring resonator with an arbitrary number of cells N
and two qubits capacitively coupled around the ring separated by nAB cells, following
the derivation performed by our collaborators in Ref. [94] that we reproduce here,
we can obtain analytical expressions for the g-coupling values of both qubits to the
ring resonator modes. The Lagrangian of the circuit, where we ignore the effect of
parasitics and therefore drop the index from CL and LL, is given by

L =
1

2
C

N−1∑
j=0

(ϕ̇j+1 − ϕ̇j)
2 − 1

2L

N−1∑
j=0

ϕ2
j +

1

2
CQM(ϕ̇jA − ϕ̇A)

2 +
1

2
CQM(ϕ̇jB − ϕ̇B)

2

+
1

2
CSϕ̇

2
A +

1

2
CSϕ̇

2
B + EA

J (Φ
A
ext) cos

(
ϕA

Φ0

)
+ EB

J (Φ
B
ext) cos

(
ϕB

Φ0

)
. (5.94)

Here, Φ0 is the magnetic flux quantum, ϕj is the flux at node j and jA/B denotes
the cell number that is connected to QA/B. In the following we will assume that
the number of cells between the two qubits nAB := jA − jB is even. This complies
with the device setup of nAB = 6. Since nAB is even, we can place cell number 0
between the qubits, which now have the indices jA = nAB

2
and jB = −nAB

2
. This

choice of reference frame is without loss of generality for qubits separated by an even
number of cells. As introduced in Ch. 3, since each transmon has a dc SQUID for
its Josephson element, the flux-dependent Josephson energy is given by Eq

J(Φ
q
ext) =

Eq
J0 cos

(
πΦq

ext

Φ0

)√
1 + d2q tan

2
(

πΦq
ext

Φ0

)
, where Eq

J0 = Eq
J1 + Eq

J2 gives the maximum

total Josephson energy for qubit q = A,B, accounting for the energy contributions
of the two junctions that make up the SQUID loop, Eq

J1 and Eq
J2. Here, dq is the

junction asymmetry, defined as dq =
Eq

J2−Eq
J1

Eq
J1+Eq

J2
. The external flux, Φq

ext, is the flux
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coupled to the SQUID loop for each qubit q. CS is the shunt capacitance of each
qubit and CQM is the qubit-resonator coupling capacitance.

We can introduce the canonical variables of Cooper pair numbers nj = 1
2e
Qj =

1
2e

∂L
∂ϕ̇j

and their Fourier transform nk = 1√
N

∑
j e

ik∆xjnj, where k∆x/π ∈ [−1 +
2
N
,−1 + 4

N
, ..., 1 − 2

N
, 1] form a Brillouin zone. This notation makes it immediately

clear that for most k values there is a corresponding −k modes, where positive k
values correspond to modes traveling around the ring resonator clockwise and negative
k values correspond to counterclockwise moving modes. As previously stated, the
values of k∆x/π = 1 and k∆x/π = 0 do not have a corresponding −k value, as they
are at the edge and the origin of the first Brillouin zone, respectively. The k∆x/π = 1

state we have identified as the IR mode, is not paired with any other −k state and
will show no degeneracy with another mode. A similar argument can be made for
the k∆x/π = 0 state, which corresponds to the highest frequency mode. In this
derivation only the degenerate states are considered, as they comprise the majority
of resonances for which an expression of g(ω) may be obtained. An equation for the
g-coupling of the IR mode needs to be calculated separately, which can be done in a
similar manner, but will not be shown here.

For the Fourier-transformed canonical variables, we get

ϕ̇k = Lω2(k)
(
2en−k +

1√
N
CQM(ϕ̇nAB/2 − ϕ̇A)e

−ik
xAB

2 (5.95)

+
1√
N
CQM(ϕ̇−nAB/2 − ϕ̇B)e

ik
xAB

2

)
,

with the distance between the qubits given by xAB = nAB∆x, and the left-handed
dispersion relation for ω(k) given by Eq. (5.92). The scaling with ω2 is unique to
left-handed materials and causes a different frequency dependence for the g values
than for a system with qubits coupled to a right-handed set of modes. Here ϕ̇k is
expressed in terms of n−k, further highlighting the symmetry between k and −k,
which is only broken by the qubit terms. Next, we renormalize the flux to φ = ϕ/Φ0,
ignore the coupling to the IR mode and the highest frequency mode, and only focus
on the paired modes. We transform into even and odd modes using the change of
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variables

nk,E/O =
1√
2

(
nk ± n−k

)
,

φk,E/O =
1√
2

(
φk ± φ−k

)
,

and introduce the notation Crat =
CQM

CQM+CS
. The total Hamiltonian can be broken into

components given by Htot = Hres+HA+HB +H int
AB +H int

mode+H
A
E +HA

O +HB
E +HB

O .
All of these Hamiltonian terms will be defined in the remainder of this section. In this
derivation, we are assuming that the interaction between resonator modes mediated
by the qubits is small with respect to the other terms. This assumption is valid when
the magnitude of g is smaller than the mode frequency separation. Our examples have
been based on a 24-cell ring resonator, corresponding to our experimental device. In
the ideal case, no modes are close enough together to invalidate this assumption
when CQM is assumed to correspond to typical coupling strengths used in cQED for
coupling qubits to cavities. So, without explicit proof, we use this assumption, but it
is not true in general. The Hamiltonian terms for the resonant modes Hres and the
qubits HA/B are given by

Hres =2e2
∑
k>0

Lω2(k)(n2
k,E − n2

k,O)

+
Φ2

0

2L

∑
k>0

(φ2
k,E − φ2

k,O),

HA/B =
2e2

CS

(
1− 1

1− s2AB

K2C2
rat

CS

CQM

)
n2
A/B

− E
A/B
J cos

(
φA/B

)
,

with 1
K

= 1+
CQM

N
(1−Crat)

∑
k Lω

2(k) and sAB = K
CQM

N
(1−Crat)

∑
k Lω

2(k)eikxAB .
The capacitive interaction between the two qubits, mediated by the ring resonator
capacitances can be expressed as

H int
AB =

4e2sAB

(1− s2AB)
2

K2C2
rat

CQM

nAnB.

The interaction between one of the qubits and an even and odd mode can be expressed
as

H
A/B
E =α

A/B
E

1√
N

∑
k>0

ω2(k) cos
(
k
xAB

2

)
nk,EnA/B,
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H
A/B
O = ±αA/B

O

1√
N

∑
k>0

ω2(k) sin
(
k
xAB

2

)
nk,OnA/B,

respectively. For HA/B
O the + branch is for qubit A and − is for B. If we assume

both qubits have the same shunt capacitance and the same coupling capacitance, the
prefactors are independent of the qubits and given by

αE =2
√
2e2L

K2

1− s2AB

1

1 + sAB

Crat(1− Crat),

αO = −2
√
2e2L

K2

1− s2AB

1

1− sAB

Crat(1− Crat).

We can now express the flux and charge operators in terms of creation and annihilation
operators a† and a:

φ =φzpf (a+ a†),

n =inzpf (a− a†).

We can identify the zero point fluctuation of the charge as nzpf =
√

ℏ
2eLω

, which scales
with 1/

√
ω. Similarly, the zero point fluctuations of the charge for each qubit scales

with √
ωA/B. We redefine the proportionality factors αA/B

E/O to include the zero point

fluctuations, except for their frequency dependence, and label them as αA/B
E/O

′
. By

only considering terms that conserve excitation number based on the rotating wave
approximation (RWA), the coupling Hamiltonian reduces to

H
A/B
E =α

A/B
E

′ 1√
N

∑
k>0

√
ωA/Bω

3
2 (k) cos

(
k
xAB

2

)
(a†k,EaA/B + ak,Ea

†
A/B)

H
A/B
O = ±αA/B

O

′ 1√
N

∑
k>0

√
ωA/Bω

3
2 (k) sin

(
k
xAB

2

)
(a†k,OaA/B + ak,Oa

†
A/B).

With this Hamiltonian we arrive at an expression for the g-coupling values as a
function of k and ω(k)

g
A/B
E (k) =α

A/B
E

′ 1√
N

√
ωA/Bω3(k) cos

(
k
xAB

2

)
,

g
A/B
O (k) = ±αA/B

O

′ 1√
N

√
ωA/Bω3(k) sin

(
k
xAB

2

)
.
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Using the dispersion relation of left-handed materials, we can also express this in
terms of the frequency. In the case of a simple dispersion relation without parasitics,
this gives us

g
A/B
E (ωrE) =α

A/B
E

′ 1√
N

√
ωA/Bω

3
rE cos

(
nAB

2
arcsin

(
ωIR

ωrE

))
,

g
A/B
O (ωrO) = ±αA/B

O

′ 1√
N

√
ωA/Bω

3
rO sin

(
nAB

2
arcsin

(
ωIR

ωrO

))
.

Note that the proportionality constants αA
E/O

′ and αB
E/O

′ can be either positive or
negative, but always have the same sign. Therefore we do not determine the actual
sign of the g-couplings to the modes without explicit calculation of the proportionality
constants, and only the relative sign between the interactions of each mode to QA

and QB is given. We refer to this as the parity of the modes or the parity of the
g-couplings. Modes with even parity share the same sign between QA and QB and
modes with odd parity have opposite signs for QA and QB. We can write a simplified
expression that relates the g-coupling for each qubit to the mode frequency and qubit
position, given by:

gBE (k) = gAE(k) ∝
ω

3
2 (k)√
N

cos
(
k
xAB

2

)
, (5.96)

−gBO(k) = gAO(k) ∝
ω

3
2 (k)√
N

sin
(
k
xAB

2

)
. (5.97)

Here, we have removed the proportionality constant and qubit frequency, but the
oscillatory behavior and scaling as a function of mode frequency is preserved. Re-
ferring back to the circuit schematic shown in Fig. 32, the solid line is a cosine and
the dashed line is a sine mode, or equivalently an even and odd mode. The origin is
located in the middle between the qubits, thus clarifying the signs in Eqs. (5.96) and
(5.97), as QA is connected to cell number nAB/2, and QB to −nAB/2.

From these derivations, we have shown that we can describe a ring resonator that
is capacitively coupled to two weakly-anharmonic qubits, QA and QB, separated by
nAB cells around the ring, as shown in Fig. 32. Again, using the standard circuit quan-
tization within the rotating wave approximation, the total Hamiltonian, accounting
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for both even and odd ring resonator modes, reads [52]

H/ℏ =
∑
q

[
ωqâ

†
qâq +

δq
2
â†qâq(â

†
qâq − 1)

]
+
∑
|k|,P

ω(k)r̂†k,P r̂k,P +
∑
|k|,P,q

gqP (k)(r̂
†
k,P âq + r̂k,P â

†
q), (5.98)

with â†q(âq) being the creation (annihilation) operator of qubit q = A,B and δq being
the qubit anharmonicity. Here r̂†k,P (r̂k,P ) are the creation (annihilation) operator of
ring resonator mode k and parity P = E,O, and the qubit-resonator mode coupling
strengths gqP (k) we have just derived is given in Eq (5.96) and (5.97).

Figure 33 shows the oscillatory nature of the g-couplings as a function of mode
frequency. Thus far, our examples have dealt with 24-cell left-handed devices, but
for better visualization of the oscillations, we consider a ring with N = 240 unit
cells. To compare these g-coupling values to the circuit schematic shown in Fig 32,
the qubit-qubit cell separation is the same, nAB = 6. Since the cosine and sine
functions that describe g for the two qubits do not depend on N , scaling from N =

24 to N = 240 does not affect the oscillations, and the solutions only differ by a
proportionality constant. In Fig. 33, the analytical expressions of Eqs. (5.96) and
(5.97) are compared with numerical values obtained from explicit solutions to the
Hamiltonian in Eq. (5.98) for each of the resonant frequencies of the 240-cell ring
resonator. These numerical solutions predict the same odd (gray) and even (purple)
parity behavior.

In the next chapters, we will experimentally investigate a ring resonator bus cou-
pling two qubits. It is important to note that while the analytic expression and
numerical solutions for g have an associated sign, direct measurement of the sign of g
is not possible when observing vacuum Rabi splittings, as shown in Fig. 7. Determin-
ing the parity of the g-couplings is crucial for calculation of the effective J-coupling
between qubits; Eq. (3.52) shows that J depends on the product of the g-coupling
strength for each qubit. Additionally, because of the stray reactance from wirebonds
used to ground the ring resonator described in Sec 5.1.2, when the distribution of
wirebonds is not uniform, variations in the even and odd modes leads to small shifts
in g which may be difficult to model. These points will be discussed in the chapters
that follow.
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Figure 33: Theoretical g-coupling values for QA and QB, coupled to a hypothetical
240-cell ring resonator with qubit separation nAB = 6. Simulated data points at
which the coupling for QA, gAi /2π, and for QB, gBi /2π, share the same sign for a
given mode are shown in purple. Points at which the gAi and gBi coupling to QA and
QB, respectively, have opposite signs are shown in gray.
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Chapter 6

Device Design

Implementing a device comprising a left-handed metamaterial ring resonator coupled
to qubits involves numerous design considerations. The following sections outline the
details of the physical elements within the device, focusing on the ring resonator and
qubit designs individually first, then zooming out to look at the device design as a
whole.

6.1 Ring resonator design

Chapter 5 describes a left-handed metamaterial ring resonator implemented with a
chain of lumped circuit elements comprised of series capacitors shunted to ground by
inductors. The physical implementation of the ring resonator has a number of design
constraints.

Design of the inductors and capacitors is guided by fundamental and practical
constraints. The infrared cutoff frequency, or the frequency of the first mode in the
spectrum, is given by ωIR = 1/2

√
CLLL, where CL and LL are the unit cell capacitance

and inductance, respectively. The target infrared cutoff frequency is designed such
that the infrared cutoff mode and several modes at higher frequencies sit within the
bandwidth of the standard microwave electronics (∼2-12 GHz). Additionally, we
will be coupling superconducting qubits into the ring resonator with the intention
of coupling several modes from the densest region of the ring resonator spectrum
to the qubits. This narrows the range of ωIR/2π to the typical operation frequency
range of superconducting qubits, ∼4-9 GHz. In Chapter 3, we discussed flux tunable
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Ring resonator cell parameters

Parameter Simulation Theory Description

LL (nH) 0.8 1.04 Unit cell inductance

CL (fF) 303 303 Unit cell capacitiance

LR (nH) 0.12 0.12 Unit cell stray inductance

CR (fF) 50 50 Unit cell stray capacitance

CD (fF) 371 371 Center disk capacitance

CC (fF) 16 16 Coupling capacitance

Table 1: Ring resonator cell parameters obtained via finite element simulation. Unit
cell capacitance CL, total center disk capacitance CD, and coupling capacitance CC of
the ring to external feedline are obtained using Ansys Q3D software. Unit cell induc-
tance and wirebond inductance, LL determined using InductEx software. The stray
inductance and capacitance, LR and CR, were found using Sonnet software to iden-
tify the self resonances of the lumped-element unit-cell structures. The values in the
theory column come from modeling of the device and adjusting parameters to match
the measured ring resonator spectrum. The discrepancy between the theoretical and
simulated values for LL are likely due to imperfect grounding and approximations
used in estimating the inductive contributions of the wirebonds based on extracted
lengths from microscope images.

transmon qubits and the flux insensitive sweet spots of the qubit transistion frequency
in which the qubit lifetime is the longest. With this is mind, the ideal ring resonator
would have an infrared cutoff frequency above the minimum transition frequency of
the coupled qubits. This gives a target infrared cutoff frequency of approximately
5 GHz.

Each unit cell consists of a superconducting island with a capacitor for a series
connection to the next unit cell, plus two inductors to ground. The total number
of unit cells determines the number of resonant modes in the spectrum. For a left-
handed metamaterial ring resonator, there is an infrared cutoff mode, then pairs of
degenerate modes with increasing frequency, as discussed in Ch. 5. For a pure, left-
handed ring resonator, we expect N−1 modes for a ring resonator with N cells. There
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is a practical limit to the number of cells set by the size scale of the lumped circuit
elements and the chip size. The lumped elements are implemented from thin-film
Nb structures similar to those used in various cQED architectures. The capacitors
are an interdigitated design comprised of 15 pairs of 4-µm wide and 110-µm long
fingers separated by a 1-µm gap. We use a planar, meander-line inductor design with
a trace width of 2-µm and 20 turns. The dimensions of the lumped circuit elements
are extracted from finite element simulation and informed by previous left-handed
metamaterial designs [37]. Each lumped circuit element has an associated parasitic
reactance set by the geometry of the element. These parasitic reactances make the
physical implementation of the ring resonator a hybrid left-handed and right-handed
resonator. The associated parasitic reactance for CL and LL, LR and CR, respectively,
can be ascertained from finite element simulation of the self-resonance of the lumped
circuit element using Sonnet’s electromagnetic solver. The parameters for the left-
handed ring-resonator are given in Table 1.

For this device, the ring resonator capacitors are designed with inductors to ground
towards both the exterior and interior of the ring to improve grounding of the center
disk inside the ring resonator. Accounting for only the unit-cell capacitances and
inductances, the IR-cutoff for this device is simulated to be 4.8 GHz.

6.2 Qubit design

Chapter 3 introduced the floating-style transmon widely used in quantum computing
applications. The two identical qubits coupled to the ring resonator were designed in
this floating-style with inductively coupled on-chip flux lines allowing in situ tuning
of the qubit transition frequency. In this section, we share details of the qubit island
design as well as select measurements charactrizing the qubits. Further details on the
measurement setup are given in Chapters 7 and 8.

The qubit details are given in Table 2. We determined EA
J0 and EB

J0 by fitting
spectroscopy data to a characteristic asymmetric transmon curve, given by Eq. 3.19.
This fit and the spectroscopy data are shown in Fig. 34. This method was imple-
mented because we did not directly measure the qubit maximum transition frequency
due to challenges in the chip design. The values for EA

C and EB
C were calculated using
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Parameter Value Description

EA
J0/h 23.8 GHz Maximum Josephson energy, QA

EB
J0/h 25.7 GHz Maximum Josephson energy, QB

EA
C/h 243 MHz Charging energy, QA

EB
C 223 MHz Charging energy, QB

dA 0.38 Junction asymmetry, QA

dB 0.39 Junction asymmetry, QB

TA
1 19.1 µs Relaxation time at Φ/Φ0 = 0.5, QA

TB
1 19.4 µs Relaxation time at Φ/Φ0 = 0.5, QB

fA
C 6.358 GHz Bare cavity frequency, QA

fB
C 6.166 GHz Bare cavity frequency, QB

QA
C 3,590 Coupling quality factor of readout cavity, QA

QB
C 3,290 Coupling quality factor of readout cavity, QB

gAR/2π 40 MHz Coupling between qubit and readout cavity, QA

gBR/2π 45 MHz Coupling between qubit and readout cavity, QB

CS 83 fF Shunt capacitance

CQR 2.5 fF Qubit-readout resonator coupling capacitance

CQM 17.5 fF Qubit-ring resonator coupling capacitance

Table 2: Parameters for two transmon qubits, QA and QB. Method of determination
for each parameter is given in the text.

Hamiltonian modeling of EC as a function of anharmonicity extracted from indepen-
dent measurement of the qubit’s f01 and f02/2 transition frequencies, as described in
Sec. 3.1. The bare readout cavity frequency for QA is 6.358 GHz and 6.166 GHz for
QB. From the fits of the spectroscopy data for different flux bias to the asymmetric
transmon tuning curve, we extract the maximum transition frequencies for QA and
QB to be 6.58 GHz and 6.59 GHz, respectively. The proximity of the qubit upper
sweetspot to the readout cavity and nearby mode frequencies results in Purcell loss
and broad qubit linewidths, making a direct determination of the maximum transi-
tion frequencies of the qubits challenging. The qubit coherence times, TA

1 and TB
1 ,

are determined via independent measurements with each qubit’s flux bias tuned to
its flux-insensitive lower sweet spot. We extracted the coupling strength of qubits QA
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Figure 34: Characteristic transmon curve fit for f01 transition of (a) QA and (b) QB,
shown in solid red and blue lines, respectively. Red(blue) circles show spectroscopy
data for QA(QB) used in the fit. Gray, dashed lines denote bare ring resonator mode
frequencies.

and QB to their respective readout resonators, gAR/2π and gAR/2π via dispersive cavity
shift measurements. The effective qubit island capacitances, including the shunt ca-
pacitance, CS, and the coupling capacitances of the qubit to the ring resonator and to
the qubit readout resonator, CQM and CQR, respectively, are determined using finite
element simulation and converting the capacitance matrix for a floating-style qubit
to a standard transmon circuit model, as described in Sec. 3.1.
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Figure 35: Full circuit schematic. Microwave readout is performed via right-handed
transmission lines labeled Rin/Rout and Fin/Fout in green and yellow, respectively.
The 24-cell ring-resonator circuit is shown in orange. Capacitively coupled qubits,
QA and QB, are shown in red and blue, respectively, and are separated by a distance
of nAB = 6. Qubit readout cavities are comprised of quarter-wave coplanar waveguide
resonators.

6.3 Device layout

The device consists of a 24-cell, left-handed superconducting metamaterial ring-
resonator comprised of interdigitated capacitors with double-sided meander-line in-
ductors to ground. A full circuit diagram of the device is shown in Fig. 35. Figure 36
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Figure 36: (a) Chip layout for metamaterial ring-resonator device. (b-e) Optical
micrographs of device with false-color highlighting. (f) SEM image of Josephson
junction in qubit.

shows the chip layout and details of the device features. The ring resonator is capac-
itively coupled to a feedline, labeled (Rin/Rout) as shown in Fig. 36(a), for probing
ring-resonator modes. Two flux-tunable, floating-style asymmetric transmon qubits
[51], QA and QB, are capacitively coupled to the ring resonator 90 and 180 degrees
from the feedline coupling point, respectively. Both qubits have readout resonators in-
ductively coupled to a separate feedline, Fin/Fout, as well as separate on-chip flux-bias
lines for tuning the transition frequency of the qubits.
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6.4 Fabrication details

The base layer of the ring resonator device is comprised of 60-nm thick sputtered
niobium on a high resistivity (> 10 kΩ-cm) 100-mm silicon wafer. Before sputtering,
the silicon wafer undergoes a standard RCA clean process and an oxide etch in a
buffered 2% HF solution to remove native oxides. The photolithography patterning
is performed by a DUV wafer stepper, and the niobium is etched in an ICP etcher
using BCl3, Cl2, and Ar. All resist is stripped in a TMAH hot strip bath and an
oxygen plasma cleaning is performed to remove residual resist residue. We then
perform a second 20% buffered HF etch to reduce surface oxides. The device has
ground straps along the feedlines labeled Rin/Rout and Fin/Fout, as well as the flux-
bias lines. Patches of evaporated SiO2 isolate the straps from the signal traces, and
sputtered aluminum provides the electrical ground connection, both patterned via a
standard lift-off process. The junctions are patterned using 100 keV electron-beam
lithography of a PMMA/MMA bilayer resist stack, then deposited via a conventional
double-angle shadow-evaporation process.

6.5 Measurement setup

The fabricated devices are diced into 8-mm chips, then mounted in an aluminum
sample box using GE Varnish to adhere the chip to an aluminum shelf within the
sample package. The sample is then grounded to the sample package with aluminum
wirebonds. Additional wirebonds are added to preserve grounding across features
that do not have fabricated crossovers. The feedlines and flux lines are wirebonded to
copper circuit boards traces that are mounted in the sample box and soldered to SMA
connectors. The mounted and bonded chip can be seen in Fig. 40(a). We connect RF
coaxial cables in the cryostat to these SMA connectors. The sample is covered with
an aluminum lid to provide a complete electrical enclosure while shielding the device
from blackbody radiation from warmer stages of the cryostat. Additionally, because
the aluminum of the sample box becomes superconducting, it serves as a Meissner
shield to screen out stray magnetic fields.

Measurements are performed on a Bluefors cryogen-free dilution refrigerator below
15 mK. The sample is mounted on a cold-finger made from OFHC copper at the
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Figure 37: Schematic of the wiring within the dilution refrigerator.

mixing chamber (MXC) stage. A cryoperm shield around the cold-finger provides
a layer of magnetic shielding. Figure 37 shows details on the cabling and shielding
setup in the dilution refrigerator. An infrared-absorbent layer is applied to the inner
surfaces of the Cryoperm magnetic shield and the MXC shield comprised of silica
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powder, fine carbon powder, and SiC grains in Stycast low-temperature epoxy [95].
Each temperature stage has a light-tight shield surrounding the lower stages. The
room-temperature stage has a mu-metal shield within the vacuum can that provides
protection from external magnetic fields. The input lines to the ring resonator and to
the qubit feedline are connected to the top of the dilution refrigerator through semi-
rigid cables with 49 dB of cold attenuation for thermalization. A Radiall relay switch
on the output line allows switching between measurements via the two feedlines,
Rin/Rout and Fin/Fout. This output line is amplified 32 dB with a 4-8 GHz HEMT
mounted on the 3 K stage, and amplified again with a room-temperature parametric
amplifier (NARDA West) with 35 dB gain.

Measurements are performed using a standard heterodyne readout, shown in
Fig. 38, unless otherwise stated. This method uses the interaction between the qubit
and readout resonator to encode information about the state of the system. Hetero-
dyne readout allows us to observe both the frequency and phase response through
the feedline, allowing us to acquire information about the quantum state of the sys-
tem through the measured phase. In general, heterodyning is a nonlinear process by
which two signals are converted to a third signal at the sum or difference frequency
of the original signals. We perform signal up-conversion by mixing an intermediate
frequency (IF) with a local oscillator (LO) frequency to produce an RF signal with
the desired waveform, envelope, and phase in the range of our measurement setup,
4-8 GHz. This signal is transmitted via the qubit feedline, and the returned signal
is down-converted to the MHz frequency range and digitized. To extract information
about the qubit state, as we showed in Ch. 3, we can discern the state of the qubit
via the qubit state-dependent dispersive cavity shift.
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Figure 38: Wiring diagram for standard heterodyne setup used for readout.
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Chapter 7

Ring resonator mode structure and

g-coupling

We begin characterization of this device by looking at microwave transmission mea-
surements taken via the ring resonator feedline. The ring resonator is shown to have
a dense mode spectrum within the frequency range allowable by our measurement
setup, and the spectrum is sensitive to asymmetries in the ring resonator circuit. We
then look at the coupling strength between the two qubits to each of the ring res-
onator modes in the measurement range achievable with our microwave setup. Using
these parameters, we can learn more about the inter-qubit interactions mediated by
the ring resonator.

7.1 Measurement of ring resonator spectrum

First, we observe the ring resonator spectrum measured via the ring resonator feed-
line, Rin/Rout, as shown in the device layout in Fig. 36 in Ch. 6. Transmission
measurements via the ring resonator feedline are primarily performed using a vector
network analyzer (VNA). The matrix element S21 is used for our measurement setup
to characterize transmission through the ring resonator. In Eq. (3.47) in Ch. 3, we
define S21 in terms of scattering parameters for an ideal design with load impedance
matched to the source impedance at the input of the resonator.

Figure 39 shows the raw spectrum of the ring resonator measured at high power
over a wide frequency span. The ring resonator has an infrared cutoff frequency of
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Figure 39: Measured ring resonator spectrum.

4.287 GHz, below which we observe no modes. We can observe 16 ring resonator
modes between 4 and 8 GHz. For a left-handed 24-cell ring resonator with parasitic
reactances, we expect 24 modes, with an infrared cutoff mode, an ultraviolet cutoff
mode, then 11 pairs of degenerate energy modes, meaning a total of 13 resolvable
modes should appear in the spectrum in an ideal case. Because we observe 16 modes
within this small frequency span, it is clear that the degeneracy between mode pairs
has been lifted in the circuit. The bulk of the degeneracy lifting may be attributed
to the presence of grounding wirebonds that are unevenly distributed across the ring
resonator. Aluminum wirebonds with a 1.25-mil diameter were used to aid in tying
the voltage potential of the center disk of the ring resonator to the rest of the ground
plane on the chip. These bonds contribute parasitic reactances asymmetrically across
the ring, which result in a large lifting of the degeneracy of the modes. There are 11
wirebonds connecting the inner disk within the ring resonator to the ground plane,
with lengths of approximately 1.5 mm. The inductive contribution of each wirebond
is approximately 1 nH/mm [93]. Thus, we estimate the inductive contribution for
each wire bond, LW , to be approximately 1.5 nH. Figure 40 shows the location of the
wirebonds and an effective circuit model that accounts for the parasitic reactances
due to the wirebonds [94]. By design, the IR-cutoff frequency of the ring resonator is
4.8 GHz. Due to the parasitic stray reactances of the ring resonator lumped elements
and the grounding wirebonds, the measured infrared cutoff frequency is lowered to
4.28 GHz.

Figure 41 shows the effect of the aluminum wirebonds on the ring resonator spec-
trum. The bonds are not spaced symmetrically due to the adjacent locations of the



81

Figure 40: (a) Image of wirebonds used for grounding the device, as well as attach-
ments to signal traces. (b) GDS of device layout including approximate wirebond
positions shown with white lines. (c) Theoretical circuit model accounting for alu-
minum wirebonds.

qubits and feedline, and as such, these wirebonds break the symmetry of the clock-
wise and counterclockwise propagating waves and lift the degeneracy of the even and
odd ring-resonator modes. The size of the degeneracy lifting ranges from ∼30 MHz
near the IR mode to ∼250 MHz at higher frequencies and is in good agreement with
theoretical simulations including a model for the wirebonds, as shown in Fig. 41 in
blue. The same simulation without wirebonds fails to reproduce the observed lifting
of degeneracies.
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Figure 41: Measured ring resonator mode frequencies are shown with gray dashed
lines. Theoretical mode frequencies are shown with green dashed-dotted lines when
stray inductance due to wirebonds is not included and any degeneracy lifting is due to
the qubits or feedline. Solid blue lines show large degeneracy lifting effect of wirebonds
on the ring resonator mode frequencies.

7.2 Measurement of g-coupling

To characterize the coupling strength between each qubit and the different ring res-
onator modes, we probe the modes by measuring the microwave transmission through
the ring resonator feedline, Rin/Rout, while scanning the flux for one of the qubits.
The other qubit is flux-biased at its upper flux-insensitive sweetspot. We perform
these measurements for each of the thirteen modes between 4-6.5 GHz. As we in-
troduced in Ch. 3, when there is a coupling between a qubit and a mode, the qubit
hybridizes with the ring-resonator mode, resulting in a vacuum Rabi splitting, which
appears as an avoided level crossing in the spectrum of either the qubit or the mode.
A selection of these measurements for QA and QB is shown in Fig. 42[a-f]. From these
measurements, we can observe that the splittings are larger than the linewidths of
the modes, indicating that we are operating in the strong coupling regime [96].
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Figure 42: Vacuum Rabi splittings measured via Rin/Rout, between three ring res-
onator modes and (a) QA, (b) QB. Dashed lines in red (blue) show fits to splitting
data for QA (QB) obtained from reduced Hamiltonian including one qubit and the
three modes. Horizontal dotted lines show dressed mode frequencies. (c-f) Splittings
and reduced Hamiltonian fits for two single modes for each qubit. For all measure-
ments, the spectator qubit is fixed at its upper flux insensitive sweet spot (Φq/Φ0 =
0). As shown in (c), QA has effectively zero coupling to the ring resonator mode at
4.553 GHz, while (d) shows QB has a coupling strength of 26.6 MHz.

7.3 Extraction of g-coupling from spectroscopy

To extract the magnitude of gAi and gBi for our two qubits, QA and QB, we perform a
least-squares minimization to fit each set of splitting data to a reduced Hamiltonian
for the ring-resonator mode-qubit system, shown as dashed lines in Fig. 42. In regions
where the mode spacing and coupling are comparable, we simultaneously fit multiple
modes to extract each gAi and gBi , as shown in Fig. 42(a,b). To elucidate the need
for fitting the modes simultaneously, we highlight that the mode spacing between
the infrared cutoff mode and the nearest frequency mode, at 4.287 GHz and 4.311
GHz, respectively, is 24 MHz, while the coupling strength of QA and QB to the IR-
cutoff mode is gAi /2π = 13 MHz and gBi /2π = 36.5 MHz. Even more strikingly,
the coupling strength of QA and QB to the mode at 4.311 GHz is gAi /2π = 60 MHz
and gBi /2π = 27 MHz! In this region, we are operating in a super-strong coupling
regime [29] in which a hybridized state is formed between the qubits and multiple
ring resonator modes, making it impossible to treat the modes as separate oscillators.
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In our g-coupling fits, we modeled each mode as an independent harmonic oscil-
lator coupled capacitively to QA and QB, respectively. Using standard circuit quan-
tization, we developed a reduced Hamiltonian for the circuit in the basis of transmon
charge and resonator excitation number, given by

Ĥq
g,red =

[∑
n

(
4Eq

C (n− ng)
2 |n⟩⟨n| − Eq

J(Φ
q
ext)

2
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]
where q is either A or B for QA and QB, respectively. The variable Eq

C is the transmon
charging energy and ng is the transmon polarization charge; both parameters are
defined in Sec. 3.1. The operator Îm is the product of the mode identity operators,
Îmi

is the ith metamaterial mode identity operator, and În is the qubit charge basis
identity operator.

A numerical minimization is implemented to fit the relevant eigenvalues of the
Hamiltonian to the vacuum Rabi splitting data. We truncate the Hilbert space to
include 8 charge states for the qubit, n, and 4 number states, m, for the resonant
modes in the Hamiltonian. For groups of modes with large g-coupling with respect
to mode spacing, we include as many as three modes simultaneously in the fit. We
do not explicitly include the energy contributions of the spectator qubit in the fits,
but we do account for the dispersive χ shift of the ring-resonator modes due to the
spectator qubit, which we have fixed at Φq

ext = 0 so that is has a large detuning to
these particular modes. The free parameters in the fits are the gqi values and Eq

J0. We
vary Eq

J0 because the qubit maximum transition frequency is near the qubit readout
cavity frequencies and cannot be observed directly, as explained in Sec. 6.2. All other
parameters are determined via independent measurements and modeling.

We construct the variance-covariance matrix by taking numerical derivatives of
the Hamiltonian with respect to the fit parameters. We compute 95% confidence
intervals to obtain the uncertainties in our fit parameters.
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7.4 Theoretical g-coupling

Figure 43: Extracted and theoretical |gqi |/2π values for each ring-resonator mode i.
Error bars on experimental data computed from 95% confidence intervals in g-
coupling fits. Vertical dashed lines show bare ring resonator mode frequencies.

In Sec. 5.2, we introduced Eqs. (5.96) and Eqs. (5.97) that showed that the cou-
pling strength of the qubits to the ring resonator modes is an oscillatory function that
scales with mode frequency. These equations that define the even- and odd-parity
coupling strength have roots which predict that there are multiple modes to which
the qubits should not couple based on the geometry. However, there was only a single
mode to which a qubit had a g-coupling of zero. For QA, one ring-resonator mode
near 4.55 GHz has effectively zero coupling, while for QB, the extracted magnitude of
gBi /2π is 26.6 MHz to the same mode. Even more surprising, is that while theory pre-
dicts zero-coupling can occur, this particular mode is not a root. In the simple model
without the feedline and wirebonds, this mode has a nonzero coupling strength to
QA; only in the more complex model in which we account for the symmetry breaking
contribution of the wirebonds does this mode result in a negligible coupling strength.
To accurately predict g-coupling strength, the theoretical calculations must include
a model of the feedline and the wirebonds.

A collection of all of the experimental and theoretical values for gAi (gBi ) forQA(QB)
and ring-resonator modes from 4 GHz to 6.5 GHz are shown in Fig. 43. We observe
a broad array of coupling magnitudes ranging from 0-80 MHz. While the theoretical



86

Qubit-ring resonator mode g-coupling values

Bare frequency (GHz) |gAi |/2π (MHz) |gBi |/2π (MHz)

4.2874 13.7 39.3

4.3108 59.7 27.2

4.3449 55.8 66.3

4.4749 3.68 9.68

4.5531 0.0 26.6

4.6206 35.8 24.0

4.7717 55.4 49.5

4.9271 10.8 16.5

5.1642 16.5 34.5

5.3049 36.6 43.4

5.6856 80.5 63.0

5.8599 21.9 27.4

6.4317 43.9 37.3

Table 3: Magnitude of qubit-ring resonator g-coupling parameters for QA and QB.

model captures the general behavior of gA/B
i , a more complete model of the symmetry-

breaking perturbations of the ring-resonator circuit is required for better quantitative
agreement.

Looking forward to the next set of measurements in which we explore inter-qubit
interactions, we note that we cannot directly measure the sign of g by observing the
vacuum-Rabi splitting data. Table 3 shows the bare ring resonator mode frequencies
and lists the magnitude of gAi and gBi for each mode. As we will discuss in Ch. 8,
the magnitude and parity of the pairs of gAi and gBi for QA and QB to each mode
i impacts the qubit-qubit interactions that are mediated by the ring resonator. We
utilize these extracted g-couplings for each of the modes in the subsequent sections for
analyzing our measured qubit-qubit interactions, and ultimately determine the parity
of the coupling using a combined theoretical and experimental approach. Details on
how the parity of g is determined are given in Ch. 8.
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Chapter 8

J -coupling between qubits

Multi-qubit operations have been performed in the field of cQED through various ap-
proaches, including direct coupling, tunable coupling, and coupling through a shared
cavity. Direct interactions have been realized on a variety of platforms, including
capacitively coupling charge qubits and inductively coupling flux qubits [63, 64]. A
quantum bus, generally realized using a cavity resonator, can also be used in quan-
tum circuits to entangle distant qubits [69]. In the case of the metamaterial ring
resonator, it is comprised of a series of lumped-element capacitors shunted to ground
by two inductors and has two distant transmon qubits coupled around the ring. This
makes the ring resonator a unique platform that provides direct coupling of two phys-
ically distant qubits via lumped element circuitry. In the case of the metamaterial
ring resonator, it is a unique quantum bus comprised of multiple modes to which the
qubits couple.

In this chapter, we discuss the measurements of the J-coupling between the qubits
mediated by the ring resonator modes and compare these results with a theoretical
model. We introduced the perturbative Schrieffer-Wolff approximation for the J-
coupling between two qubits coupled to a single resonator in Eq. 3.52. For the multi-
mode ring resonator, we must define the exchange coupling as a sum over all of the
ring resonator modes, given by

J =
1

2

N∑
i=1

gAi g
B
i

(
1

∆A
i

+
1

∆B
i

)
, (8.100)

where ∆A
i (∆B

i ) give the detuning for QA(QB) to each ring resonator mode i, and
∆q

i = ωq−ωi is the difference between the qubit frequency and the ith mode frequency
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for q = A(B), and can be positive or negative depending on where the qubit is
positioned in frequency. As Eq. (8.100) shows, the strength of the exchange coupling
depends on the parity and strength of the gAi and gBi , as well as the detuning of
QA and QB to each of the modes. We have shown in Ch. 7 the extracted coupling
strength of each qubit to each mode, and using these values and some modeling, we
can predict the magnitude and sign of the exchange coupling accurately.

8.1 Measurement of J

Figure 44: J-coupling spectroscopy data as a function of flux on QA. Red dashed
lines show fits to splitting data from effective Hamiltonian. The blue dashed line
shows the fixed frequency of QB. (a) Avoided level crossing between QA and QB at
4.2 GHz. (b) Avoided level crossing between QA and QB at 5.5 GHz.

We can measure the transverse exchange coupling between the qubits mediated by
virtual photon exchange with the various ring-resonator modes by fixing the transition
frequency of one qubit, say QB, then using the local flux-biasing capability to vary the
frequency of the other qubit (QA), while performing spectroscopy on QA. A nonzero
J-coupling between the qubits results in an anti-crossing in the spectrum when the
bare qubit frequencies cross. We can adjust the frequency of the crossing point for the
bare qubit frequencies relative to the ring-resonator modes and study the variation
of the exchange coupling between the qubits as a function of frequency.
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Two such measurements are shown in Fig. 44. We fix the frequency of QB at
4.203 GHz, then flux-bias QA so that its bare transition frequency crosses the fixed
frequency of QB. We observe a small anti-crossing of the qubit energies in Fig. 44(a).
The IR-cutoff for the ring resonator is at 4.28 GHz, so although the qubits are outside
of the range of frequencies of the modes, the lowest frequency modes have sufficiently
large couplings to result in an exchange interaction between the qubits when they are
80 MHz detuned from the first ring resonator mode. We can extract the exchange
coupling by solving the Hamiltonian for the ring resonator, two-qubit system. The
red dashed lines in Fig. 44(a,b) show the fit to the data, from which we determine
that the J-coupling is 2.1 MHz in Fig. 44(a). Discussion of the Hamiltonian fits can
be found in Sec. 8.2. In Fig. 44(b), QB is fixed at 5.5 GHz, well within the range
of ring resonator modes, and QA is flux-biased so that its bare transition frequency
crosses that of of QB. The J-coupling for this frequency is 27 MHz, more than an
order of magnitude larger than in Fig. 44(a).

8.2 Extraction of J -coupling from spectroscopy

The J-coupling fits were achieved by performing a least squares minimization of the
spectroscopy data using an effective Hamiltonian

HJ,eff/ℏ =
ω̃A

2
σz
A +

ω̃B

2
σz
B

+ J(σ−
Aσ

+
B + σ−

Bσ
+
A) +

∑
i

ωi
ra

†
iai, (8.101)

which reduces the qubits to two-state systems. The summation over modes, i, is
reduced to include only the two nearest modes to the crossing of the bare frequencies
of QA and QB. The dressed qubit frequency for QA is given by ω̃A = ωA +

∑
i χ

A
i .

To measure J , the flux bias applied to the SQUID loop of QB is fixed while we tune
the transition frequency of QA, so we assume ω̃B is a fixed value. We obtain ω̃B from
independent measurements in which we detune QA and perform spectroscopy on QB.
The transition frequency from the ground to the first excited state of QA is given by
ωA =

(√
8EA

J E
A
C − EA

C

)
/ℏ. The amplitude of the exchange term for the two qubits,

J , and the maximum Josephson energy for QA, EA
J0, are the free parameters in the

fit. The method for obtaining the magnitudes of the gAi and gBi couplings is outlined
in Sec. 7.4. All other parameters are determined via independent measurements. We
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use the same method described in Sec. 7.4 in which we obtain numerical derivatives
to compute 95% confidence intervals in our fit parameters.

Figure 45: Experimental and theoretical J-coupling values as a function of frequency.
Diamonds show experimental values for J/2π, with error bars computed from 95%
confidence intervals in fits. Gray lines and purple crosses show theoretical J/2π values
calculated using Schrieffer-Wolff and Least Action, respectively. Dotted vertical lines
show bare ring-resonator mode frequencies.

Figure 45 shows a selection of extracted J-coupling values compared to theoretical
predictions for J for a range of qubit frequencies. Gray lines show the perturbative
Schrieffer-Wolff approximation for J , described by Eq. (8.100). The perturbative
approximation is an effective predictor of J-coupling when interaction strengths are
moderate and at frequencies that are somewhat detuned from the modes. From
Fig. 45, we see that in cases where the qubit and resonator frequencies are close,
the perturbative model diverges. As such, we also include a non-perturbative Least
Action method [78, 74, 97] calculation of the J-coupling at selected frequencies.

8.3 Non-perturbative J calculations

Our collaborators performed a non-perturbative calculation of J by block-diagonalizing
our full-system Hamiltonian. The Hamiltonian includes single and double excitations
for both qubits and resonator modes, as well as all possible combinations of one qubit
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Qubit-ring resonator mode g-coupling values and parity

Bare mode frequency (GHz) |gAi |/2π (MHz) |gBi |/2π (MHz) Parity

4.2874 13.7 39.3 Even

4.3108 59.7 27.2 Even

4.3449 55.8 66.3 Odd

4.4749 3.68 9.68 Even

4.5531 0.0 26.6 Even

4.6206 35.8 24.0 Odd

4.7717 55.4 49.5 Even

4.9271 10.8 16.5 Even

5.1642 16.5 34.5 Odd

5.3049 36.6 43.4 Even

5.6856 80.5 63.0 Odd

5.8599 21.9 27.4 Odd

6.4317 43.9 37.3 Even

Table 4: Magnitude of qubit-ring resonator g-coupling parameters and parity for
QA and QB. Here, the parity of the g-coupling values between the two qubits is
determined by comparing measured versus perturbative theoretical calculations of
the exchange coupling for QA and QB, as described in the main text.

excitation paired with one resonator excitation. Also included are two excitations of
ring resonator modes which are not the same mode. The Hamiltonian also includes
simultaneous excitation of two different ring resonator modes. The system is re-
stricted by only allowing strongly coupled transitions in the frequency domain we are
interested in. The resultant Hamiltonian is then block-diagonalized using the Least
Action method, and the resulting J00 coupling strength can be extracted. This gives
two J values for each anti-crossing between the two qubits. One is slightly before the
discontinuity of the dressed frequencies and the other one is slightly after it. These
two values are usually very close to each other and we average them to get one value
for the anti-crossing. This is then compared to the calculated J-coupling obtained
via Schrieffer Wolff and experimentally measured values.
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8.4 Predicting the sign of J

Figure 46: Comparison of experimental and theoretical J-coupling values as a function
of frequency when g-coupling parity for QA and QB is changed for a single mode.
Diamonds show experimental values for J/2π, with error bars computed from 95%
confidence intervals in fits. Dotted grey vertical lines show bare ring-resonator mode
frequencies. (a) Gray lines show theoretical J/2π values calculated using Schrieffer-
Wolff. (b) Red dotted line denotes ring resonator mode that has swapped parity of
the g-coupling for QA and QB. Red lines show the theoretical J/2π values calculated
using Schrieffer-Wolff when the g-coupling is swapped for this single ring resonator
mode.
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Although our spectroscopy measurements only provide the magnitude of J , using
the perturbative theoretical calculations with different possible parities of gAi and gBi
for each mode i, we determine the sign of each qubit-mode coupling that provides
the best agreement with the exchange coupling measurements. Table 4 shows the
magnitude and parity of the g-couplings measured for this device. Recall, we have
an expression for the g-coupling between the qubits and ring resonator modes for
even and odd propagating waves, as shown in Eq. (5.96) and Eq. (5.97). From this,
we can predict the parity of the coupling strength for the pairs of modes for an
ideal circuit. However, this expression excludes parasitic reactances in the circuit
from the lumped-element components and the wirebonds, and also ignores imperfect
grounding of the center disk. The predictions for the parity are not reliable for
small magnitude g-couplings in the real device. These symmetry-breaking effects
can cause shifts in g, either positive or negative, and for roots of Eq. (5.96) and
Eq. (5.97) in the ideal circuit, this can mean changing the parity by pushing the g to
a positive or negative non-zero value in the actual device. This effect is only relevant
for the smallest g values, since the asymmetric contributions are not strong enough
to shift the g for larger values significantly enough to change the parity. Figure 46
compares experimental and perturbative J-coupling values, with Fig. 46(a) using the
parity assumptions we show in Tab. 4 in the perturbative calculation, and Fig. 46(b)
changing the parity on the g-coupling for the ring resonator mode at 4.6206 GHz from
odd to even. This results in a mismatch between the experimental J/2π values and
the theoretical values near the mode.

From the experimentally measured J values and the agreement with the theoretical
model, it is clear that the exchange coupling can be tuned over a broad range for this
system. The extracted magnitudes of J in the frequency range shown in Fig. 45
range from zero and 41 MHz, and the sign of J also varies depending on the detuning
between the qubits and the various ring-resonator modes and the parity.

The exchange coupling is an entangling interaction between the two qubits that
can be used for implementing a two-qubit gate when there is a mechanism for J to
be turned on and off. While we can control J by detuning one qubit from the other,
the impact of higher order effects is an important consideration when determining
a scheme for implementing a two-qubit gate. Next, we will look at higher order
entangling interactions for this ring resonator, qubit device.
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Chapter 9

ZZ Interaction between qubits

When two or more qubits are coupled via a coupling element, ZZ interactions gen-
erally arise between the qubits, where the state of one qubit can shift the transition
frequency of the other interacting qubit. In Ch. 3, we described Eq. (3.53) that defines
the ZZ interaction in terms of the transition energies for the two-qubit system. Such
interactions can be problematic in multi-qubit systems and can generate unwanted
and uncontrolled entanglement [73, 74].

On the other hand, the ZZ coupling can also be used for implementing two-qubit
entangling gates, provided the interaction strength can be modulated [98, 99, 100,
101]. In the dense multi-mode spectrum of our metamaterial ring resonator system,
we explore the ZZ interaction between the two qubits for multiple qubit detunings
within different regions of the mode spectrum. We show that the ZZ interaction can
be modulated over a large range for our system with only small frequency shifts of
one of the two qubits.

9.1 Measurement of the ZZ interaction

We use the standard Ramsey interferometry technique introduced in Ch. 3, to extract
the ZZ interaction strength. First, we bias QB to a particular transition frequency,
then we adjust the bias of QA to various frequencies relative to QB and the mode
spectrum. At each bias point for QA, we perform a standard Ramsey fringe sequence
while stepping through the drive frequency for the X/2 pulses for QA, allowing us to
identify the transition frequency for QA. We then perform a second Ramsey fringe
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Figure 47: Measurement sequence for obtaining ZZ interaction strength. (a) A
Ramsey pulse sequence is performed on QA at variable drive frequencies while QB

is idle. (b) A second Ramsey fringe measurement is performed on QA after a π-
pulse is applied to QB. (c) Horizontal slices of Ramsey fringe measurements are fit
to obtain the Ramsey oscillation frequency, fRamsey, at each drive frequency. The
ZZ interaction, denoted ζ/2π, is the change in the dressed transition frequency for
QA, f̃A, depending on whether QB is in the ground or excited state. (d-f) Three
example plots of Ramsey frequency as a function of QA drive frequency (fA drive) for
different QA bias points with linear fit lines for ZZ measurements taken when QB is
at 5.04 GHz.
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measurement of QA, but now with each Ramsey sequence preceded by an X pulse
on QB. The difference in the transition frequency for QA between the two Ramsey
fringe sequences corresponds to the strength of the ZZ interaction, ζ.

9.2 Extraction of ZZ

The pulse sequences for extracting the ZZ interaction strength are shown in Fig. 47.
The Ramsey fringe fits are performed by taking single horizontal slices of the data
shown in Fig. 47(a,b). We then apply damped, oscillatory fit function

F (t) =
1

2

[
1 + cos (2πfRamseyt)e

−t/T ∗
2
]

to the normalized data, with fRamsey and T ∗
2 as free parameters in the fit. We remove

fits with error greater than 0.4 MHz in the estimation of fRamsey. We then fit a line
through the fRamsey vs fA drive data with a slope of one to find the zero point for
the Ramsey oscillation frequencies, as shown in Fig. 47[c-f]. We perform these fits
for the two pulse sequences with and without the π pulse on QB, then calculate the
difference in transition frequency for QA to extract ζ/2π. The error for extracting the
fRamsey values is computed from 95% confidence intervals for the Ramsey fits. The
error bars for the ζ/2π values as a function of f̃A in Fig. 48 are obtained by finding
the 95% confidence intervals for a linear fit with a slope of one to the fRamsey data.

When performing the ZZ measurements, we fix the bare frequency of QB and
vary the frequency of QA, but the dressed frequency of QB varies depending on the
frequency of QA. To measure the frequency of QB with high precision, a Ramsey
fringe measurement and fit is performed for QB for each frequency tuning of QA.
The range in f̃B is 0.7 MHz (1 MHz) for the measurements in which we quote f̃B
to be 5.04 GHz (5.81 GHz). These small variations in f̃B are due to the effective
inter-qubit coupling via the ring resonator modes. In Fig. 48(a,b) we show two series
of ZZ measurements as a function of the dressed transition frequency for QA for two
different bias points of QB. We observe that ζ can vary over a wide frequency range,
covering both positive and negative values and crossing through zero, both smoothly
in some regions and discontinuously in others.
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Figure 48: ζ/2π as a function of the dressed frequency of QA, f̃A, when the dressed
frequency of QB, f̃B, is (a) 5.04 GHz, (b) 5.81 GHz. Measured and theoretical values
are shown as diamonds and gray lines, respectively. Vertical dashed lines in blue
and gray show the location of QB and the ring resonator modes in frequency space,
respectively. Insets show Ramsey oscillation frequency fit data as a function of QA

drive frequency taken from Ramsey fringe measurements. Red data points and fit
lines generated by performing a simple Ramsey pulse sequence (shown in red box) on
QA at multiple detunings and extracting oscillation frequency. Data resulting from
pulse sequence in which a π-pulse is applied to QB, followed by a Ramsey on QA

(shown in purple box). Error bars computed from 95% confidence intervals for both
Ramsey oscillation fits. Intersection of fit lines where Ramsey oscillation frequency
vanishes indicate QA frequency, from which we compute ζ/2π.

9.3 Theoretical ZZ calculations

We will outline the theoretical ZZ calculations performed by our collaborators. The
theoretical curves are calculated by either fully diagonalizing the Hamiltonian given
in Eq. (5.98) in Ch. 3, or, using the block-diagonalized Hamiltonian used in the
J-coupling fits, only diagonalizing the qubit subspace to save computational cost.
After diagonalizing the Hamiltonian, the ZZ interaction strength is then calculated
using ζ = E00 + E11 − E10 − E01. While the ZZ interaction only involves energy
eigenvalues for when QA and QB are either in the ground or first excited state, higher
non-computational photon states can cause shifts in these energy levels.
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Figure 49: Uncertainty in theoretical ZZ values due to energy level anti-crossings.
(a) Experimental and theoretical ZZ interaction ζ/2π as a function of f̃A shown
with diamonds and grey lines, respectively, with shading added to show region of
uncertainty. (b) Multi-photon energies as a function of f̃A. The light grey region
denotes uncertainty in the theoretical ZZ calculation. The discontinuity of the ZZ
interaction around 5.25 GHz is caused by an anti-crossing of the |11⟩ and |20⟩ states.

Figure 48(a) shows that there are discontinuities in ζ/2π for our device consisting
of two qubits coupled to multiple modes. To better understand these discontinuities,
we can compare the theoretical and measured ζ/2π data as a function of f̃A to the
theoretical energy spectrum. The dense ring resonator mode spectrum in the 4 −
6 GHz frequency range results in a dense population of two-photon energy states in
the 10 GHz region of the energy spectrum. Figure 49(a) shows the same ZZ data
from Fig. 48(a) with a grey region designating uncertainty in the theoretical values
for ζ/2π. Figure 49(b) shows the energy eigenvalues for two-photon states. The
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state notation is of the form |QAQB;np1np2np3np4⟩, where the first two digits define
excitations in QA amd QB, and the four digits after the semi-colon designate photons
in the modes at frequencies 4.772 GHz, 4.927 GHz, 5.164 GHz, and 5.305 GHz.
The biggest impact on the ZZ strength comes from the E11 level interacting with
non-computational states. The most important states are |20; 0000⟩ and |01; 0001⟩,
which both couple strongly to |11; 0000⟩, since only one exchange of excitation is
required for a transition. The anticrossing with |20; 0000⟩ is especially interesting
here, since it causes a large shift and discontinuity of E11, which is also observable in
the experimental data in Fig. 49(a). However, the experimental drop-off is positioned
at 5.26 GHz, while the theoretical one is at 5.253 GHz. This small disagreement
can be attributed to small inaccuracies in the model parameters. The anhamonicity
of QA determines the energy of the |20; 0000⟩ state; an inaccuracy here will result
in a frequency shift of the drop-off position. There are also multiple ring resonator
modes nearby, and a small variation in the mode frequencies or coupling strengths
will impact the position of the discontinuity.

We observe excellent agreement between our experimental results and theoretical
calculations of the variation in the ZZ interaction, capturing both the regions where
ζ changes sign smoothly and where it jumps discontinuously. For our multimode ring
resonator, a quite small change in the frequency of one qubit, of the order of a few
MHz for QA in this case, results in a change in ζ/2π from zero to tens of MHz. This
significant change is due to the large effective coupling between the two qubits, which
is mediated by the high mode density. This large coupling causes a strong repulsion
of the |11⟩ and |20⟩ states, leading to large changes in ζ.
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Chapter 10

Future and ongoing work

We have shown that a left-handed metamaterial ring resonator used as a coupling
bus for two transmon qubits has interesting properties with broad applications. In
this work, we presented measurements and modeling of the interactions between the
qubits and the ring resonator modes, as well as the inter-qubit entangling interactions
mediated by the multimode system. We have shown that the system shows extreme
versatility in coupling parameters due to the unique wave structure of the modes in the
ring. In this section, we outline future and ongoing work related to this experiment.

10.1 Implementing a two-qubit gate with a ring resonator bus

As we discussed in Ch. 9, the ring resonator is a promising platform for implementing
two-qubit gates due to the ZZ-interactions between qubits being tunable with high
contrast over a small frequency range. Prior work on two-qubit gates based on in
situ modulation of the ZZ interaction using tunable couplers has required tuning
of at least one circuit element over a frequency range of the order of GHz [102,
103]. Fast tuning over such a large range introduces the risk of fidelity degradation
through leakage to other modes, both intentional and spurious, within this frequency
window. By contrast, the orders of magnitude smaller tuning range required for
moving between the on and off regimes of the ZZ interaction for our multimode ring
resonator provides a promising pathway for implementing a high-fidelity two-qubit
entangling gate.

It is feasible to implement a ZZ-based gate, such as a CZ gate, using the device
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measured in this work. As we show in Ch. 9, when the frequency of QB is fixed
at 5.04 GHz, the ZZ-interaction can be varied from zero to tens of MHz when the
frequency of QA is tuned over an order of tens of MHz. Additionally, a non-ZZ-
based gate, such as a cross-resonance (CR) gate, could be implemented when the
ZZ interaction is at or near zero if the device was redesigned with two separate
feedlines for control and readout of the two qubits. To implement a CR gate, if two
qubits have a J-coupling and are detuned in frequency from each other, driving one
qubit, the control qubit, at the transition frequency of the other qubit, the target
qubit, switches on the ZX interaction [77]. By tuning the qubits to frequencies at
which the ZZ interaction goes to zero, the ZZ interaction would no longer contribute
to infidelity when implementing a two-qubit gate like the CR gate or the

√
iSWAP

gate. However, the coherence times of the qubits are Purcell-limited when the qubits
are tuned above the IR-cutoff frequency of the ring resonator [37]. As such, future
devices could be designed without external coupling of the ring resonator to a feedline
to reduce Purcell losses to the ring resonator modes and thus improve qubit coherence.

10.2 Coupling in more qubits to the ring resonator bus

The majority of current superconducting qubit-based architectures allow for only
nearest neighbor connectivity [22, 104]. There are examples of long-range connectiv-
ity for superconducting qubits, such as a right-handed ring resonator that has been
proposed as an architecture for implementing non-nearest neighbor coupling between
qubits [43]. This right-handed ring resonator was shown experimentally to support
four all-to-all coupled qubits and theoretically could support twelve qubits, with each
qubit coupled to nine other qubits. We have shown that the left-handed metamaterial
ring resonator bus architecture can be used to couple two physically separated qubits,
and we would like to investigate the connectivity of three or more qubits coupled via
the ring resonator in future experiments. The inter-qubit coupling is mediated by the
ring resonator modes, and because these left-handed metamaterial ring resonators
have a dense spectrum in the frequency range of the qubit, it is not a significant
consideration to position the qubits at an antinode of a particular mode of the res-
onator. The compact ring geometry allows for coupling multiple modes to more than
two qubits, and we would like to experimentally investigate the variability of the ZZ
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interaction between each pair of qubits with selective flux control of each qubit. Ad-
ditionally, the left-handed metamaterial design has a smaller physical footprint than
a right-handed ring resonator, particularly compared to the 3D waveguide design in
Ref. [43].

Another proposed coupling scheme presented in Ref. [43] is a multi-ring architec-
ture, where rings are connected via λ/2 transmission line segments with a character-
istic impedance equal to half that of the right-handed ring resonators. It would be
interesting to create a multi-ring architecture with left-handed metamaterial ring res-
onators connected together with two or more qubits coupled around each left-handed
metamaterial ring resonator. Because of the more compact design and relative ease of
fabrication, in the case of the left-handed metamaterial ring resonator, this long-range
qubit coupling scheme could be an alternative way to scale the device to include more
long-range qubit interactions.

10.3 Symmetry-breaking around the ring resonator

Wirebonds placed across the ring resonator break the symmetry of the device and lift
the degeneracy between clockwise and counter-clockwise modes. We are interested
in exploring the spectrum of the ring resonator and the qubit coupling when the
symmetry of the circuit is preserved. To ensure uniform grounding, we plan to utilize
a flip-chip design that uses indium pillars placed uniformly around the chip to create
a unified ground plane connecting the two chips that comprise the flip-chip design. A
novel focus could be observing qubit interactions on resonance with degenerate pairs
of modes. The J-coupling depends on 1/∆, where ∆ is the detuning between the
qubit and modes, so having pairs of degenerate modes changes the parameter space
for the J-coupling and ZZ interaction, and we are interested in exploring this space.
Engineering intentional asymmetry into the ring resonator circuit could allow for a
spectrum with pairs of modes arbitrarily close together in frequency. This could be a
path for generating multipartite entanglement between the qubit and a pair, or pairs,
of these modes.
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