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ABSTRACT

Abstract Fault location plays a vital role in the operation of power systems. It is the

key to fast clearance of the faults and minimizing the duration and costs of power out-

ages. Power networks manifest a complex behavior due to their intricate topological

connections, phase asymmetry, and time-varying loads. Traveling Wave (TW) analysis

provides an accurate estimate of fault location on the power system transmission lines.

In this project, we explore the main concepts and steps of implementing traveling waves

for fault location and different methodologies for extracting and analyzing the traveling

waves using different wavelets. Then, we present an ensemble approach for robust detec-

tion of the Time of Arrival for traveling waves using a large group of wavelet types. The

implemented approach is tested on real-world measurement data from a transmission-

level substation. The robustness of the method is tested in different noise scenarios. The

results show significantly accurate and robust performance of the developed scheme for

determining fault location.
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CHAPTER 1

INTRODUCTION

1.1 Fault Location in Power Systems

As the penetration of renewable energy resources increases in power systems, the dy-

namics of power systems are changing dramatically. These changes are mainly induced

by the inverter-based connection of the renewable energy resources, which do not have

the luxury of solid frequency support in contrast to the rotating generators. As a result

of these changes, safeguarding the security of power systems and maintaining their sta-

bility has become a challenging task that engenders the evolution of protection schemes

and enhancements in situational awareness tools [1].

Protection schemes are required to meet two main criteria: 1. Sensitivity 2. Selectivity.

Sensitivity is the quality of detection and isolation of the faults promptly so that the faults

do not cascade or harm the other equipment in the system. Selectivity is the capability of

identifying the optimum schemes for isolating the fault to minimize the outage duration

and the number of customers affected. [2].

Protection Fault Location (FL) is a critical component of power system protection

schemes since it is the core task for implementing circuit breakers and restoration. In

general, the schemes for fault location are categorized into two groups [3]:

1. Power-frequency level signal analysis (Impedance-Based Method)

2. High-frequency signal analysis (Traveling-Wave-Based Method).

Impedance-based methods are based on three approaches

1. single-end
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2. double-end

3. multi-end

Single-end approaches detect the location of the fault based on the measurements from

only one side of the transmission line [4–6]. The authors in [7] have proposed a single-end

fault location method that operates on the reactance of the faulty line calculated based on

the voltage and current measured at one end of the line. Following the same method,

authors in [8] use a compensation technique to enhance the accuracy of the impedance-

based method considering the effects of remote-end in-feed of the transmission line by

analyzing the complete model of the interconnections in the network. Moreover, the au-

thors in [9] use a single-end impedance-based fault location method for double-circuit

transmission lines. The proposed method in this paper is based on modifying the appar-

ent impedance by utilizing modal transformation. To address some inaccuracies in the

aforementioned methods, the authors in [10] propose a method based on the pre-fault

voltage and current measurements combined with post-fault voltage measurements. The

post-fault current measurements were omitted to minimize the effect of transformer sat-

uration current.

Double-ended approaches use the measurements from both ends of a transmission

line to determine the location of the fault on the line [11–14]. In one of the early attempts

at this approach, the authors of [15] propose a fault analysis method based on synchro-

nized measurements from both ends of the transmission line. Their approach is based

on the lumped parameter transmission line modeling and implementation of measure-

ments from both ends to classify and locate the fault on the transmission line. On the

other hand, authors in [16] implement an iterative method using unsynchronized phasor

measurements from both ends of the transmission line distributed model to locate the

fault. This search method executes iterative linear approximations of voltage and cur-

rent at both ends of the transmission line, leading to a common point that represents the

2



fault location. This algorithm liberates the operator from the need for synchronized mea-

surements and produces a reasonably accurate estimate of the fault location. Similarly,

authors in [17] have used unsynchronized voltage and current measurements from both

ends of the line for fault location. By combining the pre-fault and post-fault data, the

authors have developed an algorithm that estimates the distributed line parameters and

makes it robust to line shunt capacitance values.

1.2 Traveling Waves

Traveling-wave-based methods have emerged as promising tools for fast and accurate

fault location in power system transmission lines [18]. These methods are basically in-

debted to the theoretical electromagnetic wave propagation theory foundations laid by

pioneering physicists like Oliver Heaviside and Charles Legeyt Fortescue [19]. These

core concepts have gained wide use for fault detection and location upon advancements

in synchro-phasor measurements and high-frequency sensors deployed in power sys-

tems [20].

Fundamentals of fault location based on Traveling Waves encompasses the investiga-

tion of high-frequency measured signals for detecting the time of arrival (TOA) for the

signature wave of the fault [21]. The high-frequency electromagnetic transients (waves)

created by fault travel in both directions on the transmission line as displayed in figure

1.1 with a velocity close to the speed of light [22]. This diagram is referred to as the lattice

diagram or Bewley’s diagram and plays an important role in visualizing the propagation

behavior of fault-generated waves on the transmission line.
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Figure 1.1: Example of Bewley’s Diagram, representing the traveling di-
rections of the fault-generated waves

1.2.1 Telegrapher’s Equations

The voltage and current of the waves described in figure 1.1 are mainly regulated by

Telegrapher’s equations. These equations are in the form of coupled voltage and current

differential equations with space and time as variables as follows [23]:

∂

∂x
V(x, t) = −L

∂

∂t
I(x, t) − RI(x, t) (1.1)

∂

∂x
I(x, t) = −C

∂

∂t
V(x, t) −GV(x, t) (1.2)

Where R, L, G, and C are the transmission line’s per-unit resistance, inductance, conduc-

tance, and capacitance.
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Telegrapher’s equations can be simplified in the phasor domain of power systems as

follows [24]:

Ĩ(x, t) = I+0 e−γx + I−0 e+γx (1.3)

Ṽ(x, t) = V+0 e−γx + V−0 e+γx (1.4)

where I+0 , I
−
0 ,V

+
0 ,V

−
0 represent the Laplace transforms of the forward and backward travel-

ing (+ for forward, and − for backward traveling) current and voltage waves for sinusoids

with different frequencies. Propagation constant γ is a line characteristic that is comprised

of attenuation constant α and phase constant β as described below:

γ = α + jβ (1.5)

By plugging in the values from 1.1 and 1.2 in the resulting phasor equations it is derived

that:

γ =
√

(R + jωL)(G + jωC) (1.6)

It is important to note that the transmission line acts as the medium for propagation of

the wave traveling on it. The β parameter of the transmission line plays a key role in de-

termining the velocity of propagation for different frequency components of the traveling

wave. This relationship is governed by the following equation [25]:

v =
ω

β
(1.7)

As the angular frequency of the traveling wave increases, this velocity approaches the

speed of light c.
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1.2.2 Traveling Wave Component Extraction

System Frequency Level Components

The equations presented in section 1.2.1 obviate that extracting the main frequency com-

ponents of a Traveling Wave from the measured signal is the key step for properly em-

ploying it for fault location. Many signal-processing approaches have been implemented

by researchers to meet this goal. In this section, we delve into some of these approaches.

The measured signal is prone to containing some system frequency level components

at 60 Hz and its multiples, (mostly in the Americas, and 50 Hz and its integer multiples

in the rest of the world) which need to be filtered out using a high-pass filter. These

steady state components are injected from power system equipment during the fault and

might distort the measured signal and falsify the peak point calculation that is relied

on for determining the TOA of the traveling wave. an example of such frequency level

components is visible in a study case shown in figure 1.2. The time domain signal has

some visibly strong low-frequency components driving it. A close look at the frequency

spectrum of this measured signal 1.3 validates the concern for presence of system-level

frequencies in the measured signal.

After conditioning the measured signal with a high-pass filter, proper signal process-

ing methods should be applied to extract the shape of the high-frequency traveling wave

from this signal. In most approaches, the goal is to detect the time point of the peak or

wavefront of the traveling wave as the representative of the distance that wave has trav-

eled. For example, in [26], this peak is calculated by extrapolating the resultant parabola

from smoothing and differentiating the conditioned signal.
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Figure 1.2: Example of presence of system frequency level components in
the measured signal

Wavelet Transform

When it comes to advanced signal processing, time and frequency accuracy dilemma ap-

pears to be one of the main challenges that scientists and engineers need to address prop-

erly based on the nature of their research. The root cause that makes this problem chal-

lenging is the time-frequency uncertainty principle which is very similar to the position-

momentum uncertainty principle. Based on the time-frequency uncertainty principle [27],

the more accurately you know about the time domain characteristics of a signal, the less

accurately you can know about the frequency domain values of that signal. In other

words:

∆t · ∆ f ≥
1

4π
(1.8)

where ∆t is the uncertainty in time and ∆ f is the uncertainty in frequency components

or spread. Therefore, as we make the analysis window smaller for a more accurate time

7



Figure 1.3: Double side band frequency domain representation of the mea-
sured signal with high system frequency level components

domain analysis, our frequency resolution drops, and as we make the analysis window

larger for higher resolution frequency analysis, we lose sight of time domain details. For

example, when we conduct Fourier analysis on a large time window for a higher fre-

quency resolution, we are never sure when the resulting frequencies have happened.

Wavelet Transform is an effective and widely used mathematical signal processing

tool that somewhat bridges the time-frequency dilemma gap. The localization capability

of wavelets in time and frequency enables researchers and engineers to capture the rapid

signal changes, which may be viewed from time-domain, frequency-domain or a com-

bined perspective. Continuous wavelet transform(CWT) is formulated as follows [28]:

CWT (a, b) =
∫ ∞

−∞

x(t) ·
1
√

a
· ψ∗

(
t − b

a

)
dt (1.9)

where x(t) is our time domain studied signal, ψ(t) is the mother wavelet, a is the scaling

parameter, and b is the shifting parameter that moves the scaled mother wavelet across
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Figure 1.4: Daubechies 2 (db2) Mother Wavelet

the studied signal. Figure 1.4 shows the mother wavelet for Daubechies 2 wavelet.

Continuous wavelet transform is usually of theoretical interest, since most signals are

collected using digital methods. Therefore, Discrete-time wavelet transform (DWT) is uti-

lized in almost all practical applications. DWT works based on filtering operations and

down-sampling the signal. For DWT, we need to form filter banks. For example, let’s con-

sider x[n] to be the input signal, h[n] to be the high pass filter and g[n] the low pass filter.

These two filters are utilized to decompose the main signal x[n] into two Approximation

and Detail signals:

A[ j, k] =
(
x ∗ h j,k

)
[2k] (1.10)

D[ j, k] =
(
x ∗ g j,k

)
[2k] (1.11)

where h j,k[n] = 2 j/2h [2n − k] is the scaled and translated high pass filter and g j,k[n] =

2 j/2g [2n − k] is the scaled and translated low-pass filter. The signal is down-sampled as it

9



Original Signal

Approximation

Approximation

... ...

Detail

... ...

Detail

Approximation

... ...

Detail

... ...

Figure 1.5: Wavelet Tree Diagram

gets filtered by the low-pass and high-pass filters of the filter bank.

This process can continue on multiple levels to extract more detailed information from

the signal stored in the format of a Wavelet Tree, as shown in figure 1.5 [29] [30]. This tree

can be further reduced in size by only keeping the essential information needed for the

reconstruction of the signal, as shown in figure 1.6. This reduced tree is called a Multi-

resolution analysis (MRA) tree. MRA tree practically leaves out the redundant nodes

of the Wavelet tree and keeps only enough information to reconstruct the signal from

bottom to top. Moving down in the MRA tree, the signal passes through low-pass filters

of the employed wavelet when branched to the left, and the resulting signal is called an

Approximation signal. An example low pass filter for the Daubechies2 wavelet is shown

in figure 1.7 [31]. When we branch to the right, the signal passes through a high-pass

filter, and the resulting signal is called a Detail signal. Figure 1.8 shows an example of

db2 high-pass filter coefficients.
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x[n]

A1 D1

A2 D2

Figure 1.6: MRA Wavelet Tree Diagram

1 2 3 4−0.129

0.224

0.836

0.483

n

db2

Figure 1.7: Decomposition Low-Pass Filter Coefficients for db2 wavelet

1 2 3 4−0.129
−0.224

0.836

−0.483

n

db2

Figure 1.8: Decomposition High-Pass Filter Coefficients for db2 wavelet
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1.3 Approaches and Shortcomings in Current Literature

Traveling Wave-based fault location in power systems has been extensively explored in

the past few decades. A majority of contemporary research about TW-based fault location

on transmission lines is based on simulation-based data [20,22,32–34]. These simulations

are mainly carried out using ATP [6, 35–37], EMTP-RV [4, 38], PSCAD-EMTDC [20], and

RTDS [14] platforms.

As thoroughly discussed in [39], the real-world traveling waves created by short-

circuit faults significantly differ from those observed in simulations-based research

projects. While acknowledging the merit of the state-of-the-art signal processing ap-

proaches presented in these research works, it should be noted that their implementa-

tion on real-world data is questionable in terms of reliability, performance, and robust-

ness [39, 40].

The wavelet types used for detection in different scenarios are a point of debate. The

majority of research works have utilized Daubechies 1, 4, or 8, with the claim that they are

superior in performance since they are compactly supported with extremal phase, have

a high number of vanishing moments, and are equipped with minimum-phase filters as

scaling filters [30, 33, 41]. The limitations and accuracy of using these wavelets in real-

world data are questioned in [39], which has adopted the Biorthogonal 2.2 wavelet for

fault location on real-world data instead. It is later discussed by the first two authors

of that work [40] that real-world TWs manifest unpredictable non-stationary random

waveforms that might not be capturable by a single wavelet shape, resorting to statis-

tical approaches. Some research works have developed their own customized wavelets

for fault location using modified wavelet transform (MODWT) [32] or Empirical Wavelet

Transform (EWT) [34]. The search for creating an optimal wavelet type has been mainly

focused on enhancing the ”peakedness” of the detected traveling wave, however based
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on the discussion in [40] and also the transient behavior of CTs and PTs considered, there

is no one-cure-for-all in suitable wavelet shape for detecting TWs.

In another view, there is a noticeable absence of robustness discussions and perfor-

mance analysis under adverse conditions such as strong noise or attack. A few research

works have presented specific scenarios with added Gaussian noise to their studied sig-

nals to verify the robustness of their methods. However, there is a lack of discussion on

the uncertainty added by down-samplings of the wavelet tree or the SNR of the noisy

signal examined. For example, in [33], a very high accuracy in the range of meters is cal-

culated for a specific simulation-base scenario, which can work by chance. However, the

fact that the uncertainty for the detected location in the frequency of 1 MHz using the 4th

level of the db8 wavelet tree is prone to be up to 1.75 Miles is overlooked. The robustness

studies in [22] are also implemented on a signal without specifications on the SNR, which

can be easily calculated to be about 20dB for the tested scenario. But this noise level still

keeps the signal at an acceptable quality, far from adverse conditions.

The contribution of this research is to use an assembly of wavelets from different fam-

ilies with different characteristics of orthogonality, smoothness, localization, vanishing

moments, symmetry, number of coefficients, and filter length in a strategically harmo-

nized approach to detect the presence and arrival time of the traveling wave in a mea-

sured signal. This approach accounts for the randomness and unpredictability of wave

shapes for fault-induced traveling waves discussed in [40]. We have adopted a single-

ended approach for this analysis to remove the dependency of the method’s reliability on

communication links of the measurement units at two ends of the transmission line. It

should be noted that the method introduced here can be easily adapted for double-ended

and multi-ended schemes. This possibility is noted in the future research section. The

implemented method is founded on a novel design of an automatic fault inception detec-

tion algorithm that alleviates subjectivity and human interaction issues pinpointed in [39].
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The results are provided with confidence intervals and uncertainty in the estimated fault

location. The method’s robustness is tested under adverse conditions of noise attacks.

The performance of the scheme is tested on real-world anonymized measurements pro-

vided by National Grid.

The rest of this dissertation is structured as follows: in Chapter 2, the different steps of

this methodology are explained; in Chapter 3, implementation results are presented and

explained; in Chapter 4, the conclusions and future work are discussed.
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CHAPTER 2

METHODOLOGY

2.1 Introduction

In this research, we have designed a scheme for multiple wavelet types to contribute to

detecting a traveling wave and estimating its time of arrival in a measured signal for fault

location purposes.

The major contributions of this research are:

1. Design and Development of a scheme for Fault Location (FL) on transmission lines

based on detecting Time of Arrival (TOA) for Traveling Waves (TW)using a combi-

nation of Wavelet Transforms (WT).

2. Provide a visual tool for understanding different detection results by different

wavelets as a platform to help understand the fault situation and also tune the prob-

lem parameters.

3. Provide a comprehensive analysis of the performance of different wavelet types

based on the statistical and engineering analysis of final results.

The outline of our approach to meet the goals above includes the following major

steps:

1. Conditioning the measured signal, which entails filtering out the system frequency

level components and digitization noise from the measured signal.

2. Multi-Resolution Analysis (MRA) using wavelet tree for candidate wavelet types.

15



3. Segmentation of the each node from MRA analysis to identify Measurement occur-

rences (MOs).

4. Creating a database of detected MOs with essential characteristics stored for each

MO.

5. Ensemble voting and refining the MO database

6. Decision-Making on the conclusiveness of results for each node

7. Formation of database for fault location predictions made by each wavelet type

8. Validation of calculated fault locations based on time/frequency correlation of the

first and second packets detected by each wavelet type in the studied range of fre-

quency

9. Ensemble voting process on the calculated fault locations

10. Providing highest vote results as the fault location results along with the uncertainty

range and confidence interval based on the wavelet tree level it is calculated in.

11. Robustness test under heavy noise

Figure 2.1 shows a block diagram of steps for the implemented scheme.

16



Signal
Conditioning MRA Segmentation

MO Database

Ensemble
Voting

on MOs

Conclusiveness
AnalysisFL DatabaseFL Validation

FL Ensemble
VotingFL Decision

Input Mea-
surements

Figure 2.1: Block diagram of the steps for the implemented scheme

2.2 Conditioning the Measured Signal

As discussed in Section 1.2.2, the first step for TW analysis is to condition the measured

signal by filtering out the frequency components that originate from power system com-

ponents or measurement unit digitization. An example of system-level frequency compo-

nents in a TW measured signal was presented in figure 1.2. As it is observed in figure 1.3

60 Hz component and its respective harmonics appear in the lower end of the frequency

spectrum for the measured signal, and we can filter them out using a high-pass filter. On

the other hand, there are some high-frequency components that are introduced as a result

of digitization in Relay measurements. Figure 2.4 shows an example of such noises. This

figure is an enlarged view of the same set of signals present in figure 1.2. These noises are

very close to the Nyquist frequency of the measurement system and can be filtered out

by using a low-pass filter. The frequency response of a generic high-pass filter is shown

in figure 2.2.

A Band-Pass filter can be employed to remove the frequency components from the two
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Figure 2.2: Generic Frequency Response of First-Order RC High-Pass Fil-
ter

ends of signal pertaining to the system frequency level and digitization noise. Here we

have implemented an ideal band-pass filtering with a square window that only handpicks

the frequency components within the studied range. This scheme works because our

sampling frequency is so much higher than the studied range and approaching frequency

filtering with a rectangle shape filter does not introduce impurities to signal behavior.

Figure 2.6 shows how this ideal filter leaves out the system frequency level components

compared to ic signal in figure 2.4. Figure 2.5 shows how the digitization noise is removed

from the signal compared to ic signal in figure 1.2.
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Figure 2.3: Frequency response of a Band-Pass Filter

Figure 2.4: Digitization noise in a measured signal
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Figure 2.5: Digitization noise cleared from a measured signal by Band-
Pass Filter
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Figure 2.6: System Level Frequency Components cleared from a measured
signal by Band-Pass Filter
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2.3 Modular Transformation

Clarke Transformation [42] is an essential step in conditioning the signal for the fault lo-

cation process implemented in this research. This avoids the inaccuracies resulting from

mutual coupling of the transmission lines and their superpositin [32], to ensure the re-

liability of the detection. Clarke’s Transformation of measured signals for a three-phase

system is represented as follows:
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2.4 MRA Analysis

After conditioning the signal and leaving out system frequency level and digitization-

related frequency components, different wavelet types are employed for conducting an

MRA analysis as described in Section 1.2.2. Note that the goal of decomposing the signal

into its wavelet components is not compression of the signal. Therefore, every node of

this MRA tree is important for the investigation. Two aspects should be considered when

walking from one node to another:

1. As we climb down the tree branches or go higher on the node level, we get more

specifically focused on smaller bits of frequency ranges to look for our traveling

wave. We need to be on the lookout for the presence of significantly strong energy-

level MOs that recur throughout the signal.

2. However, going higher in the node level would mean more down-sampling in the

studied time domain signal. This becomes important when we are dealing with

22



lower sampling frequencies. As we lose time data-point to down-sampling, our

time uncertainty increases based on the time-frequency uncertainty principle for-

mulated in 1.8.

3. The fault location is mainly dependent on the time distance between two detected

traveling waves that are propagating with the speed of light. So, every time point

that we miss is interpreted as mile uncertainty in fault location equivalent to the

distance that light could have traveled during that time. In other words we can

translate the uncertainty introduced to fault location by losing each time datapoint

as:

duncertainty = c
dpuncertainty

Fs
(2.2)

where duncertainty is the uncertainty in the distance estimation, dpuncertainty is the uncer-

tainty in datapoints, Fs is sampling frequency, and c is the speed of light. Therefore,

when the fault location is close to the measurement unit, every time point counts,

and we can only afford to go higher on the node level if our sampling frequency is

reliably high. Analyzing the data at the node level of n would translate to 2n−1 data

point uncertainty.

Figure 2.7 shows a sample decomposition of the conditioned signal in 2.6. On the left-

hand side and data contents of node 4 on the right-hand side. Node 4 is in the position

of (2, 1) in the MRA tree. This means that we have two stages of down-sampling to get to

level 2 of the tree for the decomposed signal. The first thing to note is that the calculated

fault distance is prone to 3 data points of uncertainty for this case. Let’s take an example

case where we have the sampling frequency of 1.56MHz for the main decomposed signal.

The uncertainty for calculated fault distances at this level is calculated as follows:

duncertainty = 1.86 × 105 ×
3

1.56 × 106 = 0.36 miles1 (2.3)

1We have used significant figures of 2 due to the high degree of uncertainty in the calculations involved.
This allows us to work with readable numbers and still presents a highly sufficient level of accuracy for the
application
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Another important piece of information that we need to bear in mind throughout our

study of the MOs in node (a, b) is that the major frequencies captured in this node belong

to the frequency range of [ b×Fs
2a , (b+1)×Fs

2a ].

Figure 2.7: Sample Wavelet Packet Tree with db4 employed as decompo-
sition wavelet with contents of node 4

We have employed 43 wavelets for MRA analysis and MO detection in this research.

Here is a list of these wavelets:

• Daubechies Family: db1,db2,db3, db4,db5, db6, db7, db8, db9, and db10

• Symlets Family: sym2, sym3, sym4, sym5, sym6, sym7, and sym8

• Coiflets Family: coif1, coif2, coif3, coif4, and coif5

• Fejér-Korovkin Family: fk4, fk6, fk8, fk14, fk18, and fk22

• Biorthognal Family: bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8,

bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, and bior6.8

The implemented wavelet types manifest diverse characteristics such as orthogonal-

ity, smoothness, localization, vanishing moments, symmetry, number of coefficients, and
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filter length [39]. For example, Daubechies, symlets, and biorthogonal filters, each show-

cases unique traits that influence their utility in signal processing. Daubechies filters are

well-known for their compactness, providing the shortest filter length for specific fre-

quency separation needs, making them highly efficient in scenarios where minimizing

computational resources is vital. Symlets, akin to Daubechies, prioritize compactness but

also emphasize symmetry in their design, enhancing performance for certain signals by

ensuring a more balanced representation between time and frequency domains.

In contrast, biorthogonal filters stand out due to their symmetry—a rare quality

among wavelet families. This symmetry allows them to preserve signal shape post-down-

sampling, crucial for maintaining vital signal characteristics. This attribute is particularly

beneficial for accurate signal reconstruction after down-sampling, preventing distortion

of essential signal elements. As a result, biorthogonal filters are anticipated to excel in

down-sampling processes due to their capacity to maintain signal shape, enhancing the

accuracy of the down-scaled signal.

However, in dealing with stochastic signals characterized by unpredictability, deter-

mining the dominant filter features becomes challenging. The unpredictability of stochas-

tic signals raises uncertainties about which specific characteristics of wavelet filters best

capture signal properties. In such cases, the focus shifts from individual filter superiority

to seeking consensus among the varied attributes of wavelet families. The aim becomes

finding a combination of these diverse characteristics to accurately represent stochastic

signals.
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2.5 Segmentation

Once the signal is pre-processed in MRA tree, the data in the nodes of interest are ready

to be studied in terms of strong bursts of energy i.e. Measurement Occurrences (MOs)

inside them. In this project, we have developed an easy-to-tune segmentation algorithm

that scans the normalized signal recursively and makes the decision to categorize each

data-point as: (a) it is start of a new MO, (b) it is continuation of a previously started

MO, (c) it is ending point of a previously started MO, (d) it is an insignificant data-point

between MOs.

In this section, we delve into the logical flow of this segmentation tool for making de-

cisions about each data-point of the segmented signal. A block diagram of the designed

Segmentor’s inputs and outputs is shown in figure 2.8. We refer to Amplitude Thresh-

old, Patience Factor, Minimum Length, Tail Threshold, and Tail Patience as Segmentation

Configuration. Let’s take a look at the functionality of each of these parameters:

• Amplitude Threshold: This parameter functions as the threshold for a data-point

to be considered as significant. When the value of a data point is greater than the

amplitude threshold, it is more likely to be considered as the start point of an MO or

the continuation of a previously started MO. However, being significant for a data

point is not a guaranteed pass for it to be categorized in any of the groups, it’s just a

piece of information we have about the data point.

• Patience Factor: This parameter denotes the number of insignificant data points we

tolerate for a previously started MO before marking its endpoint. Once the number

of consecutive insignificant data points of a MO reaches the patience factor, we as-

sign a temporary endpoint at the first insignificant data point that occurred in the

series.
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Figure 2.8: I/O Block Diagram of Designed Segmentor Process

• Minimum Length: This parameter is intended to prevent false peaks induced by

pre-processing of the signal to be categorized as MOs. After all the MO candidates

are extracted, the MOs that do not meet the minimum length criteria are marked for

deletion unless they meet specific criteria to make it to the final segments list. The

criteria for keeping an MO smaller than the minimum length is that its peak should

be larger than a multiplier of amplitude threshold.

• Tail Threshold: This parameter comes into play after the first round of segmen-

tation based on amplitude threshold and patience factor. This threshold takes a

smaller value than the amplitude threshold, and its functionality is to give the in-

significant data points immediately after the endpoint of an MO candidate a second

chance to be considered as an extension of that MO. The insignificant data points
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after the endpoint of an initially detected MO that is larger than this threshold are

marked as semi-significant and are considered to be added to the recently ended

MO if they meet specific criteria. This criterion is defined by the slope of the en-

velope of the MO from its peak to the endpoint. Adding the new data point to the

end of the MO should not disrupt the MO’s falling pattern by increasing the cur-

rent slope of the MO’s envelope. If it does, the data point will be rejected. Having

more data points in an MO does not affect the maximum point of the MO and TOA;

however, it makes the extracted MO larger and facilitates future frequency studies.

• Tail Patience: This parameter denotes the number of insignificant data points that

we tolerate in the tail extension process using the tail threshold before we mark the

endpoint of an MO.

The output of the Segmentor is in the format of a table, which has the MOs listed as

records. The fields of each record constitute the following parameters about each seg-

ment:

1. Start Data Point

2. End Data Point

3. Start Time

4. End Time

5. Maximum Point Data Point

6. Maximum Point Time

7. MO Length

Figure 2.9 shows a sample performance of the designed Segmentor on the prepro-

cessed signal from figure 2.7.
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Figure 2.9: Sample Visual Output of Segmentor

2.6 Database Formation

Our algorithm employs the 43 wavelets mentioned in Section 2.4 to conduct MRA Anal-

ysis on all three phases of the measured signals and provide processed signals for the

developed Segmentor to identify the MOs inside them. Each identified MO is labeled

with a Unique ID (UID) for the database and following information are extracted to be

stored in their respective fields:

• Phase of the measured signal

• Wavelet type used for preprocessing

• Node of the preprocessed signal in MRA tree

• Order of the MO in the detected signal

• Start data point number

• End data point number

• Start time in ms
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• End time in ms

• Duration of MO in µS

• Energy level of the MO
∑

x2

• Pointer to time domain array of the MO

• Pointer to FFT of the MO

• General Clustering Number using K-means based on start time. The performance

of this clustering is enhanced by 300 iterations after database creation

• slope of the envelope for the falling side of the MO.

2.6.1 Ensemble Voting Structure

In this chapter, we have implemented an Ensemble Voting approach to score the char-

acteristics of the MOs detected by each wavelet type derived from the scheme proposed

in [43]. Before we get to the mathematics of the approach, it is helpful to mention that the

voting process is designed to simulate the social media behavior among different wavelet

types. In this virtual social media, the wavelets are users. Each detected MO by that

wavelet type creates a post with that user as the author detailing the characteristics of

that detected MO. Each post’s underlying characteristics include the MO’s Start Point,

End Point, and Maximum Point.

The combination of the phase or Clarkes’ component and MRA tree node that yields

the filtered signal for MO detection is modeled as a Hashtag/Topic in the post to facilitate

the classification of the findings and comparison process. The designed social media

structure allows each post to be evaluated by other non-authoring wavelet types and

measure the cumulative confidence rating of the post in different aspects. The confidence
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rating that each non-authoring wavelet type leaves on each post is mainly based on the

personal experience of the wavelet type in that post’s specific hashtag.

There two approaches that can be implemented for designing voting structure of an

ensemble method:

1. Hard Voting: where the submitted vote for each aspect of the found MO is in the

form of either approving (+1) or disapproving (-1) the finding based on the review-

ing wavelet’s experience in the post topic

2. Soft Voting: where the submitted vote is number between -1 to +1 based on the

proximity of the closest experience the reviewing wavelet has regarding the topic of

the found MO.

The confidence rating of each post is calculated as follows in the voting system:

Iω,hp, j =
∑
γ,ω

iγ,hp, j (2.4)

where Iω,hp, j is the total confidence rating of jth aspect of reported MO p detected by au-

thoring wavelet ω in the phase or Clarke’s component (topic) h, and iγ,hp, j is the confidence

score given to the detected MO p by reviewing/non-authoring wavelet γ in its jth aspect

and topic h.

In the hard voting system, the confidence ratings are formulated as follows:

iγ,hp, j =


+1 if

∣∣∣∣cγ,hm, j − cω,hp, j

∣∣∣∣ < T j

−1 if
∣∣∣∣cγ,hm, j − cω,hp, j

∣∣∣∣ ≥ T j

(2.5)

where cγ,hm, j is the jth characteristic of MO m detected by the reviewing wavelet γ in the

topic h which is the closest to the reviewed MO p. Similarly cω,hp, j is the jth characteristic of
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MO p detected by the authoring wavelet ω in the topic h. In other words, we can write

that
∣∣∣∣cγ,hm, j − cω,hp, j

∣∣∣∣ = Min.(
∣∣∣∣Cγ,h

j − cω,hp, j

∣∣∣∣). Cγ,h
j being the array of jth characteristic of all MOs

detected by reviewing wavelet γ in the topic h. T j is the data point threshold for judging

the accuracy of the post’s finding based on the reviewing wavelet’s experience.

In the soft voting method, instead of assigning -1 or +1 on a hard threshold, the con-

fidence ratings are spread between -1 and +1 based on the proximity of the reviewing

wavelets’ experience to the characteristics of the studied MO. In other words:

iγ,hp, j = 2e−
∣∣∣∣∣cγ,hm, j−cω,hp, j

∣∣∣∣∣
τ j − 1 (2.6)

where τ j is the decaying factor defining how the data point differences should trans-

late to confidence ratings. For example Figure 2.10 represents how the confidence ratings

are assigned for a τ = 5. In this config, the wavelet has a positive confidence rating up to

3 point difference with the studied post, and then the confidence ratings become negative

moving towards -1 as the difference increases.

2.6.2 Database Refining and Fault Location Process

In the database refining stage, for each topic (or hashtag), the entries with negative con-

fidence ratings are removed. The percentage of removed database entries represents the

overall disagreement level between different wavelet types regarding their MO detec-

tions. If the percentage of removed entries in the refining process exceeds a threshold,

say 50 percent, then the results for the MO detection on that specific topic are consid-

ered inconclusive. The algorithm has a limited number of hashtags combining the aerial

modes of Clarke’s transformation and nodes 2, 4, and 8 of the MRA tree. However, in

case of inconclusive results for all the combinations, other phases and MRA tree nodes
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Figure 2.10: Behavior of confidence rating in a soft voting system based
on the proximity of closest characteristic of found MOs by re-
viewing wavelet with τ j = 5

can be considered to participate in database formation.

When a hashtag meets the conclusiveness criteria the fault location database is formed

based on the MOs detected on it. Fault location database entries record the essential

information for the first and second MOs detected in the hashtag for each wavelet type if

both MOs are not removed during the refining process. The fault location database fields

for each entry includes the following information:

1. Data point for maximum point of the first MO

2. Data point for maximum point of the second MO

3. Data point Difference between the first and second MO detections

4. Time difference between first and second MO in µS

5. Mile difference between the first and second MO given the speed of propagation for

the wave
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After the database is formed the wave coherence of the two MOs are measured in

the frequncy range of 80 kHz to 300 kHz which is the frequency range suggested in [22]

for traveling waves. The wave coherence is measured using the Continuous Analytic

Morlet wavelet transform modified in a concurrent research by Lawrence Durante for TW

analysis purposes and following time-frequency correlation measurement approach [44]:

∣∣∣∣S (
C∗x(a, b)Cy(a, b)

)∣∣∣∣2
S

(
|Cx(a, b)|2

)
· S

(∣∣∣Cy(a, b)
∣∣∣2) (2.7)

where S is the smoothing function, Cx(a, b) is the continuous transformation of signal

x with scaling factor a and position factor b. Figure 2.11 shows an example matching

wavelet coherence where the frequency of interest has been marked with a rectangle.

The fault location entries with an average time-frequency correlation of less than 0.5

are disqualified and removed. Then Wavelet Ensemble voting process discussed in the

previous subsection scores each fault location statement based on the Mile field of the

entry. The Fault location statement with the highest confidence rating is reported as the

Decision of the fault location process.
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Figure 2.11: Wavelet coherence example with the frequency range of inter-
est marked with a rectange

35



CHAPTER 3

IMPLEMENTATION RESULTS

We have implemented our approach on real-world measured data measured by SEL 411

L TW relays, anonymized and provided by National Grid, to detect the TW MOs and

evaluate wavelet ensemble performance. The available data are measured at 1.56MHz

in three phases for Fault and Re-close events on the same transmission line. The relay

detects the discontinuity to be 8.65 miles from the measurement station.

Figure 3.1 shows the current measurements after a re-close event on a transmission

line. The measurement unit for this event is situated in a substation that is 8 miles away

from the next system bus. The behavior of the measured signals indicates that the re-

close is successfully happening on a cleared fault. The frequency spectrum of the current

signals in this event is shown in figure 3.2.

Figure 3.1: Time Domain Measurements of a Re-close Event
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Figure 3.2: Frequency Domain Representation of Re-close Event

The extracted signals from nodes 2 , 4, and 8 of the MRA tree formed for this signal

are shown in figures 3.3, 3.4, and 3.5 using db 4. As we can see, different nodes provide

different levels of clarity on where the energy bursts are, and the best option can also

be different for faults with different wave shapes and noise levels. The implemented

algorithm switches between these 3 nodes to reach a conclusive decision on the fault

point with maximum wavelet agreements. In this switching, the nodes with lower levels

are prioritized to reduce the uncertainty introduced by downsampling. Figure 3.6 shows

the performance of the developed Segmentor on a sample signal extracted from the MRA

tree.

Table B.1 in Appendix B shows a relevant subset of the created database table for all

the detected MOs by the 43 wavelets re-listed below in the studied scenario and its Clarke

components.
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Figure 3.3: MRA result of re-close event for node 2 using db4 on alpha
Clarke component

• Daubechies Family: db1,db2,db3, db4,db5, db6, db7, db8, db9, and db10

• Symlets Family: sym2, sym3, sym4, sym5, sym6, sym7, and sym8

• Coiflets Family: coif1, coif2, coif3, coif4, and coif5

• Fejér-Korovkin Family: fk4, fk6, fk8, fk14, fk18, and fk22

• Biorthognal Family: bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8,

bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, and bior6.8

The ensemble voting process application on the findings of this table yields the highest

confidence rating arrival times that are listed in the following table.

The database refining process removes all the detected MOs with negative confidence

ratings. If more than half of the detected MOs are removed in the refining process, the
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Figure 3.4: MRA result of re-close event for node 4 using db4 on alpha
Clarke component

Phase A Phase B Phase C Zero Clarke Alpha Clarke Beta Clarke
MO 1 813 811 813 814 813 813
MO 2 885 888 890 888 886 891
MO 3 1292 1289 1292 1291 1291 1291
MO 4 1582 1581 1577 1580 1580 1578
MO 5 1915 1914 1911 1915 1912 1912

Table 3.1: Highest confidence rating Arrival Times Based on the Ensemble
Voting Process

decision for the studied node will be reported as inconclusive. Then, the study automat-

ically switches to a lower priority node on the wavelet tree, node 4. If node 4 reports

inconclusive, the study will switch to node 8. The uncertainty range and probabilities

change as we switch between the wavelet nodes as presented in tables 3.2. It is important

to note that as we move to higher levels of the wavelet tree, the uncertainty increases.

In this study node 4 has a conclusive report on the detected MOs, and the remaining
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Figure 3.5: MRA result of re-close event for node 8 using db4 on alpha
Clarke component

MOs with positive confidence ratings can move to form a fault location database and go

through the ensemble voting process. The fault location results in the aerial mode α for

this process are reported to be 8.53 miles with a 77 percent confidence rating. The top 9

fault location statements for this phase are presented in table 3.5.

The agreement level of wavelet types used for this fault location is presented in figure

3.7. In this agreement graph, wavelet types are used as nodes, and the thickness of the

edges between the nodes represents the average agreement of the two wavelet types. The

edges with negative weight are removed for simplification. As the agreement between

multiple wavelet types increases, the graph becomes intertwined and sometimes unread-

able on the agreeing side. However, the graph can be used as a tool to identify the outliers

and also have a grasp of the agreement level in the obtained decision. The uncertainty

and probabilities for this prediction are presented in table 3.2.

Table B.2 in Appendix B shows the ranking of different wavelet types, based on the
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Uncertainty(Miles) Probability Interval Confidence
0 0.5 0

±0.12 0.5 1

Table 3.2: Uncertainty for detection in Node 2

Uncertainty(Miles) Probability Interval Confidence
0 0.25 0.25

±0.12 0.38 0.63
±0.23 0.25 0.88
±0.35 0.13 1

Table 3.3: Uncertainty for detection in Node 4

number of their appearance in highest confidence rating MOs detected in each phase.

This table is sorted based on the performance of the wavelet in detecting Maximum points

in the signal which denote the TOA of the traveling waves. Biorthogonal wavelets such

as bior2.4 and 4.4 have shown higher consistency in detection of TOAs by contributing

most to the highly approved detected MOs.

The developed method is tested on the scenario where three different Gaussian noise

signals with 30 Amps are introduced to each phase. This level of noise reduces the qual-

ity of the measurement to an SNR of 6.36 dBs. Figure 3.8 shows phase A currents after

introducing the Gaussian noise. The results of MO detection based on the implemented

approach are shown in the table 3.6. These results show that the weaker MO5 is lost in

Uncertainty(Miles) Probability Interval Confidence
0 0.13 0.13

±0.12 0.22 0.34
±0.23 0.19 0.53
±0.35 0.156 0.69
±0.47 0.13 0.81
±0.59 0.09 0.91
±0.70 0.06 0.97
±0.82 0.03 1

Table 3.4: Uncertainty for detection in Node 8
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Wavelet MO1-ToA MO2-ToA Diff-Points Diff µs Miles wcoherence Confidence
db4 813 886 73 93.44 8.53 0.72 0.77

sym5 813 886 73 93.44 8.53 0.66 0.77
bior1.5 813 886 73 93.44 8.53 0.98 0.77
bior2.6 813 886 73 93.44 8.53 0.73 0.77
bior3.1 813 886 73 93.44 8.53 0.90 0.77

db3 812 885 73 93.44 8.53 0.63 0.77
sym3 812 885 73 93.44 8.53 0.63 0.77

bior2.4 812 885 73 93.44 8.53 0.54 0.77
bior1.3 812 885 73 93.44 8.53 0.76 0.77

Table 3.5: Top 9 Fault Location statements for reclose scenario in the aerial
mode α

Figure 3.6: Segmentation result on a sample node of MRA tree for re-close
event

the detection, as the noise has blurred it to the method. However, the main first four MOs

are still detected with very close times of arrival as the original detection. The final fault

location for this scenario is 8.45 miles with 63 percent confidence.

The results for fault location under different levels of noise are presented in table 3.7.

This table shows that as the SNR quality of the signal drops, the detections need to be

made in the lower nodes of the MRA Tree, which increases the uncertainty of the detec-
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Figure 3.7: Wavelet Agreement Graph for re-close event fault location on
aerial mode α

tion.

The results for fault location of 50 AMP noise are presented in table 3.8. The detections

for this noise level are made at node 8 of the MRA tree with lower convergence in wavelet

findings leading to a Confidence Rating of 0.26 for the top statement. Figure 3.9 shows

how disagreement between different wavelet types has affected the wavelet agreement

graph. However, the most prominent agreement point for wavelet types still is pointing

to the fault location only with a lower confidence level.
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Figure 3.8: Phase A Signal after introducing 30 Amp Noise

Phase A Phase B Phase C Zero Clarke Alpha Clarke Beta Clarke
MO 1 813 811 813 814 813 813
MO 2 885 888 891 888 885 892
MO 3 1291 1289 1292 1293 1290 1291
MO 4 1582 1580 1577 1580 1582 1578

Table 3.6: Highest confidence rating Arrival Times Based on the ensemble
voting Process after introducing a 30 Amp independent noise
(SNR 6.36 dB) to each phase

Noise RMS SNR Fault Location Detected Node
5 14.15 8.53 2

10 11.14 8.53 2
15 9.38 8.45 4
20 8.13 8.45 4
25 7.16 8.45 4
30 6.37 8.45 4
35 5.7 8.45 4
40 5.12 8.45 8
45 4.61 8.41 8
50 4.15 8.41 8

Table 3.7: Fault Location Results for different noise levels up to 50 Amps
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Wavelet ToA1 ToA2 Diff µs Miles wcoherence Confidence
db6 207 225 92.16 8.41 0.86 0.26

bior4.4 207 225 92.16 8.41 0.5 0.26
sym6 208 226 92.16 8.41 0.44 0.26
fk14 208 226 92.16 8.41 0.61 0.26
fk8 206 224 92.16 8.41 0.81 0.26

bior1.3 205 223 92.16 8.41 0.65 0.26
sym2 204 222 92.16 8.41 0.57 0.26
fk4 204 222 92.16 8.41 0.66 0.26
db2 204 222 92.16 8.41 0.57 0.26
db3 205 224 97.28 8.88 0.87 0.25
db4 205 224 97.28 8.88 0.45 0.25

sym3 205 224 97.28 8.88 0.87 0.25
bior2.6 199 208 46.08 4.21 0.69 0.06

Table 3.8: Top Fault Location statements for 50 Amp noise scenario
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Figure 3.9: Wavelet Agreement Graph for reclose scenario with 50 Amp
noise
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The implemented approach is tested in a single-phase-to-ground fault scenario to as-

sess its performance in detecting the fault-induced MOs for fault location. The data for

this scenario is measured by the same relay as the previously studied scenario, SEL 411 L

TW, with 1.56 MHz sampling rate. Figure 3.10 shows the three-phase currents measured

for this fault. The fault location for this scenario is reported at 13.3 Miles based on the

report from SEL 411 L TW Relay which has used an impedance-based method for this

purpose. The previous re-close scenario has also provided the insights that two disconti-

nuities are distanced at 8.41 Miles and 55.8 Miles from the measuring relay using the MO

time points we have detected in table 3.1.

Figure 3.10: Time Domain Signals for Single Phase to Ground Fault

Clarke’s transformation components are first extracted for this scenario. Figure 3.11

shows the extracted Clarke components for this fault. MRA Analysis and Segmentation

process using the same set of wavelet types as the previous scenario. The database is

formed with 1092 MO entries for the studied phases. A relevant subset of this database

for detections on Clarke’s alpha component is provided in table B.3 in Appendix B.
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Wavelet Ensemble voting is implemented on the studied database. Then the refining

process for each node of the MRA tree is implemented, which leads to reporting incon-

clusive MO findings on Node 2 and switching to Node 4 where the results are conclusive

as presented in the agreement graph in figure 3.12. The thickness of the edges in this

graph represents the average confidence rating between each wavelet pair. The edges for

negative averages have been removed.

Fault location statements are created for the findings in Node 4. The top results for

the fault location process are presented in table 3.9. The reported fault location decision

for this scenario is 13.32 Miles which is very close to the 13.3 Miles reported fault location

for this scenario. The uncertainty associated with this result complies with table 3.3. For

single-phase to ground faults, it is important to note that multiple wave reflections hit the

measurement unit following the Bewley Lattice diagram pattern in section 1.2. Therefore

wave coherence checking plays a vital role in ensuring that the model converges on the

fault statements with high time-frequency correlation between the first and second MOs.

Figure 3.11: Clarke Components for Single Phase to Ground Fault Cur-
rents
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Figure 3.12: Average Confidence Rating Graph Among Wavelets in Node
4 for Single Phase to Ground Fault

1
Wavelet

2
MO1

3
MO2

4
MOdiff

5
MOdiff

6
Mileage

7
ConfidenceRating

1 ’db4’ 408 465 57 145.9202 13.3197 0.4786
2 ’db5’ 408 465 57 145.9202 13.3197 0.4786
3 ’sym5’ 408 465 57 145.9202 13.3197 0.4786
4 ’bior5.5’ 408 466 58 148.4802 13.5534 0.4703
5 ’fk14’ 408 466 58 148.4802 13.5534 0.4703

Table 3.9: Top Five Fault Location Findings for Single Phase To Ground
Fault Scenario
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CHAPTER 4

CONCLUSION AND FUTURE WORK

In this dissertation, we have designed, implemented, and analyzed a novel method for

fault location in power system transmission lines using the wavelet ensemble method.

Our method utilizes different wavelet types in a cooperative algorithm to cope with

the uncertainty of fault-induced wave shapes that are random, unpredictable, and non-

stationary. The developed scheme is sensitive to performing the detection at the lowest

uncertainty level possible. We have developed an automatic MO detection scheme that

is highly adaptable and robust to help the wavelet ensemble method operate coherently

without human subjectivity in fault inception reporting. We have tested the method on

real-world measurements regarding re-close and single-phase-to-ground faults. The im-

plemented method has shown accurate performance in both scenarios. We have also

tested the method under heavy noise and poor SNR conditions, and the performance of

the method is significantly robust to high noise levels. The developed methodology is ver-

satile, with potential applications in a compact process unit for localized decision-making

and reporting, functioning as a Relay feature. This allows for fast decision-making with

lower cybersecurity risks. Alternatively, it can serve as the foundational core for a stand-

alone software feature for utility operations that receives the measured data from the

substation, providing more advanced visualization and documentation capabilities at the

control/service dispatch center. This functionality will provide better post-processing

and analysis of the situation before decision-making at the expense of higher cybersecu-

rity infrastructure.

4.1 Future Work

In future endeavors, this work can be expanded to:
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1. Application of the method to two-ended and multi-ended data situations in the case

of availability of synchronized data and comparison of the approaches in terms of

robustness and accuracy.

2. Application of the method to underwater and underground transmission lines. This

is a much more beneficial application for the method since it is harder to investigate

the faults when the lines are not visible.

3. Comprehensive discontinuity mapping using Bewley Diagram patterns and all de-

tected MOs.

4. The wavelet ensemble approach can be implemented for accurate MO Start and

End Point detection for collecting full samples of traveling waves and using them

for health-check studies

5. Modulus Maxima Method can be used for reducing the down-sampling effects in

fault location uncertainty.

6. In case of availability of data, the method can be checked in real-world data cases

that the impedance-based method has failed to report accurate fault location to en-

sure the contribution.
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APPENDIX A

MODEL TUNING AND TESTING FOR CHAPTER 2

In this section, we will discuss the steps for tuning and testing our model on generic

synthesized measurement signals before using it on real-world measurements. This step

is important in ensuring that our model can perform satisfactorily on detecting MOs on a

generic synthesized signal with known recurring MOs introduced in a specific frequency

range to the signal.

A.1 Synthesized Signal

The generic synthesized signal for testing and tuning purposes is created based on a

signal developed in ELE 891 (Advanced Signal Processing instructed by Dr. Tomislav

Bujanovic) course homework at Syracuse University and intended to comply with the

following criteria:

• Contains components in multiple frequency ranges below and above the frequency

range of the introduced MO.

• Contains high-frequency components close to MO introduction times to validate the

accuracy of MO detection on MRA tree nodes.

• Includes discontinuities of significant magnitude in a different frequency level, to

ensure that the approach can bypass the detection of such discontinuities.

The synthesized signal for this process is constructed in sampling frequency of 1 MHz

in following steps:
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1. The base of the signal is formed as shown in Figure A.1 by augmenting 6 segments

with following characteristics:

• Polynomial x4 shown in black color

• Polynomial ax2 + bx shown in red color

• Sinusoids with very low frequencies,1/2πFs, approximating lines shown in

blue and green.

• The last two segments are the mirrored curves of the first two polynomials

This signal has a significant discontinuity at the center data point which lies between

the Third and the Fourth segment of the curve.
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Figure A.1: Base of the synthesized signal comprised of 6 segments
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2. White Gaussian noise is introduced to the base signal, and then the original signal

is estimated using the modulus maxima method with Daubechies 10 wavelet in 7

iterations. This step is implemented to smoothen the signal and introduce mild

imperfections to it at different frequency levels. Figure A.2 shows the polluted and

reconstructed signal after this process. The reconstructed signal is duplicated to

create the base of the measured signal for our synthesis without the TW packets as

shown in Figure A.3.
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Figure A.2: Pollution and reconstruction of the base signal

3. Small bursts of energy lasting 100µs with frequency components of f1 = 200kHz and

f2 = 100kHz and f3 = 50kHz are added centered to time points 0.3s and 0.8s. The

waves follow this equation:

TW = (A1sin(2π f1) + A2cos(2π f2) + A3sin(2π f3))e−t/τ (A.1)
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Figure A.3: Measurement base signal without TW components

Figure A.4 shows the synthesized TW packet, and Figure A.5 depicts the final mea-

sured signal with TW components added at 0.3s and 0.8s.

4. White Gaussian noise is introduced to the signal to test the performance of the signal

at different SNR levels. Figure A.9 shows the noisy signal with SNR of 21.52.

Based on the frequency components of the TW signal and the sampling frequency of

the measured signal, the nodes of priority for detecting the arrival times of this compo-

nent on the measured signal are Node 4 (sweeping frequencies between 125 − 250kHz),

Node 10 (187− 250kHz), and Node 8 (62− 125kHz) of the MRA tree. Figure A.6. As shown

in the figure, the highest coefficients at this node occur close to 0.3 S and 0.8 S which is

where we have introduced the TW components in the signal, with an exact difference of

0.5 seconds. Our goal is to find this time difference between the two maximums, as it

is the base for fault location after detection by the Segmentation method introduced in
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Figure A.4: Introduced TW Component

Section 2.5.

The Segmentor needs tuning to detect a reasonable number of energy bursts as well as

their local maximums in the studied node to be used for fault location. For this purpose,

we have developed a secondary toolbox that starts with an amplitude threshold of 1, and

reduces it gradually with an initial threshold step of 0.05 while checking the number of

detections in each iteration. If the number of detections exceeds the maximum number

of expected detections after a specific step, the algorithm will start increasing the thresh-

old in smaller steps. This iteration continues until the expected number of detections is

reached. The segmentation algorithm adjusts the amplitude threshold in each iteration to

meet the expected number of detections and finally reports the final threshold that meets

the expected criteria.

For example, for the specific case shown in figure A.6, using amplitude threshoshold

of 0.95, patience factor of 2 data points, and tail threshold of 0.65, the detections shown
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Figure A.5: Final synthesized signals after adding TW components at 0.3s
and 0.8s

in Figure A.7. This simple scenario shows that the segementation process successufully

detects the introduced TWs in the studied signal. The wavelet filter length causes slight

difference in detection times of the introduced TWs, but the distance of the two detections

should stay the same as they both experience similar shifting and scaling caused by the

used wavelet filter.

Running The the database formation and ensemble voting on the clean signal yields a

unanimous time difference detection of 0.5 s which is the intended time difference. Figure

A.8 shows the unanimous agreement of all wavelets to the time difference between the

two detections.

To test the robustness of the test, White Gaussian noise is introduced to the studied

signal resulting in the the signal shown in Figure A.9. The SNR of the noisy signal is

calculated to be 21.56 dB. The Node 4 coefficients of this signal are shown in Figure A.10.
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Figure A.6: Normalized node 4 components of synthesized signal decom-
posed using wavelet bior6.8

This figure shows that the noise components have a significant magnitude in node 4 of

this detection. However, with fine-tuning capability of the Segmentor algorithm, the first

two maximums can still be detected. In this scenario, we need to enforce a higher Tail

Threshold and lower patience factor, in comparison to the clean signal scenario to avoid

potential merging of the two separate segments due to noise components being present at

almost every time point in between. Figure A.11 shows that with an amplitude threshold

0.938, patience factor 1, and tail threshold 0.8, the same representatives of the introduced

TWs can be detected at the same location and correct time distance.

However, this approach does not yield similar results for all the wavelet types.

Wavelets, depending on their filter shape and characteristics accentuate different com-

ponents present in the studied signal. For example, Figure A.12 shows the coefficients

and segmentation output for the first four prominent components in this node. The seg-

mentation configuration for this scenario is similar to the configuration for the bior6.8
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Figure A.7: Segmentation results for node 4 components of synthesized
signal decomposed using wavelet bior6.8

case. As we can see, none of the identified components are relevant to the introduced

TWs, and the time difference between them is not representative of the time difference

between the two introduced TWs (0.5 s).

The database of all detections by the wavelets introduced in Chapter 3 is formed for

this scenario and fault location statements are formed for node 4. Figure A.13 shows

the wavelet agreement graph for this analysis. The thickness of the edges in this graph

represents the average confidence rating between each wavelet pair. The edges for neg-

ative averages suggesting disagreements, have been removed for readability purposes.

This graph suggests a strong agreement of 17 wavelets on a common finding. The other

wavelet types have made detections that have got confirmation with only a few or no

other wavelet types.
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Figure A.8: Wavelet agreement graph for the clean scenario without noise

Wavelet 1st Detection 2nd Detection Data Point Diff Time Diff (ms)
fk14 74993 199993 125000 500

bior5.5 74993 199993 125000 500
db5 74992 199992 125000 500

bior3.3 74992 199992 125000 500
sym7 74994 199994 125000 500
fk18 74994 199994 125000 500
fk8 74991 199991 125000 500

fk22 74995 199995 125000 500
bior3.7 74995 199995 125000 500

Table A.1: Top 9 high-rated detection results for noisy scenario
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Figure A.9: Noisy Signal with SNR of 21dB
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Figure A.10: Node 4 components noisy signal decomposed by bior6.8
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Figure A.11: Segementation result of node 4 components for noisy signal
decomposed by bior6.8
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Figure A.12: Segementation result of node 4 components for noisy signal
decomposed by db7
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Figure A.13: Wavelet agreement graph for the noisy scenario with SNR
21.56
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APPENDIX B

TABLES FOR CHAPTER 3
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1
Wavelet Type

2
Start Point Score

3
End Point Score

4
Max Point Score

1 bior2.4 4 5 11
2 bior 4.4 17 4 11
3 sym4 17 5 10
4 coif2 15 1 10
5 bior1.5 2 0 10
6 sym5 12 2 9
7 bior3.1 12 0 9
8 db2 13 5 8
9 db4 12 0 8

10 bior1.3 8 0 8
11 bior2.6 1 4 8
12 bior5.5 11 5 8
13 db7 14 3 7
14 db8 14 3 7
15 db10 16 4 7
16 sym2 13 5 7
17 db3 13 4 6
18 db6 16 1 6
19 sym3 13 5 6
20 sym7 5 8 6
21 bior3.3 5 5 6
22 db5 12 1 5
23 db9 18 2 5
24 sym6 3 5 5
25 coif3 3 5 5
26 fk18 9 0 5
27 fk22 11 0 5
28 fk8 11 8 4
29 coif1 18 4 3
30 bior2.2 20 6 3
31 bior3.5 2 7 3
32 bior3.7 0 5 3
33 fk6 10 0 2
34 fk14 10 1 2
35 bior1.1 13 1 2

Table B.2: Wavelet performance ranking table based on the implemented
method for reclose scenario
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