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ABSTRACT

Cyber-manufacturing systems (CMS) represent the future design vision

for manufacturing systems, aiming to enhance product quality, productiv-

ity, and reduce downtime. The third industrial revolution was driven by

computer systems and automation, while the fourth industrial revolution

was inspired by the internet, network, and connectivity. However, this

integration also introduces vulnerabilities, particularly through false data

injection attacks on sensors.

Sensors play a pivotal role in the automation framework of manufactur-

ing systems spanning five levels: process, operational, supervisory, plant,

and enterprise. Sensors are instrumental in communicating information

from the process level to the enterprise level. It also enables controllers at

the process and operational/supervisory level to implement precise control

algorithms that enable the functioning of cyber manufacturing systems in

a predetermined sequence to yield the desired end product. Moreover,

they provide real-time state estimation of the manufacturing systems to

the plant controller. With this information, the plant control algorithms

work to minimize any discrepancies between the manufacturing system’s

output and the input required for optimal manufacturing operation. How-

ever, the integrity of the information from the sensors can be compromised



by the actions of cyber attackers who may exploit vulnerabilities in the

manufacturing system’s networks or control software. Hence jeopardizing

the manufacturing system’s availability and potentially leading it into an

unsafe operational state.

The rising cyber threats on cyber manufacturing systems have moti-

vated researchers to propose solutions aimed at enhancing resiliency. At a

high level, these solutions draw inspiration from the cyber security domain

and can be categorized into prevention and detection strategies. Preven-

tion from cyber-attacks is achieved by enforcing constraints in the form of

rules, and policies, or by incorporating modern methods of firewall, physi-

cal hash, and blockchain. While prevention strategies are crucial, they do

not guarantee complete freedom from cyber threats and hence a detection

strategy is advised. The objective of the detection strategy is to identify

and flag anomalous behavior within the manufacturing systems. However,

a notable gap within this literature is guidance on how to respond effec-

tively once a sensor attack is detected. This critical aspect, post-detection

recovery, remains underexplored and warrants further attention.

This research addresses this gap by proposing a reinforcement learning

recovery agent and introducing a four-layer recovery architecture. The ar-

chitecture encompasses the systems layer, attack identification layer, data

auditing and detection layer, and recovery layer. The systems layer iden-

tifies and categorizes the manufacturing system components within the

five-layer automation hierarchy. The attack identification layer performs

risk analysis to identify vulnerabilities, while the data auditing and detec-

tion layer collects and trains data for attack detection. The recovery layer



focuses on training reinforcement learning agents to respond effectively to

detected attacks.

To validate this architecture, a testbed and manufacturing simulator

are developed, featuring two robotic arms, a conveyor belt, and a drawing

manufacturing process. Two distinct sensor attack scenarios are presented,

and the proposed recovery agent’s performance is compared against a PID

controller using critical manufacturing metrics: downtime, throughput,

and efficiency. The research aims to enhance the resilience and security of

manufacturing systems by effectively responding to sensor attacks.

In conclusion, this research contributes to the evolving field of CMS

security by proposing a novel recovery architecture and reinforcement

learning-based recovery agent, filling a critical gap in post-detection re-

sponse strategies. The validation through a manufacturing simulator demon-

strates the potential of the proposed approach in minimizing the impact

of sensor attacks and ensuring the continuous operation of CMS.
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Chapter 1

Introduction

This chapter serves as an introduction to cyber manufacturing systems

(CMS), delving into security concerns that have gained attention from the

researchers. It highlights the gaps in existing research and outlines the

scope of the study, laying the foundation for a thorough investigation into

recovery strategies tailored for cyber manufacturing systems.

1



1.1 Cyber manufacturing systems

Manufacturing systems are transforming to meet evolving customer

demands (J. Lee, Bagheri, and Kao 2015). The integration of digital

technologies, cloud-based systems, robotic arms, and automated mate-

rial handling, as well as enhanced assembly lines, has aimed to augment

standalone manufacturing systems, improving both operational efficiency

and responsiveness to consumer needs (Mavrikios et al. 2013). However,

despite these advancements, the Bureau of Labor Statistics reports only

a 0.7 percent off annual growth in production from 2007–2018, compared

to 3.6 percent from 1987–2006 (Labor Statistics 2019). Recognizing the

need for innovation, the recent wave of manufacturing progress introduces

Cyber-Manufacturing Systems (CMS) to potentially elevate stagnant pro-

ductivity levels (Z. Song and Young B Moon 2016).

It’s essential to distinguish between cyber manufacturing systems and

manufacturing processes. While manufacturing processes are confined to a

specific procedure or set of steps in the production of an item, manufactur-

ing systems are a comprehensive and integrated framework that encom-

passes various processes, resources, and interactions, working in concert

to produce the desired end product. According to Song, CMS integrates

manufacturing systems with cyber components such as analytics, sensing,

control, prediction, and monitoring, collectively enhancing manufacturing

systems performance (Z. Song and Y. Moon 2017).

Cyber manufacturing systems, designed to adapt to achieve the in-

tended objectives, involve individual manufacturing processes, their rela-
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Figure 1.1: OT industry explored by cyber attackers from 2020-2022 (Wor-
ley et al. 2023).

tionship, and interactions with the cyber components and the operational

environment (Z. Song and Y. Moon 2017). The interaction between and

among cyber components and manufacturing systems is achieved through

wired or wireless networks (Wu 2019; Yampolskiy et al. 2018). This inte-

gration, while providing benefits, also exposes these systems to potential

threats from cyber attackers (Yampolskiy et al. 2018; Wu and Young B

Moon 2017).

According to the report published by IBM X-Force Threat Intelligent

Index in 2019, manufacturing ranked as the 8th most attacked industry

in 2019 and 2nd in 2020 (Worley et al. 2023). It is evident from the re-

port and Figure 1.1 that manufacturing is the most attractive operational

technology industry for cyber attackers. The report mentions that “man-

3



ufacturing is more vulnerable to cyber-manufacturing attacks and future

trigger events, or new attack tactics may lead to damage to manufacturing

infrastructure and potentially human lives.” While the motive behind most

attacks is to leak intellectual properties and trade secrets, the report indi-

cates that attackers may shift their focus toward controlling manufacturing

processes due to their lower tolerance for downtime. Manufacturing com-

panies often hesitate to disclose cyber-attacks, impacting customer trust,

and potentially resulting in underreported breaches

A Deloitte article with Manufacturers Alliance for Productivity and

Innovation’s (MAPI) cyber security for smart factories states that around

40 percent of manufacturers surveyed reported that their operations were

affected by security in the past (Wellener et al. 2019). Major causes of

concern include ransomware, spoofing, unauthorized access, operation dis-

ruption, and intellectual property theft. The attack vectors used by the

attackers reported in the survey are dominated by poor client-facing web

applications and phishing attacks as shown in Figure 1.2. The average

financial loss from each data breach is estimated to be approximately

7.5 million dollars. While around 90 percent of manufacturers surveyed

claimed that they can detect attacks using information technology (IT)

strategies, very few companies have extended their IT monitoring systems

to operational technologies. Furthermore, less than half of the manufac-

turers surveyed have conducted security assessments in the last six months

or so.

Hence, it is important to analyze and understand the cyber-attacks

conducted on cyber manufacturing systems that are reported and demon-

4



Figure 1.2: Attack vectors used by attackers in manufacturing (Wellener
et al. 2019).

strated in research. The next section provides an in-depth insight into

cyber attacks conducted on cyber manufacturing systems by both mali-

cious actors and researchers.

1.2 Cyber manufacturing attacks reported

in industry

The Stuxnet attack on the Iranian Uranium enrichment plant is the

first publicly known cyber-physical attack. It was a complex and innova-

tive attack that did not follow the conventional confidentiality, integrity,

and availability model (Langner 2011). It infected PCs running on the

Windows operating system, entering through USB sticks, spreading over

5



local networks, and controlling particular Siemens PLC. It verified the

model number, configuration details, and fingerprint to ensure it was on

target. Then, it uploaded rogue codes on the controller monitored legiti-

mate code, and occasionally took over and replayed prerecorded input to

the legitimate code to avoid detection. It made the centrifuge spin faster

and fail, resulting in a non-operational plant for a few days.

The German steel mill experienced the second documented manufac-

turing system attack, initiated through a phishing email that allowed unau-

thorized access to the control system, causing plant shutdowns, produc-

tion delays, and physical damage (R. Lee, Assante, and Conway 2014).

In another instance, a global WannaCry ransomware attack, as reported

by Reuters (Staff 2017), disrupted Renault-Nissan production, encrypt-

ing files and demanding bitcoin payments. A similar incident at Norsk

Hydro in 2019 (Greenberg 2019) led to password modifications, controller

shutdowns, machine deactivation, and network disconnections, incurring a

substantial cost of around 75 million dollars.

Some of these attacks are not discussed in this section but as seen from

Figure 1.3, there is a significant portion of the reported attacks focused on

shutting down the production. Given the lower tolerance manufacturers

have towards downtime, the strategy to demand ransomware to remove

these attacks from the system seems a lucrative strategy.

6



Figure 1.3: Timeline for reported cyber attacks on manufacturing facilities.

7



1.3 Cyber manufacturing attacks in research

Since the Stuxnet attack (Langner, 2011), the research community has

intensively investigated vulnerabilities in cyber manufacturing systems.

To develop a robust security strategy, a thorough analysis of attack vec-

tors and types of attacks in CMS is important (Wu and Young B Moon

2017). Xiao (Xiao 2013) demonstrated the initial vulnerability of a man-

ufacturing process by modifying the temperature and developing malware

combining replay and false data injection attacks. In this instance, the

malware modified the temperature twice the user input, while the control

system received the replayed (true) data. Sturm (Sturm et al. 2014) devel-

oped malware that automatically inserted voids in submitted .stl files for

the 3D printing process, resulting in tensile strength degradation of the

material. Another work from the same research group created malware

that introduced a tetrahedral void near complex geometry (Sturm et al.

2017).

Belikovetsky (Belikovetsky, Yampolskiy, et al. 2017) investigated the

environment of the 3D printer and manipulated the blueprint file. An

infected downloaded file searched for a .stl file, and upon finding it, it

modified the .stl file despite of firewall and antivirus prevention strategies.

The manufactured drone passed through a nondestructive quality check

but failed during operation. Faruque (Al Faruque et al. 2016) used side

channels to capture the 3D printer’s motor noise, tracing it back using ma-

chine learning to recreate the motor movements with 78 percent accuracy.

A similar attack (Hojjati et al. 2016) captured magnetic side channels.

8



Figure 1.4: Manufacturing systems automation hierarchy.

Moore (Moore, Glisson, and Yampolskiy 2017) explored the vulnerability

of using open-source software in desktop 3D printers to replace a print

job with a different job. A SQL injection attack by (Wu, Z. Song, and

Young B Moon 2019) on the database of CMS was demonstrated. The

attacker logged in as a guest, explored the vulnerability of the website,

and accessed the database. The attacker replaced the submitted file with

a malicious file for additive and subtractive manufacturing operations.

Among different cyber attacks on cyber manufacturing systems demon-

strated in the literature and in the real world, sensor attacks stand out

as a threat with the potential to significantly disrupt manufacturing pro-

cesses/systems. The foundation of automation in manufacturing is built

upon the five-level industrial automation framework as depicted in Figure

1.4. Sensors are instrumental in the communication of information from
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process levels to enterprise levels within this framework (Salazar and Al-

varado 2014). Sensors serve as the pivotal part of this framework, enabling

controllers at the process level and operational/supervisory level to imple-

ment precise control algorithms that enable the functioning of cyber man-

ufacturing systems in a predetermined sequence to yield the desired end

product (Cruz Salazar et al. 2019). Moreover, they provide real-time state

estimation of the manufacturing systems to the manufacturing plant level

controller. With this information, the manufacturing plant-level control

algorithms work to minimize any discrepancies between the manufacturing

system’s output and the input required for optimal manufacturing opera-

tion. However, the integrity of the information can be compromised by the

actions of cyber attackers who may exploit vulnerabilities in the system’s

networks or software (Prasad and Y. Moon 2022b). Hence jeopardizing

the manufacturing system’s availability and potentially leading it into an

unsafe operational state.

The following section discusses strategies discovered by researchers to

counteract attacks on sensors of cyber manufacturing systems.

1.4 Security research in cyber-manufacturing

systems

The threats on cyber manufacturing systems have motivated researchers

to propose solutions aimed at increasing resiliency (Wu and Young B Moon

2017). At a high level, these solutions draw inspiration from the cyber se-

curity domain and can be categorized into prevention and detection strate-
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gies.

1.4.1 Prevention from cyber-manufacturing attacks

on CMS

Prevention is the key to reducing cyber-attacks on manufacturing sys-

tems. It ensures the securing of digital and physical entities by blocking

attacks. It can be obtained through encryption of data communicated

among entities or by implementing firewalls to block dubious network traf-

fic. Additionally, the antivirus can be added to the system to block attacks

through the dictionary of attacks.

In CMS, there is an influx of data that is needed to be protected from

cyber-attacks. Apart from encryption (Brandman et al. 2020; Krundy-

shev and Kalinin 2020; Prasad and Y. Moon 2022a), there is a new

technology named blockchain that is used to gain trust among entities,

and secure data, and transactions. Based on the blockchain trust ide-

ology, (J. Song, Bandaru, et al. 2020) used the blockchain to store the

UDP (User Datagram Protocol) based PLC (programmable logical con-

troller) communication data. These data are input to control manufac-

turing processes via computer networks. This method was tested on a

PLC and blockchain testbed. The proposed method was effective against

direct modification—denial of service attacks and man-in-the-middle at-

tacks. Shi (Shi et al. 2021) proposed a blockchain-based data storage and

a Rivest-Shamir-Adleman-based asymmetry encryption technique to gen-

erate a unique hash value for each layer of G-code and store it in the
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blockchain architecture. The hash function was unique for different in-

puts. So, modification of the G-code resulted in a different hash value,

thus preventing data modification.

1.4.2 Detection of cyber-manufacturing attacks on

CMS

Attacks are evolving, making it impossible to prevent all attacks. Thus,

it is important to include detection systems alongside prevention systems.

Detection includes monitoring data and generating alerts as data deviates

from the baseline model.

CMS emits side-channel noise in the form of vibrations, capturing infor-

mation about the process. Researchers have leveraged this data to detect

abnormal behavior. Bayens et al. proposed a verification and detection

method for an insider attack on control logic and modification of PLC

firmware (Bayens et al. 2017). They employed a microphone and a gyro-

scope to capture side channels during 3D printing and a CNC process. An

algorithm verified authentication and detected the positioning of the print-

ing nozzle relative to the base plate. The final layer confirmed the material

using Raman Spectroscopy. Acoustic and spatial verifications confirmed

the correct fill pattern and density in a print, while material verification

determined whether the correct material was used.

Belikovetsky et al. (Belikovetsky, Solewicz, et al. 2017) presented an

algorithm generating a master audio fingerprint and another algorithm to

verify deviations due to tampering. A master audio print was created by

12



receiving audio signals from four motors of a 3D printer. The audio record-

ing was post-processed, and the output served as a master file for attack

detection. The algorithm successfully detected deviations in a propeller.

Chhetri et al. (Chhetri, Canedo, and Al Faruque 2016) identified a

zero-day kinetic cyber-attack on 3D printers. They implemented super-

vised learning to identify anomalous signals with 77.45 percent accuracy.

Jacob et al. (Gatlin et al. 2019) created a master fingerprint for power

tracing by capturing the current delivered to each 3D printer motor. They

captured power from all the motors, converted it to a fast Fourier trans-

formation, and verified the power signature against the master signature

to detect deviations from the pattern.

Sophos (Rais, Li, and Ahmed 2021) detected nozzle-kinetic, filament-

kinetic, and thermodynamic attacks on the fused deposition modeling

(FDM)-based 3D printing process. It used spatiotemporal G-code mod-

eling for attack detection and obtained a reliable state of the printing

process. Sophos employed optical encoders for movement tracking, ro-

tary encoders to detect x, y, and z axes movement, and thermocouples

to measure nozzle temperature, successfully detecting attacks and benign

counterparts.

Apart from side channels, hash values can be used to detect attacks.

Hash values are unique for different inputs. A small change in input value

will result in a different hash value. Brandman et al. (Brandman et al.

2020) used this idea to detect attacks on the 3D printer. They proposed

an eight-step process creating a physical hash for each parameter and com-

bining it with the QR code for secure transfer of part information from the
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machine to the monitoring station. The generated physical hash matched

with the hash generated by the measurement systems, successfully veri-

fying normal operation and detecting attacks in process parameters and

toolpaths.

Furthermore, advances in computer vision and machine learning have

been utilized for detection and monitoring. Wu et al. (Wu and Young B

Moon 2019) used machine learning techniques, such as Näıve Bayes clas-

sifier and J48 decision trees, to detect malicious infill defects in the 3D

printing process using images as input. Wu et al. (Wu and Young. B

Moon 2020) presented detection strategies against man-in-the-middle at-

tacks, constructing five types of malicious infills for the 3D printing process

and two attack scenarios for subtractive manufacturing. Random forest

and anomaly detection achieved good detection accuracy. Another work

proposed by Wu and Moon (Wu and Young B Moon 2019) compared the

proposed algorithm with SNORT and OSSEC—open-source network in-

trusion detection systems, demonstrating that detection through physical

data was quicker and more accurate compared to SNORT and OSSEC

alone.

Prakash et al. (Arul Prakash et al. 2020) introduced an image pro-

cessing technique analyzing the amplitude and phase variations of the

print head of a 3D printer platform arising from induced system manipula-

tions. The method used an image sequence of the printing process to per-

form an offline spatial-temporal video decomposition to amplify changes

attributable to a change in system parameters. A cyber-manufacturing

testbed built by Jinwoo et al. (J. Song, Wang, et al. 2020) detected ad-
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versary insider manipulation (AIM) on a 3D printer from a supplier and

a drawing machine from the manufacturer, using the proposed minimum

mean absolute percentage error classification method against infill manip-

ulation and image manipulation.

Another method to detect attacks was to correlate cyber and phys-

ical alerts. Wu and Moon (Wu and Young. B Moon 2020) utilized a

similarity-based correlation between cyber and physical alerts to detect

cyber-physical attacks, defining cyber alert correlation, physical alert cor-

relation, and cyber-physical meta-alert correlation as the three attributes.

A physical alert format captured manufacturing-specific information such

as UID, Machine ID, sensor ID, and the manufacturing process. The pro-

posed method was implemented on a 3D printer with improved accuracy

against zero-day attacks. Romesh and Moon (Prasad and Y. Moon 2021)

proposed an adaptive detection algorithm for network attacks based on re-

inforcement learning agents, detecting and generating alerts for anomalous

network behavior inside a manufacturing plant and correlating the alert

with the manufacturing process.

The above detection approaches can be classified within the automation

hierarchy, as shown in Figure 1.5. It is noticeable that most research has

focused on presenting strategies for the process and supervisory levels.

Hence, it also emphasizes the importance of security in this level.

15



Figure 1.5: Detection and prevention strategies from literature classified
among the automation hierarchy of cyber manufacturing systems.

1.5 Research gap

While the existing literature focuses on presenting detection and pre-

vention strategies for attacks on sensors of cyber manufacturing systems,

they do not answer what to do after an attack is detected. To ensure cyber

manufacturing systems achieve their intended objectives, it is important

to answer this question. Expanding our research beyond cyber manufac-

turing systems to any cyber-physical systems reveal that researchers have

addressed these question through recovery strategies for physical systems.

The existing literature asserts that complete resilience for any physical sys-

tem can only be achieved when a system optimally recovers from a cyber

attack (Standards and Technology 2018)

The Cybersecurity Strategy and Implementation Plan (CSIP) (Office

and Budget 2015) defines recovery as “the development and implementa-
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tion of plans, processes, and procedures for recovery and full restoration, in

a timely manner, of any capabilities or services that are impaired due to a

cyber event.” NIST (Standards and Technology 2018) defines a cyber event

as “any observable occurrence in a system or network that violates secu-

rity policies and best practices.” Based on the definition above, recovery in

information technology security can be summarized as a reactive measure.

An example of its implementation in information technology would be re-

verting to the backup data in the event of a cyber attack that would lead

to missing information. However, the recovery of manufacturing systems

is more complex than practices used in information technology.

Thus this thesis aims to answer the question how to efficiently recover

the nominal behavior of cyber manufacturing systems without compromis-

ing the safety and performance. Additionally, this work highlights the

challenges associated with the development of a robust recovery strategy.

1.6 Thesis Outline

The thesis is structured into several chapters to systematically address

the research gap. Chapter 2 discusses the literature on recovery strategies,

highlights the challenges associated with developing or adapting presented

recovery strategies for cyber manufacturing systems, and establishes the

research objectives. Chapter 3 presents the recovery systems architec-

ture developed to address the research objectives. Chapter 4 presents the

experiment conducted to validate the functioning of recovery systems ar-

chitecture. Chapter 5 focuses on engaging in a discussion of the findings
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in the context of recovery strategies for cyber manufacturing systems.
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Chapter 2

Literature review and

research objectives

While much research has focused on the prevention and detection of

sensor attacks in cyber manufacturing systems, there is a noticeable gap in

understanding what to do after an attack is detected. This chapter investi-

gates challenges in the development of a robust recovery strategy for cyber

manufacturing systems, investigates the contribution made by researchers

not limited to the manufacturing domain to address this question, and the

limitations of adapting the presented strategy for cyber manufacturing

systems. This chapter ends with establishing research objectives.
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2.1 Recovery strategy

Ideally, cyber manufacturing systems should encompass all the security

measures to develop a resilient system (Espinoza-Zelaya and Young Bai

Moon 2022). However, it is not possible to engineer a system to be com-

pletely secure and trustworthy (Ron, Mark, and M. Michael 2022). Thus

any deviation from the normal trajectory of the manufacturing systems

to an abnormal trajectory can hinder its ability to perform the desired

tasks. Ensuring the availability and performance of cyber manufacturing

systems during such time is possible through robust recovery strategies. In

addition, the strategies when implemented should be capable of recovering

from failure to either resume normal operation or degraded operation or

move to an alternative process, all while ensuring that the strategies do

not violate security norms.

According to NIST (B. Michael et al. 2016), different recovery strategies

can be applied once the attack is detected as shown in Figure 2.1. These

are reconfiguration, restart, and forward or backward recovery.

2.1.1 Restart

Ideally, upon detecting an attack, the optimal way to eliminate the

threat from the system involves following the appropriate procedures to

restart the manufacturing systems. This approach not only prevents fur-

ther system failures resulting from the attack but also mitigates the po-

tential spread of attacks to other systems. However, restarting cyber man-

ufacturing systems is a non-trivial task. Machines within these systems
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Figure 2.1: Resiliency (B. Michael et al. 2016).

are often in the midst of their operations, and due to attacks, the state

of the controller within the process and operational/supervisory layer can

be inconsistent with the physical state of the system. Peter (Loborg 1994)

has outlined several approaches to restarting cyber manufacturing systems

with minimal loss in time and material.

A straightforward restart method involves discarding the material of

the infected machine and reinitializing it (Der Jeng 1997). However, dis-

carding materials can be costly, especially in manufacturing facilities such

as shipping, automotive, and aviation (Andersson, Lennartson, and Fabian

2006). Therefore, the concept of restart points was introduced (Loborg and

Törne 1996; Tittus et al. 2000), where the machine restarts from points

deemed safe for resuming normal operation. Anderson proposed a combi-

nation of automatic and manual operations, as illustrated in Figure 2.2,
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Figure 2.2: Restart a machine via restart state. The dotted line is a
manual operation and the solid line is an automatic operation (Andersson,
Lennartson, and Fabian 2006).

to delay the restart time. After detecting an error, the last normal state,

known as the error state, is saved. An operator then manually moves the

machines to a predefined location. Through the restart path, the machine

is guided to the restart state, and the process between the error state and

restart state is re-executed. This approach reduces the time required to

restart the system and streamlines the restart path’s dimensionality.

The limitations of these approaches include the need to add a restart

path to the controller for each manufacturing process, which is challeng-

ing for large systems like automobiles and is often omitted from industrial

controller programs. Moreover, the time needed to restart the machine

introduces additional cycle time to complete the process. Additionally,

existing literature primarily addresses restarting the system from a sen-

sor error rather than a cyber attack. Furthermore, the proposed work

only considers the operational/supervisory level of the CMS automation

hierarchy, which is sufficient for controlling the sequence of operations.
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Figure 2.3: Example: Cyber Manufacturing systems.

2.1.2 Reconfiguration

The second technique employed as a recovery strategy involves dynam-

ically reconfiguring the control software of cyber manufacturing systems

without affecting the regular process. Reconfiguration is accomplished by

effectively devising an alternative manufacturing sequence of operation.

These alternative approaches can be categorized as offline and online. The

offline approach utilizes a human expert to direct the system to an alter-

native path, allowing the normal process to resume (Klein, Jonsson, and

Bäckström 1999). In contrast, the online approach employs autonomous

agents to plan an alternative route once the attack is detected (Lepuschitz

et al. 2011; Kovalenko et al. 2023).
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2.1.3 Forward or backward recovery

While the other approaches successfully recover however they have lim-

itations such as an extensive search for alternate reconfiguration paths

constrained by the availability of resources and planning for restart paths.

Hence researchers have heavily invested in developing strategies that can

either move the failed system forward or move the failed system back to

the normal state. This approach has been explored from the error recovery

of manufacturing systems perspective.

To illustrate this approach, consider the material handling scenario

within a factory, as depicted in Figure 2.3. The operational level controller

governs the sequence of operations denoted by S1 to S5 within the system.

Each discrete state S is detailed in Figure 2.3, along with the process level

controller for one of the discrete states. The positions of the motors (P1

to Pn) represent the start position at time t1 to the goal state Sn. In this

example, the start process level state at t1 is the idle position of the motor,

and the Sn state is the position of the material in the inventory.

The literature of the error recovery of manufacturing systems focuses

on the operational level controllers. The backward recovery approaches

presented in literature (Afonso et al. 2008; Haerder and Reuter 1983; K.

Kim and Welch 1989; Watanabe and Sakamura 1995) can be summarized

into a strategy of recording the last error-free state and a recovery algo-

rithm guides the impacted system to the recorded state. For example in

the material movement example demonstrated in Figure 2.4 there are 5

sequences of operation represented by S1 to S5. The attack occurs on S3
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Figure 2.4: Operation level backward recovery.

and hence the recovery algorithm reverts to the state of S2, which is the

last recorded safe state of the system. A different approach called forward

recovery (Chenm and Trivedi 1991; Sousa and Santos 2007; Smara et al.

2022) in a similar environment is to move the state of the system to a

predicted future state. In Figure 2.5 S ‘ represents the predicted future

state that the system is recovered and then the system resumes normal

operation thereafter.

The strategies proposed, despite their effectiveness in error recovery, are

predominantly centered on the operational level controller. To encompass

the process level controller, we broaden our literature review to include

cyber-physical systems.

25



Figure 2.5: Operation level forward recovery.

2.2 Researchers addressing recovery in cyber-

physical systems

Since the work of recovery related to the process level controller is not

highlighted from the context of cyber manufacturing systems, this thesis

explores recovery research conducted on cyber-physical systems. Recov-

ery in cyber-physical systems deals with recovering the speed of the au-

tonomous vehicle or recovering the voltages of the motors. Within the

process level, we require mechanisms that can recover such sensors and

hence drawing inspiration from cyber-physical systems is important. To

ensure that the literature is relevant to the scope of the work, papers

that highlight the recovery of the physical system, especially from attacks

on sensors are focused during this study. The literature can be summa-

rized into either rollback approaches or roll-forward approaches. These

26



approaches are explained in depth in the following sections along with the

limitations.

2.2.1 Rollback state

In this context, Kong highlights the necessity of a backup controller al-

gorithm to facilitate the recovery of a physical process after sensor attacks

occur (Kong et al. 2018). In the backward rolling, it tracks the last known

safe state and rolls the system to that state. Figure 2.6 demonstrates this

strategy with an example. This example looks only at the process level

controllers represented from P1 to Pn. Here P represents the position of

the robotic arm that is tasked to pick up an object from inventory. The

trajectory it takes to reach from the idle position to the goal position is

shown in the bottom section of Figure 2.6. In this strategy, the last safe

state of the system is saved and once the attack is detected and recovery

is initiated the algorithm guides the system to the last safe state. Here it

is represented as P12.

However, Kong’s discussion also brings to light certain drawbacks as-

sociated with implementing a recovery strategy that rolls the system back.

This approach is burdened by overhead costs and is often rendered unfea-

sible due to the irreversible nature of many manufacturing processes.

2.2.2 Roll forward state

Consequently, the focus has predominantly been on forward recovery,

which appears to be a more practical and viable strategy. In the context

27



Figure 2.6: Process level backward state recovery.
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Figure 2.7: Process level forward state recovery.
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of forward recovery, achieving a precise estimation of the system’s future

state is challenging (Kong et al. 2018). This estimation can be accom-

plished by modeling the systems as linear time-invariant and implement-

ing various control policies such as linear quadratic regulators (Zhang, Lu,

et al. 2021), linear approximations (Zhang, Lu, et al. 2021), and predictive

control (Zhang, Sridhar, et al. 2023). These control strategies predict the

future state and the controller rolls the system into these predicted states.

An alternative approach to forecasting the future state of the system is to

employ data-driven modeling techniques. This entails utilizing deep learn-

ing methods like long short-term memory (LSTM) to predict the system’s

future state based on historical data (Akowuah et al. 2021). Such data-

driven models can enhance the accuracy of forward recovery strategies,

making them more effective in mitigating the impacts of sensor attacks on

manufacturing processes.

Figure 2.7 demonstrates the forward recovery strategy with an example.

Similar to the example in the section 2.2.1 it looks only at the process level

controllers represented from P1 to Pn. The trajectory it takes to reach

from the idle position to the goal position is shown in the bottom section

of Figure 2.6. In this strategy after an attack is detected and recovery is

initiated the system predicts the future state of the system P ‘19 from the

present state of the system P20 and guides the system towards the predicted

states. The new trajectory represented as P ‘19 and P ‘20 is the path taken

by the forward recovery strategy to resume the normal operation of the

system.
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2.3 Challenges for developing a recovery strat-

egy for CMS

Adapting the forward-rolling approach for cyber manufacturing sys-

tems presents a significant challenge due to the distinctive automation

architectures in place. These manufacturing systems utilize a five-level

automation hierarchy depicted in Figure 1.4. At the process level, con-

trollers manage direct control of physical processes and equipment, in-

cluding sensors, actuators, switches, and field devices that interact with

manufacturing processes. These devices collect real-time data and pro-

vide feedback to the control system. Moving up to the operational level,

primarily Programmable Logic Controllers (PLCs), handle basic control

functions using processed sensor signals and control techniques to operate

actuators. This level allows for seamless movement of the manufacturing

systems. The supervisory control level oversees multiple operational levels,

coordinating their activities through systems like Supervisory Control and

Data Acquisition Software (SCADA). These systems allow operators to

monitor processes, make adjustments, and respond to alarms or abnormal

conditions. At the highest level, the Manufacturing Execution System

(MES) and enterprise resource planning integrate production planning,

scheduling, and resource allocation, bridging the gap between supervisory

control and business planning.

Information from sensors is exchanged across and within these hier-

archy levels, making it essential to consider all levels when implementing

the forward-rolling recovery strategy. Only a process-level recovery is not
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sufficient to successfully recover manufacturing systems. Communication

between all levels at the same time is desired. Hence a recovery strat-

egy should consider multiple manufacturing process, their sequence, and

production planning. In contrast, existing literature solutions typically

concentrate on individual processes such as DC motor control, quad-copter

navigation, or vehicle speed regulation. Furthermore, modeling cyber man-

ufacturing systems for recovery proves to be a challenge, given their dis-

crete, stochastic, and nonlinear nature, making it challenging to establish

closed-form solutions or precise mathematical representations. This stark

contrast in scale, complexity, and modeling challenges underscores the dif-

ficulties of adapting recovery strategies designed for cyber-physical systems

to the intricate and multifaceted world of cyber manufacturing systems.

2.4 Recovery from CMS perspective

An ideal recovery strategy for the cyber manufacturing systems should

go beyond restoring the impacted manufacturing systems state and extend

to ensuring continuous, uninterrupted operation. A conceptual recovery

model for the cyber manufacturing systems is depicted in Figure 2.8. The

x-axis in Figure 2.8 represents different stages of manufacturing systems,

such as warm-up time, cycle time, and cooling time. Under normal op-

erating conditions, predefined processes are executed through controllers.

However, in the event of a false data injection attack on sensors, these

controllers can lead the system to undesirable states. One straightfor-

ward approach to achieve recovery in such a situation is to shut down
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the process and restart it. However, as depicted in Figure 2.8, the warm-

up time consumes a significant amount of production time, making this

option less feasible. An alternative approach involves implementing the

forward-rolling approach, where the impacted manufacturing systems are

restored to their original operating conditions. This can be achieved by

developing alternate control algorithms. However, merely returning it to

a normal operating state is insufficient. In an automation hierarchy, any

disruption in the discrete events can cause other subprocesses to start and

stop abruptly. Therefore, the recovery strategy must ensure that the man-

ufacturing systems not only return to normal operating conditions within

the given constraints but also continue to operate seamlessly. This contin-

uous operation is achieved through recovery strategies in operational and

supervisory controllers. By implementing a comprehensive recovery strat-

egy that encompasses all these elements, a cyber manufacturing system

can recover from disruptions and maintain its operational efficiency while

minimizing production losses and downtime.

2.5 Problem formulation

The problem under investigation in this study pertains to the recovery

of cyber manufacturing systems, which poses distinct challenges compared

to the recovery of both pure cyber systems and cyber-physical systems.

Unlike typical recovery efforts in cyber systems, which primarily focus on

computational or data recovery, and recovery in cyber-physical systems,

which are geared towards physical systems recovery, the recovery challenge
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in cyber manufacturing systems is uniquely complex. The intricacies of

cyber manufacturing systems make it impractical to directly apply recov-

ery strategies proposed in the existing cyber-physical systems literature.

Furthermore, given the significant cost of the assets within cyber manufac-

turing systems, the potential consequences of false data injection attacks

leading the systems to unsafe states are catastrophic. To mitigate these

risks and losses, an effective recovery strategy for a cyber manufacturing

systems must encompass several key objectives:

• It should successfully recover the impacted manufacturing process,

ensuring that it returns to a normal operational state.

• The recovery strategy must ensure the continuous functioning of

the manufacturing systems, minimizing disruptions and production

downtime.

• The strategy should avoid the need to shut down the impacted ma-

chines, as this can result in substantial production losses.

• Importantly, the recovery plan should be designed to function with-

out requiring additional hardware in the form of sensors, streamlining

the implementation process and minimizing resource requirements.

2.6 Assumptions

Recovering cyber manufacturing systems poses a formidable challenge,

leading us to formulate specific assumptions to effectively address this

issue.
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• This paper primarily focuses on false data injection attacks capable

of manipulating sensor data.

• In instances where the attacker compromises either the software or

the network controlling the process and the operational level, this

solution is unable to recover such systems. The limitation arises from

the absence of alternative channels for transmitting information to

the systems in this study.

• The scope of this work assumes that only one attack occurs at a

time, with modification restricted to the data from a single sensor

on the systems.

• Should the attack result in hardware damage, recovery cannot be ini-

tiated, as the implementation does not incorporate backup hardware

for the recovery process.

• This work assumes there exists a detection strategy capable of de-

tecting attacks and generating alerts that can trigger the recovery

system.

In summary, the core problem addressed in this research revolves around

developing a recovery strategy for cyber manufacturing systems that effec-

tively addresses the unique challenges and requirements inherent to these

systems, ultimately safeguarding their operational integrity and mitigating

the potentially catastrophic consequences of false data injection attacks.
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Chapter 3

Recovery architecture for

cyber manufacturing

systems

The main goal of proposing the recovery architecture for cyber manu-

facturing systems is to serve as a general recovery framework that can be

applied to resume the functioning of any manufacturing systems that are

impacted by cyber attacks on sensors. This architecture includes the sys-

tems layer, attack identification layer, data auditing and detection layer,

and recovery layer. The functioning of each layer is explained in the fol-

lowing chapter.
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Figure 3.1: Recovery systems architecture for cyber manufacturing sys-
tems.

The recovery architecture for cyber manufacturing systems is depicted

in Figure 3.1 (Prasad, Mehr, and Y. Moon 2023). The layers within the

architecture are specifically crafted to facilitate the recovery of cyber man-

ufacturing systems in the event of sensor attacks. These layers include the

systems layer, attack identification layer, data auditing and detection layer,

and recovery layer. It is important to note that the attack identification

layer is considered optional. However, during the architecture’s develop-

ment, this thesis necessitated an analysis of potential attacks that could

harm the manufacturing process. Since not all attacks can be practically

demonstrated on a testbed, a ranking matrix was devised to guide the

selection of the attack. It is assumed in this work that a robust detection

mechanism is in place, and therefore, detection is not explicitly addressed.
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3.1 Systems layer

The functioning of the systems layer is to build cyber manufacturing

systems based on the automation hierarchy. This process assists in the

collection of relevant data from the cyber manufacturing systems. The

objectives of this layer are as follows:

• replicating the cyber manufacturing systems through developing a

small-scale version of the real factory,

• classifying the assets within the cyber manufacturing systems into

process level, operational level, supervisory level, plant level, and

management level

• identifying the discrete events at the process level and operational/supervisory

level.

The objectives are explained in depth in the following subsections.

3.1.1 Testbed Establishment

The first objective is achieved by designing a cyber manufacturing sys-

tems testbed. The testbed is shown in Figure 3.2. To replicate the real

cyber manufacturing systems, it is important to establish an objective for

the testbed. The objective of the testbed is to demonstrate the movement

of raw materials and finished goods within the factory.

The manufacturing testbed can be divided into two operations. The

first process is moving and picking-placing the raw material/finished prod-
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uct from/to the inventory/warehouse. The second process is making a

finished product from raw materials.

Picking and placing the raw material/ finished product from the inven-

tory/warehouse simulates the material handling process within a manufac-

turing plant. Manufacturing process parameters that control this process

include but are not limited to distance, positions, and availability status.

This is achieved by using ultrasonic sensors to collect data about different

positions (initial, final, rest, and current position), accelerometer sensors

to collect speed, and current sensors to collect the current supplied data

(assuming that we have a constant voltage supply).

For the second process, this testbed simulates the subtractive and addi-

tive manufacturing process. The testbed includes a CNC drawing process

to simulate a subtractive manufacturing process and a 3D printer to sim-

ulate an additive manufacturing process. Manufacturing process control

parameters that can be collected with sensors include but are not limited

to the geometry of layer-by-layer extrusion, speed, depth, density, current,

and temperature.

The security design of the testbed includes firewalls and intrusion de-

tection systems. Apart from this, there are no other security systems

placed, thus it is open to cyber-manufacturing attacks. The communica-

tion between cyber and physical entities is not encrypted. Therefore, a

simple Wireshark scan can assist attackers in obtaining information. The

firewall blocks traffic to the physical entities in the testbed. The firewall

allows the main controller access to communicate with the internet. The

main controller is registered under the IP address 192.168.60.01. The list
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Figure 3.2: Cyber manufacturing systems testbed.

of all the registered IP addresses is presented in Table 3.1. The main

controller is a computer that communicates with the webserver to send

control commands to the Raspberry PI. It is also responsible for storing

and retrieving information from the database. Hence, this setup allows

us to investigate, analyze different attack scenarios, and identify attack

vectors through which an attacker can penetrate the testbed.

Devices IP addresses
Main controller 192.168.60.01

3D printer 192.168.60.10
Drilling Process 192.168.60.20
CNC process 192.168.60.05
Raspberry pi 1 192.168.60.30
Raspberry pi 2 192.168.60.40
Testbed server 192.168.60.80

Table 3.1: Devices and their IP addresses inside the testbed.
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3.1.1.1 Classification of assets within the testbed

• Process level: Robotic arms, conveyor platform, automated guided

vehicle, manufacturing drawing process, 3D printer, Arduino, Rasp-

berry Pi, sensors

• Operational level/supervisory level: In the established testbed, the

operational and supervisory level is combined through OpenPLC

software that controls the Raspberry Pi. and Raspberry Pi controls

the Arduino IDE

• Plant/Management level: The user submits the order through a web-

based application. It implements a first-in first-out algorithm for

the orders submitted and the status of each process and order is

visualized in the plant controller.

3.1.1.2 Identifying discrete events for process level and opera-

tional level

The discrete events occurring at the process and operational level con-

troller are given in Table 3.2 and also shown in Figure 3.3. The green

solid circle in Figure 3.3 represents the operational level controller, and

the PLC controls the events given by column 2 of Table 3.2. The yellow

circle represents the discrete process level events given in column 3 of Ta-

ble 3.2 and is controlled by their respective controller. For example, the

process P11 represents an idle event at the process level controller for the

function of the S1 at the operational level.
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Figure 3.3: Discrete event at the process and operational level controller.
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Physical assets Discrete
events at
Operational
level con-
troller

Discrete events at
Process level con-
troller

R1

pick raw
material from
warehouse

Idle — Go to inven-
tory — Grab the box
— Pickup the box

place raw ma-
terial on AGV

Move to AGV — Place
on AGV — Go to in-
ventory

AGV
Start AGV Idle — Move to AGV

start — Move to AGV
end — Move to start

R2

pick raw
material from
AGV

Idle — Go to AGV
— Grab the box —
Pickup the box

place raw ma-
terial on con-
veyor

Move to conveyor —
Place on conveyor plat-
form — Go to AGV

Conveyor

Start con-
veyor

Idle — Move to P1 —
Move to P2— Hold the
process — Move to P3
— Move to P1

R3

pick raw
material from
AGV

Idle — Go to P3
— Grab the box —
Pickup the box

place raw ma-
terial on con-
veyor

Move to QC — Place
on QC — Go to P3

Table 3.2: Discrete event at the process and operational controller level.
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3.2 Attack identification layer

The second layer in the presented recovery architecture is the attack

identification layer. The objective of this layer is to investigate and conduct

common cyber attacks and monitor its impact on the cyber manufacturing

systems. Moreover to evaluate the severity of attacks on cyber manufac-

turing systems a unique ranking system is developed. Details of this layer

are discussed in the following section.

3.2.1 Investigation of cyber attacks

The cyber manufacturing systems established in systems layer is open

to cyber-attacks. The research investigates six cyber-manufacturing at-

tacks. These cyber-attacks include phishing attacks, sniffing and spoof-

ing attacks, malware attacks, cross-site scripting attacks, SQL data injec-

tion attacks, and DNS rebinding attacks. For the proposed work, three

goals are defined for the attackers to achieve. These consist of intellectual

property theft, premature failure of products, and modification of process

level controller’s sensor data to increase downtime of the production. De-

fined goals assist in analyzing the process of conducting the attacks on the

testbed. The six attacks are explained in depth in the following sections.

3.2.1.1 Phishing attack

The phishing attack is commonly used by cyber-attackers to steal infor-

mation (Mityukov et al. 2019). This attack is achieved through duplication

of the webpage and negligence by the user of the webpage. In this attack,
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Figure 3.4: Phishing attack on CMS.

the attacker creates a duplicate webpage. It visually appears similar to the

user, thus the users of the webpage do not verify the domain name of the

webpage. Users enter their login information in the duplicate webpage as-

suming it is the real webpage. Once submitted the attacker keeps a record

of the user’s login information and redirects users to the original webpage.

Thus attackers achieve their objective of stealing login credentials or user

information.

The attacker can implement this attack on the CMS testbed to steal

user credentials and use the stolen credential to alter the submitted file.

The attack is conducted in four steps as shown in Figure 3.4. First, the

attacker creates a duplicate webpage that appears visually similar to the

original webpage created for the users to submit the order in the testbed.

This is achieved by using similar colors, blocks, and fonts as that of the

original webpage. Second, the user enters the login information without
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Figure 3.5: SQL attack on CMS.

verifying the domain address of the webpage. Third, after the user sub-

mits the login information the attacker’s page stores the information and

redirects the user to the original webpage. Fourth, the attacker used the

stolen login information to enter the webpage and modify the submitted

order. The modification of orders includes modification of file submitted,

payment information such as credit card information, and historical infor-

mation of the orders submitted by the user. The attacker achieves two

goals through this attack. The stolen information results in intellectual

property theft and modification of the orders results in premature failure

of products or parts.

3.2.1.2 Structured query language (SQL) data injection attack

The structured query language (SQL) is a popular way to organize and

retrieve information from the database. The database includes informa-

tion such as past and present orders submitted, user personal information,

user’s payment history, and employee details (Alnabulsi, Islam, and Ma-

mun 2014). Attacking this database can lead to fulfilling the attacker’s

objective of intellectual property theft and the expansion of the attack

can result in premature failure of the parts.
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This attack can be conducted on the testbed in 4 steps as shown in

Figure 3.5. The attackers exploit the vulnerability within the syntax used

by the programmer to verify the user information from the backend. The

programmer failed to separate the code and data. Hence with correct

logical operations or SQL commands the attacker can get access to the

database. First, the attacker writes 1=1 in the block of the login page.

Second, since 1=1 is always true the SQL would output all the backend

information. This information is viewed by the attacker on the webpage.

Similarly, an attacker can use commands such as DROP to delete the

entire row or database. Thus, the attacker achieves two objectives by

implementing this attack on the testbed.

3.2.1.3 Malware attack

These encompass various types of attacks such as viruses, trojans, and

ransomware. The implementation of these attacks is made through USB,

fraudulent email, or a link clicked by an employee, as illustrated in Figure

3.6 (H.-m. Kim and K.-h. Lee 2022). Once the malware is inside the

computer system, it blocks access to the file in exchange for money or

deletes important system files to disrupt production.

The attack on the testbed can originate from an employee who ignores

a safety policy and clicks on a malicious link. After the user clicks on the

link, the malware enters the system and looks for potential vulnerabilities.

It identifies the important files and blocks the employee from accessing

those files in demand of money. If the employee provides money the at-

tacker decrypts the file. However, if the employee fails to comply with
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Figure 3.6: Malware attack on CMS.

the attacker’s demand the file is deleted. Hence, this attack can disrupt

production and steal client and employee information.

3.2.1.4 Cross-site scripting attack

Cross-site scripting (XSS) attacks are a type of data injection attack,

in which malicious scripts are injected into otherwise benign and trusted

websites (Pan et al. 2017). XSS attacks occur when an attacker uses a web

application to send malicious code, generally in the form of a browser-side

script, to a different end user. The end user’s browser has no way to

know the originality of the page and thus execute the script. Because it

considers that the script is from a trusted source, the malicious script can

access sensitive information retained by the browser and used with that

site.

Figure 3.7 shows how an attacker can use the cross-site scripting attack
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Figure 3.7: Cross site scripting attack on CMS.

to achieve the goal of intellectual property theft. The attacker sends an

email to an employee, which is clicked by the employee. It results in the

execution of malicious scripts. The malicious script then sent details of

the employee, which includes login information to the attacker’s database.

Thus, giving the attacker complete information to access the system, where

he/she can successfully modify the file submitted. Additionally, access

the control system where he/she can make the process behave erratically.

Thus, this attack achieves all three objectives. However, a countermeasure

called as same origin policy ensures that these attacks are avoided.

3.2.1.5 Sniffing and spoofing attack

Sniffing attacks on the testbed are conducted by intercepting the com-

munication between the main controller and physical entities. Since the
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data transmitted are not encrypted, a simple Wireshark scan results in

information, readable by the attacker (Kevin 2019b). Through the imple-

mentation of this attack, the attacker achieves the goal of accessing intellec-

tual information. This information includes process control information,

product information, and user information. The attack is expanded by

the attacker by spoofing the information. The spoofed information causes

abnormal behavior in the manufacturing process and premature failure of

the product.

Sniffing and Spoofing are common network attacks. Here the attacker

monitors the data of the packets and then modifies the data inside the

packets. Encryption-enabled packets are protected from modification.

However, in this research, these data are not encrypted thus a success-

ful attack can be conducted. The user submits an STL file on the web-

page The 3D printer has Wi-Fi that enables sharing of the file from the

controller machine to the 3D printer. The attacker conducts the attack

in three steps as shown in Figure 3.8: (i) the attackers look at all the

communication happening on the wireless network. They filter packets

and focus on communication between 192.168.60.01 to 192.168.60.10, (ii)

analysis is conducted on the packets to understand the information, and

iii.) a spoofing attack is conducted by sending a modified packet request

from the attacker’s machine to the 3D printer. Thus, the attackers are

successful in modifying the speed command of the G-code generated file

and thus making the 3D printer behave abnormally.
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Figure 3.8: Sniffing and spoofing attack on CMS.

Figure 3.9: DNS rebinding attack on CMS.
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3.2.1.6 Domain name system (DNS) rebinding attack

The domain name system is analogous to the phonebook for the inter-

net. It maps the domain name to the IP address (Kevin 2019a). Since an

IP address is unique for every network and device, they maintain unique

records. So, fetching them is easy whenever they communicate with any

web servers. In the testbed, the attacker can successfully gain access to

the web server. The web server controls the sequence of operations within

the testbed. These attacks cause maximum damage to the manufacturing

systems as they overcome the countermeasure implemented to overcome

the XSS attack.

This attack is demonstrated for the robotic arm in the testbed con-

trolled by Arduino. The control commands are communicated to Arduino

through Raspberry PI. In real manufacturing plants, these process is done

via PLC and SCADA systems. The robotic arm is controlled via a con-

troller machine. This controller machine interacts with the webserver to

ensure that the robot is in the sequence required to complete the task. The

testbed server is protected through firewalls and passwords. The firewall

blocks communication to the testbed server from outside the local network.

The password and same origin policy countermeasure within the webserver

prevents the cross-site scripting attack. Only the controller machine is al-

lowed to communicate to the outside network. The DNS rebinding attack

is conducted in two steps as shown in Figure 3.9: i.) the first step requires

attaching the password through the application programming interface

(API) and ii.) the second step involves sending an HTTP request to the
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robotic arm servers command API.

After the employee opens the request from the attacker’s website in a

browser, it sends a DNS request to the attacker’s resolver and retrieves the

address of the malicious server, which is 192.168.60.1. Once it is uploaded

to the employee browser, the malicious script in the attacker’s website at-

tempts to trigger another DNS resolution for its domain. However, the

resolver will return 192.168.50.2 instead of 192.168.60.01. So, the attacker

website is rebound to the controller machine 1 IP address. The mali-

cious script keeps sending requests to the attacker’s website that eventu-

ally reaches the private server. Since the testbed browser won’t recognize

these requests as cross-origin, the malicious website can read the data and

impart change in the control of the robotic arm 4. Therefore, the attacker

can change the sequence of movement of the robotic arm.

3.2.2 Ranking system

The six cyber-attacks selected for analysis provide an intuition on how

these attacks can be conducted on the testbed. Demonstration of each

attack on the testbed is infeasible. Hence, a metric system is developed to

evaluate cyber-attacks. Three metrics are established for each attack: the

sophistication of the attack, the ability of the attacks to bypass security

measures, and if the attacks are successfully conducted, the economic loss

to manufacturing plants.

First, the sophistication of cyber-attacks means the level of difficulty

the attacks possess. These attacks have low, medium, and high levels of
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difficulty. If an attack has a low level of difficulty, it receives a score of

1. Examples of such attacks are phishing and SQL data injection attacks.

If an attack spreads and impacts other processes a score of 3 is assigned.

These attacks are on a medium level of difficulty. Examples of such attacks

are cross-site scripting attacks, sniffing and spoofing attacks, and malware

attacks. However, if attacks are a combination of different attacks, it is

highly sophisticated and hence receive a score of 5. A DNS rebinding

attack is a combination of sniffing and spoofing and a cross-site scripting

attack. Thus it receives the highest score of 5.

Second, the attack’s ability to bypass the security system demonstrates

the skill of the attackers. The attacker receives a score of 1 for attacks that

cannot bypass the prevention system. Examples of such attacks are phish-

ing and SQL data injection attacks. However, if an attack is successful

but is detected by the detection system a score of 3 is assigned to the

attacker. These attacks include malware and cross-site scripting attacks.

If an attack successfully bypasses the detection and prevention systems,

it receives a score of 5. DNS rebinding and sniffing and spoofing attacks

bypass the security system of the testbed, hence it receives a score of 5.

Third, the attack’s ability to maximize the economic loss of the man-

ufacturing plant demonstrates the severity of the attacks. For, manufac-

turing plant data is the lowest priority, hence intellectual property theft

receives a score of 1. If an attack is successful in modification of the prod-

uct for premature failure receives a score of 3. However, the maximum

damage to any manufacturing facility is the loss of production hours. If

an attack is successful in incurring the loss of production hours by disrupt-
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ing the manufacturing process or damage to the machines, then it receives

a score of 5.

Based on the metric and scale defined above, a severity score for each

attack is calculated as shown in Table 3.3. SQL data injection attacks and

phishing attacks receive low scores as they are blocked by the prevention

system. However, if these attacks are successful due to users negligence,

then their impact on the testbed is limited to intellectual property theft.

Malware attacks are blocked by the prevention system too, but if the at-

tacks are successful their impact on the testbed is high. Cross-site script-

ing attack before the countermeasures were implemented, was impactful.

Therefore, these attacks had less impact on the testbed. Sniffing and

Spoofing attacks and DNS rebinding attacks bypass the security systems.

Both attacks successfully modify the sensor data and incur an economic

loss to the manufacturing facilities. Hence these two attacks have high

severity scores.

Attacks
Attacker

Goal
Metrics Total

Difficulty

of the

attack

Detection

and Pre-

vention

Cost

to the

manu-

facturing

systems

Phishing IP theft 1 3 1 5

56



Attacks
Attacker

Goal
Metrics Total

Difficulty

of the

attack

Detection

and Pre-

vention

Cost

to the

manu-

facturing

systems

Phishing

Damage

to prod-

uct

1 3 1 5

Damage

manu-

facturing

process

0 0 0 0

Severity Score 10

SQL

IP theft 1 1 1 3

Damage

to prod-

uct

1 1 3 5

Damage

manu-

facturing

process

0 0 0 0

Severity Score 8
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Attacks
Attacker

Goal
Metrics Total

Difficulty

of the

attack

Detection

and Pre-

vention

Cost

to the

manu-

facturing

systems

Malware IP theft 3 1 1 5

Damage

to prod-

uct

3 1 3 7

Damage

manu-

facturing

process

3 1 5 9

Severity Score 21

XSS IP theft 3 1 1 5

Damage

to prod-

uct

3 1 3 7

Damage

manu-

facturing

process

3 1 5 9
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Attacks
Attacker

Goal
Metrics Total

Difficulty

of the

attack

Detection

and Pre-

vention

Cost

to the

manu-

facturing

systems

Severity Score 21

Sniffing

and

Spoof-

ing

IP theft 3 3 1 7

Damage

to prod-

uct

3 3 3 9

Damage

manu-

facturing

process

3 3 5 11

Severity Score 27

DNS

IP theft 5 5 1 11

Damage

to prod-

uct

5 5 3 13
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Attacks
Attacker

Goal
Metrics Total

Difficulty

of the

attack

Detection

and Pre-

vention

Cost

to the

manu-

facturing

systems

DNS

Damage

manu-

facturing

process

5 5 5 15

Severity Score 39

Table 3.3: Severity score for the attacks.

3.3 Data auditing and detection layer

The function of this layer is to collect and monitor the process and

operational level control data for the cyber manufacturing systems. A

data collection plan includes a thorough analysis of sensors, the position

of sensors in the manufacturing processes, and the frequency of data to

be collected. An example of its implementation is using an accelerometer

sensor to measure the change in vibration of the CNC milling process.

In the testbed established in the systems layer, data collection can be

classified into four types: i.) cyber data, ii.) operational level data, iii.)
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process level data, and iv.) plant level data. The cyber data includes

the status of the job, resource allocation, network packet information, and

task scheduling. This data is captured through application and network

log files. The plant level data includes machine utilization rate, machine

availability, and overall equipment effectiveness. These data can be cap-

tured by counting the number of defective products, the number of total

production, the time study of the manufacturing process, etc., These are

formula-based metrics used by manufacturing plants to monitor the ef-

ficiency of the plant. The operation and process level data is captured

by attaching different sensors such as the current sensor, the temperature

sensor, the position sensor, the camera sensor, the acoustic sensor, and the

accelerometer sensor to the manufacturing processes.

Additionally, a detection algorithm is required to monitor and generate

an alert for anomalous behavior. There exist many detection algorithms as

explained in the introduction. These algorithms have demonstrated great

accuracy in detecting and generating alerts. Thus, this work does not

include a detection algorithm and assumes that there exists a detection

algorithm that generates alerts to trigger the recovery layer.

3.4 Recovery layer

The proposed framework is illustrated in Figure 3.10. The operation

of manufacturing systems consists of two modes: the default mode and

the recovery mode. In the absence of an attack or when an attack remains

undetected the manufacturing systems operate on the default controller.
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Figure 3.10: Recovery of CMS.

However, upon detecting an attack, the controller is switched to a recovery

mode. Within the recovery mode, there are two key controller components:

the process-level controller and a supervisor/operational-level controller.

Upon detecting a false data injection attack (also known as sniffing and

spoofing attacks) on the sensor, the system generates an alert to point at

the specific system and sensor under attack. The system then records

the last state of the system and transmits this information to the recov-

ery agent. This recovery agent is trained to navigate the system from its

current position to a predefined goal position, aiming to restore the sys-

tem’s normal functioning. Meanwhile, the supervisory/operational con-

troller operating on discrete events, delays the other process by the time

proportional to the time required by the agent for system restoration. This

approach allows the processes dependent on the impacted process to be in
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synchronization after the field-level recovery is achieved. Hence achieving

an overall manufacturing systems recovery.

3.4.1 Challenges with the recovery layer

The proposed work faces several challenges and it is important to ad-

dress them for the efficiency and reliability of the proposed recovery frame-

work.

Incorrect last recorded state: A significant challenge occurs when

the last recorded state of the cyber manufacturing systems is incorrect

due to the time delay between the attack occurring and detection (Prasad,

Swanson, and Y. Moon 2022). During this time the cyber manufacturing

systems may move into an undesired state. Hence using this recorded

state may lead the controller to an incorrect estimation. To overcome

this challenge the existing literature implemented a checkpoint protocol

Kong et al. 2018, recording the correct states and updating them with

new correct states as the system moved forward in time. While this seems

a reasonable approach when the final destination of the system is unknown.

However, in the proposed work we can leverage the fact that the predefined

operating conditions of the cyber manufacturing systems are known. As

a result, an agent can be trained to drive the system to these predefined

goal states, even if the starting state is incorrect.

Avoiding redundant agents: Ideally, each controller would require

its own agent, but this approach could lead to the development and train-

ing of redundant agents. Since the agents are trained to navigate the
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manufacturing systems to predefined goals, a more efficient solution is to

employ a singular agent for the impacted process. Meanwhile, the non-

attacked controller can continue to be guided by the default controller,

avoiding the need for multiple redundant agents.

Recording time delay for operation/supervisory controller:

Due to the discrete events within the supervisory controller it is a challenge

to know and add a time delay in real-time. Hence after training, this work

maintains a library of the average time required by the agent to recover

from a starting state to a final state. The library is stored offline and as

the agent starts the recovery we add this time delay from the library to

the respective process.

3.4.2 Reinforcement learning based recovery

3.4.2.1 Markov decision process

Developing a successful recovery strategy hinges on accurately estimat-

ing the future state based on the current state of the system, even when

the current state is compromised due to a false data injection attack on

the sensor. Despite the loss of information about the trajectory leading to

the current state, the current state itself remains relevant for making pre-

dictions state Sutton and Barto 2018. This characteristic aligns with the

Markov property, indicating that the recovery environment can be treated

as a Markov decision process (MDP). MDP is a mathematical framework

widely used to model problems with discrete time horizons, signifying the

presence of both a starting state and a termination state. The Markov
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property suggests that the future state of the system is conditionally inde-

pendent of the past given the current state. In the context of recovery from

cyber attacks, the current state, though compromised, provides sufficient

information for making predictions about subsequent states.

By formulating the recovery environment as an MDP, it becomes pos-

sible to apply MDP principles and methodologies to develop and optimize

recovery strategies. This approach allows for a systematic and mathemat-

ically grounded exploration of decision-making processes, aiding in the

design of effective recovery policies that take into account the dynamic

nature of the system and the uncertainties introduced by the attacks. An

MDP is defined by a five-state tuple (S, A, P, R, γ), where:

• S represents the set of states of the system s

• A is the set of control actions a

• P denotes the probability of transitioning from one state s to another

state s+1

• r is the reward assigned when a state transition occurs

• γ is the discount factor, a value between 0 and 1. If γ is 0, only

immediate rewards are considered, while if it’s 1, rewards in future

time steps are also taken into account.

r(s, a) = E [Rt+1|St = s, At = a] (3.1)
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The primary objective of MDPs is to maximize expected rewards given

by equation 3.1. The agent receives a reward Rt+1 for the action chosen

from a set of actions At = a given a state St = s. The expected reward is

given to the agent at the end of the episode. Two main approaches are com-

monly employed to solve this objective function: dynamic programming

and reinforcement learning. Dynamic programming involves breaking the

problem into simpler steps at different time points. Bellman’s principle of

optimality is a fundamental concept in dynamic programming Kirk 1970.

It asserts that an optimal policy has the property that whatever the initial

state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision. In

essence, it separates the current decision made at time step t from future

decisions t + 1 . Dynamic programming leverages recursion for expected

rewards to find the optimal solution. However, a key challenge lies in de-

termining the state transition probabilities, which can be computationally

expensive, even when the system model is known Sutton and Barto 2018.

This challenge often leads to the exploration of alternative approaches,

such as reinforcement learning, which can be more practical and effective

in some scenarios.

3.4.2.2 Reinforcement learning

Reinforcement learning has experienced a notable surge as an alterna-

tive control framework, offering a sample-based approach to address the

limitations of traditional model-based approaches Sutton and Barto 2018.

What sets reinforcement learning apart from other machine learning algo-
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rithms is its distinctive methodology — it constructs its dataset through

active exploration and exploitation of the environment. In this paradigm,

an agent is trained to achieve a specific goal while receiving rewards for

favorable actions and penalties for unfavorable ones. The agent’s perfor-

mance is solely assessed based on a scalar reward function, which quantifies

the success or failure of its actions in the learning process. This unique

characteristic of reinforcement learning makes it a powerful and adaptable

tool, particularly suitable for scenarios where explicit models are challeng-

ing to define or compute. In the context of reinforcement learning the

agent is represented as a 4-tuple (S, A, R, γ), where:

• S represents the set of states of the system s

• A is the set of control actions a

• R is the reward assigned when a state transition occurs

• γ is the discount factor, a value between 0 and 1. If γ is 0, only

immediate rewards are considered, while if it’s 1, rewards in future

time steps are also taken into account.

The operation of reinforcement learning can be illustrated through a

simplified example, as depicted in Figure 3.11. In this scenario, the agent,

acting as the controller, aims to pick and place objects within a tray. At

time t0, the agent observes the state of the objects in the environment

(St). Upon this observation, the agent selects an action from the set of

control actions (At), which in this case involves adjusting the current or

voltage to manipulate the robotic arm’s motor. Following the execution
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Figure 3.11: Toy example of reinforcement learning

of these actions, the agent receives a reward (Rt+1) determined during the

modeling process, along with the next state of the system.

In each time step, the agent establishes a mapping from states to prob-

abilities of selecting actions, known as the policy (πt(a|s)). Reinforcement

learning algorithms dictate how the agent adjusts its policy based on its

experiences. Therefore, many reinforcement learning algorithms involve

estimating the value function, as defined by equation 3.2, or the state-

action value function, as given by equation 3.3. Estimating value functions

enables the agent to understand the value of being in a particular state s

following a policy π while estimating state-action value functions enables

the agent to understand the value of taking a specific action a in state s

following a policy π.
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vπ(s) = Eπ [
∞∑
k=0

γkRt+k+1|St = s] (3.2)

qπ(s, a) = Eπ [
∞∑
k=0

γkRt+k+1|St = s, At = a] (3.3)

Thus, in the next chapter, this thesis demonstrates the functioning of

the recovery architecture with emphasis on the recovery layer.
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Chapter 4

Experimental validation

To assess the performance of recovery architecture the following chap-

ter conducts multiple experiments. The experimental setup consists of real

and virtual cyber manufacturing systems, setup, and training of reinforce-

ment learning agents. The chapter ends with establishing key metrics to

validate the performance of the recovery architecture.
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box
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Place on QC → Go to P3

Send G code 

for the order

Figure 4.1: Experiment: Cyber manufacturing systems.

4.1 Systems layer

Cyber manufacturing systems are a complex and integrated framework

that encompasses a range of processes, resources, and interactions, all

working synchronously to produce the desired end product. From the

testbed demonstrated in Figure 3.2 this work selects a portion of two

robotic arms, a conveyor belt, and a drawing manufacturing process as

depicted in Figure 4.1. These components operate in synchronization to

manufacture products based on client specifications. The discrete events

are simulated at the process level and operational/supervisory level.

In Figure 4.1 for the process level, there exists an independent con-

troller designed to perform discrete process events. For example, the pick

raw material discrete event at the operational level for robotic arm 1 has

four process discrete events: Idle, go to inventory, grab the box, and pick
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up the box. The operational/supervisory has eight discrete events: pick

raw material, place raw material, moving conveyor to P2, hold conveyor

for the manufacturing process, move conveyor to P3, pick finished prod-

uct, move conveyor to P3 and place finished product. This chapter uses

programmable logic controllers to sequence the operational/supervisory

discrete events. To mimic the operations of future manufacturing systems,

client orders are submitted through a web-based application developed in

the Python programming language. Upon receiving these orders, they are

stored in a local database and sequenced according to the first-in, first-out

algorithm. This modeling approach enables to emulate the behavior of

future manufacturing systems.

In this simulation, all physical systems, except the drawing process,

are modeled using the Python programming language, in conjunction with

independent controllers and programmable logic controllers. The simula-

tion is conducted over an 8-hour workday. Each step in the simulation

represents a millisecond, signifying that every control decision made by

the controller occurs at the millisecond level, ensuring precise control and

monitoring of the manufacturing processes.

4.2 Attack identification layer

This work considers malicious attackers capable of executing false data

injection attacks on sensors through sniffing and spoofing attacks. Specif-

ically, this attacker can manipulate sensor data by introducing alteration

before the data reaches the controller, thereby compromising the manufac-
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turing systems’s integrity. The attack designed in this paper can randomly

select one sensor from the simulator and initiate a false data injection at-

tack by adding or subtracting the sensor measurement before processed

by the controller. The attacker operates with two primary objectives in

mind:

Threat 1: Driving the system towards physical limits: One of

the attacker’s goals is to push the manufacturing systems to their physical

limits. The attacker achieves this goal by adding positive values to the

sensor measurement. This can result in increased stress and potential

wear and tear on the system’s components, potentially causing long-term

damage or reducing the system’s operational lifespan.

Threat 2: Forcing system shutdown: The attacker’s second objec-

tive is to instigate a system shutdown. The attacker achieves this goal by

adding negative values to the sensor measurement. The intent is to disrupt

normal operations and potentially cause production downtime, leading to

financial losses for the organization.

Both of these attacker objectives can have detrimental consequences for

the manufacturing systems, ranging from reduced equipment lifespan and

operational inefficiencies to costly shutdowns and potential safety hazards.

4.3 Data auditing and detection layer

The manufacturing control process parameter received by the conveyor

is the distance and time to hold. These parameters are sent in the form

of electrical signals to the motor controlling the conveyor belt. Assuming
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a constant voltage supply, there are three parameters to be collected: i.)

current, ii.) position and iii.) time to hold the process. Gikfun ACS712

current sensors and HC-SR04 ultrasonic sensors collect current and posi-

tion data. The time to hold the conveyor platform depends on the time

required to finish the manufacturing process. These data are supplied to

the detection algorithm. Moreover, the parameters received by the robotic

arm 1 and 2 are position in degree and current. This information is cap-

tured by an encoder attached to the machine and Gikfun ACS712 current

sensors.

The success of this work depends on a robust detection algorithm (Be-

likovetsky, Solewicz, et al. 2017; Prasad and Y. Moon 2021; Wu and Young

B Moon 2019). However, because it is extensively studied in literature we

do not study it in this thesis.

4.4 Recovery layer

The reinforcement learning framework serves as a powerful abstraction

for addressing the challenge of goal-directed learning through interaction

(Sutton and Barto 2018). In the context of this paper, the objective of the

recovery agent is to navigate the cyber-attacked manufacturing systems

back to their predefined conditions, making the reinforcement learning

framework well-suited for this problem.

The development of the recovery agent, depicted in Figure 4.2 is an

enlarged view of the recovery agent from Figure 3.10. It plays a crucial

role in restoring the cyber-attacked manufacturing systems to their desired
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Figure 4.2: Reinforcement learning-based recovery agent (Enlarged view
of the Figure 3.10).

state. At the heart of this process is the Q-learning algorithm, an integral

part of reinforcement learning that enables the agent to learn a policy,

mapping states to actions, through iterative exploration and exploitation.

The agent initiates its recovery process from the last recorded state of the

system, serving as its starting point. The primary objective of the recovery

agent is to navigate the system back to its predefined operating conditions,

overcoming the disruptions caused by cyber-attacks.

We implemented two different approaches for training reinforcement

learning-based recovery agents. The game environment Unity was used

to simulate conveyor movement within the factory and a manufacturing

simulator was developed in Python that constitutes an operational level

controller and process level controller. Each of these processes is explained

in detail in the following section.
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4.4.1 Game environment for training

Reinforcement learning has shown significant results in the gaming en-

vironment (Mnih et al. 2013; Silver et al. 2018; Lample and Chaplot 2017),

and hence we explored different gaming environments that would allow

us to simulate the cyber manufacturing systems. Reinforcement learning

recovery agents have characteristics such as exploration and exploitation

(Sutton and Barto 2018). Exploration allows the agent to explore the state

space and exploitation allows the agent to use the actions that result in a

maximum cumulative reward.

Raw ma-
terial on
platform

Manuf.
process
status

Finished
object
removal
status

Current
position
of the
agent

Sequences re-
quired by the
agent to reach
the goal

1 0 0 [P1, P2] P2 - P3 - P1
1 1 0 [P2, P3] P3 - P1
0 1 1 [P3, P1] P1

Table 4.1: Agent’s observation for the raw material on the platform, man-
ufacturing process status, finished object removal status.

Here, we demonstrate the simulation of a conveyor platform where

the agent’s goal is to correct the position of the conveyor platform by

maximizing the cumulative reward. Because of these characteristics, it is

dangerous to train the agent on the physical system and hence a virtual

recovery agent is developed inside a Unity3D platform.

The process of developing a recovery agent through this process is ex-

plained in Figure 4.3. The first step in this process is to identify variables of

interest that the agent should observe from the environment. After iden-
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Current
position
of the
conveyor

Future
position

Reward
assigned

Simulation
status

[P1, P2] If it goes
to P1

-1 Simulation
ends

[P1, P2] If it goes
to P2

+0.3 Simulation
continues

[P2, P3] If it goes
to P2

-1 Simulation
ends

[P2, P3] If it goes
to P3

+0.3 Simulation
continues

[P3, P1] If it goes
to P3

-1 Simulation
ends

[P3, P1] If it goes
to P1

+0.4 Simulation
continues

Table 4.2: Agent’s observation for the raw material on the platform, man-
ufacturing process status, finished object removal status.

tifying the variable, we develop a computer-aided design (CAD) model

of the conveyor platform. Solidworks is used to create the CAD model

and then export the assembly into a unified robotics description format

(URDF) (Feder, Giusti, and Vidoni 2022). This format allows Unity3D to

read the CAD model from Solidworks and use it for simulation (Akharas,

Hennessey, and Tornoe 2020). Unity3D has a communicator that connects

with Python to allow training of the recovery agent. Inside Unity3D, the

recovery agent uses an MLAgents package to communicate with the con-

veyor platform. The MLAgents package requires to define the character-

istics of the agent (Juliani et al. 2020).

The characteristics of the agent are defined as the following:

1. Agent: The agent is the conveyor platform. Inside MLAgent’s
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The current
position of
the recovery
agent

Checkpoint
is ON for
following
positions

End simula-
tion is ON
for following
positions

[P1, P2] P2 and P3 P1
[P2, P3] P3 P2
[P3, P1] P1 P3

Table 4.3: Checkpoint and end simulation.

Parameters Values (t)
Trainer type Proximal Policy Opti-

mization (PPO)
Batch size 10
Learning rate [0, 1]
Beta 5.0e-4
Epsilon 0.2
Lambda 0.99
Hidden units 128
Number of layers 2
Gamma [0, 1]
Summary frequency 1000
Maximum steps 3000

Table 4.4: Training parameters for the recovery agent.

python package, this agent is responsible for generating observations

and performing actions it receives from behavior.

2. Behavior/Action: The action in our experiment is to increase or

decrease the current supplied to the platform. It is continuous data.

In each step, the agent is given randomly one action to perform from

these sets of possible actions.

3. State/Observation: The agent observation in the experiment is a

tuple of:
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Figure 4.3: Virtual environment training for reinforcement learning based
recovery agent inside Unity3D.

• Current position of the conveyor platform: This position is the

starting position of the conveyor at each episode.

• Current supplied: This is the action taken in the last time step,

and is appended to the state/observation because this assists in

the agent’s learning.

• Length of the conveyor: The total length of the conveyor. In

our simulation, the total length of the conveyor is 1000 mm.

• Distance to goal: In our simulation, there are three goal posi-

tions P1, P2 and, P3. In our experiment, three new variables

are created that generates the current status of the conveyor

platform and future sequences that the agent must follow to

reach the goal. These three variables are the raw material on

the platform, manufacturing process status, and finished object
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removal status.

• Raw material on the platform: This variable can take two values

0 and 1 as shown in Table 4.1. This is provided through the

pressure sensor placed on our conveyor platform. This value is

zero if there is no material on the platform and 1 if there is

material on the platform.

• Manufacturing process status: This variable takes three values.

The status can be 0, 1, or 2. Here, 0 indicates that the process

is not started, 1 indicates that the process is currently going on

and 2 indicates the process is finished. To simplify the model

in this experiment only 0 and 1 are considered as shown in

Table 4.1. Here 0 is for the process not started and 1 for the

manufacturing process is finished.

• Finished object removal status: These variable takes two val-

ues as shown in Table 4.1. The status is 0 if the object is not

removed and is still on the platform and 1 if the object is re-

moved.

4. Reward: The agent’s goal in our simulation is to maximize the

reward earned by the agent. In any given situation the agent would

randomly start in one of these three positions [P1, P2], [P2, P3],

and [P3, P1]. Here [P1, P2] represents that the agent is between P1

and P2. Similarly [P2, P3] and [P3, P1] represents that the agent

is in between P2 and P3 or P3 and P1. From the start positions

and the actions performed by the agent, the agent would receive
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rewards/punishment based on the positions they end up in. These

positions and rewards assigned are presented in Table 4.2.

5. Environment: The environment for the agent is the whole conveyor

platform. Moreover, the challenge in this experiment was to assign

rewards for the position and end the simulation if it goes to undesired

positions. Hence two variables have been created that turn on the

rewards and end the simulation if the conveyor reaches an undesired

position. These two variables are shown in Table 4.3. For example,

if the agent starts in the current position [P1, P2], the reward is ON

for the position P2 and P3, and the agent is motivated to move to

position P2 and then to position P3. However if the agent decides

to move in the other direction i.e, P1 the agent is penalized by re-

ceiving a negative reward and the simulation end is turned ON for

the position P1.

6. Algorithm: The reinforcement learning algorithm implemented is

OpenAI’s proximal policy optimization (PPO) (PPO). The choice

of using PPO for the experiment was made due to its ease of imple-

mentation and tuning of hyperparameters. Reinforcement learning

includes many dynamic parts compared to supervised learning and

hence optimization via policy gradient is a challenge. To overcome

this PPO is proposed by OpenAI that allows ease of implementation

and tuning of hyperparameters. The training parameters used in

this experiment are provided in Table 4.4.
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Figure 4.4: Training: Conveyor starting state between 10-15cm.

Figure 4.5: Training: Conveyor starting state between 10-75cm.
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4.4.1.1 Result

The goal of the recovery agent is to control the conveyor platform from

the three possible positions [P1, P2], [P2, P3], and [P3, P1] and continue

the sequence given in the Table 4.1. These conveyor platform positions are

given to an agent as a random starting state at each episode. The random

starting state represents an attacked conveyor platform position the agent

would receive as input. Since there is no way to determine the attacked

conveyor platform position before the attack, the randomness allows the

agent to be trained for all possible attacked conveyor platform positions.

The recovery agent with no prior knowledge about the conveyor platform

starts with random actions, i.e., increasing the current or decreasing the

current. This leads the conveyor to move in a forward direction or back-

ward direction. One episode is one simulation, where the simulation ends

if the agent moves the conveyor platform on one of the positions mentioned

in Table 4.3.

Figures 4.4 and 4.5 illustrate the training of the agent from any initial

state. Moreover, the fine-tuning of hyperparameters demonstrates a sig-

nificant influence on the agent’s training. Although the maximum reward

attainable in a simulation is 200, it varies depending on the agent’s starting

state due to changes in rewards. The agent’s loss decreases as expected,

representing the gradient progress of the agent toward normal functioning.

The optimal reward is achieved with a hyperparameter combination of a

discount rate of 0.01 and a learning rate of 0.5, as depicted in Figure 4.5.

Despite conventional literature suggesting a preference for a lower learning
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rate, our choice of 0.5 is justified by the agent’s heavy penalty for mov-

ing towards an unsafe state. A higher learning rate enables the agent to

rapidly learn the environment and map corresponding actions

4.4.1.2 Limitations

The game environment assists in agent training and allows the agent to

train efficiently, hence reinforcement learning has shown amazing results

within the game simulation environment. However, there are challenges in

developing such an environment:

• The Manufacturing environment is very complex to be constructed

within the game environment. To develop the conveyor platform in

the game environment, this work had to decompose the real conveyor

from the testbed and measure the length of the conveyor platform,

the length of the belt, the motor implemented, and other physical

characteristics of the conveyor.

• The Unity platform does not have an in-built operational level con-

troller. To develop such a controller or synchronize the whole manu-

facturing systems multiple URDF files are required to be created in

Solidworks and imported within the Unity environment.

• Communication among all the process level manufacturing controllers

is required for a successful recovery, which is challenging to develop.

It requires each process to be independently controlled by the rein-

forcement learning agent and hence multi-agent system is out of the

scope of the work.
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Figure 4.6: Code Snippet: Import library for R1.

4.4.2 Cyber Manufacturing simulator in Python

To overcome the challenges mentioned in section 4.4.1.2 an alternate

approach is used for simulating a cyber manufacturing systems. This ap-

proach uses Python to develop a cyber manufacturing systems simulator.

The manufacturing simulator consists of two robotic arms, one conveyor,

and a drawing manufacturing process. Our goal is to simulate the oper-

ational level controller and process level controller and hence we develop

the simulator from scratch.

4.4.2.1 Simulation of robotic arm 1

. Robotic arm 1 has 6 servo motors and hence the first step in this

simulation is to import the library servo motors. These servo motors are

the actuators of the robotic arm. Additionally, to visualize the working of

the motor we import the library from matplotlib as shown in Figure 4.6

The next step is identifying the limitations of each motor and the time

delay of the motors. To simulate this step we performed trial and error

on the real testbed shown in Figure 4.1 and identified the limitations for

each motor as shown in Figure 4.7. On average, we choose a time delay

for each step taken by the servo motor as 20 milliseconds. This time delay

is learned through experiments conducted on real systems. These time

delays are part of the servo class.

85



Figure 4.7: Code Snippet: Motor constraints for R1.

We construct a class AGVtoCon shown in Figure 4.8 to develop the

control algorithm that will move the robotic arm from an idle position to

pick the raw material and place it on top of the conveyor platform. This

class has an initialization and a servo position module. Within the initial-

ization module, we define the idle state of each of the motors and create

a dictionary to store the information. The second module is the servo

position and this module is the controller of the robotic arm. This module

input is the position of base, shoulder, elbow, wrist-vertical, wrist-

rotation and gripper’s along with the dictionary position. Within

this module, we define the sequence in which the motor would align itself

to perform the picking and placing operation. The module returns the tra-

jectories traveled by the motor and the final position of the motors during

each operation.
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Figure 4.8: Code Snippet: AGVtoCon class for R1.

4.4.2.2 Simulation of robotic arm 2

To replicate the robotic arm 2 from the testbed we include only 5 servo

motors. The development of code is similar to the one described in 4.4.2.1.

The code is shown in Figure 4.9.

4.4.2.3 Simulation of conveyor

The conveyor simulator includes importing a stepper motor library

because the testbed uses the stepper motor. The class of conveyor shown

in Figure 4.10 includes the initialization and conveyor module. Within the

initialization module, we define the steps of the stepper motor which is 200

according to our real testbed. The conveyor module mimics the behavior

of the real system by either moving, stopping, or holding the platform.

The modules take input as positions, the status of manufacturing, and the

status of the robotic process, along with the time required to finish the

robotic 2-picking process and time to hole the manufacturing process.

Figure 4.11 shows the movement of the conveyor platform. On the

x-axis is the time and the y-axis is the distance travelled in mm. The
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Figure 4.9: Code Snippet: ContoQC class for R2.

conveyor system has four tasks and three positions as shown by the data

collected from the ultrasonic sensor in Figure 4.11:

• moves to the manufacturing process after the raw material is placed

on the platform [P1 - P2]

• holds the conveyor platform until the manufacturing process is com-

pleted [P2 and Hold],

• move the platform to the warehouse robotic arm [P2 - P3],

• return to the start position to receive the next raw material [P3 -

P1]

The positions P1, P2, and P3 referred to in Figure 4.11 represent the

first, second, and third positions of the conveyor platform. The trajectory

tracked by virtual conveyor as shown in Figure 4.12 is similar to the real
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Figure 4.10: Code Snippet: Conveyor.
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Figure 4.11: Data from the ultrasonic sensor.
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Figure 4.12: Virtual conveyor.

Figure 4.13: Code Snippet: Library import in Central Controller.

conveyor. Hence this virtual environment can be used by the reinforcement

learning agent to be trained.

4.4.2.4 Simulation of operational level controller

While the above controller simulates the behavior of the process level

controller it is paramount for the success of the recovery layer that it also

controls the sequence of operation. Hence the simulation of operational

controllers allows us the flexibility to develop such a simulator.
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Figure 4.14: Code Snippet: Position of Robotic Arm defined within central
controller.

Figure 4.15: Code Snippet: Trajectories and position captured of the
robotic arm 1.

Figure 4.16: Code Snippet: Positions for conveyor platform.

92



Figure 4.17: Code Snippet: Positions and trajectories capturing for robotic
arm R2.

To develop this simulator we begin by importing the library of stepper

motor, servo motor, robotic arm 1, robotic arm 2, and conveyor simulator

developed in sections 4.4.2.1, 4.4.2.2, 4.4.2.3 as shown in Figure 4.13. We

defined a module central-controller shown in Figure 4.14 that performs

the following operation:

• R1 pickup and drop object: In the real testbed we know the

position of the object and hence we define a variable that takes this

position and assigns it as an input to the R1 controller. This is

demonstrated in Figure 4.14, 4.15.

• Conveyor moves to P2 position: Upon receiving the object on

the platform we send a binary signal, similar to led glowing in the

testbed. These indicates that the object is placed on the platform

and the conveyor can move to the position P2. Since in the testbed

through ultrasonic sensor we know the position, we hard code this

value in the simulation as shown in Figure 4.16.

• Manufacturing process. Developing a simulator of a drawing pro-

cess is difficult also it is not important for this work hence we get to
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know the time for processing from the G-code software and use that

as input in the testbed and also in the simulator.

• Conveyor moves to P3 position: Upon finishing the manufac-

turing process the conveyor is moved to P3. Through the ultrasonic

sensor, we get the position and hardcode this number in our simula-

tor. This is demonstrated in Figure 4.17.

• R2 pickup and drop finished product: The robotic arm 2 is

given a binary signal to represent the platform reaching P3 and this

initiates the robotic arm. Like R1 we are aware of these numbers

through the real testbed. The central controller tells the robotic arm

2 to pick the product from P3 and drop it in QC.

• Conveyor moves to P1 position: Upon R2 removing the product

from the platform the platform moves to P1. This is demonstrated

in Figure 4.17.

4.4.2.5 Simulation of recovery agent

In this section, we discuss the characteristics of developing an environ-

ment for reinforcement learning agents. The crucial elements of observa-

tion, rewards, and actions are defined for the above-defined simulator as

follows:

Environment: The manufacturing systems simulation consists of two

robotic arms, one conveyor and a manufacturing process. This constitutes

the agent’s environment. Additionally, the sensors providing information

on positions, current, and the status of discrete events within the plant
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are integral components of the environment. Table 4.5 shows the detailed

environment the agent observes. In the Table, the discrete events are

represented as binary information.

Machines Observations
Robotic arm 1 {P1, . . . P6} in degree

{I1, . . . I6} in mA
Robotic arm 2 {P1, . . . P5} in degree

{I1, . . . I5} in mA
Conveyor belt {P1, P2, P3} in mm

{I1} in mA
Manufacturing
process

Time to process in s

Discrete events R1 pickup object: {1,0}
R1 drop object: {1,0}
Conv moves to P2 position: {1,0}
Manufacturing process: {1,0}
Conv moves to P3 position: {1,0}
R2 pickup finished product: {1,0}
Conv moves to P1 position: {1,0}
R2 drop finished product for QC: {1,0}

Table 4.5: Agent’s environment.

State/Observation Space: Considering the complexity of the envi-

ronment, it is essential to provide the agent with a subset of information as

its state/observation space. In this paper, the agent observes the informa-

tion only for the sensor detected by the detection system. Additionally, the

agent receives information about the discrete event to which the detection

belongs. For example, if the conveyor moves to P2 position is currently

in motion then after detection the agent will receive: [(Discrete events:

[0,0,1,0,0,0,0,0]),(current state of the conveyor: P ′
1).

1,(Goal state: P2)].

1In Table 4.5 P1 is the true state, however since after the attack the state is not true and hence
represented as P ′

1.
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Action Space: The action space is straightforward, encompassing dis-

crete control steps such as increasing the current, decreasing the current, or

maintaining it at a constant level. In the environment, this is represented

as 0,1 and 2 numbers. However inside the controller simulator, number 0

corresponds to decreasing the current, 1 corresponds to constant, and 2

corresponds to increasing the current.

Reward: Given the goal-directed nature of the learning, any state

other than the goal state is deemed incorrect. Therefore, the agent receives

a reward only when it reaches the goal state; otherwise, it incurs a negative

reward in all other states. The reward function is defined in equation 4.1,

where Tgoal is the predefined condition and Tact is the actual status of the

agent. The agent is given a positive five reward as depicted in 4.2 if the

difference between the current state of the system and the goal state of

the system is within the bounds and negative elsewhere. This approach

ensures that the agent is penalized for each action taken outside the goal

state, aligning with the overarching goal of returning the manufacturing

systems to its predefined conditions.

r = Tgoal − Tact (4.1)

where; 
r = 5 −2 ≤ r ≤ 2

r = − | r | else

(4.2)

Algorithm: The Q-learning algorithm is employed iteratively until

the agent successfully reaches its goal (Dietterich 2000). Concurrently, a
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Q Table is constructed to store the learned values that guide the agent’s

decision-making process. Simultaneously, a library is developed to track

the average time required by the agent to reach its goal during the learning

process. This library is utilized by the supervisory/operational level recov-

ery. During the training phase, the starting state of the system is randomly

selected from the predefined physical limits associated with each actuator.

This randomness in the selection process ensures that the agent encoun-

ters a diverse set of starting conditions, mirroring the potential scenarios

it might face in real-world applications. This approach helps the agent

generalize its learning, making it robust across various initial states. It is

a model-free algorithm and learns the value of an action in a particular

state by using equation 4.3. In this equation Q(s, a) represents the Q-

value for state-action pair (s, a), α is the learning rate, r is the immediate

reward, γ is the discount factor, s′ is the next state, and a′ is the action in

the next state. The Q Table is updated as the agent explores and exploits

the environment.

Q(s, a) = (1− α) ∗Q(s, a) + α ∗ [r + γ ∗max(Q(s′, a′))] (4.3)

This work uses the OpenAI’s gym environment (Brockman et al. 2016)

to access the action space and observation space. The recovery agent

includes four modules as shown in Figure 4.18:

• Initialization: In this module the observation space and action

space are defined.
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Figure 4.18: Open AI environment.

• Step: In this module the simulator defined in section 4.4.2.1, 4.4.2.2,

4.4.2.3 , 4.4.2.4 are communicated with agent. This forms the en-

vironment where rewards are defined for the action taken by the

agent.

• Render: This work does not use rendering.

• Reset: The reset function allows the functioning of termination and

truncation. We implement constraints in the form of motor limits

and time limits. If crossed the environment is terminated.

4.5 Results

The Q learning algorithm has two main hyperparameters, discount

rate and learning rate. Hence our work tested different combinations of

these hyperparameters to identify the combination that would work well

for the testing of the agent. Figure 4.19 demonstrates the average reward

earned by the agent for two different starting conditions: closer to shutting
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Figure 4.19: Average reward earned by the agent.

down the plant and closer to the physical limitations of the motor. The

combination of a learning rate of 0.05 and a discount rate of 0.001 achieves

the best result. Since the agent had to control the systems within 200 time

steps, an observation is that a lower learning rate would flourish only if

the training time is increased.

To assess the performance of the recovery strategies outlined in this pa-

per, comparisons are made against two reference benchmarks: (i) restart-

ing the process and (ii) a manually tuned PID (Proportional-Integral-

Derivative) controller. This comparative analysis will provide valuable

insights into the effectiveness of the proposed recovery strategies, enabling

manufacturers to make informed decisions about their adoption and im-

plementation.
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4.5.1 Recovery from threat 1

Threat 1 involves false data injection attacks on sensors, pushing the

manufacturing systems towards the physical limits of the actuator. In Fig-

ure 4.20 and 4.21, the recovery strategies of the recovery agent and PID

controller are demonstrated as they restore the system states to normal

conditions. The PID controller’s approach comprises a two-step recovery

process. Initially, it brings the system back to a checkpoint state, repre-

senting the last known safe state, before resuming normal operation. In

contrast, the reinforcement learning agent, trained to navigate directly

from the starting state to normal operation, executes a more direct recov-

ery path. As a result, the agent exhibits greater speed compared to the

manual PID controller. The implementation of a time delay library, as

evident in Figure 4.22 and 4.23, serves a crucial role in pausing discrete

events. This ensures seamless movement and operational continuity, even

in the face of disruptions caused by false data injection attacks on sensors.

4.5.2 Recovery from threat 2

Threat 2 represents false data injection attacks on sensors intended to

move the manufacturing systems toward shutting down the plant by driv-

ing the sensor values toward zero. In Figure 4.24, the recovery strategies of

the recovery agent and PID controller are depicted as they bring the sys-

tem states back to normal conditions. Once again, the time delay library,

illustrated in Figure 4.25, proves instrumental in pausing discrete events,

ensuring a smooth transition despite the false data injection attack on the

100



Figure 4.20: Process level recovery of robotic arm 1 from threat 1 with no
recovery, reinforcement learning recovery, PID recovery.

Figure 4.21: Process level recovery of robotic arm 2 from threat 1 with no
recovery, reinforcement learning recovery, PID recovery.
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Figure 4.22: Operational level recovery of CMS from threat 1 with no
recovery, reinforcement learning recovery, PID recovery. The lime color
represents the normal functioning of manufacturing systems. The black
color represents recovery with reinforcement learning and the orange color
represents recovery with PID.

Figure 4.23: Operational level recovery of CMS from threat 1 with no
recovery, reinforcement learning recovery, PID recovery. The lime color
represents the normal functioning of manufacturing systems. The black
color represents recovery with reinforcement learning and the orange color
represents recovery with PID.
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Figure 4.24: Process level recovery of robotic arm 1 from threat 2 with no
recovery, reinforcement learning recovery, PID recovery.

sensor. The impact of manual tuning PID versus reinforcement learning

is notable, emphasizing the efficiency of the reinforcement learning agent

in such recovery scenarios.

The recovery agent’s efficiency in swiftly restoring the system to normal

conditions, coupled with its seamless handling of time delays, positions it

as a robust solution for mitigating the impact of Threat 1 and Threat 2.

The direct path taken by the reinforcement learning agent showcases its

effectiveness in recovering from false data injection attacks on sensors in

manufacturing systems.
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Figure 4.25: Operation level recovery of cyber manufacturing systems (R1)
from false data injection attacks on sensors (Threat 2). The lime color
represents the normal functioning of manufacturing systems. The black
color represents recovery with reinforcement learning and the orange color
represents recovery with PID.

4.6 Metrics to evaluate the performance of

the agent

However, validating the performance of the recovery strategies pre-

sented in this paper requires the establishment of key metrics. Three

primary metrics have been selected for this purpose, drawing inspiration

from traditional key performance indicators commonly used by manufac-

turing plants. These metrics are essential for evaluating the effectiveness

of the recovery strategies and making informed comparisons. The three

chosen metrics are:

Downtime: Downtime represents the total time during which the

manufacturing process is non-operational, often due to disruptions or is-

sues, and is given by 4.4. Minimizing downtime is a critical objective in
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manufacturing, as it directly impacts production efficiency and profitabil-

ity. The recovery strategies introduced in this paper will be assessed based

on their ability to reduce downtime.

Downtime =
Time when machine is non operational

Total production time
(4.4)

Efficiency: Efficiency reflects how well resources are utilized in the

manufacturing process to produce the desired output and is given by 4.5.

Maximizing efficiency is a fundamental objective for manufacturing opera-

tions, as it directly impacts production costs and resource allocation. The

proposed recovery strategies will be analyzed for their efficiency improve-

ments.

Efficiency =
Actual cycle time

Expected cycle time
(4.5)

Throughput: Throughput represents the rate at which products are

processed or manufactured within a given time frame and is given by 4.6.

It’s a fundamental indicator of production capacity and efficiency. Maxi-

mizing throughput is a key goal for manufacturers, as it directly impacts

the rate of production and, ultimately, revenue generation. The recov-

ery strategies will be analyzed in terms of their impact on throughput

improvement.

Throughput =
Units produced

Time
(4.6)

Figures 4.26 provide a visual representation of the recovery agent’s per-
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Figure 4.26: Metrics to evaluate the performance of the recovery agent

formance relative to restarting and manually tuning the PID controller.

The simulation results reveal a notable decline in the manufacturing sys-

tems’s performance due to a false data injection attack on the sensor. How-

ever, the primary objective of minimizing downtime in the cyber manufac-

turing systems is effectively addressed by the reinforcement learning-based

recovery strategy. A key observation from the figures is that the parts

produced through the reinforcement learning-based approach are signifi-

cantly higher compared to the alternative methods. This highlights the

resilience of the recovery mechanism, which, even after a system attack,

mitigates the impact and allows for continued production. The ability of

the reinforcement learning agent to reduce downtime and enhance overall

production output underscores its efficacy in handling and recovering from

cyber threats in the manufacturing environment.
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Chapter 5

Discussion and

Conclusion

This chapter highlights the novelty of the research proposed, its key

contribution and further discusses the limitations of this work.
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5.1 Contribution

This research contributes to the advancement of understanding rein-

forcement learning agent-augmented recovery strategies in cyber-manufacturing

systems. The key contributions of this research are outlined.

The introduced recovery systems architecture is the first of its kind

for cyber manufacturing systems. This architecture comprises a systems

layer, an attack identification layer, a data auditing and detection layer,

and a recovery layer. While previous efforts primarily focused on recovery

from an error perspective, our work emphasizes recovery from the stand-

point of cyber threats. This framework is designed to be a generalized and

flexible structure capable of accommodating various cyber manufacturing

systems. Within the attack identification layer, we specifically address

cyber-attacks such as false data injection attacks (commonly known as

sniffing and spoofing attacks), which have the potential to manipulate

manufacturing systems sensors. Consequently, it was essential to analyze

these attacks in the context of cyber manufacturing systems. Prior re-

search was predominantly limited to phishing or SQL injection attacks

within manufacturing systems, overlooking the critical information asso-

ciated with sniffing, spoofing attacks, and domain name rebinding attacks

on manufacturing systems.

The recovery layer is a multi-stage process. The first stage involves

the recovery of the process level controller, followed by the second stage,

which achieves continuous functioning through the operational level con-

troller. In the first stage, the implementation of reinforcement learning
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is introduced to recover the manufacturing systems from any state. Dur-

ing training, the agent is trained on an epsilon-greedy policy, theoretically

exploring the entire state space. The development of recovery agents ad-

dresses multiple challenges, including distinguishing between normal and

abnormal states, predicting future states based on the current state, taking

sequential actions to move the process from an abnormal state to a nor-

mal state, and controlling the process. All challenges associated with the

reinforcement learning agent are successfully addressed within this thesis.

Technical challenges in the implementation of reinforcement learning

are also addressed. Reinforcement learning agents learn through interac-

tion with the environment, and training them in a real environment is

challenging due to their characteristic of taking random actions. To over-

come this, we trained the agents in a virtual environment, which presented

the first challenge of designing a suitable virtual environment. The sec-

ond challenge involved creating a reward function for the agents to learn

effectively. Lastly, we fine-tuned the exploration and exploitation charac-

teristics of the recovery agent.

The second stage of continuous operation ideally requires multiple

agents. However, the approach of introducing a time delay effectively

addresses this issue. The development of a table that incorporates the

time delay for different training agents allows us to delay the process as

soon as an attack is detected. This has enabled the operational level to

continuously function.
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5.2 Discussion

5.2.1 Reliance on detection system

The success of the proposed work is heavily dependent on the accu-

racy of the detection system. Choosing an appropriate detection system

introduces several challenges, as there is often a tradeoff between achiev-

ing higher true positives and minimizing false negatives. The effectiveness

of the overall recovery strategy hinges on the reliability and precision of

the detection system in identifying and alerting the presence of false data

injection attacks on sensors

5.2.2 Stability of the cyber manufacturing systems

The challenge of defining stability in control systems, especially in the

context of reinforcement learning (RL), is indeed a complex task. Tradi-

tionally, Lyapunov functions have been employed to analyze the stability

of dynamical systems (Lyapunov 1992). However, the lack of a clear math-

ematical model and understanding of the RL algorithms poses a unique set

of challenges in establishing stability for RL-based control systems. One

potential avenue for assessing stability in RL applications is to examine

the convergence of rewards. A stable RL algorithm should exhibit consis-

tent and convergent reward values over time. Tracking the trend of rewards

during training and ensuring that they stabilize within an acceptable range

can provide insights into the stability of the learned policy.

Moreover, the trade-off between exploitation and exploration in RL is a
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crucial factor. A stable RL algorithm should strike a balance between ex-

ploiting the learned policy and exploring new actions to adapt to changes

or uncertainties. Monitoring this trade-off and ensuring that the agent

converges to a robust policy without drastic fluctuations is indicative of

stability. Additionally, leveraging insights from control theory and adapt-

ing them to the unique characteristics of RL algorithms could contribute to

addressing the stability concerns in these complex cyber-physical systems.

5.2.3 Multiple sensor attacked at the same time

As of now, this work focuses solely on addressing a single attack on

the system. However, in scenarios where multiple attacks occur simulta-

neously, the proposed strategy would need to be adapted to incorporate a

multi-agent recovery. Here each agent responds to an alert and coordinates

among themselves to ensure successful recovery. This adjustment becomes

crucial to ensure the effectiveness of the recovery strategy in the face of

multiple concurrent attacks on the cyber manufacturing systems.

5.2.4 Complexity of the simulator

While the proposed simulation serves as a promising proof of concept,

it’s essential to acknowledge that real-world manufacturing scenarios in-

volve not just a singular process but multiple processes running in parallel.

Expanding the scope of this work to accommodate and address the chal-

lenges posed by multiple parallel processes would enhance its applicability

and relevance in complex manufacturing environments.
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5.2.5 Sample Inefficiency and Real-World Transfer

Challenges

Reinforcement learning indeed faces the challenge of sample ineffi-

ciency, particularly in scenarios with limited and repetitive real-world data.

In the manufacturing domain, where patterns in data can be highly similar,

training an efficient agent becomes a challenging task due to the scarcity of

diverse samples. To overcome this hurdle, it is crucial to explore strategies

for improving sample efficiency. Techniques such as data augmentation,

ensemble learning, or leveraging domain knowledge to generate synthetic

data could be explored.

Furthermore, transferring the learned policies from simulation to the

real-world manufacturing testbed is a significant challenge. Discrepancies

between the simulated environment and the actual system can lead to

a lack of generalization. Addressing this issue may involve refining the

simulation model to better match the real-world dynamics or adopting

techniques like domain adaptation to bridge the gap between simulation

and reality. Another critical consideration is synchronizing the decisions

made by the reinforcement learning agent with the hardware’s clock timing

in the manufacturing systems. Ensuring that the agent’s decisions align

seamlessly with the physical processes is essential for the successful im-

plementation of the proposed recovery strategy. Fine-tuning the agent’s

temporal aspects and addressing any timing mismatches are crucial steps

in achieving effective real-world deployment.
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5.3 Conclusion

In the realm of resilient manufacturing systems, this paper brings signif-

icant contributions by addressing the critical aspect of recovery. While ex-

isting literature predominantly emphasizes prevention and detection strate-

gies, the proposed work focuses on recovery. The key contributions of this

paper can be summarized as follows. This paper pioneers the development

of a robust recovery strategy for cyber manufacturing systems. The ap-

proach leverages reinforcement learning to guide the system back to its

normal operating conditions after being subjected to false data injection

attacks on sensors. By utilizing the principles of reinforcement learning,

the recovery process becomes adaptive, learning from the system’s environ-

ment and efficiently navigating toward normalcy. Using a manufacturing

systems simulator this work demonstrates that our proposed work can suc-

cessfully recover the system and ensure that it continues its functioning by

minimizing the downtime, and outperforms the manually tuned PID con-

troller. By contributing pioneering methodologies for recovery and con-

tinuous operation, this paper significantly advances the field of resilient

manufacturing systems. It addresses a critical gap in existing research

and provides practical insights into enhancing the overall robustness and

adaptability of cyber-physical manufacturing environments.
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planning for a miniature assembly line”. In: Artificial Intelligence in

Engineering 13.1, pp. 69–81.

Kong, Fanxin, Meng Xu, James Weimer, Oleg Sokolsky, and Insup Lee

(2018). “Cyber-physical system checkpointing and recovery”. In: 2018

ACM/IEEE 9th International Conference on Cyber-Physical Systems

(ICCPS). IEEE, pp. 22–31.

Kovalenko, Ilya, Efe C. Balta, Dawn M. Tilbury, and Kira Barton (2023).

“Cooperative Product Agents to Improve Manufacturing System Flex-

ibility: A Model-Based Decision Framework”. In: IEEE Transactions

118



on Automation Science and Engineering 20.1, pp. 440–457. doi: 10.

1109/TASE.2022.3156384.

Krundyshev, V and M Kalinin (2020). “Prevention of cyber attacks in

smart manufacturing applying modern neural network methods”. In:

IOP conference series: materials science and engineering. Vol. 940. 1.

IOP Publishing, p. 012011.

Labor Statistics, Bureau of (2019). Manufacturing, durable manufaturing

and nondurable manufacturing. Tech. rep. Bureau of Labor Statistics.

Lample, Guillaume and Devendra Singh Chaplot (2017). “Playing FPS

games with deep reinforcement learning”. In: Proceedings of the AAAI

Conference on Artificial Intelligence. Vol. 31. 1.

Langner, Ralph (2011). “Stuxnet: Dissecting a cyberwarfare weapon”. In:

IEEE Security & Privacy 9.3, pp. 49–51.

Lee, Jay, Behrad Bagheri, and Hung-An Kao (2015). “A cyber-physical

systems architecture for industry 4.0-based manufacturing systems”.

In: Manufacturing letters 3, pp. 18–23.

Lee, Robert.M, Michael Assante, and Tim Conway (2014). “German Steel

Mill Cyber Attack”. In: Industrial Control System.

Lepuschitz, Wilfried, Alois Zoitl, Mathieu Vallée, and Munir Merdan (2011).

“Toward Self-Reconfiguration of Manufacturing Systems Using Au-

tomation Agents”. In: IEEE Transactions on Systems, Man, and Cy-

bernetics, Part C (Applications and Reviews) 41.1, pp. 52–69. doi:

10.1109/TSMCC.2010.2059012.

119



Loborg, Peter (1994). “Error recovery in automation-an overview”. In:

AAAI Spring Symposium on Detecting and Resolving Errors in Man-

ufacturing Systems, pp. 94–100.

Loborg, Peter and Anders Törne (1996). “Towards error recovery in se-

quential control applications”. In: The 2nd World Automation Congress,

WAC’96. Citeseer.

Lyapunov, Aleksandr Mikhailovich (1992). “The general problem of the

stability of motion”. In: International journal of control 55.3, pp. 531–

534.

Mavrikios, Dimitris, Nikolaos Papakostas, Dimitris Mourtzis, and George

Chryssolouris (2013). “On industrial learning and training for the fac-

tories of the future: a conceptual, cognitive and technology framework”.

In: Journal of Intelligent Manufacturing 24, pp. 473–485.

Michael, Bartock, Cichonski Jeffrey, Murugiah Souppaya, Matthew Smith,

Greg Witte, and Karen Scarfone (2016). Guide for Cybersecurity Event

Recovery. Tech. rep. National Institute of Standards and Technology.

Mityukov, EA, AV Zatonsky, PV Plekhov, and NV Bilfeld (2019). “Phish-

ing detection model using the hybrid approach to data protection in

industrial control system”. In: IOP Conference Series: Materials Sci-

ence and Engineering. Vol. 537. 5. IOP Publishing, p. 052014.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller (2013). “Playing

atari with deep reinforcement learning”. In: arXiv preprint arXiv:1312.5602.

120



Moore, Samuel Bennett, William Bradley Glisson, and Mark Yampolskiy

(2017). “Implications of malicious 3D printer firmware”. In: Proceed-

ings of the 50th Hawaii International Conference on System Sciences.

Office of, Management and Budget (2015). Cybersecurity Strategy and Im-

plementation Plan (CSIP) for the Federal Civilian Government, OMB

Memorandum 16-04, October 30. Tech. rep. Office of Management and

Budget (OMB).

Pan, Yao, Jules White, Douglas Schmidt, Ahmad Elhabashy, Logan Sturm,

Jaime Camelio, and Christopher Williams (2017). “Taxonomies for rea-

soning about cyber-physical attacks in IoT-based manufacturing sys-

tems”. In.

Prasad, Romesh, Seyed Alireza Zarrin Mehr, and Young Moon (2023). “Re-

covery systems architecture for cyber-manufacturing systems against

cyber-manufacturing attacks: Reinforcement learning approach”. In:

Manufacturing Letters 35, pp. 851–860.

Prasad, Romesh and Young Moon (2021). “Adaptive Intrusion Detection

System for Cyber-Manufacturing System”. In: ASME International

Mechanical Engineering Congress and Exposition. Vol. 85567. Amer-

ican Society of Mechanical Engineers, V02BT02A010.

— (2022a). “Architecture for Preventing and Detecting Cyber Attacks in

Cyber-Manufacturing System”. In: IFAC-PapersOnLine 55.10, pp. 2246–

2251.

— (2022b). “Comprehensive Analysis of Cyber-Manufacturing Attacks

Using a Cyber-Manufacturing Testbed”. In: ASME International Me-

121



chanical Engineering Congress and Exposition. Vol. 86649. American

Society of Mechanical Engineers, V02BT02A015.

Prasad, Romesh, Matthew K Swanson, and Young Moon (2022). “Re-

covering From Cyber-Manufacturing Attacks by Reinforcement Learn-

ing”. In: ASME International Mechanical Engineering Congress and

Exposition. Vol. 86649. American Society of Mechanical Engineers,

V02BT02A014.

Rais, Muhammad Haris, Ye Li, and Irfan Ahmed (2021). “Spatiotemporal

G-code modeling for secure FDM-based 3D printing”. In: Proceedings

of the ACM/IEEE 12th International Conference on Cyber-Physical

Systems, pp. 177–186.

Ron, Ross, Winstead Mark, and McEvilley Michael (2022). Engineering

Trustworthy Secure Systems. Tech. rep. National Institute of Standards

and Technology.

Salazar, Luis A Cruz and Oscar A Rojas Alvarado (2014). “The future of

industrial automation and IEC 614993 standard”. In: 2014 iii interna-

tional congress of engineering mechatronics and automation (ciima).

IEEE, pp. 1–5.

Shi, Zhangyue, Chen Kan, Wenmeng Tian, and Chenang Liu (2021). “A

Blockchain-based G-code protection approach for cyber-physical secu-

rity in additive manufacturing”. In: Journal of Computing and Infor-

mation Science in Engineering 21.4, p. 041007.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-

maran, Thore Graepel, et al. (2018). “A general reinforcement learning

122



algorithm that masters chess, shogi, and Go through self-play”. In:

Science 362.6419, pp. 1140–1144.

Smara, Mounya, Makhlouf Aliouat, Saad Harous, and Al-Sakib Khan Pathan

(2022). “Robustness improvement of component-based cloud comput-

ing systems”. In: The Journal of Supercomputing, pp. 1–33.

Song, Jinwoo, Harika Bandaru, Xinyu He, Zhenyang Qiu, and Young B

Moon (2020). “Layered image collection for real-time defective inspec-

tion in additive manufacturing”. In: ASME International Mechanical

Engineering Congress and Exposition. Vol. 84492. American Society of

Mechanical Engineers, V02BT02A006.

Song, Jinwoo, Chunxi Wang, Charlélie Saudrais, Matthew K Swanson,
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