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Abstract

In recent years, the field of Multi-Agent Systems (MAS) has garnered increasing attention.

The essence of Multi-Agent Systems lies in orchestrating the coordination and collaboration

of autonomous agents, endowing them with the ability to work collectively towards common

goals. This characteristic makes MAS particularly germane in addressing the challenges

posed by complex and dynamic environments, where the adaptability and decentralized

decision-making of autonomous agents prove advantageous. To delve into the intricacies

of MAS, three primary research directions have emerged. Firstly, we aim to develop a

model rapidly and accurately to forecast future Unmanned Aerial Systems (UAS) traffic

density patterns while simultaneously simplifying model complexity. The second direction

involves the study of real-time task allocation and trajectory planning algorithms, considering

constraints imposed by the capabilities of individual agents. The third direction focuses

on investigating multi-agent cooperative game using Multi-Agent Reinforcement Learning

(MARL).

The success of the deep learning-based approach spans various domains, notably in areas

such as density and trajectory prediction. In our earlier work, we introduced an innova-

tive trajectory prediction model, which forecasts instantaneous traffic density using mission

schedule information. However, one of the main drawbacks of the Deep Neural Network

(DNN) is the high computational cost, which prevents us from applying the model to search

for the best mission plan or best locations of launching and landing zones, because it re-

quires exponentially large numbers of predictions based on different input combinations. To

reduce the complexity of the Convolutional Neural Network (CNN) model, we developed a

Neural Architecture Search (NAS) optimization framework. This framework systematically



identifies the optimal compression ratio for each layer, resulting in a streamlined neural ar-

chitecture. As a result, we achieved a 50% reduction in the size of the instantaneous traffic

density prediction model.

Multi-agent task allocation challenges can be accomplished through the application of the

Consensus-Based Bundle Algorithm (CBBA). The distributed algorithm exhibits provable

convergence and ensures 50% optimality when the score function adheres to the conditions

of Diminishing Marginal Gain (DMG). While prior research has primarily focused on the un-

constrained optimization of rewards, our work addresses the challenges posed by real-world

dynamic environments by incorporating specific constraints. These constraints encompass

considerations such as limitations on agent capabilities, communication restrictions, and

budget constraints. Our work is to applying CBBA for task allocation while considering

budget constraints using various heuristics extensions to the bidding algorithm. In deter-

mining the most suitable heuristic extension, we introduce a Graph Convolutional Neural

Network (GCN) model to extract and analyze features of constrained optimization problems

presented as graphs, predicting the potential performance (i.e., global reward) of different

heuristic extensions. Experimental results affirm a correlation exceeding 0.98 between pre-

dicted and actual rewards. The prediction-guided selection consistently identifies the most

effective heuristic extension in 70% of cases for budget-constrained task allocation problems.

In a MAS, agents share their local observations to gain global situational awareness for

decision making and collaboration using a message passing system. When to send a message,

how to encode a message, and how to leverage the received messages directly affect the effec-

tiveness of the collaboration among agents. When employing Reinforcement Learning (RL)

to train a multi-agent cooperative game, optimizing the message passing system becomes

integral to agent policy enhancement. We propose the Belief-map Assisted Multi-agent Sys-

tem (BAMS), which leverages a neuro-symbolic belief map to enhance training. Compared

to the sporadic and delayed feedback coming from the reward in RL, the feedback from

the belief map is more consistent and reliable. Agents utilizing BAMS can learn a more



effective message passing network, enhancing mutual understanding and improving overall

game performance. We assess BAMS in a cooperative predator and prey game with varying

map complexities, comparing its performance to previous multi-agent message passing mod-

els. Simulation results demonstrate that BAMS reduces training epochs by 66%, and agents

employing the BAMS model complete the game with 34.62% fewer steps on average.



unmanned aerial systems (uas)
traffic density prediction and
multi-agent task allocation

By

Chen Luo

B.S., Hunan University, 2015

M.S., Syracuse University, 2018

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Syracuse University

December 2023



Copyright © 2023 Chen Luo

All Rights Reserved



Acknowledgements

This long and challenge journey finally is over, a new chapter is on the horizon. At the age

of thirty, I entered into marriage, completed my Ph.D, and embarked on my professional

journey. I will forever cherish the moment when, in April 2018, Dr. Qinru Qiu offered the

opportunity for me to pursue doctoral studies as I took a significant step forward in academia.

This marked the beginning of a transformative journey, and I consider myself incredibly

fortunate to have been her student and a member of the Advanced Microprocessor and

Power-aware Systems (AMPS) lab. Along this path, I’ve been fortunate to receive generous

support from numerous individuals. Their unwavering assistance has been indispensable to

the realization of this thesis. Therefore, I would like to extend my deepest gratitude to those

who have guided and supported me wholeheartedly, enabling me to successfully navigate the

path to the completion of my Ph.D.

Firstly, I would like to express my sincere gratitude to my doctoral advisor, Dr. Qinru

Qiu, for her guidance, support and endless encouragement that helped me through my study,

research, and life during this doctoral endeavour. During this long period, I have gained

much experience in research, and completed many studies in the area of computer vision,

multi-agent system and reinforcement learning.

Secondly, I would like to thank the rest of my doctoral committee members, Dr. Carlos

Enrique Caicedo Bastidas, Dr. Garrett Ethan Katz, and Dr. Mustafa Cenk Gursoy for their

encouragement and insightful comments.

Then, I would like to extend my sincere thanks to all collaborators, labmates and friends

at Syracuse University: Dr. Zhe Li, Dr. Haowen Fang, Dr. Krittaphat Pugdeethosapol, Dr.

Yilan Li, Dr. Ziyi Zhao, Dr. Amar Shrestha, Zhao Jin, Mingyang Li, Zaidao Mei, Daniel

vi



Patrick Rider, Yue Ma, Qinwei Huang, Jiayang Liu, Zhenhang Zhang and Rui Zuo. I am

very grateful for their help and teamwork.

My gratitude also goes to many friends both on the other side of the earth and on the west

coast, who have served as receptacles for my negative emotions over the years. Thank you

for your unwavering support, attentive listening, encouragement, and tolerance. I appreciate

your understanding and helps.

And most importantly, I would like to extend enduring gratitude to my family for their

unwavering support and encouragement. This thesis is dedicated to my wife, Suhong Tan,

and my parents, Xia Chen and Jian Luo, who have been by my side, offering encouragement

and steadfast support throughout these years. I am deeply thankful for the love and patience

they have generously shown me during this significant undertaking. Their encouragement

and support have meant the world to me. Thank you wholeheartedly!

vii



Abbreviations

AUROC Area Under the Receiver Operating Characteristics

BAMS Belief-map Assisted Multi-agent System

CBBA Consensus-Based Bundle Algorithm

CNN Convolutional Neural Network

DMG Diminishing Marginal Gain

DNN Deep Neural Network

GCN Graph Convolutional Neural Network

GPU Graphics Processing Unit

IOT Internet of Things

LSTM Long Short-Term Memory

MARL Multi-Agent Reinforcement Learning

MAS Multi-Agent Systems

NAS Neural Architecture Search

RL Reinforcement Learning

RNN Recurrent Neural Network

viii



SoC System on Chip

SSL Structured Sparsity Learning

sUAS Small Unmanned Aerial Systems

UAS Unmanned Aerial Systems

UAV Unmanned Aerial Vehicles

UTM Unmanned Aerial System Traffic Management

ix



Table of Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 UAS Traffic Density Pattern Prediction . . . . . . . . . . . . . . . . . 2

1.1.2 UAS Density Prediction Model Compression and Architecture Search 3

1.1.3 Multi-agent Task Allocation with Budget Constraints . . . . . . . . . 4

1.1.4 Multi-agent Cooperative Game . . . . . . . . . . . . . . . . . . . . . 5

1.2 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Neural Network Architecture Search and Model Compression for Fast Pre-

diction of UAS Traffic Density 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Model Reduction and Architecture Search . . . . . . . . . . . . . . . . . . . 11

2.3.1 Architecture Prediction Model . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Training of the Architecture Predictor . . . . . . . . . . . . . . . . . 13

2.3.3 Incremental Training to Specific Corner . . . . . . . . . . . . . . . . . 15

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

x



2.4.1 Original Model vs. Compressed Model . . . . . . . . . . . . . . . . . 18

2.4.2 Comparison with Randomly Found Architecture . . . . . . . . . . . . 20

2.4.3 Impact of Correlation Loss . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Impact of Different Batch Size . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Applying Machine Learning in Designing Distributed Auction for Multi-

agent Task Allocation with Budget Constraints 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Consensus-Based Auction Algorithm (CBBA) . . . . . . . . . . . . . 27

3.2.2 Graph Convolutional Network (GCN) . . . . . . . . . . . . . . . . . . 29

3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Constrained Task Allocation Using Extended CBBA . . . . . . . . . . . . . 33

3.4.1 Original CBBA in Constrained Optimization . . . . . . . . . . . . . 33

3.4.2 Extended CBBA with New Score Functions . . . . . . . . . . . . . . 34

3.4.3 Performance Predictor using GCN . . . . . . . . . . . . . . . . . . . . 36

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Performance of Heuristic Extensions of the CBBA . . . . . . . . . . . 38

3.5.2 Machine Learning Based Heuristic Prediction . . . . . . . . . . . . . 41

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Multi-agent Cooperative Games Using Belief Map Assisted Training 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Hidden State Generation and Policy Network . . . . . . . . . . . . . 50

4.3.2 Message Passing Model . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



4.3.3 Map Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Experimental Results for Simple Environment . . . . . . . . . . . . . 55

4.4.3 Experimental Results for Complex Environment . . . . . . . . . . . . 60

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusion 63

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



List of Figures

2.1 Mission-Aware Spatio-Temporal Model Architecture . . . . . . . . . . . . . . 9

2.2 Prediction Accuracy versus Compression Ratio . . . . . . . . . . . . . . . . . 11

2.3 Architecture Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Flow of Incremental Training . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Size-Accuracy Tradeoffs of the 30 Selected Architecture . . . . . . . . . . . . 19

2.6 The Coverage Map of Good Quality and Poor Quality Links . . . . . . . . . 21

2.7 Impact of Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Network Structure of the GCN for Performance Prediction . . . . . . . . . . 37

3.2 Comparison of the Heuristic Extensions of CBBA . . . . . . . . . . . . . . . 40

3.3 Coverage of Different Combinations of Heuristics . . . . . . . . . . . . . . . . 41

3.4 Predicted Reward Versus Actual Reward . . . . . . . . . . . . . . . . . . . . 42

4.1 Architecture of BAMS Model . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Left figure shows the example of 4 trajectories exhibiting keep the border

within their observation range. Right figure shown the heuristic trajectory. . 55

4.3 Average Step Taken Curve of Different Random Seeds . . . . . . . . . . . . . 57

xiii



4.4 Left grid figures (a) (c) is ground truth map shows the trajectory of agents.

Square represents agent and star represents prey. Circle represents the starting

location of agent, and the Wi-Fi icon represents that agent sent out a message

on that step. Right heatmap figures (b) (d) give the visualized belief map of

agents. Brighter grids indicate higher possibility that the grids are taken by

agents, prey, or explored. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Average Step Taken Comparison . . . . . . . . . . . . . . . . . . . . . . . . 61

xiv



List of Tables

2.1 Architecture Information of the Original Traffic Predictor . . . . . . . . . . . 10

2.2 Original Model vs. Compressed Model . . . . . . . . . . . . . . . . . . . . . 18

2.3 Original Model vs. Compressed Model (Random Search) . . . . . . . . . . . 19

3.1 Percentage Coverage of Heuristics and Improvements of the Predicted Approach 42

4.1 Avg Steps & Comm Rate for Simple Environments. . . . . . . . . . . . . . . 56

4.2 Scalability Analysis of Model with Varying Numbers of Agents . . . . . . . . 58

4.3 Avg Steps & Comm Rate for Complex Environments . . . . . . . . . . . . . 62

xv



Chapter 1

Introduction

In the landscape of artificial intelligence and autonomous systems, the concept of Multi-Agent

Systems (MAS) has emerged as a pivotal paradigm for modeling complex, decentralized

interactions among autonomous entities. A Multi-Agent System comprises multiple agents,

each possessing individual capabilities to perceive, reason, and act autonomously. These

agents interact with one another, often in a decentralized fashion, to collectively achieve

goals that may be beyond the capacity of any single agent. The rich diversity of applications,

from robotics and economics to traffic management and beyond, underscores the versatility

and relevance of multi-agent systems in addressing real-world challenges.

The roots of multi-agent systems trace back to the need for modeling and simulating

interactions in scenarios where multiple entities, each with its own objectives and decision-

making processes, coexist. Traditional approaches to problem-solving often fall short when

confronted with the intricacies of real-world complexities, where interactions are dynamic,

information is distributed, and decision spaces are vast. Multi-agent systems provide a

flexible and scalable framework for representing and analyzing such scenarios.

The appeal of multi-agent systems lies in their ability to capture the dynamics of sys-

tems where autonomy, interaction, and adaptation are paramount. In robotics, multi-agent

systems enable the coordination of autonomous robots to accomplish tasks collectively, fos-
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tering collaborative approaches to complex challenges. In economics, these systems serve as

powerful tools for modeling market dynamics, where diverse agents engage in transactions

and negotiations. Furthermore, in decentralized control and coordination problems, such

as traffic management and industrial automation, multi-agent systems offer a distributed

solution that can enhance efficiency and adaptability.

1.1 Motivations

1.1.1 UAS Traffic Density Pattern Prediction

Recently, many companies devote themselves to develop Small Unmanned Aerial Systems

(sUAS). Complicated and high density UAS traffic imposes significant burden on air traffic

management, city planning and communication resource allocation. In this environment,

traffic management has shown significant importance. Many existing works study issues

such as sUAS navigation, obstacle avoidance or UAS traffic management, by developing a

corresponding simulator with fair time complexity. In [1], the authors presented an indoor

algorithm to navigate single sUAS to avoid collisions. [2] proposed a solution to avoid

collisions in a static environment by importing geometrical constraints. Other single sUAS

classical approaches applied rapidly-exploring random trees [3] and Voronoi graphs [4, 5].

Multiple sUAS trajectory simulation has been studied as a multi-agent cooperative system

and solved in a rolling horizon approach using dynamic programming [6] or mixed integer

linear programming [7]. Other strategies [8, 9] involved real-time routing algorithms with

communication and airspace safety considerations. The major goals of my research consists of

the following aspects: (1) Coordinate and control Unmanned Aerial Vehicles (UAV) missions

to avoid potential confliction; (2) ensure timely completion of mission with minimum flight

energy with low-cost real-time centralized or decentralized management; and (3) provide an

accurate forecast of UAV traffic.

UAS density prediction is a critical and challenging problem in the Unmanned Aerial
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System Traffic Management (UTM) system. Most existing studies focus on simulation-

based approaches. Although accurate, they usually take a long time to deliver results.

Neural networks have been used to predict traffic density [10]. However, most such studies

require the sampling of the traffic density from the past data and predict the future density

using past density information. These models assume a static environment. For example,

the source (i.e. the location where the sUAS enters the air space) and sink (i.e. the location

where the sUAS leaves the air space) of the traffic flow are assumed to remain the same, and

air space constraints, such as no-fly zones, are fixed. Based on these assumptions, the traffic

in the future will exhibit a similar pattern as the traffic in the past and can be predicted

from the historical data. A constant environment may be reasonable for road traffic, however,

the operational environment of sUAS features higher dynamics and flexibility. The model

based on historical data will become obsolete as soon as the environment changes. New

data must be collected and a new model needs to be trained, which can take days or weeks.

Furthermore, most of the existing models consider traffic distribution as a stationary process,

and focus on predicting the steady states. For resource provisioning or safety assurance, we

need to know not only the steady state traffic but also the worst case traffic. Hence the

ability to predict the transient behavior of air traffic distribution is highly desirable.

1.1.2 UAS Density Prediction Model Compression and Architec-

ture Search

Model compression has been an active area of research with various techniques developed to

address the challenges of reducing the size of a DNN model without significantly compromis-

ing its performance. This is crucial for deploying models on edge devices, Internet of Things

(IOT) devices [11] and System on Chip (SoC) devices [12], where memory and computational

resources are limited. Techniques for model compression include quantization [13], pruning

[14, 15], and knowledge distillation [16], which aim to make models more efficient in terms

of storage and inference speed while maintaining their accuracy to the extent possible.
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Although our previous model gives high quality traffic density prediction, the complexity

is also extremely high. Most of the computation is on the 6 CNNs for mission feature

extraction. Our goal is to reduce the size of the CNNs to lower the model complexity and

accelerate the prediction without sacrificing its prediction accuracy. This is achieved by

pruning (unnecessary) filters in the CNN layers. Filter pruning [17] is chosen here because

it results in a dense weight matrix, thereby facilitating Graphics Processing Unit (GPU)

acceleration. Furthermore, pruning a filter in layer i results in the removal of a channel in

layer i + 1 without creating sparsity. We aims to search for the best prune strategy for the

UAV traffic density prediction model to facilitate fast traffic prediction.

1.1.3 Multi-agent Task Allocation with Budget Constraints

Task allocation in missions is a pivotal aspect of optimizing the collaborative efforts of

multiple entities toward a shared goal. This process involves strategically assigning tasks or

responsibilities to individual components within a system. The objective is to leverage the

unique skills, capabilities, and current states of each entity to achieve maximum efficiency

and effectiveness in mission execution.

The original CBBA algorithm only considers unconstrained optimization. It assumes

that each task has a reward (a) and a cost (p), and tries to maximize the score defined as the

difference of the rewards and costs (i.e., a − p.) But the real-world dynamic environments

always have specific constraints considerations such as limitations on agent capabilities,

communication restrictions, and budget constraints.For example, a team of unmanned aerial

vehicles (UAVs) set out to dispatch life supplies in a rescue mission. Each UAV has a

limited battery capacity. By incorporating real-world considerations like budget constraint,

the task allocation algorithm becomes a more robust and applicable solution for optimizing

task allocation in dynamic and complex environments.
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1.1.4 Multi-agent Cooperative Game

We consider a fully cooperative multi-agent game as a decentralized partially observable

Markov Decision Process(DEC-POMDP) [18]. DEC-POMDP is defined as a tuple ⟨N, S,P,R,O,A, Z,γ⟩,

where N denotes the number of agents; S is a finite state space; P (s′|s, a) : S×A×S → [0, 1]

stands for the state transition probabilities; A = [A1. . .AN] is a finite set of actions, where

Ai represents the set of local actions ai that agent i can take; O = [O1. . .ON] is a finite set

of observations controlled by the observation function Z : S ×A → O; R : S ×A → R is

the reward function; and γ ∈ [0, 1] is the discount factor.

According to the DEC-POMDP model, each agent i takes an action ai based on its local

observation oi. When all agents applied their actions [a0, a1, . . . , aN ] to the environment, the

environment moves to a new state s′ and returns a joint reward r. The MARL trains policies

πi(ai|oi) : Oi → Ai, ∀i, that maximizes the expected discounted reward E[
∑∞

t=0 γ
trt], where

γ is the discount factor.

Sharing observation improves the performance and helps agents learn a better action

policy. Efficient communication allows agents to obtain more information about the global

environment and reduces the negative impact of partial observations. We aims to answer the

following three questions: What is the appropriate time to send a message by agent? How

to encode a message? How to utilize the received information messages? As these factors

directly influence the efficacy of collaboration among agents.

1.2 Outline and Contributions

The organization and contributions are summarize as the follows:

• In Chapter 2, we proposed a technique to search for the best prune strategy for the

UAV traffic density prediction model to facilitate fast traffic prediction. To reduce the

complexity of the neural network model. A neural architecture optimization framework

that searches for the best compression ratio for each layer is developed. Overall, we are

5



able to reduce the size of the traffic prediction model by 50%. Furthermore, because the

pruning adds more regularization to the model and reduces the potential of overfitting,

the compressed model also achieves small improvements in the prediction accuracy.

• In Chapter 3, we aim to apply the Consensus-Based Bundle Algorithm (CBBA) to task

allocation with budget constraints. Several heuristics were proposed to build the bundle

and calculate the bidding scores as improvements to the original CBBA algorithm.

Also, to decide which heuristic extension should be used for a given task allocation

problem, a graph convolutional neural network (GCN) model is trained to extract and

analyze the features of the constrained optimization problem as a graph, and predict

the potential performance (i.e., global reward) of different heuristic extensions.

• In Chapter 4, we propose the Belief-Aided Message System (BAMS), which employs

a neuro-symbolic belief map to augment training. The belief map decodes an agent’s

hidden state, providing a symbolic representation of its understanding of the environ-

ment and other agents’ statuses. This symbolic representation simplifies the gathering

and comparison of ground truth information, offering an additional, consistent, and

reliable channel of feedback compared to sporadic and delayed rewards in RL.

• In Chapter 5, we conclude this thesis with a summarization of the results and discuss

the future research directions.
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Chapter 2

Neural Network Architecture Search

and Model Compression for Fast

Prediction of UAS Traffic Density

2.1 Introduction

New applications and services based on small Unmanned Aircraft Systems (sUAS) have

gradually been introduced into urban city environments. The number of daily sUAS op-

erations in uncontrolled low altitude airspace is expected to reach into the millions in the

future. Complicated and high density UAS traffic imposes a significant burden on air traffic

management, city planning and communication resource allocation. Fast and accurate UAS

traffic density prediction is necessary for centralized management to coordinate and control

UAS missions to avoid potential conflicts, ensure timely completion of missions and enhance

operational safety through guaranteed connectivity to communication networks.

The UAS traffic density at a future time T can be considered as a function of the current

UAS traffic density distribution, the flight environment (e.g. the location of the no-fly-

zones), and the schedule of the future UAS missions within the target air space up to time
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T. Recent research showed that conventional neural networks with at least one hidden layer

satisfy the universal approximation property [19] in that they can approximate an arbitrary

continuous or measurable function given enough number of neurons in the hidden layer.

In our previous work [20] a DNN model has been developed to predict the traffic density.

Compared to previous machine learning based traffic predictors, our DNN takes the flight

environment and detailed UAS mission launch information as the inputs, hence it can be

generalized to different air spaces as long as the trajectory of each UAS is routed using the

same algorithm. In other words, it will need no “down time” after a change of the no-fly-zone

or the launching/landing zone information. The predicted traffic has high correlation to the

actual traffic.

However, the complexity of the DNN model increases when more environment dynamics

are considered. The traffic predictor is used in the inner loop of many dynamic traffic

management applications, such as selecting the landing and launching area, scheduling a

mission request, and allocating frequency band resources for UAV communications. Each

of such tasks is a combinatorial optimization problem, where the optimal solution cannot

be found analytically. To efficiently explore the design space to search for the optimal

configuration, the traffic predictor must be able to process many potential traffic scenarios

in a short period of time. Therefore, in addition to accuracy, low complexity and low cost

are other critical requirements for the traffic predictor.

The goal of this work is to compress the traffic prediction model to a smaller size with-

out sacrificing the prediction accuracy. A network architecture search (NAS) method is

developed to find the optimal DNN architecture in the spatial-temporal domain for better

prediction performance and robustness. The overall framework is based on an architecture

prediction model that predicts the accuracy of a compressed traffic density predictor. With

the architecture search framework, we have reduced the size of the original traffic prediction

model by 50% without losing accuracy.
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2.2 Background and Related Works

In our previous work, a DNN model has been trained to predict the UAV traffic density

with a correlation up to 0.945 and to predict traffic hot-spots with the Area Under the

Receiver Operating Characteristics (AUROC) score up to 0.95. In order to consider the

long, medium and short-term impact of the scheduled UAV missions, the model architecture

shown in Figure 2.1, with each term contains two convolutional neural networks (CNNs) in

total six was used to extract features from the future mission plans for up to 6 cycles. And

each cycle represents 10 simulation cycles which is 10 seconds for real time. Another CNN

is needed to process the current traffic density map. Finally, a multi-layer fully connected

network is used to fuse the information from different channels to form a vector embedding

and a de-convolutional neural network is used to transform the vector into a 2D traffic

map. The model has 10.6MB weight parameters and requires 7.85GOP (Giga Operation)

computations for each prediction.

Figure 2.1: Mission-Aware Spatio-Temporal Model Architecture

Recent works have shown that weight pruning techniques [21, 14, 22] can significantly
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reduce the size of DNNs without loss of accuracy. [23] proposes a Structured Sparsity

Learning (SSL) method to regularize the structures (i.e., filters, channels, filter shapes,

and layer depth) of DNNs, and learn a compact structure from a bigger DNN to reduce

computation cost. [24, 25] proposed methods to overcome pruning ratio limitations. Other

model compression methods, such as connection pruning [14, 22] and low rank approximation

[26, 27], have also been proposed.

Most of the previous works aim at removing links and neurons in the given network

until the prespecified prune ratio is reached. How much can be pruned without affecting the

performance of the model is unknown in advance. Different prune ratios must be tried until

the right one is found. As each DNN layer can be pruned with a different ratio, the possible

number of combinations increases exponentially with the size of the network. While pruning

a network requires iterative training and fine tuning, it obviously is not feasible to try each

possible prune configuration.

Our solution in this Chapter 2, is to train an architecture prediction model that predicts

the performance of the compressed model based on the combination of its layer-wise compres-

sion ratio. The architecture prediction model allows us to quickly estimate the performance

(e.g., traffic prediction accuracy) of any compressed model without lengthy pruning, and

consequently narrows down the search space. The predictor allows us to find a good combi-

nation of prune ratios of different layers that reduces the size of the traffic predictor while

maintaining its accuracy.

Table 2.1: Architecture Information of the Original Traffic Predictor

Layer Filter Size Number of filters Stride

1 4× 4 64 2
2 2× 2 128 1
3 2× 2 256 1
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2.3 Model Reduction and Architecture Search

Our traffic prediction network extracts mission information using 6 convolutional neural net-

works (CNNs) as shown in Figure 2.1. Each network processes the set of missions scheduled

to launch in a certain time period. All of them have the structure that is given in Table

2.1. The missions scheduled to launch in the near future and far future play different roles

in shaping the traffic density, therefore, although initialized with the same architecture, the

weight parameters of the 6 CNNs diverge after training.

Figure 2.2: Prediction Accuracy versus Compression Ratio

Because their input has different importance to the prediction, it is natural to expect

that the 6 CNNs should be compressed in different ways. Moreover, the layers in the CNNs

must be pruned differently. For example, some layers play a dominant role in the prediction
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process. When the number of filters of these layers is relatively low, the model’s final

performance will become extremely poor. The overall complexity of the compressed model

is determined by the prune ratios of each of the 3 layers in those 6 CNNs. Figure 2.2 shows

the relation between the prediction accuracy of the compressed model and its actual model

size. Generally, a smaller size indicates a higher compression ratio. As we can see that

a smaller model does not always have worse accuracy and vice versa. This is because the

same compression ratio may correspond to different neural architectures, depending on how

those 18 layers in Figure 2.1 are pruned. To find the best architecture is to find the optimal

combination of the 18 prune ratio variables. We also need to point out that, the accuracy of

the compressed model is not necessarily lower than the original model. As we will show in

the experimental results, the compressed model may slightly outperform the original model,

as the highly regulated structure helps it to avoid overfitting.

Exhaustively evaluating each possible compressed architecture to find its accuracy is not

realistic as pruning a DNN is extremely time consuming. In this work we develop another

DNN that predicts the accuracy of the compressed architecture to accelerate the design

space exploration. We refer to it as the architecture predictor to distinguish from the traffic

prediction model to be pruned.

2.3.1 Architecture Prediction Model

We expect that the prediction accuracy is a function of the combination of layer-wise prune

ratios. A 5-layer DNN is trained to approximate this relationship. The structure of the

DNN is shown in Figure 2.3, where N is the batch size. The size of each layer is labeled

in the figure. The input of the model is the vector of 18 prune ratios, and the output is

the accuracy of the compressed traffic predictor, measured by the mean square error of the

traffic prediction.
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Figure 2.3: Architecture Prediction Model

2.3.2 Training of the Architecture Predictor

The architecture predictor is trained using supervised training. To generate the training

data, different prune ratio combinations are sampled and the original traffic predictor is

pruned/trained accordingly. The resulting compressed model is tested and its mean square

prediction error is used as the target value for the training. As we can see, generating

each data point for the training set requires us to train a compressed model, hence is time-

consuming. However, as we will show in the experimental results, the DNN can generalize

the relation between the architecture and the model performance and extend it to other

prune ratio combinations that is not in the training set. While the training set is just a

subset of the architecture space, the model can be used to explore the entire architecture

space, which is much larger than the training set.

The architecture predictor is slightly different from a regular regression model. The goal

of the conventional regression models is to maximize the prediction accuracy; hence they

usually use mean square error as the loss function. The architecture predictor is used to

compare different compressed architectures (that have similar size) to find the one with the

best accuracy. The absolute value of those architectures’ accuracy is not important, as long

as their relative order is predicted correctly. In other words, it is more important to maintain

a high correlation between the predicted accuracy and target accuracy than minimizing the
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absolute difference between these two. Therefore, during the training, the following three

techniques were adopted to improve the correlation between the predicted and the target

accuracy.

2.3.2.1 Adding Correlation to the Loss Function

For each training batch, after the forward pass, the correlation between the model’s predicted

value ŷ and the target value y is calculated using the following equation.

corr =
cov(ŷ, y)

var(ŷ) ∗ var(y)
(2.1)

The loss function of the training is a weighted combination of the mean square error (MSE)

loss and the correlation loss as specified in Equation 2.2:

loss = α ∗MSE + β ∗ (1− corr) (2.2)

where α and β are hyper-parameters. Smaller α and larger β would cause the model to focus

on increasing the overall correlation, while larger α and smaller β would cause the model to

focus on reducing the overall loss.

Using the new loss function, the correlation between the prediction and the target value

is improved. Although the model may lose some prediction accuracy, this is acceptable in

our application.

2.3.2.2 Adjusting Training Data Distribution

We found that adding data with different features as much as possible helps to improve the

quality of the model. For instance, in some extreme cases, the randomly sampled compressed

architecture has convolutional layers that have only one filter left. The accuracy of such

traffic prediction network is obviously very poor. Although these architectures do not have

real application significance, including them in the training set can help the model better

14



understand the role of different convolutional layers in the training process.

2.3.2.3 Training with Mixed Batch Size

In the training process, the architecture predictor is optimized one time in one epoch and the

batch size is a crucial factor. We dynamically change the batch size as the epoch increases

during training. The batch size increases sequentially. For example, the first epoch’s batch

size is 4, the batch size of the second epoch is 10, and the batch size of the third epoch is 90.

We use partial correlation to refer to the prediction and target value correlation in the

same batch and use overall correlation to refer to the correlation in the entire training

set. We found that using a fixed batch size, no matter how large or small, it is hard to

balance the overall and partial correlation. When the batch size is small, we get very high

partial correlation. However, the model does not give consistent prediction from one batch

to another, hence the overall correlation is poor. When the batch size is large, the overall

correlation is improved. However, a single outlier does not affect the overall correlation

significantly, and this is reflected as the poor partial correlation. Therefore, a mixed batch

size is adopted. This method can integrate the advantages of large and small batch sizes and

consider the partial correlation while improving the overall correlation. Since this method

requires constant batch size changes, the model also needs to train more epochs to achieve

the best results.

Using the above three methods, we finally increased the model correlation from 0.71 to

0.92 and even reached 0.96 in the validation set.

2.3.3 Incremental Training to Specific Corner

Since our purpose is to reduce the size of the traffic predictor as much as possible while

retaining its accuracy, we are interested more in the data points located at the lower left

corner of the size versus accuracy (or loss) design space shown in Figure 2.2. The architec-

tures located in this corner have smaller size and higher accuracy, therefore they are referred
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to as effective architectures. And the architectures located outside this corner are referred

to as ineffective architectures as they have larger size and/or lower accuracy. During the

training process, we try to specialize the model to give better prediction to the data points

corresponding to the effective architectures. This is achieved by adding more data points

corresponding to the effective architectures to the training set.

However, to distinguish between an effective architecture and an ineffective architecture

is not easy. Given a randomly sampled prune vector, while the size of the compressed

model can be easily estimated, its accuracy is unknown unless we actually compressed the

mode, trained and tested it. Unfortunately, there are more ineffective architectures than

effective architectures. Since an ineffective architecture does not help the training process as

much as an effective architecture, much of the effort in generating the training data will be

wasted. To address this problem, we apply incremental training as described in Figure 2.4.

Incremental training accelerates the model’s learning speed for the feature that we need by

adding the validated model prediction data into the training set. First, we randomly sample

300-400 compressed architectures, train and test them to generate the initial training set.

The architecture prediction model is pre-trained on the initial training set. Taking advantage

of the pre-trained model, we then predict the accuracy of another set of randomly sampled

architectures, and select the architecture whose accuracy is lower than a certain threshold.

The corresponding compressed architecture will be generated and tested. These new data

will form a new training batch to further refine the model. This procedure is repeated

iteratively until the overall correlation achieves a predefined threshold. Totally 2300 training

architecture data is generated in this work.

By varying the aforementioned configuration parameters, we generated four air traffic

scenarios. The first scenario is the point to point route without the trajectory management.

Nonetheless, other three scenarios follow the Manhattan route. Compared with the second

scenario, which is the naive Manhattan style route, the third scenario integrates the trajec-

tory management to avoid potential conflicts. The last scenario introduces the geographical
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Figure 2.4: Flow of Incremental Training
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constraint (the no-fly zone) in the simulation.

2.4 Experimental Results

2.4.1 Original Model vs. Compressed Model

Using the trained architecture predictor, we predicted the accuracy of 30 million random

architectures with a size below a given threshold. 30 architectures with the best predicted

size vs. accuracy tradeoffs were selected and implemented. The green points in Figure 2.5

show the size vs. accuracy tradeoffs of those architectures. The blue points in the figure give

the size vs. accuracy of the 2300 training architectures. As we can see, since the 30 selected

architecture have been filtered by the predictor, in average, they have better accuracy than

the training architecture. The point located at the lower left corner is the best architecture.

Table 2.2: Original Model vs. Compressed Model

Original Model Compressed Model Comparison

Model size 10,562 KB 4,713 KB -55.38%
Loss 37.575 37.413 -0.431%

Time (200 Samples) 0.068s 0.025s -63.24%

Table 2.2 shows the percentage reduction of size, accuracy and inference time of the

best selected architecture compared to the original model. As we can see, the compressed

model can slightly improve the accuracy (negative accuracy reduction) even though the size

is compressed by 55%. The reason that the accuracy is slightly improved is because the

compressed architecture has less weight parameters and hence is less likely to do overfitting.

The inference speed is also greatly improved due to the reduced complexity. This means

that our compressed model consumes fewer resources to achieve the same prediction effect.
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Figure 2.5: Size-Accuracy Tradeoffs of the 30 Selected Architecture

Table 2.3: Original Model vs. Compressed Model (Random Search)

Best Random Result

Original Model Compressed Model Comparison

Model size 10,562 KB 4,490 KB -57.49%
Loss 37.575 39.645 +5.221%

Minimum Loss Result

Original Model Compressed Model Comparison

Model size 10,562 KB 8,286 KB -21.55%
Loss 37.575 36.038 -4.265%

Minimum Size Result

Original Model Compressed Model Comparison

Model size 10,562 KB 4,210 KB -60.14%
Loss 37.575 45.361 +17.16%
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2.4.2 Comparison with Randomly Found Architecture

Searching for the optimal architecture by exhaustively evaluating different structures may

be feasible for simple and small neural networks, since the possible architectures are limited

and the training of a small neural network does not take too much time. However, when the

network size gets increased, this is no longer practical. In order to find the optimal size and

accuracy tradeoff, a much larger number of compressed architectures must be sampled and

tested due to the exponentially increased search space, and each one requires longer training

and evaluation times.

The biggest advantage of our approach is that the architecture prediction model can be

trained based on a limited number of compressed architectures and it can generalize the

learned architecture-accuracy relationship to a wider range. In our work, a total of 2300

compressed architectures were generated to train the model. The average mean square error

(MSE) loss between the predicted value and label is only 0.14, and the correlation can

reach 0.926. Using trained models, we can evaluate tens of millions of possible compressed

architectures within minutes.

We randomly selected 300 architectures and plot them in the size-accuracy space in

Figure 2.5 using red color. As we can see, compared to random compressed architecture,

the size-accuracy plot of the training data that we generated for the incremental training

process (i.e. data points in grey) has already shifted to the lower left side notably. This

means these training architectures exhibit better size accuracy tradeoff. And the green data

points, which are filtered by the predictor, are further improved compared to the training

data. We also selected 3 of those random architectures with the best size accuracy trade

off. Their reduction of its size, accuracy and inference time compared to the original model

is reported in Table 2.3. It shows that at the similar compress ratio, the randomly selected

architecture has much lower accuracy.
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(a) W. Correlation

(b) W/O. Correlation

Figure 2.6: The Coverage Map of Good Quality and Poor Quality Links
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2.4.3 Impact of Correlation Loss

As mentioned above, we modified the loss function of the architecture predictor by adding

the correlation loss. The modified loss function can directly boost the correlation between

the predicted and actual value. Figure 2.6 gives the scatter plots between the prediction

and the target value for the architecture predictor with and without the correlation. As we

can see, if only MSE loss is considered in training, when the target accuracy (loss) is high

(low), the model cannot distinguish the performance of different architectures and will simply

predict the same value. This obviously will not help us select the optimal architecture.

2.4.4 Impact of Different Batch Size

As we discussed before, the batch size also has an impact on the quality of the trained model

and it helps to improve data point distribution. Figure 2.7 shows the relation between the

predicted value and target value, when trained with a mixed batch and a constant batch with

size N = 90. As we can see, the model trained with mixed batch size has better correlation.

Actually, the model trained mixed batch size has correlation as high as 0.9262. And the

models trained fixed batch with size N = 10, 50, and 90, have correlations 0.898, 0.879 and

0.885, respectively.

2.5 Conclusions

In this work, we proposed a technique to search for the best prune strategy for the UAV

traffic density prediction model to facilitate fast traffic prediction. With the help of the

proposed architecture prediction model, we can efficiently evaluate the performance of many

different compressed architectures in the design space and select the optimal one We found

out that adding correlation into the loss function, dynamically adding new data during the

training phase and training with a mixed sized batch can significantly improve the correlation

of our architecture prediction model. In our results, we achieved a reduction in the size of
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(a) Mixed

(b) N = 90

Figure 2.7: Impact of Batch Size
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the original traffic prediction model by 55% while keeping similar accuracy as the original

model. At the same time, the model execution time speeds up by 60%.
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Chapter 3

Applying Machine Learning in

Designing Distributed Auction for

Multi-agent Task Allocation with

Budget Constraints

3.1 Introduction

Task allocation among multiple agents is a general combinatorial optimization problem un-

derlying many reallife mission planning applications, such as rescue mission, delivery, or

transportation scheduling, etc. Centralized and distributed solutions have been proposed

based on the network condition and communication capabilities of the agents. Centralized

approaches like [28, 29, 30, 31] rely on one agent to retrieve all agents’ information and take

the responsibility to allocate tasks and generate a proactive plan for each agent to maximize

the total rewards of the entire group. They are more likely to suffer from single point failure

and have higher demand on the agent’s communication range.

These limitations make the decentralized approach more attractive. In the decentralized
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approach, each agent selects tasks only for itself and all agents coordinate with each other

to maximize overall rewards of the entire group.

Auction based techniques have been used as an alternative way for agents to communicate

and coordinate with each other. By broadcasting the biding price of tasks calculated using a

carefully chosen score function to its neighbors, an agent conveys the necessary information

to coordinate the decision making while hide details of its own mission plan. Based on

this idea, a decentralized algorithm, consensus-based bundle algorithm (CBBA) [32] was

developed. Agents build their own task bundles locally, exchange bidding prices and rebuild

the bundles based on the received bidding information. This bidding and conflict resolution

procedure repeats until the consensus among the agents is reached and the results converge.

The CBBA algorithm draws significant attention because it has provable convergence and

guarantees 50% optimality when the bidding price has the diminishing marginal gain (DMG)

property.

The original CBBA algorithm only considers unconstrained optimization. It assumes

that each task has a reward (a) and a cost (p), and tries to maximize the score defined as

the difference of the rewards and costs (i.e., a − p.) However, many real-life applications

usually operate on a budget constraint, and their goal is to maximize the reward with the

respect of the given budget. For those applications, it is not necessary to minimize the cost if

the budget is sufficient. Furthermore, the costs and rewards are usually not measured using

the same metric and they are not interchangeable. For example, a team of unmanned aerial

vehicles (UAVs) set out to dispatch life supplies in a rescue mission. Each UAV has a limited

battery capacity. The reward of the mission is the total number of people being helped while

the constraint is the energy dissipation during the trip. A direct addition or subtraction of

these two does not make sense. As long as the battery lasts, the goal should be to help as

many people as possible. A typical approach to solve such constrained optimization problem

is to use Lagrange function to combine the reward and cost. This introduces two problems.

First of all, its effectiveness highly depends on the selection of the Lagrange multiplier.
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Different Lagrange multiplier must be used for different applications, however its selection is

largely empirical. Secondly, the combined score may not be DMG. Therefore, convergence

is not guaranteed. In this work, we present a set of heuristic extensions of CBBA based

on 7 carefully designed new score functions. Their performance is compared and the DMG

property of some of the heuristics is analyzed and proved. The results show that, in average,

those heuristic extensions lead to 16% more rewards than the original CBBA algorithm.

Our experimental results show that those heuristic extensions are pareto efficient. This

means no extension is dominated by another and each heuristic extension outperforms all

other extensions in at least one test case. Using different heuristic extensions for different

allocation problems will be better than consistently using any single one of them. However,

this brings up a question, how do we know which heuristic works the best for a given task

allocation problem? In this work we attempt to answer this question by training a graph

convolutional neural network (GCN) to predict the performance of the heuristic extensions

and use the predicted performance to guide the selection. Our experimental results show

that, based on the prediction, we can select the best heuristic extensions 69% of the time.

This stands for a 38% improvement compared to random selection.

3.2 Background and Related Works

3.2.1 Consensus-Based Auction Algorithm (CBBA)

The CBBA algorithm consists of 2 phases [33, 34], bundle construction and conflict resolu-

tion. Each agent i carries four vectors of local information: a winning bid list yi, a winning

agent list zi, a bundle bi, and a path pi. Winning bid list yi records the winner agent id for

each task. Winning agent list zi records the winning bids that the winner agents put for the

task. Bundle bi is the sequence of tasks that agent i selected. Path pi stored the true path

that agent should travel to gain the rewards of the tasks in bundle. In bundle construction

phase, each agent will continuously add available tasks from task set Γ into its bundle until

27



it reaches the limitation of bundle capacity. Marginal score function of task j for agent i is

defined as

cij[bi] =


0, if j ∈ bi

maxn≤|pi|S
pi⊕n{j}
i − Spi

j , otherwise

(3.1)

where Spi
j is the total reward minus the cost of pi, “⊕l” denotes the operation that inserts

the second list right after the lth element of the first list.

In each iteration, the task which has the maximum marginal score cij will be added into

the bundle. The agent will continue selecting new tasks until it reaches the bundle capacity

Lt. The new task will be added to the end of bundle and inserted into the position in the

path that gives the maximum marginal score cij. Algorithm 1 summarizes the process.

Algorithm 1 CBBA Phase 1 for agent i at iteration t:

Build Bundle (zi(t− 1), yi(t− 1), bi(t− 1)
yi(t) = yi(t− 1)
zi(t) = zi(t− 1)
bi(t) = bi(t− 1)
pi(t) = pi(t− 1)
while |bi| < Lt do

cij = maxn≤|pi|S
pi⊕n{j}
i − Spi

j ,∀j ∈ Γ\bi
hij = I(cij > yij),∀j ∈ Γ
Ji = argmaxjcij · hij

ni,Ji
= argmaxnS

pi
⊕

n{Ji}
i

bi = bi ⊕end {Ji}, Pi = Pi ⊕n,Ji
{Ji}

yi,Ji(t) = ci,Ji , zi,Ji(t) = i

In the second (i.e., conflict resolution) phase, all agents exchange their recorded bidding

and winner information of the tasks. Only the agent with the highest marginal score could

be the winner for the task. For those agents who outbid for the task, they should release

this task and all other tasks added in the bundle after the outbid task. Meanwhile, based

on their local recorded bidding price and the received bidding price, the agent will either

update, reset the bidding/winner list or keep it in the same way.

CBBA process with a synchronized conflict resolution phase over a static communication
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network will converge if the scoring function meet the condition of Diminishing Marginal

Gain (DMG). DMG requires each task’s marginal score cij[bi] to remain the same or decrease

when other task(s) b is added to the bundle:

cij[bi] ≥ cij[bi⊕endb] (3.2)

CBBA has provable convergence and 50% optimality with DMG scoring function for the

multi-agent task-allocation problem. When DMG is not available, warping is needed for the

CBBA to converge. The score cij[bi] will be warped to mincij[b],∀b ∈ bi, to help convergence.

3.2.2 Graph Convolutional Network (GCN)

In the past decade, the deep learning technique has been applied widely for its impressive

feature extraction and representation capabilities. As one of the most successful deep neural

network models, convolutional neural network [35] is extremely effective in analyzing data

with an underlying Euclidean or grid-like structure. However, the conventional CNN is

not applicable to the non-Euclidean structured data, such as social networks or information

networks, due to the lack of translation invariance. A graph convolutional network (GCN) is

a method for processing the data represented in graph domain [36], especially for the Non-

Euclidean structured data. It was first proposed for fake news detection in [37, 38]. When

combined with the CNNs and graph embedding techniques [39], the GCNs can be used to

extract representative features from graph structure.

Given a graph G = (V,E), where V and E represent the set of objects (i.e., the vertices),

and their relationship (i.e., the edges), the graph convolution can be carried out in two

domains, the spatial domain [40] and spectral domain [38].

The spatial domain [41] approach performs graph convolution by summing up a node’s

neighborhood information directly. It also applies residual connections and skip connections

to memorize information over each layer. Under this model, each vertex is associated with
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a neural network. The activation of the kth layer of node v(h
(k)
v ) is calculated as:

h(k)
v = f(W (k)xv +

∑k−1

i=1

∑
u∈N(v)

θ(k)h(k−1)
u ) (3.3)

where W (k) and θ(k) are learnable weight matrices for local and inter-nodes connections.

D denotes the activation function.

The spectral domain graph convolution [38] can be defined as a signal x ∈ RN (a scalar

for every node) convolves with a filter gθ′ (gθ′ = diag(θ) parameterized by θ ∈ RN) as the

following:

gθ′ ∗ x = UgθU
Tx (3.4)

where U is the matrix of eigenvector of the normalized graph Laplacian L = IN −

D− 1
2AD− 1

2 = UΛUT , with a diagonal matrix of its eigenvalues Λ. And UTx is the graph

Fourier transform of x. Using the first order approximation of the spectral convolution, the

layer-wise propagation rule of GCN can be defined as the following:

H(l+1) = f(H(l),A) = σ(Ď− 1
2 ÃĎ− 1

2H(l)W (l)) (3.5)

where Ã = A + IN is the adjacency matrix A of graph (V,E) with additional self-loop

edges IN , Ďii =
∑

j Aij, and W (l) is a trainable weight matrix. σ() denotes the activation

function. The spectral based GCN is used in this work.

It is a common practice to model a multi-agent system as a graph. In [42, 43] a graph

is used to capture tasks’ location and connectivity. In [44, 45] the agent-entity graph and

relevance graph are used to represent the relationship among agents and relationship between

agents and environment. However, none of these works applied machine learning techniques

to analyze those graphs for prediction or classification. In this work, we represent the task

location and their distance using a graph, and apply the GCN to extract features that help

us to predict the best auction strategy.
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3.3 Problem Definition

Without loss of generality, we discuss multi-agent task allocation in the context of UAV-based

rescue mission, where UAVs and rescue sites correspond to agents and tasks, respectively.

Let N and M represent the number of agents and tasks respectively, and ai and tj denote the

ith agent and jth task. Associated with each agent and task pair (ai, tj), there is a reward

rij. Every agent has a departure site and all agents must return to a common returning site.

The rescue sites, and the departure/returning sites together can be considered as a set of

vertices V = {vj, 1 ≤ j ≤ M + N + 1} and the flight routes directly connecting two sites

form a set of edges E = {ej,k, 1 ≤ j, k ≤ M + N + 1}. The graph (V,E) has an adjacency

matrix A, Ajk represents the energy needed for UAV to fly directly from vj to vk. The first

M rows/columns of A correspond to M tasks, the next N rows/columns correspond to the

departure site of the N agents, and the last row/column correspond to the common returning

site. Similar to the distance, the energy dissipation is additive. The energy required for a

UAV to travel a path is the sum of the energy needed on each edge alone the path. In the

rest of the chapter, we simply refer to Ajk as the “distance” from vj to vk, as if “energy

dissipation” is a unit to measure the “distance”.

To account for real-life scenarios such as adversarial weather or no flight zone, the distance

(i.e., energy) Ajk may not be proportional to the Euclidean distance between vj and vk.

Furthermore, the graph (V,E) does not have to be a complete graph and the adjacency

matrix A does not have to be symmetric either. It is possible that the shortest distance

(i.e., least energy) route between two vertices is not the direct connection (e.g., due to the

wind speed or other impact). The UAV should not stay in the departure site or any of the

rescue site, therefore Aii = ∞, 1 ≤ i ≤ M +N . Once the UAV arrives the returning site, it

will stay there indefinitely, hence, A|V ||V | = 0 and A|V |i = ∞, 1 ≤ i ≤ M +N . Based on A,

it is not hard to derive the shortest distance between any two nodes in the graph, and we

denote this information using matrix A.

Each agent has a budget Bi, 1 ≤ i ≤ N , which can be interpreted as the maximum
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available battery capacity. To make the problem more challenging, we assume that each

rescue site has enough power/resource to interact with only one UAV. In other words, each

task can only be processed by one agent and its rewards can only be picked once. Hence

the coordination among agents becomes more critical. This also means that an agent may

pass (without collecting the reward) a task not in its bundle just to reach some tasks in the

bundle, if this gives a more energy efficient route.

The multi-agent task allocation problem defined above is a combinatorial optimization,

which can be formulated and solved using integer linear programing. To be consistent, we

assign an empty reward to the vertices corresponding to the departure and returning site,

i.e., rij = 0,∀i,M < j ≤ M +N +1. We introduce a set of binary variables, xi,n,m,k, 1 ≤ i ≤

N, 1 ≤ n,m ≤ M, 1 ≤ k ≤ M +1. xi,n,m,k = 1 if agent i select tn and tm as the (k−1)th and

kth tasks respectively in its bundle, otherwise it is 0. Then the multi-agent task allocation

can be formulated as the following integer linear program:

Max :
∑

1≤i≤N,1≤n,m,k≤M

ri,m ∗ xi,n,m,k (3.6)

With respect that: xi,n,m,k ∈ 0, 1

Subject to:

∑
1≤i≤N,1≤n,k≤M

xi,n,m,k ≤ 1,∀m, 1 ≤ m ≤ M (3.7)

∑
1≤m≤|V |

xi,(M+i),m,1 = 1,∀i, 1 ≤ i ≤ N (3.8)

∑
1≤n≤|V |

xi,n,|V |,M+1 = 1,∀i, 1 ≤ i ≤ N (3.9)
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∑
1≤j≤|V |

xi,j,m,k =
∑

1≤j≤|V |
xi,m,j,(k+1),∀i, 1 ≤ i ≤ N, ∀k,m, 1 ≤ k,m ≤ M (3.10)

∑
1≤n,m≤|V |,1≤k≤M+1

An,mxi,n,m,k < Bi,∀i, 1 ≤ i ≤ N (3.11)

Equation (3.6) specifies that the objective is to maximize the total rewards of all agents

over the entire process. Equation (3.7) specifies the constraint that each task can be served at

most once. Equations (3.8) and (3.9) specify the constraints that the agents must depart from

their corresponding departure sites and come back to the common returning site. Equation

(3.10) gives the constraint that agents will not disappear or appear in the middle of the

process. Equation (3.11) specifies the budget constraint.

The constrained optimization problem described by Equations (3.6) – (3.11) can be solved

by many ILP solvers. However, when the size of the problem increases, the time complexity

will soon become prohibitive.

3.4 Constrained Task Allocation Using Extended CBBA

3.4.1 Original CBBA in Constrained Optimization

As discussed in Section 3.2, the CBBA algorithm could handle the general task allocation

efficiently in a decentralized way. When the marginal gain is DMG, the algorithm is provable

to converge and achieve 50% optimality. However, the algorithm is not designed for task

allocation with budget constraints.

Similar to the original CBBA, we use p[bi] to denote the path that connects all tasks in

bundle bi. (Note that the sequence of tasks along path p[bi] is not the same as the order of

tasks in the bundle bi.) We use function D(p[bi]) to denote the distance of path p[bi]. To

apply CBBA to our problem, each agent will initialize their bundle to include the departure
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site and returning site: bi = {vM+i, v|V |}. Given current bundle bi of agent i, using the

original CBBA, the marginal score cij[bi] of adding a task j to the bundle is its reward minus

the marginal cost,

cij[bi] =


rij − δj[bi], if δj[bi] ≤ Bi[bi]

0, otherwise

(3.12)

where Bi[bi] is the remaining budget of agent i after traveling path p[bi]; θj[bi] is the extra

distance that the agent has to travel if task j is inserted into p[bi], and is referred to as delta

distance. It is calculated as θj[bi] = minl<|p[bi]|D(p[bi]⊕l {j})−D(p[bi]).

All other steps in the CBBA remain the same except that the condition in Algorithm 1

line 6 will be changed to “while Bi[bi] ≥ 0”, so that it keeps on adding tasks to the bundle

when the budget is not depleted.

Unfortunately, the revised marginal score in Equation (3.12) is not DMG because θj[bi]

may decrease as bundle bi grows. For example, we will have θj[bi ⊕end {x}] < θj[bi] if vertex

x locates very close to vj. To use CBBA with non-DMG score function, warping is needed

in order to guarantee convergence. As we will show in the experimental results, warping

significantly degrades the performance. Another issue with the score function in Equation

(3.12) is that it directly operates on the cost and reward. However, these two variables are

measured using different metrics. Such combination is not scale invariant. When the map

scales linearly, the relative value of the bidding score of different agents will also change,

which results in different allocation schemes.

3.4.2 Extended CBBA with New Score Functions

We further propose several heuristic extensions of the CBBA by introducing 6 new marginal

score functions. When θj[bi] ≤ Bi[bi], they define the marginal score as the following:

• Heuristic 1 (H1): cij[bi] = rij
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• Heuristic 2 (H2): cij[bi] = rij − (δj[bi]− avgk/∈bi(δk[bi]))

• Heuristic 3 (H3): cij[bi] = rij/δj[bi]

• Heuristic 4 (H4): cij[bi] = rij − δj[bi]/Bi[bi]

• Heuristic 5 (H5): cij[bi] = rij −
δj [bi]−avgk/∈bi

(δk[bi])

Bi[bi]

• Heuristic 6 (H6): cij[bi] = rij + (Bi[bi]
Bmax

− δj [bi]

Bmax
)

When δj[bi] > Bi[bi], for all heuristics, cij = 0. We denote the original CBBA score

function in Equation (3.12) as H0 to simplify the discussion.

The goal of constrained task allocation is to maximize the reward while the budget is

still available. Hence, Heuristic 1 considers only the reward as the score when the budget is

available. Heuristic 2 is an improvement of the original CBBA. It is based on the rationale

that, as long as there is budget, the agent must serve a task. Hence the marginal cost for

task j is not simply δj[bi] but the extra distance of including task j compared to including

any other tasks in the trajectory. Heuristic 3 calculates the marginal score as the ratio of rij

and delta distance. It is another way to prioritize higher reward and lower cost.

The amount of remaining budget decides how critical it is to consider the cost. It is not

necessary to select tasks with lower cost if the remaining budget is abundant, and vice versa.

Heuristic 4 consider the cost as the ratio between delta distance and the remaining budget.

It is scale invariant because the ratio δj[bi])/(Bi[bi] is always less than 1, which is less than

the minimum unit reward. In other words, this heuristic score function will put reward

as the highest priority consideration, when there is a tie, the cost will then be considered.

Similar as Heuristic 2 to the original CBBA, Heuristic 5 is an improvement to Heuristic 4,

which considers cost as additional distance increase of inserting j compared to inserting any

other tasks. Heuristic 6 follows the same idea as Heuristics 4 and 5. However, the difference

between the remaining budget and delta distance of j is considered instead of their ratio.

The constant Bmax is a large number to ensure that what inside the parenthesis is less than

1.
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Theorem 1: Both heuristics 1 and 6 are DMG, i.e., cij[bi] ≥ cij[bi ⊕end {x}].

Unfortunately, all other heuristics are not DMG. Warping must be used to ensure the

convergence.

We further modify those heuristics such that, for a task j in bundle bi, the bidding score

is rij. This is achieved by changing the Algorithm 1 line 13 to “yi,Ji(t) = riJi”. The heuristic

score cij is referred to as the selection score as it is only used for the agent to prioritize tasks

and add them to its bundle. When the agent forms the bundle, cost of tasks and remaining

budget are considered. However, during the bidding process, the winner will always be the

agent with the highest reward. We denote such extension as H[N]’, 0 ≤ N ≤ 6, and refer

to them as the reward-only extensions. The H[N]’ are DMG, as the biding score of a task is

either 0 or constant. We need to point out that as the selection score and the biding score

are different, the relation between the DMG and convergence proved in the original CBBA

paper no longer apply here. In other words, the DMG property of the bidding score does not

necessarily lead to convergence. However, in our experiments, we do notice that for 99% of

the test cases, the H[N]’ extension of the CBBA algorithm converges. This is not observed

for their H[N] counterparts. The simulation results show that, in average, systems using

H[N]’ heuristics receives 12% more rewards than systems using H[N] heuristics. All of the

heuristic extensions outperform the H0, the original CBBA.

3.4.3 Performance Predictor using GCN

The detailed comparison of the aforementioned heuristic extensions of CBBA can be found

in the experimental results section. Although some of them have better performance than

others, in general, those heuristics are pareto efficient. None of them completely dominate

other heuristics. Even the best one of them, H4, receives the highest rewards only for 46%

of the test cases. Every one of them will outperform others or be outperformed by others

for some specific testcases. Naturally we want to pick the best heuristic extension to carry

out the distributed auction for different task allocation problems. However, to predict which
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heuristic will outperform others for a given test scenario is not trivial. It depends on the

budget of agents, the reward of tasks, and the location and connectivity of tasks. All of

these should be considered jointly.

Figure 3.1: Network Structure of the GCN for Performance Prediction

In this work we propose to use neural network to train a machine learning model to

predict the performance of different heuristic extensions of the CBBA. The prediction will

be used to guide the selection. The neural network used here must be able to extract

unique features of the environment, such as the connectivity and distance among tasks

and departure/returning sites, and fuse this with UAV related features, such as available

budget and rewards. The traditional CNN model does not apply here as the tasks and their

connections are not Euclidean. Instead, a GCN model is used here.

The input of the GCN model includes three main features, tasks, edges and budgets.

Each task j is represented by a (2N + 3)-dimensional feature vector. It includes the task

location (x, y), rewards to each agent rij ∈ R, 1 ≤ i ≤ N , the distance between the task and

departure site (A(M+i),j, 1 ≤ i ≤ N) or returning site (Aj,|V |). And the edge feature consists

of the connectivity and distance information.

The network architecture of our GCN is shown in Figure 3.1, we use a four-part Graph

CNN model with four convolutional layers with 64-, 32-, 16-, 8-dimensional output features
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map in each layer to extract the environment information. And then a mean pooling layer

is used to sum the learned node representation to create a graph representation. The bud-

get feature is extracted using a fully connected (FC) layer and then fused with the graph

representation using three FC layers. The feature sizes of those FC layers are labeled on

the figure. The output of the model is a prediction of the global rewards that the agents

will receiving by applying the corresponding heuristics extensions. Mean square error loss is

used in the training.

3.5 Experimental Results

Extensive simulations have been carried out to evaluate the performance of the 7 extended

CBBA algorithms, H0 H6. As we discussed before, all of them uses warping to ensure

convergence except H0 and H6, which are DMG. The reward-only counterparts of those

heuristics, H0’ H6’, are also evaluated. Please note that the reward-only extensions use

cij[bi] as the selection score to build the bundle and use rij as the bidding score in the

bidding process. For H1 heuristic, cij = rij, therefore, H1 = H1’.

In all the experiments, 20 tasks and 3 agents were used. The tasks are located in a 30×30

2D plane. The distance (energy) between two tasks is set as Ajk = djk+θjk, where djk is the

Euclidean distance between tasks j and k, and θjk is either a random variable in the range

of [3, 6] or 0. The reward rij is a random integer variable in the range of [1-5]. We sweep the

budget from 40 to 120. Overall, more than 10,000 test cases were generated and simulated.

For the dataset, we split those 12,000 cases into train and test sets by 4:1.

3.5.1 Performance of Heuristic Extensions of the CBBA

In the first experiment, we compare the performance of different heuristics and their non-

warping extensions. The CBBA bidding process is simulated and the total rewards received

by all agents were recorded. A heuristic covers a test case if it receives the highest rewards.
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In this case, we also say that this heuristic dominates other heuristics. It is possible for

more than one heuristic to cover the same test case if all of them receive the same number

of rewards that is higher than other heuristics.

Figure 3.2a shows the the percentage of times a heuristic extension dominates. The higher

number indicates better performance. Figure 3.2b shows the average percentage reward

reduction of a heuristic compared to the best heuristic. The smaller number indicates the

better performance. As we can see, the original CBBA, H0, that naively combines the reward

the cost does not perform well. The warping has significant impact on the performance.

The reward-only extension significantly improves the reward except for H1, H4 and H6. The

average improvement is about 12%. As we mentioned before, H1 and H1’ are the same,

therefore, there is no difference in their performance. The H6 is DMG, hence, does not

trigger the warping function. Therefore, its reward-only counterpart does not provide any

improvement. On the contrary, by ignoring the remaining budget and distance in bidding

process, it actually degrades the performance. The H4 is a special case. Although it is not

DMG, we can prove that cij[b
′
i] − cij[bi] < 1, for all bi ⊂ b′i, and 1 is the minimum unit of

the reward. Hence, even if the warping is triggered, the cij[bi] is only clamped marginally

and so the impact of warping is negligible. The experimental results show that significant

warping reduces the performance of the bidding process, because it deprives other agents

from receiving the correct reward/cost information.

The experimental results also show that all heuristics have a positive percentage of cov-

erage. Even the worst heuristic H0 covers about 5% of the test cases. On the other hand,

none of the heuristics covers 100%. Even the best of them, H8, covers less than 50% of the

test cases. Therefore, being able to select the right heuristic (or the reward-only extension)

is crucial before the agents start the CBBA process.
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(a) Percentage of coverage

(b) Percentage reward reduction

Figure 3.2: Comparison of the Heuristic Extensions of CBBA
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3.5.2 Machine Learning Based Heuristic Prediction

Given a task allocation problem, which heuristic extension performs the best depends on

the location of tasks, departure and returning sites, their distance, the available budget of

each agent and the reward of each agent-task pair. GCN models are trained to analyze these

features and predict the performance of different heuristics. The prediction will be used to

guide the selection. The test cases are divided into training and testing data based on a 4:1

ratio.

Figure 3.3: Coverage of Different Combinations of Heuristics

Although not exactly the same, some of the 6 heuristics and their reward-only counter-

parts are very similar, and their coverage are largely overlapped. Figure 3.3 gives the Venn

diagram of some of the coverage of some of the heuristics. Among them, H1, H3’ and H4

have the largest combined coverage and least overlapping. In the second experiment, we

narrow our focus only to these three heuristics. GCN models are trained to predict their

performance. In this experiment, a heuristic (among H1, H3’ and H4) dominates a test case

if it outperforms the other two.

Figure 3.4 plots the reward predicted by the GCN against the actual reward received

after completing the bidding for heuristics H1, H3’ and H4. All of the predictions are highly

correlated to the actual value. The correlations are all above 0.98.

The goal of the performance predictor is to guide the process to select the appropriate
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(a) H1 (b) H3’ (c) H4

Figure 3.4: Predicted Reward Versus Actual Reward

heuristics for the given task allocation problem. We say that the machine learning model

accurately selects the best heuristic if the heuristic with the highest predicted reward is truly

dominating. As shown in Table 3.1, machine learning predicted heuristic can cover 69% of

the test cases. This means for 69% of the time the machine learning model predicts the

dominating heuristic correctly. If we constantly use a specific heuristic such as H1, H3’ or

H4, then their coverage is only 43.5%, 47.7% and 49.5%. By random selection, we have

only 49.3% of chance to select the correct heuristic. Overall, the machine learning model

improves the decision accuracy by more than 39%.

Table 3.1: Percentage Coverage of Heuristics and Improvements of the
Predicted Approach

Heuristics Predicted Random H1 H3’ H4

% Coverage 68.9% 49.3% 43.5% 47.7% 49.5%

% Improvement 0 39.7% 52.0% 44.4% 39.1%
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3.6 Conclusions

In this work, we consider multi-agent task allocation with limited budget constraints. We

compare the original consensus-based auction algorithm under those constraints, and extend

it with several heuristic scoring functions. To ensure convergence, reward-only counterparts

of those heuristics are also introduced, which separately consider selecting score and bidding

score during CBBA. The performance of those heuristics is evaluated and compared. We

show that those heuristics are Pareto efficient. Finally, we proposed a graph convolutional

networks (GCNs) model to predict the total rewards that agent can receive for a specific

task allocation problem when using different heuristic extensions, and use the predicted

reward to guide the selection of appropriate scoring functions. The results show that we

can correctly select the dominating heuristic for 69% of the testcases, which outperforms a

random selection by 38%.

43



Chapter 4

Multi-agent Cooperative Games

Using Belief Map Assisted Training

4.1 Introduction

A multi-agent cooperative game involves multiple autonomous systems collaborating with

each other to achieve a common goal and maximize the overall utility of the system. These

games can be used to model various applications, such as rescue missions where multiple

robots are deployed to search for missing persons, military operations where multiple UAVs

survey a large area, and scientific expeditions where rovers explore unknown terrain together.

However, as the number of agents increases, centralized monitoring, controlling, and opti-

mization becomes infeasible due to the exponential growth in complexity [46][47]. It will

also increase the vulnerability of the system to single-point failures [48][49]. To overcome

these issues, distributed control and optimization are introduced, where each agent makes

its own decisions based on local information. However, this approach also has limitation, as

agents only have partial observations of their immediate surroundings, and may not be able

to make globally optimal decisions.

Message exchanges among agents can provide global information and help the agents
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move out of local optima. However, excessive communication can consume communication

energy, bandwidth, and processing power. Sending redundant messages in consecutive cy-

cles, or by agents close to each other, is likely to waste resources. Additionally, frequently

communicating every piece of observed information can be wasteful and also undermine the

receiver’s decision-making ability. Furthermore, to save communication energy and improve

security, the high-dimensional observation should be encoded into a low-dimensional message

that can only be decoded by the agents. Therefore, when to communicate, what to com-

municate and how to encode/decode the message are variables that need to be optimized.

Reinforcement learning (RL), such as the actor-critic model, is commonly used to optimize

multi-agent games. Manually design message passing system usually does not work well

with the RL due to the lack of prior knowledge of the features that are needed by the policy

network. A typical approach [50][51] is to train the message passing network together with

the policy network so that they can evolve simultaneously.

Training a deep neural network using reinforcement learning is time consuming because

the only feedback for the training is delayed, sparse, and indirect in the form of rewards.

Training a multi-agent reinforcement learning (MARL) model [52][53] is even more challeng-

ing due to the fact that agents’ decisions are not visible to one another. This lack of visibility

reduces the predictability of the environment and makes it non-stationary. When a trainable

message passing network is used to connect agents, things become even more complicated.

The additional trainable variables in the message network significantly increase the model’s

complexity, prolong the training time, and escalate the chance of overfitting.

In this work, we accelerate the MARL by introducing another feedback channel that

helps to learn a more efficient message passing network and a more effective representation

of the environment. This consequently leads to better policy and faster convergence. In our

belief-map assisted multi-agent system (BAMS)1, each agent is supplemented with a map

decoder, which transforms its hidden state into a belief map, a neuro-symbolic representation

1The code is available at Github
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of the agent’s knowledge of the global environment. This symbolic representation is simple,

making it easy to obtain its corresponding ground-truth value. By comparing the belief map

with the ground-truth map, the system receives an additional feedback that supervises the

training process. During execution, the belief map provides a way to interpret the agent’s

hidden state, which can further be used to explain the agent’s behavior.

To improve coordination among the agents and increase the efficiency of message retrieval,

our message passing system incorporates gating and attention mechanisms. The attention

model enables agents to differentiate important and irrelevant messages, while the gating

removes the redundancy and saves communication power and bandwidth.

We assessed the performance of the BAMS model using a multi-agent predator-prey game

with and without obstacles. Centralized training and distributed execution are adopted

in the experiments. The experimental results indicate that BAMS outperforms existing

models, proving to be more fitting for large-scale environments with complex landscapes

and providing more robust performance.

The key contributions of this chapter are summarized as follows:

• We proposed a belief-map assisted training mechanism that complements reinforcement

learning with supervised information to accelerate training convergence.

• We proposed a belief-map decoder to reconstruct a neuro-symbolic map from the en-

vironment embedding to provide additional feedback during the training. The map

transforms the hidden state of agents into a human-readable format, which signifi-

cantly improves the interpretability of the agent’s decision-making process.

• Agents trained using BAMS model communicate more effectively, catching the prey

faster and being less susceptible to noises from redundant messages as the number of

agents increases.

• Simulation results show that agents with these enhancements can be trained effectively

for operation in large and complex environments, reducing training time by an average
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of 66% and improving overall performance by 34.62%.

The rest of the chapter is organized as follows. Section ?? introduces previous works

related to communication in a multi-agent reinforcement learning system. Section ?? gives

the details of our proposed method including the believe map decoder and attention model.

The experimental results are given in Section ?? followed by the conclusions in Section ??.

4.2 Background and Related Works

Previous research models a multi-agent communication system as a message passing graph

neural network [54][55], where each node in the graph represents an agent and each edge

models a communication pathway equipped with message encoding and decoding. Different

graph topologies have been studied [56], and recent works focus on improving the efficiency

and reducing the cost of the communication using gated message passing [57], attention [58],

schedule communication [59] and event/memory driven processing [60][61] [62].

The first study on learnable communication, known as RIAL and DIAL [63], developed

a message passing network that generates message generation based on the agent’s local

observation, action, and received messages. The message encoder is a multi-layer percep-

tron trained together with the policy network using reinforcement learning. CommNet [42]

includes a centralized communication channel into the network, which enhances [63] by main-

taining a local hidden state in each agent using a Recurrent Neural Network (RNN). The

hidden state is determined by the sequence of local observations and received messages and

is sent as the communication message to other agents. When multiple messages are received,

the agent consolidates them using their average.

Message gating [64][51] has been proposed as a binary action to dynamically block or

unblock message transmission, thereby improving communication efficiency and conserving

power and bandwidth. IC3Net [51], an extension of CommNet [42], utilizes Long Short-

Term Memory (LSTM) [65] to generate hidden states. Gated-ACML [57] performs message
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pruning before transmission. For both approaches, communication gating is optimized by

the policy network using reinforcement learning.

Other studies [64][66][67] have employed attention model to prioritize received messages so

that agents can select useful features. ATOC [64] applies attention to determine which agent

to communicate with, and dynamically changes network structure accordingly by generated

a directed graph. G2ANet [66] combines a hard attention and a soft attention as two stage

attention model to process different incoming message from different agents. MAGIC [67]

uses a multi-layout graph attention network among agents. However, it performs centralized

communication and message processing. All messages are sent to a communication hub

where they are consolidated using the attention model and then broadcasted to all agents.

TarMAC [50] utilizes both gating and attention to enhance the communication efficiency.

However, upon careful examination of its code, we found that an implementation error in the

SoftMax function leads to unintended message leakage. If all agents gate their transmissions,

the receiver may still receive this message. In other words, an agent i can only gate its

message to another agent j if at least one other agent k, 1 ≤ k ≤ N, k ̸= i or j, decided to

send its message to j in the same cycle. As a result, agents must synchronize with each other

regarding gating decisions during each cycle to determine whether to transmit messages.

All the works mentioned above train the message passing network with the policy network

using the game rewards as the feedback. This approach tends to have a slow convergence

and the agents do not understand each other well. In this chapter, we proposed a belief-map

assisted training method (BAMS) that significantly improves the training speed and quality

for large and complex games. The agents trained using BAMS communicates more efficiently

with fewer messages and better attentions.
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Figure 4.1: Architecture of BAMS Model

4.3 Proposed Method

In this section, we present the structure and training of belief-map assisted multi-agent

system (BAMS). Details of the BAMS are illustrated in Figure 4.1. For each agent i, the

model comprises five major components:

• Observation Encoder Ei(): The observation encoder extracts key features from the

agent’s local observation, which will later be combined with received messages and be

used to update the hidden states.

• Message Attention Module Ai(): The attention module assigns weights to different

messages to select relevant information.

• Hidden State Generator lstmi(): The hidden state generator is a Long Short-Term

Memory (LSTM) that fuses the local observation and received messages into a feature

vector hi.

• Policy Network pi(): The policy network is an actor-critic model that selects the best

action for the local agent to maximize the overall system utility. In BAMS, the action

49



consists of two parts, a discrete movement action ai, which decides how agent moves to

complete the game; and a binary communication action gi, which decides whether the

agent should broadcast its hidden state. The outgoing message mmi is the product of

gi and hi as shown in Figure ??.

• Map Decoder Di(): The decoder reconstructs a neuro-symbolic belief map of the en-

vironment based on the hidden state of the local agent. The belief map represents

agent’s knowledge of the global environment. It will be compared with the ground

truth to provide additional feedback to assist the training.

4.3.1 Hidden State Generation and Policy Network

At each time step, every BAMS agent collects observations from its local sensor. The local

observation for agent i at time t is denoted as oti. Typically, the representation of oti is

designed manually and tailored to the specific application. The agent then update its hidden

state, which is maintained by an LSTM, using both local observations and the received

messages as the following:

ht+1
i , st+1

i = lstmi(Ei(o
t
i), c

t
i, h

t
i, s

t
i), (4.1)

where ht
i and sti are hidden state and cell state at time t of agent i, and cti is the aggregated

feature extracted from the received messages using the attention model. Ei(o
t
i) is the encoded

observation.

Based on the hidden state, the agent chooses actions using a policy network pi(). The

policy network follows the actor-critic model and comprises an actor network θi(h
t
i) and a

critic network Vi(h
t
i). The θi(h

t
i) is a one-layer fully connected network with an input of ht

i.

Its output has two components ati and gti ,

ati, g
t
i = θi(h

t
i). (4.2)
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The vector ati represents the probabilities of the game actions available to the agent, i.e., the

movement that the agent can make to complete the game. The variable gti , which is either 1

or 0, represents the probability of the binary communication action, i.e., blocking or passing.

At each step, the action was sampled according to the probability distribution.

4.3.2 Message Passing Model

Agents communicate their connected neighbors by sending messages. Following the approach

used in TarMAC and IC3Net, we employ the hidden state as the communication message.

The hidden state contains all the information that an agent requires to make local decisions.

However, not all the information is useful to the agent’s neighbors. Furthermore, some of

the information may overlap with previous messages from the same agent or messages sent

by a nearby agent. To improve the efficiency of the communication network, the senders

must reduce the number of redundant messages they send and the receivers must be able to

extract useful information relevant to their own decision making.

We implement the message gating at the sender side. The outgoing message mmt
j of

agent j is calculated as the product of ht
j and the binary gate action gtj.

mmt
j = ht

j × gtj. (4.3)

After receiving messages mmt
j(j ̸= i) from neighbor j, agent i aggregates the messages using

an attention model, which is trained to maximize the reward from the game and minimize

the loss of the belief-map construction. Considering the communication delay, agent i uses

gated message mmt−1
j send by agent j in previous time step as the input of the key and value

networks to generate kt
j and vtj for time t. The query qti of the attention model is generated

based on the agent’s local hidden state at current time step (ht
i).

kt
j = key(mmt−1

j ) (4.4)
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vtj = value(mmt−1
j ) (4.5)

qti = query(ht
i) (4.6)

αt
i = softmax

[
(qt

T

i kt
1)√

(dk)
. . .

(qt
T

i kt
j)√

(dk)
. . .

(qt
T

i kt
1)√

(dk)

]
(4.7)

cti =
∑N

j=1
αt
iv

t
j (4.8)

where key(), value() and query() are networks with one fully connected linear layer, dk is the

dimensions of hidden state. cti is the aggregated feature vector that will be used to update

the hidden state in Equation 4.1.

4.3.3 Map Decoder

Instead of relying solely on the reward from the environment, additional channels of feedback

information could be added to expedite the training process. In this work we assist the RL by

using a decoded belief map. As the aggregation of past observations and incoming messages,

an agent’s hidden state represents its knowledge of the environment. The more accurate this

knowledge is, the better decision an agent can make. However, an agent’s hidden state is

a feature vector that is not interpretable. The basic idea of BAMS is to decode the hidden

state into a neuro-symbolic map that is human interpretable, allowing for the construction

of the ground truth version of the map. By comparing the decoded map with ground truth

map, we provide additional feedback to assist the training of the entire system.

The map decoder Di(h
t
i) can be viewed as the inverse process of the observation encoder

Ei(o
t
i). The encoder Ei(o

t
i) uses a Convolutional Neural Network (CNN) to extract the infor-

mation. Therefore, we selected transposed CNN to decode the map. Both the observations

and decoded maps are m×m gridded planes, where m is the size of the environment. The

status of each grid location is coded as a size M vector, where M represents the number of

possible states of the grid. For example, in the predator-prey game, a grid can have 4 pos-

sible states that indicate whether it has been observed, is currently occupied by a predator,

52



occupied by a prey, or occupied by an obstacle. These 4 states are not necessarily exclusive;

hence each grid is encoded as a multi-hot vector with a size of M . Overall, both maps have

dimension M×m×m. The observation map only contains information from the local agent,

while the belief map should incorporate the information from all agents.

4.3.4 Loss Function

In this work, we apply centralized training and distributed execution. All components in the

BAMS are trained together.

The training loss for each agent comprises two components, the Lmap and the LRL,

Loss = αLmap + βLRL, where α and β are two hyper parameters. The map loss comes

from comparing the decoded belief map (bti) and the ground truth map Gt
i. Mean Squared

Error (MSE) is used to calculate the loss, Lmap =
∑

tMSE(Gt
i − bti). During training, the

central controller tracks the movement and status of all agents to generate ground truth

map. The map loss is obtained in every time step t. Minimizing the map loss can help all

agents converge to an effective communication protocol and efficient message processing.

The RL loss is the error of the critic network,

LRL =
∑

t
∥(r(ht

i, a
t
i) + γV̂ (ht+1

i )− V̂ (ht
i)∥2 (4.9)

where r(ht
i, a

t
i) is the reward of the entire system, and V̂ () is the value estimation of the

critic model. The actor network is updated using policy gradient:

∇θJ(θ) =
∑

t
∇θ log(pθ(a

t
i|ht

i)[r(h
t
i, a

t
i) + γV̂ (ht+1

i )− V̂ (ht
i)] (4.10)

where pθ() is the prediction of the actor network. The BAMS model is updated using the

average gradient of all agents.
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4.4 Experiments

For our experiments and evaluations, we utilized a classic grid-based predator-prey game

[55]. It involves N predators (agents) with limited vision (v) to explore an environment

of size m × m to capture either a static prey or a moving prey. The value of N ranges

from 3 to 10, and m ranges from 7 to 20, representing games with varying complexity. The

environment is further divided into 2 categories, with obstacles and without obstacles.

4.4.1 Experiment Setting

We trained our network using RMSprop [68] with a learning rate of 0.001 and smoothing

constant 0.97. The entropy regularization is used with coefficient 0.01. The hidden state

size for LSTM is 64. For the attention model, the key (kt
j) and query (qtj) have a dimension

of 16 and the value (vtj) has a dimension of 64.

The agents have limited observation capabilities. Specifically, each agent is only able to

observe objects within a 3 × 3 or 5 × 5 area centered around itself. At each time step, an

agent can choose from 5 possible actions: up, down, left, right, and stay. Additionally, all

agents (predators) have a maximum step limitation, which varies according to the size of the

environment. Prior to reaching the prey, an agent will receive a penalty rsearching = -0.05

during each time step. Once an agent reaches the prey, it will remain there and receives no

further penalty. The game is considered as complete when all agents reach the prey within

the maximum number of steps. The number of steps taken to complete the game serves as

the performance metric.

We conducted a comparison of BAMS with 2 baseline models: TarMAC and IC3Net.

I3CNet employs message gating while TarMAC employs both message gating and atten-

tion. To the best of our knowledge, these models have state-of-the-art performance while

employing decentralized communication and decision-making. For TarMAC, regardless of

the gating action, the message will be sent, together with the gating action. So we also
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implemented a variation of BAMS that removes the belief map decoder and conducts the

training without the use of additional feedback. This reduced version of BAMS is referred

to as BAMS-R.

Figure 4.2: Left figure shows the example of 4 trajectories exhibiting keep the border within
their observation range. Right figure shown the heuristic trajectory.

In addition to the aforementioned models, we implemented a heuristic rule-based algo-

rithm. The algorithm directs the agents to explore the map from left to right, and top to

bottom. after finishes exploring a row/column, an agent will move to the next row/column

beyond its previous observation range. When it reaches the map’s edge, it will turn around

and explore in the opposite direction. Once an agent has sighted the prey, it will transmit

the prey’s location to all other agents, who will then take the shortest path to capture the

prey. An example of the heuristic trajectory is shown as the right figure of Figure 4.2.

4.4.2 Experimental Results for Simple Environment

The first experiment is carried out on simple environment without any obstacles. We dis-

covered that agents developed significant levels of intelligence and mutual understanding, al-

lowing them to complete the game with minimum communications. For example, all agents
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learned to explore the map by moving in a counterclockwise circle. Instead of exploring

the entire map, agents circle a local region based on their initial position. Additionally, the

agents tend to keep the border within their observation range while also staying as far from

it as possible. These behaviors allow the agents to observe the maximum area while trav-

eling the minimum distance. Left figure of Figure 4.2 presents an example of 4 trajectories

exhibiting such behavior.

Table 4.1 compares the BAMS with four reference algorithms for games with different

sizes when agents have 3× 3 vision. The column “comm rate” shows the average percentage

of times an agent transmits its hidden state. The results indicate that BAMS takes fewer

steps on average to complete the game than the other algorithms. Specifically, compared

to IC3Net and the heuristic algorithm, BAMS completes the game with approximately 30%

fewer steps on average. Compared to TarMAC, BAMS completes the game with 6% fewer

steps. However, it should be noted that agents using TarMAC transmit their hidden state

much more frequently. Moreover, as mentioned in Section ??, agents in TarMAC must

synchronize with each other about their gating decision at every time step, which incurs

significant overhead. The comparison between BAMS and BAMS-R demonstrates that the

use of belief-map assisted training leads to a 27% reduction in the number of steps required

to complete the game. As the map size increases, the communication rate of the BAMS

agents reduces as the possibilities of encountering new events, such as observing another

agent, the map edge, or the prey, decreases. In other words, the agents spend most of the

time moving straight ahead.

Table 4.1: Avg Steps & Comm Rate for Simple Environments.

N=3, m=7, Max Steps = 20 N=5 m=12, Max Steps = 40 N=10, m=20, Max Steps = 80
Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate

Heuristic 14.56 - 33.24 - 68.90 -
IC3Net 12.48 0.60 32.90 0.39 73.82 0.60
TarMAC 8.79 0.99 22.59 0.91 60.72 0.76
BAMS-R 12.39 0.32 29.80 0.04 71.76 0.35
BAMS 8.17 1.00 21.64 0.27 56.46 0.05
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Figure 4.3: Average Step Taken Curve of Different Random Seeds

Figure 4.3 compares the convergence speed of BAMS with BAMS-R, Tarmac and IC3Net

average step taken in random seeds under simple 12× 12 environment. The results indicate

that, IC3Net has the fastest convergence due to its relatively simpler architecture that does

not employ an attention mechanism in message processing. However, for the same reason,

it also has the worst performance. On average, BAMS improves the convergence by 66%

compared BAMS-R. This improvement can be attributed to the additional feedback from the

belief map, which provides a more consistent relationship among hidden state, action, and

reward, resulting in faster learning with fewer iterations. Even TarMAC sends out messages

every time step, our BAMS still beat the convergence of Tarmac. It should be noted that this

feedback is only available during the training as no ground truth map is available during the

execution. Nevertheless, the decoded belief map can provide a visualization of the agent’s
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hidden state and hence can be used to interpretate the agent’s decision-making process.

(a) Step 1 Ground Truth Map (b) Step 1 Decoded Map

(c) Step 3 Ground Truth Map (d) Step 3 Decoded Map

Figure 4.4: Left grid figures (a) (c) is ground truth map shows the trajectory of agents.
Square represents agent and star represents prey. Circle represents the starting location of
agent, and the Wi-Fi icon represents that agent sent out a message on that step. Right
heatmap figures (b) (d) give the visualized belief map of agents. Brighter grids indicate
higher possibility that the grids are taken by agents, prey, or explored.

Table 4.2: Scalability Analysis of Model with Varying Numbers of Agents

2 5 7 10 15
Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate

Heuristic 33.36 - 27.40 - 25.94 - 20.47 - 15.56 -
IC3Net 29.34 0.43 32.90 0.39 33.13 0.42 34.91 0.42 35.74 0.39
TarMAC 23.03 0.96 22.59 0.91 23.67 0.81 24.55 0.75 24.79 0.63
BAMS-R 28.53 0.04 29.80 0.04 32.55 0.04 33.77 0.05 34.82 0.06
BAMS 23.04 0.31 21.64 0.27 19.32 0.28 18.76 0.29 18.88 0.30

Figure 4.4b and Figure 4.4d depict an example of the decoded believe map for five agents

at the beginning of the game and at time step 3 of the game, respectively. The gridded map

shows the location of the agents and the prey, and the location where the agent sends out
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a message. The 3 channels of the decoded map indicate the belief of the agents’ location,

the prey’s location and the explored area. At the beginning of the game, all agents only

have access of their local information. Interestingly, we found that the agents learned to

be optimistic, as each agent believed that the prey was located nearby. The Gray agent

reached the prey in step 2 and both Gray and Green agents sent out messages in steps 1

and 2. Therefore, at step 3, all agents updated their belief map to reflect the messages they

received. In their prey location map, the areas around location (5, 9) is highlighted, which

reflects the correct prey location that they learned from the Gray agent. In their explored

area map, the right side and center area of the map are highlighted, indicating the area that

has been explored by the Gray and Green agents. The Green and Orange agents observed

each other in step 3, resulting in the highlighting of each other’s location in their location

map. Interestingly, even though the Blue and Yellow agents did not send out any messages,

the other agents still slightly highlighted the left and bottom sides of their explored area

maps, as if they anticipated someone exploring this area. This suggests a type of mutual

understanding without direct communication.

To test the robustness of the policies, we train the BAMS, BAMS-R and IC3Net model

in an environment with 5 agents and test them in different environments with agent numbers

varying from 2 to 15. The results are reported in Table 4.2, where we also listed the per-

formance of the heuristic algorithm as a reference. As we expected, for BAMS, the average

number of steps needed to complete the game reduces as the number of agents increases.

However, for IC3Net and BAMS-R, the trend goes in the opposite direction. As the num-

ber of agents increases, due to the increased number of messages, the agents have difficulty

extracting useful information, resulting in an increased number of steps to complete the

game. This experiment demonstrates that BAMS helps to train an effective message passing

framework, allowing agents to perform better in the game.
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4.4.3 Experimental Results for Complex Environment

In the second experiment, we tested our approach under a complex environment with obsta-

cles. Each grid in the environment is encoded as multi-hot vector of size 4, which represents

whether the grid is occupied by a predator, a prey, or an obstacle, and whether it has been

observed. We fixed the environment size to be 12× 12. In each randomly generated training

environment, there are 20 randomly placed obstacles

Figure 4.5b compares the convergence speed of BAMS, Tarmac, IC3Net and BAMS-R.

We can see that BAMS once again has the fastest convergence speed compared to the other

models, completing the game with 3 fewer steps than the other two models in average. In

comparison to Figure 4.5a, the performance of IC3Net, which does not employ attention to

the received messages, deteriorates much faster than Tarmac, BAMS-R and BAMS. This

means effective message passing network becomes increasingly important in a complex envi-

ronment.

We also observed that as the environment becomes more complex, the performance of

those models oscillates more significantly. This can be seen in Figure 4.5a and Figure 4.5b

when the environment size is 20 or when obstacles are included. The reason for this is

that in randomly generated large and complex environments, the difficulty level of the game

can vary significantly. Factors such as the initial location of the agents and distribution of

obstacles can affect the number of steps needed to complete the game.

We further tested the model using testing environments with 10, 20 and 30 obstacles.

We found that even though the network is trained with 20 obstacles, it was able to handle

different environments. The performance of the three deep learning models in a complex

environment is shown in Table 4.3. In average BAMS reduces the number of steps by 23.6%

and 16.5% compared to IC3Net and BAMS-R, respectively.
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(a) Simple 20× 20

(b) Complex 12× 12

Figure 4.5: Average Step Taken Comparison
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Table 4.3: Avg Steps & Comm Rate for Complex Environments

No. of obstacles 10 20 30
Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate

IC3Net 45.39 0.53 48.56 0.54 49.37 0.57
BAMS-R 39.43 0.062 44.78 0.073 46.92 0.076
BAMS 31.80 0.056 36.51 0.065 41.42 0.054

4.5 Conclusion

This chapter proposes a novel training approach called belief map assisted training to improve

the convergence and efficiency of multi-agent cooperative games with distributed decision-

making. To overcome the issue of partial observation, attention-based inter-agent commu-

nication is adopted. The agents are trained to learn when to gate the message to save

bandwidth and avoid interference with irrelevant information. We compared our approach

with IC3Net and TarMAC in both simple and complex predator-prey environments. The ex-

perimental results show that our attention-based belief map can help the agents learn a better

representation of the environment’s hidden state and process messages effectively, leading to

wiser decisions. Additionally, the belief map assisted training improves convergence speed

and reduces the average number of steps needed to complete the game.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we study an unmanned aerial system traffic density prediction model and multi-

agent task allocation with budget constraint problem. The contribution is summarized as

follows:

• In Chapter 2, starting from our previous work of density prediction model, we proposed

a technique to search for the best prune strategy for the UAV traffic density prediction

model to facilitate fast traffic prediction. Our pruning model achieved a reduction in

the size of the original traffic prediction model by 55% while keeping similar accuracy

as the original model. At the same time, the model execution time speeds up by 60%.

• In Chapter 3, we present several heuristics method to improve the original CBBA

algorithm under considering the budget constraint. Then we proposed a graph convo-

lutional networks (GCNs) model to predict the total rewards that agents can receive for

a specific task allocation problem when using different heuristic extensions, and use the

predicted reward to guide the selection of appropriate scoring functions. The results

show that we can correctly select the dominating heuristic for 69% of the testcases,

which outperforms a random selection by 38%.

63



• In Chapter 4, we proposes a novel training approach called belief map assisted training

(BAMS) to improve the convergence and efficiency of multi-agent cooperative games

with distributed decision-making. The results show that our attention-based belief map

can help the agents learn a better representation of the environment’s hidden state and

process messages effectively, leading to wiser decisions. We evaluate BAMS’s perfor-

mance in a cooperative predator and prey game with varying levels of map complexity

and compare it to previous multi-agent message passing models. The simulation re-

sults showed that BAMS reduced training epochs by 66%, and agents who apply the

BAMS model completed the game with 34.62% fewer steps on average.

5.2 Future Research Directions

As in the real-world environment, unlike certain games that afford complete observation,

even complex scenarios such as StarCraft2, DOTA2 and Google Football Research impose

limitations on an agent’s observational capacity. The actions and state of agents heavily rely

on what they observe and how they communicate. But fully communication requires a huge

communication cost, which makes fully communication impossible. our future steps involve a

continued exploration of partial observation and limited communication strategies for agents,

particularly in the context of dynamic and complex environments. We aim to refine and

extend our BAMS model to further enhance the cooperative and communicative capabilities

of agents. First, we plan to delve deeper into the integration of advanced techniques, such

as reinforcement learning and additional attention mechanisms, to augment the decision-

making processes of agents. Second, we will explore ways to dynamically adjusting the degree

of relationships among agents using Graph Convolutional Networks (GCN). Furthermore, we

will consider the incorporation of multi-modal learning, enabling agents to leverage various

sources of information beyond visual observations. This can include incorporating data from

sensors, textual inputs, or other relevant modalities, enriching the agent’s understanding of
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the environment.
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