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ABSTRACT

Over the years, wireless communication systems have evolved into the most widely used frame-

work for communication devices and networks. These wireless networks form the backbone of

wireless sensor networks (WSNs) that have been employed in many applications such as military

surveillance, autonomous driving systems and smart-homes. When designing WSNs, two crucial

factors must be considered. The first factor is the security of WSNs, which is a concern due to the

deployment of low-cost and potentially insecure sensors. The second critical factor is the energy

efficiency of WSNs, as they often rely on battery-limited sensors. In this dissertation, we con-

sider the design of various resilient energy-efficient WSNs for the inference task under Byzantine

attacks, which are one of the most significant security threats faced by WSNs. When the sys-

tem suffers from Byzantine attacks, some sensors in the network might be compromised and fully

controlled by adversaries. Our goal is to design WSNs that are both energy-efficient and resilient.

The first part of this dissertation (Chapters 2 and 3) focuses on enhancing the resilience of

WSNs that achieve energy-efficiency through quantization, particularly in scenarios where Byzan-

tine nodes are prevalent, and the fusion center (FC) lacks knowledge of the attack strategy. Our

in-depth exploration, analysis, and enhancements center around a promising energy-efficient mech-

anism known as the audit bit-based mechanism. For the traditional audit bit-based mechanism, we

demonstrate how a simple attack strategy can compromise the entire system. To address this con-

cern, we introduce an enhanced audit bit based mechanism, which effectively relaxes the stringent

constraints on the attack strategies that this mechanism can withstand. Building upon the enhanced

audit bit framework, we propose an advanced audit bit-based scheme that not only improves system

robustness but also significantly reduces redundancy related to audit bits. Furthermore, drawing in-

spiration from both the audit bit-based mechanism and reputation-based mechanisms, we develop

some advanced schemes designed to help systems effectively address challenges in scenarios where

prior knowledge of attack strategies is unavailable, and Byzantine nodes are a prevailing threat.



In the next section of this dissertation (Chapters 4 and 5), we study the resilience of WSNs

operating under constraints of limited power supply. Our research focuses on the security aspects

of two promising energy-efficient frameworks: ordered transmission (Chapter 4) and compressed

sensing (Chapter 5). In Chapter 4, we investigate the impact of Byzantine attacks on the perfor-

mance of both the traditional order transmission based (OT-based) system and the communication-

efficient OT-based (CEOT-based) system. We investigate the error probability and the number of

saved transmissions for those OT-based systems under various Byzantine attack strategies. Fur-

thermore, we derive upper and lower bounds on the number of transmissions saved for OT-based

systems under various Byzantine attack strategies. A comparison of the resilience of CEOT-based

and conventional OT-based systems is presented, offering guidance on implementing OT-based

frameworks in potentially hostile environments.

In Chapter 5, we investigate the distributed detection problem of sparse stochastic signals with

compressed measurements in the presence of Byzantine attacks. We propose two robust detectors

based on the traditional Generalized Likelihood Ratio Test (GLRT) and traditional Quantized Lo-

cally Most Powerful Test (LMPT) detectors with adaptive thresholds, given that the sparsity degree

and the attack strategy are unknown. The proposed detectors can achieve detection performance

close to the benchmark likelihood ratio test (LRT) detector with perfect knowledge of the attack

strategy and sparsity degree. Furthermore, we explore situations where the fraction of Byzantines

in the networks is assumed to be known. In this context, two enhanced detectors building on the

previous proposed robust detectors are proposed to further improve the detection performance of

the system by filtering out potential malicious sensors.

In addition to our primary focus on traditional WSNs, our research extends to the domain of

human-machine collaborative networks. These networks are particularly relevant in high-stake sce-

narios, such as remote sensing and emergency access systems, where automatic physical sensor-

only decision-making may not be sufficient. A combination of human and machine inference

networks leverages the cognitive strengths of humans and the sensing capabilities of sensors to

enhance situational awareness of the systems. Chapter 6 introduces a belief-updating scheme de-



signed to enhance the resilience of these collaborative networks against potential attacks. The pro-

posed belief-updating scheme, which builds on a human-machine hierarchical network, can also

mimic the real-world decision-making process where the sensors’ local decisions are collected by

humans to make a final decision. Our research reveals that our proposed scheme can improve sys-

tem performance, even in scenarios where a significant fraction of physical sensors in the system

are compromised, and where knowledge about the exact fraction of malicious physical sensors is

lacking. Additionally, we conduct an analysis of the impact of side information from individual

human sensors, and compare different operations used to incorporate the side information.
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CHAPTER 1

INTRODUCTION

Over the years, wireless communication systems have evolved into the most widely used frame-

work for communication devices and networks. These wireless networks form the backbone of

wireless sensor networks (WSNs) that have been employed in many applications such as mili-

tary surveillance, autonomous driving systems and smart-homes. One important factor to consider

when designing WSNs is the security of their operation in carrying out their assigned tasks. Due

to the distributed nature of wireless channels, wireless networks are vulnerable to various kinds

of security threats, such as jamming, advanced persistent threats, spoofing, wiretap and Byzantine

attacks [14, 26, 39, 54, 113, 119]. Attackers always aim to deteriorate the performance of wireless

networks while carrying out their assigned functions, such as sensing performance. The security

threat we are particularly interested in is Byzantine attacks, which are one of the most significant

security threats faced by WSNs. Another important factor to consider when designing WSNs is

the limited power supply. Reducing radio communications’ energy consumption is key to sustain-

ability and longevity of WSNs since radio communication is the major component of WSNs that

consumes large amounts of energy. The amount of data transmitted over the network is the domi-

nant factor that influences radio communications’ energy consumption. Therefore, by quantizing

the measurements, reducing the amount of data transmitted or optimizing communication pro-

cesses, energy-efficiency can be achieved. For example, it can be done through data compression,
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power-saving modes, and efficient routing algorithms. In the literature, some promising frame-

works have been proposed for improving the energy efficiency of the WSNs such as censoring,

ordered transmission and compressive sensing (e.g., [2, 5, 7, 9]). Energy efficiency is achieved by

either reducing the number of transmissions in the networks (e.g., censoring and ordered trans-

mission) or compressing the data sent by the sensors (e.g., quantization and compressive sensing).

In this dissertation, the task of distributed detection using WSNs is considered and constructing

energy-efficient WSNs for this task that are resilient to attacks is the main focus of our work.

1.1 Byzantine Attacks

Byzantine attack is a type of internal attack at the physical layer. This type of attack can be traced

back to the issue of Byzantine generals, first introduced by [74], where traitors attempted to mislead

other loyal generals by presenting false information. In WSNs, this term specifically refers to the

malicious behaviors that occur within WSNs when certain sensors are compromised and transmit

false data within the network. There are different types of Byzantine attacks on the distributed

detection task in WSNs such as data modification attack, data omission attack and delayed attack.

Malicious nodes can either selectively delay data (delayed attack), drop data (data omission attack)

or alter data packets directly (data modification attack) to manipulate the network.

In the existing literature, there have been several studies of distributed WSNs under Byzantine

attacks (e.g., [48]). The interactions between Byzantines and the WSNs can be viewed as games

between attackers and the detection systems. Byzantines aim to undermine the integrity of data

transmitted, thereby lowering the reliability of wireless sensor networks. Correspondingly, the FC

can enhance the reliability of the network by identifying the Byzantines and making suitable use

of information coming from Byzantines for mitigation purposes. Naturally, strategic Byzantine

attackers strive to maximize their attack gains while attempting to avoid detection by the defense

system.

The level of effort required for an effective mitigation varies depending on the data fusion
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system architecture. In centralized fusion systems with a Fusion Center (FC), the system can

better evaluate the behavior of all the sensors so that the attacks can be mitigated, especially when

the majority of nodes are honest and the FC is trustworthy. However, in decentralized fusion, each

sensor can only communicate with its neighbors to gather auxiliary information before making

a decision. This decentralized approach makes the system more susceptible to attacks since false

data can be stealthily incorporated into the decisions of neighboring nodes, and diffused throughout

the network.

1.2 Typical Attack Models in WSNs

There are several factors that can be used to classify Byzantine attacks in WSNs. One such factor

is the availability of additional information besides the sensing results at the Byzantine nodes. If

no extra information is available, the attacks are referred to as independent attacks, meaning that

the Byzantine nodes can only rely on their own sensing capabilities. On the other hand, if the

attacks involve the acquisition of extra information by the Byzantine nodes, such as the current

sensing results of other malicious nodes, fusion rules, and defense strategies, they are referred to

as dependent attacks. The exchange of information in dependent attacks allows malicious nodes

to increase their accuracy in sensing and the success rate of their attacks, making their collusion

more effective. One approach to defend against these types of attacks is to use statistical methods

to detect and identify malicious nodes that are demonstrating anomalous behavior, e.g., [117].

Another factor is the manner in which attacks are executed. If the attacks are launched with a

certain probability, they are referred to as probabilistic attacks. Defense algorithms for these types

of attacks usually identify attackers by analyzing the consistency of their attack behavior over time,

such as reputation-based schemes (e.g., [117]) and cluster-based schemes (e.g., [10]). Conversely,

if the attacks are launched based on specific conditions, such as when their posterior probability

of being a malicious node exceeds a certain threshold, they are referred to as non-probabilistic

attacks. These attacks are much harder to model compared to probabilistic attacks and can be very
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difficult to defend against, as the Byzantine nodes are intentionally trying to appear normal while

causing disruptions.

1.3 Existing Defense Schemes

A number of defense mechanisms have been proposed in the literature to mitigate the negative

impact of Byzantine attacks on system performance. They either directly identify and isolate

Byzantine attackers to reduce the impact of their attacks or design the system parameters to mit-

igate the effects of attacks on the system. Some works are based on statistical methods to build

reputation so that the malicious nodes are identified (e.g., [70]). For example, the authors in [38]

proposed an adaptive reputation-based clustering algorithm for spectrum sensing networks, which

was effective in performing detection even in the presence of collaborative attacks. The authors

in [70] addressed the problem of Byzantine attacks in distributed inference with M-ary quantized

data and proposed a reputation-based defense mechanism, which enables the FC to detect various

types of misbehaving nodes and improve detection accuracy. In addition, there are many other

promising methods for dealing with Byzantine attacks in networks, such as game-theoretic tech-

niques [63] and machine learning techniques [114]. Several consensus-based algorithms have been

used in decentralized fusion to improve their robustness under attack. Efforts have been made to

exclude nodes with significant deviations from consensus (e.g., [62]) and to design weights to mit-

igate the effect of data falsification attacks (e.g., [44, 69]). Additionally, trust-based mechanisms

can also be utilized in decentralized fusion, where each node evaluates the trustworthiness of its

neighboring nodes before exchanging data. There are also some works that have used the idea of

quickest change detection to detect the presence of anomalous measurements due to the malicious

sensors in the networks. A model of quickest change detection problems was proposed to detect the

presence of Byzantines, who generate fake i.i.d. observations according to post-change and pre-

change distributions before and after the change time (e.g., [22, 37]). In [22], the authors utilized

a model of quickest change detection problems to detect the presence of Byzantines, who generate
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fake i.i.d. observations according to post-change and pre-change distributions before and after the

change time. The system can recognize any change due to any subset of affected sensors quickly

and reliably. The results they obtained are useful for the robustness of existing multichannel pro-

cedures. In [37], the authors formulated and solved the multi-hypothesis Byzantine distributed

quickest change detection problem where multiple post-change distributions are considered due to

multiple types of attacks.

Aside from works that deal with performance analysis and robust design of networks with

fixed sample sizes, there are also studies that deal with performance analysis and robust design of

networks with unknown sample sizes, such as sequential hypothesis testing (e.g., [58, 111]). The

authors in [111] designed a robust sequential hypothesis test for cooperative spectrum sensing in

a mobile network. The authors in [58] investigated the effect of Byzantine attacks on sequential

binary hypothesis testing problems in both centralized and fully distributed networks, and proposed

asymptotically optimal algorithms to mitigate the effects of Byzantine attacks.

The previously discussed works have made strides in improving the resilience of systems

against Byzantine attacks, however, they still have limitations in detecting distributed attacks when

a significant number of nodes have been compromised. Some works, such as [33], [34] and [120],

have successfully reduced the impact of Byzantine attacks on WSNs even when the majority of

sensors are malicious. The authors in [120] proposed a robust framework for identifying Byzan-

tine attackers in collaborative spectrum sensing, with the consideration of two cases: with and

without prior knowledge of the attacker’s behavior. The framework can still achieve good iden-

tification results when a majority of nodes were Byzantine, with the help of stale information1.

The authors in [33] proposed an audit bit-based distributed detection scheme, where each sensor

sends an additional bit to the fusion center (FC) along with its own decision to provide the FC with

more information about the behavior of each sensor, was proposed under the Neyman-Pearson

framework. The authors showed that the defense system could only be blinded by the attackers

if all nodes in the network were Byzantine. The authors in [34] further extended this audit-based

1The stale information here is used to denote information that can reflect the real channel states but is outdated for
spectrum sensing in the current slot, such as the transmit results.
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mechanism to a Bayesian setting and a new decision rule was proposed, taking into account the

design of the mitigation scheme over time. But those aforementioned works still have limitations,

such as constraints on attack strategies and the need for knowledge of past true hypotheses.

In the literature, there is a large body of work on the performance analysis and robust design

of networks that rely on data from all sensors to reach conclusive decisions in the presence of

Byzantines. Nonetheless, there are still some areas of research that prioritize energy efficiency. To

conserve energy, some approaches, such as censoring-based schemes, ordered transmission-based

schemes, and sleep scheduling algorithms, require only a subset of sensors to actively transmit data.

The reduced number of sensors needed for active data transmission appears to meet the growing

demand for low energy consumption and long-lasting wireless sensor networks in various appli-

cations. However, there remains a need for further research efforts focused on the performance

analysis and robust design of such energy-efficient wireless sensor networks. Compressed sensing

is another representative scheme that achieves energy efficiency by compressing measurements

from multiple sensors. However, the integration of data during this process sacrifices specific sen-

sor information, making it challenging to pinpoint compromised sensors. These energy-efficient

frameworks are still under investigation in terms of their robustness and their robust design in the

context of error-prone environments and under attacks.

1.4 Major Contributions

Our research is primarily dedicated to enhancing the resilience of detection tasks against Byzan-

tine attacks within energy-efficient wireless sensor networks. The increasing adoption of energy-

efficient schemes, while beneficial in conserving the energy consumption of individual sensors,

might introduce new vulnerabilities that demand robust security measures to be taken. Our work

aims to achieve resilience in various types of energy-efficient networks with or without relying

on prior knowledge of attack strategies and even when Byzantine nodes dominate the network

landscape.
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One key focus of our research is to strengthen the resilience of wireless sensor networks that

achieve energy-efficiency through quantization, especially in scenarios where Byzantine nodes

prevail, and the FC lacks knowledge of the attack strategy. The audit bit based framework pro-

posed in [33, 34] is one promising and intriguing approach to address security threats that arise

in scenarios where Byzantine nodes are prevalent. However, the audit bit-based framework dis-

cussed in [33, 34] requires prior knowledge of the attack strategy and imposes hard constraints

on the behavior of malicious sensors. In our work, we take the traditional audit bit-based frame-

work to the next level. We first conduct in-depth exploration, analysis, and enhancement of this

mechanism, and then propose some advanced algorithms based on the idea of the traditional audit

bit-based framework. Our contributions include the introduction of an enhanced audit bit-based

mechanism, which relaxes the hard constraints on the attack strategies it can withstand. Building

upon the enhanced audit bit framework, we propose an advanced audit bit-based scheme that not

only enhances system robustness but also significantly reduces the redundancy associated with au-

dit bits. Furthermore, we extend this work to tackle challenges in scenarios where prior knowledge

of the attack strategies is unavailable. We introduce an adaptive algorithm that leverages reputation

systems and employs advanced audit bit techniques to enhance the network’s resilience and secu-

rity. The proposed adaptive algorithms allow us to guarantee excellent performance even when

Byzantine nodes are in the majority.

Another key focus of our research is to enhance the resilience of WSNs when limited power

supply is available and energy efficiency is prioritized. Our work is concerned with the secu-

rity aspects of two kinds of promising energy-efficient frameworks mentioned earlier: ordered

transmission and compressed sensing. In ordered transmission-based (OT-based) schemes, energy

efficiency is achieved by omitting transmission of less informative data. As only a fraction of

sensor data is transmitted to the FC during each decision interval, these systems present greater

challenges for ensuring security. The sacrifice of sensors’ data introduces complexities in evaluat-

ing the reliability of sensors due to the limited availability of complete data records. However, the

issue related to resilience of such systems has not been explored in the existing literature. In our
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work, the effect of Byzantine attacks on the performance of the OT-based systems is investigated

and a comparison of the robustness of two main OT-based systems is made, shedding light on how

to employ OT-based frameworks in an attack-prone environment. Some possible countermeasures

to mitigate the impact of Byzantines on OT-based systems are also discussed.

In the field of compressed sensing, the achievement of energy efficiency hinges on the compres-

sion of high-dimensional sparse data into a lower-dimensional format. However, the amalgamation

of data during the compressed sensing process can introduce challenges in identifying compro-

mised sensors, thereby posing a threat to system integrity. In addition, the unknown sparsity of the

sparse signal increases the uncertainty of the model. Some promising works, such as [32,101,102],

address the sparse signal detection problem within the context of compressed sensing, primarily in

attack-free environments. In our research, we conduct a comprehensive evaluation of the impact

of Byzantine attacks on the performance of two promising detectors in aforementioned works: the

Generalized Likelihood Ratio Test (GLRT) detector introduced in [32], and the Quantized Locally

Most Powerful Test (LMPT) detector presented in [101, 102]. Our results reveal the vulnerability

of these detectors originally designed for attack-free environments to possible attacks. To address

this issue, we propose robust detectors capable of withstanding Byzantine attacks, even in the pres-

ence of unknown sparse patterns and unknown attack strategies. The proposed detectors achieve

detection performance close to the benchmark LRT detector with perfect knowledge of the attack

strategy and sparsity degree.

Beyond our primary focus on traditional WSNs, our research also encompasses the domain of

human-machine collaborative networks [87,104,107]. In some high stake scenarios such as remote

sensing and emergency access systems, where human lives and assets are at risk, automatic phys-

ical sensor-only decision-making may not be sufficient. The emerging human-machine inference

networks aim to combine humans’ cognitive strength and sensors’ sensing capabilities to improve

system performance and enhance situational awareness. In our work on human-machine collabo-

rative decision-making, our objective is to enhance the resilience of such collaborative networks to

possible attacks. We introduce a belief-updating algorithm within a hierarchical framework which
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mimics the real-world decision-making process. The hierarchical framework allows the use of lo-

cal information collected by human agents and the final decision are made by those human agents.

In the real world, human agents collect local decisions from physical sensors and use them as ref-

erence points to enhance the quality of human sensor decisions. The same idea is utilized in our

proposed algorithm. This innovative strategy ensures the system’s performance and significantly

enhances the quality of decisions made by human sensors, even in scenarios where a majority of

the physical sensors within the system are malicious.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we analyze and improve the

audit bit based mechanism, where the prior knowledge of the attacking strategies is assumed to

be known. Chapter 3 proposes an adaptive reputation and audit bit based scheme, where the prior

knowledge of attacking strategies is unknown and Byzantine nodes are in majority. In Chapter

4, we evaluate the performance of decision making in ordered transmission based systems under

Byzantine attacks. In Chapter 5, we propose some resilient detectors for sparse signal detection. In

Chapter 6, we propose a belief-updating algorithm based on hierarchical framework that is resilient

to Byzantine attacks. In Chapter 7, we summarize the contributions made in this dissertation and

present some future directions we intend to pursue.
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CHAPTER 2

ENHANCED AUDIT BIT BASED

DISTRIBUTED BAYESIAN DETECTION IN

THE PRESENCE OF STRATEGIC ATTACKS

In this chapter, we study detection problem in the presence of Byzantines via an audit bit based

approach in a binary hypothesis testing framework. In the traditional audit bit based scheme (TAS)

[33, 34], all sensors are divided into groups of two and each sensor sends its local decisions to the

FC via two paths, one is direct and another is through the sensor in the same group. However, TAS

only considers the case in which each Byzantine node in the network utilizes the same attacking

probability to falsify the decisions coming from their group member and its own decision. To

consider a more realistic case, we relax the strong assumption of Byzantine nodes’ attack behavior

made in TAS, namely of equal probability, and we call this type of more general Byzantine nodes

as strategic attackers. We evaluate the detection performance of the TAS under strategic attacks

and show that it was possible for the strategic attackers to blind the FC as far as the information

conveyed by the audit bits in TAS is concerned. To further improve the robustness and the detection

performance of the system, we propose two new schemes in this chapter which are the enhanced

audit bit based scheme (EAS) and the reduced audit bit based scheme (RAS).
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2.1 Introduction

Distributed detection in wireless sensor networks (WSNs) has been studied over the last few

decades [94, 95]. In distributed WSNs, instead of sending raw observations, the sensors send

their quantized observations or their hard/soft decisions regarding the presence or absence of the

phenomenon of interest (PoI) to the FC to make the final decision. This distributed framework

is attractive for sensor networks that employ battery-limited sensors in bandwidth-limited envi-

ronments. Because of the advantages of the distributed mechanism, it is widely used in many

applications, such as IoT, cognitive radio networks, object detection networks, distributed spec-

trum sensing and military surveillance systems [16].

Security is an important issue for the distributed WSNs. The openness of the wireless net-

works and the distributed nature of such networks make the distributed system more vulnerable

to various attacks. The security issues associated with distributed networks are increasingly be-

ing studied, e.g., jamming, wiretap, spoofing [14, 26, 39], advanced persistent threats [113] and

Byzantine attacks [54, 119]. Here, we focus on Byzantine attacks. When the system suffers from

Byzantine attacks, some sensors in the network might be compromised and fully controlled by

strategic adversaries. We refer to these compromised sensors as Byzantine nodes. They may send

falsified information to the FC. There are several types of Byzantine attacks, such as independent

probabilistic attack [75], dependent probabilistic attack [42] and non-probabilistic attack [99]. In

probabilistic attacks, the Byzantine nodes are in pursuit of long-term profits by launching attacks

with a certain probability. In non-probabilistic attacks, the Byzantine nodes decide to launch at-

tacks only when the observations satisfy some specific conditions. For example, a Byzantine node

decides to launch attacks only when its observations are higher than threshold λ1 or lower than

threshold λ0, where λ1 > λ0.
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2.1.1 Related Work

There are several works that have studied Byzantine attack issues in distributed detection systems.

In [46], optimal strategic data falsification attacks on distributed detection systems are studied.

The smart attackers attempt to constrain their exposure to the defense mechanism and maximize

the attacking efficacy. In [97], an adaptive algorithm at the FC is proposed to mitigate the impact of

Byzantine attacks in the false discovery rate based distributed detection system when the Byzantine

nodes know the true hypothesis. In [57,82,120], distributed detection problems are investigated in

the context of collaborative spectrum sensing under Byzantine attacks. An abnormality-detection-

based algorithm for the detection of attackers in collaborative spectrum sensing is proposed in [57].

In [82], the condition under which the Byzantine attackers totally blind the FC is investigated and

an algorithm is proposed to detect Byzantine attacks by counting the mismatches between the local

decisions and the global decision at the FC. Authors of [120] proposed a Byzantine attacker iden-

tification framework in collaborative spectrum sensing where two cases are considered: with and

without the prior knowledge of attacker behavior. Good identification performances are achieved

in both homogeneous and heterogeneous scenarios even when Byzantine nodes are in a majority.

Similarly, in [47], the optimal attacking strategies are analyzed in general distributed network for

the cases where the FC has the knowledge of the attackers’ strategy and where the FC does not

know the attackers’ strategy. Audit bit based mechanisms are proposed to mitigate the effect of

Byzantine attacks on the distributed WSNs [33,34]. In [33], the audit bit based distributed detection

scheme is proposed in the Neyman-Pearson framework by utilizing Kullback-Leibler divergence

(KLD) to characterize the detection performance of the system. Each sensor sends one additional

audit bit to the FC which gives some information about the behavioral identity of each sensor and

improves the detection and security performance of the system. Improved system robustness to

Byzantine attacks is achieved at the expense of increased communication overhead. In [34], the

audit bit based mechanism is utilized in the Bayesian setting. The detection performance of the

system is evaluated in terms of the probability of error of the global decision at the FC, and the

mitigation scheme over time is proposed by using the information coming from the audit bits.
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Our work is most related to the works in [33] and [34]. In [33] and [34], all the sensors in the

network are divided into groups of two. Each sensor sends its local decisions to the FC via two

paths, one is direct path and another is through the sensor in the same group (indirect path). The

indirect decision bits that reach the FC via indirect path are referred to as audit bits which gives

us extra information about the behavioral identity of each sensor. In [33] and [34], it is assumed

that each Byzantine node falsifies its own local decisions and the decisions coming from its group

member with the same probability.

2.1.2 Major Contributions

Different from the existing works in [33] and [34], we consider a more realistic case in which

the strong assumption of Byzantine nodes’ attack behavior made in [33] and [34], namely of equal

probability, is relaxed. We call this type of Byzantine nodes as strategic attackers. We show that the

traditional audit bit based scheme (TAS) is not robust enough in the presence of strategic attackers.

Two new schemes, which are the enhanced audit bit based scheme (EAS) and the reduced audit bit

based scheme (RAS), are proposed to improve the robustness and the detection performance of the

system under strategic attacks. Then, we extend the above RAS for cluster based wide-area wire-

less sensor networks (CWSNs) [61, 65]. The cluster based framework has been proposed to deal

with the significantly increased energy consumption of the sensors due to the long distance trans-

mission in wide-area networks [67,72]. This framework not only ensures higher data transmission

efficiency, larger network scale, lower bandwidth consumption and prolonged network lifetime,

but also efficiently reduces the amount of information transmission in the entire network and mit-

igates energy dissipation due to collisions. In CWSNs, sensors are divided into several clusters

and each cluster is equipped with one cluster head (CH) which has ample energy and computation

capacities for operation purposes. The CHs are responsible for collecting the data in the cluster

and sending it to the FC. In this work, the sensors in each cluster are further divided into groups

of two. Each sensor sends its own decisions via direct and indirect path to the corresponding CH

just like the previously proposed audit-based system [33] and [34]. The data aggregation rule for
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the CHs are designed according to RAS which prolongs the lifetime of the networks with the im-

proved detection performance of the system.1 We assume that CHs have ample energy to support

the long distance transmission2 and some protections against the attacks so that they can be trusted

by the FC, e.g., tamper-resistant security module [76,98]. The main contributions of this work are

summarized as follows:

• We derive the detection performance of the system that employs TAS in the presence of

strategic attackers. Instead of considering an identical attacking strategy in which each sen-

sor utilizes the same attacking probability to falsify its own decisions and the decisions com-

ing from their group member [33, 34], we consider attackers that can use different attacking

strategies. The optimal attacking strategy of strategic attackers is investigated and we show

that it is possible to degrade the performance of TAS to the system without audit bits.

• An EAS is proposed to deal with the security issues arising from the strategic attackers that

may use different attacking strategies. We derive the optimal decision rule at the FC and eval-

uate its detection performance. Simulation results show that the proposed EAS outperforms

TAS and the direct scheme under both strategic attacks and non-strategic attacks.

• The scheme EAS is further extended and a new scheme namely RAS is proposed based on

our newly proposed EAS. We show that RAS is able to further improve the robustness and

the detection performance of the system.

• A wide-area cluster-based WSN is considered. We extend the proposed RAS and design

the data aggeration rule for the CHs. Simulation results show a significant reduction in the

overall communication overhead between the FC and the CHs.

The key notations and symbols used in this chapter are listed in Table 2.1 for the convenience

of readers.
1This framework is also suitable for sensor networks with mobile access points (SENMA) where the CHs traverse

the network to collect information directly from the sensors [90].
2The CHs are assumed to be small base stations that can be charged or be unmanned aerial vehicles (UAVs) that

are equipped with energy harvesting (EH) circuits which enable the CHs to harvest energy from renewable sources,
e.g., vibration, solar and wind, to replenish their energy buffers [89].
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Table 2.1: Glossary
N number of sensors
G number of sensor groups

For any sensor i ∈ {1, 2, . . . , N} :
vi the true local decision made by sensor i
ui the local decision sent to MMSD (or FC) by sensor i
zi the decision sent to MMSD (or FC) by sensor i

which represents the decision made by its group member
wi the decision sent to the sensor in the same group

by sensor i
Pd the probability of detection for sensor i
Pf the probability of false alarm for sensor i

For any sensor pair i ∈ {1, . . . , N} and j ∈ {1, . . . , i− 1, i+ 1, . . . , N}:
p1 the probability of flipping vi
p2 the probability of flipping wj

di the status indicator which represents the MMS status of sensor i
S the set contains all the sensors whose status indicators

are equal to 1
S the set contains all the sensors whose status indicators

are equal to 0
SS the set contains all the sensors whose status indicators and group

members’ status indicators are both equal to 1
SS the set contains all the sensors whose status indicators is equal to 1

and group members’ status indicators is equal to 0
SS the set contains all the sensors whose status indicators is equal to 0

and group members’ status indicators is equal to 1
SS the set contains all the sensors whose status indicators and group

members’ status indicators are both equal to 0
M the set contains all the sensors whose local decisions and group

members’ local decisions satisfy ui = uj

Key acronyms:
TAS traditional audit bit based scheme
EAS enhanced audit bit based scheme
RAS reduced audit bit based scheme

WSNs wireless sensor networks
CWSNs cluster based wide-area wireless sensor networks

MMS match and mismatch
MMSD match and mismatch detector
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2.2 Traditional Audit Bit Based Scheme Under Strategic At-

tacks

In this section, we first give a brief introduction of the traditional Audit Bit based scheme (TAS).

Then, we consider TAS in a more realistic case where the strong assumption of Byzantine nodes’

attack behavior made in TAS, namely of equal probability, is relaxed. The performance of TAS is

analyzed under the relaxed assumption.

2.2.1 Traditional Audit Bit Based Scheme

We consider the binary hypothesis testing problem assuming that there are two possible hypothe-

ses, H0 (signal is absent) and H1 (signal is present), regarding a PoI. Consider that we deploy a

cluster of N sensors to determine which of the two hypotheses is true. Based on the local ob-

servations, each sensor i ∈ {1, . . . , N} makes a binary decision vi ∈ {0, 1} regarding the true

hypothesis using the likelihood ratio (LR) test

P (yi|H1)

P (yi|H0)

vi=1

≷
vi=0

λ, (2.1)

where λ is the identical threshold used by all the sensors [91], and, P (yi|Hm) denotes the condi-

tional probability density function (PDF) of observation yi under the hypothesis Hm, for m = 0, 1.

In the audit bit based framework [33] [34], the N sensors are partitioned into G groups where each

group g ∈ {1, . . . , G} is composed of two sensors.3 Let i and j represent the sensors in the same

group, where i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , i − 1, i + 1, . . . , N}. Each sensor i sends its

local binary decision to the FC via two paths, one is direct and the other is through sensor j in the

same group. At the FC, we design a match and mismatch detector (MMSD) module that detects

if the sensor’s direct decision matches or mismatches the decision sent through sensor j (indirect

decision).
3The sensors are divided into groups of two based on certain criteria, e.g., according to their distances from each

other.
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(a) The architecture of group k. (b) The overall detection network for audit bit
based scheme.

Fig. 2.1: (a) The architecture of a group k ∈ {1, 2, . . . , G} and (b) the overall system model.

The architecture of each group is shown as Fig. 2.1(a) and the overall detection network for

TAS is shown as Fig. 2.1(b). As shown in Fig. 2.1(a), after making its own decision vi, sensor i

sends (i) ui directly to the MMSD; (ii) wi to the sensor j in the same group; (iii) zj , corresponding

to wj coming from the sensor j in the same group, to the MMSD. Similarly, sensor j also sends

two decisions uj and zi to the MMSD. If the sensor i is a Byzantine node, i.e., i = B, the decisions

vi, wi and ui are not necessarily the same and zj are also not necessarily equal to uj . Let p(vi ̸=

ui|i = B), p(vi ̸= wi|i = B) and p(wj ̸= zj|i = B) denote the probabilities that the Byzantine

node i flips its own decision, flips the decision sent to its group member and flips the decision

coming from its group member, respectively. The probabilities p2 = p(wj ̸= zj|i = B) and

p1 = p(vi ̸= ui|i = B) = p(vi ̸= wi|i = B) are the attacking parameters the attackers want to

optimize. If the sensor i is honest, i.e., i = H , we have vi = wi = ui and zj = uj . In other words,

p(vi ̸= ui|i = H) = p(vi ̸= wi|i = H) = 0. We assume that a fraction α0 of the N sensors are

Byzantine nodes and the FC is not aware of the identity of Byzantine nodes in the network. Hence,

each node has the probability of α0 to be a Byzantine node. We also assume that each Byzantine

node attacks the network independently with a certain probability and all the sensors are able to

successfully receive the packets from their group members.

After collecting all the local decisions, the MMSD makes binary decisions regarding the match

and mismatch (MMS) status of the two decisions corresponding to the same sensor received over
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different paths, i.e., whether or not the decisions sent via different paths are the same, for all the

sensors. Let di represent the MMS status of sensor i which is called the status indicator of sensor

i. To give a concrete illustration, take one group of sensors (i, j) as an example. The MMSD sets

dj = 1 when ui = zi and dj = 0 when ui ̸= zi. Similarly, the MMSD sets di = 1 if uj = zj

and di = 0 if uj ̸= zj . The decisions di and dj are the status indicators of sensor i and sensor j,

respectively. According to the status indicator for each sensor, the FC places the sensors into two

sets S and S. Set S contains the sensors whose status indicators are equal to 1 and Set S contains

the sensors whose status indicators are equal to 0. By employing the extra information coming

from these status indicators, we are able to improve the detection performance of the system.

In the following two subsections, we discuss two different attack models and investigate the

robustness of the traditional audit bit based mechanism under these two types of attacks. One attack

model4 is that the Byzantine nodes are assumed to flip their own decisions and all the decisions

they received with the same probability p, i.e., p1 = p2 = p. The other model is that the Byzantine

nodes use different probabilities to flip their own decisions and all the decisions they receive, i.e.,

p1 ̸= p2. It is more general and practical to consider Byzantine nodes which relax the assumption

of p1 = p2 = p made in the traditional audit bit based mechanism. This allows the Byzantines to

be strategic by optimally employing unequal probabilities p1 and p2.

2.2.2 Traditional Audit Bit based Scheme

In the traditional audit bit based mechanism, the Byzantine nodes are assumed to flip their own

decisions and all the decisions they receive with the same probability p, i.e., p1 = p2 = p. Based

on the status indicators {di}Ni=1, we have the following two cases [33].

1. If di = 1, i is a Byzantine node with probability

4This attack model follows the work in [33] and [34].
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α = P (i = B|di = 1)

=
α0(1− p)[1− 2α0p(1− 2p)]

1− α0(3− 2p)p+ 4α2
0(1− p)p2

(2.2)

and the sensor i is placed in set S.

2. If di = 0, i is a Byzantine node with probability

α = P (i = B|di = 0)

=
1 + 2(1− p)(α0 − 2α0p))

1 + 2(1− p)(1− 2α0p))

(2.3)

and the sensor i is placed in set S.

It has been proved in [34] (Lemma 1) that α ≤ α0 ≤ α. In other words, all the sensors are

divided into two sets S and S in which the sensors have lower probability α and higher probability

α of being Byzantine nodes, respectively, according to status indicators d = [d1, d2, . . . , dN ].

Let Pd, Pf be the probability of detection and the probability of false alarm for any sensor i ∈

{1, . . . , N}, respectively, i.e., Pd = P (vi = 1|H1) and Pf = P (vi = 1|H0). Thus, the probability

mass function (pmf) of local decision ui is expressed as

P (ui|Hq) =


πui
1q(1− π1q)

1−ui for i ∈ S

πui
1q(1− π1q)

1−ui for i ∈ S

(2.4)

for q=0,1, where, for i ∈ S,

π11 = 1− π01 = P (ui = 1|H1) = Pd(1− αp) + αp(1− Pd) (2.5a)

π10 = 1− π00 = P (ui = 1|H0) = Pf (1− αp) + αp(1− Pf ) (2.5b)
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and, for i ∈ S,

π11 = 1− π01 = P (ui = 1|H1) = Pd(1− αp) + αp(1− Pd) (2.6a)

π10 = 1− π00 = P (ui = 1|H0) = Pf (1− αp) + αp(1− Pf ). (2.6b)

Then the optimal decision rule when the attacking strategy p is assumed to be known is given as

WU +WU ≷ η(A), (2.7)

where U =
∑

i∈S ui, U =
∑

i∈S ui, W = log(
π11(1−π10)

π10(1−π11)
), W = log(π11(1−π10)

π10(1−π11)
), η(A) = log(π0

π1
) +

N log(
1−π10

1−π11
) +N log(1−π10

1−π11
), N = |S|, and N = |S|. Note that U and U are binomial distributed

random variables with parameters (N, π10) and (N, π10), respectively, under H0, and with parame-

ters (N, π11) and (N, π11), respectively, under H1. When N is large, N and N can be approximated

by their expected value NP (ui = zi) and NP (ui ̸= zi). η(A) is the threshold used by the FC for

the traditional audit bit based system, where η(A) = log(π0

π1
)+NP (ui = zi) log(

1−π10

1−π11
)+NP (ui ̸=

zi) log(
1−π10

1−π11
). Moreover, U and U can be approximated by the Gaussian distribution with param-

eters given as follows:

µ(A)
m =E[U |Hm]

=N [P (ui = zi)π1mW + P (ui ̸= zi)π1mW ] (2.8a)

(σ(A)
m )2 =V ar[U |Hm] = N [P (ui = zi)π1m(1− π1m)W

2

+ P (ui ̸= zi)π1m(1− π1m)W
2
], (2.8b)

for m = 0, 1. The detection performance, characterized by the probability of error P (A)
e for the

system with TAS, is given as

P (A)
e = π0Q

(
γ
(A)
f

)
+ π1Q

(
γ(A)
m

)
, (2.9)
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where γ
(A)
f =

η(A)−µ
(A)
0

σ
(A)
0

and γ
(A)
m =

µ
(A)
1 −η(A)

σ
(A)
1

. Let P (D)
e denote the probability of error for the

system with the direct scheme, which is expressed as (A.4). It has been shown in [34] (Theorem

3) that the probability of error of the traditional audit based system given any α0 and p is always

less than or equal to that of the system which relies only on direct decisions, i.e, P (A)
e ≤ P

(D)
e .

However, due to the strong assumption of p1 = p2 = p, TAS can accurately assess the be-

havioral identity of each sensor in the network so that it can improve the detection and security

performances of the system. It is obvious that a higher p means a higher probability that the

Byzantine nodes flip their own decisions and the decisions coming from their group members.

Thus, the Byzantine nodes have a higher probability of being placed in the Set S. In the next

subsection, we relax the assumption of p1 = p2 = p and investigate the detection performance of

the traditional audit bit based system under the relaxed assumption.

2.2.3 The Strategic Attacker under Traditional Audit Bit based System

To make the model more general, we assume that the attackers are more strategic in that they can

employ different values of p1 and p2 that are not necessarily equal. This allows the Byzantines to

be strategic by optimally employing unequal probabilities p1 and p2. In this subsection, we analyze

the detection performance of the traditional audit bit based system under such strategic attacks.

When the FC under strategic attacks makes use of the status indicators to place all the sensors

into two sets, we have the following two cases.

• If di = 1, i is a Byzantine node with probability

αI = P (i = B|di = 1)

=
P (di = 1|i = B)P (i = B)

P (di = 1)
,

(2.10)



24

where

P (di = 1|i = B) = P (uj = zj|i = B)

= α0p
2
1(1− p2) + α0p1(1− p1)p2 + α0(1− p1)

2(1− p2)

+ (1− α0)(1− p2) + α0(1− p1)p1p2

= −4α0p
2
1p2 + 4α0p1p2 − 2α0p1 + 2α0p

2
1 − p2 + 1

(2.11)

and

P (di = 1|i = H) = P (uj = zj|i = H)

= α0p
2
1 + α0(1− p1)

2 + (1− α0)

= 2α0p
2
1 − 2α0p1 + 1.

(2.12)

Thus, the unconditional probability of matching p(uj = zj) is given as

P (di = 1) = P (uj = zj|i = H)P (i = H) + P (uj = zj|i = B)P (i = B)

= −4α2
0p

2
1p2 + 4α2

0p1p2 + 2α0p
2
1 − α0p2 − 2α0p1 + 1.

(2.13)

In this case, the sensor i is placed in set S with

αI =
4α2

0p
2
1p2 + 4α2

0p1p2 − 2α2
0p1 + 2α2

0p
2
1 − α0p2 + α0

4α2
0p

2
1p2 + 4α2

0p1p2 + 2α0p21 − α0p2 − 2α0p1 + 1
. (2.14)

• If di = 0, i is a Byzantine node with probability
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αI = P (i = B|di = 0)

= P (i = B|uj ̸= zj)

=
P (uj ̸= zj|i = B)P (i = B)

P (uj ̸= zj)

=
4α0p

2
1p2 − 4α0p1p2 + 2α0p1 − 2α0p

2
1 + p2

4α0p21p2 − 4α0p1p2 − 2p21 + p2 + 2p1
,

(2.15)

where p(uj ̸= zj|i = B) = 1− p(uj = zj|i = B) and p(uj ̸= zj) = 1− p(uj = zj). In this

case, the sensor i is placed in set S.

We show two important properties of αI and αI in the next lemma.

Lemma 2.1. We have the following two relationships in terms of αI , αI , and α0.

1. Under strategic attacks, the probability of being a strategic node given the sensor in Set S is

smaller than or equal to the one given the sensor in Set S, i.e., αI ≤ α0 ≤ αI .

2. αI = αI = α0 when p2 = 0.

PROOF: According to (2.14) and (2.15), we show that ∂αI

dp2
≤ 0, and ∂αI

dp1
≤ 0. Due to the fact that

α0 ∈ [0, 1], p1 ∈ [0, 1], and p2 ∈ [0, 1], we have

∂αI

dp2
=

(4α2
0p1(1− p1)− α0)(1− α0)(2α0p1(p1 − 1) + 1)

(4α2
0p

2
1p2 + 4α2

0p1p2 + 2α0p21 − α0p2 − 2α0p1 + 1)2

(a)

≤ α0(α0 − 1)(1− α0)(2α0p1(p1 − 1) + 1)

(4α2
0p

2
1p2 + 4α2

0p1p2 + 2α0p21 − α0p2 − 2α0p1 + 1)2

(b)

≤ 0 (2.16a)

∂αI

dp1
= −2α2

0(1− α0p2)(1− 2p2)
2 ≤ 0. (2.16b)

The equality in (a) is achieved when p1 = 1
2
. (b) is due to the fact that 2α0p1(p1 − 1) + 1 ≥

1 − α0

2
> 0 and the equality in (b) is achieved when α0 = 1. Thus, according to (A.11), we have
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γI
f =

log(π0

π1
)/
√
N +

√
N(D0(α

I , p1, p2)p(un = zn) +D0(α
I , p1, p2)p(un ̸= zn))√

p(ui ̸= zi)g0(α
I , p1, p2) + p(ui = zi)g0(αI , p1, p2)

(2.18a)

γI
m =

log(π0

π1
)/
√
N +

√
N(D1(α

I , p1, p2)p(un = zn) +D1(α
I , p1, p2)p(un ̸= zn))√

p(ui ̸= zi)g1(α
I , p1, p2) + p(ui = zi)g1(αI , p1, p2)

, (2.18b)

the maximum value of αI when p1 = 0 and p2 = 0, i.e., αI(p1, p2) ≤ αI(p1 = 0, p2 = 0) = α0.

Since p(ui = zi)α
I + p(ui ̸= zi)α

I = α0, we have

P (ui = zi)α0 + P (ui ̸= zi)α
I ≥ α0

P (ui ̸= zi)α
I ≥ α0(1− P (ui = zi))

αI ≥ α0

(2.17)

Based on the analysis above, we conclude that αI ≤ α0 ≤ αI . Note that the equality on both sides

can be achieved when p2 = 0. Hence, we get the results stated in Lemma 2.1.

Substituting α and α with αI and αI , respectively, in (2.5) and (2.6), we can obtain πI
10, π

I
11,

πI
10, πI

11. After getting πI
10, πI

11 and πI
10, πI

11, we can calculate the pmfs of ui according to

(2.4). Hence, the probability of error for the system under strategic attack is given by P I
e =

π0Q
(
γI
f

)
+ π1Q

(
γI
m

)
. γI

f and γI
m are shown in (2.18), where D0(α

I , p1, p2) = π
(I)
10 log(

π
(I)
10

π
(I)
11

) +

(1 − π
(I)
10 ) log(

1−π
(I)
10

1−π
(I)
11

), D0(α
I , p1, p2) = π10 log(

π
(I)
10

π
(I)
11

) + (1 − π
(I)
10 ) log(

1−π
(I)
10

1−π
(I)
11

), D1(α
I , p1, p2) =

π
(I)
11 log(

π
(I)
11

π
(I)
10

)+(1−π
(I)
11 ) log(

1−π
(I)
11

1−π
(I)
10

) and D1(α
I , p1, p2) = π

(I)
11 log(

π
(I)
11

π
(I)
10

)+(1−π
(I)
11 ) log(

1−π
(I)
11

1−π
(I)
10

). We

also have g0(αI , p1, p2) = π
(I)
10 (1−π

(I)
10 )W

2, g0(αI , p1, p2) = π
(I)
10 (1−π

(I)
10 )(W

I
)2 and g1(α

I , p1, p2) =

π
(I)
11 (1 − π

(I)
11 )W

2, g1(αI , p1, p2) = π
(I)
11 (1 − π

(I)
11 )(W

I
)2 where W I = log(

πI
11(1−πI

10)

πI
10(1−πI

11)
) and W

I
=

log(
πI
11(1−πI

10)

πI
10(1−πI

11)
). The optimal attacking strategy is stated based on (2.18) in the following theorem.

Theorem 2.1. In the traditional audit based system, if the strategic Byzantine attackers adopt the

strategy given by p2 = 0 when α0 ∈ [0, 1], the system reduces to the one without audit bits and it

can always be made blind by choosing p1 such that α0p1 =
1
2

if α0 ≥ 0.5.

PROOF: Please see Appendix A.1.
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Note that the probability of error for the system under strategic attack is P I
e = π0Q

(
γI
f

)
+

π1Q
(
γI
m

)
. γI

f and γI
m are the arguments of function Q(.) for the probability of false alarm and

the argument of function Q(.) for the probability of miss detection, respectively such that larger

arguments mean better detection performance. Fig. 2.2 shows how γI
f and γI

m change with p2.

We can observe that both γI
f and γI

m achieve the minimum when p2 = 0, which means that P I
e

achieves the maximum. We can also observe that arguments that attain this are equal to the ones in

the system that does not use audit bits and thus P I
e reduces to the probability of error of the system

that does not use audit bits. Hence, Fig. 2.2 is in accordance with the result given in Theorem 2.1.

Fig. 2.2: γI
f and γI

m versus p2 given p1 = 0.7 and α0 = 0.3. Note that p1 = p2 = 0.7 in TAS.

Based on the analysis above, the assumption p1 = p2 given in [34] is not the optimal choice for

the attackers in practice. The attackers can launch stronger attacks when they set p2 = 0. Under

this attacking strategy, there is no improvement in the detection performance of TAS compared

with the direct scheme. Thus, we conclude that the strategic attackers can hide themselves by not

flipping the decisions from their group members, i.e., p2 = 0, according to Theorem 2.1 and Fig.

2.2. Moreover, when p2 = 0, the detection error for TAS is the same as the one for the direct

scheme. To enhance the robustness of the system, we propose a new scheme called enhanced audit
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bit based scheme (EAS) in the next section.

2.3 Enhanced Audit Bit based Scheme

In this section, an enhanced audit bit based scheme (EAS) is proposed to improve the robustness of

the system under strategic attacks. In TAS, the behavioral identity of each sensor is characterized

by α and α. The evaluations of the value of α and α only depends on its own status indicator

as discussed in Section 2.2. However, in the newly proposed scheme, we utilize both the status

indicators of the sensors in the same group to more accurately infer the behavioral identities of

sensors in the network compared with TAS.

2.3.1 Audit Bits in the Same Group as Extra Information

The status indicators {di}Ni=1 are again made by the MMSD. However, the sensors are no longer

partitioned into two sets (S and S). They are partitioned into four sets which are SS SS, SS and

SS based on both status indicators of sensor i and sensor j in the same group. If di = dj = 1,

sensor i and sensor j are both placed in the set SS. If di = 0 and dj = 1, sensor i is placed in the

set SS and sensor j is placed in the set SS. If di = dj = 0, sensor i and sensor j are both placed

in the set SS. We still assume a general attacking strategy which is p1 ̸= p2. Then, we have the

following four cases.

• If i ∈ SS, i is a Byzantine node with probability
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α1 =P (i = B|i, j ∈ SS)

=P (i = B, j = H|i, j ∈ SS) + P (i = B, j = B|i, j ∈ SS)

=
P (i, j ∈ SS|i = B, j = H)P (i = B, j = H)

P (i, j ∈ SS)

+
P (i, j ∈ SS|i = B, j = B)P (i = B, j = B)

P (i, j ∈ SS)

=
α2
0f

(1)
BB + α0(1− α0)f

(1)
BH

P (i, j ∈ SS)
,

(2.19)

where

P (i, j ∈ SS) =α2
0f

(1)
BB + α0(1− α0)(f

(1)
HB + f

(1)
BH) + (1− α0)

2f
(1)
HH

(2.20)

and f
(1)
BB = [2p1p2(1−p1)+(1−2p1+2p21)(1−p2)]

2, f (1)
HB = f

(1)
BH = (1−p2)(1−2p1+2p21)

and f
(1)
HH = 1.

• If i ∈ SS, i is a Byzantine node with probability

α2 =P (i = B|i ∈ SS, j ∈ SS)

=P (i = B, j = H|i ∈ SS, j ∈ SS) + P (i = B, j = B|i ∈ SS, j ∈ SS)

=
α2
0f

(2)
BB + α0(1− α0)f

(2)
BH

P (i ∈ SS, j ∈ SS)
,

(2.21)

where

P (i ∈ SS, j ∈ SS) =α2
0f

(2)
BB + α0(1− α0)(f

(2)
HB + f

(2)
BH) + (1− α0)

2f
(2)
HH

(2.22)

and f
(2)
BB = [2p1p2(1−p1)+(1−2p1+2p21)(1−p2)][1−2p1p2(1−p1)−(1−2p1+2p21)(1−p2)],

f
(2)
HB = p2(1− 2p1 + 2p21),f

(2)
BH = 2p1(1− p2)(1− p1) and f

(2)
HH = 0.
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• If i ∈ SS, i is a Byzantine node with probability

α3 =P (i = B|i ∈ SS, j ∈ SS)

=P (i = B, j = H|i ∈ SS, j ∈ SS) + P (i = B, j = B|i ∈ SS, j ∈ SS)

=
α2
0f

(3)
BB + α0(1− α0)f

(3)
BH

P (i ∈ SS, j ∈ SS)
,

(2.23)

where

P (i ∈ SS, j ∈ SS) =α2
0f

(3)
BB + α0(1− α0)(f

(3)
HB + f

(3)
BH) + (1− α0)

2f
(3)
HH

(2.24)

and f
(3)
BB = [2p1p2(1−p1)+(1−2p1+2p21)(1−p2)][1−2p1p2(1−p1)−(1−2p1+2p21)(1−p2)],

f
(3)
HB = 2p1(1− p2)(1− p1),f

(3)
BH = p2(1− 2p1 + 2p21) and f

(3)
HH = 0.

• If i ∈ SS i is a Byzantine node with probability

α4 =P (i = B|i, j ∈ SS)

=P (i = B, j = H|i, j ∈ SS) + P (i = B, j = B|i, j ∈ SS)

=
α2
0f

(4)
BB + α0(1− α0)f

(4)
BH

P (i, j ∈ SS)
,

(2.25)

where

P (i, j ∈ SS) =α2
0f

(4)
BB + α0(1− α0)(f

(4)
HB + f

(4)
BH) + (1− α0)

2f
(4)
HH

(2.26)

and f
(4)
BB = [2p1(1− p2)(1− p1) + p2p

2
1]

2, f (4)
HB = fBH = 2p1p2(1− p1) and f

(4)
HH = 0.

The next lemma shows that our proposed EAS performs a more accurate evaluation of the

behavioral identity of each sensor compared with TAS.
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Lemma 2.2. The probability of sensor i being a Byzantine node when i ∈ S in TAS is equal to

the weighted average of the probabilities of sensor i being a Byzantine node when i, j ∈ SS and

i ∈ SS, j ∈ SS, respectively. That is

P (i = B|i ∈ S)

= α1P (dj = 1|di = 1) + α2P (dj = 0|di = 1)

(2.27)

A similar result can be obtained for sensor i ∈ S.

PROOF: The right hand side (RHS) of (2.27) is the same as P (i = B|di = 1, dj = 1)P (dj =

1|di = 1) + P (i = B|di = 1, dj = 0)P (dj = 0|di = 1). According to the Bayes’ rule, we have

∑
x=0,1

P (i = B|di = 1, dj = x)P (dj = x|di = 1)

=
∑
x=0,1

P (i = B|di = 1, dj = x)
P (di = 1, dj = x)

P (di = 1)

=
∑
x=0,1

α2
0f

(x)
BB + α0(1− α0)f

(x)
BH

P (di = 1, dj = x)

P (di = 1, dj = x)

P (di = 1)

=
∑
x=0,1

α2
0f

(x)
BB + α0(1− α0)f

(x)
BH

P (di = 1)

= P (i = B|i ∈ S)

(2.28)

We can also show that i ∈ S is the weighted average of the probabilities of sensor i being

a Byzantine node when i, j ∈ SS and i ∈ SS, j ∈ SS by following a similar procedure and,

therefore, the details of its proof are omitted here.

Fig. 2.3 corroborates the results in Lemma 2.2. Note that each sensor placed in S (or S) is

a Byzantine node with probability of α (or α) for TAS. We can observe that the value of α (or

α) is in the middle of the values of α1 and α2 (or α3 and α4) for the proposed scheme. It shows

that taking both the status indicators from the same group into consideration can give us more

information about the behavioral identities of the sensors in the network. Hence, our proposed

EAS outperforms TAS that only utilizes the averaged probabilities (α or α) to assess the behavioral
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Fig. 2.3: The probability of being Byzantine nodes for sensors in sets S, S, SS, SS, SS and SS
when p2 = 0.1.

identity for each sensor.

2.3.2 Optimal Decision Rule

From the analysis above, the pmf of local decision ui for our proposed EAS is expressed as

P (ui|Hq) =



πui
1q,1(1− π1q,1)

1−ui for i ∈ SS

πui
1q,2(1− π1q,2)

1−ui for i ∈ SS

πui
1q,3(1− π1q,3)

1−ui for i ∈ SS

πui
1q,4(1− π1q,4)

1−ui for i ∈ SS

(2.29)

for q = 0, 1, where

π11,e = 1− π10,e = Pd(1− αep1) + αep1(1− Pd) (2.30a)

π10,e = 1− π00,e = Pf (1− αep1) + αep1(1− Pf ) (2.30b)

for e = 1, 2, 3, 4. π11,e and π10,e are the probabilities of sending the local decision ui = 1 given hy-

pothesis H1 and given hypothesis H0, respectively, for e = 1, 2, 3, 4 which are corresponding to the

sensors being in SS SS, SS and SS. The new optimal decision rule is provided in Theorem 2.2.
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Theorem 2.2. The new decision rule for the proposed EAS, given the Byzantine flipping probabil-

ities p1, p2 and α0 fraction of Byzantine nodes, is expressed as

4∑
e=1

WeUe ≷ η(En), (2.31)

where U1 =
∑

i∈SS ui, U2 =
∑

i∈SS ui, U3 =
∑

i∈SS ui, U4 =
∑

i∈SS ui and We = log(π11,e(1−π10,e)

π10,e(1−π11,e)
)

for e = 1, 2, 3, 4. η(En) is the threshold used by the FC for EAS, where η(En) = log(π0

π1
) +∑4

e=1Ne log(
1−π10,e

1−π11,e
). N1, N2, N3 and N4 are the cardinalities of sets SS, SS, SS and SS, re-

spectively, where N1 = |SS| ,N2 = |SS|, N3 = |SS| and N4 = |SS|.

PROOF: We know that the local decisions are independent given the hypothesis H0 or H1 and the

information about the sets where all the sensors are placed in. Hence, the optimal decision rule,

which is given in (2.32), can be further simplified. Substituting (2.29) in (2.32), and taking the

logarithm on both sides, we obtain the fusion rule in the theorem.

∏
i∈SS

P (ui|H1)

P (ui|H0)

∏
i∈SS

P (ui|H1)

P (ui|H0)

∏
i∈SS

P (ui|H1)

P (ui|H0)

∏
i∈SS

P (ui|H1)

P (ui|H0)
≷

π0

π1

(2.32)

Note that Ue is binomial distributed random variables with parameters (N, π11,e) under H1, and

with parameters (N, π10,e) under H0 for e = 1, 2, 3, 4. When N is large, N1, N2, N3 and N4 can be

approximated by their expected value NP (i ∈ SS), NP (i ∈ SS), NP (i ∈ SS) and NP (i ∈ SS),

respectively. For any sensor i ∈ {1, 2, . . . , N}, the probability of being placed in SS, SS, SS and

SS are P (i ∈ SS) = P (di = dj = 1), P (i ∈ SS) = P (i ∈ SS) = P (di = 1, dj = 0) =

P (di = 0, dj = 1) and P (i ∈ SS) = P (di = dj = 0), respectively. The threshold used by the

FC becomes η(En) = log(π0

π1
) +NP (i ∈ SS) log(1−π10,1

1−π11,1
) +NP (i ∈ SS) log(1−π10,2

1−π11,2
) +NP (i ∈

SS) log(1−π10,3

1−π11,3
) +NP (i ∈ SS) log(1−π10,4

1−π11,4
). Thus, the PDF of the global static U =

∑4
e=1WeUe
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can be approximated by the Gaussian distribution with parameters given as follows.

µ
(En)
0 =E[U |H0]

=N(P (i ∈ SS)π10,1W1 + P (i ∈ SS)π10,2W2

+ P (i ∈ SS)π10,3W3 + P (i, j ∈ SS)π10,4W4) (2.33a)

µ
(En)
1 =E[U |H1]

= N(P (i ∈ SS)π11,1W1 + P (i ∈ SS)π11,2W2

+ P (i ∈ SS)π11,3W3 + P (i ∈ SS)π11,4W4) (2.33b)

(σ
(En)
0 )2 =V ar[U |H0]

=N(P (i ∈ SS)π10,1(1− π10,1)W
2
1 + P (i ∈ SS)π10,2(1− π10,2)W

2
2

+ P (i ∈ SS)π10,3(1− π10,3)W
2
3 + P (i ∈ SS)π10,4(1− π10,4)W

2
4 ) (2.33c)

(σ
(En)
1 )2 =V ar[U |H1]

= N(P (i ∈ SS)π11,1(1− π11,1)W
2
1 + P (i ∈ SS)π11,2(1− π11,2)W

2
2

+ P (i ∈ SS)π11,3(1− π11,3)W
2
3 + P (i ∈ SS)π11,4(1− π11,4)W

2
4 ) (2.33d)

The detection performance, characterized by the probability of error of the system, is given as

P (En)
e = π0Q

(
γ
(En)
f

)
+ π1Q

(
γ(En)
m

)
, (2.34)

where γ
(En)
f =

η(En)−µ
(En)
0

σ
(En)
0

and γ
(En)
m =

µ
(En)
1 −η(En)

σ
(En)
1

. Fig. 2.4 shows that the detection performance

of the proposed scheme in terms of γ(En)
f and γ

(En)
m is better than the detection performance of

the traditional one, TAS, under both strategic attacks and non-strategic attacks. We can observe

that the detection performance of TAS is the same as the direct scheme when the system is under

strategic attacks (p2 = 0). This is in accordance with the results shown in Theorem 2.1. However,

the proposed EAS prevents it from happening. As shown in Fig. 2.4, the worst case from the

perspective of the FC is that the strategic attackers take the attacking strategy of p1 = 1 and p2 = 0,

i.e. , the Byzantine nodes always send falsified data to the MMSD and their group members and do
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not forge data from their group members. In this case, the proposed EAS has the same detection

performance as the direct scheme. In the next section, another new scheme is proposed which

achieves better detection performance and higher robustness compared with EAS.

(a) γf as a function of flipping probability p1 given
p2 = 0 and p2 = 0.2.

(b) γm as a function of flipping probability p1 given
p2 = 0 and p2 = 0.2.

Fig. 2.4: The probability of error is characterized by the argument of function Q(.) for the
probability of false alarm shown in (a) and the argument of function Q(.) for the probability of
miss detection shown in (b). Smaller values of the argument result in higher probabilities of error.

2.4 Reduced Audit Bit based Scheme

In this section, we propose a new framework and a new fusion rule for the audit bit based system. In

this framework, we focus on the practical scenario in which the Byzantine nodes are in a minority

due to the limited attacking resources, i.e., α0 ≤ 1/2. We will first start with a network with one

cluster, then we will move on to a wide-area network with multiple clusters.

2.4.1 A Single-cluster Network

As before, the sensors are partitioned into sets SS, SS, SS and SS by the MMSD based on both

status indicators of sensor i and sensor j in the same group. Moreover, the local decisions (ui, uj)

sent from the same group are also compared to give us additional information about the behavioral

identity of sensors in the networks. Each sensor again transmits its decision to the MMSD via two

paths, namely the direct path and indirect path to the FC. After collecting all the local decisions,
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the MMSD places the sensors into sets SS, SS, SS and SS. These steps are the same as the ones

in EAS. However, the MMSD also considers the MMS of the decisions ui and uj from the same

group: if the sensor decisions for sensors i and j are the same, i. e., ui = uj , they are placed in the

Set M and the others are placed in the Set M. The MMSD only transmits the local decisions of

the sensors with the sensor index i given by {i : (SS
⋂
M)

⋃
SS
⋃

SS} to the decision making

module to make the final decision. In other words, the local decisions from the sensors in Set

SS
⋂

M or Set SS are not used to make the final decision which correspond to the two conditions

stated as below.

• Condition 1: The sensor i and its group member j are both in the set SS.

• Condition 2: The sensor i and its group member j are both in the set SS and ui ̸= uj .

In the next lemma, we show the reasons why not using the decisions of sensors that satisfy one of

the above two conditions improves the detection performance of the system.

Lemma 2.3. 1. When the sensor pair (i, j) satisfies Condition 1, i. e., sensors i andj belong to

SS, removing this sensor pair results in the removal of two Byzantine nodes when p2 = 0.

2. When we remove the sensor pairs that satisfy Condition 2, the ability of removing the Byzan-

tine nodes for the proposed RAS increases with the increase of p1 given specific p2 and α0.

PROOF:

1. Let E be the event that at least one node in sensor pair (i, j) is a Byzantine node. When

i, j ∈ SS, it is obvious that P (E|i, j ∈ SS) = 1. Thus, we can obtain P (i, j /∈ SS|E) = 1

due to the fact that the contrapositive of the conditional statement is also true. So we can

conclude that there is at least one Byzantine node in the sensor pair. Moreover, it is easy to

conclude that all the sensors are Byzantine nodes in the Set SS when the attackers take the

strategy of p2 = 0 according to (A.9). Thus, removing the decisions of sensors in this set

can remove at least one Byzantine node in each pair, and it can even remove two Byzantine

nodes in each pair when the attackers employ the strategy of p2 = 0.
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2. To evaluate the impact of removing the unequal local decisions of sensor pairs on the per-

formance of removing Byzantine nodes, we utilize the ratio F =
P (E,ui=uj |i,j∈SS)

P (E|i,j∈SS) to char-

acterize that performance. The numerator of ratio F is the probability of the joint event

that there exists at least one Byzantine node and the event ui = uj given i, j ∈ SS. The

denominator is the probability of at least one Byzantine node given i, j ∈ SS. The ratio

F = P (ui = uj|i, j ∈ SS,E) gives the probability of ui = uj given event E and i, j ∈ SS.

We have

P (E, ui = uj|i, j ∈ SS)

= P (E|ui = uj, i, j ∈ SS)P (ui = uj|i, j ∈ SS) (2.35a)

= (1− P (i = H, j = H|i, j ∈ SS, ui = uj))P (ui = uj, |i, j ∈ SS) (2.35b)

= P (ui = uj|i, j ∈ SS)− P (ui = uj|i, j ∈ SS,

i = H, j = H)P (i = H, j = H|i, j ∈ SS) (2.35c)

= P (ui = uj|i, j ∈ SS)− (1− α0)
2

P (i, j ∈ SS)
P (ui = uj|i, j ∈ SS, i = H, j = H) (2.35d)

and

P (E|i, j ∈ SS) = 1− P (i = H, j = H|i, j ∈ SS) (2.36a)

= 1− (1− α0)
2

P (i, j ∈ SS)
, (2.36b)

where P (ui = uj|i, j ∈ SS) = P (ui = uj|i, j ∈ SS,H0)P (H0) + P (ui = uj|i, j ∈

SS,H1)P (H1) = π1[π
2
11,1 + (1 − π11,1)

2] + π0[π
2
10,1 + (1 − π10,1)

2] and P (ui = uj|i, j ∈

SS, i = H, j = H) = [P 2
d + (1− Pd)

2]π1 + [P 2
f + (1− Pf )

2]π0.

The relationship among p1, p2, α0 and F is shown in Fig. 2.5. Note that a small F means a

lower probability of existence of Byzantine nodes in the sensor pair given i, j ∈ M
⋂
SS. We can

observe from Fig. 2.5 that the value of F has a significant decrease when p1 is large. It can also
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be observed that the value of F decreases with the increase of α0 given p1 ≥ 0.5 and p2, and it

slightly changes with different α0 and p2 given p1 < 0.5. From the analysis in Section 2.2, it is

evident that p1 affects the final decision making by mainly affecting the local decisions (ui) used

to make the final decision, while both α0 and p2 only affect the final decision making by affecting

the evaluated probability of one sensor being a Byzantine node (α1, α2, α3 or α4). Intuitively,

changing p1 has greater effect on the final decision making. Hence, when p1 < 0.5, p1 is not large

enough to enable us to observe a distinct difference in F for different p2 and α0. In general, Fig.

2.5 shows that the ability of removing the Byzantine nodes increases with the increase of p1 for a

given p2 by removing the sensor pairs which satisfy Condition 2.

Fig. 2.5: F versus p1 given p2 = 0.1 for different α0 and N = 100.

According to Theorem 2.1, the attackers’ optimal attacking strategy in TAS is to choose p2 = 0.

In the scenario where p2 is very small (close to 0), however, Fig. 2.2 has shown that the detection

performance of TAS significantly degrades for a large value of p1. The proposed scheme in this

section achieves better detection performance compared with TAS when the attackers adopt the

strategy of p2 = 0 with ∀p1 ∈ [0, 1]. It is because when p2 is small, the Byzantine nodes have high

probabilities of being placed in the set SS in our proposed scheme. If the attacker chooses p1 to be

large, there is a high probability that the group containing a Byzantine node satisfies Condition 2.

Hence, the decision of the Byzantine node is likely to be blocked by the MMSD and not transmitted

to the FC. As a result, our scheme prevents the attacker from designing p1 to be very large and p2

to be very small. On the other hand, when p1 is not so large, each Byzantine node has a relatively



39

higher probability, i.e., 1− p1, to act honestly. Through such a trade off, the detection accuracy of

the proposed scheme outperforms TAS under strategic attacks.

Based on the analysis above, we can show that the proposed scheme can effectively remove

the decisions coming from Byzantine nodes. Hence, in the proposed RAS, we have the following

relations for sensor i.

P (ui = 1|i ∈ SS,Hq) = π1q,2 (2.37a)

P (ui = 1|i ∈ SS,Hq) = π1q,3 (2.37b)

where q = 0, 1. Although ui and uj are dependent given i, j ∈ SS
⋂
M, they are independent

given i, j ∈ SS. Hence, we have

P (ui = 1, uj = 1|i, j ∈ SS
⋂

M,Hq)

=
P (ui = 1|i, j ∈ SS,Hq)P (uj = 1|i, j ∈ SS,Hq)

P (ui = uj|i, j ∈ SS,Hq)

=
π2
1q

π2
1q + (1− π1q)

2
= π1q,5

(2.38)

for q = 0, 1. To simplify the analysis, we consider the group votes instead of the individual votes

for the sensors in set SS
⋂

M. Let zg denote the group vote for group g ∈ T , where T is the set

of group whose sensors are in set SS
⋂

M. Due to the fact that the sensors in the same group in

set SS
⋂

M has the same decisions, we have zg = {0, 2}. Hence, we obtain the following pdfs

f(ui|Hq) =


πui
1q,2(1− π1q,2)

1−ui for i ∈ SS

πui
1q,3(1− π1q,3)

1−ui for i ∈ SS

(2.39)

for sensor i ∈ SS
⋃

SS, and

f(zg|Hq) = π
zg/2
1q,5 (1− π1q,5)

1−zg/2 (2.40)
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for group g ∈ T , where q = 0, 1. Thus, the proposed new decision rule is shown in Theorem 2.2.

Theorem 2.3. The new optimal decision rule, given the Byzantine flipping probabilities p1, p2 and

α0 fraction of Byzantine nodes, is expressed as

W5

∑
g∈T

zg
2
+W2

∑
i∈SS

ui +W3

∑
i∈SS

ui ≷ η(RA), (2.41)

where W2 = log(π11,2(1−π10,2)

π10,2(1−π11,2)
), W3 = log(π11,3(1−π10,3)

π10,3(1−π11,3)
), η(RA) = log(π0

π1
) + NLL

re log(1−π10,5

1−π11,5
) +

NL
re log(

1−π10,2

1−π11,2
) +NU

re log(
1−π10,3

1−π11,3
). NL

re, N
U
re and NLL

re are the cardinalities of sets SS, SS and T ,

respectively, where NL
re = |SS|,NU

re = |SS|, and NLL
re = |T |. W5 denotes the rearranged weight

for group decisions in set T which is given as

W5 =
π11,5(1− π10,5)

π10,5(1− π11,5)
. (2.42)

PROOF: We know that all groups of sensors whose decisions are sent to the FC are elements of

one of the three sets SS, SS and SS
⋂

M. Thus, the optimal decision rule is given as (2.43) due

to the fact that the sensors in sets SS or SS independently send their local decisions to the FC

given the hypothesis H0 or H1. Even though the decisions coming from the sensors in the same

group in set SS
⋂

M are dependent, the group votes are independent of each other. Hence, the

optimal decision rule can be reformulated as (2.44). Substituting (2.37), (2.38), (4.23), (2.40) in

(2.44), and taking the logarithm on both sides, we can get the fusion rule stated in the theorem.∏
i,j∈SS

⋂
M

P (ui, uj|H1)

P (ui, uj|H0)

∏
i∈SS

P (ui|H1)

P (ui|H0)

∏
i∈SS

P (ui|H1)

P (ui|H0)
≷

π0

π1

(2.43)

∏
g∈T

P (zg|H1)

P (zg|H0)

∏
i∈SS

P (ui|H1)

P (ui|H0)

∏
i∈SS

P (ui|H1)

P (ui|H0)
≷

π0

π1

(2.44)
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Let U denote the left-hand side of the optimal decision rule in (2.41) which is given as

U = W5U5 +W2U2 +W3U3, (2.45)

where U5 =
∑

g∈T zg/2, U2 =
∑

i∈SS ui and U3 =
∑

i∈SS ui. U2 and U3 are all Binomial dis-

tributed variables and U5 is equivalent to a Binomial distributed variable. When N is large, the

expected number of sensors in SS, SS and the expected number of groups in T are NP (i ∈ SS),

NP (i ∈ SS) and GP (ui = uj|i, j ∈ SS)P (i, j ∈ SS), respectively. P (i ∈ SS) and P (i ∈ SS)

are defined in (2.33), and P (i, j ∈ SS) is defined in (2.20). P (ui = uj|i, j ∈ SS) is given as

P (ui = uj|i, j ∈ SS) =
∑
q=0,1

P (Hq)
∑
t=0,1

P (ui = t|i ∈ SS,Hq)

P (uj = t|j ∈ SS,Hq) (2.46a)

=(π2
11 + (1− π11)

2)π1

+ (π2
10 + (1− π10)

2)π0 (2.46b)

Hence, U , which is the sum of Binomial distributed variables, can be approximated as the Gaussian

distribution with parameters as follows:

µ
(RA)
0 =E[U |H0]

=GP (ui = uj|i, j ∈ SS)P (i, j ∈ SS)π10,5W5

+N(P (i ∈ SS)π10,3W3 + P (i ∈ SS)π10,2W2) (2.47a)

µ
(RA)
1 =E[U |H1]

= GP (ui = uj|i, j ∈ SS)P (i, j ∈ SS)π11,5W5

+N(P (i ∈ SS)π11,3W3 + P (i ∈ SS)π11,2W2) (2.47b)

(σ2
0)

(RA) =V ar[U |H0]

=GP (ui = uj|i, j ∈ SS)P (i, j ∈ SS)π10,5(1− π10,5)W
2
5
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+N(P (i ∈ SS)π10,3(1− π10,3)W
2
3 + P (i ∈ SS)π10,2(1− π10,2)W

2
2 ) (2.47c)

(σ2
1)

(RA) =V ar[U |H0]

=GP (ui = uj|i, j ∈ SS)P (i, j ∈ SS)π11,5(1− π11,5)W
2
5

+N(P (i ∈ SS)π11,3(1− π11,3)W
2
3 + P (i ∈ SS)π11,2(1− π11,2)W

2
2 ) (2.47d)

The threshold η for large N is given as

η(RA) = log(
π0

π1

) + E(NLL
re ) log(

1− π10,5

1− π11,5

)

+ E(NL
re) log(

1− π10,2

1− π11,2

) + E(NU
re) log(

1− π10,3

1− π11,3

),

(2.48)

where E(NL
re) = NP (i ∈ SS), E(NU

re) = NP (i ∈ SS) and E(NLL
re ) = GP (ui = uj|i, j ∈ SS).

Thus, the probability of error P (RA)
e for the system is expressed as

P (RA)
e = π0Q

(
γ
(RA)
f

)
+ π1Q

(
γ(RA)
m

)
, (2.49)

where γ
(RA)
f =

η(RA)−µ
(RA)
0

σ
(RA)
0

and γ
(RA)
m =

µ
(RA)
1 −η(RA)

σ
(RA)
1

is the argument of function Q(.) for the

probability of false alarm and the argument of function Q(.) for the probability of miss detection

for the new proposed fusion rule. Fig. 2.6 shows how argument γ(RA)
f changes with p1 given

specific p2 and α0 when N = 100, Pd = 0.9 and Pf = 0.1. We can observe that the argument γ(RA)
f

of RAS is larger than that of EAS under strategic attacks. Since the argument γ(RA)
m has similar

properties, we only include the simulation results of γ(RA)
f here. Note that the larger arguments

mean better detection performance. Fig. 2.7 shows how the probabilities of detection and false

alarm of the system change with p1 given specific p2 = 0 and α0 = 0.3 when N = 10, Pd = 0.9

and Pf = 0.1. From Fig. 2.6 and Fig. 2.7, we can observe that our proposed RAS has a significant

improvement on the detection performance of the system when α0 is small. Even though the

detection performance of the proposed scheme gets close to EAS when α0 approaches 0.5 and

p1 is large, the proposed RAS still outperforms EAS and the direct scheme. This improvement
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becomes more prominent when p1 is relatively small. Moreover, in both EAS and RAS, a large p1

can always make it harder for Byzantine nodes to evade the detection system. In this case, the FC

has the history of all the local decisions it received in the past to identify Byzantine nodes. And

some reputation-based schemes can help the FC to identify the Byzantine nodes [82] [91].

(a) γf as a function of flipping probability p1 given
p2 = 0 and p2 = 0.2 when α0 = 0.45.

(b) γf as a function of flipping probability p1 given
p2 = 0 and p2 = 0.2 when α0 = 0.15.

Fig. 2.6: The argument for the probability of false alarm function for different values of α0.

(a) The probability of detection versus p1 given
p2 = 0 for α0 = 0.3 and N = 10.

(b) The probability of false alarm versus p1 given
p2 = 0 for α0 = 0.3 and N = 10.

Fig. 2.7: The probability of false alarm and the probability of detection for the system.

2.4.2 The Network with Multiple Clusters

In this subsection, we extend our work from the single cluster case to the case of multiple clusters

in the wide-area network. We show that the proposed RAS can not only improve the detection
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performance of the system, but also reduce the communication overhead5 between the clusters and

the FC. In a cluster based network as shown in Fig. 2.8, the N sensors in the network are grouped

into T clusters and the sensors in each cluster are further divided into groups of two. Each cluster

is equipped with one MMSD which serves as a data integration processor for this cluster. Note that

the MMSD is no longer a part of the FC.

Based on the local observations, each sensor makes a binary decision regarding the absence or

presence of the PoI. Then, the sensors send both their own decisions and their group member’s de-

cision to the corresponding MMSDs. By comparing the MMS of the direct and indirect decisions,

the MMSDs are able to obtain the status indicators for all the sensors in the corresponding clusters.

Based on these status indicators, each MMSD partitions the sensors in the cluster into sets SS, SS,

SS and SS. In addition, the sensors are placed into M if the local decisions of the sensors in the

same group are the same. The flow chart to illustrate the decision making and communication

process of a cluster t ∈ {1, . . . , T} is shown in Fig. 2.9.

Fig. 2.8: System model of a distributed CWSN. The blue cylinders represent MMSDs in each
cluster and the small blue circles represent low-cost sensors.

Let N (RA)
t and N

(A)
t denote the number of local decisions sent by the MMSDs to the FC for the

proposed RAS and the number of local decisions sent by the sensors to the FC, respectively. Note

that the MMSDs only transmit the direct decisions, and they do not transmit the ones that satisfy

Condition 1 or Condition 2. Thus, the number of direct decisions N (RA)
t sent by the MMSDs to the

FC is smaller than that of TAS N
(A)
t , where N

(RA)
t = |SS

⋂
M| + |SS| + |SS| and N

(A)
t = 2N .

5In this section, we measure the overall communication overhead of the system by the number of bits in all com-
munication messages sent.
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Fig. 2.9: The flow chart of the decision making and communication processes of cluster t. nt is
the number of sensors in cluster t. Sensor j is the group member of sensor i.

Let r represent different sets as follows. If r = 00, it refers to the set SS
⋂
M; If r = 01 it refers

to the set SS; If r = 10, it refers to the set SS. Each MMSD sends three data packets which

contain r and the direct decisions from the sensors in the sets SS
⋂
M, SS and SS, respectively.

For example, if sensor 1 to sensor 4 are in SS
⋂
M, sensor 5 to sensor 8 are in SS and sensor 9

to sensor 12 are in SS. The three data packets contain [r = 00, u1, . . . , u4], [r = 10, u5, . . . , u8]

and [r = 01, u9, . . . , u12]. Upon receiving these data packets, the FC is able to determine which

sets those sensors belong to so that it can make the final decision based on those transmitted direct

decisions.

When N is large, we are able to calculate the expected number of bits transmitted to the FC

from all the MMSDs, which is E(N
(RA)
t ) = E(NLL

re ) + E(NL
re) + E(NU

re), according to (2.48).

Fig. 2.10 shows the expected number of bits transmitted to the FC when N = 100 and N
(A)
t =

2N = 200. We can observe that the expected number of bits transmitted to the FC for the proposed

RAS significantly decreases compared with the one for TAS. It is due to fact that the MMSDs only

send the direct decisions of sensors which do not satisfy Condition 1 or Condition2. We can also
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observe that the expected number of bits decreases with an increased α0 given a specific p2. It is

due to the fact that the number of sensors temporarily removed by the MMSDs increases when

the fraction of Byzantine nodes α0 increases with a given attacking probability p2. Hence, the

proposed new fusion rule is able to reduce the energy cost of the sensors to half of the traditional

case which prolongs the lifetime of the network, especially for the wide area network.

Fig. 2.10: The expected number of bits transmitted to the FC Nt versus p1 given different value
of α0 and p2.

2.5 Summary

In this chapter, an audit based mechanism was utilized to mitigate the effect of Byzantine attacks

in the networks. Instead of employing the identical attacking strategy of TAS where each sensor

utilizes the same attacking probability to falsify the decisions coming from their group member and

its own decision, we considered strategic attackers that can use different attacking strategies. We

showed the that it was possible for the strategic attackers to blind the FC as far as the information

conveyed by the audit bits in TAS is concerned. To overcome this problem, we proposed an

enhanced audit bit based scheme, namely EAS. Our results showed that the proposed scheme

outperforms TAS. Furthermore, we proposed a reduced audit bit based scheme (RAS) based on

our new proposed EAS. We showed that RAS is able to further improve the robustness and the

detection performance of the system. We extended our work for the wide-area CWSNs. In wide-
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area cluster-based WSNs, we showed that the proposed RAS is able to significantly reduce the

communication overhead between the clusters and the FC.
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CHAPTER 3

REPUTATION AND AUDIT BIT BASED

DISTRIBUTED DETECTION IN THE

PRESENCE OF BYZANTINES

In this chapter, we deal with the Byzantine attack problem when the FC has no prior knowledge of

the attacking strategy of Byzantine nodes. Under this assumption, two reputation based algorithms

called Reputation and audit based clustering (RAC) algorithm and Reputation and audit based

clustering with auxiliary anchor node (RACA) algorithm are proposed to defend against Byzantine

attacks in distributed detection networks. These two algorithms enable the FC to accurately iden-

tify Byzantine nodes and significantly improve the robustness of the system. The proposed RACA

algorithm could still work well even when the number of Byzantine nodes exceeds half of the total

number of sensors in the network.

3.1 Introduction

In distributed wireless sensor networks (WSNs), local sensors send their decisions regarding the

presence or absence of the phenomenon of interest (PoI) to the fusion center (FC) and the FC
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makes a final decision regarding the presence or absence of the PoI. Due to its energy-efficiency,

distributed framework is widely adopted in many bandwidth-limited scenarios, e.g., IoT, cognitive

radio networks and military surveillance systems. However, the open nature of WSNs makes the

distributed system vulnerable to various attacks such as Byzantine attacks, wiretap, jamming and

spoofing [26, 39, 54]. In this paper, we focus on Byzantine attacks where the sensors in a network

may be compromised and controlled by adversaries and send falsified decisions to the FC.

3.1.1 Related Work

The Byzantine attack problem in distributed detection systems has been studied in the litera-

ture [33, 34, 46, 47, 82, 85, 97, 117]. In [85], an adaptive reputation based clustering algorithm

is proposed for spectrum sensing networks to achieve good detection performance. In [117], a

reputation-based scheme is proposed for cooperative spectrum sensing networks to improve the

robustness of the networks. In [82], the authors investigated the condition under which the Byzan-

tine attackers totally blind the FC and an algorithm is proposed to detect Byzantine attacks by

counting the mismatches between the decisions and the global decision at the FC in collaborative

spectrum sensing networks. In [46], the optimal attacking strategy is investigated for distributed

detection systems where the smart attackers maximize the attacking efficacy by finding a trade-

off between their exposure to the defense mechanism and the error probability of the system.

In [97], an adaptive algorithm is proposed to defend against Byzantine attacks in the false discov-

ery rate based distributed detection system when the Byzantine nodes are omniscient and know the

true hypothesis. In [47], the optimal attacking strategies are analyzed for the cases where the FC

has knowledge of the attackers’ strategy and where the FC does not know the attackers’ strategy.

In [33], the audit bit based distributed detection scheme is proposed in the Neyman-Pearson frame-

work. Each sensor sends one additional audit bit to the FC which gives more information about

the behavioral identity of each sensor. The proposed scheme significantly improves the robustness

and the detection performance of the system. In [34], the audit bit based mechanism is considered

in the Bayesian setting and the mitigation scheme over time is also proposed. In Chapter 2, a more
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general attacking strategy than investigated in [33] and [34] was proposed. A number of enhanced

audit bit based schemes are proposed in this chapter which further improve the robustness and the

detection performance of the system.

3.1.2 Major Contributions

In this work, we further consider the presence of strategic attackers that employ the general at-

tacking strategy utilized in Chapter 2. Different from previous works, we consider that the FC

does not have prior knowledge of the attacking strategy of Byzantine nodes, namely the flipping

probabilities. We propose two reputation based algorithms to mitigate the effect of Byzantine at-

tacks. In both proposed algorithms, we utilize the reputation indexes of sensors to represent the

trustworthiness of sensors in the network. The reputation indexes of sensors are updated at each

time step according to their behaviors. Sensors with low reputation indexes are usually identified

as Byzantine nodes and are excluded from the decision-making process. In particular, the audit bit

based mechanism and the Partitioning Around Medoid (PAM) algorithm are developed to update

the reputation indexes of sensors in the network and to identify potential Byzantine nodes. The

ability to identify Byzantine nodes can be further enhanced by the use of anchor nodes even when

the number of Byzantine nodes exceeds half of the total number of sensors in the networks. The

robustness of proposed algorithms is tested both in dynamic (attacking parameters change dynam-

ically over time) and static (attacking parameters remain the same) scenarios. Simulation results

show that our proposed algorithms are capable of defending against attackers in both scenarios.

3.2 System model

Consider a binary hypothesis testing problem with the two hypotheses denoted by H0 and H1.

A WSN is comprised of N sensors and one FC, where the FC makes a final decision on which

hypothesis is true based on the sensor’s local decisions. The sensors are divided into groups of

two and there are a total of G = N/2 groups in the network. The sensors make binary decisions
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on whether H0 or H1 is true by utilizing the likelihood ratio (LR) test. For ease of notation, let us

assume that each sensor has the same probabilities of detection and false alarm, i.e., Pd = P (vi =

1|H1) and Pf = P (vi = 1|H0) for i ∈ {1, . . . , N}, where vi is the decision made by sensor

i. In addition to its local decision vi, each sensor also sends one more decision, which comes

from its group member, to the FC and we call this additional decision the audit bit as described

in [33, 34, 78].

For simplicity, let i and j represent the sensors in the same group. As shown in Fig. 2.1(a), after

making its own decision vi, sensor i sends (i) ui directly to the FC; (ii) wi to the sensor j in the

same group; (iii) zj , corresponding to wj coming from the sensor j in the same group, to the FC.

Similarly, sensor j also sends two decisions uj and zi to the FC. If sensor i is a Byzantine node,

i.e., i = B, the decisions vi, wi and ui are not necessarily the same and zj are also not necessarily

equal to uj . If sensor i is honest, i.e., i = H , it sends genuine or uncorrupted information to the

FC. Hence, given a Byzantine node i, the attacking parameters p1 and p2 are given by

p1 = p(vi ̸= ui|i = B) = p(vi ̸= wi|i = B) (3.1)

p2 = p(wj ̸= zj|i = B). (3.2)

Given an honest node i, we have

p1 = p(vi ̸= ui|i = B) = p(vi ̸= wi|i = B) = 0 (3.3)

p2 = p(wj ̸= zj|i = B) = 0. (3.4)

In other words, p1 and p2 represent the probabilities that a node flips its own decision and flips

the decision coming from its group member, respectively. If ui = zi, we have a ‘match’ for

sensor j, otherwise, we have a ‘mismatch’ for sensor j. Similarly, for sensor i, we have a ‘match’

when uj = zj and a ‘mismatch’ when uj ̸= zj . We assume that a fraction α0 of the N sensors

are Byzantine nodes and they attack independently. The FC is not aware of the identity or the

attacking strategy of Byzantine nodes in the network. Hence, each node has the probability α0
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to be a Byzantine node and the FC does not know the values of p1 and p2. We consider the more

general and practical attacking strategy as stated in [78] which allows the Byzantines to be strategic

by optimally employing unequal probabilities p1 and p2.

(a) The architecture of
group k.

(b) The block diagram of the proposed algorithm.

Fig. 3.1: The architecture of any group k is shown in (a). The block diagram of the proposed
algorithm is shown in (b).

3.3 Proposed Reputation and Audit Bit Based Clustering

Algorithms

In this section, we present the proposed robust defense algorithms for the system under attack

when the FC does not possess the knowledge of the attacking strategy, namely p1 and p2, used by

Byzantine nodes. We also evaluate the performance of our proposed algorithms in this section.

3.3.1 Reputation and Audit Bit based Clustering Algorithm

Upon receiving measurements {ui}Ni=1 and {zi}Ni=1, the FC is able to determine the match and

mismatch (MMS) results (ui = zi or ui ̸= zi) for all the sensors in the network. Based on the

received measurements and the MMS results, we propose a robust reputation based algorithm to

defend against Byzantine attacks. The proposed reputation and audit bit based clustering (RAC)

algorithm consists of four successive phases and the flow chart is shown in Fig.3.1(b).
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• Macro clustering phase: At time step t, T most recent decisions of each node are utilized.

The FC keeps a N(2T + 1) dimensional vector1 to store the information corresponding to

each sensor in the network, which consists of the records of local decisions, the records of

MMS results and the updated reputation index. We make use of the MMS results to cluster

or partition the sensors into two different sets, which are T and T . If the MMS results for

both sensors in the same group are always ’match’, the sensors in this group are placed in

set T , otherwise, they are placed in set T .

• Micro clustering phase: After partitioning all the sensors into two sets, in each set, we em-

ploy the Partitioning Around Medoid (PAM) algorithm2 [50] to partition the sensors in the

same set into several clusters or subsets based on the decisions {ui}Ni=1. We assume that the

sensors are grouped into K clusters in each set via PAM.3 Hence, we have a total 2K clusters

in the network.

• Voting phase: The Voting phase contains two successive steps, i.e., Intra-cluster voting and

Inter-cluster voting.

– Intra-cluster voting: After each sensor makes the decision at time step t, we perform

cluster voting by weighting the decisions of the sensors in that cluster with their impact

factors. The impact factor of sensor i is inversely proportional to the Hamming distance

between the decision vector of sensor i and the decision vector of the medoid of that

cluster for the most recent T time steps. Let Ii(t) denote the impact factor of sensor i

at time step t and it is given as

Ii(t) =


1

dt(i,mk)
if sensor i is in cluster k

0 if sensor i is not in cluster k
(3.5)

1The information of each sensor consists of T local decisions, T MMS results, and one reputation index.
2PAM is one possible algorithm to implement K-medoid clustering. K-medoid clustering is a prominent clustering

technique which attempts to minimize the distance between points assigned to a cluster and a point designated as the
center of that cluster, namely the medoid of that cluster.

3The number of clusters in different sets are assumed to be the same for simplicity.
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where dt(i,mk) denotes the Hamming distance between the decision record of sensor

i and the decision record of the medoid of that cluster for the most recent T time steps,

and, mk represents the index of the medoid of cluster k ∈ {1, . . . , 2K}. Note that the

first K clusters consist of the sensors in set T and the rest of the clusters consist of the

sensors in set T . According to (3.6), the cluster vote for cluster k at time t is either 0

or 1 to represent the absence or presence of the PoI, respectively, at the cluster level.

Vk(t) =

⌊∑N
i=1 Ii(t)ui(t)∑N

i=1 Ii(t)

⌉
, (3.6)

where ⌊x⌉ means rounding x to the nearest integer.

– Inter-cluster voting: After receiving all the cluster decisions, the FC makes a decision

regarding the behavioral status, i. e., Byzantine or not, of each cluster based on the

cluster reputation. Assume the initial reputation for all the sensors in the network is

rinit and the cluster reputation is defined as the averaged reputation of the sensors in that

cluster. If the cluster reputation is below a threshold λvalid, the cluster is temporarily

considered to be Byzantine and the cluster decision from that cluster is not taken into

consideration when the FC makes the final decision regarding the hypothesis that is

true. The decision rule used by the FC is expressed as

γ1

K∑
k=1

βkVk(t) + γ2

2K∑
k=K+1

βkVk(t)
vfc(t)=1

≷
vfc(t)=0

λfc, (3.7)

where λfc is the threshold used by the FC, vfc(t) is the final decision at time step t, and,

γ1 and γ2 are the weights of the cluster decisions for the first K clusters (clusters in set

T ) and the weights of the cluster decisions for the rest of the clusters, respectively.

Based on Lemma 3.1, we give appropriate values to γ1 and γ2 to emphasize different

importance of the cluster decisions from different sets. βk is the weight of decisions
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from cluster k in the corresponding set and it is given by

βk =


Yk∑K

k=1 Yk
if cluster k ∈ {1, 2, . . . , K}

Yk∑2K
k=K+1 Yk

if cluster k ∈ {K + 1, K + 2, . . . , 2K}
(3.8)

where Yk = nkFk∑2K
k=1 nkFk

, nk is the number of sensors in cluster k and Fk is the clus-

ter behavioral identity indicator for cluster k. Fk = 1 represents the cluster k is not

considered Byzantine and Fk = 0 represents the cluster k is considered Byzantine.

We set γ1 > γ2 to emphasize that the importance of cluster decisions coming from set T is

greater than the ones coming from set T according to Lemma 3.1.

Lemma 3.1. The sensors in set T have a higher probability being Byzantine nodes than the

sensors in set T when α0 ≤ 0.8.

PROOF: Please see Appendix A.2.

• Reputation updating phase: At the end of each time step, the reputations of all the sensors

are updated. The final decision of the FC is propagated back to cluster level and further to the

individual level to update the reputation of each sensor. If the final decision is the same as a

cluster decision, that cluster gets a positive feedback; otherwise, it gets a negative feedback.

Similarly, if the cluster decision is the same as a sensor decision in that cluster, that sensor

gets a positive feedback; otherwise, it gets a negative feedback. The reputation updating rule

of sensor i is given as

ri = ri +M(vfc(t),Vk(t))gk
Hi(t)∑N
i=1 Hi(t)

, (3.9)

where

gk =

∑N
i=1M(ui(t),Vk(t))Ii(t)∑N

i=1 Ii(t)
(3.10)
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represents the step size to penalize or reward a sensor in cluster k and M(a, b) is an indicator

function that returns 1 if a equals b and returns -1 otherwise. Let Hi(t) denote the reputation

impact factor of sensor i at time step t and it is given by

Hi(t) =


1

Dt(i,mk)
if sensor i is in cluster k

0 if sensor i is not in cluster k
(3.11)

where Dt(i,mk) is the Hamming distance between the MMS result record of sensor i and

the MMS result record of the medoid of that cluster for the most recent T time steps. The

reputation updating rule of cluster k is given as

Rk =

∑
i∈Ek ri

nk

, (3.12)

for k = 1, 2, . . . , K, where Ek is the set of indices of the sensors in cluster k. If Rk is smaller

than a threshold τ , we temporarily remove all the sensors in cluster k and go back to voting

phase.4

3.3.2 Proposed Algorithm with Auxiliary Anchor Node

In the above algorithm, simulation results show an improved detection performance of the system.

However, as we will see later, the simulation results in Fig. 3.4 show that the system employing

RAC algorithm breaks down when the Byzantine nodes adopt the strategy that p1 approaches 1,

p2 approaches 0 and α0 ≥ 0.5. Hence, we further propose an algorithm with auxiliary anchor

nodes to overcome that problem. We use the same procedure in the above algorithm except the

Reputation updating phase. Assume there are J (J ≪ N ) anchor nodes in the network which can

be trusted by the FC, and Pd and Pf are the same as the other sensors in the network. Let A(t)

represent the final decision according to the local decisions from anchor nodes at time step t and

4Because it is possible that several honest nodes are grouped into a Byzantine cluster or the cluster is wrongly
identified as Byzantine, we just temporarily remove all the sensors in that cluster.
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the final decision is decided by majority vote if more than 1 anchor node is used. The reputation

updating rule of sensor i given in (3.9) is reformulated as

ri = ri +M(vfc(t),Vk(t))gkf
Hi(t)∑N
i=1Hi(t)

, (3.13)

in the proposed algorithm with auxiliary anchor node, where f is given by

f =

∑t
q=t−T+1Q(A(t), A(q))

T
M(A(t), vfc(t)), (3.14)

where Q(a, b) is an indicator function that returns 1 if a equals b and returns 0 otherwise. f can be

regarded as a reward (or punishment) step size of reputation when the decision of the anchor node

is the same as the final decision (or different from the final decision). Note that although the anchor

nodes are reference nodes, they still have a chance to make the wrong decisions and we assume the

hypothesis does not change here. In this algorithm, we are able to accurately identify most of the

Byzantine nodes in the system and obtain excellent detection performance with the help of anchor

nodes even when the number of Byzantine nodes is greater than half of the total number of sensors

in the network.

3.4 Performance Analysis

In this section, we evaluate the robustness of the system and determine the optimal attack strategy

for Byzantines when employing our proposed algorithms to make the FC completely blind. Since

Macro clustering is performed, we need to consider two cases: (i) The sensors are in set T ; (ii)

The sensors are in set T . The probabilities of detection and false alarm are different for the sensors

in different sets. Let π11, π10, ans π11, π10 denote the probabilities of detection and false alarm for

the sensors in set T and the sensors in set T , respectively. We have

π11 = 1− π01 = P (ui = 1|H1) = Pd(1− αp1) + αp1(1− Pd) (3.15a)
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π10 = 1− π00 = P (ui = 1|H0) = Pf (1− αp1) + αp1(1− Pf ) (3.15b)

for any sensor i in T , and

π11 = 1− π01 = P (ui = 1|H1) = Pd(1− αp1) + αp1(1− Pd) (3.16a)

π10 = 1− π00 = P (ui = 1|H0) = Pf (1− αp1) + αp1(1− Pf ) (3.16b)

for any sensor i in T . α is the probability that one sensor in set T is a Byzantine node and α is

the probability that one sensor in set T is a Byzantine node. α is the probability that one sensor in

set T is a Byzantine node and α is the probability that one sensor in set T is a Byzantine node and

they are given by

α =
α2
0f1 + α0(1− α0)f2

α2
0f1 + 2α0(1− α0)f2 + (1− α0)2

, (3.17a)

α =
α0 − (α2

0f1 + α0(1− α0)f2)

1− (α2
0f1 + 2α0(1− α0)f2 + (1− α0)2)

, (3.17b)

where f1 = [2p1p2(1−p1)+(1−2p1+2p21)(1−p2)]
2 and f2 = (1−p2)(1−2p1+2p21). To totally

blind the FC, the adversaries need to ensure that the following equalities simultaneously hold.

D (α, p1, p2) = 0, D (α, p1, p2) = 0 (3.18)

where D(·) represents the Kullback–Leibler divergence (KLD), and D (α, p1, p2) = π11 log
π11

π10
+

π01 log
π01

π00
and D (α, p1, p2) = π11 log

π11

π10
+ π01 log

π01

π00
. The equations in (3.18) always hold only

when π11 = π10 and π11 = π10, respectively, which yields αp1 = 1
2

and αp1 =
1
2
. Moreover, since

we assign different weights to different cluster decisions, i.e., γ1 and γ2, according to the fusion

rule shown in (3.7), the optimal attacking strategy is p1 = 1, p2 = 0, and α0 = 0.5.

Let P diff
HH and P diff

BH denote the probabilities that two honest nodes differ in their sensing reports

and the probability that one honest node and one Byzantine node differ in their sensing reports,

respectively, at any time step t. Obviously, P diff
HH and P diff

BH are given as P diff
HH = 2π0Pf (1−Pf )+
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2π1Pd(1 − Pd) and P diff
BH = π0[κ10(1 − Pf ) + κ00Pf ] + π1[κ11(1 − Pd) + κ01Pd], respectively,

where κ10 = (1− Pf )p1 + Pf (1− p1) and κ11 = (1− Pd)p1 + Pd(1− p1) are the probabilities of

detection and false alarm for the Byzantine nodes in the network. If the adversaries want to totally

deceive the FC so that the FC misplaces Byzantine nodes and honest nodes in the same cluster in

Micro clustering phase, we should have

D
(
P diff
HH |P diff

BH

)
= P diff

HH log2

(
P diff
HH /P diff

BH

)
= 0 (3.19)

where D
(
P diff
HH |P diff

BH

)
is the KLD. The solutions of equation (3.19) are p1 = 0 or Pd = Pf = 1

2

which means that the adversaries can totally deceive the FC in Micro clustering phase only when

p1 = 0 or Pd = Pf = 1
2
.

So in conclusion, the proposed mechanism pushes the Byzantine nodes to choose a large p1

and a small p2 to blind the FC in Macro clustering phase. It is due to the fact that a small p2

increases the probability that the Byzantine nodes are placed into set T , whose sensor decisions

have more impact on the final decision. However, a large p1 also increases the exposure to our

defense mechanism in Micro clustering phase which guarantees a good detection performance.

Benefiting from our proposed scheme, we are also able to achieve a good detection performance

even when α0 ≥ 0.5. It should also be noted that in prior work (for e.g., [33, 34, 45, 82, 97]), the

FC can be made blind with only 50% of Byzantine nodes in the network.

3.5 Simulation Results and Discussion

Some numerical results are presented in this section. We assume that identical sensors are utilized

in the networks. Hence, we have Pd = 0.9, Pf = 0.1 for sensor i ∈ {1, . . . , N} and anchor node

j ∈ {1, . . . , J}. We set N = 500, rinit = 0.5, λvalid = 0.5, τ = 0.5, γ1 = 1.5, γ2 = 0.5 and

λfc = 1.

Fig. 3.2 shows that our proposed algorithms are able to quickly identify Byzantine nodes so

that we can obtain an excellent detection performance. Fig. 3.3 shows that the starting dimension
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(a) The probability of error versus the number of
iterations of the proposed algorithm.

(b) The fraction of identified Byzantine nodes ver-
sus the number of iterations of the proposed algo-
rithm.

Fig. 3.2: The probability of error and the fraction of identified Byzantine nodes for the proposed
algorithm with one anchor node given α0 = 0.35 and α0 = 0.75.

(a) The probability of error versus p1 given different
starting starting dimension T

(b) The fraction of identified Byzantine nodes ver-
sus p1 given different starting starting dimension T

Fig. 3.3: The probability of error and the fraction of identified Byzantine nodes given different
value of T for the proposed algorithm with one anchor node.

T that is needed to get a relatively good detection performance is greater than 10. Hence, to start

with the algorithm, we maintain at least the latest 10 decision records to guarantee a relatively

good detection performance.

In Fig. 3.4(a), we can observe that the proposed algorithm with one anchor node and the one

without anchor nodes both have outstanding detection performance when the fraction of Byzantine

nodes α0 = 0.35. Fig. 3.4(b) shows that the system can still obtain a good detection performance

with the help of anchor nodes even when the fraction of Byzantine nodes is greater than 0.5. We

can also observe that the detection performance of the algorithm without anchor nodes degrades



61

(a) The probability of error versus p1 when α0 =
0.35.

(b) The probability of error versus p1 when α0 =
0.75.

Fig. 3.4: The probability of error versus p1 given different value of p2 and α0 for the proposed
algorithm with one anchor node and without anchor nodes.

(a) The probability of error versus p1. (b) The fraction of identified Byzantine nodes ver-
sus p1.

Fig. 3.5: The probability of error and the fraction of identified Byzantine nodes for the proposed
algorithm with different number of anchor nodes.

significantly only when p1 approaches 1 and p2 approaches 0 if the fraction of Byzantine nodes is

greater than 0.5. We can also observe that our proposed algorithms outperform Adaptive reputa-

tion clustering algorithm (ARC) proposed in [97] and Reputation based algorithm (RBA) proposed

in [82]. Note that those algorithms (ARC and RBA) break down when over half of the sensors are

Byzantine nodes. Furthermore, we examined the impact of the number of anchor nodes used on

the performance of the system in Fig. 3.5. It shows that an increasing number of anchor nodes

significantly enhances the detection performance of the system since a larger number of anchor

nodes could provide the FC better reference decisions to identify the Byzantine nodes. Fig. 3.6

shows the detection performance of our proposed algorithms under Byzantine attacks with dynam-
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Fig. 3.6: The probability of error versus dynamically changing p1 given different value of p2 and
α0 for our proposed algorithms.

ically changing attacking parameter p1. In each time step, we assume that the real value of p1 is

uniformly generated from [p1 − 0.05, p1 +0.05] in order to represent the dynamically changing at-

tacking parameter p1. The average error probability we obtain for a specific dynamically changing

p1 ∈ [p1−0.05, p1+0.05] is the error probability that corresponds to p1 in Fig. 3.6. We can observe

that our proposed algorithms are able to defend against attackers whose attacking parameters are

dynamically changing. It is due to the fact that the performance improvement of our proposed

algorithms is directly affected by the deviation of Byzantine nodes’ decision records from those of

honest nodes, and the deviation is the reflection of p1 and p2 in the system. Hence, the dynamically

changing attacking parameters in each iteration do not result in a significant impact on the ability

of our proposed algorithms to defend against attacks.

3.6 Summary

In this chapter, we proposed the RAC algorithm and the RACA algorithm to defend against Byzan-

tine attacks in sensor networks when the FC is not aware of the attacking strategy. We utilized the

history of local decisions and MMS results to update the reputation index of sensors and help the

system accurately identify Byzantine nodes. Our simulation results showed that we are able to

achieve superior detection performance and the enhanced ability of identifying Byzantine nodes

by employing anchor nodes even when the Byzantines exceed half of the total number of sensors
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in the network. Furthermore, we showed that our algorithms are capable of defending against

attackers whose attacking parameters change dynamically over time.
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CHAPTER 4

ORDERED TRANSMISSION-BASED

DETECTION IN DISTRIBUTED NETWORKS

IN THE PRESENCE OF BYZANTINES

In this chapter, we consider the Byzantine attack problem in ordered transmission based (OT-based)

schemes for the binary hypothesis testing problem. Ordered transmission (OT) is a promising tech-

nique which reduces the number of transmissions needed in a distributed detection network without

any loss in the probability of error performance. Here, we discuss two main types of systems: the

conventional OT-based system and the communication-efficient OT-based (CEOT-based) system.

We investigate the performance of the aforementioned two OT-based systems in the presence of

additive Byzantine attacks in Gaussian shift in mean problems, focusing on the detection perfor-

mance and the number of transmissions saved. Moreover, we conduct a performance comparison

between the conventional OT-based system and the CEOT-based system to reveal the robustness of

these two systems.
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4.1 Introduction

Energy-efficiency is an important aspect to consider while designing a wireless sensor network

(WSN) with prolonged lifetime [23]. Several notable schemes have been proposed to improve

energy efficiency by reducing the number of transmissions in the networks [3, 4, 7, 80]. In this

chapter, we consider two such schemes called the conventional ordered transmission based (OT-

based) scheme [7] and CEOT-based scheme [88]. In the conventional OT-based scheme, all the

sensors in the network transmit their data in decreasing order of their respective absolute values

of the log-likelihood ratios (LLRs). In the CEOT-based scheme, informative sensors transmit

binary decisions to the FC, improving communication efficiency in the distributed setup, rather

than sending raw LLR values. In both schemes, the starting time of transmission at each sensor is

proportional to the inverse of the absolute value of its LLR. Hence, the more informative sensors

(sensors with larger magnitudes of the value of LLR) transmit earlier than the less informative

ones (sensors with smaller magnitudes of the value of LLR). When the FC has received enough

observations to make the final decision of desired quality, the FC broadcasts a stop signal to stop

the sensors from further transmitting. The sensors that have not yet transmitted their observations

reset their timers for the next decision interval after they receive the stop signal. For simplicity, in

the rest of this chapter, the OT-based scheme refers to the conventional OT-based scheme.

4.1.1 Related Work

The OT-based scheme for distributed networks was first proposed in [7], where only informative

sensors in the network transmitted their LLRs to the FC instead of sending raw data. The concept

was extended to an ordering approach for a class of noncoherent signal detection problems where

the LLRs at each sensor could only take nonnegative values in [81]. The authors in [8] demon-

strated that a single observation was sufficient to make a final decision for an OT-based system

with a large number of sensors. In [35], sequential detection along with OT was considered for

cooperative spectrum sensing to obtain fast and reliable decisions regarding primary user activities
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over the spectrum. The sequential test was run at the FC with a constraint on the maximum number

of sensors that reported their LLRs. This constraint was incorporated using the OT-based scheme.

Furthermore, the authors in [11] considered the quickest change detection problem to detect the

change in the distribution of independent observations by proposing a new approach where the

transmissions from the sensors were ordered and stopped when sufficient information was accumu-

lated at the FC. The authors showed that the proposed approach achieved the optimal performance

equivalent to the centralized cumulative sum (CUSUM) algorithm with less sensor transmissions.

In [12], the OT-based scheme is employed in the quickest change detection problem with depen-

dent observations to reduce communications without increasing detection delays. The dependence

among sensor observations is characterized using a decomposable graphical model (DGM). The

authors showed that the proposed algorithm is able to achieve identical performance to the non-

OT based scheme in terms of the worst-case average detection delay. In order to eliminate some

sensor-to-FC uplink communications, the authors in [13] considered an ordered gradient approach

where the timer at each sensor was set inversely proportional to the magnitude of the gradient of

the loss function. This resultant gradient-based approach achieved the same order of convergence

rate as the gradient descent approach for nonconvex smooth loss functions. Also, the work in [6]

considered an OT-based algorithm for the discretized estimation problem with a latency constraint.

The authors showed that the proposed algorithm can greatly reduce latency without loss of estima-

tion accuracy. In [31], the OT-based scheme was incorporated along with energy harvesting in the

WSNs in order to improve energy efficiency of the sensors. A correlation-aware OT-based scheme

was proposed in [30] where spatial correlation between the sensors was considered. The OT-based

framework was applied to determine a shift in the mean and covariance, and the decision rule was

proposed accordingly. The CEOT-based scheme was proposed in [88], where informative sensors

transmit binary decisions to the FC, improving communication efficiency in the distributed setup,

rather than sending raw LLR values. The above works show that the OT-based schemes are capable

of efficiently reducing the number of transmissions needed for decision-making while maintaining

the same inference performance.



67

However, due to the large number of low-cost sensors and the vulnerability of WSNs to failures

and adversarial attacks, the robustness of the OT-based and CEOT-based systems under attack

is an important aspect to consider. Here, we consider these systems operating under Byzantine

attacks [25, 60, 64, 66, 66, 96, 103, 110].

4.1.2 Major Contributions

Unlike the previous OT-based systems that only considered honest sensors in the networks [6–8,

11–13,19,30,31,35,81,88], we aim to evaluate the performance of the OT-based systems via both

the detection performance and the number of transmissions saved in the presence of Byzantine sen-

sors. We investigate the effect of two types of attacks on the OT-based systems: decision-falsifying

Byzantine (DF-Byzantine) attack, where only the local decisions are altered by Byzantine sensors;

and additive Byzantine attacks, where the Byzantine sensors can alter not only their data but also

the order in which data is transmitted by altering their LLRs. Specifically, we investigate the ef-

fect of DF-Byzantine attack on the detection performance and the number of transmissions saved

for the CEOT-based system; and the effect of different types of additive Byzantine attacks on the

detection performance and the number of transmissions saved for both CEOT-based and OT-based

system. The following are our major contributions:

• We investigate the performance of the OT-based distributed detection system in the presence

of two kinds of additive Byzantine attacks. The first type involves shifting the mean of the

actual observations, which is referred to as the mean-shift attack model. The second type

involves shifting both the mean and the variance of the actual observations, known as the

mean-variance-shift attack model. We also determine the optimal attack strategy for such

Byzantine sensors. The attack strategy is determined by utilizing the deflection coefficient

(DC) as a surrogate for the probability of error. Moreover, we evaluate the performance

of CEOT-based distributed detection systems in the presence of DF-Byzantine attack and

different additive Byzantine attacks.
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• We derive the probabilities of error for the OT-based and CEOT-based systems under addi-

tive Byzantine attacks and the probability of error for the CEOT-based system under DF-

Byzantine attacks. The number of transmissions saved in both OT-based systems are eval-

uated in the presence of different types of Byzantine sensors. We also derive upper bounds

(UB) and lower bounds (LB) on the number of transmissions saved in various types of OT-

based networks under various types of attacks.

• A comparison between the OT-based system and the CEOT-based system is made. We ob-

serve that the CEOT-based system is more robust to Byzantine attacks since the impact of

Byzantine attacks on the CEOT-based system is reduced by the quantization of data.

4.2 System Model

In this section, we consider a binary hypothesis testing problem where hypothesis H1 indicates

the presence of the signal and H0 indicates the absence of the signal. We consider a distributed

network consisting of N sensors and one FC. Furthermore, the OT-based scheme is considered to

reduce the number of transmissions in the network. Let yi be the received observation at sensor

i ∈ {1, 2, . . . , N}. We assume that all the observations are independent and identically distributed

(i.i.d) conditioned on the hypotheses. For sensor i, the observation yi is modeled as

yi =


ni under H0

s+ ni under H1,

(4.1)

where s is non-negative and it is the signal strength at each sensor, and ni is the Gaussian noise

with zero mean and variance σ2. We assume that s and ni are independent. Note that yi is Gaussian

with mean s and variance σ2 under hypothesis H1, and is Gaussian with mean 0 and variance σ2

under hypothesis H0.

Next, we review two OT-based schemes where all the sensors are assumed to be honest. One is
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the OT-based scheme proposed in [7] where the local sensors send their LLRs to the FC. The other

is the CEOT-based scheme proposed in [88] where the local sensors transmit binary decisions to

the FC.

4.2.1 Network with OT-based Scheme

Let Li denote the LLR for sensor i given by

Li = log

(
fYi

(yi|H1)

fYi
(yi|H0)

)
, (4.2)

where fYi
(yi|Hh) is the probability density function (PDF) of yi given hypothesis Hh, for h =

0, 1. The prior probabilities of hypotheses Hh are P (Hh) = πh, for h ∈ {0, 1}. Recall that

the LLR-based optimal Bayesian hypothesis test at the FC for an unordered system is given by∑N
i=1 Li

H1

≷
H0

λ = log
(

π0

π1

)
, where λ is the threshold used by the FC. In the OT-based system, the

sensor transmissions are ordered based on the magnitude of their respective LLRs. We denote the

magnitude of the ordered transmissions as |L[1]| > |L[2]| > . . . > |L[N ]|, where |L[i]| indicates the

ith largest LLR. Hence, the sensor with LLR L[1] transmits first, the sensor with LLR L[2] transmits

second, and so on. The optimal decision rule of the FC [7] becomes


∑k

i=1 L[i] > λ+ nUT |L[k]| decide H1∑k
i=1 L[i] < λ− nUT |L[k]| decide H0,

(4.3)

for an OT-based system, where nUT is the number of sensors that have not yet transmitted at time

k. The FC waits for the next transmission if it can not make the decision with desired accuracy.

In this work, we assume that both the sensors and the FC are aware of the relationship between

the transmission time t of the sensors and the corresponding magnitude of their LLRs, i.e, t ∝

1/|Li|,∀i ∈ 1, 2 . . . , N . Note that the following assumption was also made in [7] for their analysis.

Assumption 4.1. Pr(Li > 0|H1) → 1 and Pr(Li < 0|H0) → 1 when s is sufficiently large.

The assumption states that the true hypothesis can be decided easily based on Li for any sensor
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i if the distance (dependent on s) between the distributions of the observations of sensor i occurring

under the two hypotheses becomes large.

4.2.2 Network with CEOT-based Scheme

Let ui ∈ {0, 1} denote the binary local decision regarding the true hypothesis for sensor i given

by Li

ui=1

≷
ui=0

log
(

π0

π1

)
[91]. The sensor transmissions are still assumed to be ordered based on the

magnitude of their LLRs here. Recall that the magnitudes of the LLRs are ordered as |L[1]| >

|L[2]| > . . . > |L[N ]|. Then, the sensors transmit their local decisions to the FC in the order

determined by their magnitude-ordered LLRs, i.e., in the order of u[1], u[2], . . . , u[N ], where u[k] is

the local decision of the sensor with kth largest LLR.1 The optimal decision rule [88] becomes


∑k

i=1 u[i] ≥ T decide H1∑k
i=1 u[i] < T − (N − k) decide H0,

(4.4)

for an CEOT-based system, which follows the T out of N counting rule. The following assumption

is made in [88] for the CEOT-based scheme similar to the OT-based scheme made in [7].

Assumption 4.2. Pr(ui = 1|H1) → 1 and Pr(ui = 0|H0) → 1 when s is sufficiently large.

Remark 4.1. Note that large s is key to proving the result that the average number of transmissions

saved by utilizing both the OT-based scheme and the CEOT-based scheme is lower bounded by N/2

(see [7, Theorem 2] and [88]). However, when s is small or when there are Byzantine sensors in

the system, Assumptions 1 and 2 are no longer valid.

In the following sections, we analyze the performance of the OT-based system and the CEOT-

based system when confronted with Byzantine sensors employing different attack strategies, i.e,

additive Byzantine attacks and DF-Byzantine attack.

1Note that the magnitude-ordered LLRs do not imply that local decisions are also magnitude-ordered, i.e., |L[1]| >
|L[2]| > . . . > |L[N ]| does not imply u[1] > u[2] > . . . > u[N ].
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4.3 Performance of OT-based System with additive Byzan-

tine Attacks

In this section, we first introduce the additive Byzantine attack models we considered in the OT-

based system. Then we analyze and evaluate the performance of the OT-based system in the

presence of additive Byzantine attacks. Note that only passive systems are considered, i.e. the

system is unaware of the presence of attackers. The performance evaluation under different ad-

ditive Byzantine attacks is investigated, including the evaluation of detection performance of the

system and the evaluation of the average number of transmissions saved in the system. Moreover,

the optimal attack strategy of Byzantine nodes is found.

4.3.1 Additive Byzantine Attack Models

In our setup, a sensor i can be honest (H) or Byzantine (B). The Byzantine sensors are assumed

to have perfect knowledge of the underlying true hypothesis. Admittedly, it is hard to realize in

practice but it is useful to consider this case as it provides the impact of Byzantines in the worst

case. We also assume that each sensor can be a Byzantine with probability α. Two types of additive

Byzantine attacks are considered here, which are mean-shift attack and mean-variance-shift attack.

Mean-shift Attack Model

In the mean-shift attack model, we assume that the Byzantine sensors falsify data by controlling

the attack strength. The falsified observation ỹi for Byzantine node i is given by

ỹi =

 s+ ni −D under H1

ni +D under H0,
(4.5)

where D is the attack strength and it is a non-negative constant value. The above attack strategy

adopted by Byzantine nodes is equivalent to launching attacks by generating falsified observations
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from another distribution, and it is commonly used in the literature [43, 45, 66, 71, 121]. Here, the

distribution used by Byzantine nodes to generate falsified observations is obtained by shifting the

mean of the actual distribution with a constant value D. For an honest node i, the observation is yi

as given in (4.1).

Mean-variance-shift Attack Model

The mean-variance-shift attack strategy is a more general attack strategy where the signal is per-

turbed by random noise, instead of a constant noise, when compared to the mean-shift attack

strategy. But this kind of attack strategy can be easily extended from the mean-shift attack strat-

egy. For the sake of simplicity in performance analysis, we consider the scenario where the actual

data is perturbed by Gaussian noise.

Recall that the mean-shift attack strategy assumes that Byzantines falsify their observations

with constant values D and −D as shown in (4.5). Consequently, the LLR for Byzantine sensor i

can be expressed as

Li =


2(yi−D)s−s2

2σ2 = Li,true + f1(D) under H1

2(yi+D)s−s2

2σ2 = Li,true + f0(D) under H0,
(4.6)

where f1(D) = −Ds
σ2 , f0(D) = Ds

σ2 and Li,true =
2yis−s2

2σ2 is the actual value of sensor i’s LLR. We

can easily observe that Byzantines falsify their actual observations y with D and −D, which can be

equivalently viewed as falsifying their actual LLRs with constant values f1(D) and f0(D). In this

case, the falsified LLRs are generated from another Gaussian distribution with a different mean and

the same variance. If we assume a more general attack strategy, where the actual observations are

perturbed by Gaussian noise, both the mean and variance of the Byzantines’ LLRs will be altered.

Assuming that the actual LLR of compromised sensor i ∈ {1, 2, . . . , N} is perturbed by a

random noise component that follows a Gaussian distribution, the perturbed LLR is given by:
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Li =

 Li,true + n1,i,w under H1

Li,true + n0,i,w under H0,
(4.7)

where n1,i,w represents the perturbation noise under hypothesis H1 that follows a Gaussian dis-

tribution with mean f1(D) and variance σ2
w, and n0,i,w represents the perturbation noise under

hypothesis H0 that follows a Gaussian distribution with mean f0(D) and variance σ2
w.

Remark 4.2. Node that Assumptions 1 and 2 made in [7] and [88], respectively, are no longer

valid.

Remark 4.3. Note that both the sensors and the FC are aware of the relationship between the

transmission time t of the sensors and the corresponding magnitude of their LLRs, i.e, t ∝ 1/|Li|,∀i ∈

1, 2 . . . , N . If an attacker deviates from the ordered-transmission protocol, they introduce an addi-

tional dimension of adversarial behavior. This non-compliance makes their malicious actions more

conspicuous and susceptible to identification by the FC. In other words, it increases the possibility

of being easily detected by the system as being malicious. Here, we assume that the Byzantines

follow the ordered-transmission protocol. By making this assumption, we are assuming a more

challenging situation where attackers attempt to hide their malicious actions within the prescribed

protocol.

4.3.2 Detection Performance

Mean-shift Attack Model

We begin our analysis of the detection performance of the OT-based scheme in the presence of

Byzantine sensors by first presenting the following Lemma which states that the OT-based system

can achieve the same detection performance as the one without ordering.2

2Note that both the OT-based and unordered systems have the same probability of error in the presence of Byzantine
sensors. However, the number of transmissions saved is significantly impacted by the presence of Byzantine sensors
for the OT-based system as discussed later.
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Lemma 4.1. Under the optimum Bayesian decision rule, the detection performance remains the

same whether or not the system uses the OT-based scheme in the presence of Byzantine sensors.

PROOF: The proof is relegated to Appendix A.3.

Thus, based on the above Lemma, we can obtain the detection performance of the OT-based

system by evaluating the detection performance of the system without ordering. For the system

without ordering, we have Li =
2yis−s2

2σ2 when sensor i is honest (i = H). The PDF of Li condi-

tioned on hypothesis Hh follows Gaussian distribution with mean µh and variance σ2
h for h = 0, 1,

where µ1 = s2

2σ2 , µ0 = −s2

2σ2 , σ2
1 = σ2

0 = s2

σ2

△
= β. When sensor i is Byzantine (i = B), according

to (4.6), the PDF of Li conditioned on hypothesis Hh follows Gaussian distribution with mean ηh

and variance ν2
h for h = 0, 1, where η0 =

s2−2Ds
2σ2 , η1 = 2Ds−s2

2σ2 , ν2
0 = ν2

1 = s2

σ2

△
= β. Therefore, the

PDF of Li given hypothesis Hh is expressed as

fL(li|Hh) = αfL(li|Hh, i = B)+(1− α)fL(li|Hh, i = H)

= αN (ηh, ν
2
h)+(1− α)N (µh, σ

2
h), (4.8)

for h = 0, 1. Here, α denotes the probability of a node being Byzantine. Let K = {A1, . . . At, . . . , A2N}

denote the power set that contains all possible subsets of set {1, . . . , N} and At be the tth subset of

the combination of honest sensors. Also, |At| is the cardinality of set At. Let Z =
∑N

i=1 L[i] denote

the global test statistic and f(Z|Hh) denote the Gaussian mixture with PDF given by f(Z|Hh) =∑2N

t=1(1 − α)mtαN−mtN ((µh)At , Nβ) for h = 0, 1, where (µh)At = µh|At| + ηh(N − |At|) and

mt denotes the cardinality of set At, i.e., mt = |At|.

Therefore, the detection performance can be evaluated in terms of the probability of detection

P FC
d and the probability of false alarm P FC

f of the FC given as P FC
d =

∑2N

t=1(1−α)N−mtαmtQ
(

λ−(µ1)At√
Nβ

)
and P FC

f =
∑2N

t=1(1 − α)N−mtαmtQ
(

λ−(µ0)At√
Nβ

)
by following steps that are similar to those out-

lined in [45], where Q(.) is the tail distribution function of the standard normal distribution.

From the analysis above, we can calculate the system’s error probability, given by Pe = π1(1−

P FC
d )+π0P

FC
f . Nevertheless, as the size of K grows exponentially with increasing N , it becomes
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intractable to evaluate the worst-case system performance using Pe. Therefore, we employ the

DC [92] as a surrogate to determine the most effective attack strategy adopted by Byzantines so

that the worst-case system performance is evaluated. By minimizing DC, Pe is maximized.

The DC is defined as D(Z̃) = (E(Z̃|H1)−E(Z̃|H0))2

V ar(Z̃|H0)
. For the system without ordering, let Z̃ =∑N

i=1 Li denote the global statistic. Therefore, we have E(Z̃|H1) = −E(Z̃|H0) = N s2−2Dsα
2σ2 .

From Lemma 4.1 and the above discussion, to maximize the probability of error of the system

with ordering, we can minimize the DC of the system without ordering. For a specific value of α,

the value of D which minimizes DC is the optimal attack strength D∗. Since the DC is always non-

negative, the optimal strategy for the Byzantine sensors is to make D(Z̃) = 0. From the definition

of DC, when E(Z̃|H1) = E(Z̃|H0), we have D(Z̃) = 0. Hence, for a given α, the optimal attack

strength D∗ is given by

D∗ =
s

2α
, (4.9)

which is the minimum attack strength to blind the FC, i.e., to make the probability of error equal

to 1/2.

Mean-variance-shift Attack Model

According to (4.7), it is easy to obtain that the falsified Li of Byzantine sensor i follows a Gaussian

distribution with its mean given by

E[Li|Hh] = µh + fh(D), (4.10)

where µ1 =
s2

2σ2 and µ0 =
−s2

2σ2 , and the variance given by

V ar[Li|Hh] =
s2

σ2
+ σ2

w

△
= ν2

h,w (4.11)

for h = 0, 1. To evaluate the performance of the system under such general attacks, we only need to

replace ν2
0 and ν2

1 with ν2
0,w and ν2

1,w, respectively, in the discussions above regarding the detection
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performance of the mean-shift attack model.

4.3.3 Average Number of Transmissions Saved under Additive Byzan-

tine Attack

Mean-shift Attack Model

When the system is under mean-shift attack, we derive an expression for the average number of

transmissions N̄t in the following theorem. Let k∗ denote the minimum number of transmissions

needed to make a final decision with desired accuracy. Let F|L|(li|Hh) be the cumulative distribu-

tion function (CDF) of |Li| for h = 0, 1 provided as

F|L|(li|Hh) =α

(
Q

(
−li − ηh

νh

)
−Q

(
li − ηh
νh

))
+(1−α)

(
Q

(
−li − µh

σh

)
−Q

(
li − µh

σh

))
. (4.12)

Theorem 4.1. The average number of transmissions N̄t is given as

N̄t =
N∑
k=1

π1Pr(k∗ ≥ k|H1) + π0Pr(k∗ ≥ k|H0) (4.13)

where

Pr(k∗ ≥ k|Hh) = ELk−1

[
F|L|(Lk−1|Hh)

N−k+11{J }
N !

(N − k + 1)!

]
, (4.14)

for h = 0, 1. The indicator function 1{J } is 1 when Lk−1 = {L1, L2 . . . , Lk−1} is in the region

J , and 0 otherwise. Here, J is a hyperplane with k − 1 dimensions formed by the intersection of

three hyperplanes, J = L
⋂

U
⋂

D, which are given below

L =

{
Lk−1 :

k−1∑
i=1

Li ≤ λ+ (N − k + 1)|Lk−1|

}
(4.15)
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N̄s
U
=

N−1∑
k=1

1∑
h=0

πh

[
Pr

(
|L[k]|≤

gU − λ

N − k
|Hh

)
+Pr

(
|L[k]| ≤

λ− gL
N − k

|Hh

)
−Pr

(
|L[k]|≤min

(
gU − λ

N − k
,
λ− gL
N − k

)
|Hh

)]
(4.18)

N̄s
L
=

N−1∑
k=1

1∑
h=0

πh

[
Pr

(
|L[k]| <

gL − λ

(N − k)
|Hh

)
+ Pr

(
|L[k]| <

λ− gU
(N − k)

|Hh

)]
(4.19)

U =

{
Lk−1 :

k−1∑
i=1

Li ≥ λ− (N − k + 1)|Lk−1|

}
(4.16)

D = {Lk−1 : |L1| > |L2| > · · · > |Lk−1|} . (4.17)

PROOF: Please see Appendix A.4.

Note that the set L is the set of Lk−1 such that the FC can not decide hypothesis H1. Also, the set

U is the set of Lk−1 such that the FC can not decide hypothesis H0. Furthermore, the set D is the

set of Lk−1 such that L1, L2, . . . , Lk−1 are ordered in magnitude. For a given k, we evaluate (4.14)

numerically using the Monte Carlo approach as the following. We generate M i.i.d. realizations

of L1, L2, . . . , Lk−1, where the PDF of Li is given in (4.8) for ∀i ∈ {1, 2, . . . , k − 1}. From

our experiments, we observe that when N increases, the number of samples M needed to get an

accurate evaluation of (4.14) significantly increases.

Next, we derive the upper bound (UB) and the lower bound (LB) for the number of the trans-

missions saved by the OT-based scheme under Byzantine attack in the following Theorem. Let

N̄s
U and N̄s

L denote the UB and the LB of the average number of transmissions saved.

Theorem 4.2. When N is sufficiently large, the average number of transmissions saved N̄s can be

bounded as N̄s
L ≤ N̄s ≤ N̄s

U , where N̄s
U and N̄s

L are given in (4.18) and (4.19), respectively.

Furthermore, we have Pr
(
|L[k]| < W |Hh

)
=
∫W

−W
f|L[k]|(l[k]|Hh)dl[k] for W ∈ {gU−λ

N−k
, λ−gL
N−k

,min(gU−λ
N−k

, λ−gL
N−k

), gL−λ
N−k

, λ−gU
N−k

}

and f|L[k]|(|l[k]||Hh) is shown in (A.44). We have gL = −[
∑

(ci − c̄)2Nζ2h]
1
2 + kδh and gU =

[
∑

(ci − c̄)2Nζ2h]
1
2 + kδh, where δh and ζ2h are shown in (A.41). Here, c̄ =

∑N
i=1 ci
N

where ci = 1 if

i ≤ k and ci = 0 if i > k.

PROOF: Please see Appendix A.5.
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Mean-variance-shift Attack Model

Similarly, to evaluate the number of transmissions saved in the system under mean-variance-shift

attacks, we only need to replace ν2
0 and ν2

1 with ν2
0,w and ν2

1,w, respectively, in the discussions above

regarding the saving performance of the mean-shift attack model.

4.4 CEOT-based System with Byzantine Attacks

In this section, we discuss another OT-based framework, called CEOT-based scheme. It was first

proposed by [88] where the sensors send binary decisions, rather than LLRs, to the FC. The perfor-

mance of the CEOT-based system under two types of Byzantine sensors was evaluated: decision-

falsifying (DF-Byzantine) sensors, which perform pure decision flipping, and additive Byzantine

sensors, which not only flip decisions but also change the transmission order.

To demonstrate the basic concepts of CEOT-based schemes, we again consider a binary hypoth-

esis testing problem. Based on the local observations {yi}Ni=1, each sensor i ∈ {1, . . . , N} makes a

binary decision ui ∈ {0, 1} regarding the true hypothesis using the LLR test Li

ui=1

≷
ui=0

log
(

π0

π1

)
. No-

tably, sensor transmissions remain ordered according to the magnitude of their LLRs. Specifically,

if the magnitudes of the LLRs are sorted as |L[1]| > |L[2]| > . . . > |L[N ]|, the sensors transmit

their local decisions to the FC in the order determined by their magnitude-ordered LLRs, i.e., in

the order of u[1], u[2], . . . , u[N ], where u[k] refers to the kth transmitted local decision.

Thus, the optimal decision rule is given by [88]


∑k

i=1 u[i] ≥ T decide H1∑k
i=1 u[i] < T − (N − k) decide H0,

(4.20)

which follows the T out of N counting rule.
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Attack Model

Two possible types of security threats are considered in this framework: DF-Byzantine attacks and

additive Byzantine attacks. In the former, the Byzantine sensors perform pure decision flipping,

while in the latter, the sensors not only flip decisions but also change the order of the transmitted

decisions. Each sensor is assumed to have a probability α of being a Byzantine sensor, and the

Byzantines are assumed to have perfect knowledge of the true hypothesis.

• DF-Byzantine attack For a DF-Byzantine sensor i ∈ {1, 2 . . . , N}, we have

 vi = 1− ui with probability αp

vi = ui with probability 1− αp
, (4.21)

where vi is the actual local decision made by sensor i, ui is the local decision sent to the FC

by sensor i and p is the probability that the sensor i flips its local decisions. If sensor i is

honest, vi is the same as ui.

• Additive Byzantine attacks Attackers falsify data in the same way as stated in Section 4.3.1.

4.4.1 Performance of CEOT-based System with DF-Byzantines

The performance of the CEOT-based system with DF-Byzantine sensors is analyzed in terms of

the detection performance and the number of transmissions saved in the network.

4.4.2 Detection Performance

The following lemma always holds for the CEOT-based scheme in the presence of DF-Byzantines:

Lemma 4.2. When the FC follows the Bayesian decision rule, the detection performance of sys-

tems with and without the use of the CEOT-based scheme is the same in the presence of data

falsification attacks.

PROOF: Please see Appendix A.7.
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The lemma shows that the CEOT-based system can achieve the same detection performance in

the presence of DF-Byzantine attacks as an unordered system. Thus, we evaluate the detection

performance of the CEOT-based system in the presence of DF-Byzantine attacks by evaluating the

detection performance of the corresponding distributed system without ordering. For the system

without ordering, the probabilities of vi = 1 and vi = 0 given Hh are expressed as

π1,h = P (vi = 1|Hh) = Q

(
λ− µh

νh

)
(4.22)

and π0,h = P (vi = 0|Hh) = 1− π1,h, respectively, for h = 0, 1, where Q(.) is the tail distribution

function of the standard normal distribution, µ0 = 0, µ1 = s and ν0 = ν1 = σ. Hence, the

probabilities of ui = 1 and ui = 0 given Hh are expressed as

π̃1,h =P (ui = 1|Hh)

=P (ui = 1|Hh, i = B)P (i = B) + P (ui = 1|Hh, i = H)P (i = H)

=αpπ0,h + (1− αp)π1,h (4.23)

and π̃0,h = P (ui = 0|Hh) = 1 − π̃1,h, respectively, for h = 0, 1. From Assumption 4.2, we have

π1,0 = π0,1 ≈ 0 and π0,0 = π1,1 ≈ 1. Thus, we have π̃1,0 = π̃0,1 ≈ αp and π̃1,1 = π̃0,0 ≈ 1− αp.

The fusion rule for the distributed system when all of the sensor decisions are used is given by

N∑
i=1

ui

H1

≷
H0

T, (4.24)

which follows [72]. Using the decision rule in (4.24), the detection performance can be evaluated

in terms of the probability of detection P fc
d,CEOT and the probability of false alarm P fc

f,CEOT of the

FC given below as

P FC
d,CEOT =

N∑
i=T+1

(
N

i

)
πi
1,1π

N−i
0,1 (4.25)
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and

P FC
f,CEOT =

N∑
i=T+1

(
N

i

)
πi
1,0π

N−i
0,0 , (4.26)

respectively. Next, we aim at finding the value of optimal T used by the FC in (4.24) which

minimizes the probability of error of both the unordered system and the CEOT-based system. Let

Z =
∑N

i=1 ui denote the number of local decisions that decided 1. Note that Z ≥ 0. The optimal

decision rule at the FC, which is
∏N

i=1 P (ui|H1)∏N
i=1 P (ui|H0)

H1

≷
H0

π0

π1
, can be rewritten as

(
π̃1,1

π̃1,0

)Z (
1− π̃1,1

1− π̃1,0

)N−Z H1

≷
H0

π0

π1

. (4.27)

We make the reasonable assumption that the probability of a sensor being malicious is less than

0.5, i.e., α < 0.5, and 0 ≤ p ≤ 1 which implies that αp < 0.5. This implies that π̃1,1 > π̃1,0 (and

π̃0,0 > π̃0,1).

Taking the logarithm of both sides of (4.27), the optimal decision rule can be rewritten as

Z
H1

≷
H0

[
log

(
π0

π1

)
+N log

(
1− π̃1,0

1− π̃1,1

)]
/ log

(
π̃1,1(1− π̃1,0)

π̃1,0(1− π̃1,1)

)
. (4.28)

Therefore, the optimal threshold T ∗ at the FC is equal to the right hand side of (4.28), i.e., T ∗ =[
log
(

π0

π1

)
+N log

(
1−π̃1,0

1−π̃1,1

)]
/ log

(
π̃1,1(1−π̃1,0)

π̃1,0(1−π̃1,1)

)
.

Average Number of Transmissions Saved under DF-Byzantine Attacks

Next, we consider the effect of DF-Byzantine attack on the average number of transmissions re-

quired by the CEOT scheme. In order to simplify the computation, we find the upper bound (UB)

of the average number of transmissions required by finding the lower bound (LB) of the average

number of transmissions saved. When the system is under attack, we derive the LB for the average

number of transmissions saved in the CEOT-based system. We first consider the case when the FC

decides H1. It has been derived in [88] that the average number of transmissions saved to make a

final decision is lower bounded by N/2 in the absence of the data falsification attacks. Here, we
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investigate the effect that the attacks have on the lower bound of the expected number of trans-

missions saved and finding a lower bound for the system under data falsification attacks. It is also

shown in this chapter that the lower bound we obtain is tight.

We define k∗
L as the minimum number of transmissions required to decide H1 in the presence

of data falsification attacks and it is given in (A.65). Without any loss of generality, let ⌈T ⌉ denote

the rounding up of T to the closest integer that is greater than or equal to T . The average number

of transmissions saved when the FC decides H1 is given as

N̄s,1(β) =E(N − k∗L) =
N∑
k=1

(N − k)Pr(k∗L = k) (4.29a)

=

⌈T ⌉+β∑
k=1

(N − k)Pr(k∗L = k)

+
N∑

k=⌈T ⌉+β+1

(N − k)Pr(k∗L = k) (4.29b)

≥
⌈T ⌉+β∑
k=1

(N − k)Pr(k∗L = k) (4.29c)

≥(N − ⌈T ⌉ − β)Pr(k∗L ≤ ⌈T ⌉+ β) (4.29d)

=(N − ⌈T ⌉ − β)[Pr(

⌈T ⌉+β∑
k=1

u[k] ≥ T |Γ1 ≥ T )Pr(Γ1 ≥ T )

+ Pr(

⌈T ⌉+β∑
k=1

u[k] ≥ T |Γ1 ≤ T )Pr(Γ1 ≤ T )] (4.29e)

≥(N − ⌈T ⌉ − β)
∑
h=0,1

Pr(

⌈T ⌉+β∑
k=1

u[k] ≥ T |Γ1 ≥ T,Hh)

× Pr(Γ1 ≥ T |Hh)Pr(Hh) (4.29f)

=(N − ⌈T ⌉ − β)Pr(

⌈T ⌉+β∑
k=1

u[k] ≥ T |Γ1 ≥ T,H1)

× Pr(Γ1 ≥ T |H1)Pr(H1) (4.29g)

=(N − ⌈T ⌉ − β)Pr(

⌈T ⌉+β∑
k=1

u[k] ≥ T |Γ1 ≥ T,H1)Pr(H1) (4.29h)

△
=f1(β), (4.29i)



83

where Γ1 =
∑⌈T ⌉+β

i=1 v[i] and Pr(
∑⌈T ⌉+β

k=1 u[k] ≥ T |Γ1 ≥ T,H1) can be expressed as

Pr(

⌈T ⌉+β∑
k=1

u[i] ≥ T |Γ1 ≥ T,H1) =

β∑
i=0

(
⌈T ⌉+ β

i

)
π̃i
0,1π̃

⌈T ⌉+β−i
1,1 . (4.30)

Substituting (4.30) in (4.29h), we are able to obtain the LB of the average number of transmissions

saved in the network when the FC decides H1. In going from (4.29b) to (4.29c), the second

summation term, which is positive, is dropped. As the difference between the actual average

number of transmissions saved and its LB is dependent on the number of terms in the dropped

second summation term in (4.29b), an appropriate number of terms should be chosen in order to

reduce that difference and tighten the LB. Thus, we introduce a variable β in (4.29c) and try to find

an appropriate β later to prevent the dropped second part of (4.29b) from being too large so that

the LB is tight when the FC decides H1.

Next, we consider the case when the FC decides H0. Define k∗
U as the minimum number of

transmissions required to decide H0 and it is given in (A.64). Let ⌊T ⌋ denote the rounding down

of T to the next lowest integer. Similarly, the average number of transmissions saved when the FC

decides H0 is given as

N̄s,2(β) =E(N − k∗U ) =
N∑
k=1

(N − k)Pr(k∗U = k) (4.31a)

=

N−⌈T ⌉+β∑
k=1

(N − k)Pr(k∗U = k)

+
N∑

k=N−⌈T ⌉+β+1

(N − k)Pr(k∗U = k)

≥
N−⌈T ⌉+β∑

k=1

(N − k)Pr(k∗U = k) (4.31b)

≥(⌈T ⌉ − β)Pr(k∗U ≤ N − ⌈T ⌉+ β) (4.31c)

=(⌈T ⌉ − β)[Pr(

N−⌈T ⌉+β∑
k=1

u[k] < κ|Γ2 > T )Pr(Γ2 > T )

+ Pr(

N−⌈T ⌉+β∑
k=1

u[k] < κ|Γ2 < T )Pr(Γ2 < T )] (4.31d)
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≥(⌈T ⌉ − β)
∑
h=0,1

Pr(

N−⌈T ⌉+β∑
k=1

u[k] < κ|Γ2 < T )

× Pr(Γ2 < T ) (4.31e)

=(⌈T ⌉ − β)Pr(

N−⌈T ⌉+β∑
k=1

u[k] < κ|Γ2 < T,H0)

× Pr(Γ2 < T |H0)Pr(H0) (4.31f)

=(⌈T ⌉ − β)Pr(

N−⌈T ⌉+β∑
k=1

u[k] < κ|Γ2 < T,H0)Pr(H0) (4.31g)

△
=f2(β), (4.31h)

where Γ2 =
∑N−⌈T ⌉+β

i=1 v[i], κ = T − (⌈T ⌉ − β) and Pr(
∑N−⌈T ⌉+β

k=1 u[k] < κ|Γ2 < T,H0) can be

expressed as

Pr(

N−⌈T ⌉+β∑
k=1

u[k] < κ|Γ2 < T,H0)

=

⌊T ⌋−⌈T ⌉+β∑
i=0

(
N − ⌈T ⌉+ β

i

)
π̃i
1,0π̃

N−⌈T ⌉+β−i
0,0 . (4.32)

Substituting (4.32) in (4.31g), we are able to obtain the LB of the average number of trans-

missions saved in the network when the FC decides H0. In a manner similar to the one employed

earlier, variable β is introduced to ensure that the LB of the average number of transmissions saved

is tight when the FC decides H0. Since only one of the two hypotheses H1 and H0 can occur at

any given time, the events k∗
L = k and k∗

U = k given hypothesis H1 or H0 are disjoint. Hence

the total average number of transmissions saved is Ns,CEOT (β) =
∑N

k=1(N − k)
∑1

h=0[Pr(k∗
U =

k|Hh) + Pr(k∗
L = k|Hh)]Pr(Hh) =

∑N
k=1(N − k)[Pr(k∗

U = k) + Pr(k∗
L = k)] and the LB of

the average number of transmissions saved is NL
s,CEOT (β) = f1(β) + f2(β). When β = 0, the

LB derived here reduces to the LB obtained in [88]. However, β = 0 might not be an appropriate

value that allows us to get a tight LB in the presence of attacks. Thus, we aim at finding an optimal

β so that NL
s,CEOT (β) is maximized and the LB becomes tighter. Upon solving the optimization

problem given in (4.33), we are able to find the optimal β∗. We denote the set of integers by Z and
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cast the optimization problem as:

max
β

f1(β) + f2(β) (4.33a)

s.t. 0 ≤ β ≤ min(N − ⌈T ⌉, ⌈T ⌉) (4.33b)

β ∈ Z, (4.33c)

The constraint in (4.33b) is due to the fact that the value of β must satisfy both (4.34) and (4.35),

which are derived from (4.29h) and (4.31g), respectively:

⌈T ⌉+ β ≤ N (4.34)

N − ⌈T ⌉+ β ≤ N (4.35)

This is due to the fact that the upper index of the summations in (4.29h) and (4.31g) should be less

or equal to N . As the optimization problem in (4.33) is an integer programming (IP) problem, it

is a non-convex optimization problem. However, we have the following theorem which helps us

obtain the optimal solution to the optimization problem in (4.33).

Theorem 4.3. NL
s,CEOT (β) as a function of β satisfies either

1. NL
s,CEOT (β) is a non-increasing function, ∀β ∈ [0,min(N − ⌈T ⌉, ⌈T ⌉)].

or

2. There exists a βl ∈ Z such that NL
s,CEOT (β) is an increasing function ∀β ∈ [0, βl − 1] and a

non-increasing function ∀β ∈ [βl,min(N − ⌈T ⌉, ⌈T ⌉)].

PROOF: Let g1(β) =
∑β

i=0

(⌈T ⌉+β
i

)̃
πi
0,1π̃

⌈T ⌉+β−i
1,1 and g2(β) =

∑⌊T ⌋−⌈T ⌉+β
i=0

(
N−⌈T ⌉+β

i

)
π̃i
1,0π̃

N−⌈T ⌉+β−i
0,0 .

Hence, we have

g1(β + 1) =

β+1∑
i=0

(
⌈T ⌉+ β + 1

i

)
π̃i
0,1π̃

⌈T ⌉+β+1−i
1,1 (4.36)
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g2(β + 1) =

Td+β+1∑
i=0

(
N − ⌈T ⌉+ β + 1

i

)
π̃i
1,0π̃

N−⌈T ⌉+β+1−i
0,0 , (4.37)

where Td = ⌊T ⌋ − ⌈T ⌉ = −1, π̃0,1 = π̃1,0 = αp and π̃0,0 = π̃1,1 = 1 − αp based on Assumption

4.2. Hence, we have g1(β) =
∑β

i=0

(⌈T ⌉+β
i

)
(αp)i(1−αp)⌈T ⌉+β−i due to Assumption 4.2. g1(β+1)

can be given by

g1(β + 1) =

β+1∑
i=0

(
⌈T ⌉+ β + 1

i

)
(αp)i(1− αp)⌈T ⌉+β+1−i (4.38a)

=(1− αp)⌈T ⌉+β+1 +

β+1∑
i=1

[(
⌈T ⌉+ β

i

)
+

(
⌈T ⌉+ β

i− 1

)]
× (αp)i(1− αp)⌈T ⌉+β+1−i (4.38b)

=

β+1∑
i=0

(
⌈T ⌉+ β

i

)
(αp)i(1− αp)⌈T ⌉+β+1−i

+

β+1∑
i=1

(
⌈T ⌉+ β

i− 1

)
(αp)i(1− αp)⌈T ⌉+β+1−i (4.38c)

=

(
⌈T ⌉+ β

β + 1

)
(αp)β+1(1− αp)⌈T ⌉ + (1− αp)g1(β)

+

β∑
i=0

(
⌈T ⌉+ β

i

)
(αp)i(1− αp)⌈T ⌉+β−i(αp) (4.38d)

=g1(β) +

(
⌈T ⌉+ β

β + 1

)
(αp)β+1(1− αp)⌈T ⌉ (4.38e)

based on Pascal’s rule. Following a similar sequence of steps, we can obtain

g2(β + 1) = g2(β)

(
N − ⌈T ⌉+ β

β + Td + 1

)
(αp)β+Td+1(1− αp)N−⌈T ⌉−Td . (4.38f)

Hence, g1(β + 1) and g2(β + 1) can be expressed in terms of g1(β) and g2(β) that are respectively

given as

g1(β + 1) = g1(β) + A(β) (4.39)
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and

g2(β + 1) = g2(β) +B(β), (4.40)

where A(β) =
(⌈T ⌉+β

β+1

)
(αp)β+1(1− αp)⌈T ⌉ and B(β) =

(
N−⌈T ⌉+β
β+Td+1

)
(αp)β+Td+1(1− αp)N−⌈T ⌉−Td .

It is evident that if

[f1(β + 1) + f2(β + 1)]− [f1(β) + f2(β)] < 0, (4.41)

then NL
s,CEOT (β) > NL

s,CEOT (β + 1). By rewriting (4.41) using (4.39) and (4.40), we obtain the

inequality

D(β) > D2(β), (4.42)

where D(β) = π1g1(β) + π0g2(β), D2(β) = π1h1(β) + π0h2(β), π1 = Pr(H1), π0 = Pr(H0),

h1(β) = (N − ⌈T ⌉ − β − 1)A(β) and h2(β) = (⌈T ⌉ − β − 1)B(β).

We proceed to show that if D(β) > D2(β) is true, then D(β + 1) > D2(β + 1) is also true.

Using the expressions in (4.39), (4.40) and (4.42), we rewrite D(β + 1) > D2(β + 1) as

D(β) + π1A(β) + π0B(β) > D2(β)− π1A(β)− π0B(β). (4.43)

By reformulating (4.43), we have

2[π1A(β) + π0B(β)] > D2(β)−D(β). (4.44)

Due to the assumption that D(β) > D2(β), A(β) ≥ 0 and B(β) ≥ 0, the left hand side of (4.44)

is greater than or equal to 0 and the right hand side of (4.44) is smaller than 0. Therefore, (4.44)

is always true if D(β) > D2(β) is true. In other words, if NL
s,CEOT (β) > NL

s,CEOT (β + 1), we

always have NL
s,CEOT (β + 1) > NL

s,CEOT (β + 2).
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Let β = βs be the smallest β for which NL
s,CEOT (β) > NL

s,CEOT (β+1). If βs = 0, NL
s,CEOT (β)

is a decreasing function of β. If βs > 0, NL
s,CEOT (β) is a non-decreasing function of β when

β ∈ [0, βs − 1] and a decreasing function of β when β ∈ [βs,min(N − ⌈T ⌉, ⌈T ⌉)]. Let β = βl be

the largest β for which NL
s,CEOT (β) < NL

s,CEOT (β + 1). The above statement is equivalent to that

made in Theorem 4.3 about the monotonicity of Ns,CEOT (β). This completes our proof.

According to Theorem 4.3, the optimal solution β∗ to the optimization problem in (4.33) is the

smallest β for which the inequality D(β) ≥ D2(β) holds, and the LB of the number of transmis-

sions saved is then given as

NL
s,CEOT = f1(β

∗) + f2(β
∗). (4.45)

Therefore, the tight UB of the average number of transmissions required is NU
t,CEOT = N −

NL
s,CEOT .

4.4.3 Performance of CEOT-based System with Additive Byzantines

Detection Performance

Similar to the case of DF-Byzantine sensors, the detection performance of the CEOT-based system

is not affected by ordering in the presence of additive Byzantine sensors as stated in Lemma 4.2.

We can evaluate the detection performance of the CEOT-based system in the presence of addi-

tive Byzantine attacks by analyzing the detection performance of the corresponding distributed

unordered system. If the system is under mean-shift attack, for the system without ordering, the

probabilities of ui = 1 and ui = 0 given Hh for an honest sensor i are expressed as πH
1,h = P (ui =

1|Hh, i = H) = Q
(

λ−µh

σh

)
and πH

0,h = P (ui = 0|Hh, i = H) = 1−πH
1,h, respectively, for h = 0, 1.

If the sensor is Byzantine i = B, the probabilities of ui = 1 and ui = 0 given Hh are expressed

as πB
1,h = P (ui = 1|Hh, i = B) = Q

(
λ−ηh
νh

)
and πB

0,h = P (ui = 0|Hh, i = B) = 1 − πB
1,h, re-

spectively, for h = 0, 1. Therefore, the probabilities of ui = 1 and ui = 0 given Hh are expressed
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as

π1,h = P (ui = 1|Hh) = απB
1,h + (1− α)πH

1,h,

and π0,h = P (ui = 0|Hh) = απB
0,h + (1− α)πH

0,h, respectively, for h = 0, 1.

The fusion rule of the distributed system without ordering is given as
∑N

i=1 ui

H1

⋛
H0

T , by noting

that we can consider the unordered scheme and taking k = N in (4.20). Based on the fusion rule of

unordered system, the detection performance can be evaluated in terms of the probability of detec-

tion P FC
d,CEOT and the probability of false alarm P FC

f,CEOT given as P FC
d,CEOT =

∑N
i=T

(
N
i

)
πi
1,1π

N−i
0,1

and P FC
f,CEOT =

∑N
i=T

(
N
i

)
πi
1,0π

N−i
0,0 . If the system is under mean-variance-shift attack, we only

need to replace ν2
h with ν2

h,w for h = 0, 1. in above discussions.

Average Number of Transmissions Saved under additive Byzantine Attacks

Let N̄s,CEOT denote the average number of transmissions saved in the CEOT-based scheme given

as

N̄s,CEOT =E(N − k∗)=
N∑
k=1

(N − k)Pr(k∗ = k)=
N−1∑
k=1

Pr(k∗≤k), (4.46)

where k∗ denotes the minimum number of transmissions needed to make a final decision with

desired accuracy. However, the computation of Pr(k∗ ≤ k) is intractable. Hence, we derive the

UB and LB of N̄s,CEOT by considering the best case and the worst case scenarios for the number

of transmissions saved in the network in the presence of Byzantines, respectively. The information

of global statistic of the distributed system without ordering, which is given as Γ =
∑N

i=1 ui, is

utilized to derive both LB and UB. It is easy to conclude that Γ < T means that there exists a k∗

such that
∑k∗

i=1 u[i] < T−(N−k∗) and Γ ≥ T means that there exists a k∗ such that
∑k∗

i=1 u[i] ≥ T

according to Lemma 4.2. In order to find the LB and UB of N̄s,CEOT , we consider the worst and

best cases as follows.

When we consider the worst case, we try to find the maximum k∗ needed to make a final

decision for a given set of local decisions {ui}Ni=1. Therefore, the worst case given Γ < T would
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be that the magnitude of local decisions are ordered in descending order expressed as

|z[1]| ≥ |z[2]| · · · ≥ |z[N ]|, (4.47)

where z[k] ∈ {0, 1}, for ∀k ∈ {1, 2, . . . , N} is the kth largest local decision.3 This is due to

the fact that Γ < T implies that the unordered system (i.e., the system where the FC receives

all local decisions) has more ‘0’ decisions than ‘1’ decisions4, and the detection performance of

the unordered system is the same as the ordered system, as stated in Lemma 4.2. The worst

case scenario would occur if the magnitudes of local decisions are ordered in descending order.

Similarly, the worst case given Γ ≥ T would be that the magnitude of local decisions are ordered

in ascending order expressed as

|z(1)| ≤ |z(2)| · · · ≤ |z(N)|, (4.48)

where z(k) ∈ {0, 1} for ∀k ∈ {1, 2, . . . , N} is the kth smallest local decision.

Similar to the above discussion, for the best case, we try to find the minimum k∗ needed to

make a final decision for a given set of local decisions {ui}Ni=1. The best case given Γ < T would

be that the magnitude of local decisions are ordered in ascending order as shown in (4.48), The

best case given Γ ≥ T would be that the magnitude of local decisions are ordered in descending

order as shown in (4.47). Based on the above analysis, we have the following theorem.

Theorem 4.4. The average number of transmissions saved N̄s,CEOT can be bounded as N̄L
s,CEOT ≤

N̄s,CEOT ≤ N̄U
s,CEOT . Here, the upper bound N̄U

s,CEOT and the lower bound N̄L
s,CEOT are given

in (4.49) and (4.50), respectively, where P (Γ ≥ T |Hh) =
∑N

i=T

(
N
i

)
πi
1,hπ

N−i
0,h , P (Γ < T |Hh) =

3Note that z[k] is not the same as u[k]. The values u[1], u[2], . . . , u[N ] are ordered based on the magnitude of their
LLRs, while z[1], z[2], . . . , z[N ] are ordered based on the magnitude of local decisions {ui}Ni=1.

4More specifically, the number of ‘1’s should be smaller than T .
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N̄U
s,CEOT =

1∑
h=0

N−1∑
k=1

πh [P (k∗0≤k|Γ≥T,Hh)P (Γ≥T |Hh)+P (k∗1 ≤ k|Γ<T,Hh)P (Γ<T |Hh)] ,

(4.49)

N̄L
s,CEOT =

1∑
h=0

N−1∑
k=1

πh [P (k∗1≤k|Γ≥T,Hh)P (Γ≥T |Hh)+P (k∗0 ≤ k|Γ<T,Hh)P (Γ<T |Hh)] ,

(4.50)

1− P (Γ ≥ T |Hh), and

P (k∗
0≤k|Γ≥T,Hh) =

N−T∑
i=0

(
N

i

)
πi
0,hπ

N−i
1,h , (4.51)

P (k∗
1≤k|Γ≥T,Hh) =

min(N−T,k−T )∑
i=0

(
N

i

)
πi
0,hπ

N−i
1,h , (4.52)

when k ≥ T , and

P (k∗
1 ≤ k|Γ < T,Hh) =

T−1∑
i=0

(
N

i

)
πi
1,hπ

N−i
0,h , (4.53)

P (k∗
0 ≤ k|Γ < T,Hh)=

min(T−1,k−(N−T+1))∑
i=0

(
N

i

)
πi
1,hπ

N−i
0,h , (4.54)

when k > N − T . Otherwise, P (k∗
1≤k|Γ<T,Hh), P (k∗

1≤k|Γ≥T,Hh), P (k∗
0≤k|Γ≥T,Hh)

and P (k∗
0≤k|Γ<T,Hh) are equal to 0. Here, k∗

0 and k∗
1 denote the minimum number of trans-

missions needed to make a final decision for descending and ascending ordered local decisions,

respectively.

PROOF: Please see Appendix A.6.



92

4.5 Simulation Results and Comparison of OT-based and

CEOT-based Systems under Byzantine Attacks

OT-based and CEOT-based Systems under Additive Byzantine Attacks

In this section, we present the numerical results to corroborate our theoretical results. We set

the channel noise variance σ2 = 1 and the prior probabilities π1 = π0 = 0.5. The detection

performance in Fig. 4.1 and the actual average number of transmissions saved in Figs. 4.3, 4.5, 4.7,

4.8 are obtained via Monte Carlo method with 104 trials and the average number of transmissions

saved in Figs. 4.2 and 4.4 are obtained via Monte Carlo method with 107 trials. In order to obtain

an accurate evaluation of the average number of transmissions saved in the network as shown in

Figs. 4.2 and 4.4, we need to significantly increase the number of trials as the number of sensors

increases. Note that the other parameters like the perturbation noise variance σ2
w, signal strength s,

attack strength D, total number of sensors N , and the probability of each sensor being Byzantine

α required for the simulations are included in the respective captions of the figures.

Detection performance comparison of OT-based and CEOT-based systems: Fig. 4.1 shows the

effect of additive Byzantine attacks on the detection performance of the OT-based system and the

CEOT-based system. In Fig. 4.1, we compare the probability of error of the CEOT-based system

to the OT-based system and we observe that the CEOT-based system is more robust to additive

Byzantine attacks with the same attack parameters. This is due to the fact that the global statistic

of an OT-based system is a summation of LLRs, and some of these could be falsified to very large

values when D/s is large. In this case, a large deviation is generated from the actual summation

of LLRs. However, the global statistic of the CEOT-based system is the summation of quantized

LLRs. Although some Byzantine nodes may falsify data, it is unlikely to lead to a significant

deviation in the sum of quantized LLR values, even if D/s is large. Hence, D has less negative

impact on the probability of error of the CEOT-based system than the OT-based system.

Effect of additive Byzantine attacks on N̄s/N in the OT-based system: Figs. 4.2 and 4.3 show

the effect of additive Byzantine attacks on the average percentage of savings for the OT-based sys-
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Fig. 4.1: Pe as a function of D/s in the CEOT-based system and the OT-based system when s = 3
and N = 300.

tem. Fig. 4.2 presents the average percentage of saving N̄s/N in an OT-based system as a function

of D/s for different values of α. Initially, N̄s/N decreases when D/s increases. However, when

D/s increases further, the FC starts to make wrong decisions and the number of transmissions

needed to make the final decision starts to decrease and the savings start to increase. We compare

the results obtained via simulation using the Monte Carlo method with our analysis using (4.13),

and observe a good match. In Fig. 4.3, we observe that the attack strength D∗ obtained in (4.9)

Fig. 4.2: Comparison of N̄s/N as a function of D/s for different values of α when s = 4 and
N = 10 in the OT-based system.

for the OT-based system is near the point where the average percentage of savings is minimum.

Compared with the OT-based system when no Byzantines are present, i.e., D=0, the system in

the presence of attacks needs more transmissions to make a final decision. Therefore, the attack
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Fig. 4.3: Benchmarking UB and LB for N̄s/N as a function of D/s for α = 0.5 when s = 4 and
N = 300 in the OT-based system.

strength D∗ from (4.9) not only blinds the FC but also leads to a smaller average percentage of

savings. Fig. 4.3 also shows the UB and LB for the average percentage of savings as a function of

D/s in an OT-based system. We observe that both the LB obtained in (4.19) and the UB obtained

in (4.18) show a similar trend as that of the average percentage of saving, i.e., the UB and LB track

the change in actual average number of transmissions that have been saved. Compared to the UB,

the LB performs better in tracking the changes, which enables us to infer what the optimal attack

strategy for the attacker is, i.e., what is the value of D that the attacker will employ to cause the

greatest damage to the system. As for the UB, it provides more information regarding the maxi-

mum number of average transmissions saved in the network as well as alerts about the existence

of outliers. For example, if the average number of transmissions saved is larger than the maximum

value of UB, we can determine that there are potential outliers and they deviate far from the actual

data, i.e., the attackers use an extremely large value of D.

Figs. 4.4 and 4.5 illustrate the impact of mean-variance-shift attacks on the average percentage

of savings for the OT-based system. Fig. 4.4 shows that the error probability obtained via simula-

tion using the Monte Carlo method and our error probability analysis have a good match. Fig. 4.5

shows the UB and LB we obtained that show a similar trend as that of the average percentage of

saving. As we can observe, Figs. 4.4 (a) and 4.5 (a) demonstrate very similar trends as Figs. 4.2

and 4.3 when the mean of perturbation noise changes. In Figs. 4.4 (b) and 4.5 (b), we can observe
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that the values of the variance of the perturbation noise do not significantly affect the average num-

ber of transmissions saved. This phenomenon may arise from the fact that the change in variance

value only affects the extent to which the noise samples deviate from the mean. Consequently,

samples of perturbation noise might fall below or exceed the mean perturbation noise value. Given

that the FC’s global statistic is the summation of received LLRs, the overall perturbation to this

statistic corresponds to the accumulation of perturbation noise from malicious nodes. The average

perturbation for each malicious node will tend to the mean of the perturbation noise as the pertur-

bation noise samples below the mean value will balance out the samples above the mean value.

Therefore, the change in variance does not have as significant an effect as the change in mean on

the number of transmissions saved in the network.

(a) N̄s/N as a function of D/s for σ2
w = 6. (b) N̄s/N as a function of σ2

w.

Fig. 4.4: N̄s/N when α = 0.5, s = 4, and N = 10 in the OT-based system under mean-variance-
shift attacks.

When we consider the case where the sensor observations follow an exponential distribution

f(y) = 1
λ
e−

y
λ (a non-Gaussian distribution) with λ = 2 under hypothesis H0 and λ = 8 under

hypothesis H1, we can observe a trend in Fig. 4.6 similar to that shown in Fig. 4.2 regarding the

fraction of the number of transmissions saved as a function of D/s.

Effect of additive Byzantine attacks on N̄s/N in the CEOT-based system: Figs. 4.7, and 4.8 show

the effect of additive Byzantine attacks on the average percentage of savings for the CEOT-based

system. Fig. 4.7 shows the UBs obtained in (4.49) and LBs obtained in (4.50) for the average

percentage of saving N̄s,CEOT/N as a function of D/s for different values of α. We observe that
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(a) N̄s/N as a function of D/s. (b) N̄s/N as a function of σ2
w.

Fig. 4.5: Benchmarking UBs and LBs when α = 0.5, s = 4 and N = 300 in the OT-based system
under the mean-variance-shift attacks.

Fig. 4.6: N̄s/N as a function of D/s in the OT-based system for different values α when λ = 2
under hypothesis H0, λ = 8 under hypothesis H1 for exponentially distributed observations and
N = 50.

Byzantine sensors have more negative impact on the final decision making process with an increas-

ing D/s. However, the additive Byzantine attacks have limited negative impact on the number of

transmissions saved in the CEOT-based system compared to the OT-based system. When D/s is

large enough, the first several local decisions received by the FC are most likely from Byzantine

sensors which is the worst case scenario in terms of the performance for the system. With further

increase of D/s, the impact of Byzantines on the number of transmissions saved in the network

does not further increase since the LLRs are quantized, which limits the negative impact of Byzan-

tine sensors on the system. In Fig. 4.8(a), the average percentage of saving, the UB and the LB are

shown for a system with a relatively weak signal s = 3. Furthermore, Fig. 4.8(b) shows the plots
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for a system with a relatively strong signal s = 6. By comparing Fig. 4.8(a) and Fig. 4.8(b), we

observe that the LB gets tighter when we increase the signal strength s. This is reasonable due to

the facts that i) Assumption 4.2 always works for honest sensors when s is sufficiently large; ii) the

first several local decisions received by the FC are most likely from Byzantine sensors when D/s

is sufficiently large. The above two reasons make the error probability of the CEOT-based system

with a sufficiently large D/s approach the LB of the error probability we obtained in Theorem 4.4.

Fig. 4.7: Benchmarking UBs and LBs for N̄s,CEOT/N as a function of D/s with different values
of α when s = 6 and N = 300 in the CEOT-based system.

Fig. 4.8: Benchmarking UBs and LBs for N̄s,CEOT/N as a function of D/s (a) when s = 3 and
N = 300; (b) when s = 6 and N = 300 in the CEOT-based system.
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CEOT-based Systems under DF-Byzantine Attack

We assume that N = 100 and s = 20. Fig. 4.9 shows the probability of error as a function of

p in the CEOT-based system. The system with the threshold closest to the optimal threshold T ∗

(T ∗ is roughly N/2), as compared to other systems, has the lowest error probability, which is in

accordance with the conclusion that we obtained about the optimal threshold T ∗.5 We can also

observe that for the same parameter values, both CEOT-based and unordered systems have the

same probabilities of error. This is in accordance with Lemma 4.2.

Fig. 4.9: Pe as a function of p with different values of T for the CEOT-based system for π1 = 0.3
and π1 = 0.5.

Fig. 4.10 shows that the UB we obtained is a relatively tight UB compared with the UB

obtained in [88] for the average fraction of number of transmissions required as a function of

the attacking probability p in the CEOT-based system. Fig. 4.11 presents the average fraction

of transmissions required Nt,CEOT/N in the CEOT-based system as a function of p for different

values of prior probability and T when α = 0.3. We observe from Fig. 4.11 that when T → T ∗ (T ∗

here is roughly N/2), the system is most likely to have the highest transmissions required in the

network if the prior probabilities of both hypotheses are 0.5. However, when the prior probabilities

change, the value of T that results in the highest transmissions required might also change. It is

clear that a smaller T results in a larger average number of transmissions required to decide H0 and

a smaller average number of transmissions required to decide H1. For a relatively small π1 < 0.5,

5The threshold closest to the optimal threshold T ∗ is 49.5 in Fig. 4.9 when π1 = 0.5 and π1 = 0.3.
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the probability of the FC deciding H0 is higher. Consequently, the system that uses T = 29.5 has

higher number of transmissions required when compared to the system that uses T = 49.5 given

π1 = 0.3. Thus, there is a relationship between the average number of transmissions needed and

the detection performance of the system. With an appropriately designed threshold at the FC, it

is possible to save transmissions while still guaranteeing the quality of the decision. In Fig. 4.12,

we plot Nt,CEOT/N (i.e., the average number of transmissions required) as a function of s to show

that a fairly small value of s is sufficient for the derived result to serve as an UB on the average

number of transmissions required.

Fig. 4.10: Benchmarking upper bounds for the fraction of the number of transmissions required
Nt,CEOT/N as a function of p with different values of α when π1 = 0.5. The actual average
number of transmissions for the system (simulation result in the figure) is obtained via Monte
Carlo method given s = 20.

Fig. 4.11: Nt,CEOT/N as a function of p with different values of T when α = 0.3 and π1 =
0.3, 0.5.
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Fig. 4.12: Nt,CEOT/N as a function of s given p = 0.6, N = 100 and π1 = 0.5. Red dashed
line indicates the UB of average number of transmissions we obtained given p = 0.6. Note that for
s > 1.6, the UB we obtained serves as a valid UB.

4.6 Summary

In this chapter, the effect of Byzantine attacks on the performance of the conventional OT-based

system and the CEOT-based system were investigated. We derived the error probability and the

number of saved transmissions for OT-based systems under different Byzantine attacks. We also

obtained some upper bounds and the lower bounds on the number of transmissions saved for

the OT-based systems under different Byzantine attacks. The simulation results showed that the

Byzantine nodes can both maximize the probability of error and significantly increase the number

of transmissions needed to make the final decision when they adopt the optimal attacking strategy.

A comparison of the robustness of CEOT-based and conventional OT-based systems was made,

shedding light on how to employ OT-based frameworks in an attack-prone environment. Some

possible countermeasures to mitigate the impact of Byzantines on OT-based systems were also

discussed.
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CHAPTER 5

DISTRIBUTED QUANTIZED DETECTION OF

SPARSE SIGNALS UNDER BYZANTINE

ATTACKS

In this chapter, we investigate distributed detection of sparse stochastic signals with quantized

measurements under Byzantine attacks, where sensors may send falsified data to the FC to de-

grade system performance. Here, the Bernoulli-Gaussian (BG) distribution is used to model sparse

stochastic signals. Several detectors with significantly improved detection performance are pro-

posed by incorporating estimates of attack parameters into the detection process.

5.1 Introduction

With the development of compressive sensing (CS) [15, 20, 24, 118] in recent years, the sensors in

sensor networks often send low-dimensional compressed measurements to the FC instead of high-

dimensional sparse data, thereby improving bandwidth efficiency and reducing the communication

overhead. A high-dimensional signal is sparse when only a few entries in the signal are non-zero,

and others are zeros. Under the CS framework, the reconstruction and the detection of sparse
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signals have received considerable attention. Here, we are interested in detecting compressed

sparse signals.

5.1.1 Related Work

The problem of compressed sparse signal detection in sensor networks has been studied in the

literature [21, 32, 55, 68, 100–102, 105, 116]. In these studies, the recovery of sparse signals was

not necessarily required. In [21, 105, 116], partly or completely reconstructed sparse signals are

required to derive the test statistics for sparse signal detection, while in [32, 55, 68, 100, 101], the

test statistics are directly derived from compressed measurements to perform sparse signal detec-

tion. In [21] and [105], the authors proposed orthogonal matching pursuit algorithms to detect

the presence of a sparse signal based on single measurement vectors and multiple measurement

vectors, respectively, by estimating only a fraction of the support set of a sparse signal. In [32], the

Bernoulli-Gaussian (BG) distribution was utilized to model the random sparsity of sparse signals,

and the generalized likelihood ratio test (GLRT) was proposed to address the unknown degree

of sparsity. Note that under the BG model (which is widely used to model the sparsity of sig-

nals [32, 52, 53, 86, 115]), the sparse signal has zero sparsity degree if the signal is absent, but a

nonzero sparsity degree that approaches zero if the signal is present. Due to this property, parame-

ter testing based on the sparsity degree can be employed for sparse signal detection by formulating

the problem as a one-sided and close hypothesis testing problem. In [101], instead of GLRT, a

method based on the locally most powerful test (LMPT), which is a popular tool for the prob-

lems of one-sided and close hypothesis testing, was proposed for detecting sparse signals in sensor

networks. The test statistic of the LMPT detector was directly derived from the compressed mea-

surements without any signal recovery. The detectors proposed in [21, 32, 101, 105] assume that

the raw signals are transmitted within the network. However, due to limited bandwidth constraints

in practical scenarios, it is necessary to consider the case where only quantized data is transmitted

over sensor networks. To satisfy this requirement, many studies have been conducted on the design

of sparse signal detectors based on quantized data [27, 55, 56, 68, 100, 102, 116].
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A two-stage detector based on the GLRT, where sparse signal recovery is integrated into the

detection framework, was proposed in [116] for sparse signal detection from 1-bit CS-based mea-

surements. However, due to substantial information loss caused by 1-bit quantization, there is a no-

ticeable performance gap compared to the clairvoyant detector based on analog measurements [27].

To address this issue, the authors in [102] proposed a quantized LMPT detector that enables the

system to achieve detection performance comparable to a clairvoyant LMPT detector by selecting

a reasonable number of reference sensors. The work was extended in [100] to consider general-

ized Gaussian noise. Additionally, the authors of [55] proposed an improved-1-bit LMPT detector

that optimizes the quantization process and reduces the required number of sensor nodes to com-

pensate for the performance loss caused by 1-bit quantization. The authors of [68] proposed a

computationally-efficient generalized LMPT detector for the detection of distributed sparse sig-

nals when non-ideal reporting channels between the sensors and the FC are considered. In [56],

the authors proposed an energy-efficient censoring-based LMPT detector in clustered sensor net-

works to address the excessively high energy consumption caused by data transmission in existing

centralized LMPT detectors. In this scheme, the cluster head sensors and the ordinary sensors only

transmit data that is sufficiently informative to the FC.

5.1.2 Major Contributions

Unlike previous proposed GLRT-based detectors [32,116] and LMPT-based detectors [55,68,100,

101] that focused on attack-free environments, we investigate the impact of Byzantine attacks

[25,60,64,66,82,96,110] on the detection performance, and enhance the resilience of the detectors.

More specifically, we consider the GLRT-based and LMPT-based detectors with unknown random

sparse signals operating under Byzantine attacks. The random unknown sparse signals are still

characterized by the BG distribution as in [32, 53, 55, 68, 86, 100, 101, 116]. When such a system

is under Byzantine attacks, two factors need to be taken into account: the unknown sparsity of

the signal and the presence of unidentified attacks. We assume that the Byzantines do not have

perfect knowledge about the actual state of the phenomenon of interest and attack based on their
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local decisions, and we also assume that the system does not have perfect knowledge about the

attack strategy. Under such assumptions, we evaluate the performance of the GLRT-based and the

LMPT-based detectors. The simulation results show that the detectors are vulnerable to Byzantine

attacks because their performance degrades.

To improve the resilience of the system in the presence of Byzantine attacks, it is intuitive that

we need more information about the attack parameters. In this work, we develop a framework

for estimating unknown parameters that are inspired by the works in [83, 84], where supervised

machine learning was utilized as quality of transmission estimator for optical transport networks.

In [84] and [83], a fraction of the total data is used to obtain a sufficiently accurate estimate of

the unknown underlying parameters. Correspondingly, a subset of the sensors in this work is

randomly selected, with their decisions serving as training samples for estimating the unknown

attack parameters in the network. We introduce the notion of reference sensors to represent those

sensors whose local decisions serve as training samples in our problem and propose the generalized

likelihood ratio test with reference sensors (GLRTRS) and the locally most powerful test with

reference sensors (LMPTRS) with adaptive thresholds, given that the sparsity degree and the attack

parameter are unknown. The proposed detectors allow us to obtain excellent system performance.

When the fraction of Byzantines in the networks is assumed to be known, we propose enhanced

LMPTRS (E-LMPTRS) and enhanced GLRTRS (E-GLRTRS) detectors which can further improve

the detection performance of the system. The main contributions of this work are summarized as

follows.

• We perform a comprehensive performance analysis of existing GLRT-based and LMPT-

based detectors in the presence of Byzantine attacks. Our analysis and simulation results

reveal the degree to which both detectors are vulnerable to attacks.

• We propose a novel approach to design resilient GLRT and LMPT based detectors by con-

sidering the potential existence of adversarial Byzantine attacks. Specifically, we integrate

the estimation of attack parameters into the detection process.
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• Given that the sparsity degree and the attack parameters (i.e., the fraction of Byzantine nodes

and the probability that Byzantines flip local decisions) are unknown, we propose GLRTRS

and LMPTRS detectors with adaptive thresholds. Our simulation results indicate that both

GLRTRS and LMPTRS detectors are resilient to Byzantine attacks. They can achieve detec-

tion performance close to that of the benchmark likelihood ratios test (LRT) detector, which

has perfect knowledge of the sparsity degree and attack parameters.

• When the fraction of Byzantines in the networks is assumed to be known, we propose E-

GLRTRS and E-LMPTRS detectors, which further improve the detection performance of

the system by filtering out potential malicious sensors. Our simulation results show that the

proposed enhanced detectors outperform LMPTRS and GLRTRS detectors.

5.2 System model

Consider the binary hypothesis testing problem of detecting sparse signals where hypotheses

H1 and H0 indicate the presence and absence of the sparse signal, respectively. We consider

a distributed network consisting of one FC and N sensors that observe the signals that share

the joint sparsity pattern1 as shown in Fig. 5.1. Let yi be the received observation at sensor

i ∈ {1, 2, . . . , N}. We assume that all the observations are independent and identically distributed

(i.i.d.) conditioned on the hypotheses. For sensor i, the observation yi is modeled as

yi =


ni under H0

hi
Txi + ni under H1,

(5.1)

where xi ∈ ℜM×1 is the sparse signal received by sensor i, hi ∈ ℜM×1 is the channel gain of

sensor i, which is modeled as a random vector to account for the variability and uncertainty in the

1Joint sparsity pattern indicates that non-zero elements of all the signals occur at the same locations, and the
sparsity pattern is the same across all signals. This assumption of joint sparsity pattern can be readily observed in the
field of compressed sensing, e.g., [17, 40, 73, 77].
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Fig. 5.1: System model of distributed sensor network. The red sensors are malicious.

communication channel, and ni is Gaussian noise with zero mean and variance σ2
n. Based on the

received compressed measurements {yi}Ni=1 from all the sensors, the FC makes a global decision

about the absence or presence of the sparse signals.

We adopt the BG distribution introduced in [32,53,55,68,86,100,101,116] to model the sparse

signals where the joint sparsity pattern is shared among all the signals observed by the sensors.

The locations of nonzero coefficients in xi are assumed to be the same across all the sensors. Let

s ∈ ℜM×1 describe the joint sparsity pattern of {xi}Ni=1, where


sm = 1, for {xi,m ̸= 0, i = 1, 2, . . . , N}

sm = 0, for {xi,m = 0, i = 1, 2, . . . , N}
(5.2)

for m = 1, 2, . . . ,M . {sm}Mm=1 are assumed to be i.i.d. Bernoulli random variables with a common

parameter p (p → 0+), where P (sm = 1) = p and P (sm = 0) = 1−p. In other words, p represents

the sparsity degree of the sparse signal xi for ∀i ∈ {1, 2, . . . , N}. Moreover, each element of xi is

assumed to follow an i.i.d. Gaussian distribution N (0, σ2
x) [59]. Therefore, the BG distribution is

imposed on xi,m as

xi,m ∼ pN (0, σ2
x) + (1− p)δ(xi,m), (5.3)
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where δ(·) is the Dirac delta function. Due to the limited bandwidth, the sensors send their quan-

tized observations instead of raw observations {yi}Ni=1 to the FC. We assume that a fraction α of

the total N sensors, namely, αN sensors, are compromised by the Byzantines. We also assume

that the compromised sensors are uniformly distributed in the network. In other words, a sensor

i can be honest (H) with probability 1 − α or Byzantine (B) with probability α. The Byzantines

may intentionally send falsified local decisions to the FC with an attack probability, i.e., the prob-

ability that Byzantines flip their decision. The fraction of Byzantines α and the probability that

Byzantines flip their decision, PA, are considered attack parameters. Note that the fusion rule is

assumed not to be altered by Byzantine nodes.2 Let zi denote the actual quantized observation at

sensor i ∈ {1, 2, . . . , N}. The q-bit quantizer at the ith sensor is defined as

zi =



v1 τi,0 ≤ yi ≤ τi,1

v2 τi,1 ≤ yi ≤ τi,2

...
...

v2q τi,2q−1 ≤ yi ≤ τi,2q ,

(5.4)

where vk is the binary code word with vk ∈ {0, 1}q that represents the quantized observation

and {τi,l, l = 0, 1, 2, . . . , 2q} are the quantization thresholds. For example, given q = 2, we have

v1 = 00, v2 = 01, v3 = 10 and v4 = 11. Let ui be the binary vector sent to the FC, which

represents one of the possible quantizer observations {vk : k = 1, ...2q}. ui can also be interpreted

as a (soft) decision. If sensor i is honest, we have P (ui = zi|i = H) = 1, otherwise we have

P (ui ̸= zi|i = B) = PA. Here, the probability density function (PDF) of the local decision ui if i

is honest is given as

P (ui|i = H,Hh) =P (zi|i = H,Hh) =
2q∏
j=1

P (zi = vj|i = H,Hh)
I(zi,vi) (5.5)

2This assumption aligns with some related works such as [33, 66, 109, 112].
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Fig. 5.2: Attack model for a Byzantine node i. With a probability of PA/(2
q − 1), each Byzantine

node decides to send a soft decision that differs from the one it believes to be correct. With
probability 1− PA, the Byzantine nodes send the soft decision that they believe to be correct.

for h = 0, 1, where

P (zi=vj|i=H,Hh)=P (τi,j−1 ≤ yi ≤ τi,j|i = H,Hh) (5.6)

based on (5.4) and I(zi,vi) is an indicator function that returns 1 if zi is element-wise equal equal

to vi and returns 0 otherwise. In (5.5), we need to know the PDF of yi, for i = 1, 2, . . . , N .

According to [106], both yi|H0 and yi|H1 follow Gaussian distributions as shown in (5.7), where

β2
i,0 = σ2

n, β2
i,1 = σ2

n+ pσ2
x||hi||22 and b

a∼ f(b) means variable b asymptotically follows PDF f(b).

yi|H0 ∼ N (0, β2
i,0) (5.7a)

yi|H1
a∼ N (0, β2

i,1), (5.7b)

The proof of (5.7b) is provided in [ [106], Appendix B], where the Lyapounov Central Limit

Theorem (CLT) is utilized to derive the results. Let Ai,j,h represent the probability that yi falls

within the range of [τi,j−1, τi,j] when sensor i is honest under hypothesis Hh, i.e., P (τi,j−1 ≤ yi ≤

τi,j|i = H,Hh). Then Ai,j,h is given by

Ai,j,h = Q(
τi,j−1

βi,h

)−Q(
τi,j
βi,h

) (5.8)

for h = 0, 1, where Q(·) denotes the tail distribution function of the standard normal distribution.

If sensor i is Byzantine, ui does not have to be equal to zi. The attack model for Byzantine nodes is

illustrated in Fig. 5.2. According to the chain rule, the PDF of local decision ui is given as (5.11),
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where

P (ui = vj|ui = zi, zi = vk, i = B,Hh) =


1 j = k

0 j ̸= k,

(5.9)

P (ui=vj|ui ̸=zi, zi=vk, i=B,Hh)=


0 j=k

1
2q−1

j ̸=k,

(5.10)

P (ui|i = B,Hh) =
2q∏
j=1

P (ui = vj|i = B,Hh)
I(ui,vj)

=
2q∏
j=1

[
2q∑
k=1

P (zi = vk|i = B,Hh)P (ui = zi|zi = vk, i = B,Hh)

× P (ui = vj|ui = zi, zi = vk, i = B,Hh)

+ P (zi = vk|i = B,Hh)P (ui ̸= zi|zi = vk, i = B,Hh)

× P (ui = vj|ui ̸= zi, zi = vk, i = B,Hh)]
I(ui,vj) (5.11)

P (ui ̸= zi|zi = vk, i = B,Hh) = PA, P (ui = zi|zi = vk, i = B,Hh) = 1 − PA and

P (zi = vk|i = B,Hh) = Q(
τi,k−1

βi,h
) − Q(

τi,k
βi,h

) for h = 0, 1. Note that (5.9) and (5.10) are

equivalent to I(i, k) and 1−I(i,k)
2q−1

, respectively. Hence, (5.11) can be rewritten as

P (ui|i = B,Hh)

=
2q∏
j=1

{
2q∑
k=1

Ai,k,h

[
(1− PA)I(j, k) +

PA(1− I(i, k))

2q − 1

]}I(ui,vj)

=
2q∏
j=1

{
2q∑
k=1

Ai,k,h

[
(1− PA − PA

2q − 1
)I(j, k) +

PA

2q − 1

]}I(ui,vj)

=

2q∏
j=1

Ai,j,h(1− PA) +
2q∑

k=1,k ̸=j

Ai,k,h
PA

2q − 1


I(ui,vj)
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=

2q∏
j=1

{
Ai,j,h(1− PA) + (1−Ai,j,h)

PA

2q − 1

}I(ui,vj)

=
2q∏
j=1

P (ui = vj|i = B,Hh)
I(ui,vj). (5.12)

Due to the statistical independence of the local decisions {u1, u2, . . . , uN}, we have

P (U|Hh)=
N∏
i=1

2q∏
j=1

[∑
X=B,H

P (ui=vj|i=X,Hh)P (i=X)

]I(ui,vj)

(5.13)

for h = 0, 1.

5.3 GLRT and Quantized LMPT Detectors

In this section, we start with a brief review of the GLRT and the quantized LMPT detectors where

all the sensors are assumed to be honest so that they send uncorrupted decisions to the FC, i.e.,

ui = zi. Then, the performance of the GLRT and the quantized LMPT detectors under Byzantine

attacks is evaluated. The sparse signals here are characterized by the BG model. Under the BG

model, the problem of distributed detection of sparse stochastic signals can be formulated as a

problem of one-sided and close hypothesis testing which is given as


H0 : p = 0

H1 : p → 0+.

(5.14)
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5.3.1 Fusion Rule for GLRT and Quantized LMPT Detectors with Hon-

est Sensors

GLRT Detector

The fusion rule of the GLRT detector is given by

maxp P (U|H1; p)

P (U|H0; p = 0)

H1

≷
H0

λ′, (5.15)

We can obtain the estimated sparsity degree p̂ via maximum-likelihood estimation (MLE) which

is given as p̂ = argmaxp P (U|H1; p). By replacing p by p̂ in (5.15) and taking the logarithm of

both sides of (5.15), the fusion rule can be expressed as

ΓGLRT =
N∑
i=1

2q∑
j=1

I(zi = vj)Gi,j

H1

≷
H0

λ1, (5.16)

where Gi,j = Âi,j,1 − Âi,j,0, Âi,j,1 = Q(
τi,j−1√
σ2
n+p̂σ2

x

)−Q(
τi,j√
σ2
n+p̂σ2

x

) and Âi,j,0 = Ai,j,0.

Quantized LMPT Detector

Since the sparsity degree p is positive and close to zero under H1, and p = 0 under H0, the

problem of distributed detection of sparse stochastic signals can be performed via locally most

powerful tests as shown in [100]. Firstly, the logarithm form of the LRT, which is given by

lnP (U|H1; p)− lnP (U|H0)
H1

≷
H0

ln(p0/p1), (5.17)

is considered for decision-making at the FC, where P (U|Hh) =
∏N

i=1 P (ui|Hh, i = H) and

P (Hh) = ph for h = 0, 1. Due to the fact that the sparsity degree p is close to zero, the first-order

Taylor’s series expansion of lnP (U|H1; p) around zero is given as

lnP (U|H1; p)= lnP (U|H1; p=0)+p

(
∂lnP (U|H1; p)

∂p

)
p=0

. (5.18)
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By substituting (5.18) in (5.17), the test statistic of the quantized LMPT detector is given by

(
∂lnP (U|H1; p)

∂p

)
p=0

H1

≷
H0

ln(p0/p1)

p
= λ2, (5.19)

where

∂lnP (U|H1; p)

∂p
=

N∑
i=1

∂lnP (ui|H1, i = H; p)

∂p

=
N∑
i=1

2q∑
j=1

wi,jI(ui = vj) (5.20)

and wi,j =
σ2
x||hi||22
2β3

i,1

[
τi,j−1Φ(

τi,j−1

βi,1
)− τi,jΦ(

τi,j
βi,1

)
]
A−1

i,j,1. Here, Φ(·) denotes the CDF of the standard

normal distribution. Hence, the decision rule is given as

ΓLMPT =
N∑
i=1

2q∑
j=1

I(ui = vj)w̃i,j

H1

≷
H0

λ2, (5.21)

where w̃i,j = (wi,j)p=0. Next, we evaluate the detection performance of the GLRT and the quan-
tized LMPT detectors in the presence of Byzantines.

5.3.2 Performance Analysis of the GLRT and the Quantized LMPT De-

tectors in the Presence of Byzantines

Let L =
∑N

i=1 Li denote the global statistic for the fusion rule given in (5.16) or (5.21), where Li =∑2q

j=1 I(ui = vj)di,j and di,j ∈ {w̃i,j, gi,j}. According to the Lyapunov CLT, L approximately

follows a Gaussian distribution with mean E(
∑N

i=1 Li) and variance V ar(
∑N

i=1 Li) when N is

sufficiently large. Under both hypotheses, E(L) and V ar(L) are given as

E(L|Hh) =
N∑
i=1

E(Li|Hh) =
N∑
i=1

E

(
2q∑
j=1

I(ui = vj)di,j

)

=
N∑
i=1

2q∑
j=1

P (ui = vj|Hh)di,j
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=
N∑
i=1

2q∑
j=1

[P (ui = vj|Hh, i = H)(1− α) + P (ui = vj|Hh, i = B)α]di,j (5.22)

and

V ar(L|Hh)=
N∑
i=1

V ar(Li|Hh)=
N∑
i=1

[
E
(
L2
i |Hh

)
−E(Li|Hh)

2
]

=
N∑
i=1

E

( 2q∑
j=1

I(ui = vj)di,j

)2
− E(L|Hh)

2

=
N∑
i=1

2q∑
j=1

P (ui = vj|Hh)d
2
i,j − E(L|Hh)

2

=
N∑
i=1

2q∑
j=1

[P (ui=vj|Hh, i=H)(1−α)+P (ui=vj|Hh,i=B)α]d2i,j−E(L|Hh)
2,

(5.23)

respectively. Using the expression in (5.22) and (5.23), the probabilities of detection and false

alarm can be calculated as

Pd = P (L > λ|H1) = Q

(
λ− E(L|H1)√
V ar(L|H1)

)
(5.24)

and

Pf = P (L > λ|H0) = Q

(
λ− E(L|H0)√
V ar(L|H0)

)
, (5.25)

respectively, where λ ∈ {λ1, λ2}.

Next, we investigate the optimal attack strategy that can be adopted by Byzantines. From

the attackers’ perspective, the optimal strategy is to render the system blind, aiming to achieve

a probability of detection equal to 1/2. To determine the optimal attack strategy, we utilize the

deflection coefficient, which provides a simple and yet effective measure of the global probability

of detection. The deflection coefficient is defined as Df = (E(L|H1)−E(L|H0))2

V ar(L|H1)
. Thus, to blind the
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FC, Byzantines need to strategically design the attack parameters so that Df = 0, i.e., E(L|H1) =

E(L|H0). By utilizing (5.22), we can obtain

αPA=

∑N
i=1

∑2q

j=1(Ai,j,1−Ai,j,0)di,j∑N
i=1

∑2q

j=1

[
1

2q−1
+(1− 1

2q−1
)(Ai,j,1−Ai,j,0)

]
di,j

. (5.26)

When αPA equals the right-hand side of (5.26), the attackers are able to blind the FC. From the

simulation results presented later in this chapter, both the GLRT and the quantized LMPT detectors

are very vulnerable to Byzantine attacks, even if the attack parameter PA is very small. A possible

explanation is that, since detectors make their decisions based on observations with the same mean

and slightly different variances under the two hypotheses, it is easy for them to make incorrect

decisions in the presence of Byzantines.

5.4 Resilient Detector under Byzantine Attack

In order to improve the resilience of the detector, we attempt to elicit some additional information

regarding the attack parameters from the local decisions of some sensors and incorporate it into the

design of the fusion rule. In general, a detector’s performance improves as additional information

is obtained, e.g., sparsity degree p, the fraction of Byzantines α, and attack probability PA. Intu-

itively, a GLRT detector can be designed, which takes both the unknown sparsity degree and the

unknown attack parameters into consideration, as shown in (5.27).

maxp,PA,α P (U|H1; p)

maxPA,α P (U|H0; p = 0)

H1

≷
H0

λ′′. (5.27)

If we assume that the sparse signals are weak and the number of sensors is large, the MLE attains its

asymptotic PDF, and an appropriate threshold λ′′ can be found based on the asymptotic detection

performance of the GLRT detectors (see Sec. 6.5 in [51]). However, sparse signals need not be

weak. In that case, it is not tractable to obtain an appropriate threshold value λ′′. Moreover, the

presence of nuisance parameters PA and α results in a degradation of the detection performance of
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GLRT detectors.

To overcome these problems, as alluded to earlier, we randomly select a fraction of the sensors

as reference sensors from the set of all sensors and estimate unknown parameters (i.e., α, PA and p)

in two steps. In the first step, nuisance attack parameters are estimated based on the local decisions

coming from the reference sensors. In the second step, the estimated attack parameters are utilized

to estimate the unknown sparsity degree p based on the local decisions from the remaining sensors.

The proposed GLRTRS detector is based on the above parameter estimates. As the LMPT-based

detector does not require the knowledge of the sparsity degree p, the only estimation occurs in the

first step, which is the estimation of the nuisance attack parameters. Later in this section, we will

provide details about the proposed GLRTRS and LMPTRS detectors.

Since we carry out the entire estimation process in two steps, we would like to minimize the

performance loss caused by partitioning the estimation process. Let us take the GLRT detector

presented in (5.27) as an example. Suppose we want to partition the entire estimation process into

two steps, as described above. In that case, we want to ensure that the performance degradation

caused by the unknown sparsity degree p is negligible while estimating the attack parameters. In

other words, the two pairs of estimated attack parameters we obtain, which are {αH1 , PA,H1} =

argmaxα,PA
P (U|H1, p, α, PA) and {αH0 , PA,H0} = argmaxα,PA

P (U|H0, p = 0, α, PA), should

be very close to each other. To complete this task, we introduce reference sensors to assist us. We

randomly select a set of reference sensors from the set of all the sensors to estimate the unknown

nuisance attack parameters PA and α.3 At the reference sensors, we employ different predefined

thresholds so that the decisions of the reference sensors satisfy Assumption 5.1 below.

Assumption 5.1. The probability Pr(zi = v2q |Hh) (or Pr(zi = v1|Hh)) is approximately equal

to 1 for h = 0, 1.

Note that the condition in Assumption 5.1 can be attained when reference sensors send v2q (or

v21) with a probability that is close to 1, regardless of the underlying true hypothesis Hh. To satisfy

3Since we have assumed that α fraction of Byzantine nodes are uniformly distributed in the network, there are α
fraction of Byzantine nodes within both the set of reference sensors and remaining sensors.
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Assumption 5.1, one of the simplest methods is to either set τ̃j,2q−1 ≪ τi,1 or τi,2q ≪ τ̃j,1. This

is because the limit limτ̃j,2q−1→−∞ Pr(zi = v2q |Hh) = 1 (or limτ̃j,1→+∞ Pr(zi = v1|Hh) = 1)

always holds.4 It allows us to ensure that the performance degradation caused by the unknown

sparsity degree p is negligible while the attack parameters are being estimated.

In the following subsections, we consider two cases: (i) The sparsity degree p and the attack

parameters {α, PA} are all unknown; (ii) α is known, but sparsity degree p and attack probability

PA are unknown.

5.4.1 Networks with Unknown p, α and PA

Two detectors are proposed in this subsection: the GLRTRS detector that requires the estimation

of unknown parameter p, and the LMPTRS detector that does not require the estimation of p.

GLRTRS Detector

According to (5.13), we are able to obtain

P (U|Hh)=
N∏
i=1

2q∏
j=1

[
Ai,j,h+x

(
1

2q−1
−Ai,j,h−

Ai,j,h

2q−1

)]I(ui,vj)

(5.28)

where x = αPA. For convenience, instead of considering the two attack parameters α and PA

separately, we consider a single attack parameter x. The problem of distributed detection of a

sparse stochastic signal can be formulated as


H0 : p = 0, 0 ≤ x ≤ 1

H1 : p → 0+, 0 ≤ x ≤ 1

. (5.29)

4Based upon (5.7), the observation yi for i ∈ {1, 2, . . . , N} has zero mean and different variances that are related
to sparsity degree p given different hypotheses. Since a sparse signal is considered for which the sparsity degree
p tends to 0, it is possible to design reasonable quantizer thresholds for reference nodes. A reasonable quantizer
threshold refers to a quantizer threshold that is not excessively large or small. From experiments, it has been shown
that τi,1− τ̃j,2q−1 = 6 (or τ̃j,1− τi,2q = 6) is sufficient to satisfy Assumption 5.1 for the reference sensors. Therefore,
if Assumption 5.1 is satisfied, it is highly likely that the reference sensors will continue to send the same decision
regardless of the true underlying hypothesis.
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The fusion rule of the GLRTRS detector is given by

maxp
∏N

i=Nref+1 P (ui|H1, p, x̂)∏N
i=Nref+1 P (ui|H0, p = 0, x̂)

H1

≷
H0

λ, (5.30)

where Nref is the number of reference sensors and they are labelled as 1, 2, 3 . . . , Nref . The esti-

mate of the unknown attack parameter x, i.e., x̂ is made via MLE based on the reference sensors

data. Here, the estimated attack parameter x is given as

xHh
= argmax

x
P (Uref |Hh, p, x) (5.31)

for h = 0, 1. P (Uref |Hh, p, x) in (5.31) is the joint pmf of local decisions coming from the

reference sensors and it is given as

P (Uref |Hh, p, x)=

Nref∏
i=1

2q∏
j=1

[ ∑
X=B,H

P (ui=vj|i=X,Hh)P (i=X)

]I(ui,vj)

=

Nref∏
i=1

2q∏
j=1

[
Ci,j,h+x

(
1

2q−1
−Ci,j,h−

1

2q−1
Ci,j,h

)]I(ui=vj)

(5.32)

for h = 0, 1, where Ci,j,h = Q(
τ̃i,j−1

βi,h
)−Q(

τ̃i,j
βi,h

).

Note that if Assumption 5.1 holds and is employed at any q-bit quantizer of reference sensors,

i.e., Pr(zi = v2q |H1) ≈ Pr(zi = v2q |H0) ≈ 1 for any reference sensor i, the absolute value of

τ̃j,2q−1 will be sufficiently large, and thus, the difference between the probabilities Pr(zi = v2q |H1)

and Pr(zi = v2q |H0) will be really small. Let Ei = Pr(zi = v2q |H1) − Pr(zi = v2q |H0) denote

the difference between the probabilities of local decisions under H1 and H0 for any reference

sensor i. According to Eq. (5.7), we have Ei = Q(
τ̃j,2q−1

βi,1
) − Q(

τ̃j,2q−1

βi,0
). The values of Ei as a

function of τ̃j,2q−1 are shown in Fig. 5.3. We can observe that for a sufficiently large (or small)

value of τ̃j,2q−1, for example, τ̃j,2q−1 = −6, E becomes significantly small, with E < 10−6.
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Fig. 5.3: E versus τ̃j,2q−1 given p = 0.05, σ2
x = 5, σ2

n = 5, q = 1 and ||hi||2 = 1 for all i.

Based on the above discussion, we can easily derive

P (ui|Hh, p, x) ≈ (1− x)I(ui=v2q )

2q−1∏
j=1

(
x

2q − 1
)I(ui=vj) (5.33)

for any reference sensor i. So the difference between the estimated x under different hypotheses

will be significantly small and can be assumed negligible, i.e., xH0 ≈ xH1 . This result is employed

in the following theorem stating that the estimator considered in (5.31) is an efficient MLE when

Assumption 5.1 is satisfied.

Theorem 5.1. The MLE of the unknown attack parameter x based on the data from the reference

sensors is unbiased, and it attains the Cramér–Rao lower bound (CRLB) of the problem, which

equals (1−x)x
Nref

.

PROOF: Please see Appendix A.8.

By replacing x̂ by xH1 in P (ui|H1, p, xH1) and x̂ by xH0 in P (ui|H1, p = 0, xH0) in (5.30), the

fusion rule can be reformulated as

maxp
∏N

i=Nref+1 P (ui|H1, p, xH1)∏N
i=Nref+1 P (ui|H0, p = 0, xH0)

H1

≷
H0

κ, (5.34)

where P (ui|Hh, p, xHh
) =

∏2q

j=1 P (ui = vj|Hh, p, xHh
). Since xH0 is approximately the same as
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xH1 , i.e., xH0 ≈ xH1 , choosing xH0 or xH1 as the estimated x under both hypotheses, or choosing

the average of xH0 and xH1 as the estimated x under both hypotheses are all acceptable options.

Here, we opt to replace both xH1 and xH0 in (5.34) with their averaged estimate xH =
xH1

+xH0

2
.

The fusion rule then can be simplified as follows:

∏N
i=Nref+1 P (ui|H1, p, xH)∏N

i=Nref+1 P (ui|H0, p = 0, xH)

H1

≷
H0

κ, (5.35)

where κ is the threshold to be set in order to ensure the desired probability of false alarm PFA.

Next, we calculate the estimated sparsity degree p̂, which is given as

p̂ = argmax
p

N∏
i=Nref+1

P (ui|H1, p, xH). (5.36)

Upon taking the logarithm of both sides of (5.35), the simplified fusion rule is given as

ΓGLRTRS =
N∑

i=Nref+1

2q∑
j=1

I(ui = vj)Fi,j

H1

≷
H0

κ′, (5.37)

where κ′ = log(κ), Fi,j = fi,j,1 − fi,j,0, fi,j,h = Âi,j,h + xH

(
1

2q−1
− Âi,j,h − 1

2q−1
Âi,j,h

)
, Âi,j,1 =

Q(
τi,j−1√
σ2
n+p̂σ2

x

) − Q(
τi,j√
σ2
n+p̂σ2

x

) and Âi,j,0 = Ai,j,0. Assume that N − NNef is sufficiently large, the

global statistic ΓGLRTRS then follows a Gaussian distribution with mean

E(ΓGLRTRS|Hh)=
N∑

i=Nref+1

2q∑
j=1

Fi,jP (ui = vj|Hh, xH , p) (5.38)

and variance

V ar(ΓGLRTRS |Hh) =
N∑

i=Nref+1

2q∑
j=1

F 2
i,jP (ui = vj|Hh, xH , p)

− E2(ΓGLRTRS |Hh) (5.39)

for h = 0, 1. With (5.38) and (5.39), the probabilities of detection and false alarm are respectively
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given as

Pd =Q

(
κ′ − E(ΓGLRTRS|H1)√

V ar(ΓGLRTRS|H1)

)
, (5.40)

Pf =Q

(
κ′ − E(ΓGLRTRS|H0)√

V ar(ΓGLRTRS|H0)

)
. (5.41)

For a given false alarm PFA, we can obtain the suboptimal adaptive threshold used by the FC as

shown in (5.42).5

κ′=Q−1(PFA)
√

V ar(ΓGLRTRS|H0)+E(ΓGLRTRS|H0) (5.42)

LMPTRS Detector

Similarly, after we obtain the estimated attack parameter xH , the test statistic of the proposed

LMPTRS detector can be expressed as

(
∂lnP (U|H1, p, xH)

∂p

)
p=0

H1

≷
H0

ln(p0/p1)

p
, (5.43)

where

∂lnP (U|H1, p, xH)

∂p
=

N∑
i=1

∂lnP (ui|H1, p, xH)

∂p

=
N∑
i=1

2q∑
j=1

σ2
x||hi||22I(ui=vj)

2(pσ2
x||hi||22+σ2

n)
3
2

[
τi,j−1Φ(

τi,j−1√
pσ2

x||hi||22 + σ2
n

)

−τi,jΦ(
τi,j√

pσ2
x||hi||22+σ2

n

)

]
1− xH − xHAi,j,1

Ai,j,1+xH(1−xH−xHAi,j,1)

=
N∑
i=1

2q∑
j=1

I(ui = vj)gi,j. (5.44)

5Since we obtain the adaptive threshold based on the estimated attack parameter, it is a suboptimal threshold that
approximately satisfies a desired false alarm.



121

The fusion rule can be reformulated as

ΓLMPTRS =
N∑
i=1

2q∑
j=1

I(ui = vj)g̃i,j
H1

≷
H0

γ′, (5.45)

where γ′ = ln(p0/p1)
p

and g̃i,j = (gi,j)p=0. Like the one employed earlier, we can derive the threshold

γ′ in (5.45) for a given false alarm PFA. We can obtain that

γ′ = Q−1 (PFA)
√

V ar(ΓLMPTRS|H0) + E(ΓLMPTRS|H0), (5.46)

where

E(ΓLMPTRS|H0) =
N∑

i=Nref+1

2q∑
j=1

w̃i,jP (ui = vj|H0, xH , p = 0) (5.47)

and

V ar(ΓLMPTRS|H0) =
N∑

i=Nref+1

2q∑
j=1

w̃2
i,jP (ui = vj|H0, xH , p = 0)− E2(ΓLMPTRS|H0). (5.48)

5.4.2 Networks with Known α, Unknown p and Unknown PA

When it is assumed that we know the fraction of Byzantine nodes α in the network, we can ob-

tain more accurate information and achieve better detection performance. In this subsection, the

GLRTRS and the LMPTRS detectors are further enhanced by introducing a local decision filter at

the FC, which allows us to select sensors that are more likely to be honest. The proposed enhanced

detectors are referred to as the E-GLRTRS and the E-LMPTRS detectors.

Upon receiving local decisions {U(1), . . . ,U(t)} until time step t, where U(t) = {u1(t), . . . ,uN(t)},

each sensor’s statistical behavior is used to filter local decisions. The local decision filter distin-

guishes malicious nodes from honest nodes at time t by the following

2q∑
j=1

|Rj−p̃t(ui=vj)|
bi(t)=1

≷
bi(t)=0

τ, ∀i ∈ {Nref + 1, . . . , N}, (5.49)
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where Rj =min(P (ui=vj|i=H,H1), P (ui=vj|i=H,H0)) is a benchmark value to filter out the

potential malicious sensors6 and bi(t) represents the behavioral identity of sensor i at time t. If

bi(t) = 1, the sensor i is regarded as an honest node; otherwise, it is regarded as a potential

Byzantine node. p̃t(ui = vj) is the empirical probability of ui = vj until time step t according to

the history of local decisions and it is given as

p̃t(ui = vj) =

∑t
q=1 I(ui(q),vj)

t
, (5.50)

where ui(q) is the ui at time step q. The left side of (5.49) measures the deviation of the empirical

probability of ui = vj from the benchmark value Rj . Sensors are potential Byzantine nodes if

the deviation exceeds a predefined threshold τ . Based on the behavioral identity of all the sensors

{bi(t)}Ni=1 at time step t, we can obtain the fusion rules of enhanced detectors. Note that both

GLRTRS and LMPTRS have the form

N∑
i=Nref+1

2q∑
j=1

I(ui = vj)Wi,j

H1

≷
H0

η, (5.51)

where (Wi,j, η) ∈ {(g̃i,j, γ′), (Fi,j, κ
′)}. Hence, the enhanced fusion rule at time step t is given by

ΓE(t) =
N∑

i=Nref+1

2q∑
j=1

bi(t)I(ui(t)=vj)Wi,j(t)
H1

≷
H0

η(t). (5.52)

Let αt(t) and PA(t) denote the probability that a sensor is a Byzantine node and the probability

that a Byzantine node attacks at time step t, respectively, and let α be the initial value of αt. We

first obtain the estimated attack probability p̂A(0) = xH(0)/α at time t = 0 as initial value of P̂A,

where xH(0) =
xH1

(0)+xH0
(0)

2
and xHh

(0) is given in (5.31) for h = 0, 1. After filtering the possible

Byzantine nodes, the value of αt at time step t = 0 is updated according to {bi(0)}Ni=Nref+1. The

6Note that based upon (5.7), the observation yi,∀i ∈ {1, 2, . . . , N} has zero mean and different variances that are
related to the sparsity degree p given different hypotheses. Regardless of the quantizer thresholds that have been cho-
sen, sensors tend to transmit the same decisions with slightly different probabilities based upon different hypotheses,
i.e, P (ui = vj|i = H,H1) and P (ui = vj|i = H,H0) are slightly different. The simplest method of choosing Rj is
to take the minimum value between P (ui = vj|i = H,H1) and P (ui = vj|i = H,H0).
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Table 5.1: Summary of GLRT-based and LMPT-based detectors under different scenarios.
unknown {PA, α, p}:

GLRTRS:
∑N

i=Nref+1

∑2q

j=1 I(ui = vj)Fi,j

H1

≷
H0

κ′

LMPTRS:
∑N

i=1

∑2q

j=1 I(ui = vj)g̃i,j
H1

≷
H0

γ′

known α and unknown {PA, p}:

E-GLRTRS:
∑N

i=Nref+1

∑2q

j=1 bi(t)I(ui(t)=vj)Fi,j(t)
H1

≷
H0

κ′(t)

E-LMPTRS:
∑N

i=Nref+1

∑2q

j=1 bi(t)I(ui(t)=vj)g̃i,j(t)
H1

≷
H0

γ′(t)

commonly used GLRT-based detector:
∑N

i=1

∑2q

j=1 I(ui = vj)Gi,j

H1

≷
H0

λ1

LMPT-based detector [100]:
∑N

i=1

∑2q

j=1 I(ui = vj)w̃i,j

H1

≷
H0

λ2

updating rule is given as

αt(0) = α−
∑N

i=Nref+1 bi(0)

N −Nref

. (5.53)

At the next time step, the updated αt(0) is employed as the new prior to estimate p̂A(2) and

P̂A(1) =
∑1

i=0 p̂A(i)

2
. The value of αt is also updated at time step t = 1 according to {bi(1)}Ni=Nref+1

in the same manner as (5.53), i.e., α(1) = α(0) −
∑N

i=Nref+1 bi(1)

N−Nref
, and becomes the new prior at

the next time step. Thus, at time step t, αt(t − 1) = αt(t − 2) −
∑N

i=Nref+1 bi(t−1)

N−Nref
is utilized to

obtain P̂A(t) =
∑t

i=0 p̂A(i)

t+1
. By replacing xH and Fi,j with XH(t) = P̂A(t)αt(t − 1) and bi(t)Wi,j ,

respectively, in (5.38) and (5.39), we can obtain E(ΓE(t)|Hh) and V ar(ΓE(t)|Hh). Similarly, for

a given false alarm PFA, we can obtain the threshold used by the FC at time step t, which is given

as η(t) = Q−1 (PFA)
√

V ar(ΓE(t)|H0)+E(ΓE(t)|H0). To compare the detectors over all of the

scenarios we consider, we provide a summary table shown in Table 5.1.
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5.5 Simulation results and Discussion

In this section, we present the simulation results to evaluate the performance of the proposed de-

tectors in the presence of Byzantine attacks and compare them with the quantized LMPT-based

detector (proposed in [100]) and the commonly used GLRT-based detector. Via simulations, we

analyze the performance of the proposed schemes in terms of the probability of error in the sys-

tem. The channel gains {hi}Ni=1 are all assumed to be sampled from normal distribution with a

homogeneous scenario so that ||hi||2 = 1,∀i as described in [100]. Table 5.2 presents the pa-

rameter settings for reference. Unless otherwise noted, we assume the number of sensors N to be

280. When reference sensors are employed, we employ Nref = 80 out of 280 sensors as reference

sensors, except when we evaluate system performance as a function of Nref .

Table 5.2: Summary of parameter settings.

N Nref σ2
n σ2

x ∥|hi||2

value 280 80 1 5 1

α PFA π1 µw p

value 0.3 0.4 0.5 0 0.05

In Fig. 5.4, we demonstrate the error probabilities of the LRT detector with perfect knowledge

of {PA, α, p}, the GLRT detector, and the proposed GLRTRS detector. Two different quantizers

are employed, i.e., q = 1 and q = 2. The error probability of the LRT detector with perfect

knowledge of {PA, α, p} shown in Fig. 5.4 is used as the benchmark to assess the performance

of the proposed detectors. It can be observed that the GLRT detector is extremely vulnerable to

attacks for both one-bit quantization and multilevel quantization, and a small fraction of Byzantine

nodes α with a small attack parameter PA are sufficient to break down the entire system. However,

the proposed GLRTRS detector can obtain an error probability close to that of the LRT detector

with perfect knowledge of {PA, α, p}. We can observe from Fig. 5.4 that in the cases of q =

1 and q = 2, the GLRTRS detector outperforms the commonly used GLRT-based detector in

the presence of attacks, with a performance close to the benchmark LRT detector. Note that the
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Fig. 5.4: Comparison of Pe for the GLRTRS, LRT and GLRT detectors.

Fig. 5.5: Pe versus PA when different values of q and the different values of threshold τ are
utilized for the E-GLRTRS detectors.

GLRTRS detector uses only 200 sensors for detection purposes and exhibits performance close

to the benchmark detector that uses 280 sensors for detection purposes. Hence, when no attacks

are present, the commonly used GLRT-based detector performs slightly better. The number of

quantization levels also affects the performance of the GLRTRS detector. As shown in Fig. 5.4,

with an increase in q, the error probability of the proposed GLRTRS detector further decreases

due to the reduction of performance losses caused by quantization. From Fig. 5.4, we can also

observe that the difference between the benchmark error probability and the error probability of

the proposed GLRTRS detector is larger when the value of q increases. It is because the GLRTRS

detector is a sub-optimal detector, while the benchmark LRT detector is an optimal one.

If we assume that the fraction of Byzantine nodes α is known to the system, The error prob-
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Fig. 5.6: Pe versus the number of iterations when different values of Nref are utilized for the
GLRTRS detector.

ability of the system can be further reduced by employing the E-GLRTRS detector. As shown in

Fig. 5.5, the error probability of the E-GLRTRS detector decreases with an appropriately designed

threshold τ compared to the GLRTRS detector. We can filter out different numbers of potential

Byzantine nodes with different values of the threshold τ in (5.49). A potential Byzantine node

can be either an actual Byzantine or a falsely identified one. It is obvious that a smaller threshold

results in greater false filtering, while a larger threshold results in greater miss filtering. False filter-

ing implies that honest nodes are falsely filtered out, whereas miss filtering implies that malicious

nodes remain unfiltered. Both false filtering and miss filtering result in degrading the system’s per-

formance. Therefore, the system will likely perform better if the threshold τ is set appropriately.

As shown in Fig. 5.5, τ = 0.5 is more appropriate than τ = 0.7. It can be observed that when

τ = 0.5, q = 1 and PA > 0.3, the E-GLRTRS detector outperforms the LRT detector with perfect

knowledge of {PA, α, p}. This is because the E-GLRTRS detector filters out potential Byzantine

nodes and utilizes the rest of the sensors for detection. In contrast, the benchmark LRT detector

utilizes all the sensors for detection purposes. Although the E-GLRTRS detector is inferior to the

benchmark LRT detector when q = 1 and PA < 0.3, the difference in error probabilities is not too

significant.

In Fig. 5.6, the error probability and the convergence rate of the GLRTRS detector with differ-

ent number of reference nodes are presented. The number of sensors used for detection purposes
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Fig. 5.7: Comparison of Pe for the LMPTRS, LRT and quantized LMPT detectors.

Fig. 5.8: Pe versus PA when different values of q are utilized for the LMPTRS and the E-LMPTRS
detectors.

in the GLRTRS detectors with different values of Nref are equal to 200, i.e., N − Nref = 200. It

can be observed that the convergence rate is faster, and the error probability is lower when more

reference nodes are used.

Fig. 5.7 shows the error probabilities of the LRT detector with perfect knowledge of {PA, α, p},

the quantized LMPT detector (proposed in [100]) and the proposed LMPTRS detector for q = 1

and q = 2, respectively. We can observe that the quantized LMPT detector proposed in [100] is

also extremely vulnerable to attacks for both one-bit and multilevel quantization when all the p, PA

and α are unknown. However, it can be observed that when q = 1, the proposed LMPTRS detector

is capable of obtaining an error probability close to the benchmark error probability that is obtained

by employing the LRT detector with perfect knowledge of the attack parameters {PA, α, p}. Simi-
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Fig. 5.9: Pe versus PA for benchmark LRT, LMPT and LMPTRS detectors under Laplace dis-
tributed noise. The noise has a mean of µw = 0 and a variance of σ2

w with probability of false alarm
(PFA = 0.4). The sparse signals are assumed to asymptotically follow Gaussian distribution with
mean 0 and variance pσ2

x||hi||22.

lar to the conclusion we obtained from Fig. 5.4, the LMPTRS detector outperforms the quantized

LMPT detector proposed in [100] in the presence of attacks. The error probability of the proposed

LMPTRS detector decreases with increasing q, and a higher value of q increases the difference

between the benchmark error probability and the proposed LMPTRS detector error probability. It

is also possible to further reduce the error probability of the system by assuming that the fraction of

Byzantine nodes α is known to the system. As shown in Fig. 5.8, the E-LMPTRS detector outper-

forms both the quantized LMPT detector and the benchmark LRT detector with perfect knowledge

of the attack parameters by filtering potential Byzantine nodes when q = 1. When q increases

(e.g., q = 2), the E-LMPTRS detector still outperforms the quantized LMPT detector. In Fig. 5.9,

we demonstrate the performance of our proposed detectors, which were originally designed for

the simple Gaussian case, in the presence of one realization of generalized Gaussian noise. The

noise here is assumed to follow the Laplace distribution, which is a special case of the generalized

Gaussian distribution with parameter β = 1. We also note that according to [100], all types of

generalized Gaussian distributed high-dimensional sparse signals asymptotically follow Gaussian

distributions. We can observe that our proposed detector exhibits a certain level of resilience to the

Byzantine attack when the tail of the distribution is not heavy.



129

5.6 Summary

The distributed detection problem of sparse stochastic signals with quantized measurements in the

presence of Byzantine attacks was investigated. The sparse stochastic signals were characterized

by their sparsity degrees, and the BG distribution was utilized to model sparsity. We proposed

the LMPTRS and GLRTRS detectors with adaptive thresholds, given that the sparsity degree p

and the attack parameters, i.e., α and PA are unknown. The simulation results showed that the

LMPTRS and GLRTRS detectors outperformed the LMPT detector under attack and achieved

detection performance close to the benchmark LRT detector with perfect knowledge of the attack

parameters and sparsity degree p. When the fraction of Byzantines α in the networks is assumed

to be known, the E-LMPTRS and E-GLRTRS detectors were proposed to further improve the

detection performance of the system by filtering out potential malicious sensors. Simulation results

showed that the proposed enhanced detectors outperform LMPTRS and GLRTRS detectors.
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CHAPTER 6

HUMAN-MACHINE HIERARCHICAL

NETWORKS FOR DECISION MAKING

UNDER BYZANTINE ATTACKS

In this chapter, we consider the human-machine collaborative decision-making networks in the

present of Byzantine attacks. A belief-updating algorithm is proposed based on a hierarchical

framework where local decisions from physical sensors act as reference decisions to improve the

quality of human sensor decisions. The proposed algorithm effectively defends against Byzantine

attacks, even when most physical sensors are malicious, significantly enhancing the performance of

the human-machine collaborative system. The effect of available side information on the decision

quality of individual human is also investigated.

6.1 Introduction

In high stake scenarios where human lives and assets are at risk, automatic physical sensor-only

decision-making may not be sufficient [79, 87, 107]. Further, in some circumstances, such as

remote sensing and emergency access systems, humans may possess additional side information
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in addition to the common observations available from both physical sensors and humans. Thus, it

may be necessary to incorporate humans in decision-making, intelligence gathering, and decision

control. The emerging human-machine inference networks aim to combine humans’ cognitive

strength and sensors’ sensing capabilities to improve system performance and enhance situational

awareness.

Unlike physical sensors that can be programmed to operate with fixed parameters, human be-

havior and decisions are governed by psychological processes which are quite complex and un-

certain. Hence, traditional signal processing and fusion schemes can not be adopted directly for

integrating sensor measurements with human inputs. It is imperative to construct a framework to

capture attributes associated with human-based sources of information so that they can be fused

with data from physical sensors.

6.1.1 Related Work

There have been studies that employ statistical signal processing to address human-related factors

in human-machine collaborative decision making. For instance, the authors of [104] studied de-

cision fusion performance when the individual human agents use different thresholds modeled as

random variables to make local decisions regarding a given phenomenon of interest (PoI). The au-

thors in [79] proposed a hybrid system that consists of multiple human sub-populations, with the

thresholds of each sub-population characterized by non-identically distributed random variables

and a limited number of machines (physical sensors) whose exact values of thresholds are known.

For such a hybrid system, they derived the asymptotic performance at the fusion center in terms

of Chernoff information. The authors in [87, 107] showed that adding human inputs may or may

not improve the overall performance of human-sensor networks, and they derived the conditions

under which performance is improved. Furthermore, collaborative decision-making in multi-agent

systems was investigated when the rationality of participating humans is modeled using prospect

theory [28, 29]. To a large extent, the literature on human-machine collaborative networks has

not considered the distributed nature and the openness of wireless networks in which the physical
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sensors deployed in the network are low-cost, insecure, and vulnerable to various attacks, e.g.,

jamming, wiretap, spoofing [14,26,39] and Byzantine attacks [54,119]. Here, we are interested in

Byzantine attacks, where physical sensors in the network might be compromised and send falsified

data to the FC.

6.1.2 Major Contributions

In contrast to most existing work, we aim to construct robust human-machine collaborative decision-

making systems. We consider the general scenario where some sensors in the network are com-

promised by adversaries (Byzantines) so that they send falsified data to human agents. A belief

updating and reputation-based scheme, where human agents and physical sensors interact with

each other in decision-making, is proposed to mitigate the effect of Byzantine attacks. The pro-

posed scheme consists of three parts: belief updating at human agents, decision-making at the

FC, and reputation updating at the FC. In the belief updating part, the human agents make their

local decisions based on their observations regarding the PoI and the decisions received from the

physical sensors over a short time window. Within this short window, the human agents update

their beliefs of the physical sensors’ behavioral identities and further update their likelihood ratios

(LRs) about the PoI. The belief updating phase involves collecting information from human agents

and physical sensors to contribute to the decision-making at the FC. However, the belief-updating

processes at the human agents based on short-term information, i.e., local decisions made by the

sensors, may only reflect sensors’ behavior over a short period. Consequently, the reputations of

physical sensors are also updated over time at the FC to assist in the identification of Byzantine

sensors and in mitigating their impact during the decision-making process. Moreover, we study un-

der which conditions human agents can improve the quality of their decisions by using their side

information if available. Our simulation results show that the proposed scheme can effectively

defend against Byzantine attacks and enhance the quality of human agents’ decisions.
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6.2 System model

In this section, we consider a network model consisting of one FC, M human agents (human

sensors), and N physical sensors, all of which make threshold-based binary decisions based on

independent observations regarding the PoI. Unlike physical sensors, which employ deterministic

thresholds, human sensors are assumed to use random thresholds to make decisions, which account

for humans’ cognitive biases. We also assume that the human agents have a similar background,

e.g., culture, education level, and experience. 1 To account for the similar background they are

assumed to have, it is reasonable to assume that a known probability distribution characterizes

the random thresholds used by human sensors in this work. The thresholds used by the physical

sensors are assumed to be the same and deterministic, which are τ = [τ1, . . . , τN ]
T . The thresholds

used by the human sensors are denoted by ξ = [ξ1, . . . , ξM ]T and they are independent identically

distributed (i.i.d.) random variables where ξi follows a probability density function (pdf) f(ξ) for

i = 1, . . . ,M . In this work, we assume that all the human sensors are honest and put in their best

effort to make decisions. We also assume that a fraction α of the N physical sensors are Byzantine

nodes and the FC is unaware of the identity of Byzantine nodes in the network. Hence, each

sensor has the probability of α being a Byzantine node. As a result of the cognitive biases present

in human sensors, some of them might perform worse than others when detecting the PoI. We

utilize all useful information from the decisions coming from all the sensors (including physical

and human sensors) in the network by employing a human-machine network that is constructed

hierarchically, and a belief updating scheme is proposed.

1According to studies on human behavior [36, 41, 79, 108, 108], different backgrounds have profound effect on a
person’s decision-making process, the quality of decisions, as well as the ability to make decisions. To account for
the diversity of human populations, we can assume that humans with different backgrounds use random thresholds to
follow different distributions. In contrast, random thresholds used by humans with the same background follow the
same distribution.
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6.2.1 Belief-updating Scheme

The system model is shown in Fig. 6.1, where a hierarchical framework is established. All human

agents are connected to a small set of physical sensors. Each human agent makes local decisions

based on its raw observations and then updates its belief regarding the behavioral identity of the

connected physical sensors and its LR based on the local decisions coming from the connected

physical sensors’ during the time interval (nT, (n+ 1)T ] for n = 0, 1, . . . .

Fig. 6.1: System model

Remark 6.1. Note that the behavioral identity and the LR are updated at nT + 1, nT + 2,. . . until

(n + 1)T . The human sensor uses this updated information to make a decision at time (n + 1)T .

In general, the human sensors collect information from the connected reference physical sensors

to update the LR during (nT, (n+ 1)T ]. We assume that T is not large so that the true underlying

hypothesis does not change during (nT, (n + 1)T ]. At each time step t = T, 2T, 3T, . . . , the final

decisions made by the FC regarding the presence of the PoI are based on the decisions received

from the humans.

Let yti and ztm denote the observation of sensor i and human m at time t, respectively.2 The

LR of physical sensor i ∈ {1, . . . , N} and human agent m ∈ {1, . . . ,M} at time t are given as

Lt
S,i =

f(yti |H1)

f(yti |H0)
and Lt

H,m = f(ztm|H1)
f(ztm|H0)

, respectively, where hypothesis H1 indicates the presence of

2The observations of both human and physical sensors are assumed to be of the same type and are i.i.d..
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the PoI and hypothesis H0 indicates the absence of the PoI. Thus, the decision rule of the physical

sensor i at time step t is given by

vti =

 1 Lt
S,i ≥ τi

0 otherwise
(6.1)

Here, we assume that identical physical sensors are deployed, and identical thresholds are utilized

at the sensors. Therefore, we have Pd,i = Pd and Pf,i = Pf for i = 1, 2, . . . , N . Let ut
i,m denote the

local decision sent by physical sensor i to the connected human agent m at time t, where m ∈ Mm.

If sensor i is malicious, i.e., i = B, we assume that ut
i,m = 1 − vti ; if it is honest, i.e., i = H , we

assume ut
i,m = vti . The decision rule of the human agent m based on its raw observation at time

step t is given by

btm =

 1 Lt
H,m ≥ ξm

0 otherwise
(6.2)

Some key notations used in this chapter are listed in Table 6.1 for the convenience of readers.

The belief-updating and decision-making process at each human sensor during any time interval

(nT, (n+ 1)T ] proceeds as follows for n = 0, 1, . . . :

Belief-updating

1. At time t ∈ (nT, (n+ 1)T ], qm,i,t and rm,i,t are updated, respectively, as

qm,i,t = Pr(ut
i,m = 1|it−1 = H) =π1,m,t−1Di,H + π0,m,t−1Fi,H (6.3)

and

rm,i,t = Pr(ut
i,m = 1|it−1 = B) =π1,m,t−1Di,B + π0,m,t−1Fi,B, (6.4)
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Table 6.1: List of Notations Used
N number of physical sensors
M number of human sensors

Mm set that consists of physical sensors connected
to human sensor m

Ni set that consists of human sensors connected
to physical sensor i

α fraction of Byzantines in the network
vti the actual local decision made by sensor i at time t

ut
i,m the local decision sent by physical sensor i to

human agent m at time t
btm the local decision made by human sensor m at time

t which is only based on its raw observations
dtm the local decision made by human sensor m at time

t when both the local decisions coming from
connected physical sensors and btm are utilized

πh,m,t probability that Hh is true at time t for human m
λm,t LR at time t at human sensor m

wm,i,t belief that physical sensor i is honest at human
sensor m at time t

wm,i,t(u
t
i,m=h) belief that physical sensor i is honest given ut

i,m=h
at human sensor m at time t

δm,i,t LR based on decision coming from physical sensor i
at human sensor m at time t

δm,i,t(u
t
i,m=h) LR given ut

i,m = h at human sensor m at time t
rm,i,t probability of ut

i,m = 1 given sensor i is malicious
qm,i,t probability of ut

i,m = 1 given sensor i is honest
Di,H(or Di,B) probability of ut

i,m = 1 given physical sensor i is
honest (or malicious) and H1 is true

Fi,H(or Fi,B) probability of ut
i,m = 1 given physical sensor i is

honest (or malicious) and H0 is true
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for i ∈ Mm, where Di,X = Pr(ut
i,m = 1|H1, i = X) =

∫∞
τi

Pr(yti |H1, i = X)dyti and

Fi,X = Pr(ut
i,m = 1|H0, i = X) =

∫∞
τi

Pr(yti |H0, i = X)dyti for X = H or B. Based on

(6.3) and (6.4), the belief that physical sensor i is honest is updated as

wm,i,t(u
t
i,m = 1) =

Pr(it−1 = H|ut
i,m = 1)

Pr(it−1 = B|ut
i,m = 1)

=
Pr(ut

i,m=1|it−1=H)Pr(it−1=H)

Pr(ut
i,m=1|it−1=B)Pr(it−1=B)

=wm,i,t−1
qm,i,t−1

rm,i,t−1

(6.5)

given ut
i,m = 1 and

wm,i,t(u
t
i,m=0)=

Pr(it−1 = H|ut
i,m = 0)

Pr(it−1 = B|ut
i,m = 0)

= wm,i,t−1
1− qm,i,t−1

1− rm,i,t−1

(6.6)

given ut
i,m = 0 for i ∈ Mm, where Pr(it−1 = B(or H)) denotes the probability of sensor i

being malicious (or honest) at time step t. Note that Pr(inT+1 = B) = α and Pr(inT+1 =

H) = 1 − α for n = 0, 1, 2 . . . . Hence, the initial belief is wm,i,nT+1 = (1 − α)/α for

i = 0, 1, . . . , N . Given ut
i,m, the belief that sensor i is honest at time t is wm,i,t =

Pr(it=H)
Pr(it=B)

=

wm,i,t(u
t
i,m = 1)u

t
i,mwm,i,t(u

t
i,m = 0)1−ut

i,m .

2. For physical sensor i at time t, δm,i,t(u
t
i,m = h) is given by

δm,i,t(u
t
i,m = 1) =

Di,B+Di,Hwm,i,t−1

Fi,B+Fi,Hwm,i,t−1
(6.7)

for h = 1 and

δm,i,t(u
t
i,m=0) =

(1−Di,B)+(1−Di,H)wm,i,t−1

(1− Fi,B)+(1−Fi,H)wm,i,t−1
(6.8)

for h = 0. Hence, given ut
i,m, the LR at time t is δm,i,t = δm,i,t(u

t
i,m = 0)1−ut

i,mδm,i,t(u
t
i,m =

1)u
t
i,m .
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3. Decision-making at human sensor m at time t = nT + 1:

λm,nT+1=
π1

π0

βbnT+1
m

m (1− βm)
1−bnT+1

m

γbnT+1
m

m (1−γm)1−b
nT+1
m

dnT+1
m =1

≷
dnT+1
m =0

κ′, (6.9)

where βm =
∫∞
ξm

f(ztm|H1)dz
t
m, γm =

∫∞
ξm

f(ztm|H0)dz
t
m are the probabilities of detection

and false alarm for human agent m.

Decision-making at human sensor m at time t ∈ [nT + 2, (n+ 1)T ]:

λm,t=λm,t−1
β
btm
m (1−βm)

1−btm

γ
btm
m (1−γm)1−b

t
m

∏
j∈Mm

δm,j,t

dtm=1

≷
dtm=0

κ′ (6.10)

Decision-making at FC

At the time t = (n+ 1)T , the fusion rule at the FC is given as

M∑
m=1

d(n+1)T
m

H1

≷
H0

κ, (6.11)

where κ is the threshold used by the FC.

Reputation-updating at FC

At time t = T, 2T . . . , the reputation of sensor i is given as rti = rt−T
i + At−T

i , where

At−T
i =

 ∆
ci,t
|Ni| ci,t > ci,t/2

−∆(1− ci,t
|Ni|) otherwise.

(6.12)

|Ni| is the cardinality of Ni, ci,t=
∑

m∈Ni
I(wm,i,t) where

I(wm,i,t) =

 1 wm,i,t > 1

−1 otherwise
(6.13)
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and ∆ is the step size to update the reputation of each physical sensor. According to (6.12), a

sensor’s reputation increases if most human agents believe it is honest, and vice versa. The more

human agents vote in favor of the same decision, the greater the increment in the reputation of

sensors. When rti is smaller than a threshold η, sensor i is identified as Byzantine and initial

reputation is r0i = 1 for i = 0, 1, . . . , N .

6.2.2 Human Sensors with Side Information

Thus far, we have assumed that human and physical sensors only receive i.i.d. observations. In

this subsection, we assume that human sensors may also possess side information3 about the PoI

other than the common features, which both physical and human sensors can observe. Assume

that the human sensor m possesses the side information wt
m related to the PoI in addition to the

common attribute ztm for m = 1, 2, . . . ,M . To emulate the actions humans take to incorporate

the data gathered from side information and observations into their decision-making process, two

operations are employed in this work which are OR operation and AND operation [79].

OR Operation

The decision rule when using the OR operation to include side information is given by

etm =

 1 btm = 1 or wt
m = 1

0 otherwise
(6.14)

where wt
m is the side information indicating whether H1 is present or not and is assumed to be

binary for human sensor m. The accuracy of side information is denoted as Pr(wt
m = 1|H1) =

βm,side, and Pr(wt
m = 1|H0) = γm,side. We assume that the side information {wt

m}Mm=1 is inde-

pendent among different human sensors. Given the side information, the likelihoods of etm given

3The side information refers to the additional information owned by human sensors which could come from previ-
ous professional experience or other sources.
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H1 and H0 are shown, respectively, as [79]

f(etm|H1)=βm,sidee
t
m+(1−βm,side)(β̄

etm(1−β̄)1−e
t
m) (6.15)

f(etm|H0)=γm,sidee
t
m+(1−γm,side)(γ̄

etm(1−γ̄)1−e
t
m), (6.16)

where β̄ =
∫∞
−∞ f(ξ)Pr(bt = 1|H1, ξ)dξ and γ̄ =

∫∞
−∞ f(ξ)Pr(bt = 1|H0, ξ)dξ are the av-

eraged probabilities of detection and false alarm for all human agents, respectively. Based on

(6.15) and (6.16), we can derive the probability of detection POR
d,m,side and probability of false

alarm POR
f,m,side for human sensor m that adopts OR operation, which are given, respectively, by

POR
d,m,side = βm,side + (1 − βm,side)β̄ and POR

f,m,side = γm,side + (1 − γm,side)γ̄. Thus, the overall

probability of error for human sensor m using OR operation becomes

POR
e,m,side = π0P

OR
f,m,side + π1(1− POR

d,m,side) (6.17)

AND Operation

The decision rule when employing the AND operation to include the human observation and side

information is expressed as

etm =

 1 btm = 1 and wt
m = 1

0 otherwise
(6.18)

Given the side information, the likelihoods of etm given H1 and H0 are expressed, respectively,

as [79]

f(etm|H1) = βm,sideβ̄
etm(1− β̄)1−etm + (1− βm,side)(1− etm) (6.19)

f(etm|H0) = γm,sideγ̄
etm(1− γ̄)1−etm + (1− γm,side)(1− etm) (6.20)

Based on (6.19) and (6.20), we can derive the probability of detection PAND
d,m,side and the prob-

ability of false alarm PAND
f,m,side for human sensor m that adopts AND operation, which are given,
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respectively, by PAND
d,m,side = βm,sideβ̄ and PAND

f,m,side = γm,sideγ̄. Thus, the overall error probability

for human sensor m using AND operation becomes

PAND
e,m,side = π0P

AND
f,m,side + π1(1− PAND

d,m,side) (6.21)

Comparison between OR and AND Operation

As a result of the above analysis, the performance of each human sensor in terms of error proba-

bility is obtained when using the OR operation and when using the AND operation, i.e., POR
e,m,side

and PAND
e,m,side. It is also easy to obtain the averaged error probability of each human sensor without

obtaining any side information. It is given by

Pe =π0γ̄ + π1(1− β̄), (6.22)

where πh denotes the probability that Hh is true for h = 0, 1. Based on (6.22), (6.21) and (6.17),

we can derive the conditions under which the quality of human sensors’ decisions is improved

by utilizing different operations to utilize side information. The derived conditions are stated in

Theorem 6.1.

Theorem 6.1. When the following conditions are satisfied, the side information could help indi-

vidual human sensors make better decisions. For a specific human sensor m ∈ {1, . . . ,M}, we

have

• the quality of decisions is improved by utilizing AND operation when β̄
γ̄
≤ π0(1−γm,side)

π1(1−βm,side)
.

• the quality of decisions is improved by utilizing OR operation when π0(1−γ̄)

π1(1−β̄)
≤ βm,side

γm,side
.

• OR operation performs better than AND operation when π0(1−2γ̄)γm,side−π1(1−2β̄)βm,side ≤

π1β̄ − π0γ̄.

PROOF: The above conditions can be derived by comparing the value of PAND
e,m,side and Pe, the

value of POR
e,m,side and Pe, and the value of PAND

e,m,side and POR
e,m,side.
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6.3 Simulation results and Discussion

Some numerical results are presented in this section. Assume yti |Hh ∼ N (µ, σ2
h) and ztm|Hh ∼

N (µh, σ
2
h) for h = 0, 1, where µ1 = 4, µ0 = 0 and σ2

1 = σ2
0 = 2. The human thresholds are

assumed to follow the Gaussian distribution with parameters (µτ , στ ), where µτ = 2 and στ = 2.

We set N = 60, M = 20, T = 10, ∆ = 0.03, κ′ = 1, κ = M/2, η = 0.2, τi = 2 for i = 1, . . . , N

and πnT+1
1 = πnT+1

0 = 0.5 for n = 0, 1, . . . . Note that the term ’iterations’ used in the following

figures refers to iterations during the belief updating phase.

In Table 6.2, we show the comparison of the error probabilities of the systems that adopt CV

(Chair-Varshney rule), MR (Majority rule), and MRH (Majority rule with human sensors) when

α is known. MRH only utilizes the decisions from human sensors, while MR and CV utilize

both human and physical sensors. The MR system uses decisions from all the sensors (including

physical and human sensors) by performing a simple majority vote to make a final decision. In

contrast, our proposed scheme employs a hierarchical framework to construct the human-machine

collaborative network. As seen in Table 6.2, MR breaks down when most sensors participating

in the decision-making process are malicious. However, our proposed scheme can still achieve

comparable performance to the optimal CV rule. We can see in Fig. 6.2 that the fraction of

humans making correct decisions increases significantly within a small number of iterations in our

proposed scheme, which indicates a rapid improvement in the quality of humans’ decisions.

Table 6.2: System error probability as a function of α
α = 0.1 α = 0.5 α = 0.9

CV 2.3e-7 3.1e-7 4e-7
MR 7e-5 0.07 0.996

MRH 2.5e-3 2.5e-3 2.5e-3
Proposed 2.7e-7 3.7e-7 4.3e-7

Although the proposed scheme requires the knowledge of α when each human sensor updates

the belief regarding the behavioral identity of the corresponding physical sensors, this knowledge

is not necessarily needed to guarantee a good performance. Choosing an appropriate predefined

α can alleviate the performance degradation caused by the absence of knowledge of α. In Fig.
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Fig. 6.2: Fraction of number of humans that make correct decisions versus the number of iterations
when the system is aware of α

6.3 and Table 6.3, we compare the performance of the different systems when α is replaced with

a predefined value αe in (6.5) and (6.6). Fig. 6.3 shows the fraction of the number of humans

that make correct decisions given different values of αe. We can observe that the system with

α = 0.9 performs worse when αe = 0.3 and the system with α = 0.1 performs worse when

αe = 0.7. However, αe = 0.5 works well for the system with any fraction of Byzantine nodes.

This is because when αe ≫ α (or αe ≪ α), αe significantly overestimates (or underestimates) α

which results in performance degradation. Thus, αe = 0.5 is a good choice when we do not know

α. Table 6.3 show that the system that adopts the proposed scheme can outperform the systems

that adopt CV, MR, and MRH when α is unknown. Although there is a performance degradation

compared to the systems that are aware of α, i.e., the performance shown in Fig. 6.2 and Table

6.2, the performance degradation is negligible for the proposed scheme. Thus, whether we know

the actual α or not, the proposed scheme can always achieve a good performance. In Fig. 6.4, we

show that the proposed scheme performs well in identifying Byzantine nodes in both cases, i.e.,

the system is aware/unaware of α.

Table 6.3: System error probability as a function of α given αe = 0.5
α = 0.1 α = 0.5 α = 0.9

CV 8e-4 3.1e-7 1.8e-3
MR 7e-5 0.07 0.996

MRH 2.5e-3 2.5e-3 2.5e-3
Proposed 1.7e-5 4.1e-7 3.3e-5
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Fig. 6.3: Fraction of the number of humans that make correct decisions versus the number of
iterations when the system does not know α.

Fig. 6.4: The ratio of identified Byzantine nodes to the total number of sensors versus α for the
proposed scheme when α is known and unknown. If α is unknown, we set αe = 0.5.

The impact of different operations while incorporating the individual performance of a human

is illustrated in Fig. 6.5. The relationships among the error probability, the detection probability of

the side information βside, and the false alarm probability of the side information γside are shown. It

can be observed that given certain values of γside, the error probability of a human sensor decreases

as βside increases for both OR and AND operations. Given certain parameters (βside, γside), we

can make a better choice among OR operation, AND operation, and no operation (i.e., no side

information is utilized). For example, no operation is a better choice given βside ≤ 0.81 and

γside = 0.1 and AND operation is a better choice given βside ≥ 0.9 and γside = 0.3. Our results

shown in Fig. 6.5 are also consistent with Theorem 6.1 we obtained earlier.



145

Fig. 6.5: The average probability of error versus βside given different values of γside for any
human sensor m without side information, as well as for any human sensor m that uses OR or
AND operations.

6.4 Summary

In this chapter, we have proposed a belief-updating scheme in a human-machine hierarchical net-

work. The local decisions from physical sensors served as reference decisions to improve the

quality of human sensor decisions. At the same time, the belief that each physical sensor is ma-

licious was updated during the decision-making process. The impact of side information from an

individual human sensor and comparing different operations used to incorporate the side informa-

tion were also analyzed. Simulation results showed that the quality of human sensors’ decisions

could be improved by employing the proposed scheme even when most physical sensors in the

system are malicious. Moreover, our proposed scheme did not require the knowledge of the ac-

tual fraction of malicious physical sensors to guarantee the performance of our proposed scheme.

Hence, the proposed scheme can successfully defend against Byzantine attacks and improve the

quality of human sensors’ decisions.
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CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we aimed to enhance the resilience of various energy-efficient WSNs for the

inference task under Byzantine attacks. In Chapters 2 and 3, we conducted in-depth exploration,

analysis, and enhancements to the audit bit-based mechanism. In Chapter 2, we evaluated the

performance of the traditional audit bit-based mechanism under a more general and practical at-

tack strategy. The results we obtained indicated that the attacker could blind the FC by adopting

a very simple attack strategy. To overcome this problem, we proposed an enhanced audit bit-

based mechanism, which relaxes the hard constraints on the attack strategies it can withstand. Our

results showed that the proposed enhanced audit bit-based scheme outperforms traditional audit

bit-based scheme. Building upon the enhanced audit bit framework, we proposed an advanced

audit bit-based scheme that not only enhances system robustness but also significantly reduces the

redundancy associated with audit bits.

In Chapter 3, we extended the work in Chapter 2 to tackle challenges in scenarios where prior

knowledge of the attack strategies is unavailable. We proposed two algorithms to defend against

Byzantine attacks in WSNs when the FC is not aware of the attacking strategy. The history of

local decisions and idea of audit bit-based mechanism was utilized to update the reputation of

sensors and help the system accurately identify Byzantine nodes. Our simulation results showed

that we are able to achieve superior detection performance and the enhanced ability of identifying
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Byzantine nodes by employing anchor nodes even when the Byzantines exceed half of the total

number of sensors in the network.

In Chapter 4, we investigated the impact of Byzantine attacks on the performance of both the

conventional OT-based system and the CEOT-based system. We derived the error probability and

the number of saved transmissions for OT-based systems under different Byzantine attack scenar-

ios. Additionally, we derived upper and lower bounds on the number of transmissions saved for

OT-based systems under various Byzantine attack strategies. The simulation results revealed that

Byzantine nodes, when employing optimal attack strategies, could both maximize the probability

of error and significantly increase the number of transmissions required to reach a final decision.

We also conducted a comparison of the robustness of CEOT-based and conventional OT-based sys-

tems, shedding light on how to implement OT-based frameworks in environments susceptible to

attacks. Some possible countermeasures to mitigate the impact of Byzantines on OT-based systems

were also discussed.

In Chapter 5, we investigated the distributed detection problem of sparse stochastic signals

with quantized measurements in the presence of Byzantine attacks. We proposed two robust de-

tectors based on traditional GLRT and LMPT detectors with adaptive thresholds, given that the

sparsity degree and the attack strategy are unknown. The simulation results showed that the pro-

posed detectors outperformed both LMPT and GLRT detectors under attack and achieved detection

performance close to the benchmark LRT detector with perfect knowledge of the attack strategy

and sparsity degree. When the fraction of Byzantines in the networks is assumed to be known,

two enhanced detectors building on the previous proposed robust detectors were proposed to fur-

ther improve the detection performance of the system by filtering out potential malicious sensors.

Simulation results showed a good resilience of our proposed detectors.

In Chapter 6, we proposed a belief-updating scheme in a human-machine hierarchical network.

The local decisions from physical sensors served as reference decisions to improve the quality of

human sensor decisions. At the same time, the belief that each physical sensor is malicious was

updated during the decision-making process. The simulation results showed that the proposed
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scheme could enhance the performance of the system, even in scenarios where a majority of the

physical sensors in the system are malicious, and where there is a lack of knowledge regarding the

actual fraction of malicious physical sensors. Moreover, the impact of side information from an in-

dividual human sensor and comparing different operations used to incorporate the side information

were also analyzed.

Next, we discuss some promising future directions of the work presented in this dissertation.

7.1 Suggestions for Future Research

Next we discuss some potential work and the future directions that should be pursued. The future

works mainly focus on the design of resilient human-machine collaborative networks and resilient

decentralized networks with quantized decisions.

7.1.1 Resilient Decentralized Networks with Quantized Decisions

In decentralized networks, there is no central server responsible for fusing data from each sensor.

Instead, sensors transmit their measurements only to neighboring sensors, and a final decision

for a detection problem is reached once a consensus is achieved. Decentralized networks find

applications in various fields, including blockchain technology, IoT (Internet of Things) systems,

distributed computing, and mesh networks. Previous studies, such as [44, 62, 69], have introduced

consensus-based algorithms for addressing detection problems in decentralized networks, where

raw observations are broadcasted.

Inspired by the works mentioned in [1, 49], we plan to design resilient decentralized networks

where only binary decisions need to be broadcasted among sensors. We will evaluate such sys-

tem’s performance under a fixed network topology. Additionally, we aim to extend our research

to address scenarios where sensors transmit M-ary decisions to their neighboring sensors. Further-

more, we will explore the design of resilient decentralized networks that can adapt to dynamically

changing network topologies.
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7.1.2 Resilient Human-machine Collaborative Networks

Building upon our previous work, which involved modeling human decision-making and decision

fusion using random thresholds and Bayesian hierarchical models in Chapter 6, we now aim to

expand our research in the following directions:

Human Decision’s Uncertainty and Reliability in Human-machine Collaborative Net-

works

In the previous work, which was discussed in Chapter 6, we focused exclusively on scenarios where

human agents were assumed to be honest while the physical sensors were considered potentially

malicious. However, our future work will aim to expand this research to encompass situations

where both human agents and physical sensors may be unreliable. The unreliable human agents

refer to some lazy humans who are greedy and seek to gain monetary rewards without exerting any

effort on their part. This type of behavior in humans is referred to as "no-effort attack" here, in

which they earn money by making random guesses as part of their decision-making process. We

will propose resilient algorithms for this kind of scenario. Our future work will focus on designing

resilient algorithms to mitigate and adapt to these complex scenarios. Moreover, we plan to extend

our previous work (6), which is a binary detection problem, to an M-ary detection problem.

Human limited Memory and Behavior Uncertainty

One characteristic of human agents is their limited processing capability due to their limited mem-

ory. When making decisions, these individuals perceive a quantized version of observations or

provide a quantized evaluation of the information they process. We intend to explore the perfor-

mance of such human-machine collaborative networks, taking into account this inherent feature of

humans.

Furthermore, drawing inspiration from [93] which employed quantized priors to address bounded

rationality among different human sub-populations in the decision-making process, we aim to
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construct human-machine collaborative networks that involve human agents from various sub-

populations by incorporating the concept of quantized priors.

7.1.3 Resilient Energy-efficient Networks

Another future work will involve an extension of our prior work. In the previous work, which

was discussed in Chapter 4, our primary emphasis was on evaluating the performance of OT-based

systems. However, there remains a need for resilient OT-based schemes. We are planning to design

some resilient OT-based schemes. Furthermore, the OT-based framework discussed in Chapter 4

focused on the detection problem. The main idea is that only informative sensors are required to

transmit their data to the FC. We are planning to leverage the idea of this framework to address

estimation problems in energy-efficient WSNs.
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APPENDIX A

APPENDIX: PROOFS OF VARIOUS RESULTS

A.1 Proof of Theorem 2.1, Chapter 2

Instead of directly analyzing the property of P I
e in terms of p2, we utilize Bhattacharyya dis-

tance BD as a surrogate to asymptotically characterize the detection performance of the system

for simplicity. The relationship between Bhattacharyya distance and the probability of error P I
e is

limN→∞
ln(P I

e )
N

≤ BD. For discrete probability distribution, BD =
∑

u∈U −ln
√
P (u|H1)P (u|H0),

where U = {u1,u2, . . . ,u2N} is the set of all the possible realizations of vector u = [u1, u2, . . . , uN ].

Let fi(ui|i ∈ S) = P (ui|H1, i ∈ S)P (ui|H0, i ∈ S) and fi(ui|i ∈ S) = P (ui|H1, i ∈

S)P (ui|H0, i ∈ S). Due to the fact that sensors independently send their local decisions, BD
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is given as

BD =
∑
u∈U

−ln

√∏
i∈S

fi(ui|i ∈ S)
∏
i∈S

fi(ui|i ∈ S)

=
∑
u∈U

−ln

√√√√ N∏
i=1

Fi(ui)

=
∑
u∈U

−ln

√√√√ N∏
i=1

(∑
di∈Q

Fi(ui|di)P (di)

)

=
∑
u∈U

−ln

√√√√ N∏
i=1

Edi{Fi(ui|di)}

(A.1)

where Q = {0, 1}, d = [d1, d2, . . . , dN ] and di ∈ Q. Fi(ui|di) = (πui
11(1 − π11)

1−uiπui
10(1 −

π10)
1−ui)1−di(πui

11(1 − π11)
1−uiπui

10(1 − π10)
1−ui)di . di = 1 indicates that the sensor i is placed in

Set S, otherwise, it is placed in Set S. For sensor i, Edi{F(ui|di)} is given as

Edi{F(ui|di)}

=
∑
q=0,1

F(ui|di = q)P (di = q)

= πui
11(1− π11)

1−uiπui
10(1− π10)

1−uiP (di = 1)

+ πui
11(1− π11)

1−uiπui
10(1− π10)

1−uiP (di = 0).

(A.2)

We now have following two cases:

ui = 1 In this case, Edi{F(ui|di)} = π11π10P (di = 1) + π11π10P (di = 0). We know that

P (di = 1) + P (di = 0) = 1 and αI ≤ α0 ≤ αI . Let h(t) = π11π10 where t = αp1 is the random

variable here. We can obtain ∂2h(t)
t2

= 2(1− 2Pd)(1− 2Pf ) < 0. Hence, h(t) is a concave function

and has the property as following.

P (di = 1)h(t1) + P (di = 0)h(t2) ≤ h(P (di = 1)t1 + P (di = 0)t2) = h(t0) (A.3)
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where t1 = αIp1, t2 = αIp1 and t0 = α0p1.

ui = 0 In this case, Edi{F(ui|di)} = (1− π11)(1− π10)P (di = 1) + (1− π11)(1− π10)P (di =

0). Let g(t) = (1 − π11)(1 − π10) where t = αp1 is the random variable here. We can obtain

∂2g(t)
t2

= 2(1− 2Pd)(1− 2Pf ) < 0. Hence, g(t) is also a concave function and follows the similar

property as (A.3).

Note that we have π11 = π11 = π11 and π10 = π10 = π10 when p2 = 0 according to Lemma 2.1.

We can conclude that Edi{F(ui|di)} ≤ F0(ui), where F0(ui) = πui
11(1−π11)

1−uiπui
10(1−π10)

1−ui .

We call the grouping in TAS with p2 = 0 as non-effective grouping which is the same as the direct

scheme, i.e., αI = α0 = αI , and the grouping in TAS with p2 ̸= 0 as effective grouping. According

to (A.3), We show that the Bhattacharyya distance of the effective grouping is always larger than

that of the non-effective grouping. According to the analysis above, the detection error P (I)
e can

achieve the maximum value when p2 = 0 given specific α0, Pd, Pf and p1. The probability of error

for the system with direct scheme is

P (D)
e = π0Q

(
γ
(D)
f

)
+ π1Q

(
γ(D)
m

)
, (A.4)

where γ
(D)
f and γ

(D)
m are expressed, respectively, as

γ
(D)
f = Q

(
log(π0

π1
)/
√
N +

√
ND0(α0, p)√

π10(1− π10)W 2
d

)
(A.5a)

γ(D)
m = Q

(
log(π0

π1
)/
√
N +

√
ND1(α0, p)√

π11(1− π11)W 2
d

)
, (A.5b)

and, D0(α0, p) = π10 log(
π10

π11
)+(1−π10) log(

1−π10

1−π11
), D1(α0, p) = π11 log(

π11

π10
)+(1−π11) log(

1−π11

1−π10
)

and Wd = log(π11(1−π10)
π10(1−π11)

). Thus, for the non-effective grouping, according to (A.5), D0(α0, p) =

0 can make the system be totally blind when N is large enough. We can easily obtain that

D0(α0, p) = 0 when α0p = 1
2
.
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A.2 Proof of Lemma 3.1, Chapter 3

We have the following four cases when we consider the MMS results of the sensors in the same

group in Chapter 2. Let i and j represent the sensors in the same group.

• If ui = zi and uj = zj , i is a Byzantine node with probability

α1 =P (i = B|ui = zi, uj = zj)

=
α2
0f

(1)
BB + α0(1− α0)f

(1)
BH

α2
0f

(1)
BB + α0(1− α0)(f

(1)
HB + f

(1)
BH) + (1− α0)2f

(1)
HH

,
(A.6)

where f (1)
BB = [2p1p2(1−p1)+(1−2p1+2p21)(1−p2)]

2, f (1)
HB = f

(1)
BH = (1−p2)(1−2p1+2p21)

and f
(1)
HH = 1.

• If ui ̸= zi and uj = zj , i is a Byzantine node with probability

α2 =P (i = B|ui ̸= zi, uj = zj)

=
α2
0f

(2)
BB + α0(1− α0)f

(2)
BH

α2
0f

(2)
BB + α0(1− α0)(f

(2)
HB + f

(2)
BH) + (1− α0)2f

(2)
HH

,
(A.7)

where f
(2)
BB = [2p1p2(1 − p1) + (1 − 2p1 + 2p21)(1 − p2)][1 − 2p1p2(1 − p1) − (1 − 2p1 +

2p21)(1− p2)], f
(2)
HB = p2(1− 2p1 + 2p21),f

(2)
BH = 2p1(1− p2)(1− p1) and f

(2)
HH = 0.

• If ui = zi and uj ̸= zj , i is a Byzantine node with probability

α3 =P (i = B|ui = zi, uj ̸= zj)

=
α2
0f

(3)
BB + α0(1− α0)f

(3)
BH

α2
0f

(3)
BB + α0(1− α0)(f

(3)
HB + f

(3)
BH) + (1− α0)2f

(3)
HH

,
(A.8)

where f
(3)
BB = [2p1p2(1 − p1) + (1 − 2p1 + 2p21)(1 − p2)][1 − 2p1p2(1 − p1) − (1 − 2p1 +

2p21)(1− p2)], f
(3)
HB = 2p1(1− p2)(1− p1),f

(3)
BH = p2(1− 2p1 + 2p21) and f

(3)
HH = 0.
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• If ui ̸= zi and uj ̸= zj , i is a Byzantine node with probability

α4 =P (i = B|ui ̸= zi, uj ̸= zj)

=
α2
0f

(4)
BB + α0(1− α0)f

(4)
BH

α2
0f

(4)
BB + α0(1− α0)(f

(4)
HB + f

(4)
BH) + (1− α0)2f

(4)
HH

,
(A.9)

where f
(4)
BB = [2p1(1− p2)(1− p1) + p2p

2
1]

2, f (4)
HB = f

(4)
BH = 2p1p2(1− p1) and f

(4)
HH = 0.

According to the above results, we have

α = P (i = B|i ∈ T ) =α1 (A.10a)

α = P (i = B|i ∈ T ) =α2P (ui ̸= zi, uj = zj) + α3P (ui = zi, uj ̸= zj)

+ α4P (ui ̸= zi, uj ̸= zj) (A.10b)

The derivative of α with respect to p1 is given by (note that f (1)
HB = f

(1)
BH)

∂α

∂p1
=

∂F1

∂p1
F2 − ∂F1

∂p1
F2

F2
2

(A.11)

where F1 = α2
0f

(1)
BB + α0(1− α0)f

(1)
BH , F2 = α2

0f
(1)
BB + α0(1− α0)(f

(1)
HB + f

(1)
BH) + (1− α0)

2f
(1)
HH ,

∂F1

∂p1
= α2

0
∂f

(1)
BB

∂p1
+ α0(1 − α0)

∂f
(1)
BH

∂p1
and ∂F2

∂p1
= α2

0
∂f

(1)
BB

∂p1
+ 2α0(1 − α0)

∂f
(1)
BH

∂p1
+ (1 − α0)

2 ∂f
(1)
HH

∂p1
. Let

∂α
∂p1

= 0, we have

α2
0

∂f
(1)
BB

∂p1
f
(1)
BH + (1− α0)

∂f
(1)
BB

∂p1
+ (1− α0)

2∂f
(1)
BH

∂p1
= α2

0

∂f
(1)
BH

∂p1
f
(1)
BB (A.12)

due to the fact that ∂f
(1)
HH

∂p1
= 0, where

∂f
(1)
BB

∂p1
=8p1(2p2 − 1)2(1− 2p1)(1− p1) + 4p1(2p2 − 1)(1− 2p1)(1− p2) (A.13)

∂f
(1)
BH

∂p1
=2(1− p2)(2p1 − 1). (A.14)
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We can easily obtain that p1 = 1
2

makes the equation (A.12) always hold for any specific p2 ∈ [0, 1].

In other words, we can obtain that p1 = 1
2

could minimize or maximize α given a specify p2.

Correspondingly, p1 = 0 or 1 could also maximize or minimize α. Table A.1 shows all the possible

maximum or minimum values of α given a specific p2. According to Table A.1, we have

Table A.1: Possible maximum or minimum values of α given a specific p2.
f
(1)
BB f

(1)
BH f

(1)
HH

p1 = 0 (1− p2)
2 1− p2 1

p1 = 1/2 1/4 (1− p2)/2 1
p1 = 1 (1− p2)

2 1− p2 1

α =
α2
0/4 + α0(1− α0)(1− p2)/2

α2
0/4 + α0(1− α0)(1− p2) + (1− α0)2

(A.15)

for p1 = 1
2

and

α =
α2
0(1− p2)

2 + α0(1− α0)(1− p)

α2
0(1− p2)2 + 2α0(1− α0)(1− p2) + (1− α0)2

(A.16)

for p1 = 0 or p1 = 1. Let h = α−α0 represent the difference between α and α0, and it is given by

h =
α0(1− α0)(5α0 − 4 + 2(1− 2α0)(1− p2))

4(α2
0(1− p2)2 + 2α0(1− α0)(1− p2) + (1− α0)2)

(A.17)

for p1 = 1
2
, and it is given by

h =
α0(1− α0)(α0 − 1 + (1− 2α0)(1− p2))

α2
0/4 + α0(1− α0)(1− p2) + (1− α0)2

(A.18)

for p1 = 0 or p1 = 1. Because we only care about the sign of h and the numerator is always

positive. Let hd denote the numerator of h. We have

∂hd

∂p2
=


α0(1−α0)(2α0−1)

2
,if p1 = 1

2

−α0(1− α0)(1− 2α0) ,if p1 = 0 or p1 = 1
(A.19)

We can easily obtained that ∂hd

∂p2
≤ 0 for α0 ≤ 1

2
and ∂hd

∂p2
≥ 0 for α0 ≥ 1

2
given ∀p1 ∈ {0, 1

2
, 1}.
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Fig. A.1: h versus p1 and p2 given α0 = 0.8.

According to (A.19), We can prove that hd ≤ 0 always holds for ∀p1 ∈ {0, 1}. When p1 = 1
2
,

h ≤ 0 also holds for ∀α0 ∈ [0, 1
2
].

When α0 >
1
2

and p1 =
1
2
, the value of p2 that guarantees h ≤ 0 should be smaller than pmax

2 .

pmax
2 can be obtained from letting ∂h

∂p2
= 0 and it is given by

pmax
2 = min

{
α0 − 2

2(1− 2α0)
, 1

}
(A.20)

for α0 >
1
2

and p1 =
1
2
. Note that pmax

2 = 1 implies α0−2
2(1−2α0)

≥ 1 such that α0 ≤ 0.8. Hence, if the

fraction of Byzantine nodes in the network is smaller than 0.8, i.e., α0 ≤ 0.8, α is always smaller

than α0. In other words, we always have a lower probability of existence of Byzantine nodes in set

T when α0 ≤ 0.8. Fig. A.1 corroborates the results in (A.20).

Since P (i ∈ T )α + P (i ∈ T )α = α0, we have

P (i ∈ T )α0 + P (i ∈ T )α ≥ α0

P (i ∈ T )α ≥ α0(1− P (i ∈ T )

α ≥ α0

(A.21)

when p2 ∈ [0, pmax
2 ], α0 ∈ [1

2
, 1] and p1 ∈ [0, 1]. According to the above analysis, (A.21) also holds

when α0 ∈ [0, 1
2
], p1 ∈ [0, 1] and p2 ∈ [0, 1].
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A.3 Proof of Lemma 4.1, Chapter 4

According to the fusion rule given in (4.3), we can infer that when inequality
∑k

i=1 L[i] − (N −

k)|L[k]| > λ holds, the FC can decide H1 based on the first k received transmissions. Similarly,

when inequality
∑k

i=1 L[i] + (N − k)|L[k]| < λ holds, the FC can decide H0 based on the first k

received transmissions. The minimum value of k that satisfies either of the inequalities in (4.3),

i.e., the minimum number of transmissions required to make a decision, is denoted as

kmin =


k∗
U when the FC decides H0

k∗
L when the FC decides H1,

(A.22)

where

k∗
U = argmin

1≤k≤N

{
k∑

i=1

L[i] + (N − k)|L[k]| < λ

}
(A.23)

and

k∗
L = argmin

1≤k≤N

{
k∑

i=1

L[i] − (N − k)|L[k]| > λ

}
(A.24)

denote the minimum number of transmissions required to decide H0 and H1, respectively.1 Under

H0 (kmin = k∗
U ), we have

ZU =

kmin∑
i=1

L[i] + (N − kmin)|L[kmin]| ≥
N∑
i=1

L[i] = Z, (A.25)

and under H1 (kmin = k∗
L), we have

ZL =

kmin∑
i=1

L[i] − (N − kmin)|L[kmin]| ≤
N∑
i=1

L[i] = Z. (A.26)

1Please note that if there is no k ∈ {1, 2, . . . , N} that satisfies the condition
∑k

i=1 L[i] + (N − k)|L[k]| < λ (or
if there is no k ∈ {1, 2, . . . , N} that satisfies

∑k
i=1 L[i] − (N − k)|L[k]| > λ), we define k∗U = argmin ∅ = 0 (or

k∗L = argmin ∅ = 0).
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This is because of the fact that |L[1]| > |L[2]| > · · · > |L[N ]|). Note that kmin = k∗
U is equivalent to

ZU < λ, and kmin = k∗
L is equivalent to ZL > λ. Based on (A.25) and (A.26), we can easily infer

that Pr(Z < λ|ZU < λ) = 1 and Pr(Z > λ|ZL > λ) = 1, respectively. On the other hand, since

Z>λ ⇔
k∑

i=1

L[i]+
N∑

i=k+1

L[i]>λ (A.27a)

=⇒
k∑

i=1

L[i]>λ−
N∑

i=k+1

L[i]≥λ−(N−k)|L[k]| (A.27b)

=⇒
k∑

i=1

L[i]>λ− (N − k)|L[k]| (A.27c)

holds ∀k, from the definition of k∗
U , it becomes evident that the FC is unable to make a decision

H0 for any value of k. So if Z > λ, we have Pr(kmin = k∗
U) = 0 and Pr(kmin = k∗

L) = 1, i.e.,

Pr(ZU < λ) = 0 and Pr(ZL > λ) = 1. It can be concluded that Pr(ZL > λ|Z > λ,Hj) = 1.

Following a similar procedure, we can also obtain Pr(ZU < λ|Z < λ,Hj) = 1.

Based on the above analysis, we can calculate Pr(ZL > λ|Hj) according to Bayesian rule

given as

Pr(ZL > λ|Hj) =
Pr(ZL>λ|Z>λ,Hj)Pr(Z>λ|Hj)

Pr(Z > λ|ZL > λ,Hj)

= Pr(Z > λ|Hj). (A.28)

Similarly, we obtain Pr(ZU < λ|Hj) = Pr(Z < λ|Hj). Hence, the probability of error of the

OT-based system is given as

P (OT )
e =π0Pr(ZL>λ|H0)+π1Pr(ZU < λ|H1)

=π0Pr(Z>λ|H0)+π1Pr(Z<λ|H1)=P (opt)
e , (A.29)

where P
(opt)
e is the error probability of the unordered system.
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A.4 Proof of Theorem 4.1, Chapter 4

Let N̄t denote the average number of transmissions in the network. N̄t is given as

N̄t = E(k∗) =
N∑
k=1

kPr(k∗ = k) =
N∑
k=1

Pr(k∗ ≥ k) (A.30a)

=
N∑
k=1

Pr(k∗ ≥ k|H0)π0 + Pr(k∗ ≥ k|H1)π1, (A.30b)

where Pr(k∗ ≥ k) is the probability that at least k transmissions in the network are needed to make

the final decision. Note that k∗ is the minimum number of observations/transmissions required

to make a decision. k can be considered as the number of observations that have already been

received by the FC. The global statistic at the FC is given by
∑k

i=1 L[i], where
∑k

i=1 L[i] represents

the accumulated LLRs up to the kth transmission at the FC. Next Lemma helps us to obtain the

probability of the event that at least k transmissions are required to make the final decision.

Lemma A.1. The FC can not decide H1 or H0 until the FC has received at least k transmissions if∑k−1
i=1 L[i] satisfies both

∑k−1
i=1 L[i] ≤ λ+(N−k+1)|L[k−1]| and

∑k−1
i=1 L[i] ≥ λ−(N−k+1)|L[k−1]|.

PROOF: When the FC received the first (k − 1) LLRs, i.e, [L[1], L[2], . . . , L[k−1]], we discuss the

cases that the FC can not decide H1 and the FC can not decide H0.

Recall that |L[1]| ≥ |L[2]| · · · ≥ |L[N ]|, we have Z ≤
∑k−1

i=1 L[i] + (N − k + 1)|L[k−1]| = ηU .

Obviously, the FC is not able to decide H0 when ηU > λ. Moreover, (A.31) shows that if the FC

doesn’t decide H0 after receiving the first (k− 1) LLRs, it can’t decide H0 after receiving the first

(k − 2) observations.

ηU =
k−1∑
i=1

L[i] + (N − k + 1)|L[k−1]| (A.31a)

=
k−2∑
i=1

L[i] + (N − k + 2)|L[k−2]|+ (N − k + 1)

× (|L[k−1]| − |L[k−2]|) + (L[k−1] − |L[k−2]|). (A.31b)



161

As |L[k−1]| ≤ |L[k−2]| and L[k−1] ≤ |L[k−1]| ≤ |L[k−2]|, we have |L[k−1]| − |L[k−2]| ≤ 0 and

L[k−1] − |L[k−2]| ≤ 0 in (A.31b). Hence, we can obtain that (A.31b)> λ implies
∑k−2

i=1 L[i] +

(N − k + 2)|L[k−2]| > λ. Following the similar procedure as shown in (A.31), we are able to

conclude that if the FC can’t decide H0 after receiving the first (k − 1) LLRs, it can’t decide H0

after receiving 0 or 1 or . . . , or (k − 2) observations.

we can obtain that ηL =
∑k−1

i=1 L[i] − (N − k + 1)|L[k−1]| ≤ Z after the FC has received the

first (k − 1) LLRs. Obviously, the FC can not decide H1 when ηL < λ. Following the similar

procedure as shown in (A.31), we can prove that if the FC can’t decide H1 after receiving the first

(k− 1) largest LLRs, it can’t decide H1 after receiving 0 or 1 or . . . , or (k− 2) observations. The

proof for this is similar as above and is skipped.

To evaluate Pr(k∗ ≥ k|Hh), we have

Pr(k∗ ≥ k|Hh) =

∫
lk−1∈J

fL[k−1]
(l[1], . . . , l[k−1]|Hh)dl1 . . . dlk−1, (A.32)

where fL[k−1]
(l[1], . . . , l[k−1]|Hh) is the joint pdf of l[1], l[2], . . . , l[k−1] given Hh for h = 0, 1. Ac-

cording to [18], the joint pdf of l[1], l[2], . . . , l[k−1] given Hh is given as

fL[k−1]
(l[1], . . . , l[k−1]|Hh)

=
N !

(N − k + 1)!

[
k−1∏
i=1

fL(li|Hh)

][
F|L|(lk−1|Hh)

]N−k+1
1{J } (A.33)

where J = L
⋂

U
⋂

D is the intersection of hyperplanes L, U and D, and F|Lk|(lk|Hh) is the cdf

of |Lk| for h = 0, 1. By substituting (A.33) in (A.32) and utilizing the law of total expectation,

(A.32) can be rewritten as

Pr(k∗ ≥ k|Hh) = ELk−1

[
N !

(N − k + 1)!

[
F|L|(lk−1|Hh))

]N−k+1
1{J }

]
(A.34)

for h = 0, 1, where F|L|(lk−1|Hh)) is given in (4.12). Note that the Byzantines affect the average
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number of transmissions by affecting attack parameters (α,D) in F|L|(Lk−1|Hh).2

A.5 Proof of Theorem 4.2, Chapter 4

Let N̄s denote the average number of transmissions saved in the network given as

N̄s =
N∑
k=1

(N − k)Pr(k∗ = k) =
N−1∑
k=1

Pr(k∗ ≤ k) (A.35a)

=
N−1∑
k=1

Pr(k∗ ≤ k|H0)π0 + Pr(k∗ ≤ k|H1)π1. (A.35b)

Next, we use the following lemma from [18, Chapter 5] to prove Theorem 4.2.

Lemma A.2. According to Cauchy-Schwarz inequality, we have

|
∑

ci(L[i] − L̄)| ≤ [
∑

(ci − c̄)2(N − 1)v]
1
2 (A.36)

in terms of empirical mean L̄ and empirical variance v for any constants {ci}Ni=1. If ci is non-

increasing when i increases, the bound is sharp.

From Lemma A.2, we have |
∑k

i=1 L[i] − kL̄| ≤ [
∑

(ci − c̄)2(N − 1)v]
1
2 if we let c1 = c2 =

· · · = ck = 1 and ck+1 = · · · = cN = 0. Hence, the LB and the UB of
∑k

i=1 L[i] are given by gL ≤∑k
i=1 L[i] ≤ gU , where gL = −[

∑
(ci− c̄)2(N−1)v]

1
2 +kL̄ and gU = [

∑
(ci− c̄)2(N−1)v]

1
2 +kL̄.

LB of N̄s

When the FC decides H1 in at most k transmissions given hypothesis Hh, we have

Pr(k∗ ≤ k|Hh)=Pr(
k∑

i=1

L[k]>λ+(N−k)|L[k]||Hh). (A.37)

2D affects η1 and η0 in F|L|(Lk−1|Hh).
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for h = 0, 1. It is easy to show that gL > λ+(N − k)|L[k]| implies
∑k

i=1 L[i] > λ+(N − k)|L[k]|.

Hence, from (A.37), we get

Pr(k∗ ≤ k|Hh) ≥ Pr(gL > λ+ (N − k)|L[k]||Hh) (A.38)

Similarly, when the FC decides H0 in at most k transmissions given hypothesis Hh, we get

Pr(k∗ ≤ k|Hh) ≥ Pr(gU < λ− (N − k)|L[k]||Hh) (A.39)

The inequality in (A.39) is true due to the fact that gU < λ − (N − k)|L[k]| implies
∑k

i=1 L[i] <

λ − (N − k)|L[k]|. Substituting Pr(k∗ ≤ k|H0) and Pr(k∗ ≤ k|H1) in (A.35) with their LBs

Pr(gL > λ+ (N − k)|L[k]||Hh) and Pr(gU < λ− (N − k)|L[k]||Hh), respectively, we get

N̄s≥
N−1∑
k=1

1∑
h=0

πh

[
Pr(gL>λ+nUT |L[k]||Hh)+Pr(gU <λ−nUT |L[k]||Hh)

]
(A.40)

where nUT = N − k. A Monte Carlo approach can be utilized to evaluate Pr(gL > λ + (N −

k)|L[k]||Hh) and Pr(gU > λ−(N−k)|L[k]||Hh). We generate M2 realizations of L[1], L[2], . . . , L[N ]

so that the empirical mean L̄ and the empirical variance v can be calculated. When M2 is suffi-

ciently large, L̄ approaches the population mean. The population mean and the population variance

under Hh are, respectively, expressed as

δh=E[Li|Hh]=αηh+(1−α)µh, ζ2h=E[L2
i |Hh]−δ2h, (A.41)

where E[L2
i |Hh] = αE[L2

i |Hh, i = B] + (1 − α)E[L2
i |Hh, i = H] = β + αη2h + (1 − α)µ2

h for

h = 0, 1. Substituting the parameters (L̄, v) in (A.40) with parameters (δh, N
N−1

ζ2h) under Hh for

h = 0, 1 yields

N̄s≥
N−1∑
k=1

1∑
h=0

πh

[
Pr

(
|L[k]|<

gL−λ

(N−k)
|Hh

)
+Pr

(
|L[k]|<

λ−gU
(N − k)

|Hh

)]
, (A.42)
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where Pr
(
|L[k]|<r|Hh

)
=
∫ r

0
f|L[k]|(l[k]|Hh)dl[k] for r ∈ { gL−λ

(N−k) ,
λ−gU
(N−k)

}. It is given in closed form

as [18]

fL[k]
(l[k]|Hh)=NfL(l[k]|Hh)

(
N − 1

k − 1

)
FL(l[k]|Hh)

(N−k)(1− FL(l[k]|Hh))
(k−1). (A.43)

Hence, the pdf of f|L[k]|(l[k]|Hh) is given by

f|L[k]|(l[k]|Hh) =
dPr(|L[k]| ≤ l[k])

dl[k]
=

 fL[k]
(l[k]|Hh)− fL[k]

(−l[k]|Hh) if l[k] ≥ 0

0 if l[k] < 0
(A.44)

Substituting (A.44) in (A.42), we are able to obtain the lower bound of the number of trans-

missions saved.

UB of N̄s

It is easy to show that
∑k

i=1 L[k] > λ+(N −k)|L[k]| implies gU > λ+(N −k)|L[k]|. Hence, from

(A.37), we get

Pr(gU > λ+ (N − k)|L[k]||Hh) ≥ Pr(k∗ ≤ k|Hh) (A.45)

Similarly, due to the fact that
∑k

i=1 L[i] < λ− (N − k)|L[k]| implies gL < λ− (N − k)|L[k]|,

we can also get

Pr(gL < λ− (N − k)|L[k]||Hh) ≥ Pr(k∗ ≤ k|Hh). (A.46)

Hence, we have

N̄s≤
N−1∑
k=1

1∑
h=0

Pr
(
gU >λ+nUT |L[k]| or gL<λ−nUT |L[k]||Hh

)
πh, (A.47)
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where nUT = N − k and

Pr(gU > λ+ nUT |L[k]| or gL < λ− nUT |L[k]||Hh)

=Pr(gU>λ+nUT |L[k]||Hh)+Pr(gL<λ−nUT |L[k]||Hh)

− Pr(gU >λ+nUT |L[k]| and gL<λ−nUT |L[k]||Hh)

=Pr

(
|L[k]| ≤

gU − λ

N − k
|Hh

)
+ Pr

(
|L[k]| ≤

λ− gL
N − k

|Hh

)
− Pr

(
|L[k]| ≤ min

(
gU − λ

N − k
,
λ− gL
N − k

)
|Hh

)
.

(A.48)

Following the similar procedure when we obtain the LB of N̄s, we can get the UB of N̄s. Then,

we can obtain the UB and the LB in Theorem 4.2.

A.6 Proof of Theorem 4.4, Chapter 4

According to Equation (4.46), N̄s,CEOT is given as

N̄s,CEOT =
N−1∑
k=1

Pr(k∗ ≤ k)

=
N−1∑
k=1

Pr(k∗ ≤ k|Γ < T )Pr(Γ < T ) + Pr(k∗ ≤ k|Γ ≥ T )Pr(Γ ≥ T ). (A.49)

LB of N̄s,CEOT

Recall that k∗
0 and k∗

1 denote the minimum number of transmissions needed to make a final decision

for descending and ascending ordered local decisions, respectively. It is easy to show that k∗
1 ≤ k

implies k∗ ≤ k given Γ ≥ T and k∗
0 ≤ k implies k∗ ≤ k given Γ < T . Hence, we have

Pr(k∗ ≤ k|Γ ≥ T ) ≥ Pr(k∗
1 ≤ k|Γ ≥ T ), (A.50)

Pr(k∗ ≤ k|Γ < T ) ≥ Pr(k∗
0 ≤ k|Γ < T ). (A.51)
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Substituting Pr(k∗ ≤ k|Γ < T ) and Pr(k∗ ≤ k|Γ ≥ T ) in (A.49) with their LBs Pr(k∗
0 ≤ k|Γ <

T ) and Pr(k∗
1 ≤ k|Γ ≥ T ), respectively, we get

N̄s,CEOT ≥
1∑

h=0

N−1∑
k=1

P (k∗
1≤k|Γ≥T,Hh)P (Γ≥T |Hh)πh

+
N−1∑
k=1

P (k∗
0≤k|Γ<T,Hh)P (Γ<T |Hh)πh. (A.52)

Since z(i) and z[i] for ∀i ∈ {1, 2, . . . , N} are non-negative, we have 0 ≤
∑k∗1

i=1 z(i) ≤ k∗
1 and

0 ≤
∑k∗0

i=1 z[i] ≤ k∗
0 . For the fusion rule of equivalent worst case given Γ ≥ T , which is given as

k∗1∑
i=1

z(i) ≥ T decides H1, (A.53)

where k∗
1 ≥ T is needed to make a decision H1.

For the fusion rule of equivalent worst case given Γ < T given as

k∗0∑
i=1

z[i] < T − (N − k∗
0) decides H0, (A.54)

where k∗
0 > N −T is needed to make a decision H0. Hence, it is obvious that the FC can not make

decision H0 given Γ < T when k∗
0 ≤ N − T and the FC can not make decision H1 given Γ ≥ T

when k < T . Hence, we have

T−1∑
k=1

P (k∗
1 ≤ k|Γ ≥ T,Hh)=

N−T∑
k=1

P (k∗
0 ≤ k|Γ<T,Hh)=0. (A.55)

As shown in (4.48), the magnitude of local decisions are ordered in an ascending order, i.e., |z(1)| ≤

|z(2)|, . . . ,≤ |z(N)|, when we consider the equivalent worst case given Γ ≥ T . It is apparent

that Γ ≥ T implies that the distributed system without ordering would make a decision of H1.

According to Lemma 4.2, the detection performance of the CEOT-based system is the same as

that of the distributed system without ordering. We can easily conclude that k∗ ≤ k∗
1 is always
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satisfied, which indicates that the minimum number of transmissions required to make a decision

for equivalent worst case given Γ ≥ T is always greater than or equal to the actual minimum

number of transmissions required. Since at most min(N − T, k− T ) 0s are required when Γ ≥ T

for the unordered distributed system, we have

P (k∗
1 ≤ k|Γ ≥ T,Hh) =

min(N−T,k−T )∑
i=0

(
N

i

)
πi
0,hπ

N−i
1,h , (A.56)

when k ≥ T .

Similarly, as shown in (4.47), the magnitude of local decisions are ordered in a descending

order, i.e., z[1] ≥ z[2], . . . ,≥ z[N ], when we consider the equivalent worst case given Γ < T .

Here, Γ < T implies that the distributed system without ordering would make a decision of H0.

According to Lemma 4.2, we can also easily conclude that k∗ ≤ k∗
0 is always satisfied, which

means that the minimum number of transmissions required to make a decision for equivalent worst

case given Γ < T is always greater than or equal to the true minimum number of transmissions

required. Since at most min(T−1, k−(N−T+1)) 1s are required when Γ < T for the unordered

distributed system, we have

P (k∗
0 ≤ k|Γ < T,Hh) =

min(T−1,k−(N−T+1))∑
i=0

(
N

i

)
πi
1,hπ

N−i
0,h (A.57)

if k > N − T .

UB of N̄s,CEOT

By substituting k∗
1 in (A.53) with k∗

0 , we can obtain the fusion rule of equivalent best case given

Γ ≥ T where k∗
0 ≥ T is needed to make a decision H1. Similarly, by substituting k∗

0 in (A.54)

with k∗
1 , we can obtain the fusion rule of equivalent best case given Γ < T where k∗

1 > N − T is

needed to make a decision H0. It is easy to show that k∗ ≤ k implies k∗
1 ≤ k given Γ < T and
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k∗ ≤ k implies k∗
0 ≤ k given Γ ≥ T . Hence, we get

Pr(k∗
1 ≤ k|Γ < T ) ≥ Pr(k∗ ≤ k|Γ < T ), (A.58)

Pr(k∗
0 ≤ k|Γ ≥ T ) ≥ Pr(k∗ ≤ k|Γ ≥ T ). (A.59)

Substituting Pr(k∗ ≤ k|Γ < T ) and Pr(k∗ ≤ k|Γ ≥ T ) in (A.49) with their UBs Pr(k∗
1 ≤ k|Γ <

T ) and Pr(k∗
0 ≤ k|Γ ≥ T ), respectively, we get

N̄s,CEOT ≤
1∑

h=0

N−1∑
k=1

P (k∗
1≤k|Γ<T,Hh)P (Γ<T |Hh)πh

+
N−1∑
k=1

P (k∗
0 ≤ k|Γ≥T,Hh)P (Γ ≥ T |Hh)πh. (A.60)

Following the similar procedure, we have

N−T∑
k=1

P (k∗
1≤k|Γ<T,Hh)=

T−1∑
k=1

P (k∗
0≤k|Γ ≥ T,Hh)=0. (A.61)

According to Lemma 4.2, it is apparent that k∗
1 ≤ k∗ is always satisfied if Γ ≥ T , i.e., the minimum

number of transmissions required to make a decision for equivalent best case given Γ ≥ T is always

less than or equal to the actual minimum number of transmissions required. Similarly, we can also

conclude that k∗
0 ≤ k∗ is always satisfied if Γ < T . Following a similar procedure to derive the

LB, we obtain

P (k∗
1 ≤ k|Γ < T,Hh) =

T−1∑
i=0

(
N

i

)
πi
1,hπ

N−i
0,h , (A.62)

when k > N − T and

P (k∗
0 ≤ k|Γ ≥ T,Hh) =

N−T∑
i=0

(
N

i

)
πi
0,hπ

N−i
1,h , (A.63)

when k ≥ T . Then, we obtain the UB, which is given by substituting (A.61), (A.62) and (A.63)

in (A.60), and the LB, which is given by substituting (A.55), (A.56) and (A.57) in (A.52), in
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Theorem 4.4.

A.7 Proof of Lemma 4.2, Chapter 4

Recall that k∗
U and k∗

L are the minimum number of transmissions required to decide H0 and H1,

respectively. These are given as follows.

k∗
U = min

1≤k≤N

{
k∑

i=1

u[i] < T − (N − k)

}
(A.64)

k∗
L = min

1≤k≤N

{
k∑

i=1

u[i] ≥ T

}
. (A.65)

It is obvious that k∗
U and k∗

L can not exist at the same time. If k∗
U is valid, the FC decides hypotheses

H0, and if k∗
L is valid, the FC decides hypotheses H1. Since only one of the two hypotheses H1

and H0 can occur at any given time, only one of k∗
L or k∗

U is valid at any given time. Let ZU , ZL

denote the upper bound and lower bound of Z =
∑N

i=1 u[i], respectively, if k∗
U or k∗

L is valid. Due

to the fact that u[i] ∈ {0, 1} for ∀i ∈ {1, 2, . . . , N}, we have

ZU =

k∗U∑
i=1

u[i] + (N − k∗
U) ≥

N∑
i=1

u[i] = Z (A.66)

if k∗
U is valid and

ZL =

k∗L∑
i=1

u[i] ≤
N∑
i=1

u[i] = Z (A.67)

if k∗
L is valid. According to the fusion rule given in (4.20), the FC decides hypothesis H0 if ZU < T ,

and hypothesis H1 if ZL ≥ T . Since only one of k∗
U and k∗

L is valid, we have Pr(k∗
U is valid) +

Pr(k∗
L is valid) = 1, which is equivalent to Pr(ZU < T ) + Pr(ZL ≥ T ) = 1.

If the FC decides H1 for an unordered system, we have

Z ≥ T
implies
=⇒

k∑
i=1

u[i] +
N∑

i=k+1

u[i] ≥ T (A.68a)
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=⇒
k∑

i=1

u[i] ≥ T −
N∑

i=k+1

u[i] ≥ T − (N − k) (A.68b)

=⇒
k∑

i=1

u[i] ≥ T − (N − k) (A.68c)

for ∀k. We could observe from (A.64) that k∗
U is not valid when Z ≥ T . So if Z ≥ T , we have

Pr(ZU < T ) = 0 and Pr(ZL ≥ T ) = 1. Hence, we can conclude that Pr(ZL ≥ T |Z ≥ T,Hj) =

1. Upon following a similar analysis, we obtain Pr(Z ≥ T |ZL ≥ T,Hj) = 1. This allows us to

calculate Pr(ZL ≥ T |Hj) according to Bayes’ rule which is given as

Pr(ZL ≥ T |Hj) =
Pr(ZL ≥ T |Z ≥ T,Hj)Pr(Z ≥ T |Hj)

Pr(Z ≥ T |ZL ≥ T,Hj)

= Pr(Z ≥ T |Hj). (A.69)

Similarly, we obtain Pr(ZU < T |Hj) = Pr(Z < T |Hj). Hence, the probability of error of the

CEOT-based system is given as

P (OT )
e = π0Pr(ZL ≥ T |H0) + π1Pr(ZU < T |H1)

= π0Pr(Z ≥ T |H0) + π1Pr(Z < T |H1) = P (opt)
e , (A.70)

where P
(opt)
e is the probability of error of the unordered system.

A.8 Proof of Theorem 5.1, Chapter 5

We first consider the scenario where sensors send binary decisions to the FC, i.e., q = 1. After

that, we consider the system where sensors send q-bit decisions to the FC (q ≥ 2). Here, we only

consider the assumption that τ̃j,2q ≪ τi,1. Nevertheless, we can reach similar conclusions if we

assume τi,2q ≪ τ̃j,1.
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When Sensors Send Binary Decisions (q=1)

The joint pmf of local decisions coming from the reference sensors under hypothesis Hh is given

as P (Uref |Hh, p, x) =
∏Nref

i=1 (1 − x)uix1−ui for h = 0, 1. Take the logarithm of both sides, we

have

logP (Uref |Hh, p, x)=

Nref∑
i=1

[ui log(1− x) + (1− ui) log x]

=Y log(1−x)+(Nref−Y ) log x, (A.71)

where Y =
∑Nref

i=1 ui. Let ∂P (Uref |Hh,p,x)

∂x
= 0, we are able to obtain the estimated attack parameter

x̂h under hypothesis Hh which maximizes logP (Uref |Hh, p, x) and the estimated attack parameter

x̂h is given as x̂h = 1− Y
Nref

.

In order to evaluate the estimator performance, it should be noted that it is unbiased since

E[x̂h] = 1− 1

Nref

E[Y ] = 1− 1

Nref

Nref∑
i=1

E[ui] = x (A.72)

The variance of the estimator is given as

E[x̂h] =E[x̂2
h]− E2[x̂h] = E

[(
1− Y

Nref

)2
]
− x2

=1− x2 − 2

Nref

E[Y ] +
1

N2
ref

E[Y 2]

=1− x2 − 2(1− x) +
1

N2
ref

(V ar[Y ] + E2[Y ])

=1− x2 − 2(1− x) +
1

N2
ref

[Nrefx(1− x) +N2
ref (1− x)2]

=
(1− x)x

Nref

(A.73)

To evaluate the performance of the estimator, the CRLB can be calculated which is − 1

E[∂2P (Uref |Hh,p,x)/∂x2]
.

Taking the second derivative of P (Uref |Hh, p, x) with respect to x, we have ∂2P (Uref |Hh,p,x)

∂x2 =
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∑Nref

i=1

[
− ui

(1−x)2
− 1−ui

x2

]
. Subsequently, taking the expectation of the above equation, we have

E

[
∂2P (Uref |Hh, p, x)

∂x2

]
=

Nref∑
i=1

E

[
∂2P (ui|Hh, p, x)

∂x2

]

=

Nref∑
i=1

− 1

(1− x)2
(1− x)− 1

x2
x

=− Nref

(1− x)x
. (A.74)

Therefore, the CRLB is (1−x)x
Nref

which is the same as (A.73). This indicates that the proposed

estimator attains the CRLB; that is, it is an efficient estimator when sensors in the network send

binary decisions.

When Sensors Send q-bit Decisions (q ≥ 2)

The joint pmf of local decisions coming from the reference sensors under hypothesis Hh is given

as P (Uref |Hh, p, x) =
∏Nref

i=1 (1−x)I(ui=v2q )
∏2q−1

j=1 ( x
2q−1

)I(ui=vj) for h = 0, 1. Take the logarithm

of both sides, we have

logP (Uref |Hh, p, x)

=

Nref∑
i=1

I(ui = 2q) log(1− x) +
2q−1∑
j=1

I(ui = vj) log(
x

2q − 1
), (A.75)

Taking the first derivative of P (Uref |Hh, p, x) with respect to x, we have

∂P (Uref |Hh, p, x)

∂x
=

Nref∑
i=1

−1
1−x

I(ui=2q)+
2q−1∑
j=1

1

x
I(ui=vj)

=
−Y1

1− x
+
Y2

x
(A.76)

=
−Y1

1−x
+
Nref−Y1

x
(A.77)

where Y1 =
∑Nref

i=1 I(ui = v2q) and Y2 =
∑Nref

i=1

∑2q−1
j=1 I(ui = vj). In going from (A.76) to
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(A.77), the fact that Y1 + Y2 = Nref is utilized. Let ∂P (Uref |Hh,p,x)

∂x
= 0, we are able to obtain

the estimated attack parameter x̂ which maximizes logP (Uref |Hh, p, x). The estimated attack

parameter x̂h under hypothesis Hh is given as x̂h = 1− Y1

Nref
.

In order to evaluate the estimator performance, it should be noted that it is unbiased since

E[x̂h] =1− 1

Nref

E[Y1] = x (A.78)

Similarly, the variance of the estimator is given as

E[x̂h] =E[x̂2
h]− E2[x̂h] = E

[(
1− Y1

Nref

)2
]
− x2

=1− x2 − 2

Nref

E[Y1] +
1

N2
ref

E[Y 2
1 ]

=
(1− x)x

Nref

(A.79)

To evaluate the performance of the estimator, the CRLB can be calculated which is − 1

E[∂2P (Uref |Hh,p,x)/∂x2]
.

Taking the second derivative of P (Uref |Hh, p, x) with respect to p, we have

∂2P (Uref |Hh, p, x)

∂x2
=

Nref∑
i=1

−I(ui=2q)

(1−x)2
−

2q−1∑
i=1

I(ui=vj)

x2

=

Nref∑
i=1

−I(ui=2q)

(1− x)2
− 1−I(ui=2q)

x2
(A.80)

Subsequently, taking the expectation of the above equation, we have

E

[
∂2P (Uref |Hh, p, x)

∂x2

]
=

Nref∑
i=1

E

[
∂2P (ui|Hh, p, x)

∂x2

]

=

Nref∑
i=1

− 1

(1− x)2
(1− x)− 1

x2
x

=− Nref

(1− x)x
(A.81)
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Therefore, the CRLB is (1−x)x
Nref

which is the same as (A.79). This indicates that the proposed estima-

tor attains the CRLB; that is, it is an efficient estimator when sensors in the network send q-bits de-

cisions. This completes our proof.
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