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Abstract

In the first part of this dissertation, we consider the control of autonomous systems in

the presence of pointwise-in-time state and control constraints. Firstly, we propose the

attitude and pointing control of a rigid body in the presence of constraints. Artificial

potentials are used to achieve desired tracking and avoid pointing direction constraints.

The proposed control law ensures the asymptotic convergence to the desired attitude and

pointing direction. Additionally, the control of driftless control-affine systems is also con-

sidered. The feedback system converges in a stable manner to the desired safe set in the

state space, while avoiding the unsafe exclusion zones in the state space and maintain-

ing control input constraints. The problem of constraints satisfaction is then extended to

the case where system model is unknown or partially known. The design of reference

governors is proposed to the data-driven control of systems with unknown input-output

dynamics. The Lyapunov analysis ensure that the output of the reference governor-based

control system converges to a desired output trajectory that meets the constraints.

In the second part of this dissertation, we consider state estimation on the Lie group

of rigid body motions, SE(3). A finite-time stable pose estimation scheme is proposed

to provide estimates of the pose from three-dimensional point cloud measurements ob-

tained by a body-mounted optical sensor(s). This observer is designed directly on the Lie

group of rigid body motions, SE(3), and is model-free. The proposed Lyapunov analysis

shows finite-time stability and its robustness to bounded measurement noises.
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Chapter 1

Introduction

Autonomous unmanned vehicles have gained significant attention over past few years.

The applications of these vehicles span multiple domains such as military, space explo-

ration, inspection of infrastructure like buildings and bridges, farming, underwater re-

search and exploration, wildlife tracking, package delivery, and remote sensing. Au-

tonomous systems pose us with a number of challenges, including guidance, trajectory

tracking and constraints satisfaction that has attracted the attention of many researchers.

Constraints in the autonomous systems are limitations that system must adhere to for

safe and efficient operation. These constraints primarily consists of pointwise-in-time

state and control constraints.

The first phase of this work, which includes Chapters 2 and 3, outlines attitude track-

ing control and pointing direction control in the presence of constraints using artificial po-

tentials. The literature on artificial potentials includes path planning for collision avoid-

ance, formation control. Artificial potentials have been used as a way for collision avoid-

ance (Khatib and Maitre, 1978). Collision avoidance can be distributed among several

levels of control as described in (Khatib, 1985) and (Khatib, 1986) instead of just as a

1



high level problem. This significantly helps to increase the safety in real-time opera-

tions. Obstacles detected can be avoided by constructing repulsive artificial potential

fields around them, and destinations and waypoints are represented as attractive poten-

tials. The concept of artificial potentials has also been used in robot path planning (Ri-

mon and Koditschek, 1992). The artificial potential function can be designed to include

information on the environment. Guidance for multiple robots can also be carried out

using artificial potentials (Warren, 1990). Artificial potentials can be used for fast and effi-

cient path planning by prioritizing robots accordingly. Artificial potentials have also been

applied in spacecraft formation control (Renevey and Spencer, 2019). A scheme for au-

tonomous rendezvous in orbit with a target can be designed using an artificial potential

function (Lopez and McInnes, 1995). Spacecraft collision avoidance during a rendezvous

maneuver using an artificial potential for guidance and sliding mode control for tracking

is another application (M. Mancini and Punta, 2020). Artificial potential using relative

orbital elements to achieve a relative orbit was treated in (Spencer, 2016). Another ap-

plication of artificial potential is for in orbit servicing (Tatsch and Fitz-Coy, 2006). This

concept uses a simple attractive and a dynamic repulsive artificial potential, which pri-

oritizes obstacles to avoid by assigning weight factors. Applications to formation con-

trol for multiple unmanned aerial vehicles are discussed in (Yin, Cam, and Roy, 2017)

and (Skyrda, Chepizhenko, and Davydenko, 2019). The former chapter describes forma-

tion tracking control in a constrained space. It uses the formation potential field which

is a modified artificial potential field that maintains the formation along with collision

avoidance among the vehicles and also the surroundings. The latter chapter describes a

formation potential field for formation control and collision avoidance in dynamic envi-

ronments. Another approach involves use of logarithmic barrier potentials in terms of

2



quaternions, for spacecraft attitude control in order to avoid constraints and remain in

certain zones (Lee and Mesbahi, 2011).

These prior works use feedback of the full attitude state of the rigid body. However,

the full attitude state may not always be available or necessary for pointing control. For

pointing (boresight) control, the problem is one of reduced attitude control of a rigid body,

where the configuration space is the sphere S2, consisting of unit vectors in R3. Spacecraft

attitude pointing control with sun direction vector avoidance for large angle maneuvers

using Euler angles was carried out in (Mclnnes, 1994). Attitude control for large angle

rotations using quaternions are studied, e.g., in (Wie and Barba, 1985). Among the prior

literature related to reduced attitude control, (Bullo and Murray, 1995) is focused on con-

trol on S2 and stabilization of the spacecraft about an unactuated axis of rotation. An

extensive study of control on spheres is performed in (Brockett, 1973). In (Isidori, 1995),

an underactuated spacecraft is asymptotically stabilized using state feedback law. A de-

tailed review of rigid body attitude control, with particular emphasis on stability and

stabilization, was provided in (Chaturvedi, Sanyal, and McClamroch, 2011). It describes

full and reduced attitude control on the configuration spaces SO(3) and S2 respectively,

and almost global stability on the respective state spaces. Boresight control and guidance

is studied in (Pong and Miller, 2015), which also discusses different scenarios for appli-

cations like pointing, tracking and searching. Other prior research on reduced attitude

(or pointing direction) control includes, e.g., (Tsiotras and Longuski, 1994), (Chaturvedi,

McClamroch, and Bernstein, 2009), (Krishnan, Reyhanoglu, and McClamroch, 1994), and

(Chaturvedi and McClamroch, 2007). Constraints in attitude control is another relevant

area of research in attitude control with obvious practical applications. Unmanned ve-

hicles and spacecraft can have different types of constraints that limit attitude control
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inputs, including limits on angular velocity and torque, besides pointing direction con-

straints. Prior literature has explored different control and state constraints in attitude

and reduced attitude control, and solutions to overcome them. Artificial potential func-

tions have been used for navigation of a vehicle towards a desired set or reference, while

avoiding obstacles (Mclnnes, 1994),(Lee and Mesbahi, 2014),(Kulumani and Lee, 2017).

Undesirable attitude and pointing direction avoidance was studied in (Spindler, 2002),

using geometric mechanics. A cost function was optimized to ensure the avoidance of

an excluded direction. Logarithmic barrier potential functions were used in (Lee and

Mesbahi, 2011), (Kulumani and Lee, 2017) to avoid exclusion zones in pointing direction.

The former work also had a mandatory zone constraint and used a back-stepping con-

troller. The latter work used an adaptive controller to stabilize the system in presence of

an unknown disturbance. Another study of exclusion and mandatory zones was given

in (Hablani, 1999). Angular velocity constraint along with dynamic pointing constraint

was considered in (Hu, Chi, and Akella, 2019). The velocity constraint was satisfied by

limiting the angular velocity error, leading to conservative results. Spacecraft formation

control in the presence of attitude and position constraints was considered in (Garcia and

How, 2005). They employed rapidly-exploring random trees for path planning along with

a smoother for optimization. The control of an underactuated axisymmetric spacecraft

was considered in (Tsiotras and Luo, 2000). A discontinuous control law was designed

for asymptotic tracking and stabilization. Note that discontinuous control has practical

impediments for spacecraft control, where it may excite structural vibrations in flexible

space structures.

An approach involving Model Predictive Control was also proposed in (Gupta et al.,

2015) to satisfy the control constraints. Both thrust and exclusion zone constraints were
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considered. A fast solver method for the optimization problem was also proposed. The

work in (Nicotra et al., 2020), considers actuator saturation and exclusion zones. This is a

two step scheme, where a reference trajectory is generated in quaternion space in the first

step. Then a reference governor is applied to the pre-stabilized system to satisfy the con-

trol constraints. Along the same lines, (Nakano et al., 2018) studies torque and inclusion

zone constraints on SO(3) using an explicit reference governor. However, these schemes

often rely on online optimization, for which significant computational power is required

to implement in real time. Additionally, these schemes also employ artificial potential-like

functions for navigation. Geometric tracking controllers based on the Special Euclidean

group SE(3) that avoid singularities and instabilities of other control laws, were reported

in (Shi, Zhang, and Zhou, 2015; Lee, Leok, and McClamroch, 2010; Mellinger and Ku-

mar, 2011; Kushleyev et al., 2013; Rudin et al., 2011; Fernando et al., 2011; Lee, Leok, and

McClamroch, 2012; Lee et al., 2013; Goodarzi, Lee, and Lee, 2015; Invernizzi and Lovera,

2017). It is worth mentioning that all these controllers are obtained in continuous time.

Attitude tracking control using time-varying artificial potentials: This work uses

the framework of geometric mechanics along with time-varying artificial potential fields

to guide a rigid body through desired attitude waypoints and settle into a desired final

rest attitude. The concepts of “virtual leaders" along with artificial potentials on the Lie

group of rigid body motions in three dimensional Euclidean space is used to control mul-

tiple autonomous vehicles (Leonard and Fiorelli, 2001). Spacecraft formation control in

the framework of geometric mechanics can be done using artificial potentials and a vir-

tual leader (Lee, Sanyal, and Butcher, 2015). Artificial potentials is also used for collision

avoidance in Riemannian manifolds (Assif et al., 2018). The work in (Kulumani and Lee,

2017) involves geometric control of attitude using both attractive and repulsive potentials
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for guidance. The desired attitude is obtained asymptotically while avoiding undesirable

orientations. The novelty of this work is that it uses time-varying artificial potentials for

guidance through desired waypoints on the Lie group SO(3) of rigid body attitude. Fur-

ther, the time-varying artificial potentials used here are defined only on closed (compact)

intervals of time, designed to coincide with time intervals at which the desired waypoints

should be reached.

Attitude pointing control using artificial potentials: Our approach to pointing con-

trol in the presence of control torque and pointing direction constraints, uses smooth ar-

tificial potentials and knowledge of maximum permissible angular velocities (or energy

level) of the rigid body. This chapter is organized as follows. Section ?? describes the atti-

tude pointing control problem and introduces required notation. Section ?? describes the

artificial potential functions. The attractive potential function is centered at the desired

pointing direction. This attracts the body-fixed sensor pointing direction to the desired

pointing direction. The repulsive potential function is designed to avoid an undesirable

pointing direction.

The Chapter 4 focuses on guidance and control of driftless control-affine systems in

the presence of constraints. The objective is to guide the system to a target state or a subset

of the state space, while avoiding exclusion zones that may have obstacles, and enforcing

control input constraints.

Our approach in this chapter exploits control barrier functions. A barrier function

of states of a dynamical system, is a function that increases in value when the state ap-

proaches the boundary from inside of a constraint admissible region that is a sublevel set

of this function. A control barrier function is a barrier function for a controlled dynami-

cal system such that the system satisfies the barrier function condition (Ames et al., n.d.).
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These functions can be used to satisfy output, state, or control input constraints (Tee, Ge,

and Tay, 2009), (Wills and Heath, 2004). Control barrier functions in the context of bar-

rier certificates and control Lyapunov functions are studied in (Wieland and Allgöwer,

2007), while their relations to control Lyapunov functions are studied in (Ames, Grizzle,

and Tabuada, 2014). The recently introduced framework of integral control barrier func-

tions (Ames et al., 2021) can be used to simultaneously satisfy control input and state

exclusion zone constraints, and is applicable to the problem posed in this work. In this

chapter, the design of the barrier function is based on bump functions that have compact

support.

The approaches mentioned till now are primarily used for systems well-known dy-

namics models with little or no uncertainties. However, the increase in the complexity of

practical control systems and applications, poses significant challenges in deriving accu-

rate models of nonlinear systems. In many applications involving control of autonomous

vehicles operating in remote or inaccessible environments, obtaining an accurate model

may be impossible as the environmental uncertainties are unknown a priori. This leads to

imperfections and uncertainties in the model relating inputs and outputs of the system.

Applications where nonlinearly stable and robust data-enabled control schemes can be a

game changer, include a large class of autonomous systems, legged robots, and aerospace

vehicles. For these systems, control design based on data-driven techniques represents

an attractive approach for feedback control in real time. The chapter 5 introduces data-

driven based control of nonlinear control-affine system with uncertain dynamics. Chapter

6 introduces design of reference governors for constrained data-driven control.
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Feedback control of uncertain nonlinear systems while ensuring stability and robust-

ness is a challenging research problem of long-standing interest. Design of these con-

trollers based on a mathematical model of a system is a widely used approach. How-

ever, the increase in the complexity of practical control systems and applications, poses

significant challenges in deriving accurate models of nonlinear systems. In many ap-

plications involving control of autonomous vehicles operating in remote or inaccessible

environments, obtaining an accurate model may be impossible as the environmental un-

certainties are unknown a priori. This leads to imperfections and uncertainties in the

model relating inputs and outputs of the system. Applications where nonlinearly stable

and robust data-enabled control schemes can be a game changer, include a large class of

autonomous systems, legged robots, and aerospace vehicles. For these systems, control

design based on data-enabled techniques represents an attractive approach for feedback

control in real time. The main contribution of this work is to provide a stable and robust

real-time uncertainty identification and output tracking control scheme for systems with

uncertain dynamics and desired output trajectory tracking.

Data-driven and data-enabled control schemes include the classical proportional-integral-

derivative (PID) schemes that remain an industry standard. A data-enabled predictive

control design for an unknown system was proposed in (Coulson, Lygeros, and Dörfler,

2019; De Persis and Tesi, 2020), which computes a data-enabled optimal control using a re-

ceding horizon approach. This approach is analogous to model-predictive control (MPC)

for a linear time-invariant system. Learning-based MPC with robustness and stability

properties is given in (Aswani et al., 2013) and with safety guarantees in (Wabersich and

Zeilinger, 2018). Nonlinear MPC with a cost function tuned using reinforcement learning

is used for data-enabled control in the case of an uncertain dynamics model in (Gros and
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Zanon, 2019). Early work on the use of neural networks for the control of unknown non-

linear systems appeared in (Li and Slotine, 1989; Psaltis, Sideris, and Yamamura, 1988).

Later works using adaptive neural networks were applied to uncertain MIMO nonlin-

ear systems in presence of input nonlinearities (Chen, Li, and Chen, 2016), for systems

with time-delays (Chen et al., 2009) and systems with state constraints (He, Chen, and

Yin, 2015). A data-enabled approach in the presence of actuation uncertainty was given

in (Taylor et al., 2021), which used learning-based certificate functions (Boffi et al., 2021).

Most of these existing nonlinear data-enabled control scheme designs often require online

optimization and have limited stability (e.g., (Hou and Jin, 2011; Tanaskovic et al., 2017;

Dai and Sznaier, 2021)).

A model-free control approach, termed intelligent PID control, was proposed in (Fliess

and Join, 2013), (Fliess, 2009). In this approach, the lack of a given mathematical model

for a single-input single-output (SISO) system is countered by an ultra-local model that

describes the unknown input-to-output dynamics of the system. The biggest advan-

tage of this approach is that the ultra-local model (ULM) is not an approximation of

the true dynamics, but an exact local representation of the system based on the given

input-output data at each time instant. In addition, it does not require online optimiza-

tion, which makes it computationally very light. These advantages give it a considerable

edge when compared to alternate approaches like reinforcement learning based on neu-

ral nets, data-enabled predictive control, Koopman operator-based approaches, and their

combinations (Brunke et al., 2022; Kaiser, Kutz, and Brunton, 2018). The application of

this approach to control of a quadrotor was considered in (Younes et al., 2016). The in-

tegration of MPC with an ULM (“ULMPC control") was proposed in (Wang and Wang,

2020).
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A generalization of the ultra-local model to multi-input multi-output (MIMO) nonlin-

ear systems was formulated in (Sanyal, 2022). This generalization uses a black box MIMO

ultra-local model representation of the system in discrete time. Although a majority of the

prior literature uses continuous time methods, the data-enabled scheme in (Sanyal, 2022)

uses a discrete-time ULM with model estimation and control schemes that are Hölder-

continuous. This makes it more suitable for implementation on onboard computers for

autonomous systems, besides ensuring the robustness and stability of the overall system

with discrete-time control inputs and output measurements. In this work, we extend the

approach in (Sanyal, 2022) by using a gray-box ultra-local model for a nonlinear control-

affine system with a control influence matrix and known and unknown parts in its input-

to-output dynamics.

A data-enabled predictive control design for an unknown system was proposed in

(Coulson, Lygeros, and Dörfler, 2019) which computes a data-driven optimal control us-

ing a receding horizon approach. This approach is analogous to MPC for a linear time-

invariant case. The application of model-free control to a quadrotor is considered in

(Younes et al., 2016). The integration of MPC with an ultra-local model is proposed in

(Wang and Wang, 2020). An example of a learning-based reference governor for con-

straint satisfaction is proposed in (Liu et al., 2019) and (Liu et al., 2020). This scheme

modifies the governor parameters over time to ensure constraint satisfaction. In the for-

mer work, the constraints are satisfied only after the learning phase of the model, while

in the latter work, constraints are satisfied during the learning phase of the model as well.

Chapter 7 proposes pose estimation scheme on SE(3) using vision based sensors. State

estimation on the Lie group of rigid body motions, SE(3), is essential for aerial vehicles,

spacecraft, and underwater vehicles. In the absence of global navigation satellite systems
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(GNSS) in these applications, onboard sensors that include vision, lidar, infrared, sonar,

and inertial sensors are used to provide information on the pose (position and orientation)

of the vehicle body with respect to an inertial (spatial) reference frame.

Pose estimation in real time is required for feedback control of translational and rota-

tional motion during the operations of autonomous vehicles. The set of all possible poses

of a rigid body is given by the special Euclidean group in three dimensions, denoted as

SE(3) in (Bloch et al., 2003; Bullo and Lewis, 2004). This group is a semi-direct product

of the real Euclidean linear space of translations R3 and the Lie group of 3 × 3 real or-

thogonal matrices with determinant 1, called the special orthogonal group and denoted

SO(3). The nonlinear and compact configuration space of three-dimensional rotations,

SO(3), makes SE(3) a nonlinear and non-contractible space, and therefore, attitude and

pose estimation are inherently nonlinear problems. As the translational and rotational

motions of rigid bodies are usually coupled and their attitude cannot be directly mea-

sured by onboard sensors, a pose estimation scheme has to compute the pose from vector

measurements obtained from sensors mounted on the rigid body.

This work proposes a finite-time stable pose estimation (FTS-PE) scheme to provide

estimates of the pose from three-dimensional point cloud measurements obtained by a

body-mounted optical sensor(s). This scheme has the advantages of: (1) estimating the

pose of the body in a finite-time stable manner over the entire state space of rigid body

motions; and (2) not requiring knowledge of the dynamics model of the vehicle. This

estimation scheme can enhance the autonomy and reliability of autonomous vehicles in

uncertain environments without (continuous) access to global navigation satellite systems

(GNSS). In practice, the dynamics of a vehicle may not be perfectly known in such envi-

ronments, especially when it is under the action of poorly known forces and moments.
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Attitude estimation has a well-established history, with early research such as (Black,

1964; Wahba, 1965) proposing static attitude determination methods for each set of di-

rection vector measurements. However, the performance of static attitude determina-

tion schemes can be unsatisfactory in the presence of measurement noise and bias com-

ponents. Therefore, estimation schemes like the extended Kalman filter ((Shuster, 1990;

Choukroun, Bar-Itzhack, and Oshman, 2006)) and multiplicative extended Kalman filter

((Markley, 1988)) are often used for attitude estimation. Nevertheless, these schemes may

perform poorly due to the restrictive assumptions they make about measurement noise,

process noise, and state transitions, as noted by (Crassidis, Markley, and Cheng, 2007).

Other prior approaches focused on nonlinear estimation schemes given by (Bonnabel,

Martin, and Rouchon, 2009; Mahony, Hamel, and Pflimlin, 2008; Vasconcelos et al., 2010;

Markley, 2006; Sanyal, 2006; Lageman, Trumpf, and Mahony, 2010; Moutinho, Figueirôa,

and Azinheira, 2015), where the attitude estimate evolves on the Lie group SO(3) (or

TSO(3), if angular velocity is also being estimated). The emergence of such estimators

was to avoid the use of unit quaternions or local coordinate descriptions like Euler an-

gles to represent attitude. This is because local coordinates encounter singularities in

representing attitude globally, while attitude estimators using unit quaternions for atti-

tude representation may exhibit unwinding-type instability unless they identify antipo-

dal quaternions with a single attitude. This instability can also result in longer conver-

gence times compared to stable schemes. However, estimators designed directly on the

Lie group of rigid body motions do not suffer from singularities and unwinding, which

are common in estimators using coordinate descriptions of attitude and unit quaternions,

respectively. More recent work on nonlinear deterministic estimation schemes in the ge-

ometric framework includes (Hamrah, Warier, and Sanyal, 2021; Mahony and Hamel,
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2017; Hamel, Hua, and Samson, 2020; Van Goor et al., 2021; Wang, Gamagedara, and Lee,

2022; Mahony, Van Goor, and Hamel, 2022).

Due to the geometry of the compact manifold SO(3), no continuous attitude observer

can provide convergence of the attitude estimation error to identity from all initial atti-

tude and angular velocity estimation errors as shown by (Hamrah, Warier, and Sanyal,

2021). This is shown in prior work like (Bhat and Bernstein, 2000) and (Chaturvedi,

Sanyal, and McClamroch, 2011). A continuous attitude observer or controller can, at

best, be almost global in terms of its region of attraction, as in (Chaturvedi, Sanyal, and

McClamroch, 2011). For an attitude observer, almost global stability implies that the atti-

tude estimate converges to the true attitude for almost all initial attitude estimates, except

those in a set of zero measure in the state space. The attitude estimation scheme presented

in (Izadi et al., 2016) follows the variational framework of the estimation scheme reported

in (Izadi and Sanyal, 2014), but includes bias in angular velocity measurements and es-

timates a constant bias vector. Moreover, it exhibits almost global asymptotic stability,

similar to the bias-free variational attitude estimator given in (Izadi and Sanyal, 2014).

There are advantages to having finite time stable pose estimation schemes: they have

been shown to be more robust to disturbances and noise and provide faster convergence

than an asymptotically stable scheme with similar initial transience. Additionally, a finite

time stable estimation scheme can automatically make a “separation principle" possible

in the case estimated state variables are used for feedback control, as observer estimates

converge to true states in finite time. Finite time stable estimation schemes using slid-

ing mode controllers and neural networks are proposed by (Li et al., 2015; Zou et al.,

2011), which are not continuous. Our prior work includes (Bohn and Sanyal, 2014) and

(Sanyal, Izadi, and Bohn, 2014), which proposed almost global finite time stable attitude
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observers. However, the exact dynamics model including the moment of inertia is as-

sumed to be available for estimation and the angular velocity bias was not considered.

The scheme proposed by (Warier, Sanyal, and Prabhakaran, 2019) enables FTS estima-

tion of attitude in the absence of bias, and (Hamrah, Warier, and Sanyal, 2021) presents

a nonlinear FTS attitude estimation scheme that accounts for unknown bias in angular

velocity measurements, both without requiring knowledge of the dynamics model of the

rigid body.

This work introduces a novel pose estimation scheme, referred to as the Finite-Time

Stable Pose Estimation (FTS-PE) scheme, which achieves almost global finite-time stabil-

ity. The key features of this FTS-PE scheme are: (1) it performs attitude estimation directly

on the Special Euclidean group SE(3), thereby avoiding singularities or unwinding; (2)

the FTS-PE is model-free, implying that it does not rely on any assumptions about the

attitude dynamics model, including knowledge of the moment of inertia or the measure-

ment noise model; (3) the FTS-PE is continuous, Lyapunov stable and exhibits almost

global finite-time convergence to the true pose and velocities in the absence of measure-

ment errors; and (4) it is robust to time-varying noise with unknown statistics in measured

angular and translational velocities, as is theoretically demonstrated.

The contributions in this dissertation have been submitted or published in the follow-

ing conference proceedings and journals.

• A. Dongare, A. K. Sanyal, H. Eslamiat and S. P. Viswanathan Guidance and Track-

ing Control for Rigid Body Attitude Using Time-Varying Artificial Potentials, in

Proceeding of the AAS/AIAA Astrodynamics Specialist Conference, 2020.

• A. Dongare, R. Hamrah, and A. K. Sanyal, Attitude Pointing Control using Artificial

Potentials with Control Input Constraints, in 2021 American Control Conference
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(ACC), New Orleans, USA, May 25-28, 2021.

• A. Dongare, I. Kolmanovsky, A. K. Sanyal and S. P. Viswanathan, Integrated Guid-

ance and Control of Driftless Control-affine Systems with Control Constraints and

State Exclusion Zones, in American Control Conference (ACC), Atlanta, GA, USA,

June 8-10, 2022

• A. Dongare, R. Hamrah, and A. K. Sanyal, Discrete-time Control of Nonlinear Control-

Affine Systems with Uncertain Dynamics, submitted in 9th Indian Control Confer-

ence (ICC-9).

• A. Dongare, R. Hamrah, I. Kolmanovsky and A. K. Sanyal, Reference Governor

for Constrained Data-Driven Control of Aerospace Systems with Unknown Input-

Output Dynamics, in 7th IEEE Conference on Control Technology and Applications,

August 16-18, Bridgetown, Barbados

• A. Dongare, R. Hamrah, and A. K. Sanyal, Finite-time Stable Pose Estimation on

SE(3) using Onboard Optical Sensors, submitted in Automatica.

The remainder of this dissertation is structured as follows. Chapter 2 gives problem

formulations and some mathematical preliminaries, and also presents a attitude tracking

control scheme in continuous time for a rigid body in SO(3), using time-varying artificial

potentials. Chapter 3 deals with pointing direction control of a rigid body with a body-

fixed sensor, in the presence of control constraints and pointing direction constraints. In

Chapter 4, an integrated guidance and control scheme for autonomous control-affine sys-

tems is proposed. The admissible control inputs is represented with a convex and com-

pact ellipsoidal set and convex ellipsoidal sets are the exclusion zones to be avoided in
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the state space. In Chapter 5, an approach for data-enabled control of discrete nonlinear

control-affine systems with uncertain (“gray-box") dynamics is proposed. Chapter 6 de-

scribes the design of reference governor to satisfy pointwise-in-time output and control

constraints in the setting of data-driven control. Chapter 7 presents a finite-time stable

pose estimation scheme for autonomous vehicles undergoing rotational and translational

motion in three dimensions, using measurements from onboard optical sensors. Chapter

8 reports the numerical simulation results and comparison of some of the state-of-the art

pose estimation schemes as well as experimental results. Chapter 9 concludes the disser-

tation and outlines possible future directions.
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Chapter 2

Guidance and Tracking Control for Rigid

Body Attitude Using Time-Varying

Artificial Potentials

In this chapter, we present a guidance and attitude tracking control scheme in continuous

time for a rigid body in SO(3), using time-varying artificial potentials. This novel idea

leads to generation of an attitude trajectory that passes through desired attitude way-

points and feedback tracking of this trajectory.

In 2.1, attitude dynamics of a rigid body on SO(3) and attitude waypoints is given.

These waypoints can also be used for avoiding attitude or pointing direction constraints

so that safe attitude navigation is ensured.

In 2.2, artificial time-varying potential fields at these waypoints that are attractive, are

introduced. Bump functions of time, which are smooth but not real analytic, are used to

generate these potentials at the desired attitude waypoints. For the terminal attitude, a

different type of smooth function is used. The rigid body attitude in these time-varying

potential fields gets attracted towards the desired attitude waypoints during certain time
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periods. This generates an attitude trajectory passing through these desired waypoints

sequentially in time. A Lyapunov analysis is carried out to show stable attitude tracking

through the desired waypoints and ending at the terminal attitude, using these time-

varying artificial potentials.

In 2.3, numerical simulations are carried out to test the performance of this attitude

guidance and tracking scheme.

2.1 Problem Formulation

2.1.1 Coordinate Frame Definition

The configuration space of rigid body attitude motion is the Lie group SO(3). The atti-

tude is described by a rotation matrix relating a body-fixed coordinate frame to an inertial

coordinate frame. We consider a coordinate frame B fixed to the body and another co-

ordinate frame I that is fixed in space and takes the role of an inertial coordinate frame.

Let R ∈ SO(3) denote the orientation (attitude) of the body, defined as the rotation matrix

from frame B to frame I .

2.1.2 Rigid Body Attitude Dynamics with Control Input Torque

The model for attitude dynamics of a rigid body acting under a control torque is outlined

here. The attitude of the rigid body is given by the rotation matrix R ∈ SO(3) from body-

frame coordinate frame to an inertial frame. The angular velocity of the rigid body is

represented in body-fixed frame and is denoted by Ω ∈ R3. The attitude kinematics is

given by
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Ṙ = RΩ×, (2.1)

where (·) : R3 → so(3) is the skew-symmetric cross product operator and so(3) is the Lie

algebra of SO(3), identified with the linear space of 3× 3 skew-symmetric matrices. Note

that the cross-product operator is given by:

x× =


x1

x2

x3


×

=


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (2.2)

The attitude dynamics is given by

JΩ̇ = −Ω × JΩ + τc, (2.3)

where J is the inertia matrix of the body expressed in the body-fixed coordinate frame and

τc ∈ R is the control input torque which is applied to the rigid body about its center of

mass. The rigid body here is considered to be stationary in terms of translational motion.

2.1.3 Attitude Waypoint Navigation

The goal of the attitude waypoint navigation is to enable smooth reorientation of the rigid

body from its initial attitude to the desired final attitude. This navigation is realized by a

given finite set of attitude waypoints through which the rigid body is required to reorient

itself. These waypoints are given in the form of rotation matrices from body-fixed frame
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B to inertial frame I ordered according to a strictly increasing sequence of time instants,

as follows:

Rd1 , Rd2 , ..., Rdn ∈ SO(3),

with Rdi = Rd(ti) ∈ SO(3) and t1 < t2 < ... < tn.
(2.4)

Here, Rd1 , Rd2 , ..., Rdn−1 are the intermediate attitude waypoints and Rdn = R f is the final

attitude waypoint.

2.2 Time-Varying Artificial Potential

The approach for guidance and navigation of the rigid body attitude, with equations (2.1)

and (2.3) describing its attitude motion, is formulated here. A bump function is used

to design a time-varying artificial potential function for attitude guidance, as described

here. The artificial potential function is designed as the product of a time-varying bump

function that has compact support in time, and a Morse function on the Lie group of

rigid body rotations. A Morse function is a non-degenerate function with a disjoint set of

critical points (Milnor, Spivak, and Wells, 1969). Positive definite Morse functions form

the best candidates for Lyapunov functions on non-contractible manifolds, i.e., spaces that

cannot be contracted continuously to a point. The stability analysis of the overall guid-

ance and tracking control is carried out to show stable trajectory generation through these

waypoints, using Lyapunov analysis with a time-varying Morse-Lyapunov function.
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2.2.1 Bump Functions for Intermediate Waypoints

At each intermediate attitude waypoint, we design a time-varying function to describe

the potential field. This is in the form of a smooth bump function that is positive in

a compact time interval and zero outside this interval. This function starts from zero

and smoothly reaches a finite maximum (positive) value in a finite time period, before

smoothly decaying to zero in finite time. The finite time periods of rise and decay are

the one-sided widths of this function. These widths on either side of the function can

be equal or different. We call the left side of the bump function as a “smooth step-up"

function and the right side of the bump function as a “smooth step-down" function. The

function depicted in Fig. 2.1 has different widths on either side, and hence this bump

function is asymmetrical.

Consider an ith asymmetrical bump function φi : R → R that is smooth (Fry and Mc-

Manus, 2002; Loring, 2008) and compactly supported, given by

φi(t) =



e

−kli ∆t2
i

σ2
li
(σ2

li
− ∆t2

i ) t ∈ (ti − σli , ti]

e

−kri ∆t2
i

σ2
ri
(σ2

ri
− ∆t2

i ) t ∈ (ti, ti + σri)

0 elsewhere,

(2.5)

where ∆ti = t − ti, σli is the width of the left side of the bump function and σri is the

width of the right side of the bump function. The kli and kri are the scalar control gains

that control the steepness of the left and right side of the bump function respectively. The

time instant ti is the time when the rigid body reaches corresponding desired attitude

waypoint Rdi . The maximum value of this bump function is unity when t = ti. The
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FIGURE 2.1: Asymmetric Bump Function

derivative of the left side of the asymmetric bump function is given by:

φ̇li(t) = −2kli ∆ti

(
1

σ2
li
(σ2

li
− ∆t2

i )
+

∆t2
i

σ2
li
(σ2

li
− ∆t2

i )
2

)
e
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Note that φ̇li(t) is positive as t − ti is negative. Similarly the derivative of the right side of

the bump function is given by:

φ̇ri(t) = −2kri ∆ti
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and the derivative is negative since t − ti is positive in this case.

2.2.2 Smooth Step-Down Function for Initial Attitude

We use a “smooth step-down" function for the initial attitude at time t = 0, which starts

at a constant value of 1 (for t ≤ 0) and thereafter decays to 0 in finite time, as follows:
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φb(t) =


1 t ∈ (−∞, 0)

e

−kbt2

σ2
b (σ

2
b − t2) t ∈ [0, σb),

(2.8)

where t ∈ [0, σb) and σb is the width of this function. The derivative of this function (for

t ≥ 0) is,

φ̇b(t) = −2kbt
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2.2.3 Smooth Step-Up Function for Final Waypoint

The bump functions used to go through the intermediate attitude waypoints are “two-

sided", i.e., they rise from 0 smoothly to a maximum value of 1 and then decay smoothly

back to 0. But for the final waypoint we need only a “smooth step-up" function that starts

with zero and rises to the maximum value of 1 and settles there. Consider the following

function:

φ f (t) =


e

−k f ∆t2
f

σ2
f (σ

2
f − ∆t2

f ) t ∈ (t f − σf , t f ]

1 t ∈ (t f , ∞),

(2.10)

where σf is the width of this function, k f is the parameter to control the steepness of the

function, t f is the time when the rigid body reaches its final waypoint. The time derivative

of this function, which is positive in the time interval (t f − σf , t f ), is given by:

φ̇ f (t) = −2k f ∆t f
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2.2.4 Attractive Potential

We define the attitude tracking error for the ith desired attitude waypoint as Qi = RT
di

R(t)

for t ∈ [ti−1, ti]. As the rigid body approaches the ith desired attitude waypoint, the

corresponding attitude error Qi decays to zero. Once the attitude waypoint is achieved,

the rigid body then again reorients itself to achieve the next waypoint. Thus, the rigid

body passes through the series of reorientations. The attitude error thus goes to zero in

piecewise manner. This continues to occur, till the rigid body achieves it’s final attitude

and then stabilizes. The attractive potential AP(Q, t) : SO(3)× R+ → R+ is given by the

following Morse function (Milnor, 1963),

APi(Qi, t) = 〈Ki(t), I − Qi〉, (2.12)

where Ki(t) = φi(t)Ko and Ko = diag(K1, K2, K3) and φi(t) is a bump function. The pos-

itive diagonal matrix Ko consists of control gain values K1, K2, K3 > 0 and are unique.

Representation of the attractive potential is given in Fig. 2.2. This value reaches its mini-

mum value of zero as Qi → I.

FIGURE 2.2: Attractive Potential
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2.2.5 Repulsive Potential

The attractive potential is used to attract the rigid body to a desired attitude. Similarly,

a repulsive potential (Kulumani and Lee, 2017) is used to avoid undesirable orientations.

The rigid body should be able to avoid these undesirable attitudes at all times. Here, we

assume that the undesirable attitudes are present at all times and are not changing. Hence,

the function is not explicitly time-varying. This potential function has non-negative val-

ues ranging from zero to infinity as the rigid body approaches the undesirable orientation.

The repulsive potential is an analytic function that is given by the following exponential

function,

RP(R(t)) = e

f
cos(Ψ)− rTRTυ − 1, (2.13)

where r ∈ S2 is the unit vector (in body frame) specifying the pointing direction of the

sensor, and υ ∈ S2 is the vector (in inertial frame) pointing towards an undesirable di-

rection. The term rTRTυ specifies the angle between the sensor pointing direction and

the direction vector to be avoided. The angle Ψ is the required minimum angular separa-

tion between them such that Ψ ∈ (0, π/2). The positive constant f controls the shape of

the function. The compact support of the repulsive potential (on SO(3)) decreases as the

value of f decreases. This ensures that the effect due to the repulsive potential vanishes

beyond the neighborhood of the minimum angular separation for the undesirable direc-

tion. We enforce the condition of zero exposure of the sensor to the undesirable zone. The

above condition can be exercised with following constraint,

cos(Ψ)− rTRTυ > 0. (2.14)
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FIGURE 2.3: Repulsive Potential

The repulsive potential is illustrated in Fig. 2.3 .

2.2.6 The Potential Function

The potential function is the sum of attractive and repulsive potential functions. Let Rdi ∈

SO(3) denote an intermediate desired attitude at time ti. The potential function is given

by:

U(Qi, t) =
n

∑
i=1

APi(Qi, t) + RP(R(t)), (2.15)

where APi(Qi, t) and RP(R(t)) are given by equations (2.12) and (2.13), respectively. The

potential function is explicitly time-dependent. The attractive potential is APi(Qi, t) = 0,

when Qi = I. Additionally, the bump function for a particular desired attitude waypoint

is positive only in the respective time intervals. Outside those time intervals the attractive

potential is not acting and equal to zero. Unlike the attractive potential, the repulsive

potential is not time-varying and it is always acting. From the condition in equation

(2.14), we see that the repulsive potential is always positive. Hence we can conclude that

the potential function is a positive definite function at all times. The derivative of the
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above potential function is given by:

d
dt

U(Qi, t) = ∑
i

d
dt

APi(Qi, t) +
d
dt

RP(R(t)), (2.16)

d
dt

U(Qi, t) = ∑
i
(〈K̇i(t), I − Qi〉+ SK(t)(Q

T
i )Ω) + ρ · Ω. (2.17)

where ρ is given by

ρ =

 − f (RTυ)×r
(cos(Ψ)− rTRTυ)2

e

f
cos(Ψ)− rTRTυ

 , (2.18)

SK(t)(Qi) = vex(Ki(t)Qi − Qi
TKi(t)) and vex(·) : so(3) → R3 is the inverse of the (·)×

map.

2.2.7 Design of the Control Law

Theorem 2.2.1. Consider the attitude kinematics and dynamics of a rigid body given by eqs.

(2.1)-(2.3). Let ti and Rdi denote the sequences of time instants and desired attitude waypoints at

these instants, as defined by (2.4), and let Qi(t) = RT
di

R(t) for t ∈ (ti−1, ti] be the attitude error,

as defined earlier. Define

L0(t) =


φ̇il(t) ∈ (ti − σil , ti]

φ̇ f (t) ∈ (t f − σf , t f ]

0 elsewhere,

(2.19)
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where φ̇il and φ̇ f are the derivatives of the smooth functions defined in equations (2.6) and (2.11)

respectively. The time instants ti and t f are those at which the rigid body reaches the intermediate

attitude waypoints and the final waypoint. Let L(t) be the positive definite matrix such that

L(t) = L0(t)I + J, where L0(t) is positive semi-definite. Define the control law as

τc = −SK(t)(Qi)− ρ − L(t)Ω, (2.20)

where ρ is as defined in (2.18), SKi(t)(Qi) = vex(Ki(t)Qi − QT
i Ki(t)), and vex(·) : so(3) → R3

is the inverse of the (·)× map. The control law (2.20) then stabilizes the attitude dynamics of the

rigid body to (R, Ω) = (R f , 0).

Proof. Consider the following (candidate) Morse-Lyapunov function:

V(Qi, Ω, t) =
1
2

ΩT JΩ + U(Qi, t), (2.21)

defined piecewise on the time interval (ti−1, ti]. It can be seen that V(Qi, Ω, t) is a posi-

tive definite function. Using equation (2.16) the derivative of the above Morse-Lyapunov

function is given by:

V̇ = ΩT JΩ̇ +
d
dt

U(Qi, t). (2.22)

Using equation (2.3) we have the following:

V̇ = ΩT
(

JΩ × Ω + τc + SK(t)Qi

)
+ ρ · Ω + φ̇i(t)〈Ko, I − Qi〉. (2.23)
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Substituting the control law from equation (2.20), we get,

V̇ = −ΩTL(t)Ω + φ̇i(t)〈Ko, I − Qi〉

= −ΩT(L0(t)I + J)Ω + φ̇i(t)〈Ko, I − Qi〉.
(2.24)

As the second term on the right hand side in the derivative of the Lyapunov function

in eq. (4.34) is non-definite, it may need to be compensated by the negative first term.

However, as this term is transient in nature, we design the L0(t) to mimic the increasing

and decreasing portions of φ̇i(t) in order to compensate its effect over the time interval

(ti−1, ti].

When the rigid body approaches the final desired attitude, the attractive potential

will have φ f (t) as the “smooth step-up" function. As the derivative φ̇ f (t) is positive, the

term φ̇ f (t)〈Ko, I − Q f 〉 will be positive in the time interval (t f − σf , t f ]. So we design

L0(t) = φ̇ f (t) to compensate for this effect during this transient time interval when φ̇ f (t)

is not zero. This ensures that the transient effects are mitigated and the attitude error

Q f = I when t = t f . For time is t > t f , φ̇ f (t) is zero. As a result, we get

V̇ = −ΩT JΩ ∀ t > t f . (2.25)

Therefore, using the invariance principle on the state space TSO(3), we can conclude

that (R, Ω) converges locally asymptotically to (R f , 0).

The attractive potential function has a global minimum value when R = R f and t = t f .

Thus, the global minimum is with respect to R ∈ SO(3) and t ∈ R+. The repulsive

potential has a global maximum with respect to R ∈ SO(3) in the undesirable zone, i.e.

in the region where Ψ > cos−1 (rTRTυ). From the equation of repulsive potential (2.13),
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we can conclude that when rTRTυ → cos(Ψ), then the potential function U → ∞. As, the

rigid body approaches towards the undesirable zone, the control torque generates large

repulsive torques. Thus, the rigid body reorients itself away from the undesirable zone

and towards the global minimum.

2.3 Numerical Simulation Results

This section gives some simulation results to demonstrate the potential function formu-

lated in the earlier section. For the purpose of simulation one intermediate waypoint is

considered.

2.3.1 Discretized Equations of Motion

For this simulation, the continuous dynamics and kinematics equations are replaced by

the corresponding discretized equations of motion. A Lie group variational integrator

(LGVI) is used for discretizing the continuous equations of motion. A LGVI preserves the

structure of the configuration space, which in this case is the Lie group SO(3), without

any parametrization or reprojection. Variational Integrators (Marsden and West, 2001)

are a class of numerical integrators which conserve the momentum map and symplectic

structure when the dynamics is almost conservative or fully conservative. The discrete

equations of motion for Lie Group Variational Integrator scheme are given by (Nordkvist

and Sanyal, 2010),
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Rk+1 = RkFk,

JΩk+1 = FT
k JΩk + hτk,

(2.26)

where h is the fixed time step such that h = tk+1 − tk, subscript k is the kth time step of the

simulation and Fk ≈ exp(hΩ×
k ) ∈ SO(3) guarantees that Rk evolves on SO(3).

2.3.2 Numerical Simulation

The proposed time-varying artificial potential scheme presented is simulated for a rigid

body navigating around one undesirable zone towards its final orientation. This simu-

lation has one intermediate and one final desired attitude waypoint. The simulation for

the above scheme assumes the inertia matrix as J = diag(0.08, 0.15, 0.19) kgm2. The di-

rection of sensor in body-fixed frame is given by r = [1, 0, 0]T. The initial attitude is given

by Ro = exp([0, 0, 150 x (π/180)]T) and the desired final attitude is RF = exp([0, 0, 0]T).

Finally, RI = exp([0, 0, 90 x (π/180)]T) x exp([0, 7 x (π/180), 0]T) defines the one inter-

mediate waypoint. The undesirable zone is located at exp([0, 0, 45 x (π/180)]T) x

exp([0, 10 x (π/180), 0]T). The minimum angular separation is Ψ = 15o. The time step is

h = 0.01s and the diagonal gain matrix is Ko = diag(0.05, 0.0095, 0.159).

The simulation begins at t0 = 0s and ends at tE = 40s. The rigid body reaches the

intermediate waypoint at t1 = 15s and the final waypoint at t f = 30s. Once the rigid

body achieves the desired final waypoint at t f = 30s, the rigid body then maintains its

final attitude. The bump function for this simulation and its corresponding derivative is

shown in Fig. 2.4 The results of the numerical simulation are summarized in Fig. 2.5.

In Fig. 2.5a, at t = 0s the attitude tracking error plot shows the error between cur-

rent attitude and first desired attitude waypoint. This error is almost zero when time
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FIGURE 2.4: Bump function (left) and it’s derivative (right).

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

(A) Attitude Error

0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

(B) Angular Velocities

approaches 15s as the rigid body moves closer to the desired intermediate attitude way-

point. After t = 15s the attitude error increases instantaneously to a finite value as the

new desired attitude, which is the final desired attitude, becomes the new goal. Thus, the

attitude error goes to zero in a piecewise manner as expected. At t = 30s, the rigid body
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FIGURE 2.5: Simulation Results

achieves its final attitude and stabilizes there. The Fig. 2.6 shows the shows the pointing

direction of the sensor in the inertial frame, which is represented as an unit vector on S2.

2.4 Conclusion

In this chapter, an integrated attitude guidance and tracking scheme that utilizes time-

varying artificial potential functions is proposed. This continuous time scheme is de-

signed directly on the configuration space of rigid-body attitude motion, SO(3). The

scheme can generate a desired attitude trajectory through multiple attitude waypoints

and then track that desired trajectory through the waypoints. The guidance of the rigid
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FIGURE 2.6: Trajectory of sensor fixed in body-frame

body is achieved by assigning attractive time-varying artificial potentials to desired at-

titude waypoints, while avoiding undesirable orientations using repulsive potentials.

These attractive potentials are generated using asymmetric bump functions of time. A

possible future research direction is to consider the full translational and rotational mo-

tion of rigid-bodies in SE(3) and create an integrated guidance and control scheme for

this full motion. Another research direction is to extend the above scheme to undesirable

zones which are dynamic in nature.
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Chapter 3

Attitude Pointing Control using Artificial

Potentials with Control Input

Constraints

This chapter presents a novel approach for pointing direction control of a rigid body with

a body-fixed sensor, in the presence of control constraints and pointing direction con-

straints. This approach uses smooth artificial potentials and knowledge of maximum

permissible angular velocities (or energy level) of the rigid body.

In 3.1, the attitude pointing control problem and required notation is introduced.

In 3.2, an attractive and repulsive artificial potential functions are introduced. This

scheme relies on the use of artificial potentials where an attractive artificial potential is

placed at the desired pointing direction and a repulsive artificial potential is used to avoid

an undesirable pointing direction.

In 3.3, a control law is proposed which ensures almost global asymptotic convergence

of the rigid body to its desired pointing direction, while satisfying the control input con-

straints and avoiding the undesirable pointing direction given in 3.4. Here, the control
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parameters are designed such that the control input constraints are satisfied for the given

system, and the corresponding control law.

These theoretical results are followed by numerical simulation results in 3.5, that pro-

vide an illustration of the scheme for a realistic spacecraft pointing control scenario.

3.1 Problem Definition

3.1.1 Coordinate Frame Definition

The configuration space of rigid body attitude motion is SO(3). The attitude is described

by a rotation matrix relating a body-fixed coordinate frame to an inertial coordinate frame.

We consider a coordinate frame B fixed to the body and another coordinate frame I that is

fixed in space and takes the role of an inertial coordinate frame. Let R(t) ∈ SO(3) denote

the time-varying rotation matrix for the rigid body rotating from body fixed frame B to

inertial frame I , where SO(3) denotes the group of all rotations in R3.

3.1.2 Rigid Body Reduced Attitude Description

Consider a rigid body (e.g. a space telescope) and its attitude dynamics. Let p ∈ S2

denote the desired pointing direction for the body fixed sensor in inertial frame. Then

Γ = RTp is the desired sensor pointing direction (reduced attitude) resolved in body

frame. Without loss of generality, consider e1 = [1 0 0]T ∈ S2 to be the boresight (pointing

direction) vector of a sensor that is fixed in the body frame B. Therefore, the pointing

control objective is to rotate the body such that e1 coincides with Γ.
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Now denote by v ∈ S2 an undesirable pointing direction for the rigid body, expressed

in inertial frame I . The corresponding undesirable pointing direction resolved in the

body frame is given by η = RTv. Therefore, the pointing exclusion zone objective is to

ensure that e1 avoids a prescribed exclusion zone around η. This exclusion zone is spec-

ified in terms of the angle between e1 and η, which should be greater than a prescribed

angle.

3.1.3 Attitude kinematics and Dynamics

Let Ω ∈ R3 be the angular velocity of the rigid body expressed in body frame. The

kinematics for the full attitude of the rigid body is given by

Ṙ = RΩ×, (3.1)

where (·)× : R → so(3) is the skew-symmetric cross product operator and so(3) is the Lie

algebra of SO(3), identified with the linear space of 3× 3 skew-symmetric matrices. Note

that the cross-product operator is given by:

x× =


x1

x2

x3


×

=


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (3.2)

The reduced attitude kinematics equation for the desired pointing direction can be
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obtained by taking a time derivative of Γ = RTp, and substituting the full attitude kine-

matics (3.1). Using eq. (3.1), the reduced attitude kinematics equation is given by:

Γ̇ = ṘTp = (RΩ×)Tp = −Ω×Γ = Γ×Ω. (3.3)

Similarly, the kinematics equation for the undesirable pointing direction can be obtained

by taking a time derivative of both sides of the expression η = RTv, as follows:

η̇ = ṘTv = (RΩ×)Tv = −Ω×η = η×Ω. (3.4)

The attitude dynamics of the system is modeled by

JΩ̇ = −Ω × JΩ + τc, (3.5)

where J ∈ R3×3 represents the positive definite inertia matrix of the rigid body defined

in frame B, and τc is the applied control input torque.

3.2 Artificial Potential

The main purpose of the artificial potential functions is to help the rigid body achieve

its desired pointing direction while avoiding the undesirable pointing directions. This is

enabled using the attractive and repulsive artificial potentials on S2 designed here.

38



3.2.1 Attractive artificial potential function

The body fixed sensor pointing vector on the rigid body is stabilized to the desired point-

ing direction using an attractive artificial potential. Consider the following attractive ar-

tificial potential for the desired pointing direction centered at Γ in frame B:

Ua(Γ) = ka(1 − eT
1 Γ), (3.6)

where ka > 0 is the control gain value for the attractive function. From the above defin-

ing equation (3.6), we get the maximum and minimum value of the attractive potential

function as: 
max{Ua(Γ)Γ∈S2} = 2ka (when Γ = −e1),

min{Ua(Γ)Γ∈S2} = 0 (when Γ = e1).
(3.7)

Thus, this function is designed to be a positive definite function on S2 that has a maximum

value when the sensor is pointing opposite to the desired pointing direction and a mini-

mum value when it is pointing along the desired pointing direction. The time derivative

of the above equation (3.6) is given by,

U̇a(Γ, Ω) = −kaeT
1 Γ×Ω. (3.8)

3.2.2 Repulsive artificial potential function

Undesirable pointing directions can occur in rigid body pointing control applications,

e.g., a star tracker sensor on a spacecraft should not be pointed directly towards the sun.
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To avoid these undesirable directions, repulsive artificial potentials are designed. Con-

sider the following smooth analytical bump function centered at η:

Ur(η) =



0 eT
1 η ∈ [−1, cos Ψ0]

kre

−bβ(η)2

γ2(γ2 − β(η)2) eT
1 η ∈ [cos Ψ0, cos Ψ]

kr eT
1 η ∈ [cos Ψ, 1]

(3.9)

where

β(η) = eT
1 η − cos Ψ (3.10)

γ = cos Ψ − cos Ψ0,

kr > 0 is a control gain value for the repulsive function and b determines the steepness

of this function. The angle Ψ is the minimum required angular separation between the

undesirable pointing direction and the sensor pointing direction. In the above function,

angle Ψ traces an inner circular boundary. The region inside this boundary is restricted

region for sensor pointing direction. The angle Ψ0 describes the influence zone of this

function. The representation of the repulsive potential function is given in Fig. 3.1. The

function reaches a maximum value of kr when eT
1 η = cos Ψ. As eT

1 η approaches the

outer circle (i.e., eT
1 η = cos Ψ0), the function decays to zero and remains zero outside the

exclusion zone. The particular design of the repulsive potential in eq. (3.9) ensures that

the function is smooth everywhere on S2.
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FIGURE 3.1: Representation of Repulsive potential Function
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Therefore the permissible pointing directions for the body-fixed sensor is given by the

set:

Pd = {Γ ∈ S2 | ΓTη < cos Ψ}. (3.11)

Note that Ur(η) as defined by eq. (3.9) is continuous, and the value of Ur(η) < kr as

long as the desired pointing direction is in the permissible set Pd. As a result, the value

of this gain can be set to be the value of the initial value of a Lyapunov function that is

decreasing along the dynamics of the feedback system.

The derivative of the above function is

U̇r(η, Ω) = krα(η)ΩTe×1 η, (3.12)

where α(η) is defined in a piecewise manner as

α(η) =



0 eT
1 η ∈ [−1, cos Ψ0]

−2bβ(η)

kr
(
γ2 − β(η)2

)2 Ur(η) eT
1 η ∈ [cos Ψ0, cos Ψ]

0 eT
1 η ∈ [cos Ψ, 1].

(3.13)

3.3 Control Law

In this section, the control law that guarantees the convergence of the sensor pointing

direction to the desired pointing direction is obtained. The Lyapunov stability analysis

that ensures the almost global asymptotic stability of the desired pointing direction is also

presented.
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Theorem 3.3.1. Consider the kinematics for the desired and undesired pointing directions given

in (3.3) and (3.4) respectively, and the attitude dynamics equation given in (3.5). Let L(t) be a

positive definite diagonal matrix. Define the attitude control law to be

τc = −L(t)Ω + kae×1 Γ − krα(η)e×1 η, (3.14)

where α(η) is defined in (3.13). Further, let the desired pointing direction be outside the influence

zone of the repulsive potential given by the angle Ψ0. Then the proposed control law stabilizes the

body-fixed sensor pointing direction to the desired pointing direction in an asymptotic manner,

while avoiding the undesired direction.

Proof. Consider the following candidate Morse-Lyapunov function,

V(Γ, η, Ω) =
1
2

ΩT JΩ + Ua(Γ) + Ur(η) (3.15)

The derivative of this Morse-Lyapunov function V̇(Γ, η, Ω), substituting the equations

(3.8), (3.12) and (3.13), is given by,

V̇(Γ, η, Ω) = ΩT JΩ̇ − kaeT
1 Γ×Ω + krα(η)ΩTe×1 η.

Now substituting the attitude dynamics (3.5), this time derivative simplifies to:

V̇(Γ, η, Ω) = ΩT
[

JΩ × Ω + τc − kae×1 Γ + krα(η)e×1 η

]

= ΩT
[

τc − kae×1 Γ + krα(η)e×1 η

]
. (3.16)
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Note that Ω and JΩ × Ω are orthogonal, and therefore the term ΩT[JΩ × Ω] vanishes.

After substitution of the control law (3.14) into eq. (3.16), V̇(Γ, η, Ω) simplifies to:

V̇(Γ, η, Ω) = V̇(Ω) = −ΩTL(t)Ω. (3.17)

Given that L(t) = diag([l1(t), l2(t), l3(t)]) where li(t) > 0 for i = 1, 2, 3, the above

derivative of the Morse-Lyapunov function is strictly non-increasing. Therefore, V̇ is

negative semi-definite. Using LaSalle’s invariance principle on TS2, we conclude that

the feedback system is asymptotically stabilized at the desired pointing direction if this

direction is outside the zone of influence of the repulsive potential centered at the un-

desirable direction (in which case α(η) = 0). Therefore, the body-fixed sensor pointing

direction is stabilized to the desired pointing direction, and the given result follows.

3.4 Control Constraints

This section provides a description of control constraints for the system that are achieved

by designing certain control parameters. The design of these parameters ensure that the

system stabilizes to the desired pointing direction, while satisfying the control constraints

and avoiding the undesired direction.

3.4.1 Design of kr

From equation (3.9), it is clear that the maximum value of the repulsive potential function

is given by the control gain constant kr. This maximum value occurs along the boundary
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eT
1 η = cos(Φ). Now, consider a sub-level set of the state space given by,

V(Γ, η, Ω) =
1
2

ΩT JΩ + Ua(Γ) + Ur(η) ≤ Vmax. (3.18)

The gain value kr can be designed in a way such that the sub-level set given by equation

(3.18) becomes invariant. Consider for example the following equations

kr = Vmax = ka(1 − eT
1 ΓI), (3.19)

where eT
1 ΓI gives the initial angular separation. The use of the criteria mentioned above

points to the idea that the system will never have the required energy to violate the con-

straint.

Another noticeable fact is that outside of the exclusion zone we have Ur(η) ≡ 0, which

implies that only the ΩT JΩ and Ua(Γ) terms govern the Lyapunov function (7.47).

3.4.2 Design of L(t)

Referring to equation (3.14), it can be deduced that the second and third term are orienta-

tion dependent and are bounded. Thus, the control constraints are satisfied by designing

the control gain values li(t) in the first term −L(t)Ω. Rewriting the control torque equa-

tion (3.14) in the component form we get


τ1

τ2

τ3

 =


−l1(t)Ω1

−kaΓ3 + krα(η)η3 − l2(t)Ω2

kaΓ2 − krα(η)η2 − l3(t)Ω3

 . (3.20)
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We consider control torque constraints of the form:

−τi,min ≤ τi ≤ τi,max, (3.21)

where τi,min, τi,max > 0. Now consider the first component l1(t). From equation (3.21), the

torque constraint for τ1 can written as

−τ1,min ≤ −l1(t)Ω1 ≤ τ1,max. (3.22)

If we consider Ω1 > 0, then we have l1(t)Ω1(t) ≤ τ1,min which leads to l1(t) ≤ τ1,min

Ω1(t)
.

And if Ω1 > 0 then l1(t)|Ω1(t)| ≤ τ1,max which leads to l1(t) ≤ τ1,max

|Ω1(t)|
. Therefore, the

term l1(t) can be designed as follows

l1(t) =
τ1,m

|Ω1(t)|+ ε1
, (3.23)

where τ1,m = min{τ1,min, τ1,max} and ε1 > 0 is a small positive number that can be con-

sidered a control gain parameter.

Now consider the l2(t). From (3.21), second component of torque τ2 can be written as

kaΓ3 − krα(η)η3 + l2(t)Ω2 ≤ τ2,min

−kaΓ3 + krα(η)η3 − l2(t)Ω2 ≤ τ2,max.

If we consider Ω2 > 0 then we have

l2(t) ≤
τ2,min − kaΓ3 + krα(η)η3

Ω2(t)
.
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Likewise for Ω2 < 0

l2(t) ≤
τ2,max + kaΓ3 − krα(η)η3

|Ω2(t)|
.

A conservative design of l2(t) therefore is of the form

l2(t) =
τ2,m − |kaΓ3 − krα(η)η3|

|Ω2(t)|+ ε2
, (3.24)

where τ2,m = min{τ2,min, τ2,max} and ε2 > 0 is a small positive control gain parameter.

Similarly l3(t) is also designed. From (3.21), third component of torque τ3 is of the form

−kaΓ2 + krα(η)η2 + l3(t)Ω3 ≤ τ3,min

kaΓ2 − krα(η)η2 − l3(t)Ω3 ≤ τ3,max.

The design of l3(t) is given by

l3(t) =
τ3,m − |kaΓ2 − krα(η)η2|

|Ω3(t)|+ ε3
, (3.25)

where τ3,m = min{τ3,min, τ3,max} and ε3 > 0 is a small positive control gain parameter.

Thus equations (3.23), (3.24) and (3.25) give positive but time-varying gains with the as-

sumption that τi,m > 0. Since l1(t), l2(t), and l3(t) are positive, one can conclude from

equations (3.24) and (3.25) it is evident that

τ2,m − |kaΓ3 − krα(η)η3| > 0 and

τ3,m − |kaΓ2 − krα(η)η2| > 0.

(3.26)
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This leads to a condition where the control parameters for attractive and repulsive poten-

tial function in equation (3.6) and (3.9) respectively should satisfy the relation

τi,m > ka + α(η)kr.

Using (3.13) the above equation can be written as

τi,m − ka >
−2bβ(η)(

γ2 − β(η)2
)2 Ur(η). (3.27)

A value of b can be obtained that satisfies the above relation.

3.5 Simulation Results

This section presents numerical simulation results for attitude pointing control using arti-

ficial potential fields. These simulation results are provided for a time period of T = 40s,

and with time step size of ∆t = 0.01s, to demonstrate the performance of the proposed

pointing control scheme.

The initial conditions and other parameters used for this simulation are described

here. The sensor pointing direction in the body-fixed frame is e1 = [1 0 0]T. The initial

attitude and angular velocity of the rigid body is given by R = I, and Ω0 = [0 0 0]T

in the body frame, respectively. The desired pointing direction in the inertial frame is

p = [−0.866 0 0.5]T. The initial and final pointing directions are 150◦ apart. The undesir-

able pointing direction in the inertial frame is v = [0 0.28 0.96]T. The minimum required
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angular separation between the sensor pointing direction and undesired pointing direc-

tion is Ψ = 20◦ and the influence zone for the repulsive potential begins at Ψ0 = 30◦. The

control torque limits are set to τmax = [2 2 2]T Nm and −τmin = [−2 − 2 − 2]T Nm.

Based on eq. (3.27), the value of b = 0.18 is selected as appropriate. Also, the control

gains for the angular velocity feedback are set to ε1 = ε2 = ε3 = 0.5.

FIGURE 3.2: Attitude error in degrees

FIGURE 3.3: Torque
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FIGURE 3.4: Angular Velocity

FIGURE 3.5: Control Gain Values

The results of the simulation are summarized as follows. The plot in Fig. 3.2 shows the

reduced attitude error as the angular separation between current sensor pointing direc-

tion and desired pointing direction. From the parameters considered for this simulation,

the initial angular separation between the sensor pointing direction and the desired point-

ing direction is 150◦, as reflected in the plot. This error converges to zero asymptotically,

as the sensor pointing direction converges to the desired direction. Plots of torque com-

ponents in Fig. 3.3 show that the torque values are confined to the given upper and lower

limits. Therefore, we see that this design of control gain parameters maintains the torque
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FIGURE 3.6: Trajectory traced by the sensor pointing direction as evolution
of time
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constraints. Except for the transients in torque values at approximately t = 4.5 s, the

absolute values are well below the limits. The plots in Fig. 3.4 show the convergence of

the angular velocities of the rigid body. Based on the theoretical development, the control

gains l1, l2, and l3 are designed so that they are positive, as shown in Fig. 3.5. The tran-

sients in the results at approximately t = 4.5 s occur when the sensor enters the influence

zone of the repulsive potential and then changes direction to move away from it.

Fig. 3.6 shows the time evolution of the sensor pointing direction on S2, as it orients

itself to achieve the desired pointing direction. There is a shaded region inside the inner

circular boundary which specifies the restricted zone for sensor pointing direction. The

outer circular boundary indicates the beginning of the repulsive potential influence zone.

The sensor pointing direction enters the repulsive potential influence zone but eventually

moves away from it. The design of the control gain parameters will dictate how deep

the sensor pointing direction will penetrate inside this influence zone, while the control

constraints remain satisfied. The sensor then exits the influence zone to converge to the

desired pointing direction.

3.6 Conclusion

This chapter presents a novel scheme for attitude pointing control and guidance of a rigid

body with a body fixed sensor. The sensor has to avoid an exclusion zone around an unde-

sirable pointing direction, and is subject to control torque constraints. This scheme relies

on the use of an attractive artificial potential to guide the sensor to its desired pointing di-

rection and a repulsive potential to avoid the undesirable pointing direction. A Lyapunov
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stability analysis for the proposed control law guarantees almost global asymptotic stabil-

ity of the sensor pointing direction at the desired pointing direction. The control param-

eters are designed so that they satisfy the control input and pointing direction exclusion

zone constraints. Numerical simulations demonstrate the validity of this scheme. The

results also show maintenance of the input torque constraints, as a result of the design of

control gain parameters. Future research will consider pointing direction (reduced atti-

tude) tracking of the body fixed sensor and techniques to make the control torque inputs

less conservative.
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Chapter 4

Integrated Guidance and Control of

Driftless Control-affine Systems with

Control Constraints and State Exclusion

Zones

This chapter presents an integrated guidance and control scheme for autonomous control-

affine systems with a convex and compact set of admissible control inputs including the

origin (zero control), with convex exclusion zones to be avoided in the state space.

Section 4.1 describes the problem setup with the dynamic model for an autonomous,

driftless, and control-affine system, along with assumptions on the state exclusion zones,

target set in the state space to be reached, and control input constraints. This section also

constructs barrier functions for the target set and exclusion zones in the state space, as

well as the set of control inputs satisfying input constraints.

Section 4.2, describes the technical approach for our integrated guidance and control

using an integral control barrier function. This section gives our barrier function designs
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for each of the three requirements mentioned earlier: satisfying control input constraints,

avoiding exclusion zones, and reaching a target set in the state space. In addition, the

feedback system presented here is designed to converge in a stable manner to a target set

that is compact, and in the safe region of the state space outside the exclusion zones. This

technical approach is based on the newly developed method of integral control barrier

functions. A smooth barrier function is designed such that the target set of states is a zero

sublevel set of this function. To avoid the given exclusion zones in the state space, barrier

functions with compact support are constructed with these exclusion zones as their zero

superlevel sets. Finally, an integral control law is designed using a control barrier function

that has the convex and compact set of admissible controls as its zero sublevel set. These

components come together to provide an integral control barrier function for the feedback

system. The resulting integrated guidance and control scheme ensures stable convergence

of states to the desired safe set in the state space, while avoiding the unsafe exclusion

zones in the state space and maintaining control input constraints.

The analytical development is followed by a set of numerical simulation results in sec-

tion 4.3, which confirm the analytical findings. Here, the proposed integrated guidance

and control scheme is applied to the kinematic car system.

4.1 System Model and Constraints

In this work, we design an integrated guidance and control scheme for driftless control-

affine systems. The assumptions stated later in this section are reasonable, and cover

several practical examples where this approach can be applied. This guidance and control

approach leads to simultaneous satisfaction of state and control constraints.
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4.1.1 System Model and Assumptions

Consider an autonomous and driftless control-affine system with state vector x = [x1 . . .

xn]T ∈ Rn and the control input vector u = [u1 . . . um]T ∈ Rm. The system may be

underactuated (m < n), fully actuated (m = n), or overactuated (m > n). The system

dynamics is given by:

ẋ =
m

∑
i=1

gi(x)ui = G(x)u, (4.1)

where gi(x) ∈ Rn for i = 1, . . . , m are the control vector fields, and G(x) = [g1(x) . . .

gm(x)] ∈ Rn×m. We consider the following integral control law for system (4.1)

u̇ = w, (4.2)

where w is to be specified. An approach to design this integral control is given in Section

4.2.5.

In the remainder of this section, we describe the state and control constraints. We

make two assumptions on the state constraints and one assumption on the set of con-

strained (admissible) controls, which are stated below.

Assumption 4.1.1. The trajectories of the control-affine system (4.1) remain in a specified subset

X ⊂ Rn. This set contains a target or goal set to be reached and exclusion zones to be avoided.

Further, the target set and exclusion zones are ellipsoidal subsets of an `-dimensional subspace of

the state space, where ` ≤ min{m, n}.

Assumption 4.1.2. The control influence matrix G(x) is full ranked for all x ∈ Rn. Further,

the subspace consisting of the ` states that have constraints on them is controllable, available for
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feedback, and not invariant for the system (4.1).

Assumption 4.1.3. The set of admissible control inputs is an ellipsoidal subset of Rm that is

centered at the origin.

The assumptions of ellipsoidal sets for target states, state exclusion zones, and the set

of admissible control inputs keep the challenging problem of feedback guidance and con-

trol in the presence of state and control constraints tractable and are resonable in practical

assumptions. Without loss of generality, under Assumption 4.1.1, we consider the state

constraints applied only to the first ` states, which are denoted by y ∈ R`. The remaining

states are denoted z ∈ Rn−`, so that

x =

y

z

 ∈ X ⊂ Rn.

4.1.2 Target Set and Exclusion Zones in the State Space

The set of target states is assumed to be a subset of the state space that is defined and

denoted as follows:

D :={y ∈ R` | ε ≤ (y − ȳ)TP−1
0 (y − ȳ) ≤ 1},

where 0 < ε < 1. (4.3)

Here ȳ ∈ Rl is a desired target state near which the system states should reach but not

converge to, and P0 ∈ Rl×l is a (symmetric) positive definite matrix. This requires linear

combinations of the states y to reach an `-dimensional ellipsoidal set whose center is at

ȳ ∈ R`, and where the outer ellipsoid’s principal axes lengths and directions are given
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by the square roots of the eigenvalues and the corresponding eigenvectors of P0, respec-

tively. The inner ellipsoid is concentric and co-axial with the outer one, with principal

axes lengths given by the square roots of ε times the eigenvalues of P0. Note that eq. (4.3)

constrains the ` states in y but not the states z. An example application where a desired

set like (4.3) is useful, is when a mobile robot needs to reach a bounded neighborhood

of a target’s position without colliding with it, but there are no such constraints on its

final desired orientation and velocities. For ease of notation and later use, we define the

following quantities:

ρ̄(y) := P−1/2
0 (y − ȳ) and r̄(y) := ρ̄(y)Tρ̄(y), (4.4)

so that:

D = {y ∈ R` | ε ≤ r̄(y) ≤ 1} ⊂ X . (4.5)

In (4.4), P−1/2
0 denotes the primary (positive definite) square root matrix of P−1

0 , such that

P−1/2
0 P−1/2

0 = P−1
0 .

In addition to reaching the target set, the control system must avoid specified exclu-

sion zones within the state space. Such an exclusion zone may be required for obstacle

or collision avoidance by a mobile robot, or to enforce a pointing direction restriction in

spacecraft control. We consider a finite number k of exclusion zones, and characterize the

ith exclusion zone centered at yi ∈ R` as follows:

Ei := {y ∈ R` | (y − yi)
TP−1

i (y − yi) ≤ 1}, (4.6)

where Pi ∈ R`×` is a positive definite matrix. This accounts for the fact that the exclusion

zone applies to only the y states but not the z states. As with the target set, we define the
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following quantities for this exclusion zone:

ρi(y) := P−1/2
i (y − yi) and ri(y) := ρi(y)Tρi(y), (4.7)

where P−1/2
i P−1/2

i = P−1
i , so that:

Ei = {y ∈ R` | ri(y) ≤ 1} ⊂ X . (4.8)

The time derivatives of the states that have constraints for the target set and exclusion

zones, are given by:

ẏ = Gy(x)u, where Gy(x) = E`nG(x),

and E`n =

[
Il 0`,(n−`)

]
.

(4.9)

Here I` denotes the ` × ` identity matrix, and 0`,(n−`) denotes the ` × (n − `) matrix of

zeros. As an example, eq. (4.6) can characterize an exclusion zone for the position of a

mobile robot, but place no such restrictions on its orientation and velocity states. The

admissible region of the state space is:

Ξ = X \ E where E =
k⋃

i=1

Ei, (4.10)

and the Ei are defined as in (4.6). For a properly-posed control problem on Ξ, assumptions

4.1.1 and 4.1.2 should hold.
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4.1.3 Set of Admissible Control Inputs

Assumption 4.1.3 applies to the set of control inputs. For ease of representation, we char-

acterize this set as an ellipsoidal subset of Rm centered at the origin, as follows:

C = {u ∈ Rm | uTQ−1u ≤ 1}, (4.11)

where Q ∈ Rm×m is (symmetric) positive-definite. Unlike the desired set of target states

in eq. (4.3) or exclusion zones for states as in eq. (4.6) which apply to only certain states,

the control constraint set given by eq. (4.11) applies to all the control inputs.

As with the state constraints, we define the following quantities for this control con-

straint:

σ(u) := Q−1/2u and s(u) := σ(u)Tσ(u). (4.12)

Here Q−1/2 ∈ Rm×m is the positive definite square root matrix Q−1/2Q−1/2 = Q−1, so

that:

C = {u ∈ Rm | s(u) ≤ 1}. (4.13)

4.2 Controller Design

In this section, we develop our technical approach behind integrated guidance and con-

trol in the presence of simultaneous state and control constraints.
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4.2.1 Barrier Functions for Exclusion Zones in State Space

Barrier functions are designed to enforce avoidance of the exclusion zones Ei given by eq.

(4.6). Define

ri := ri(y) = (y − yi)
TP−1

i (y − yi), (4.14)

where Pi and yi are defined in eq. (4.6). A suitable barrier function is one that has Ei as a

0-superlevel set, as follows:

U(ri) =



0 ri ≥ 1 + ε

kre

 −b(ri − 1)
ε(ε − (ri − 1))


1 < ri < 1 + ε

kr ri ≤ 1

(4.15)

where U : R+
0 → R+

0 , b > 0, ε > 0, kr > 0 are parameters, and i = 1, . . . , k. Here R+
0

denotes the set of non-negative real numbers. Note that this barrier function is a smooth

bump function that has compact support in ri ∈ [0, 1+ ε] and is zero outside this interval.

The exclusion zone constraint (4.6) is enforced by the design of the function U(r)

through the appropriate selection of constant positive scalars b, ε, kr. This is achieved

by setting kr to be slightly larger than the initial value of the overall integral control bar-

rier function given in Section 4.2.5. The parameter ε gives an “influence zone" of this

barrier function outside this exclusion zone, where trajectories of the system get repelled

by this barrier, and is generally selected such that 0 < ε � 1. The parameter b gives the

decay rate of this function within this influence zone. From the above expression (4.15),

we obtain the derivative of U(ri) with respect to ri as:
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U′(ri) =



0 ri ≥ 1 + ε

−b(
ε − ri + 1

)2 Ur(ri) 1 < ri < 1 + ε

0 ri ≤ 1.

(4.16)

Note that the composition U ◦ ri : Rn → R+
0 has compact support on Rn. In addition,

if ε is selected to be small enough, then it is guaranteed that

U(ri)U(rj) = 0 for i 6= j, i, j ∈ {1, . . . , k}, (4.17)

where ri is as defined by eq. (4.14).

With U′(ri) given by eq. (4.16), the time derivative of the barrier function U(ri) along

the trajectories of system (4.1) is obtained as:

U̇(ri(x)) = U′(ri(x))LGy(x)uri(x)

= 2U′(ri(x))(y − yi)
TP−1

i Gy(x)u,
(4.18)

where LGy(x)uri(y) is the Lie derivative of ri(x) with respect to vector field Gy(x)u. Note

that on the boundary of the exclusion zone Ei, ri = 1 and therefore U′(ri) = 0, and

U′(ri) < 0 immediately outside this exclusion zone (for 1 < ri < 1 + ε), according to eqs.

(4.15)-(4.16). Therefore, if the control scheme ensures that the term (y − yi)
TP−1

i Gy(x)u in

eq. (4.18) is positive when 1 < ri < 1 + ε, then U̇(ri(x)) < 0 in this influence zone of this

barrier function. This would ensure that if the initial state is outside this influence zone

where 1 < ri < 1 + ε and kr is larger than the initial value of the overall integral barrier

function, then the trajectories cannot enter Ei.
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4.2.2 Artificial Potential for Target Set in State Space

An artificial potential function that makes the target set given by eq. (4.3) attractive within

the admissible region Ξ given by (4.10) is defined as

Ū(r̄) = (r̄ − 1)(r̄ − ε), (4.19)

where r̄ is set to r̄(x) defined in (4.4). Note that the target set D is a 0-sublevel set of

Ū ◦ r̄ : Ξ → R. Therefore, this target set becomes attractive if the time derivative of

Ū(r̄(x)) along the system (4.1) is negative for all x = (y, z) ∈ Ξ \ D. This ensures that all

trajectories starting in Ξ \ D approach D in a finite time interval.

The time derivative of this artificial potential function along the trajectories of system

(4.1) is given by:
˙̄U(r̄(x)) = Ū′(r̄(x))LGy(x)ur̄(x). (4.20)

Evaluating the right-hand side of the above equation, we get the following expression for

this time derivative:

˙̄U(x, u) = 2µ(r̄)(y − ȳ)TP−1
0 Gy(x)u, (4.21)

where µ(r̄) = Ū′(r̄) = (r̄ − ε) + (r̄ − 1). (4.22)

Note that µ(r̄) given by eq. (4.22) is bounded if r̄ is bounded. Therefore, in the compact

admissible region Ξ of the state space defined by eq. (4.10), the time derivative given

by (4.21) can be unbounded only when the controls u are unbounded, given that G(·) is

smooth.
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4.2.3 Integral Barrier Function for Control Constraints

To enforce the control constraint given by eq. (4.11), an integral barrier function is de-

signed along with an integral control law. For ease of notation, we use s to denote s(u)

defined in (4.12). Define the candidate barrier function:

W(s) = s − 1 − U(s), (4.23)

where U(s) is the bump function defined by (4.15). Note that the set C defined by eq.

(4.11) is a 0-sublevel set of the barrier function W(u) given by eq. (4.23) because s ≤ 1 in

C.

The time derivative of this barrier function along the system trajectories is given by:

Ẇ = ν(s)Lws = 2ν(s)uTQ−1w,

where ν(s) = 1 − U′(s),
(4.24)

where U′(s) is given by eq. (4.16) and Q is as defined in eq. (4.11). Note that U(s) ≥ 0 for

all s, and therefore C is a 0-sublevel set of W(u). Also note that ν(s) > 0 for all s ∈ R+
0

because U′(s) ≤ 0. Therefore, C becomes an invariant set for the control input u if it is in

C at some time instant, and the integral control w is designed to make the right side of eq.

(4.24) non-positive. The following statement gives such an integral control law for w.

Proposition 4.2.1. Let the initial control input u(0) ∈ C. Then, the integral control law

w = w f := −QL(s, r̄, ri)u, where

L(1, r̄, ri) = L(1, r̄, ri)
T > 0,

(4.25)

makes the admissible control set C forward invariant.
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The proof of this statement follows by substituting w from eq. (4.25) into eq. (4.24),

which shows that Ẇ(x, u) < 0 with this integral control law at the boundary of C, where

s(u) = 1. Therefore, by Nagumo’s theorem (Blanchini, 1999), the set C is forward invari-

ant.

4.2.4 Local Minima Avoidance

Existence of local minima is an issue with artificial potential functions. A function that

destabilizes local minima of the barrier function for the ith exclusion zone is:

Us(ri, r̄) =


k

β + γ
Φ(ri, r̄) ri ∈]1, 1 + ε[

0 otherwise,

(4.26)

where

Φ(ri, r̄) = e

 −αrs(x, ri)

β2(β2 − rs(x, ri))


,

rs(x, ri) = v(x, ri)
Tv(x, ri),

v(x, ri) = ∇U(x) +∇Ū(ri),

∇U(x) = µ(r̄)Gy(x)TP−1
0 (y − ȳ),

∇Ū(ri) = U′(ri)Gy(x)TP−1
i (y − yi), (4.27)

and where k > 0, α > 0, γ > 0, β > 0. The time derivative of this potential function along

the trajectories of system (4.1) is given by,
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U̇s(ri, r̄) = U′
s(ri, r̄)LGy(x)urs(x, ri)

= 2U′
s(ri, r̄)v(x, ri)

TH(x, ri)Gy(x)u, (4.28)

where we have compactly represented the above expression by expressing v̇(x, ri) =

H(x, ri)Gy(x)u, which involves the Hessian H(x, ri) of U(x) + Ū(ri).

4.2.5 Guidance and Control Scheme

This subsection provides the main result on our integrated guidance and control scheme,

whereby the system (4.1) is guided towards the desired target set D in the state space,

while avoiding the exclusion zones Ei and using admissible control inputs from the con-

strained control set C. Most of the preliminary results are given in sections 4.2.2, 4.2.1,

and 4.2.3. The main result on the control law now follows.

Theorem 4.2.1. Let U : R+
0 → R+

0 be defined according to eqs. (4.15). With w f defined by

(4.25), consider the control law for system (4.1), given by:

w = w f − Q
[
µ(r̄)GT

y (x)P−1
0 (y − ȳ)

+
k

∑
i=1

(
U′(ri)GT

y (x)P−1
i (y − yi)

)
+ U′

s(ri, r̄)GT
y (x)H(x, ri)v(x, ri)

)]
. (4.29)

For all initial states x0 = x(0) ∈ Ξ and initial controls u0 = u(0) ∈ C, state trajectories x(t)

of the feedback system consisting of (4.1)-(4.2) with the control law (4.29) remain in Ξ, while

control trajectories u(t) remain in the set of admissible controls C. Further, x(t)∩ Ei = ∅ for any

t ∈ R+
0 , i.e., the exclusion zones Ei are never entered.
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Proof. We start this proof with the observation that the bump function U(r) has a compact

support in R+
0 . We define the following barrier functions:

U(x) = Ū(r̄(x)) +
k

∑
i=1

(U(ri(x)) + Us(ri, r̄)), (4.30)

V(x, u) = U(x) + W(s(u)), (4.31)

noting that they are functions of only the states y ∈ R` in the full state vector x = (y, z) ∈

Rn. Also note that V(x, u) has D × C as a 0-sublevel set, while the union of the (disjoint)

exclusion zones E is a superlevel set where the value of this function is at least as large as

kr. The time derivative of V(x, u) along the trajectories of the feedback system (4.1) and

the control law (4.29), is given by:

U̇(x, u) = LGy(x)uU(x). (4.32)

Substituting eqs. (4.21) and (4.18) into the right side of eq. (4.32), it follows that

U̇(x, u) = 2µ(r̄(x))(y − ȳ)TP−1
0 Gy(x)u

+ 2
k

∑
i=1

(
U′(ri(x))(y − yi)

TP−1
i Gy(x)u

+ U′
s(ri, r̄)v(x, ri)

TH(x, ri)Gy(x)u
)

.

(4.33)

Taking into account eq. (4.24) for the time derivative of W(u), we see that:
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V̇(x, u, w) = 2
[
ν(s)wTQ−1 +

(
µ(r̄)(y − ȳ)TP−1

0

+
k

∑
i=1

(
U′(ri(x))(y − yi)

TP−1
i

+ U′
s(ri, r̄)v(x, ri)

TH(x, ri)
))

Gy(x)
]
u.

(4.34)

Substituting the control law (4.29) and (4.25) into the right hand side of (4.34), we

obtain:

V̇(x, u, w) = 2wT
f Q−1u = −2uTL(s, r̄, ri)u ≤ 0. (4.35)

This barrier function is positive and increasing in value only when the state x is inside

an exclusion zone, and therefore, the state does not go into these zones if x(0) ∈ Ξ. This

shows that the set of states and controls given by Ξ×C remains invariant in forward time,

if the initial state x(0) ∈ Ξ and initial control u(0) ∈ C. Moreover, because V(x, u) has

D × C as the only 0-sublevel set inside Ξ × C with the boundary of this set as the 0-level

set, the state-control pair (x, u) converges to this set. This proves the result.

The above result shows that Ξ × C remains a positively invariant set, but it does not

show convergence of state trajectories to the desired set D in the state space. This is shown

in the following result, as a corollary of Theorem 4.2.1.

Corollary 4.2.1. For system (4.1), consider the feedback control law (4.29) with L(s, r̄, ri) positive

definite for all r̄ > ε. Then state trajectories x(t) of the feedback system converge to the interior of

the desired set D ⊂ Ξ, and D × C is positively invariant.

Proof. The proof of this result follows immediately from eq. (4.35), which shows that
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V̇(x, u, w) < 0 unless u = 0, because L(s, r̄, ri) is positive definite. This makes the 0-

sublevel set D × C attractive as long as the control input is acting. By Nagumo’s theorem

(Blanchini, 1999), the set of desired states and controls, D × C, is positively invariant.

Therefore, using LaSalle’s invariance principle (Khalil, 2002), the state trajectories x(t)

converge to the interior of the desired set D ⊂ Ξ.

As an example, a suitable choice of L(s, r̄, ri) is given by:

L(s, r̄, ri) =

(
r̄ − ε

(s − 1)2 + υ2 +
k

∑
i=1

U(ri)

)
Im, (4.36)

where 0 < υ � 1. Note that this choice of L(s, r̄, ri) satisfies the condition of Lemma 4.2.1

only for r > ε as required by Corollary 4.2.1. which is good enough to transfer the system

states to the target set D while maintaining the control constraint set C.

4.3 Simulation Results

We apply the integrated guidance and control scheme designed in the previous section,

to the Heisenberg system given in (Bloch, 2015).

4.3.1 Application of Integrated Guidance and Control to Heisenberg

System

The Heisenberg system is given by the equations
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ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x1u1 − x2u2,

(4.37)

which is an underactuated control-affine system that is appropriate for scheme developed

in Section 4.2. We impose the exclusion zone constraints and target set requirement on

the states y = (x1, x2), so that:

G(x) =

1 0 x1

0 1 −x2


T

and Gy(x) =

1 0

0 1

 . (4.38)

This state x3 denotes the yaw and is unconstrained. For the simulation results shown

next, we impose two exclusion zones on the states y ∈ R2 as follows:

y1 =

2.5

0

 , P−1
1 =

1.1025 0

0 1.1025

 ,

y2 =

 5.6

−0.5

 , P−1
2 =

1.5876 0.04

0.04 1.96

 .

(4.39)

The target set of states is given by eqs. (4.4)-(4.5), with its center and size given by:

ȳ =

[
8.5 0

]T
, P−1

0 = diag(0.4, 0.4). (4.40)

Finally, the control constraint set is given by eq. (4.11) with:

Q = diag(0.9604, 1.1025) (4.41)
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4.3.2 Numerical Simulation of the Kinematic Car System

We use the control law (4.29), with w f defined by eq. (4.25) and control gain L(s, r̄, ri)

given by eq. (4.36). The control gain parameters are selected as follows:

ε = 0.35, b = 2.6012, υ = ε/5 = 0.07, β = 25, γ = 0.1

The remaining gain parameter is selected as kr = V0 + 2ε, where V0 is the initial value

of the integral control barrier function defined by eq. (4.31). This initial value which is

based on initial states and initial control inputs is:

x(0) =
[

0.05 0 0

]T
, u(0) =

[
−0.35 0.21

]T
.

The plot in Fig. 4.1 denotes the time evolution of states y = (x1, x2) and the plot in fig.

4.2 shows control input vector components with time for the Heisenberg system with

the proposed scheme. While these plots do not show how the state exclusion zones and

control constraints are met, these are shown in the trajectories depicted in Fig. 4.3 and 4.4.
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FIGURE 4.1: Plot of states with time
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FIGURE 4.2: Control trajectory

FIGURE 4.3: State trajectory
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FIGURE 4.4: Control inputs trajectory

As shown in Fig. 4.3 and 4.4, the state exclusion zone constraints and control input

constraints are maintained by this integrated guidance and control scheme. Additionally,

the local minima destabilization term prevents from settling in local minima. Further, the

state trajectory converges to within the inner and outer boundaries of the target set.

4.4 Conclusion

This chapter considered an application of a recently developed method of integral control

barrier functions to guide a control-affine system along safe regions to a target zone, while

avoiding unsafe regions and satisfying control constraints. We obtained an integrated

guidance and control scheme that solves this problem for control-affine systems under

certain assumptions. The comparison of the proposed approach with other approaches,

74



e.g., based on model predictive control and reference governors, will be addressed in

future work.
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Chapter 5

Discrete-time Control of Nonlinear

Control-Affine Systems with Uncertain

Dynamics

This chapter presents a novel approach to data-enabled control of discrete nonlinear

control-affine systems with uncertain (“gray-box") dynamics.

The section 5.1 formulates our data-enabled control approach by outlining prelimi-

nary concepts and assumptions on the discrete-time system model for the data-enabled

control approach.

The section 5.2 gives the gray-box ultra-local model representation of the nonlinear

control-affine system in discrete time. The gray-box dynamics model accounts for known

dynamics and lumps together the effects of disturbance inputs and poorly known dy-

namics into one time-varying unknown input, which is estimated in real time. This

data-enabled approach leads to robust and stable real-time tracking control of desired

output trajectories in the presence of model uncertainties. The lumped unknown input

is estimated by a Hölder-continuous robustly stable learning scheme, using input-output
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data in discrete time. This leads to finite-time convergence of the estimation errors of the

unknown input to a bounded neighborhood of the zero vector, provided the system is

Lipschitz-continuous with respect to states, inputs, outputs, and time.

The section 5.3 gives the nonlinear tracking control law for tracking a given (desired)

output trajectory. The Lyapunov analysis is carried out to show the nonlinear stability

and robustness of the uncertainty observer and tracking control law. This results in si-

multaneous real-time uncertainty estimation and tracking control.

The section 5.4 presents a set of numerical simulation results from the application of

this data-enabled control scheme to an inverted pendulum on cart system with uncertain

dynamics. This approach is also compared to the system with unknown dynamics.

5.1 Discrete Nonlinear System Description

In this section, we describe the discrete-time nonlinear system, its representation and

related notation. Consider a discrete-time nonlinear system with m outputs and l inputs

and n unknown (internal) states. The set of all real numbers is represented by R, the set

of all positive real numbers by R+, and the set of all non-negative reals by R+
0 . The value

of time-varying quantities at sampling instant tk ∈ R+
0 is denoted by (·)k = (·)(tk), with

uk ∈ Rl the control input vector, yk ∈ Rm the vector of the measured output variables,

and zk ∈ Rn the vector of internal (unmeasured) states. Here, k ∈ W = {0, 1, 2, . . . },

where W is the index set of whole numbers. The µth order forward difference of the

output variable is defined by

yµ
k = yµ−1

k+1 − yµ−1
k with y0

k = yk. (5.1)
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Let ν denote the relative degree of the input-output system. Then, the discrete-time un-

certain nonlinear system can be represented by

yk+ν = f (yk, yk+1, . . . , yk+ν−1, zk, uk, tk), (5.2)

where f : (Rm)ν × Rn × Rl × R+
0 → Rm is uncertain and possibly time-varying. The

control inputs uk are designed to track the desired output trajectories yd
k = yd(tk). The

following assumptions ensure that a given output trajectory can be tracked by the control

inputs.

Assumption 5.1.1. The discrete-time nonlinear system defined in (5.2) is Lipschitz continuous

such that,

‖yk+1 − yk‖ ≤ L ‖χk+1 − χk‖ , (5.3)

where χk = (vk, uk, tk), vk = (yk, yk+1, . . . , yk+ν−1, zk) and L is a Lipschitz constant.

Assumption 5.1.2. The function f on the right side of eq. (5.2) can be represented as

f (χk) =Fk + Gkuk, where Fk = F(vk, tk)

and Gk = G(vk), (5.4)

where F = (Rm)ν × Rn × Rl × R+
0 → Rm and G = (Rm)ν × Rn × Rl × R+

0 → Rm×l are

Lipschitz continuous in their arguments.

Note that the second assumption means that the nonlinear system is control-affine,

with a control influence matrix that is not explicitly time-dependent.
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5.2 Gray-box model and its estimation

This section describes a discrete-time model that models the nonlinear control-affine sys-

tem (5.4) by a gray-box ultra-local model (ULM). This gray-box model is based on knowl-

edge of part of the dynamics, while the unknown dynamics is represented as an additive

uncertainty in the drift vector Fk. The unknown dynamics is then estimated from input-

output data obtained over time. A first-order nonlinear observer is designed to estimate

the unknown dynamics in this model.

5.2.1 Ultra-local model for uncertain systems

The concept of an ultra-local model that is local in input, output and time for SISO systems

was proposed in Fliess and Join, 2013. This concept was generalized to discrete-time

nonlinear systems with n inputs and m outputs with unknown dynamics in Sanyal, 2022.

In this work, we further extend this concept to discrete-time nonlinear systems that have

uncertainties but are control-affine as in eq. (5.4). The gray-box ULM that is used to model

the system, is as follows:

yk+v = Fk + F̄k + Ḡkuk, (5.5)

where yk ∈ Rm is the vector of measured output variables as before, F̄k ∈ Rm and Ḡk ∈

Rm×l are known from a model that accounts for the known parts of the system dynamics,

Fk ∈ Rm represents the uncertainty in the dynamics which lumps together effects of

imperfectly known internal parameters or states and external disturbance inputs, and

uk ∈ Rl is the control input vector. Note that the right sides of eqs. (5.4) and (6.1) have

to be equal, although that does not necessarily mean that F̄k + Fk = Fk or Ḡk = Gk.

The latter would be true if the knowledge of the control influence matrix Gk is perfect.
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In other words, the ultra-local model (6.1) is an exact representation of the discrete-time

control-affine system (5.4) with unknown dynamics at each sampling instant; it is not an

approximation. The uncertainty in the dynamics modeled by the gray-box ULM (6.1),

satisfies the following assumptions.

Assumption 5.2.1. The control gain matrix Ḡk is a full-rank matrix with at least as many inputs

as outputs (m ≤ l).

Assumption 5.2.2. The known part of the dynamics represented by F̄k is Lipschitz-continuous

such that, ∥∥F̄k+1 − F̄k
∥∥ ≤ LF ‖χk+1 − χk‖ , (5.6)

where LF is a Lipschitz constant.

Here and in the sequel, ‖·‖ denotes the 2-norm unless specified otherwise. Note that

assumptions 5.1.2 and 6.1.2 together imply that the unknown dynamics Fk is also Lips-

chitz continuous.

5.2.2 Estimation of unknowns in ultra-local model

A discrete-time first-order observer for the unknown dynamics Fk in (6.1) is given in

Sanyal, 2022 and used in this work. Let F̂k be the estimate of the unknown Fk, which

is based on previously estimated values of Fi obtained from the measured outputs yi for

i ∈ {0, . . . , k − 1}. Define the estimation error:

eFk := F̂k −Fk. (5.7)
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Based on the assumptions stated earlier, we know that the unknown dynamics Fk is

bounded if the outputs, inputs and states are bounded. Now, we state the following

results which are proved in Sanyal, 2022.

Proposition 5.2.1. Let the estimation error eFk be as defined in (6.3) and let r ∈ ]1, 2[ and

λ > 0 be constants. Define the first order finite difference of the unknown dynamics Fk

by

∆Fk := Fk+1 −Fk. (5.8)

Let the system satisfy assumptions 5.1.1 through 6.1.2. Consider the nonlinear observer

given by

F̂k+1 = D(eFk )eFk +Fk,

where D(eFk ) =
((eFk )TeFk )1−1/r − λ

((eFk )TeFk )1−1/r + λ
,

(5.9)

and Fk = yk+v − F̄k − Ḡkuk from (6.1). Then the estimation error eFk converges to a

bounded neighborhood of 0 ∈ Rn in finite time, where bounds on this neighborhood

can be determined from bounds on ∆Fk.

The above result gives the form of the observer and its stability, for the unknown

dynamics Fk. The following result proved in Sanyal, 2022, gives the robustness of this

observer.

Proposition 5.2.2. Consider the observer design in (6.5) for the unknown Fk in the ultra-

local model (6.1). Let the first order difference ∆Fk from (6.4) be bounded according to

‖∆Fk‖ ≤ BF , (5.10)
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where BF ∈ R+ is a known constant. Then the observer error eFk converges to the neigh-

bourhood given by

E :=
{

eFk ∈ Rn : σ(eFk )
∥∥∥eFk

∥∥∥ ≤ BF}, (5.11)

for some finite k > N, N ∈ W, where

σ(eFk ) := 1 +D(eFk ). (5.12)

Note that the above result gives ultimate bounds on the estimation error of the unknown

dynamics (or disturbance) Fk, where the bounds depend on its rate of change ∆Fk.

5.3 Tracking control law

In this section, a nonlinearly stable tracking control input uk is designed based on the

output yk, a desired output yd
k , uncertainty estimate F̂k and known dynamics F̄k.

5.3.1 Output trajectory tracking control

Let yd : R → Rm be the desired output trajectory which is ν times differentiable and let

yd
k := yd(tk) ∀ tk ∈ R+

0 . The output trajectory tracking error is defined as:

ey
k = yk − yd

k , where yd
k = yd(tk). (5.13)

The following result gives the tracking control law to track the given desired trajectory.
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Theorem 5.3.1. Consider the control-affine system (6.1) and the output trajectory tracking

error defined by (5.13) for tracking a desired output trajectory. Let the desired output

trajectory yd
k and its first time difference ∆yd

k = yd
k+1 − yd

k be bounded. Consider the

following tracking control law:

uk = Ḡ#
k wk where Ḡ#

k = ḠT
k
(
ḠkḠT

k
)−1 ∈ Rl×m,

wk = yd
k+ν − F̂k − F̄k + C(ey

k+ν−1)e
y
k+ν−1,

C(ey
j ) =

((ey
j )

Tey
j )

1−1/s − µ

((ey
j )

Tey
j )

1−1/s + µ
, (5.14)

s ∈]1, 2[, µ > 0, and s < r and µ < λ, where r and λ are as defined in Proposition

5.2.1. The control law (5.14) ensures that the tracking control error ey
k and disturbance

estimation error eFk satisfy the following error dynamics:

ey
k+ν + eFk = C(ey

k+ν−1)e
y
k+ν−1. (5.15)

In particular, if the uncertainty estimate F̂ k is obtained from the observer law (6.5) of

Proposition 5.2.1, then ey
k+ν converges in a stable manner to a bounded neighborhood of

0 ∈ Rm after finite time (i.e., for finite k ∈ W).

Proof. Direct substitution of the control law (5.14) in the gray-box ULM (6.1) leads to:

ek+ν = Fk − F̂k + C(ey
k+ν−1)e

y
k+ν−1

⇒ ek+ν + eFk = C(ey
k+ν−1)e

y
k+ν−1. (5.16)
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Now consider the error dynamics given by

ey
k+ν = C(ey

k+ν−1)e
y
k+ν−1, (5.17)

with C(ey
j ) defined as in eq. (5.14). Using a discrete-time Lyapunov stability analysis

based on the Lyapunov function of the output tracking error defined by:

Vy
k = (ey

k)
Tey

k , (5.18)

we can easily show that the error dynamics (5.17) leads to finite-time stable convergence

of the output tracking error ey
k to zero. Therefore the error dynamics (5.16) is a pertur-

bation of the “perfect" error dynamics (5.17) by the disturbance estimation error eFk . The

remainder of the proof of this result follows the proof of Theorem 4.1 and Proposition 4.2

of (Sanyal, 2022), and is omitted here for brevity.

5.4 Numerical simulation results

This section provides simulation results of the proposed ULM-based data-enabled track-

ing control framework when it is applied to an inverted pendulum on a cart with nonlin-

ear friction terms affecting the motion of both degrees of freedom. The dynamics model

of this system is a “gray-box" (uncertain) dynamics model for the controller, which is de-

scribed in §5.4.1. Numerical simulation results of this control scheme are given in §5.4.3.

Additionally, this gray-box system is compared with the system with “black-box" (un-

known) dynamics.

85



5.4.1 Inverted pendulum on cart system

The inverted pendulum on the cart is a mechanical system with two degrees of freedom.

The cart’s linear displacement x is considered positive when it is to the right of a fixed

origin, while the angular displacement θ of the pendulum is considered positive counter-

clockwise from the upward vertical, as shown in Fig. 5.1. The system has two inputs:

a horizontal force F applied to the cart and a torque τ applied by the pendulum motor

where it is attached to the cart. The states consist of the linear displacement, angular dis-

placement, linear velocity and angular velocity. The outputs are the linear displacement

x and the angular displacement θ. Therefore, this is a two-input and two-output system,

unlike the usual single-input inverted pendulum on a cart example considered with only

the horizontal cart force as an input. The pendulum has mass m, rotational inertia I and

length 2l, while the cart has mass M. Although the dynamics model of the system is an

uncertain or gray box system for the purpose of control design, it is used to generate a

desired output trajectory, which is then tracked using the proposed data-enabled control

scheme.

FIGURE 5.1: Inverted pendulum system to which our nonlinear model-free
control framework is applied.
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As unknown (disturbance) inputs, the inverted pendulum on a cart system is sub-

jected to a nonlinear friction force acting on the cart’s motion, and a nonlinear friction-

induced torque acting on the pendulum. The friction force acting on the cart is denoted

Fx and the friction torque acting on the pendulum is denoted Fθ, and they are given by:

Fx = cx tanh ẋ,

Fθ = cθ tanh θ̇.
(5.19)

Note that the hyperbolic tangent function ensures that these frictional effects get saturated

at high speeds (ẋ and θ̇). Therefore, the dynamics model of this system, which is unknown

for the purpose of control design, is given by:

M(q)q̈ +D(q, q̇) = u, q =

x

θ

 ,

M(q) =

 M + m −ml cos θ

−ml cos θ I + ml2

 ,

D(q, q̇) =

mlθ̇2 sin θ + cx tanh ẋ

cθ tanh θ̇ − mgl sin θ

 .

(5.20)

The input and output vectors are:

u =

F

τ

 , y = q =

x

θ

 . (5.21)
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For the purpose of the numerical simulation, the parameter values selected for this system

are:

M = 1.5 kg, m = 0.5 kg, l = 1.4 m, I = 0.84 kg m2,

g = 9.8 m/s2, cx = 0.028 N, cθ = 0.0032 N m. (5.22)

The desired trajectory was generated by applying the following model-based control in-

puts (force and torque) to the cart and pendulum:

F = mlθ̇2 sin θ − 2(M + m sin2 θ)g sin θ

− (M + m)g sin θ, τ = −mgl sin θ.
(5.23)

This generates an output trajectory yd(t) = [xd(t) θd(t)]T that is oscillatory, as depicted

in Fig. 5.2 in Section 5.4.3.

5.4.2 Discretization of continuous dynamics model

The dynamics model and control law for the inverted pendulum on cart system are given

in Section 5.4.1, are discretized here using forward difference schemes for generalized

velocities and accelerations of the two degrees of freedom. Denoting outputs and inputs

in discrete time by yk := qk = q(tk) and uk := u(tk) as before and the time step size by

∆t := tk+1 − tk, we get the following discretization of the continuous dynamics (5.20),

yk+2 − 2yk+1 + yk
∆t2 =M−1

k

(
uk −D

(
yk,

yk+1 − yk
∆t

))
,

where Mk = M(yk), (5.24)
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M(·) and D(·, ·) are as defined in eq. (5.20). This leads to the following second-order

discrete-time system:

yk+2 = Fk + Gkuk, where Gk = ∆t2M−1
k and

Fk = 2yk+1 − yk − ∆t2M−1
k D

(
yk,

yk+1 − yk
∆t

)
, (5.25)

where Fk and Gk have the meanings as defined by eq. (5.4). The known part of the dy-

namics can be represented as:

F̄k = 2yk+1 − yk −M−1
k

ml(θk+1 − θk)
2 sin θk

−mgl∆t2 sin θk

 . (5.26)

In the numerical simulation results shown in the next subsection, this discrete-time

model is used for generating the desired output trajectory starting from a given initial

state vector and with the control laws given by eqs. (5.23) sampled at time instants tk with

velocities approximated by forward differencing (i.e., ẏ(tk) ≈ yk+1−yk
∆t ). It is then used

to simulate the performance of the data-enabled control approach outlined in Sections

5.2 and 5.3 with the discrete dynamics (5.25), with the friction force and friction torque

unknown to the control law.

5.4.3 Simulation results for control scheme

The numerical simulation results for the model-free tracking control scheme applied to

the system described by eqs. (5.20)-(5.22) are presented here. A trajectory is generated

for this system using the control scheme (5.23) sampled in discrete time, with the initial
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states:

qd(0)

q̇d(0)

 =



xd(0)

θd(0)

ẋd(0)

θ̇d(0)


=



0.45 m

−0.14 rad

−0.3 m/s

0.05 rad/s


. (5.27)

The desired trajectory yd(t) = [x(t)d θd(t)]T for a time interval of T = 50 seconds is

plotted in Fig. 5.2.

0 5 10 15 20 25 30 35 40 45 50

-25

-20

-15

-10

-5

0

5

FIGURE 5.2: Desired trajectory generated for T = 50 seconds for inverted
pendulum on cart system.
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The control scheme given by Theorem 5.3.1 is applied to this system to track this de-

sired trajectory. For this simulation, the initial state estimates are selected as follows:

q̂(0)

˙̂q(0)

 =



x̂(0)

θ̂(0)

˙̂x(0)
˙̂θ(0)


=



0 m

0.102 rad

0 m/s

0 rad/s


. (5.28)

Output measurements are assumed at a constant rate of 50 Hz, i.e., sampling period

∆t = 0.02 s. In the simulation, the measurements are generated by numerically propagat-

ing the true discrete-time dynamics of the inverted pendulum on the cart system given by

eqs. (5.25), and adding noise to the true outputs yk = qk. The additive noise is generated

as high frequency and low amplitude sinusoidal signals, where the frequencies are also

sinusoidally time-varying. A finite-time stable output observer given by:

ŷk+1 = yk+1 + B(eo
k)e

o
k, where eo

k = ŷk − yk,

and B(eo
k) =

(
(eo

k)
TLeo

k
)1−1/p − β(

(eo
k)

TLeo
k

)1−1/p
+ β

.
(5.29)

with the observer gains:

L = 0.1, β = 2, and p =
13
11

, (5.30)

is used to filter out noise from the measured outputs. The following observer gains for

the first order ultra-local model observer defined by Proposition 5.2.1, are used:

λ = 0.35, and r =
9
7

. (5.31)
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The tracking controller of Theorem 5.3.1 with the following gains are used in this simula-

tion:

s =
11
9

, µ = 20.935, and Gk = ∆t

 0.559 0.196

0.196 0.657

 , (5.32)

where Gk is selected to be symmetric and positive definite, as expected for a mechanical

system.

The comparison plot for the estimation error in estimating the uncertainty in the

model Fk according to the observer given by Proposition 5.2.1, is given in Fig. 5.3. The ini-

tial transients in the model estimation error for the gray-box system is much less as com-

pared to the black-box system, as the gray-box system benefits from the partial knowledge

of the dynamics. In addition, as the model estimation error converges and settles within

the bounds given by Proposition 5.2.2, the model estimation error for gray-box system has

less oscillations as compared to the black-box system. Simulation results for the output

trajectory tracking errors, is given in the 5.4. After brief initial transients, the tracking er-

rors for cart position and pendulum angle settle within 6 mm and 0.003 rad, respectively.

The output trajectory tracking performance is greatly improved for the gray-box system

as compared to the black-box system.

The plots in Fig. 5.5 shows the comparison of control inputs using the control law in

eq. (5.14) between the black-box and gray-box systems. These control input profiles show

some oscillations in tracking the desired trajectory, that correlate with the oscillations seen

in the ultra-local model observer error in Fig. 5.3. These oscillations are comparatively

more for the black-box system.
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FIGURE 5.3: Comparison of black-box and gray-box systems: estimation er-
rors in the unknown (disturbance) inputs

5.5 Conclusion

This work considers estimation of dynamic uncertain inputs and data-enabled control of

a control-affine system for output tracking in discrete time. The dynamics model of the

system is partly known, and the uncertain (disturbance) input observer is used to estimate

the unknown part of the dynamics. This disturbance observer is designed to be Hölder-

continuous and finite-time stable. The data-enabled tracking control scheme uses the
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FIGURE 5.4: Comparison of black-box and gray-box systems: output trajec-
tory tracking errors for inverted pendulum on a cart system.

disturbance estimate provided by the disturbance observer, for feedforward cancellation

of this disturbance. This control scheme is shown to be finite-time stable in the case of

perfect estimation of the disturbance, and robust to this estimation error otherwise. In

future work, we plan to account for bounds in control inputs and estimation of the control

influence matrix when knowledge of that is not satisfactory.
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FIGURE 5.5: Comparison of black-box and gray-box systems: control input
profiles.
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Chapter 6

Reference Governor for Constrained

Data-Driven Control of Aerospace

Systems with Unknown Input-Output

Dynamics

This chapter considers the design of a reference governor to satisfy pointwise-in-time

output and control constraints in the setting of data-driven control of aerospace systems

with unknown input-output dynamics. This is carried out in the setting of an ultra-local

model (ULM), which models the unknown dynamics as described in Sanyal, 2022 and as

depicted in Fig. 6.1.

The section 6.1 outlines preliminary concepts and assumptions on the system model

for the data-driven control approach. This unknown dynamics lumps together the com-

bined effects of unknown internal (state space) dynamics, disturbance forces and torques,

and unknown internal (mass/inertia) parameters. The unknown dynamics are modeled
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FIGURE 6.1: ULM-based reference governor schematic

by a control-affine ultra-local model (ULM) in discrete time. The robust observer esti-

mates the unknown dynamics that guarantees finite-time stable convergence of observer

errors. These estimates compensate for the unknowns in the nonlinearly stable tracking

control law.

The section 6.2 illustrates the design of constraint admissible sets and reference gover-

nor for data-driven control. A reference governor is an add-on scheme that enforces the

output and control constraints by modifying, when required, a reference command to the

system with unknown input-output dynamics. The reference command is determined on

the basis of constraint admissible sets constructed in a data-driven setting and exploiting

our ULM. A Lyapunov analysis is carried out to ensure that the output of the reference

governor-based control system converges to a desired output trajectory that meets the

constraints.

The section 6.3 presents the numerical simulation results for aircraft longitudinal flight

control with the reference governor-based data-driven control scheme. The simulation

results demonstrate the performance of the controller and the enforcement of the con-

straints.
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6.1 Problem Formulation

In this section, we describe the concept of a “black box" ultra-local model (ULM) that

models the unknown input-output dynamics. This ULM is used to design a finite-time

stable observer for unknown dynamics.

6.1.1 Ultra-local model for unknown systems

The ultra-local model representing a system with n inputs and m outputs with unknown

internal dynamics in discrete time is given by:

yk+v = Fk + Gkuk, (6.1)

where yk ∈ Rn is the output vector which denotes the measured output variables, Fk ∈

Rn represents the unknown dynamics which lumps together effects of internal states and

parameters, external disturbance and torque, uk ∈ Rm is the control input vector and Gk ∈

Rn×m is a control gain matrix that is part of the controller design. Additionally, the system

is sampled in an increasing sequence of time instants tk, where k ∈ W = {0, 1, 2, . . . } and

W denotes the index set of whole numbers. The unknown dynamics modeled by the

ultra-local model (6.1) satisfies the following assumptions. These assumptions ensure

that a given output trajectory can be tracked by the control inputs.

Assumption 6.1.1. The control gain matrix Gk is a full-rank matrix with the same number of

inputs and outputs (m = n).
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Assumption 6.1.2. The unknown dynamics represented by Fk and the control gain matrix Gk

are Lipschitz continuous such that,

‖Fk+1 −Fk‖ ≤ LF ‖ξk+1 − ξk‖ ,

‖Gk+1 − Gk‖ ≤ LG ‖ξk+1 − ξk‖ ,
(6.2)

where LF, LG are Lipschitz constants and ξk = (yk, yk+1, . . . , yk+v−1, zk, uk, tk) where zk is a

vector of unknown internal states and parameters. Here and in the sequel, ‖·‖ denotes the 2-norm

unless specified otherwise.

6.1.2 First order model-free finite time stable observer

A discrete-time first-order observer for the unknown dynamics Fk in (6.1) is given in

(Sanyal, 2022) and used in this work. Let F̂k be the estimate of the unknown Fk, which

is based on previously estimated values of Fi obtained from the measured outputs yi for

i ∈ {0, . . . , k − 1}. Define the estimation error:

eFk := F̂k −Fk. (6.3)

Assumption 6.1.3. The unknown dynamics Fk and its estimate F̂k are bounded.

Now, we state the following results which are proved in (Sanyal, 2022).

Proposition 6.1.1. Consider the estimation error eFk as defined in (6.3) and let r ∈ ]1, 2[

and λ > 0 be the constants. Let the first order finite difference of the unknown dynamics

Fk, given by

∆Fk := Fk+1 −Fk (6.4)
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be bounded as defined in (6.2). Let the control influence matrix Gk be bounded as defined

in (6.2). Let the nonlinear observer be given by

F̂k+1 = D(eFk )eFk +Fk,

where D(eFk ) =
((eFk )TeFk )1−1/r − λ

((eFk )TeFk )1−1/r + λ
,

(6.5)

and Fk = yk+v − Gkuk from (6.1). Then the estimation error eFk converges to a bounded

neighborhood of 0 ∈ Rn in finite time, where bounds on this neighborhood can be deter-

mined from bounds on ∆Fk.

The above result proves the stability of the observer for the unknown dynamics Fk.

The following result proved in (Sanyal, 2022), gives the robustness of this observer.

Proposition 6.1.2. Consider the observer design in (6.5) for the unknown Fk in the ultra-

local model (6.1). Let the first order difference ∆Fk from (6.4) be bounded according to

‖∆Fk‖ ≤ BF , (6.6)

where BF ∈ R+ is a known constant. Then the observer error eFk converges to the neigh-

bourhood given by

E :=
{

eFk ∈ Rn : σ(eFk )
∥∥∥eFk

∥∥∥ ≤ BF}, (6.7)

for some finite k > N, N ∈ W, where

σ(eFk ) := 1 +D(eFk ). (6.8)
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Note that the above result gives ultimate bounds on the estimation error of the un-

known (or disturbance) dynamics Fk, where the bounds depend on its rate of change

∆Fk.

6.2 Reference Governor

In this section, we enhance the model-free control approach based on ULM with a ref-

erence governor to enforce constraints without delay (v = 1). The modified reference

command, which is subjected to a constraint admissible set, is designed by this reference

governor.

6.2.1 Nominal controller

Consider the ultra-local model defined in (6.1), with the following nominal controller:

Gkuk = −F̂k + Φyk + Λνk, (6.9)

where νk := ν(tk) is the modified reference command, Φ, Λ ∈ Rm×m are tuning matrices,

Φ is Schur (all eigenvalues are located in the interior of the unit disk) and the estimate

F̂k acts as a feed-forward cancellation term. Substituting the nominal controller in the

ultra-local model (6.1) leads to the following closed-loop model:

yk+1 = Φyk + Λνk − eFk (6.10)
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Output constraints, which may arise from state constraints, are described by:

yk ∈ Y (6.11)

where Y ⊂ Rn is a known constraint set. We make the following assumption about this

constraint set.

Assumption 6.2.1. The set Y is compact, convex, and symmetric about the origin, which is in its

interior.

6.2.2 Constraint admissible set

The constraint admissible set O∞ is defined as a set of all initial conditions such that the

predicted response of (6.10) corresponding to the initial state and constant command ν

satisfies constraints defined in (6.11). More formally,

O∞ = {(y0, ν) : yk(y0, ν, {eFk }) ∈ Y, ∀{eFk } ∈ E}, (6.12)

where yk(yo, ν, eFk ) is the solution of system (6.1) given by

yk+1 = Φk+1y0 +
k

∑
i=0

(
Φk−iΛν + Φk−ieFi

)
, (6.13)

and E and Y are defined in (6.7) and (6.11), respectively. Note that our reference governor

design will assume that the observer error has converged to the set given in (6.7). To

obtain the constraint admissible set, the concept of the Pontryagin difference is used here.
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For U and V ⊂ Rn the Pontryagin difference U ∼ V is given by the set,

U ∼ V := {x ∈ Rn : x + v ∈ U, ∀ v ∈ V}. (6.14)

Consider,

Y0 = Y,

Y1 = Y ∼ E ,

...

Yk+1 = Y ∼ E ∼ · · · ∼ ΦkE .

(6.15)

Then, from (Kolmanovsky and Gilbert, 1998) we get,

Ok =
{
(y0, ν) ∈ Rn × Rn : Φiy0 +

k

∑
i=0

Φk−iΛν ∈ Yi, i = 0, . . . , k
}

. (6.16)

Using (6.15) and (6.16), we can obtain the following recursions:

Yk+1 = Yk ∼ ΦkE where Y0 = Y, (6.17)

O0 = {(y0, ν) ∈ Rn × Rn : y0 ∈ Y},

Ok+1 = Ok ∩ {(y0, ν) ∈ Rn × Rn : Φk+1y0 + ΦkΛν ∈ Yk+1}. (6.18)

where k ∈ Z+. Therefore, from (6.12), we obtain the constraint admissible set as

O∞ =
⋂

k∈Z+

Ok. (6.19)
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To ensure finite-termination of the set sequence, typically a strict feasibility constraint on

ν is added; see (Gilbert and Kolmanovsky, 1999) for details. This constraint has not been

used in the present work; instead Ok was computed up to a sufficiently large index k and

used as an approximation to O∞. The design of the reference governor is given in the

following subsection.

6.2.3 Reference governor design

The reference governor considers the modified reference input νk as an optimization vari-

able which is obtained at each sampling instant k by solving an optimization problem. It

is obtained as the solution to the following minimization problem:

ν∗k = arg min
ν

‖ν − rk‖2
R

s.t. (yk, ν) ∈ O∞,
(6.20)

where R is a positive definite matrix, ‖x‖2
R = xTRx and O∞ is given in (6.12).

6.2.4 Control constraints

We define the control constraints in the following form:

‖uk‖ ≤ µ, (6.21)
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where µ is the upper bound on control inputs. Multiplying both sides of the above equa-

tion by the control gain matrix Gk results in

‖Gkuk‖ ≤ ‖Gk‖ ‖uk‖ ≤ ‖Gk‖ µ. (6.22)

The control constraint can be satisfied through an appropriate design of the control gain

matrix Gk. From (6.9), we define

ωk := −F̂k + Φyk + Λνk. (6.23)

Then, using (6.9), (6.22), and (6.23) we obtain the following inequality:

‖ωk‖ =
∥∥Φyk + Λνk − F̂k

∥∥ ≤ ‖Gk‖ µ, (6.24)

which can be written as

‖Gk‖ ≥ 1
µ
‖ωk‖ . (6.25)

This leads to the following condition for the control gain Gk:

‖Gk‖ ≥ 1
µ

∥∥Φyk + Λνk − F̂k
∥∥ . (6.26)

The control gain matrix Gk is then designed as

Gk := αkǦ, (6.27)
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where αk is a tuning parameter and Ǧ is a positive diagonal matrix. This tuning parameter

can be designed as

αk =
1

µǧi

∥∥Φyk + Λνk − F̂k
∥∥ , (6.28)

where ǧi denotes as the smallest diagonal element in Ǧ.

6.2.5 Stability Analysis

The stability and robustness analysis of the disturbance (unknown dynamics) observer

and control law is presented in (Sanyal, 2022). Here we characterize the ultimate bound

on the tracking error for a constant ν. Such a bound is useful in verifying conditions

for the convergence of the reference governor with constrained inputs (Gilbert and Kol-

manovsky, 1999).

With the control law given in §6.2.1, we define the output trajectory tracking error as

ey
k = ν − yk. (6.29)

Subtracting ν from both sides of (6.10), we get

ν − yk+1 = ν − Φyk − Λν + eFk . (6.30)

The gain matrices Φ, and Λ are defined in §6.2.1 and can be designed such that

Λ = I − Φ, (6.31)
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where I is the n × n identity matrix. Using this design of gain matrices we obtain

ν − yk+1 = ν − Φ(yk − ν)− ν + eFk . (6.32)

Finally, substituting (6.29) in the above equation leads to the following error dynamics:

ey
k+1 = Φey

k + eFk . (6.33)

Theorem 6.2.1. Consider the closed-loop model for the unknown system (6.10), the con-

trol law (6.9) and the observer law (6.5). Let the estimation error in (6.3) be bounded

according to ∥∥∥eFk
∥∥∥ ≤ B for k > N, (6.34)

where bound B ∈ R+ and N ∈ W are known. Then the output trajectory tracking error

ey
k will converge to the neighborhood given by

Ny :=
{

ey
k ∈ Rn : ρ(‖Φ‖)

∥∥ey
k

∥∥ ≤ B
}

, (6.35)

for k > N′ > N where N, N′ ∈ W, and

ρ(‖Φ‖) := 1 − ‖Φ‖ . (6.36)

Proof. Consider the following discrete Lyapunov function for output tracking error,

Vy
k =

1
2
(ey

k)
T

ey
k . (6.37)
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The first difference of the Lyapunov function is given by,

Vy
k+1 − Vy

k = (ey
k+1 + ey

k)
T
(ey

k+1 − ey
k). (6.38)

Substituting the error dynamics (6.33) in above expression, we obtain

Vy
k+1 − Vy

k = (Φey
k + eFk + ey

k)
T
(Φey

k + eFk − ey
k)

= ((Φ + I)ey
k + eFk )

T
((Φ − I)ey

k + eFk ).

After some algebraic manipulations, the following equation is obtained:

Vy
k+1 − Vy

k = (Φey
k)

T
(Φey

k)− (ey
k)

T
ey

k

+ 2(eFk )
T
(Φey

k) + (eFk )
T

eFk . (6.39)

Using the bounds defined on eFk given in (6.34), the first difference of the Lyapunov func-

tion can be upper bounded as follows:

Vy
k+1 − Vy

k ≤
∥∥Φey

k

∥∥2 −
∥∥ey

k

∥∥2
+ 2B ‖Φ‖

∥∥ey
k

∥∥+ B2

= ‖Φ‖2 ∥∥ey
k

∥∥2 −
∥∥ey

k

∥∥2
+ 2B ‖Φ‖

∥∥ey
k

∥∥+ B2,

and will be simplified as

Vy
k+1 − Vy

k ≤ − (1 − ‖Φ‖2)
∥∥ey

k

∥∥2
+ 2B ‖Φ‖

∥∥ey
k

∥∥+ B2. (6.40)
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The right-hand side of the inequality (6.40) will be negative for large initial transients in

ey
k , and can be expressed as a quadratic inequality expression in

∥∥ey
k

∥∥ as follows,

(1 − ‖Φ‖2)
∥∥ey

k

∥∥2 − 2B ‖Φ‖
∥∥ey

k

∥∥− B2 > 0. (6.41)

Then, the condition ∥∥ey
k

∥∥ >
B

1 − ‖Φ‖ , (6.42)

for positive real roots of
∥∥ey

k

∥∥ ensures that Vy
k+1 − Vy

k < 0. This implies that the discrete

Lyapunov function Vy
k is monotonically decreasing when the tracking error

∥∥ey
k

∥∥ is large

enough to satisfy the inequality condition (7.73) for some finite k > N′, where N′ > N.

Therefore, the output trajectory tracking error ey
k will converge to the neighbourhood Ny

of 0 ∈ Rn given by (6.35).

It is worth noting that, in absence of a reference governor we have Φ = 0. From

(Sanyal, 2022), this leads to convergence of ey
k to the bounded neighborhood of 0 ∈ Rn in

finite time, where the bounds are the same as that of estimation error eFk .

6.3 Numerical simulation results

This section presents some numerical simulation results of the proposed reference gov-

ernor design for the constrained ULM-based control. These simulations are carried out

using the proposed scheme to control the pitch angle of an aircraft as a SISO system, of

which the dynamics is unknown to the controller.
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6.3.1 Aircraft model

The dynamics model for the aircraft flying at constant velocity and altitude is given by

(Polóni et al., 2014):


α̇

q̇

θ̇

 =


−0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0




α

q

θ

+


0.232

0.0203

0

 δ (6.43)

y =

[
0 0 1

] 
α

q

θ

 , (6.44)

where α is the angle of attack, q is the pitch rate and θ is the pitch angle. This model,

which is unknown to the tracking control law, is used to generate an initial reference (or

desired) output trajectory for tracking.4

For this SISO system, the input is the elevator deflection angle δ and the output is the

pitch angle θ. The pitch angle output is subjected to the constraint |θ| ≤ 5◦ and the control

input is subjected to the constraint |δ| ≤ 0.1◦.

We apply the nominal controller designed in (6.9), which leads to the closed-loop form

of ULM as described in (6.10). The constraint admissible set O∞ for this model is designed

according to 6.2.2 and is shown in Fig. 6.2. The constraint admissible set satisfies the

output constraint requirements as expected. In addition, this set is also symmetrical with

zero in the interior.

The output trajectories are illustrated in Fig. 6.3. It is shown that the nominal output

trajectory violates the output constraint, whereas the actual output trajectory tracks the
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FIGURE 6.2: Constraint admissible set O∞

modified reference trajectory while satisfying the output constraint.

Simulation results for the control input are shown in Fig. 6.4. Note that the control

input constraints are satisfied within the defined limits. Fig. 6.5 illustrates the error in

the estimation of the unknown dynamics F for the ultra-local model according to the

observer design from section 6.1.2. Fig. 6.6 plots the output trajectory tracking error

between modified reference command ν and the actual output trajectory, along with the

error between the nominal output and actual output trajectory. Finally, Fig 6.7 illustrated

the norm of control gain matrix Gk. The change in the norm corresponds to the control
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FIGURE 6.3: Desired, modified, and actual output trajectories

constraint satisfaction.

6.3.2 Effect of initial selections of F̂ and G

Here, we study the effects of initial selections for the estimate of the unknown model, F̂0,

and the control gain matrix, G0, on the control input and the output trajectories.

The plots in Fig 6.8 illustrate the control inputs obtained for different initial selections.

This figure shows that a decrease in the value of G0 leads to higher transients in the control
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FIGURE 6.4: Control input with constraints

input and an increase in the value of F̂0 generally causes high initial transients in the

control input. It is also shown that the control constraints are satisfied in both cases.

The output trajectories in Fig 6.9 illustrate the effect of different initial values, primar-

ily for F̂0. As is shown in this figure, higher values of F̂0 tend to delay the convergence

of output trajectories yk to the modified reference ν.
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FIGURE 6.5: Model estimation error eF

6.4 Conclusion

This work considers the design of a reference governor to enforce pointwise-in-time out-

put and control constraints for a system with unknown input-output dynamics modeled

by an ULM. At each time instant, a modified command is generated that minimizes the

constrained cost function. This command is determined on the basis of a constraint ad-

missible set that is designed to enforce output constraints. The control gain matrix is
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FIGURE 6.6: Output trajectory tracking error

designed to satisfy the control constraints. A Lyapunov stability analysis shows the con-

vergence of the tracking error and the observer error to bounded neighborhoods of zero

error. A numerical simulation is performed for an aircraft pitch control system, subjected

to output and control constraints. The simulation results demonstrate the tracking of a

reference output trajectory while satisfying the output and control constraints. In the

current framework, the output constraint satisfaction for the output trajectory is conser-

vative. This issue will be looked at in planned future work. In addition, the effect of initial
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FIGURE 6.7: Norm of control gain matrix Gk

selections of the estimate of the unknown model and the control gain matrix on the con-

trol input and output response is also illustrated through a numerical simulation study.

Other topics we will explore in the future include the design of reference governors for

systems with uncertainty (“gray box" models), monotonically non-increasing set bounds

for the observer error, and systems with delay.
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FIGURE 6.8: Control input for different initial conditions
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FIGURE 6.9: Output trajectory for different initial conditions
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Chapter 7

Finite-time Stable Pose Estimation on

SE(3) using Onboard Optical Sensors

This chapter presents a finite-time stable pose estimation scheme for autonomous vehicles

undergoing rotational and translational motion in three dimensions, using measurements

from onboard optical sensors.

The section 7.1 presents the mathematical notations and concepts used in this chapter.

In section 7.2, we introduce the formulation for the problem of pose determination

from vector measure- ments obtained from optical sensors.

The section 7.3 discusses the estimation error dynamics and kinematics. We then gen-

eralize Wahbas cost function by choosing a symmetric weight matrix and show that the

resulting cost function is a Morse function on the Lie group of rigid-body rotations un-

der some easily satisfied conditions on the weight matrix. This cost function is taken as

the potential function for rotational motion, and we also provide some useful lemmas

associated with the potential functions for rotations and translations.

In Section 7.4, we present the problem of finite-time stable pose estimation in real-time,

present the pose estimation scheme, and prove the finite-time stability of the scheme in
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the absence of measurement errors, using nonlinear stability analysis. Moreover, this ob-

server is designed directly on the Lie group of rigid body motions, SE(3), and does not

require a dynamics model for the vehicle to update the state estimates. These features

enable it to estimate arbitrary rotational and translational motions without encountering

singularities or the unwinding phenomenon and be readily applied to a vehicle with any

sensor-actuator configuration without requiring extensive re-tuning. Additionally, sec-

tion 7.5 presents an in-depth analysis of the robustness of the FTS pose estimation scheme

to measurement errors.

7.1 Mathematical Preliminaries

In this section, the set of real numbers is denoted by R. Similarly, Rn and Rn×m denote

the set of real n-dimensional column vectors and real n × m matrices, respectively. N

denotes the set of natural numbers. The set of all possible attitudes of a rigid body is the

special orthogonal group SO(3) ((Murray, 2017)), which is defined by:

SO(3) =
{

R ∈ R3×3|RTR = RRT = I, det(R) = 1
}

.

This is a matrix Lie group under matrix multiplication. The Lie algebra (tangent space at

identity) of SO(3) is denoted so(3) and identified with the set of 3 × 3 skew-symmetric

matrices:

so(3) =
{

S ∈ R3×3 | S = −ST}, S =


0 −s3 s2

s3 0 −s1

−s2 s1 0

 .
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Let (·)× : R3 → so(3) denote the bijective map from three-dimensional real Euclidean

space R3 to so(3). For a vector s = [s1 s2 s3]
T ∈ R3, the matrix s× represents the vector

cross product operator, that is s × r = s×r, where r ∈ R3; this makes (·)× a vector space

isomorphism. The inverse of (·)× is denoted by vex(·) : so(3) → R3, such that vex(s×) =

s, for all s× ∈ so(3).

We define the trace inner product on Rm×n 〈·, ·〉 as,

〈A1, A2〉 = tr(AT
1 A2).

Any square matrix A ∈ Rn×n can be written as the sum of unique symmetric and skew-

symmetric matrices as given below:

A = sym(A) + skew(A), (7.1)

where the symmetric and skew-symmetric components are defined as:

sym(A) =
1
2
(A + AT), skew(A) =

1
2
(A − AT). (7.2)

Additionally, if A1 ∈ Rn×n is a symmetric matrix and A2 ∈ Rn×n is a skew-symmetric

matrix, then,

〈A1, A2〉 = 0. (7.3)
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Thus, the symmetric and skew matrices are orthogonal under the trace inner product. For

all a1, a2 ∈ R3,

〈
a×1 , a×2

〉
= 2aT

1 a2. (7.4)

The Lie group of rigid body motions in three spatial dimensions is the special Eu-

clidean group, denoted SE(3). It is the semi-direct product of SO(3) with R3, with R3 as

the normal subgroup, i.e., SE(3) = SO(3)n R3 ((Varadarajan, 1984)). If R ∈ SO(3) and

b ∈ R3, the corresponding element in SE(3) is represented by:

g =

R b

0 1

 ∈ SE(3). (7.5)

The action of SE(3) on R3 is to rotate and translate vectors in R3, and is represented as

follows:

g · v =

R b

0 1


v

1

 =

Rv + b

1

 , ∀ v ∈ R3,

where v =

v

1

 .

With these definitions and identities, we formulate the pose estimation problem next.
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7.2 Real-time Navigation using 3D Point Cloud Data

This section introduces a formulation for the problem of pose determination from vec-

tor measurements in the vehicle body-fixed frame B, along with a velocity measurement

model. Our FTS pose estimation scheme using 3D point clouds is based on this formula-

tion, which will be presented in detail in Section 7.4.

7.2.1 Pose Measurement Model

Let I denote an inertial frame that is spatially fixed and B denote the body-fixed frame.

The attitude of the rigid body is denoted by R ∈ SO(3), which transforms vectors in the

body frame B to their counterparts in the inertial frame I . The position of the origin of

frame B expressed in frame I gives the position of the body, denoted as b ∈ R3. The pose

is given by the frame transformation from frame B to frame I , as given by eq. (7.5).

Consider optical measurements of j points at time t with known and fixed positions

in frame I , denoted as qj. These j points generate
( j

2

)
unique relative position vectors,

which are the vectors connecting any two of these observed points.

Let ai be the relative position of the i-th stationary point in frame B. In the absence of

measurement noise, we obtain the position in frame I as

qi = Rai + b. (7.6)

The measured vectors in the presence of additive noise can be expressed as:

ām = RT(q̄ − b) + ℘̄, (7.7)
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where q̄ and ām are defined as follows:

q̄ =
1
j

j

∑
i=1

qi, ām =
1
j

j

∑
i=1

am
i , (7.8)

and ℘̄ is the additive measurement noise obtained by averaging the measurement noise

vectors for each ai.

Now, consider the
( j

2

)
relative position vectors for j measured points from optical

sensor measurements, denoted as dj = qλ − q` in frame I and the corresponding vectors

in frame B as ej = aλ − a`, where λ, ` are any two measured points such that, λ 6= `.

If the total number of measured vectors,
( j

2

)
= 2, then e3 = e1 × e2 is considered a

third measured direction in frame B with corresponding vector d3 = d1 × d2 in frame I .

Therefore,

dj = Rej ⇒ D = RE, (7.9)

where D = [d1 . . . dn], E = [e1 . . . en] ∈ R3×n with n = 3 if
( j

2

)
= 2 and n =

( j
2

)
if( j

2

)
> 2. In the presence of measurement noise, the measured value of matrix E is given

by,

Em = RTD + L, (7.10)

where the columns of matrix L ∈ R3×n are additive noise vectors in the vector measure-

ments made in frame B.
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7.2.2 Velocities Measurement Model

Denote the angular and translational velocity of the rigid body expressed in frame B by

Ω and ν, respectively. Therefore, the kinematics of the rigid body is

Ṙ = RΩ×, ḃ = Rν ⇒ ġ = gξ∨, (7.11)

where ξ =

Ω

ν

 ∈ R6, ξ∨ =

Ω× ν

0 0

. In the presence of measurement noise, the

measured translational and angular velocities vector, denoted by ξm, is given by

ξm =

Ωm

νm

 = ξ + δ, (7.12)

where δ ∈ R6 is the vector of additive noise in translational and angular velocities com-

ponents and is given by

δ =

δΩ

δν

 . (7.13)

In the following section, we explore the dynamics and kinematics of estimation errors

and present preliminary results that contribute to the design of our FTS pose estimation

scheme.
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7.3 Preliminary Concepts for Pose Estimation on SE(3)

The estimated pose and its kinematics are given by

ĝ =

R̂ b̂

0 1

 ∈ SE(3), ˙̂g = ĝξ̂∨, (7.14)

where b̂ is the position estimate, R̂ is the attitude estimate, and ξ̂ is the rigid body veloc-

ities estimate, with ĝ0 as the initial pose estimate. The pose estimation error is defined

as

h = gĝ−1 =

Q b − Qb̂

0 1

 =

Q χ

0 1

 ∈ SE(3), (7.15)

where Q = RR̂T is the attitude estimation error, and χ = b − Qb̂. In the absence of

measurement noise, we have

ḣ = hϕ∨, where ϕ(ĝ, ξm, ξ̂) =

ω

υ

 = Adĝ(ξ − ξ̂), (7.16)

where ξm = ξ ∈ R6 is the measured rigid body velocities defined as in (7.12), υ and ω are

translational and angular velocity estimation errors respectively, and Adg =

 R 0

b×R R


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for g =

R b

0 1

. The position and attitude estimation error kinematics are:

χ̇ = Qυ, Q̇ = Qω×,

where ω = R̂(Ω − Ω̂), υ = R̂(ν − ν̂)− ω×b̂.
(7.17)

The position and the attitude (b̂, R̂) estimates are obtained in real time, using the ma-

trices which consist of known inertial vectors D defined in (7.9), the corresponding vector

measured vectors in the body-fixed frame Em, and the translational and angular veloci-

ties measurements ξm. The mass, moment of inertia, and other parameters that occur in

the dynamics of the rigid body are unknown. The number of vector measurements can

be varying over time, provided that there are at least two non-collinear vectors measured

optically at all times, for unique attitude determination. The design of the FTS pose esti-

mator given in Section 7.4 is shown to provide almost global finite-time stable (AGFTS)

estimates of the pose, where these estimates converge to the respective true values b and

R in finite time, in the absence of measurement noise. Additionally, the robustness of this

estimator in the presence of measurement noise is demonstrated in section 7.5.

7.3.1 Potential Functions for Pose Estimation Errors

Consider the following potential function for the position estimation error:

Ut(ĝ, ām, q̄) =
1
2

κ yTy =
1
2

κ
∥∥∥q̄ − R̂ām − b̂

∥∥∥2
, (7.18)

where y ≡ q̄ − R̂ām − b̂ and κ is a positive scalar.
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Now, consider the potential function for attitude estimation error. The objective is to

obtain an estimate of the attitude denoted by R̂ ∈ SO(3) from n known inertial vectors

d1, . . . , dn and corresponding measured vectors em
1 , . . . , em

n , where n is as defined after eq.

(7.9). The attitude determination formulated as an optimization problem as follows,

MinR̂Ur(ĝ, D, Em) =
1
2

n

∑
i

wi(di − R̂em
i )

T(di − R̂em
i ), (7.19)

where wi > 0 are weight factors. This is referred to as Wahba’s problem as in (Wahba,

1965). The cost function is re-expressed as,

Ur(ĝ, D, Em) =
1
2

〈
D − R̂Em, (D − R̂Em)W

〉
, (7.20)

where W = diag([w1, w2, . . . , wn]) ∈ Rn×n. The cost function can be generalized

such that W is a symmetric positive semi-definite matrix satisfying conditions which is

described in the following lemmas. Therefore, the total potential function is obtained as

a sum of the translational and rotational potential functions and is given by:

U (ĝ, ām, q̄, D, Em) = Ut(ĝ, ām, q̄) + Ur(ĝ, D, Em)

=
1
2

κ yTy

+
1
2

〈
D − R̂Em, (D − R̂Em)W

〉
, (7.21)

where Ut(ĝ, ām, q̄) and Ur(ĝ, D, Em) are defined in equations (7.18) and (7.20) respectively.

The following lemma gives the generalized cost function in the absence of measurement

errors.

Lemma 1. Define Q = RR̂T as the attitude estimation error. Let D ∈ R3×n be as defined as in
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(7.9) with rank(D) = 3. Let the gain matrix W of the generalized Wahba cost function be given

by,

W = DT(DDT)−1K
(

DDT)−1D, (7.22)

where K = diag([k1, k2, k3]) and k1 > k2 > k3 ≥ 1. Then, in the absence of measurement errors,

Ur(h, D) =
1
2

〈
D − R̂Em, (D − R̂Em)W

〉
= 〈K, I − Q〉 , (7.23)

which is a Morse function on SO(3) whose critical points are given by the set,

C = {I, diag([−1,−1, 1]), diag([1,−1,−1]),

diag([−1, 1,−1])}. (7.24)

In addition, Ur has a global minimum at Q = I.

The proof for this result has been provided in (Hamrah, Warier, and Sanyal, 2021) and

is not repeated here.

The instantaneous attitude determination problem can be solved by determining R̂

that minimizes the Ur at any given instant. Substituting (7.23) in (7.21), the total potential

function in the absence of measurement errors is expressed as follows:

U (h, D, q̄) = Ut(h, q̄) + Ur(h, D)

=
1
2

κ yTy + 〈K, I − Q〉 , (7.25)
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where

y ≡ y(h, q̄) = q̄ − R̂ā − b̂

= QTχ + (I − QT)q̄, (7.26)

as b̂ = QT(b − χ).

The following lemma, which relates the error in the attitude estimation to the error in

angular velocity estimation, is used in section 7.4 to prove the main result.

Lemma 2. Let K be as defined in Lemma 1. Then, in the absence of measurement errors, the time

derivative of Ur along the trajectories satisfying the kinematic equations (7.11),(7.12) and (7.14)

is given by

d
dt

Ur(h, D) =
d
dt

〈K, I − Q〉 = sK(Q) · ω (7.27)

=
d
dt

tr(K − LTR̂) = −sL(R̂) · Ω̃, (7.28)

where L = DW(Em)T, Ω̃ = Ω − Ω̂, sK(Q) is given by

sK(Q) = vex(KQ − QTK), (7.29)

and

sL(R̂) = vex(LTR̂ − R̂TL). (7.30)

The proof of this lemma is given in (Hamrah, Warier, and Sanyal, 2021) and is omitted

here for brevity.
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Therefore, from equations (7.17) and (7.27), the time derivative of the total potential

function U is obtained as

d
dt

U (h, D, q̄) = κ yT(υ + ω×q̄) + sK(Q) · ω, (7.31)

which will be used in the next section to prove the main result. Henceforth, for the sake of

notational convenience, the total potential function will be denoted as U in the subsequent

sections.

7.3.2 Useful Prior Results

The lemmas given here are essential to prove the main result on finite time stable pose

estimation scheme given in Section 7.4.

Lemma 3. Let x and y be non-negative real numbers and let p ∈ (1, 2). Then

x(1/p) + y(1/p) ≥ (x + y)(1/p). (7.32)

Moreover, the above inequality is a strict inequality if both x and y are non-zero.

The interested reader can find detailed proof of this result in (Bohn and Sanyal, 2014;

Bohn and Sanyal, 2016). For brevity, we omit the proof in this chapter.

Lemma 4. Let K be as defined in Lemma 1 and sK(Q) be as given in the equation (7.29). Let

S ⊂ SO(3) be a closed subset containing the identity in its interior, defined by

S =
{

Q ∈ SO(3) : Qii ≥ 0 and QijQji ≤ 0

∀i, j ∈ {1, 2, 3}, i 6= j
}

. (7.33)
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If Q ∈ S , then it satisfies

sK(Q)TsK(Q) ≥ tr(K − KQ). (7.34)

The proof of this result is given in (Bohn and Sanyal, 2016) and is omitted here for

brevity.

Lemma 5. Let sL(R̂) and sK(Q) be as defined earlier. Then the following holds:

sL(R̂)TsL(R̂) = sK(Q)TsK(Q). (7.35)

The proof for this result is provided in (Hamrah, Warier, and Sanyal, 2021) and is

omitted here for brevity.

The design and stability result of the finite-time stable estimator is given in the fol-

lowing section. Note that the pose estimation error h = gĝ−1 is defined on the special

Euclidean group of rigid body motion, SE(3), which is not a vector space. Therefore, for

Lyapunov stability analysis of the observer designed on SE(3), a suitable Lyapunov func-

tion is required. This comes in the form of a Morse-Lyapunov function, as defined later in

Theorem 1 in Section 7.4, where the Morse function Ur = 〈K, I − Q〉 on SO(3) is used as

the component of the Morse-Lyapunov function that depends on the attitude component

of the full state. This Morse-Lyapunov function is subsequently designed and shown to

guarantee convergence of state estimation errors (h, ϕ) to (I, 0) in finite time.

7.4 Finite-time Stable Pose Estimation

The main result for the proposed finite-time stable pose observer for estimation of rigid

body position and orientation is presented here. The finite-time stability of the resulting
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closed-loop system is shown by utilizing the Hölder-continuous Morse-Lyapunov func-

tion.

Theorem 1. Consider the pose kinematics, position vectors obtained from the optical measure-

ments bounded and velocity measurements given by equations (7.11), (7.12) and (7.14) in the

absence of measurement noise. Let p ∈]1, 2[ and κ, kp, kω, kυ, α1, α2 be scalar observer gains, L

and sL(R̂) be as defined in Lemma 2, and define the following quantities:

z1(R̂) =
sL(R̂)(

sL(R̂)TsL(R̂)
)1−1/p , (7.36)

z2(b̂, R̂, ām) =
y

(yTy)1−1/p
, (7.37)

Ψ(R̂, ω) = ω − α1 z1(R̂), (7.38)

Φ(b̂, R̂, ām, υ) = υ + α2 z2(b̂, R̂, ām), (7.39)

wL(R̂, Ω̂) =
d
dt

sL(R̂) = vex(LTR̂Ω̂× + Ω̂×R̂L)

− vex
(

R̂TLΩ× + Ω×LTR̂
)

(7.40)

vy =
d
dt

y = υ + ω×(q̄ − y). (7.41)

Now, consider the following observer equations:

ω̇ = kpsL − kp κ(q̄×y)− kω
Ψ(

ΨTΨ
)1−1/p

+
α1(

sLTsL
)1−1/p H(sL)wL

− kp κ α1
Ψ

ΨTΨ
((q̄×y)Tz1), (7.42)

υ̇ = −kp κ y − kυ
Φ(

ΦTΦ
)1−1/p − α2(

yTy
)1−1/p H(y)vy, (7.43)
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ξ̂ = ξm − Adĝ−1 ϕ, (7.44)

˙̂g = ĝξ̂∨, (7.45)

where ξm and ϕ are defined as in (7.12) and (7.16), respectively, and the functional dependencies

of sL, wL, vy, z1, z2, Ψ and Φ have been suppressed for notational convenience, and H : R3 →

Sym(3), the space of symmetric 3 × 3 real matrices, is defined by

H(x) = I − 2(1 − 1/p)
xTx

xxT. (7.46)

Then the pose and velocities estimation errors (h, ϕ) converge to (I, 0) ∈ SE(3)× R6 in a finite

time stable manner, from almost all initial conditions except those in a set of measure zero.

Proof. This result gives the observer equations to estimate the pose and velocities in real

time, from the measured quantities Em and ξm in a finite-time stable manner.

Consider the following Morse-Lyapunov function:

V = kp U +
1
2

ΨTΨ +
1
2

ΦTΦ, (7.47)

where U is as defined by eq. (7.21). Taking the time derivative along the error state

trajectories, we get

V̇ = kp U̇ + ΨTΨ̇ + ΦTΦ̇ (7.48)

= kp

(
−sL(R̂)Tω + κ yTυ + κ(q̄×y)Tω

)
+ ΨT(ω̇ − α1ż1) + ΦT(υ̇ + α2ż2), (7.49)
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where ż1 and ż2 are obtained from time derivative of (7.36) and (7.37), respectively, and

simplified using (7.40) and (7.46) as

ż1 =
d
dt

z1 =
1(

sLTsL
)1−1/p H(sL)wL, (7.50)

and

ż2 =
d
dt

z2 =
1(

yTy
)1−1/p H(y)vy. (7.51)

Additionally, vy in (7.51) is given by (7.41) and obtained as follows:

vy =
d
dt

y = Q̇Tχ + QTχ̇ − Q̇Tq̄

= υ + ω×(QTq̄ − QTχ)

= υ + ω×(q̄ − y),

using the definitions of Q̇, χ̇ in (7.17), and y as given in (7.26). Moreover, wL in (7.50) is

given by (7.40) and obtained using the time derivative of sL(R̂) as follows:

wL =
d
dt

sL(R̂) =
d
dt

(
vex(LTR̂ − R̂TL)

)
= vex

(
L̇TR̂ + LT ˙̂R − ˙̂R

T
L − R̂T L̇

)
= vex

(
(LΩ×)TR̂ + LTR̂Ω̂× − (R̂Ω̂×)TL − R̂T(LΩ×)

)
= vex

(
− Ω×LTR̂ + LTR̂Ω̂× + Ω̂×R̂TL − R̂TLΩ×)

= vex
(

LTR̂Ω̂× + Ω̂×R̂TL
)
− vex

(
R̂TLΩ× + Ω×LTR̂

)
,
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where L = DWET and E = RTD, which are true in the absence of measurement noise,

and the time derivative of L is obtained as

L̇ = DWĖT = DWETΩ× = LΩ×. (7.52)

Now, substituting the equations (7.42) - (7.44), (7.50) and (7.51) into equation (7.49) we get

V̇ = kp

(
−sL(R̂)Tω + κ yTυ + κ(q̄×y)Tω

)
+ ΨT

(
kpsL − kp κ(q̄×y)− kω

Ψ(
ΨTΨ

)1−1/p

− kp κ α1
Ψ

ΨTΨ

(
(q̄×y)Tz1

))
(7.53)

+ ΦT
(
−kp κ y − kυ

Φ(
ΦTΦ

)1−1/p

)

=
(
kpsL − kp κ(q̄×y)

)T
(Ψ − ω)− kp κ yT(Φ − υ)

− kω

(
ΨTΨ

)1/p
− kυ

(
ΦTΦ

)1/p
− kp κ α1

(
(q̄×y)Tz1

)
(7.54)

= −kp α1 sL
Tz1 − kp κ α2 yTz2

− kω

(
ΨTΨ

)1/p
− kυ

(
ΦTΦ

)1/p
(7.55)

= −kp

(
α1(sL

TsL)
1/p + κ α2(yTy)1/p

)
− kω

(
ΨTΨ

)1/p
− kυ

(
ΦTΦ

)1/p
. (7.56)

Using Lemmas 4 and 5, in the neighborhood of I ∈ SO(3), we obtain

−sL
TsL ≤ −Ur (ĝ, D, Em) = − 〈K, I − Q〉 . (7.57)
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Substituting (7.57) and (7.18) in (7.56), we get the following inequality for V̇ in terms of

Ur, Ut, and U :

V̇ ≤ −k1−1/p
p α1(kp Ur)

1/p − 21/pα2(kp κ)1−1/p(kp Ut)
1/p

− kυ

(
ΦTΦ

)1/p
− kω

(
ΨTΨ

)1/p
(7.58)

≤ −k0

{(
kp U

)1/p
+

(
1
2

ΦTΦ
)1/p

+

(
1
2

ΨTΨ
)1/p

}
, (7.59)

where

k0 = min
(

k1−1/p
p α1, 21/pα2(kp κ)1−1/p, 21/pkυ, 21/pkω

)
,

and U is defined in (7.21) as the total potential function. After applying Lemma 3 to the

above inequality, we obtain:

V̇ ≤ −k0

(
kp U +

1
2

ΦTΦ +
1
2

ΨTΨ
)1/p

(7.60)

≤ −k0V1/p. (7.61)

From equation (7.60), the set where V̇ = 0 is as

V̇(0) = {(h, ϕ) : sK(Q) = 0, QTχ = 0, Φ = 0, and Ψ = 0}

= {(h, ϕ) : sK(Q) = 0, QTχ = 0, υ = 0, and ω = 0}

= {(h, ϕ) : sK(Q) = 0, QTχ = 0, and ϕ = 0}. (7.62)

From Lemma 1, sK(Q) = 0 when Q ∈ C, where C is the set of critical points defined in

(7.24). Using the invariance-like result of theorem 8.4 in (Khalil, 2001), we can conclude
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that as t → ∞, (h, ϕ) converges to the set:

S = {(h, ϕ) : sK(Q) = 0, QTχ = 0, ϕ = 0}, (7.63)

where the set S is the largest invariant. In the absence of measurement errors, the attitude

estimation error converges to set C and the position estimation error converges to zero.

The resulting closed-loop system with the pose estimation errors leads to a Hölder-

continuous feedback with exponent less than one (1/p < 1), while in the limiting case

of 1/p = 1, the feedback system is Lipschitz continuous. Based on the analysis carried

out in (Bohn and Sanyal, 2014; Sanyal, Bohn, and Bloch, 2013), it can be inferred that

the equilibria and regions of attraction of the Hölder-continuous finite-time stable (FTS)

pose observer with p ∈ (1, 2) are equivalent to those of the corresponding Lipschitz-

continuous asymptotically stable observer with p = 1. As a result, the observer given by

equations (7.42)-(7.45) makes (h, ϕ) = (I, 0) an almost globally finite-time stable (AGFTS)

equilibrium for the state estimation errors.

Note: A more readily implementable version of this FTS pose estimator is given by

Proposition 2. This proposition considers the case that translational velocities are not

measured directly and filtered versions of the point cloud and angular velocity vector

measurements are used.
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7.5 Robustness and Pose Estimation without Translational

Velocity Measurements

7.5.1 Robustness Analysis

The convergence of almost any initial estimation errors (h, ϕ) to (I, 0) in an almost glob-

ally finite time stable manner in the absence of measurement noise, is shown in Theorem

1. In the presence of a bounded measurement noise δ = [δΩ, δν]T in the measurement of

angular and translational velocities, the estimation errors will converge to the bounded

neighborhood of (h, ϕ) = (I, 0). The following result shows the robustness of the pro-

posed FTS pose estimator to bounded measurement noise. Given the definition of ϕ in

(7.16), the estimation error of velocities in the presence of measurement noise can be ex-

pressed as follows:

ϕ̃(ĝ, ξm, ξ̂) =

ω̃

υ̃

 = Adĝ(ξ
m − ξ̂)

= Adĝ(ξ + δ − ξ̂)

= ϕ(ĝ, ξ, ξ̂) + ζ(ĝ, δ), (7.64)

where ω̃ and υ̃ are angular and translational velocity estimation errors, respectively, ξm is

given by (7.12), and

ζ(ĝ, δ) =

ζω

ζυ

 ∈ R6, (7.65)
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where ζ(ĝ, δ) represents the effect of noises. The following result shows the robustness

property of the pose estimator to the bounded measurement noise.

Corollary 1. Consider the pose observer given by equations (7.42)-(7.45) and the measured an-

gular and translational velocities given by (7.12). Let N ⊂ H× R6 be the closed neighborhood of

(I, 0) ∈ TSE(3) of pose and velocity estimation errors, defined by

N = {(h, ϕ) ∈ TSE(3) : ‖sL‖ ≤ sLmax , ‖y‖ ≤ ymax,

‖q̄‖ ≤ q̄max, ‖Φ‖ ≤ Φmax and ‖Ψ‖ ≤ Ψmax}, (7.66)

where H = {h ∈ SE(3) : Q ∈ S , χ ∈ R3} and S is defined in (7.33). Let the observer gains be

selected such that they satisfy the following inequality:

kp

kmin
≤

s2/p
Lmax

+ y2/p
max + Φ2/p

max + Ψ2/p
max

εmax (sLmax + κ ymax + κ ymax q̄max)
, (7.67)

where kmin = min{kυ, kω}, ‖ζυ‖ ≤ ευ, ‖ζω‖ ≤ εω, and εmax = max{εω, ευ}. Then the

estimation errors (h, ϕ) converge to the bounded neighborhood of (I, 0) given by N .

Proof. The robustness analysis for this corollary is based on the Lyapunov analysis in The-

orem 1. Consider the measured velocities and velocities estimation error in the presence

of measurement noise given in (7.12) and (7.64), respectively. Substituting, ϕ from (7.16)

into (7.64), we obtain

ω̃ = ω + ζω, and υ̃ = υ + ζυ. (7.68)
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In the presence of measurement noise, equation (7.49) becomes

V̇ = kp

(
−sL(R̂)Tω̃ + κ yTυ̃ + κ(q̄×y)Tω̃

)
+ ΨT(ω̇ − α1ż1) + ΦT(υ̇ + α2ż2)

= kp

(
−sL(R̂)Tω + κ yTυ + κ(q̄×y)Tω

)
+ ΨT(ω̇ − α1ż1) + ΦT(υ̇ + α2ż2)

+ kp

(
−sL(R̂)Tζω + κ yTζυ + κ(q̄×y)Tζω

)
= kp

(
−sL(R̂)Tω + κ yTυ + κ(q̄×y)Tω

)
+ ΦT

(
−kυ

Φ(
ΦTΦ

)1−1/p − kp κ y

)

+ ΨT
(
−kω

Ψ(
ΨTΨ

)1−1/p + kpsL − kp κ(q̄×y)

− kp κ α1
Ψ

ΨTΨ

(
(q̄×y)Tz1

))
+ kp

(
−sL(R̂)Tζω + κ yTζυ + κ(q̄×y)Tζω

)
= −kp

(
α1(sL

TsL)
1/p + κ α2(yTy)1/p

)
− kυ

(
ΦTΦ

)1/p
− kω

(
ΨTΨ

)1/p

+ kp

(
−sT

L ζω + κ yTζυ + κ(q̄×y)Tζω

)
, (7.69)

where we expressed sL(R̂) = sL in the last step above for notational ease. The additional

terms in (7.69) when compared to (7.56) are due to measurement noise. Now, considering
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the upper bound on the magnitude of these terms, we obtain

∥∥∥−kpsT
L ζω + kp κ yTζυ + kp κ(q̄×y)Tζω

∥∥∥ ≤
∥∥∥−kpsT

L ζω

∥∥∥
+
∥∥∥kp κ yTζυ

∥∥∥+ ∥∥∥kp κ(q̄×y)Tζω

∥∥∥
≤
∥∥kp
∥∥ (‖sL‖ ‖ζω‖+ ‖κ‖ ‖y‖ ‖ζυ‖+ ‖κ‖

∥∥q̄×y
∥∥ ‖ζω‖

)
≤ kp (sLmaxεω + κ ymaxευ + κ ymax q̄maxεω) . (7.70)

Therefore, V̇ can be upper bounded as

V̇ ≤ −kp

(
α1(sL

TsL)
1/p + κ α2(yTy)1/p

)
− kυ

(
ΦTΦ

)1/p
− kω

(
ΨTΨ

)1/p

+ kp (sLmaxεω + κ ymaxευ + κ ymax q̄maxεω) . (7.71)

The upper bound on V̇ along the boundary of the neighborhood of N as defined in (7.66)

is given by

V̇ ≤ −kmin

(
s2/p

Lmax
+ y2/p

max + Φ2/p
max + Ψ2/p

max

)
+ kp (sLmaxεω + κ ymaxευ + κ ymax q̄maxεω) . (7.72)

Therefore, the sufficient condition for the convergence of all trajectories starting outside

of the neighborhood of (I, 0) to this neighborhood is given by

− kmin

(
s2/p

Lmax
+ y2/p

max + Φ2/p
max + Ψ2/p

max

)
+ kp (sLmaxεω + κ ymaxευ + κ ymax q̄maxεω) ≤ 0. (7.73)
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The expression in (7.73) can be also rewritten in terms of a ratio of observer gains as

kp

kmin
≤

s2/p
Lmax

+ y2/p
max + Φ2/p

max + Ψ2/p
max

sLmaxεω + κ ymaxευ + κ ymax q̄maxεω
. (7.74)

Inequality (7.74) relates the ratio kp/kmin and bounds on the norms of measurement noises

(ζυ, ζω) with bounds on the neighborhood N . Its satisfaction guarantees the convergence

of the estimation errors (h, ϕ) to the neighborhood of (I, 0) given by N .

7.5.2 FTS Pose Estimator Implementation without Translational Veloc-

ity Measurements

The FTS pose estimator is implemented for the case when only angular velocity mea-

surements are available along with position measurements of the feature points. This

is a common case of practical interest because rate gyros in inertial measurement units

can directly measure angular velocity but translational velocity is not directly measured

by sensors onboard aerial vehicles. To implement the FTS pose estimator in this case, a

finite-time stable filter is used to obtain filtered values of the measured feature points and

measured angular velocity. The filtered feature points are used to construct a filtered es-

timate of the translational velocity. The filtered versions of the translational and angular

velocity vectors are used in this implementation of the FTS pose estimator, as given in the

following proposition.

Proposition 2. Consider the case where only the angular velocity and feature points are directly

measured by onboard sensors, but translational velocity is not measured. Let c = z f − zm, where

z f is the filtered value of the measured quantity zm at time t (zm could stand for Ωm or am
i ).
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Consider the continuous-time second-order finite-time stable filter given by:

z̈ f +

(
µ

(cTc)1−1/r
H(c) +

γ

(lTl)1−1/r

)
ż f +

µ

(cTc)1−1/r

γ

(lTl)1−1/r
c = 0, (7.75)

where r ∈]1, 2[, γ and µ are positive constants, H(c) is given by (7.46), and

l := l(c) = ż f +
µc

(cTc)1−1/r
. (7.76)

Construct the filtered translational velocity and filtered mean of the measured feature points, as

follows:

ν f =
1
j

j

∑
i=1

(
(a f

i )
×Ω f − v f

i
)
, where v f

i = ȧ f
i , (7.77)

ā f =
1
j

j

∑
i=1

a f
i , ˙̄a f =

1
j

j

∑
i=1

ȧ f
i , and ξ f =

Ω f

ν f

 . (7.78)

Thereafter, replace the measured quantities ām and ξm in equations (7.37), (7.39), and (7.44) in

Theorem 1 by the filtered quantities ā f and ξ f , respectively. This gives the implementation of the

FTS pose estimator when translational velocity is not directly measured.

Proof. Consider the following Lyapunov function:

Vf =
1
2

lTl. (7.79)

Taking the time derivative of Vf and using equations (7.75) and (7.76), we get

V̇f = −γ(lTl)1/r = −γV1/r
f , (7.80)
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which implies that Vf converges to zero in finite time when zm is constant and r ∈]1, 2[.

Therefore, the quantity c = z f − zm will converge to zero in finite time.

Now, consider cases where translational velocity measurements are unavailable or im-

precise. Rigid body velocities can be computed using inertial and optical measurements.

To achieve this, one can differentiate equation (7.6) to obtain the following:

q̇i = Ṙai + Rȧi + ḃ = R(Ω×ai + ȧi + ν) = 0, (7.81)

because the qi are inertially fixed vectors. This leads to

vi = ȧi = [a×i − I]ξ, (7.82)

where [a×i − I] has full row rank and ξ is defined in (7.11). For the case when angular ve-

locity and point cloud measurements are available, the translational velocity of the rigid

body can be obtained by filtering the measured points and their velocities and rewriting

(7.82) as

ν f =
1
j

j

∑
i=1

(
(a f

i )
×Ω f − v f

i
)
, (7.83)

averaging over the i measured points. Therefore, rigid body’s filtered velocities ξ f can be

expressed as

ξ f =

 Ω f

1
j ∑

j
i=1

(
(a f

i )
×Ω f − v f

i
)
 . (7.84)

This concludes the proof.
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Chapter 8

Simulation and Experimental Results for

Pose Estimation Scheme

This chapter presents the simulation and experimental results for pose estimation schemes.

The section 8.1 gives the simulation results for the proposed FTS pose estimator in the

absence and presence of noise.

In section 8.2, the proposed FTS pose estimation scheme is compared with two other

pose estimation schemes: the variational pose estimator (VPE) and dual quaternion mul-

tiplicative extended Kalman filter (DQ-MEKF).

The section 8.3 gives the experimental results for variational pose estimation scheme

using vision-based sensors.

8.1 Simulation Results for FTS Pose Observer

This section provides numerical simulation results for the proposed finite-time stable

pose observer scheme to demonstrate its performance and the convergence of estimation

errors. The proposed FTS pose estimation scheme has been discretized to enable onboard
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computer implementation, and the discretization is based on a geometric integration

scheme. Geometric variational integration schemes, in contrast to commonly used nu-

merical integration methods such as (unstructured) Runge-Kutta, preserve the geometry

of the state space, which in this case is the tangent bundle TSE(3), without requiring any

projection or parametrization. Furthermore, they maintain energy-momentum properties

for (corresponding continuous-time) conservative and dissipative systems. Let ω̇ = γ

and υ̇ = η, where γ, η are the right sides of (7.42), (7.43) respectively. Let ∆t = ti+1 − ti

be the time step size and subscript i denote a quantity evaluated at time ti. Then the

discretized equations are obtained as follows:

ωi+1 = ωi + ∆tγi, (8.1)

υi+1 = υi + ∆tηi, (8.2)

ξ̂i = ξm
i − Adĝ−1

i
ϕi, (8.3)

ĝi+1 = ĝiexp(∆tξ̂∨i ), (8.4)

where

γi = kpsLi − kp κ(q̄×yi)− kω
Ψi(

Ψi
TΨi

)1−1/p

+
α1(

sLi
TsLi

)1−1/p H(sLi)wLi

− kp κ α1
Ψi

Ψi
TΨi

((q̄×yi)
Tz1i), (8.5)

ηi = −kp κ yi − kυ
Φi(

Φi
TΦi

)1−1/p − α2(
yi

Tyi
)1−1/p H(yi)vyi , (8.6)
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and

ϕi =

ωi

υi

 . (8.7)

Remark 1. In the absence of linear velocity measurements, the expression for the continuous-time

finite-time stable filter (7.75) is discretized by (Sanyal, 2021) as follows:

z f
i+1 = zm

i +D(ci)ci + (D(z f
i − z f

i−1))(z
f
i − z f

i−1), (8.8)

ż f
i =

(z f
i+1 − z f

i )

∆t
, (8.9)

where D(ci) =
(cT

i ci)
1−1/r − λc

(cT
i ci)1−1/r + λc

, (8.10)

and r ∈]1, 2[, λc > 0 are constants, z f
i = z f t(i) and zm

i = zmt(i), respectively. Thereafter, zm
i is

replaced with z f
i in eq. (8.3) of the discrete-time observer.

The matrix exponential map in (8.4) ensures that the pose at each instant is in SE(3)

provided the initial estimate is in SE(3). The proposed estimation scheme is simulated

with a time step size of ∆t = 0.01s for a duration of T = 30s. The initial attitude and

position of the rigid body are

R0 = I, b0 = [0 0 0]Tm. (8.11)

The initial angular and translational velocities of the rigid body, respectively, are

Ω0 = [0 0.15 0]T rad/s and ν0 = [0.65 0 0.1]T m/s. (8.12)

The optical measurements are obtained from the vision sensor for j points at time t whose
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inertial positions are known. In addition, angular velocities measurements are obtained

from rate gyros. The filtered position measurements and velocities are then obtained

using the FTS filter given in Proposition 2.

The initial state estimates are selected to be:

R̂0 = expSO(3)

(
0.9π

(
[1 0 0]T

)×)
, b̂0 = [1.5 1 1]T,

Ω̂0 = [−0.67 − 0.25 − 0.09]T rad/s and

ν̂0 = [0.76 − 2.63 2.83]T m/s. (8.13)

The observer gains selected are kp = 10.1, kυ = 10.02, kω = 11.01, p = 13/11, κ =

1.1, α1 = 88.65, α2 = 0.9609. The proposed FTS pose estimation scheme is simulated for

the following two different cases.

8.1.1 CASE 1: Simulation results of FTS pose estimator in the absence

of noise

This case exhibits the results of the FTS-PE in the absence of measurement noise but with

initial estimation errors, revealing the finite-time convergence of all estimation errors to

zero. The true and estimated trajectories over the time interval are depicted in Fig. 8.1.

The attitude estimation error is parameterized by the principal rotation angle φ of the

attitude estimation error matrix Q as φ = cos−1(1
2(tr(Q) − 1)). The principal angle φ

and position estimation error χ are displayed in Fig. 8.2, which show the finite-time con-

vergence of the estimation errors for both attitude and position. Fig. 8.3 demonstrates

the finite-time convergence of the angular and translational velocities estimation errors,
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agreeing with the finite-time stability of the pose estimation scheme without measure-

ment noise as given by Theorem 1.
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FIGURE 8.1: True and Estimated Trajectories.

8.1.2 CASE 2: Simulation results of FTS pose estimator in the presence

of measurement noise in angular and translational velocities

In this case, we consider the effects of measurement noise in angular and translational

velocities, using the same initial estimated states as in CASE 1. We assume that both

angular and translational velocity measurements are corrupted by Gaussian noise with
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FIGURE 8.2: CASE 1: Plots of attitude and position estimation errors in the
absence of measurement noise.

zero mean and standard deviation of 9.1o/s and 0.02 m/s, respectively. The angular

and linear velocity estimation errors for CASE 2 are shown in Fig. 8.5, while Fig. 8.4

displays the position error and the principal angle of the attitude estimation error. The

simulation results depicted in these figures demonstrate the stability of the proposed FTS

pose estimation scheme and the convergence of estimation errors to a neighborhood of

(h, ϕ) = (I, 0) despite persistent measurement noise at these relatively high noise levels.

The size of this neighborhood depends on the bounds of the measurement noise and the
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FIGURE 8.3: CASE 1: Plots of estimation errors in velocities in the absence of
measurement noise.

observer gains selected, according to Corollary 1. In Fig. 8.6, the plots depict the bounded

values of ζω and ζυ, along with the bounds determined by inequality (7.67) in Corollary

1.
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FIGURE 8.4: CASE 2: Plots of attitude and position estimation errors in the
presence of measurement noise in velocities.

8.2 Comparison of the state-of-the-art pose estimation schemes

In this section, the proposed FTS pose estimator is compared with the other state-of-the-

art pose estimation schemes like variational pose estimatior (VPE) and dual quaternion

multiplicative extended Kalman filter (DQ-MEKF).
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FIGURE 8.5: CASE 2: Plots of estimation errors in velocities in the presence
of measurement noise in velocities.

8.2.1 Variational Pose Estimatior

This variational pose estimator in Izadi and Sanyal, 2016 is obtained by applying the La-

grangedAlembert principle from variational mechanics to the Lagrangian obtained from

measurement residuals along with a Rayleigh dissipation term linear in the velocity mea-

surement residuals. The discretized variational pose estimator is given by:

(Jωi)
× =

1
∆t
(

FiJ −J FT
i
)
, (8.14)
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FIGURE 8.6: CASE 2: Plots of bounded measurement noise in velocities.

(M + ∆tDt)υi+1 = FT
i Mυi

+ ∆t κ(b̂i+1 + R̂i+1 ām
i+1 − q̄i+1), (8.15)

(J + ∆tDr)ωi+1 = FT
i Jωi + ∆tMυi+1 × υi+1

+ ∆t κ q̄×i+1(b̂i+1 + R̂i+1 ām
i+1)

− ∆tΦ′
(
U 0

r (ĝi+1, Em
i+1, Di+1)

)
SΓi+1(R̂i+1), (8.16)

ξ̂i = ξm
i − Adĝ−1

i
ϕi, (8.17)

ĝi+1 = ĝi exp(∆tξ̂∨i ), (8.18)
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where Fi ∈ SO(3), ∆t is the time step, J, M, Dt, Dr ∈ R3×3 are positive definite matrices,

J =
1
2

trace[J]I − J, (ĝ(t0), ˆ̧(t0)) = (ĝ0, ˆ̧0), ϕi = [ωT
i υT

i ]
T. The variables ξm

i , ām
i , q̄i, Em

i , Di

are the discrete-time values of the quantities defined in Section 7.2. Like the FTS pose

estimator (FTS-PE) of Theorem 1, it maintains the geometry of the state space of rigid

body motions.

8.2.2 DQ-MEKF estimator

The dual quaternion multiplicative extended Kalman filter (DQ-MEKF) is proposed in

Filipe, Kontitsis, and Tsiotras, 2015. This filter in the absence of bias is given by:

d
dt

(q̂B/I) ≈ q̂∗
B/IqB/I , (8.19)

ω̂B
B/I = ωB

B/I,m, (8.20)

where qB/I is the unit dual quaternion of a body frame with respect to an inertial frame

and is represented by

qB/I = qB/I,r + εqB/I,d, (8.21)

and ωB
B/I is the dual velocity of the body frame with respect to the inertial frame ex-

pressed in the body frame. The following constraints are enforced to avoid numerical
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errors in the propagation of q̂B/I :

[qB/I,r] =
[qB/I,r]

‖[qB/I,r]‖
and

[qB/I,d] =

(
I4×4 −

[qB/I,r][qB/I,r]
T

‖[qB/I,r]‖2

)
[qB/I,d]. (8.22)

The first equation above is a normalization of the rotation part of the dual quaternion that

forces it to be a unit quaternion, and the second is a projection of [qB/I,d] on the orthogonal

subspace of [qB/I,r]. Together, these steps ensure that the dual quaternion maps to a pose

on SE(3), and they add to the numerical costs of this DQ-MEKF scheme. Thereafter, the

covariance matrix P6×6 of the state satisfies the Riccati equation and is propagated as

follows

Ṗ6×6(t) = F6×6(t)P6×6(t) + P6×6(t)FT
6×6(t),

G6×6(t)Q6×6(t)GT
6×6(t). (8.23)

The state estimate at time tk is then calculated as

q̂+
B/I(tk) = q̂−

B/I(tk)∆
?δq̂B/I(tk), (8.24)

where

qB/I = qB/I,r + εqB/I,d, (8.25)

∆?δq̂B/I =

(√
1 −

∥∥∆?δq̂B/I,r
∥∥2

, ∆?δq̂B/I,r

)
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+ ε

(
−∆?δq̂B/I,r

T
∆?δq̂B/I,d√

1 −
∥∥∆?δq̂B/I,r

∥∥2
, ∆?δq̂B/I,d

)
, (8.26)

when the attitude error between the true and estimated attitude is less than 180 deg. If

the attitude error is greater than 180 deg then,

∆?δq̂B/I =

(
1√

1 +
∥∥∆?δq̂B/I,r

∥∥2
,

∆?δq̂B/I,r√
1 +

∥∥∆?δq̂B/I,r
∥∥2

)

+ ε

(
−∆?δq̂B/I,r

T
∆?δq̂B/I,d

1/
√

1 +
∥∥∆?δq̂B/I,r

∥∥2
, ∆?δq̂B/I,d

)
. (8.27)

Unlike the VPE and FTS-PE, the DQ-MEKF does not maintain the geometry of the state

space TSE(3) and it avoids unwinding, as given in (Bhat and Bernstein, 2000), by using

the discontinuous update law given by equations (8.26)-(8.27).

8.2.3 Comparison Results

In this case, the effects of optical vector measurement errors are considered in addition

to angular and translational velocities measurement noises. The performance of the FTS

pose estimator is compared to the two pose estimators outlined in section 8.2, by utilizing

the same initial estimated states used in CASE 1. The time step size for this simulation is

∆t = 0.1s. The optical measurements are obtained at this constant rate by body-fixed sen-

sors with an additive uniform random noise with zero mean and standard deviation of

0.15m. The noise in angular and translational velocity measurements is similar to CASE

2. For a fair comparison, the same measurements are used for all three pose estimation

schemes. The tuned gain parameters for both DQ-MEKF and VPE are unchanged and are
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as given in (Filipe, Kontitsis, and Tsiotras, 2015) and (Izadi and Sanyal, 2016), respectively.

Fig. 8.7 displays the position estimation error and the principal angle of the attitude es-

timation error. The results from the simulations presented in these plots showcase the

stability and performance of FTS-PE and VPE in effectively filtering out noises, unlike

DQMEKF. Additionally, FTS-PE ensures the convergence of estimation errors to a neigh-

borhood of (h, ϕ) = (I, 0) in finite time, even when faced with additional noise in optical

measurements.

The simulation run-times for all three pose estimators are given in Table 8.1. From

this table, one can see that the FTS-PE is the fastest of all the three pose estimators. The

simulation run-time values in Table 8.1 are reported for a simulated duration of 30s, using

the initial conditions and estimator gains mentioned earlier. In addition, the root-mean-

square (RMS) values of attitude and position estimation errors over the simulated time

of 30s for the three pose estimators are given in Table 8.2. These RMS values show that

the attitude and position estimation errors for the FTS-PE are the lowest. These pose

estimators were implemented on a computer with a 3.30 GHz, AMD Ryzen 9 5900HS

CPU, and 16 GB of RAM.

Estimator FTS-PE DQMEKF VPE
Run-times 0.0469 s 0.1250 s 0.1094 s

TABLE 8.1: Simulation times for FTS-PE, DQMEKF, and VPE.

Estimator FTS-PE DQMEKF VPE
Attitude error φ(rad) 0.3544 0.6806 0.5780
Position error χ(m) 0.2769 0.4336 0.4102

TABLE 8.2: RMS values of attitude and position estimation errors for FTS-PE,
DQMEKF, and VPE.
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FIGURE 8.7: CASE 3: Plots of attitude and position estimation errors in the
presence of measurement noise in all states.

8.3 Experimental Results for Variational Pose Estimation

Scheme

In this section, we present the experimental results for VPE from an onboard ZED2i stereo

depth camera.
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8.3.1 UAV Setup

The experiments were conducted using a hexacopter unmanned aerial vehicle (UAV) de-

veloped at the Autonomous Unmanned Systems Laboratory (AUSLab) at the Syracuse

Center of Excellence, as illustrated in Fig. This platform is equipped with a Pixhawk 4

autopilot, an advanced control system developed in collaboration with Holybro® and the

PX4 team. The autopilot is optimized to run the PX4 control stack PX4 Autopilot De-

velopment Team, 2022, making it a suitable option for both academic and commercial

developers. The onboard computer of the UAV is an Nvidia Jetson TX2, which is con-

nected to the Pixhawk through the Robot Operating System (ROS) and communicates

with a desktop computer via WiFi. The external VICON Motion Capture System is also

used to track the UAV for ground truth.

8.3.2 ZED2i Stereo Camera

The ZED2i camera is a stereo camera device designed for depth sensing. It uses a com-

bination of lenses to provide high-precision RGB and depth data. This stereo camera is

mounted on the top front of the UAV platform to provide the required color and depth

data.

FIGURE 8.8: ZED2i camera used for the experiment.
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8.3.3 VICON Motion Capture System

A Vicon system is used as both a reference ground truth and a backup sensor in situations

where camera measurements are lost. The Vicon cameras use proprietary algorithms to

track reflective markers on the objects being captured and can provide real-time data

on position, orientation, and velocity. For our indoor flight tests, we used eight Bonita

cameras installed on the ceiling to track the UAV’s 6DoF by capturing five markers affixed

to the UAV’s body. This enabled us to continuously and accurately determine the UAV’s

pose at each time instant, serving as the ground truth data.

8.3.4 Software Setup

The UAV software packages are designed to run on ROS Melodic, developed for Ubuntu

18.04 LTS. To experimentally validate the efficacy of our proposed VPE scheme, we have

tailored the navigation module of the PX4 to run a custom code stack that integrates our

estimation algorithm. We also developed a path-planning ROS node to enable commu-

nication between the Pixhawk autopilot and the TX2 onboard computer and provide the

UAV with the desired pose at any given moment. This node replaced the guidance mod-

ule of PX4 and publishes the acquired odometry data to the autopilot via Mavlink/Mavros

protocols.

8.3.5 Results and Observations

The experimental results for VPE described in 8.2 using the setup described in §8.3.1 -

§8.3.4 are given here.
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FIGURE 8.9: Vicon motion capture system in the lab

The initial state estimates of the UAV that initialize the VPE are selected as R̂0 = I,

b̂0 = [0, 0, 0]Tm, Ω̂0 = [0, 0, 0]Trad/s, and ν̂0 = [0, 0, 0]Tm/s. The estimator

gain matrices are also selected as J = diag[2, 1, 0.6], M = diag[0.05, 0.042, 0.03],

Dr = diag[19.67, 18.62, 14.2], and Dt = diag[0.15, 0.15, 0.005]. The estimator’s abil-

ity to maintain accurate estimates for the two sets of experiments is analyzed and plotted

here. These results provide insight into the estimator’s performance in comparison to

each vicon’s measurements. The attitude and position estimation error for the two sets of
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experiments is plotted in Fig. 8.10 and Fig. 8.11.

In the first experiment in Fig. 8.10, the VPE is subjected to the noise in the measure-

ments from the ZED2i camera. The attitude and position estimation error remains within

the bound. The attitude error, which is given in terms of principal angle, is less than 0.1

rad. The position error for all the three axes is upper-bounded and lower-bounded by 0.2

m.

For the second experiment, in addition to the measurement noise the setup was sub-

jected to more adverse environmental conditions like low-lighting condition, plain walls

etc. In this case, the error in both the attitude and position estimation is slightly larger as

compared to the attitude and position estimation error in experiment 1. Even with more

adverse condition both error remain within the bounds. The attitude error like the pre-

vious case is less than 0.1 rad. The position error is slightly more than the previous case

due to more adverse conditions, but is less 0.3 m bound.
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FIGURE 8.10: Experiment 1: Plots of attitude and position estimation errors
in the presence of measurement noise in all states.
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FIGURE 8.11: Experiment 2: Plots of attitude and position estimation errors
in the presence of measurement noise in all states.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

We conclude this dissertation by providing a summary of the research presented here,

followed by a discussion on related future work.

In Chapter 2, an integrated attitude guidance and tracking scheme that utilizes time-

varying artificial potential functions, is proposed. This continuous time scheme is de-

signed directly on the configuration space of rigid-body attitude motion, SO(3). The

scheme can generate a desired attitude trajectory through multiple attitude waypoints

and then track that desired trajectory through the waypoints. The guidance of the rigid

body is achieved by assigning attractive time-varying artificial potentials to desired at-

titude waypoints, while avoiding undesirable orientations using repulsive potentials.

These attractive potentials are generated using asymmetric bump functions of time. A

possible future research direction is to consider the full translational and rotational mo-

tion of rigid-bodies in SE(3) and create an integrated guidance and control scheme for

this full motion. Another research direction is to extend the above scheme to undesirable

zones which are dynamic in nature.
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Chapter 3, presents a novel scheme for attitude pointing control and guidance of a

rigid body with a body fixed sensor. The sensor has to avoid an exclusion zone around an

undesirable pointing direction, and is subject to control torque constraints. This scheme

relies on the use of an attractive artificial potential to guide the sensor to its desired point-

ing direction and a repulsive potential to avoid the undesirable pointing direction. A Lya-

punov stability analysis for the proposed control law guarantees almost global asymptotic

stability of the sensor pointing direction at the desired pointing direction. The control

parameters are designed so that they satisfy the control input and pointing direction ex-

clusion zone constraints. Numerical simulations demonstrate the validity of this scheme.

The results also show maintenance of the input torque constraints, as a result of the design

of control gain parameters.

Chapter 4, considers an application of a recently developed method of integral control

barrier functions to guide a control-affine system along safe regions to a target zone, while

avoiding unsafe regions and satisfying control constraints. We obtained an integrated

guidance and control scheme that solves this problem for control-affine systems under

certain assumptions. The comparison of the proposed approach with other approaches,

e.g., based on model predictive control and reference governors, will be addressed in

future work.

Chapter 5, considers estimation of dynamic uncertain inputs and data-enabled control

of a control-affine system for output tracking in discrete time. The dynamics model of the

system is partly known, and the uncertain (disturbance) input observer is used to estimate

the unknown part of the dynamics. This disturbance observer is designed to be Hölder-

continuous and finite-time stable. The data-enabled tracking control scheme uses the

disturbance estimate provided by the disturbance observer, for feedforward cancellation
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of this disturbance. This control scheme is shown to be finite-time stable in the case of

perfect estimation of the disturbance, and robust to this estimation error otherwise.

Chapter 6, considers the design of a reference governor to enforce pointwise-in-time

output and control constraints for a system with unknown input-output dynamics mod-

eled by an ULM. At each time instant, a modified command is generated that minimizes

the constrained cost function. This command is determined on the basis of a constraint

admissible set that is designed to enforce output constraints. The control gain matrix

is designed to satisfy the control constraints. A Lyapunov stability analysis shows the

convergence of the tracking error and the observer error to bounded neighborhoods of

zero error. A numerical simulation is performed for an aircraft pitch control system, sub-

jected to output and control constraints. The simulation results demonstrate the tracking

of a reference output trajectory while satisfying the output and control constraints. In

the current framework, the output constraint satisfaction for the output trajectory is con-

servative. This issue will be considered in future work. In addition, the effect of initial

selections of the estimate of the unknown model and the control gain matrix on the con-

trol input and output response is also illustrated through a numerical simulation study.

Chapter 7, presents theoretical results for a novel nonlinear finite-time stable pose esti-

mation scheme for rigid bodies. The proposed scheme utilizes a minimum of two known

linearly independent optical vector measurements from an onboard vision sensor along

with inertial vector measurements to estimate pose, angular and translational velocities.

It can also be implemented with additional optical sensors to mitigate the effects of mea-

surement noise and sensor failure through sensor redundancy. The FTS pose estimator

is Hölder-continuous and model-free, and is designed directly on the Lie group of rigid
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body motions, SE(3). It is shown that the proposed estimator is almost globally finite-

time stable from almost all initial conditions except for those in a set of zero measure on

TSE(3). Finite-time stability guarantees a faster convergence of estimation errors in finite

time, as well as additional robustness to measurement noise compared to asymptotically

or exponentially stable schemes. This work analyzes both finite-time stability and ro-

bustness of the FTS pose estimator by using an appropriate Morse-Lyapunov function on

TSE(3). The estimation scheme is discretized using a geometric variational integration

scheme that preserves the geometry of the state space. The numerical simulation results

validate the efficacy of the proposed estimator by demonstrating its finite-time conver-

gence properties. Moreover, the behavior of this estimation scheme is compared with

two state-of-the-art filters for pose estimation. Numerical simulations show that the FTS-

PE and VPE, unlike the DQMEKF filter, are always stable and effective in filtering out

noise and stable convergence of estimation errors. It is shown that our proposed FTS-PE

scheme achieves finite-time stable convergence of estimation errors to (I, 0), and in the

presence of measurement noise, it converges to a bounded neighborhood of (I, 0) in finite

time.

Chapter 8, given the numerical simulation results and experimental results for the

pose estimation schemes given in Chapter 7. The estimation scheme is discretized using

a geometric variational integration scheme that preserves the geometry of the state space.

The simulation results show that the proposed FTS-PE scheme converges to the zero error

in the absence of any measurement noise. In the presence of measurement noise, FTS-PE

converges to the bounded neighborhood of zero as shown in the robustness analysis in

Chapter 7. Then, the FTS-PE is compared with the two state-of-the-art pose estimators.

Numerical simulations show that the FTS-PE and VPE, unlike the DQMEKF filter, are
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always stable and effective in filtering out noise and stable convergence of estimation

errors. It is shown that our proposed FTS-PE scheme achieves finite-time stable conver-

gence of estimation errors to (I, 0), and in the presence of measurement noise, it converges

to a bounded neighborhood of (I, 0) in finite time.

9.2 Ideas for Future Work

The following are ideas to extend the research presented in this PhD dissertation:

• The integral control barrier function approach for state and control constraints in

Chapter 4, will be extended for control-affine system in the presence of drift.

• Comparison of efficiency and computational complexities of different methods to

satisfy pointwise-in-time output and control constraints, e.g., model predictive con-

trol (MPC), reference governors, integral control barrier functions and artificial po-

tential.

• Estimation of control influence matrix when knowledge is not satisfactory and ac-

count for bounds in control inputs.

• Development and design of reference governors for systems with uncertainty (“gray

box" models), monotonically non-increasing set bounds for the observer error, and

systems with delay.

• Future research will look into the problem of discrete-time FTS pose estimation from

intermittent measurements and addition of bias. Development of fast finite-time

stable pose estimation scheme.
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• Experimental validation of data-driven control of systems with unknown input-

output dynamics. Inclusion of reference governors to satisfy pointwise-in-time out-

put and control constraints.

• Developing an integral control barrier functions approach for data-driven control of

systems with unknown input-output dynamics and for systems with uncertainties.

• Combining finite-time stable pose estimator with finite-time stable control for au-

tonomous systems.
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