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Abstract

There are three main focuses of this work. First, the theoretical details of the Stratified Stochastic
Enumeration of Molecular Orbitals (SSE-MO) method is presented, along with its application for
calculating ionization potentials (IPs) of quantum dots. The SSE-MO method can readily be applied
for the purpose of efficiently and accurately calculating ionization potentials, by constructing the
frequency-dependent self-energy operator and then subsequently, solving the associated Dyson
equation. Constructing the frequency-dependent self-energy operator is challenging because the
scaling of the computational cost with respect to system size, becomes prohibitive for large systems,
such as quantum dots. This is due to the large number of 2particle-1hole (2p1h) and 1particle-
2hole (1p2h) terms that must be computed. The key strategy of the SSE-MO method is to utilize a
stratified stochastic enumeration scheme in order to efficiently construct the 2p1h and 1p2h terms
of the self-energy operator, while maintaining high accuracy.

Second, a computational and theoretical investigation into the inverse photoemission processes
in a variety of quantum dots (CdS, CdSe, PbS, and PbSe) is presented. Inverse photoemission
occurs when an incident electron is captured by a material in one of the high energy unoccupied
states. This captured electron then subsequently de-excites to a lower energy unoccupied state,
resulting in the emission of a photon. We investigated the inverse photoemission (IPE) processes in
these dots, both in the absence of an external electric field and when the dots are in the presence of
a Stark field. In order to construct the spectra for the CdS, CdSe, PbS, and PbSe dots, we combined
the Frequency-Dependent Geminal-Screened interaction kernel method (FD-GSIK) with time-
dependent perturbation theory. Studying the inverse photoemission processes in quantum dots,
can provide insight that is valuable for a variety of applications including, but not limited to, the
development of scintillators and for achieving a greater understanding of the surface chemistry
of materials. Additionally, investigation into the impact of Stark fields on the IPE processes in
these materials can provide important information that can aid in the identification of materials that
are useful for electroluminescence applications and for the development of new highly controllable
photon sources. Furthermore, investigating the effects of the direction and magnitude of Stark fields
on the IPE spectra of materials can provide a route to systematically enhance inverse photoemission
transition probabilities and alter the energy of the emitted photon.

The third focus of this work, is a theoretical and computational investigation into field-assisted
photoionization in PbS clusters and quantum dots. In particular, the results from this investigation
into how the IPs, for ionization from the HOMO, of Pb4S4, Pb44S44, and Pb140S140 are impacted
by the application of non-ionizing Stark fields, of differing strengths and directions. The ability
to control the position of the energy levels in quantum dots is highly relevant for the optimization
of optoelectronic devices. In order to obtain a first-order approximation to the field-dependent
Green’s function IPs, of these PbS systems, we employed the recently developed SSE-MO method



accompanied by the use of a Padé approximation. The results presented in this chapter indicate
that the ionization potentials of PbS clusters and quantum dots can be manipulated by carefully
fine-tuning the magnitude and direction of applied static electric fields.
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1

Chapter 1

Introduction

Quantum chemistry is a sub-field of chemistry that focuses on achieving a greater theoretical
understanding of the properties and behavior of chemical systems by applying quantum mechanics.
Quantum chemical methods can also be applied in order to gain a greater understanding of light-
matter interactions in chemical systems and materials. Within the framework of quantum theory,
light-matter interactions involve the coupling of the quantum states of a system, with electromagnetic
radiation. This coupling can induce changes in the states of a chemical system or material and can
also initiate the occurrence of various process. Some examples of processes that can be initiated
as a result of light-matter interactions include, but are not limited to, photoionization, inverse
photoemission, elastic or inelastic scattering, and a variety of other absorption and emission
processes.

A major computational bottle-neck for applying traditional first-principles quantum chemistry
methods for studying the properties of large chemical systems and materials, is the unfavorable
scaling of the computational cost of these methods, with respect to system size. Additionally,
when investigating the properties of materials a very large number of electron-electron interac-
tions must be accounted. This in particular can become very computationally prohibitive when
applying traditional first-principles quantum chemistry methods for investigating the properties of
a variety of materials, including nanomaterials. Nanomaterials are a novel class of materials that
have generated alot of interest, due to the highly controllable nature of their electronic proper-
ties and their applicability in a variety of areas including, but not limited to, the development of
novel electronic devices and the design of more efficient photovoltaic devices. One approach to
circumvent the aforementioned computational bottle-necks, associated with the use of traditional
first-principles quantum chemistry methods, is to incorporate the use of stochastic methodology.
Some examples of stochastic techniques include random and quasi-random sampling, Monte Carlo
integration, and stochastic enumeration. Additionally, the use of stochastic techniques can enable
the use of well defined metrics for error analysis, along with providing a route to systematically
reduce the error in the results obtained from computation. Stochastic techniques can be applied to
solve very challenging quantum chemistry problems including, but not limited to, the construction
of the frequency-dependent self-energy operator and the implementation of methodology, such as
second and third order Møller-Plesset perturbation theory, for very large systems and materials.
[114, 125, 122] For example, it has been demonstrated that by applying stratified stochastic enu-
meration, the ionization potentials of quantum dots can be calculated, by first constructing the
frequency-dependent self-energy operator and then solving the associated Dyson equation. [114]
The Ionization potential (IP) (or ionization energy) is defined as the energy needed to remove an
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electron from a chemical system. Ionization potential is a fundamental property of a material
which is relevant to mass spectroscopy, photoelectron spectroscopy, electrochemistry, photocataly-
sis, light-induced electron-transfer processes, and the development of photovoltaics. For example,
in conjunction with the electron affinity, for the addition of an electron to the lowest-occupied
molecular orbital (LUMO), knowledge of the ionization potential, for ionization from the highest-
occupied molecular orbital (HOMO), can be used to directly determine the band gap of materials,
including quantum dots. The bandgap of a materials, such as quantum dots, is especially relevant
for the development of Solar Cells. [114, 47, 58]

As previously mentioned, there are many interesting processes that can occur as a result
of light-matter interactions in chemical systems and materials. When modeling many of these
processes, the use of time-dependent quantum mechanics is often warranted. These processes,
which are typically experimentally observed using spectroscopy, can often involve the absorption
of electromagnetic radiation, followed by an electronic transition, and possibly the emission of a
photon. Even when considering this seemingly simple process of absorption, followed by electronic
transition and possibly photon emission, there are many different possible pathways along which
each step can occur. This is one of the reasons why it is particularly challenging to theoretically
and computationally simulate the spectra for these aforementioned processes, especially for large
chemical systems and materials. It is essential to highlight simulating this example process is
relatively simple, when compared to some other light-matter interaction induced processes. For
example, the inverse photoemssion (IPE) process is particularly challenging to simulate because
transitions between unoccupied orbitals play an essential role in the IPE process.

During the process of inverse photoemission an incident electron is captured by a material in
a high energy unoccupied states. Next, this captured electron then de-excites to a lower energy
unoccupied state, resulting in the emission of a photon. [113] In order to accurately model the IPE
process using time-dependent quantum chemical methods, such as time-dependent perturbation
theory (TDPT), the effects of electron correlation should be considered. It is known that simply
subtracting the energy of the final state (orbital to which the electron de-excites) from the energy
of the initial state (orbital in which the electron is captured) does not provide accurate electronic
transition energies. Therefore, the transition energy associated with the de-excitation step should
be calculated using methodology that accounts for the effects of electron correlation. Many-body
perturbation theory and the Frequency-Dependent Geminal-Screened interaction kernel (FD-GSIK)
method are examples of methods that can be used to predict correlated transition energies. Using
the FD-GSIK method for calculating the correlated transition energies is a particularly effective
approach. The main reason for this is because the computational cost of the FD-GSIK method
scales linearly with respect to system size. [73] Simulating the inverse photoemission processes
in quantum dots can provide valuable information about the unoccupied states of these systems.
For example, simulating the IPE process in quantum dots can enable the identification of probable
unoccupied-to-unoccupied orbital transitions that can result in the emission of a photon with energy
that is less then the bandgap.

By manipulating the environment of a material, it is possible enhance and control light-matter
interaction induced processes. For example, light-matter interaction induced processes, such as
photoionzation and IPE processes, can be enhanced and finely controlled by the application of
carefully chosen external electric fields. It is known that the the optical and electronic properties
of atoms, molecules, and materials are altered when in the presence of an external electric field.
This phenomenon is known as the Stark effect. In many-electron systems, the electronic and



3

optical properties display a non-linear dependence on the strength of an applied electric field,
this effect is often referred to as the nonlinear Stark effect. For quantum confined systems,
such as quantum dots, this effect is typically referred to as the quantum-confined Stark effect.
[75, 12, 10] By taking advantage of the Stark effect, even complicated light-matter interaction
induced processes, such as IPE processes, can be systematically controlled. For example, it has
been demonstrated that control of the IPE transition probabilities and emitted photon frequencies
can be achieved by the systematic application of carefully chosen Stark fields. It has also been
demonstrated that the ionization potentials of PbS quantum dots can be fine-tuned by the application
of meticulously selected external static electric fields. Achieving field-dependent control of IPE and
photoionzation processes is relevant for applications including, but not limited to, the enhancement
of electron-transfer reactions, the optimization of photovoltaics, and the development of novel
highly controllable photon sources. [117, 47, 106]
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Chapter 2

Quantum Chemistry Background

2.1 Scope of Chapter Content

In this chapter the fundamentals of the Hartree-Fock approximation, along with Koopmans’ Theo-
rem, for predicting ionization potentials (IPs) and electron affinities (EAs) of many electron systems
is presented. Additionally, we briefly introduce the concept of green’s functions, at first in a very
simple and general mathematical context. Following this mathematical introduction, we introduce
the one-particle many-body Green’s function in the context of Hartree-Fock theory. In this chapter,
we do not discuss the use of Green’s function theory in the context of accounting for the effects of
electron-correlation and orbital relaxation. A brief overview of the Dyson equation, which enables
us to account for the effects of electron-correlation and orbital relaxation, is provided in chapter 5. It
would be negligent not to mention that there are many different aspects Green’s function theory and
its applications in quantum chemistry. This chapter solely presents a foundational introduction to
the basics of Green’s function theory, in a context that is directly relevant to the material presented
in later chapters.

2.2 The Hartree-Fock Method and Koopmans’ Theorem

Before introducing the fundamentals of Hartree-Fock theory, the concept of Slater determinants
will be introduced. It is well known that it imperative that a many-electron wave function is
anti-symmetric with respect to the interchanging of both the spatial and spin coordinates of any
two electrons. This means that the wave function must change sign as a result interchanging the
spatial and spin coordinates of any two electrons. One simple and well known anti-symmetric wave
function is a single Slater determinant. For an N-electron system, the form of the Slater determinant
is given as follows. [116]

Ψ =
1

√
𝑁!

�����������
𝜒1(1) 𝜒2(1) · · · 𝜒𝑁 (1)
𝜒1(2) 𝜒2(2) · · · 𝜒𝑁 (2)
𝜒1(3) 𝜒2(3) · · · 𝜒𝑁 (3)
...

...
. . .

...

𝜒1(𝑁) 𝜒2(𝑁) · · · 𝜒𝑁 (𝑁)

�����������
(2.1)

In Equation 2.1, 1√
𝑁!

ensures normalization. It is imperative to point out that the electrons,
{(1), (2), ...(𝑁)}, are indexed along the rows of the determinant and the spin orbitals, {𝜒1, 𝜒2, ...𝜒𝑁 },
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are indexed across the columns of the Slater determinant. Since this desired anti-symmetry is an
intrinsic property of determinants, the interchange of any two rows of the determinant in Equa-
tion 2.1, the sign of Ψ will change. Within the framework of the Hartree-Fock approximation, one
can identify a minimal energy single Slater determinant, that best approximates the ground state of
an N-electron system. This can be achieved by finding an optimal set of spin orbitals, which results
in the minimization of the following energy expression. [116]

𝐸0 =

𝑁∑︁
𝑖

⟨𝜒𝑖 | ℎ̂ |𝜒𝑖⟩ +
1
2

𝑁∑︁
𝑖

𝑁∑︁
𝑗

⟨𝜒𝑖𝜒 𝑗 | |𝜒𝑖𝜒 𝑗 ⟩ (2.2)

By solving the Hartree-Fock equation, these optimal spin-orbitals can be obtained. The Hartree-
Fock equation is a pseudo-eigenvalue equation that is solved iteratively and is defined as follows.

𝑓 𝜒𝑖 = 𝜀𝑖𝜒𝑖 (2.3)

In Equation 2.3, 𝑓 is the Fock operator which is given as,

𝑓 = ℎ̂ +
𝑁∑︁
𝑗

(𝐽 𝑗 − �̂� 𝑗 ) (2.4)

where ℎ̂ is a one-electron Hamiltonian and is defined as follows.

ℎ̂ =
1
2
∇2
𝑖 +

𝑀∑︁
𝐴

𝑍𝐴

𝑅𝑖𝐴
(2.5)

In equation Equation 2.4, 𝐽 𝑗 is the Coulomb operator and �̂� 𝑗 is the exchange operator. The actions
of both the Coulomb operator and exchange operator on spin orbital, 𝜒𝑖 (1), are demonstrated below.
[116]

𝐽 𝑗 𝜒𝑖 (1) = ⟨𝜒 𝑗 (2) |𝑟−1
12 |𝜒 𝑗 (2)⟩𝜒𝑖 (1) (2.6)

�̂� 𝑗 𝜒𝑖 (1) = ⟨𝜒 𝑗 (2) |𝑟−1
12 |𝜒𝑖 (2)⟩𝜒 𝑗 (1) (2.7)

One can think of the coulomb and exchange operators as composing a one-electron potential that
describes the average potential or "mean-field" experienced by an electron 1 in spin orbital 𝜒𝑖. Now
that we have defined the Fock operator, we can see that the energy (𝜀𝑖) of some individual spin
orbital, 𝜒𝑖 can be determined from the Hartree-Fock approximation as follows. [116]

𝜀𝑖 = ⟨𝜒𝑖 | 𝑓 |𝜒𝑖⟩ = ⟨𝜒𝑖 | ℎ̂ |𝜒𝑖⟩ +
𝑁∑︁
𝑗

(⟨𝜒𝑖 |𝐽 𝑗 |𝜒𝑖⟩ − ⟨𝜒𝑖 |�̂� 𝑗 |𝜒𝑖⟩) (2.8)

Using more compact notation, we express Equation 2.8 as given below.

𝜀𝑖 = ⟨𝑖 | ℎ̂|𝑖⟩ +
𝑁∑︁
𝑗

⟨𝑖 𝑗 |𝑖 𝑗⟩ − ⟨𝑖 𝑗 | 𝑗𝑖⟩ (2.9)
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= ⟨𝑖 | ℎ̂ |𝑖⟩ +
𝑁∑︁
𝑗

⟨𝑖 𝑗 | |𝑖 𝑗⟩ (2.10)

At this point, it is natural to wonder if any chemically relevant properties can be easily obtained from
the Hartree-Fock approximation. Upon solving the Hartree-Fock equation, one can easily obtain
a first approximation to the ionization potentials and electron affinities of many-electron chemical
systems through the application of Koopmans’ Theorem. Since the Koopmans’ ionization potential
is a quantity that is of direct relevance to the content of this dissertation, we will now demonstrate
how ionization potentials can be obtained using Koopmans’ theorem. First consider the following
expression for the expectation value of the energy for the N-electron single determinant state, within
the Hartree-Fock formalism.

𝐸𝑁0 =

𝑁occ∑︁
𝑖

⟨𝑖 | ℎ̂ |𝑖⟩ + 1
2

𝑁occ∑︁
𝑖

𝑁occ∑︁
𝑗

⟨𝑖 𝑗 | |𝑖 𝑗⟩ (2.11)

In Equation 2.11, the summations are performed over all occupied orbitals. Next, consider the
consider the following expression for the expectation value of the energy for the (N-1)-electron
state, which is generated upon the removal of an electron from spin orbital 𝑘 .

𝐸𝑁−1
𝑘 =

𝑁occ∑︁
𝑖≠𝑘

⟨𝑖 | ℎ̂ |𝑖⟩ + 1
2

𝑁occ∑︁
𝑖≠𝑘

𝑁occ∑︁
𝑗≠𝑘

⟨𝑖 𝑗 | |𝑖 𝑗⟩ (2.12)

The Koopmans’ approximation to the ionization potential, for the removal of an electron from
spin orbital 𝑘 , can be obtained by subtracting Equation 2.11 from Equation 2.12.

𝐸𝑁−1
𝑘 − 𝐸𝑁0 = −⟨𝑘 | ℎ̂ |𝑘⟩ − 1

2

∑︁
𝑖,[ 𝑗=𝑘]

⟨𝑖 𝑗 | |𝑖 𝑗⟩ − 1
2

∑︁
𝑗 ,[𝑖=𝑘]

⟨𝑖 𝑗 | |𝑖 𝑗⟩ (2.13)

= −⟨𝑘 | ℎ̂ |𝑘⟩ − 1
2

∑︁
𝑖,[ 𝑗=𝑘]

⟨𝑖𝑘 | |𝑖𝑘⟩ − 1
2

∑︁
𝑗 ,[𝑖=𝑘]

⟨𝑘 𝑗 | |𝑘 𝑗⟩ (2.14)

Upon examination of Equation 2.13, we see that only the following terms remain after performing
the subtraction.

−⟨𝑘 | ℎ̂ |𝑘⟩ −
∑︁
𝑗

⟨𝑘 𝑗 | |𝑘 𝑗⟩ = −𝜀𝑘 (2.15)

In Equation 2.15, we see that within the framework of Koopmans’ theorem, the ionization potential
for the removal of an electron from spin orbital 𝑘 , is simply the negative of the energy of spin
orbital 𝑘 . By performing a similar deviation it can also be demonstrated that, within the framework
of the Koopmans’ approximation, the electron affinity for the addition of an electron to spin orbital
𝑟 is approximated to be equal to −𝜀𝑟 . [116]

Since the energies of all the spin orbitals are obtained from performing a Hartree-Fock cal-
culation, the Koopmans’ approximation provides an extremely convenient route for obtaining first
approximations to the ionization potentials of many-electron systems. Note that Koopmans’ theo-
rem has been interchanged with Koopmans’ approximation throughout this section. The reason for
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this is that Koopmans’ theorem does not include the effects of electron-correlation and orbital re-
laxation. One would expect the spin orbitals to change after the removal of an electron. Koopmans’
approximation does not account for the changes in the spin orbitals that would realistically occur
upon ionization. Therefore, Koopmans’ approximation is considered to be a "frozen orbital approx-
imation". [116] There are a variety of approaches to incorporate the effects of electron-correlation
and orbital relaxation, in order to more accurately predict ionization potentials and electron affinities
of many-electron systems. In this dissertation, we will focus on the use of Green’s function theory,
particularly the Dyson equation, as a means of obtaining a more accurate estimate of ionization
potentials.

2.3 Basic Mathematical Introduction to Green’s Function Theory

Consider the following matrix equation and assume that we would like to solve this equation to
determine the vector, w.

(𝐸I − H0)w = u (2.16)

In Equation 2.16, 𝐸 is a parameter, H0 is a 𝑁 × 𝑁 Hermitian matrix, I is the 𝑁 × 𝑁 identity matrix
and u is a vector. In order to determine the vector, w, we can utilize the inverse of the matrix,
𝐸I − H0, as follows.

(𝐸I − H0)−1(𝐸I − H0)w = (𝐸I − H0)−1u (2.17)

By recognizing that (𝐸I − H0)−1(𝐸I − H0) = I and using G0(𝐸) to represent (𝐸I − H0)−1, we
obtain the following two equations.

w = G0(𝐸)u (2.18)

w𝑖 =
∑︁
𝑗

(G0(𝐸))𝑖 𝑗u 𝑗 (2.19)

Upon examination of Equation 2.19, we see that the elements of w can be obtained for any vector,
u, if G0(𝐸) is known. We can be reformulate G0(𝐸) using the eigenvectors (v𝛼) and eigenvalues
(𝐸 (0)

𝛼 ) of H0.

(G0(𝐸))𝑖 𝑗 =
∑︁
𝛼

𝑣𝛼
𝑖
𝑣𝛼∗
𝑗

𝐸 − 𝐸 (0)
𝛼

(2.20)

Upon examination of Equation 2.20, that the poles of (G0(𝐸))𝑖 𝑗 occur at 𝐸 = 𝐸
(0)
𝛼 . [116] Now

assume that we would like to solve the inhomogeneous differential equation, shown below, for 𝑎(𝑥).

(𝐸 − 𝐻0)𝑎(𝑥) = 𝑏(𝑥) (2.21)

In Equation 2.21, 𝐸 is a parameter and 𝐻0 is a Hermitian differential operator, whose eigenvectors
and eigenvalues are Ψ𝛼 (𝑥) and 𝐸 (0)

𝛼 , respectively. Assume that 𝑏(𝑥) is known. Note that we can
expand 𝑎(𝑥) and 𝑏(𝑥) in terms of the eigenvectors of 𝐻0.

𝑎(𝑥) =
∑︁
𝛼

𝑎𝛼Ψ𝛼 (𝑥) (2.22)
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𝑏(𝑥) =
∑︁
𝛼

𝑏𝛼Ψ𝛼 (𝑥) (2.23)

Since 𝑏(𝑥) is known, we can determine 𝑏𝛼 by solving the following integral while integrating over
all 𝑥.

𝑏𝛼 =

∫
𝑑𝑥′Ψ∗

𝛼 (𝑥′)𝑏(𝑥′) (2.24)

Once the coefficients, 𝑏𝛼, are found we can rewrite Equation 2.21 by incorporating Equation 2.22
and Equation 2.23, along with using the eigenvectors of 𝐻0, to obtain the following.∑︁

𝛼

𝑎𝛼 (𝐸 − 𝐸 (0)
𝛼 )Ψ𝛼 (𝑥) =

∑︁
𝛼

𝑏𝛼Ψ𝛼 (𝑥) (2.25)

Since the Ψ𝛼 (𝑥) are form an orthonormal basis, by multiplying both side of Equation 2.25 by Ψ∗
𝛼 (𝑥)

and then integrating, we can observe the following relationship between the coefficients, 𝑎𝛼 and
𝑏𝛼.

𝑎𝛼 (𝐸 − 𝐸 (0)
𝛼 ) = 𝑏𝛼 (2.26)

Next, we can substitute Equation 2.26 into Equation 2.22 in order to obtain the following expression
for 𝑎(𝑥).

𝑎(𝑥) =
∑︁
𝛼

𝑏𝛼

𝐸 − 𝐸 (0)
𝛼

Ψ𝛼 (𝑥) (2.27)

Now we can substitute Equation 2.24 for 𝑏𝛼 in Equation 2.27, to obtain the following integral
equation.

𝑎(𝑥) =
∑︁
𝛼

∫
𝑑𝑥′

Ψ𝛼 (𝑥)Ψ∗
𝛼 (𝑥′)

𝐸 − 𝐸 (0)
𝛼

𝑏(𝑥′) (2.28)

By defining the following Green’s function,

𝐺0(𝑥, 𝑥′, 𝐸) =
∑︁
𝛼

Ψ𝛼 (𝑥)Ψ∗
𝛼 (𝑥′)

𝐸 − 𝐸 (0)
𝛼

(2.29)

we can rewrite our expression for 𝑎(𝑥) as follows.

𝑎(𝑥) =
∫

𝑑𝑥′𝐺0(𝑥, 𝑥′, 𝐸)𝑏(𝑥′) (2.30)

By working through this process, we have successfully reduced the equation of interest (Equa-
tion 2.21) from an inhomogeneous differential equation to an integration problem. Upon examina-
tion of Equation 2.30, we see that the poles of 𝐺0(𝑥, 𝑥′, 𝐸) occur at 𝐸 = 𝐸

(0)
𝛼 . [116]



9

2.4 One-Particle MBGF: Hartree-Fock Green’s Function

In this section, we will use results obtained from the previous section, in order to work our
way towards the definition of the Hartree-Fock Green’s function (HFGF), in an efficient manner.
Consider the Hartree-Fock Hamiltonian which is given as,

𝐻0 =
∑︁
𝑖

𝑓𝑖 (2.31)

where 𝑓𝑖 is the Fock operator for electron 𝑖. An optimal set of orthonormal spin orbitals (𝜒𝑖)
and orbital energies (𝜀𝑖), for a N-electron system, can be determined by solving the Hartree-Fock
equation, as discussed in the section 2.2. Using Equation 2.29, which was obtained in the previous
section, we can intuitively construct an analogous Green’s function, 𝐺0(x, x′, 𝐸), which is defined
below. [116]

𝐺0(x, x′, 𝐸) =
∑︁
𝑎

𝜒𝑎 (x)𝜒∗𝑎 (x′)
𝐸 − 𝜀𝑎

+
∑︁
𝑟

𝜒𝑟 (x)𝜒∗𝑟 (x′)
𝐸 − 𝜀𝑟

(2.32)

Note that in Equation 2.32, we are summing over both the occupied spin orbitals and the virtual
spin orbitals, which are indexed by 𝑎 and 𝑟, respectively. By using Equation 2.32, along with the
results obtained in the previous section, we can define the elements of G0(x, x′, 𝐸), in its matrix
form as follows.

(G0(𝐸))𝑖 𝑗 =
∫ ∫

𝑑x𝑑x′𝜒∗𝑖 (x)G0(x, x′, 𝐸)𝜒 𝑗 (x′) =
𝛿𝑖 𝑗

𝐸 − 𝜀𝑖
(2.33)

Analogous to the representation of G0(𝐸) used in the previous section, we can write the following
matrix equation for G0(𝐸) in the context of Hartree-Fock theory.

G0(𝐸) = (𝐸I − 𝜀𝜀𝜀)−1 (2.34)

In Equation 2.34,𝜀𝜀𝜀 is a diagonal matrix whose elements are the Hartree-Fock spin orbital energies. It
is particularly relevant to highlight the connection between Equation 2.34 and Koopmans’ theorem,
which was discussed in section 2.2. Koopmans’ theorem states that the ionization potential, for the
removal of an electron from an occupied orbital, 𝜒𝑖, is defined as follows.

𝐸
Koopmans
IP = −𝜀𝑖 (2.35)

Given the above definition, it can be seen that the Koopmans’ approximation to the ionization
potential can be recovered from Equation 2.33. Furthermore, upon examination of Equation 2.34,
it can be observed that the poles of G0(𝐸) occur at values of 𝐸 such that,

det(𝐸I − 𝜀𝜀𝜀) = 0 (2.36)

where det(𝐸I − 𝜀𝜀𝜀) denotes the determinant of 𝐸I − 𝜀𝜀𝜀. Therefore, the poles of G0(𝐸) occur when
𝐸 is equal to Hartree-Fock orbital energies. [116] In order to prepare for the introduction of the
SSE-MO method, which is the main topic of this dissertation, a pedagogical introduction to Monte
Carlo integration and some select variance reduction techniques is provided in the next chapter.
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Chapter 3

Background: Monte Carlo Integration

3.1 Basics of Naive Monte Carlo integration

Monte Carlo integration is a stochastic numerical integration technique that utilizes "random"
sampling techniques to estimate the solution to an integral. Various techniques, which are known
as variance reduction techniques, can be used to improve the efficiency and the accuracy with which
the integral is computed. It is relevant to mention that for numerical integration in low dimensional
spaces, such as 1D or 2D space, quadrature is a more efficient choice than Monte Carlo integration.
However, for numerical integration in spaces of higher dimensions, Monte Carlo integration is the
more efficient choice. As opposed to quadrature methods for which the convergence rate becomes
exponentially slower as dimensionality increases, the convergence rate for Monte Carlo integration
is independent of dimensionality. [54]

For the purpose of introducing the topic of Monte Carlo integration, the basics of naive Monte
Carlo integration in one-dimension will be presented in this section. The naive Monte Carlo
integration approach does not involve the employment of variance reduction techniques. Consider
a one-dimensional integral of a continuous function, 𝑓 (𝑥), on [𝑎,𝑏].

𝐼1 =

∫ 𝑏

𝑎

𝑑𝑥 𝑓 (𝑥) (3.1)

Assume that we do not know how to solve 𝐼1 analytically, but we know the functional form of 𝑓 (𝑥)
and can evaluate this function at values of 𝑥 on [𝑎,𝑏]. Before we can estimate 𝐼1, we must first
establish the sample space from which we can choose values of 𝑥. We define a set of 𝑁 values of
𝑥, such that 𝑎 ≤ 𝑥𝑖 ≤ 𝑏 as follows.

𝑋 = {𝑥1, 𝑥2, 𝑥3, .., 𝑥𝑁−1, 𝑥𝑁 } (3.2)

This set 𝑋 is our sample space from which we will randomly draw 𝑀 number of values of 𝑥. We
index the samples randomly chosen from 𝑋 as 𝑥𝑖, where 𝑖 = 1, 2, 3..., 𝑀 . Since we know the value
of 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 , we can determine the corresponding value of 𝑓 (𝑥) for each 𝑥𝑖 randomly
sampled and estimate the expectation value of 𝑓 (𝑥). We denote the expectation value of 𝑓 (𝑥) as
E[ 𝑓 ] and it is defined as follows.

E[ 𝑓 ] = ⟨ 𝑓 ⟩ = 1
𝑀

𝑀∑︁
𝑖=1

𝑓 (𝑥𝑖) (3.3)
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In order to obtain an estimate of 𝐼1 we multiply E[ 𝑓 ] by the volume of the sample space, which
for this one-dimensional example, is defined as 𝑉 = 𝑏 − 𝑎.

𝐼1 ≈ 𝐽𝑀 = 𝑉 × E[ 𝑓 ] (3.4)

It is important to note that in Equation 3.3, E[ 𝑓 ] is an estimate of the mean of 𝑓 (𝑥) obtained from a
finite number of samples. As we increase the number of samples our estimate of the mean of 𝑓 (𝑥)
becomes more accurate. We define the exact mean of 𝑓 (𝑥) as follows.

𝜇 𝑓 = lim
𝑀→∞

1
𝑀

𝑀∑︁
𝑖=1

𝑓 (𝑥𝑖) (3.5)

If we were to sample 𝑓 (𝑥) for an infinite number of 𝑥𝑖 we would obtain the exact mean of this
function of interest. In practice it is not possible for us to choose an infinite number of samples,
but by estimating the variance of 𝑓 (𝑥) we can determine the error in our estimate of 𝐼1. We can
estimate in variance of 𝑓 (𝑥) as follows. [54]

V[ 𝑓 ] = 1
𝑀

𝑀∑︁
𝑖=1

[ 𝑓 (𝑥𝑖) − ⟨ 𝑓 ⟩]2 =
1
𝑀

𝑀∑︁
𝑖=1

𝑓 (𝑥𝑖)2 − ⟨ 𝑓 ⟩2 (3.6)

Since our all possible samples of 𝑥𝑖 are unncorrelated and have identical variance, we can estimate
the variance of E[ 𝑓 ] as follows. [6]

V[E[ 𝑓 ]] = V
[

1
𝑀

𝑀∑︁
𝑖=1

𝑓 (𝑥𝑖)
]
=

1
𝑀2

𝑀∑︁
𝑖=1
V[ 𝑓 (𝑥𝑖)] = 𝑀 × 1

𝑀2V[ 𝑓 ] =
1
𝑀
V[ 𝑓 ] (3.7)

By taking the square root of Equation 3.7 we can determine the error in E[ 𝑓 ], which is our estimate
of our estimate of 𝜇 𝑓 .

𝑍 =

√︂
1
𝑀
V[ 𝑓 ] (3.8)

Upon examination of Equation 3.8, we see that the error inE[ 𝑓 ] decreases with respect to the number
of samples, 𝑀 . The error in E[ 𝑓 ] and therefore, the error in our estimate of 𝐼1 is proportional to
the number samples.

𝑍 ∝ 1
√
𝑀

(3.9)

Therefore, by increasing the number of samples we can reduce the error in our estimate of 𝐼1. [54,
6]

3.2 Monte Carlo Numerical in Higher Dimensions

In this section, a brief description of Monte Carlo integration in higher dimensions is provided.
Consider the following integral of a k-dimensional function, 𝑓 (x).

𝐼2 =

∫
Λ

𝑑x 𝑓 (x) (3.10)



12

Assume that we cannot solve 𝐼2 analytically and that we know the form of 𝑓 (x). In Equation 3.10,
x is a k-dimensional vector and Λ represents the bounds of integration. The volume of space in
which the integration is performed is given as follows.

𝑉 =

∫
Λ

𝑑x (3.11)

We define our sample spaces as follows.

Λ = {x1, x2, x3, .., x𝑁−1, x𝑁 } (3.12)

Next, we define the expectation value of 𝑓 (x), which is a finite estimate of the exact mean of 𝑓 (x).

E[ 𝑓 ] = ⟨ 𝑓 ⟩ = 1
𝑀

𝑀∑︁
𝑖=1

𝑓 (x𝑖) (3.13)

In Equation 3.13, x𝑖 are sampled from Λ and 𝑀 is the number of samples chosen. Now we can
define our approximation of 𝐼2 as given below in Equation 3.14.

𝐼2 ≈ 𝐺𝑀 = 𝑉 × E[ 𝑓 ] (3.14)

Similar to the one-dimensional example in the previous section, the variance of E[ 𝑓 ] can be
estimated as follows.

V[ 𝑓 ] = 1
𝑀

𝑀∑︁
𝑖=1

[ 𝑓 (x𝑖) − ⟨ 𝑓 ⟩]2 =
1
𝑀

𝑀∑︁
𝑖=1

𝑓 (x𝑖)2 − ⟨ 𝑓 ⟩2 (3.15)

Since we are assuming that the sampling process produces uncorrelated samples and that all possible
samples of x𝑖 have identical variance, the error in our estimate of E[ 𝑓 ] can be calculated as,

𝑍 =

√︂
1
𝑀
V[ 𝑓 ] (3.16)

therefore, we again observe the following relationship between the number of samples, 𝑀 , and the
error in our estimate of E[ 𝑓 ]. [54, 6]

𝑍 ∝ 1
√
𝑀

(3.17)

Although we are integrating over some k-dimensional space, where k can be arbitrarily large, the
error in our estimate of 𝐼2 still displays the same scaling with respect to the number of samples as we
observed for the one-dimensional example. [54] Although this particular property generally makes
Monte Carlo integration the best choice for doing numerical integration in higher dimensions, in
practice variance reduction techniques, such as stratified sampling, control variate, and common
random number sampling, are typically employed. Variance reduction techniques, when employed
properly, enable a greater reduction in error more efficiently than can be achieved using naive Monte
Carlo integration. The remainder of this chapter will be devoted to discussing various variance
reduction techniques.
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3.3 Stratified Sampling

Stratified sampling is a variance reduction technique that utilizes informed sampling. First, the
integration domain is divided into non-overlapping segments. Then sample points are strategically
allocated such that more sampling points are allocated to segments that display greater variance
compared to segments that display lower variance. When the number of sampling points in each
segment is directly proportional to the variance in each segment a significant reduction in the
error in the estimate of an integral of interest can be achieved. [54, 6, 98] For the purpose of
briefly introducing stratified sampling in the context of Monte Carlo numerical integration, we will
continue with our k-dimensional example from the previous section. Again, suppose we want to
solve the following k-dimensional integral and that we do not know the analytical solution, but we
do know the form of 𝑓 (x).

𝐼2 =

∫
Λ

𝑑x 𝑓 (x) (3.18)

The total volume of space in which the integration is performed is given as,

𝑉 =

∫
Λ

𝑑x (3.19)

and our total sample space is defined as follows.

Λ = {x1, x2, x3, .., x𝑁−1, x𝑁 } (3.20)

Instead of sampling directly from Λ, we will divide this total sample space into a set of 𝑁seg
non-overlapping regions with identical volumes such that,

Λspace =

𝑁seg∑︁
𝐽=1

Λ𝐽 (3.21)

and the volume of each region is related to the total volume over which the integration is performed
is given as follows.

𝑉space =

𝑁seg∑︁
𝐽=1

𝑉 𝐽seg = 𝑉 𝐽seg × 𝑁seg (3.22)

The expectation value of 𝑓 (x), in segment Λ𝐽 (denoted as 𝐽) of the sample space is given as
follows.

E[ 𝑓𝐽] = ⟨ 𝑓𝐽⟩ =
1
𝑀𝐽

𝑀𝐽∑︁
𝑖=1,𝑖∈𝐽

𝑓 (x𝑖) (3.23)

In order to determine the expectation value of 𝑓 (x) over the entire sample space, we can calculate
the average of the expectation values of 𝑓 (x) over all of the segments of the sample space.

E[ 𝑓 ] = ⟨ 𝑓 ⟩ = 1
𝑁seg

𝑁seg∑︁
𝐽=1
E[ 𝑓𝐽] (3.24)
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The variance in the expectation value of 𝑓 (x) in segment 𝐽 can be determined as follows.

V[ 𝑓𝐽] =
1
𝑀𝐽

𝑀𝐽∑︁
𝑖=1,𝑖∈𝐽

[ 𝑓 (x𝑖) − ⟨ 𝑓𝐽⟩]2 =
1
𝑀𝐽

𝑀𝐽∑︁
𝑖=1,𝑖∈𝐽

𝑓 (x𝑖)2 − ⟨ 𝑓𝐽⟩2 (3.25)

For this example, the sampling in any given segment is uncorrelated with respect to the sampling
in all other segments. Therefore, we do not need to consider the covariance between the random
variables sampled from different segments. As a result, the total variance in E[ 𝑓 ] is given as
follows. [6]

V[ 𝑓 ] = V
[

1
𝑁seg

𝑁seg∑︁
𝐽=1
E[ 𝑓𝐽]

]
=

1
𝑁2

seg

𝑁seg∑︁
𝐽=1
V

[
E[ 𝑓𝐽]

]
(3.26)

In Equation 3.26, it can be observed that the variance in our estimate of E[ 𝑓 ], and consequently the
error in our estimate, decreases as the number of segments into which the sample space is divided
increases. Additionally, we see that the total variance in E[ 𝑓 ] depends on the sum of the variances
for each segment. Therefore, in order to significantly reduce the error in our estimate of E[ 𝑓 ], the
variance in each segment should be minimized. A reasonable strategy for minimizing the variance
in each segment is to distribute the sampling points so that the number of sampling points for a
given segment is directly proportional to the variance observed for that given segment. [6]

𝑀𝐽 ∝ V[ 𝑓𝐽] (3.27)

Finally, an estimate of 𝐼2, using stratified sampling can be obtained as demonstrated below.

𝐼2 ≈ 𝐺𝑀 =
1
𝑁seg

𝑁seg∑︁
𝐽=1

𝑉 𝐽seg × E[ 𝑓𝐽] (3.28)

Compared to naive Monte Carlo, the use of stratified sampling enables significant variance reduction
due to the strategic allocation sampling points according to the variance observed in regions of the
total sample space. [6, 98] Another variance reduction technique, the control variate technique,
will be introduced in the next section.

3.4 Control Variate Technique with Common Random Number Sampling

In this section a brief introduction to the control variate technique is provided. First consider the
difference between two random variables, 𝑋 and 𝑌 .

𝑍 = 𝑋 − 𝑌 (3.29)

In order to achieve variance reduction, the control variate technique leverages the following property
of the variance of differences between the two random variables. [54, 6]

V[𝑍] = V[𝑋] + V[𝑌 ] − Cov[𝑋,𝑌 ] (3.30)
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In the above equation, V[𝑋] and V[𝑌 ] are the variances of the random variables, 𝑋 and 𝑌 ,
respectively. The covariance of 𝑋 and 𝑌 is denoted as Cov[𝑋,𝑌 ]. Upon examination of Equa-
tion 3.30, it can be observed that if the covariance of 𝑋 and 𝑌 is positive (Cov[𝑋,𝑌 ] > 0), then
V[𝑍] < V[𝑋] + V[𝑌 ]. The utility of this particular property will become apparent as the details
of the control variate technique is presented. [54, 6]

In order to illustrate the fundamentals of the control variate technique, we will again use the
previous example from section 2.2, of the integral of some k-dimensional function, 𝑓 (x), with
bounds defined by Λ. Suppose we are able to find some k-dimensional function, 𝑔(x), such that
the analytical solution of the integral of 𝑔(x) over Λ is known.

𝐼𝑔 =

∫
Λ

𝑑x𝑔(x) (3.31)

Using Equation 3.31, we can construct the following.

ℎ(x) = 𝑓 (x) − 𝑐𝑔(x) + 𝑐𝐼𝑔 (3.32)

In Equation 3.32, 𝑔(x) is our control variate function, 𝐼𝑔 is defined in Equation 3.31, and 𝑐 is
an optimization coefficient that can be chosen to minimize the variance in our estimate of the
expectation value of ℎ(x). We define our estimate in the expectation value of ℎ(x) as given below.

E[ℎ] = ⟨ℎ⟩ = 1
𝑀

𝑀∑︁
𝑖=1

(
𝑓 (x𝑖) − 𝑐𝑔(x𝑖)

)
+ 𝑐𝐼𝑔 (3.33)

Here x𝑖 are sampled from Λ, which is the sample space defined in Equation 3.12, and 𝑀 is the
number of samples chosen. It is imperative to note, that when sampling, only one x𝑖 is chosen each
time a sample is drawn from the sample space, and both 𝑓 (x) and 𝑔(x) are evaluated at that same
x𝑖, for any single term contributing to the summation in Equation 3.33. This sampling technique
is referred to as common random number sampling and the purpose of employing this sampling
technique, in conjunction with the control variate technique, will become clear by the end of this
section. [54] It is also relevant to highlight that 𝐼𝑔 is a known quantity and does not depend on the
random variable, x𝑖.

Using Equation 3.33, we can estimate the solution to the integral of 𝑓 (x) as follows.

𝐼2 =

∫
Λ

𝑑x 𝑓 (x) ≈
[
𝑉 × 1

𝑀

𝑀∑︁
𝑖=1

(
𝑓 (x𝑖) − 𝑐𝑔(x𝑖)

) ]
+ 𝑐𝐼𝑔 (3.34)

In the above equation,𝑉 is defined in Equation 3.11 and it is imperative to highlight that the integral
of the following difference term,

𝑑 (x) = 𝑓 (x) − 𝑐𝑔(x) (3.35)

is calculated numerically using Monte Carlo integration, while 𝑐𝐼𝑔 is known exactly. In order to
determine the error in our estimate of the integral of 𝑓 (x), we must calculate the variance in our
estimate of E[ℎ].

V[E[ℎ]] = 1
𝑀

(
V[ 𝑓 ] + 𝑐2V[𝑔] − 2𝑐Cov[ 𝑓 , 𝑔]

)
(3.36)
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In Equation 3.36, V[ 𝑓 ] and V[𝑔] are the variances in 𝑓 (x) and 𝑔(x), respectively. The covariance
of 𝑓 (x) and 𝑔(x) is denoted as Cov[ 𝑓 , 𝑔] and is defined as follows.

Cov[ 𝑓 , 𝑔] = E
[ (
𝑓 (x) − E[ 𝑓 (x)]

) (
𝑔(x) − E[𝑔(x)]

) ]
= E

[
𝑓 (x)𝑔(x)

]
− E

[
𝑓 (x)

]
E
[
𝑔(x)

]
(3.37)

The covariance provides a metric of the joint variability of 𝑓 (x) and 𝑔(x). For example, if the
values of 𝑓 (x) and 𝑔(x) are very similar for most of the x𝑖 sampled from Λ, then 𝑓 (x) and 𝑔(x)
are positively correlated and Cov[ 𝑓 , 𝑔] will be positive. Conversely, if the value of 𝑓 (x) is very
large at values of x𝑖 for which the value of 𝑔(x) is very small, then 𝑓 (x) and 𝑔(x) are negatively
correlated and Cov[ 𝑓 , 𝑔] will be negative. If 𝑓 (x) and 𝑔(x) are either strongly positively correlated
or strongly negatively correlated, significant variance reduction can be achieved. [98] If 𝑓 (x) and
𝑔(x) are negatively correlated the expression in Equation 3.32 can be modified as follows.

ℎ(x) = 𝑓 (x) + 𝑐𝑔(x) − 𝑐𝐼𝑔 (3.38)

It is worth pointing out, that with the exception of Equation 3.38, we have been assuming that
𝑓 (x) and 𝑔(x) are positively correlated. Now we will briefly discuss how the optimal coefficient,
𝑐, can be determined in order to minimize that variance in in our estimate of E[ℎ], as given in
Equation 3.36. The variance in ℎ(x) is defined as

V[ℎ] = V[ 𝑓 ] + 𝑐2V[𝑔] − 2𝑐Cov[ 𝑓 , 𝑔] (3.39)

and by taking the first derivative of Equation 3.39, with respect to 𝑐, we obtain the following.

𝑑

𝑑𝑐
V[ℎ] = 2𝑐V[𝑔] − 2Cov[ 𝑓 , 𝑔] (3.40)

By setting the expression in Equation 3.40 equal to zero and rearranging, we find the following
expression for the optimal choice of 𝑐.

𝑐 =
Cov[ 𝑓 , 𝑔]
V[𝑔] (3.41)

By substituting Equation 3.41 into Equation 3.39 and rearranging we obtain the following.

V[ℎ] = V[ 𝑓 ] −
(
Cov[ 𝑓 , 𝑔]

)2

V[𝑔] = V[ 𝑓 ]
(
1 −

(
Cov[ 𝑓 , 𝑔]

)2

V[ 𝑓 ]V[𝑔]

)
(3.42)

Upon examination of Equation 3.42, it can be observed that(
Cov[ 𝑓 , 𝑔]

)2

V[ 𝑓 ]V[𝑔] = 𝜌2
𝑓 ,𝑔 (3.43)

, where 𝜌2
𝑓 ,𝑔

is the Pearson correlation coefficient. The substitution of Equation 3.43 into Equa-
tion 3.42 yields the following.

V[ℎ] = V[ 𝑓 ]
(
1 − 𝜌2

𝑓 ,𝑔

)
(3.44)

It can be observed that if 𝜌2
𝑓 ,𝑔
> 0 the error in our estimate of the integral of 𝑓 (x), using the control

variate technique, will be less than the error in our estimate of this integral obtained from naive
Monte Carlo integration. [98]
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3.5 Ratio estimator with Common Random Number Sampling

Common random number (CRN) sampling, which is also known as correlated sampling, enhances
variance reduction by introducing correlation between random variables. to reduce sampling
error. [11] Here, we briefly provide a simple one-dimensional example of how CRN sampling can
be applied for ratio estimation, in order to highlight its utility for achieving variance reduction.
Consider the following ratio estimator, 𝑅, of two one-dimensional functions 𝑓 (𝑥) and 𝑔(𝑥).

𝑅 =
⟨ 𝑓 (𝑥)⟩
⟨𝑔(𝑥)⟩ =

∑
𝑖 𝑓 (𝑥𝑖)∑
𝑖 𝑔(𝑥𝑖)

(3.45)

Notice that although the quantities in the numerator and denominator are averages, the number By
adding and subtracting 1 one to the Equation 3.45, we obtain the following.

𝑅 = 1 +
[∑

𝑖 𝑓 (𝑥𝑖)∑
𝑖 𝑔(𝑥𝑖)

− 1
]

(3.46)

𝑅 = 1 +
∑
𝑖 [ 𝑓 (𝑥𝑖) − 𝑔(𝑥𝑖)]∑

𝑖 𝑔(𝑥𝑖)
(3.47)

By substituting of 𝑋 = 𝑓 (𝑥𝑖) and 𝑌 = 𝑔(𝑥𝑖) (Equation 3.29), we see that if 𝑓 (𝑥) and 𝑔(𝑥) are
positively correlated, then the variance in the ratio, 𝑅, can be reduced using CRN sampling.

𝑅 = 1 +
∑
𝑖 [ 𝑓 (𝑥CRN

𝑖
) − 𝑔(𝑥CRN

𝑖
)]∑

𝑖 𝑔(𝑥CRN
𝑖

)
for Cov[ 𝑓 , 𝑔] ≥ 0 (3.48)

Conversely, if 𝑓 (𝑥) and 𝑔(𝑥) are negatively correlated, we can achieve variance reduction simply
by implementing a sign switch.

𝑅 = −1 +
∑
𝑖 [ 𝑓 (𝑥CRN

𝑖
) + 𝑔(𝑥CRN

𝑖
)]∑

𝑖 𝑔(𝑥CRN
𝑖

)
for Cov[ 𝑓 , 𝑔] < 0 (3.49)

Common random number (CRN) sampling is a powerful sampling technique that can be used
in concert with other a variety of variance reduction techniques, such as the ratio-estimator and
control-variate techniques. More information on common random number sampling can be found
in Ref [11].
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Chapter 4

Introduction to Summation by Stochastic
Enumeration and Stratified Stochastic Enumeration

4.1 Stochastic Enumeration for Computing Sums

In this section, an introduction to summation by stochastic enumeration is provided. Consider the
sum below in Equation 4.1. Assume that the computation of 𝑓sum, requires the evaluation and
summation of an intractable number of terms ( 𝑓𝑖). Also, assume that the evaluation of each 𝑓𝑖 is
non-trivial, such as it is for the scenario in which the 𝑓𝑖 are multi-dimensional integrals that must
be computed numerically.

𝑓sum =

1010∑︁
𝑖=1

𝑓𝑖 ≈ 1010 × 1
𝑁sample

𝑁sample∑︁
𝑖∈Ω

𝑓𝑖 (4.1)

Note that on the left-hand side (LHS) of Equation 4.1, a sequential summation is performed.
This means that every single term ( 𝑓𝑖) is evaluated using equivalent computational effort and then
summed. For an extremely large number of 𝑓𝑖, computing 𝑓sum by way of sequential summation
becomes computationally intractable, especially if evaluating each 𝑓𝑖 is non-trivial and requires
significant computational effort, in and of itself. Here we use the integer index, 𝑖, to index the terms
composing the summation. Now, notice that on the right-hand side (RHS) of Equation 4.1, 𝑓sum
is computed using stochastic enumeration. Here a subset of the integer indices, 𝑖, which can be
thought of as a unique identifier for each term in the sum, is randomly sampled from the sample
space, Ω. The number of 𝑖 sampled from Ω is denoted as 𝑁sample. Note that Ω does contain all of
the indices or unique identifiers for all of the terms in the summation, but when using stochastic
enumeration not all of the terms are included in the sum. More formally, 𝑁sample < 𝑁max, where the
total number of terms composing 𝑓sum is denoted as 𝑁max. Notice that on the RHS of Equation 4.1
the result obtained from the stochastic sum is divided by 𝑁sample. Therefore, in order to estimate
𝑓sum, instead of just computing the average value of the 𝑓𝑖, we multiply by the total number of
terms that compose the complete sum, as given on the LHS of Equation 4.1. Clearly, this approach
of stochastic enumeration is extremely efficient, but it is also clear that the accuracy in the result
obtained for our estimate of 𝑓sum may not be up to par.
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4.2 Stratified Stochastic Enumeration for Computing Sums

In order to obtain a more accurate estimate of 𝑓sum, we can combine stochastic enumeration with
stratified sampling. We refer to this combination technique as stratified stochastic enumeration
(SSE). In order to introduce stratified sampling, we first divide our sample space, Ω, into 𝑀

non-overlapping subspaces or "segments".

Ω 𝑓𝑖 ,𝑀 ∩Ω 𝑓𝑖 ,𝑀
′
= ∅ for 𝑀 ≠ 𝑀′ (4.2)

In Equation 4.2, we formally express the condition that the segments, into which the sample space
is divided, must not overlap. Once Ω is divided into 𝑀 non-overlapping segments, we can perform
sampling within each segment, such that the sampling within segment𝑀 is completely uncorrelated
from the sampling process within all other segments. Next, the average value of 𝑓𝑖 in segment 𝑀 is
determined and then subsequently multiplied by the maximum number of terms that could possibly
be sampled from segment 𝑀 . Performing this process for each segment allows us to obtain an
estimate of the contribution of each segment to the overall sum ( 𝑓sum). These contributions from
each segment are then summed in order to obtain an estimate of 𝑓sum. This process is formally
defined in Equation 4.3.

𝑓sum =

1010∑︁
𝑖=1

𝑓𝑖 ≈
𝑁seg∑︁
𝑀=1

𝑁𝑀
max

𝑁𝑀
sample

𝑁𝑀
sample∑︁
𝑖∈Ω𝑀

𝑓𝑖𝑀 (4.3)

In Equation 4.3, 𝑁𝑀
sample indicates the number of terms sampled from segment 𝑀 and 𝑁𝑀

max is the
maximum number of terms that could possibly be sampled from segment 𝑀 . As hinted at earlier,
the incorporation of stratified sampling can be used to improve upon the accuracy achieved when
using only stochastic enumeration to estimate a sum. The stratification of the sample space enables
us to distribute our sampling effort in an efficient and informed manner. For example, if we notice
that the variance and average value of 𝑓𝑖𝑀 is greater in segment 𝑀 = 2, relative to all of the other
segments, then more sampling effort can be allocated to segment 𝑀 = 2 compared to the sampling
effort used for sampling within the rest of the segments. In essence, the number of samples drawn
from segment 𝑀 , is proportional to the variance and average value of 𝑓𝑖𝑀 in segment 𝑀 .

𝑁𝑀
sample ∝ V[ 𝑓𝑖𝑀 ] (4.4)

𝑁𝑀
sample ∝

1
𝑁𝑀

sample

𝑁𝑀
sample∑︁
𝑖∈Ω𝑀

𝑓𝑖𝑀 (4.5)

Due to the incorporation of stratified sampling, not only is this approach very efficient, but it also
enables reduction of the error in our estimate of 𝑓sum. Greater detail about stratified sampling, and
its utility as a variance reduction technique, can be found section 3.3 of the previous chapter.
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Chapter 5

Stratified Stochastic Enumeration of Molecular
Orbitals method: Applied for Investigation of
Ionization Potential in Quantum Dots

5.1 Scope of Chapter Content

This chapter presents the theoretical details of the Stratified Stochastic Enumeration of Molecu-
lar Orbitals (SSE-MO) method, in the context of its application for constructing the frequency-
dependent self-energy operator. Here, we demonstrate that the SSE-MO method can be applied
for the purpose of efficiently and accurately calculating ionization potentials, by constructing the
diagonal second-order frequency-dependent self-energy operator and then subsequently, solving
the associated Dyson equation. The SSE-MO method was used to calculate the ionization potential,
for ionization from the highest-occupied molecular orbital, for PbS and CdS clusters and quantum
dots using both single-shot and iterative procedures for solving the Dyson equation. Furthermore,
the frequency-dependent spectral functions were constructed for the PbS and CdS systems. The
ionization potentials of quantum dots provide critical information about the energies of occupied
states, which can then be used to quantify the electron-removal characteristics of quantum dots.
In particular, the energy of the highest-occupied molecular orbital (HOMO) is used to understand
electron-transfer processes by investigating the energy-level alignment between quantum dots and
electron-accepting ligands. [114]

The accurate first-principles calculation of ionization potentials continues to be challenging due
to the computational cost associated with the construction of the frequency-dependent self-energy
operator and the numerical solution of the associated Dyson equation. The computational cost
becomes prohibitive as the system size increases because of the large number of 2particle-1hole
(2p1h) and 1particle-2hole (1p2h) terms that must be computed. The SSE-MO method is a real-
space method and the central strategy of this method is to use stochastically enumerated sampling
of molecular orbitals and molecular-orbital indices for the construction of the 2p1h and 1p2h terms
of the self-energy operator. This is achieved by first creating a composite MO-index Cartesian
coordinate space, followed by transformation of the frequency-dependent self-energy operator to
this composite space. The evaluation of both the real and imaginary components of the self-energy
operator was performed using a stratified Monte Carlo technique. [114]
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5.2 Introduction

Ionization potential (IP) 𝜔 (or ionization energy) is defined as the energy needed to remove an
electron from a chemical system.

M −→ M+ + e− (5.1)
𝜔IP = 𝐸N−1 − 𝐸N (5.2)

The ejection of the electron can be facilitated using incident photons, scattering by high-energy
electrons, or applying a strong electric field. As one of the fundamental properties of a material,
IP has relevance to the areas of photovoltaics, mass spectroscopy, photoelectron spectroscopy,
electrochemistry, photocatalysis, and light-induced electron-transfer processes. The IP of atoms,
molecules, and various chemical compounds is a quantity of interest when performing X-ray spec-
troscopy. Recently, it has been found that small gas-phase polyatomic molecules with a heavy atom,
such as iodomethane, bombarded with hard X-ray pulses display surprisingly enhanced ionization
relative to an individual heavy atom with the same absorption cross-section.[100] Following the
excitation of an electron from an inner orbital of one atom, another electron from a higher energy
orbital of the same atom can occupy this inner orbital. Instead of undergoing de-excitation, the
newly excited electron can transfer energy via photon emission by ionizing an electron from an
outer orbital of a neighboring atom. This process is called interatomic Coulombic decay (ICD).[49,
3] The IP of both inner and outer orbitals of molecules, dimers, and clusters influences which
de-excitation mechanism occurs in a highly excited neutral or a highly excited ionized state of these
types of systems. Knowledge of the IP of these systems’ inner and outer orbitals can assist in the
prediction of which de-excitation mechanism is likely to occur in a system of interest.[72, 102,
51, 4, 79, 18] High-precision IP in atoms and molecules provides important information about
electron-electron correlation and serves as a benchmark for development and testing of theories.
Ionization potential also is a quantity of interest in biological systems. For example, ionizing
radiation causes permanent heritable DNA damage, [120] and the IP of nucleic acid tautomers are
quantities of interest, due to the role of these molecules in cancer. [112]

In quantum dots (QDs) and nanomaterials, knowledge of IP from the highest-occupied molec-
ular orbital (HOMO) serves as an important metric for quantifying electron-transfer rates.[19, 57,
117, 130, 24, 103, 56] Photo-ejection of electrons by X-ray and UV radiations has been used to
study valence-band states in QDs [89]. The combined information from X-ray and fluorescence
spectroscopy has been used to calculate the exciton binding energies in CdSe QDs. Cyclic voltame-
try has also been used to calculate HOMO energies in QDs and IPs.[26] Transient photo-emission
in two-photon experiments has provided information on the energy levels of unoccupied energy
levels.[32] Knowledge of the relative position of the HOMO and lowest unoccupied molecular or-
bital (LUMO) levels of a QD with respect to the surface ligands is an important factor in extraction
of a hot carrier from the QD. [89]

In molecular quantum chemistry, the simplest approximation of IP (denoted as 𝜔0
𝑖
) is given by

the Koopmans’ approximation, where the exact IP is approximated as the negative of the orbital
energies.

𝜔0
𝑝 = −𝜖𝑝 = ⟨Φ𝑁

HF |𝑝
†𝐻𝑝 |Φ𝑁

HF⟩ − ⟨Φ𝑁
HF |𝐻 |Φ𝑁

HF⟩ for 𝜒𝑝 ∈ Φ𝑁
HF (5.3)

Koopmans’ treatment utilizes the Hartree-Fock (HF) approximation to obtain a single N-electron
Slater determinant from which an electron from one of the occupied states is annihilated as
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shown in Equation 5.3. Although Koopmans’ theorem is limited by the use of single Slater
determinants and does not account for orbital relaxation and electron-electron correlation effects, it
still provides an acceptable first approximation for the IP of a system of interest.[116] Going beyond
Koopmans’ approximation by including electron-electron correlation effect can be achieved in a
variety of different ways such as with electron-propagator methods,[23, 27, 30][110, 43, 42,
38, 20, 111] algebraic diagrammatic construction (ADC),[104, 17] equation-of-motion coupled-
cluster (IP-EOM-CCSD),[83, 82, 95, 55, 45, 91] many-body perturbation theory (MBPT) [86, 46],
GW method,[39] correlated-orbital theory (COT)[5], and time-dependent density functional theory
(TDDFT).[70, 15, 101] The IP of the HOMO energy-level has a special significance in DFT because
of Janak’s theorem and plays a prominent role in development and testing of DFT functionals. [33]
Without loss of generality, the many-body correction to the IP can always be written as,

𝜔𝑝 = 𝜔
0
𝑝 + Δ𝜔𝑝 (5.4)

where Δ𝜔𝑝 accounts for all of the correction terms missing from the Koopmans’ approximation;
post-HF methods mentioned earlier offer different approximations and formulations for calculating
Δ𝜔𝑝. However, efficient first-principles calculation of Δ𝜔𝑝 for large chemical systems continues to
be challenging and is an active field of research. Using the electron-propagator method, Ortiz and
coworkers developed a series of approximations that offer an order-by-order treatment of electron
correlation to the many-body correction for IPs. [23, 59, 87, 27, 30] Open-shell systems possess
additional complexities compared to their closed-shell counterparts, and the spin-flip EOM-IP
approach has been used to treat open-shell systems. [93] In the GW formulation, the projective
eigendecomposition of the dielectric screening (PDEP) algorithm has been used for calculating
the quasiparticle gap of QDs.[39] In recent works, methods using stochastic techniques have
been demonstrated to achieve the low-scaling needed for applications to large chemical systems.
Specifically, the use of stochastic orbitals in the stochastic Green’s function method developed by R.
Baer can be used for calculation of IPs.[119] A different strategy of combining Laplace-transformed
expression of the self-energy operator with real-space Monte Carlo integration scheme developed
by Hirata and co-workers has been used for calculation of IPs at the second-order MP2 level.
[124] The approach was recently extended for ground-state MP4 level. [31] In a related work by
Li et al., the Laplace-transformed MP2 has been combined with the density-of-states approach to
reduce the overall computational cost of the MP2 calculation. [66] This approach demonstrated the
effectiveness of the intrinsic degeneracies present in chemical systems to reduce the overall cost of
MP2 calculations.

In this work, we present the stratified stochastic enumeration of molecular orbitals (SSE-MO)
method and its application for the efficient computation of the IP through solution of the Dyson
equation. The SSE-MO method was originally inspired by the 2013 paper, “Stochastic Enumeration
Method for Counting NP-Hard Problems" by Rubinstein. [99] The original stochastic enumeration
by Rubinstein was based on the importance sampling scheme. In the field of computer science,
the stochastic enumeration technique has been applied to traversing deep tree structures and im-
plementing backtracking algorithms. [99] To the best of our knowledge the paper, Investigation
of Ionization Potential in Quantum Dots Using the Stratified Stochastic Enumeration of Molecular
Orbitals Method, provides the first presentation in literature, of the use of stochastic enumeration
combined with stratified sampling. For the SSE-MO method, we have combined stochastic enu-
meration with stratified sampling to perform the necessary summations over a direct-product space
of molecular orbital indices and 6D Cartesian coordinate space. The reduced computational cost of
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the SSE-MO method allowed us to investigate the full frequency-dependent pole structure of the 1-
particle Green’s function by an iterative solution of the Dyson equation. In this work, the SSE-MO
method was used to investigate IPs of PbS and CdS QDs. Furthermore, the frequency-dependent
spectral functions were constructed for the PbS and CdS systems. [114] The motivation for the
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Figure 5.1: The percent contribution of terms 𝐴2p1h
𝑖

and 𝐴1p2h
𝑖

(defined in Equation 5.5) to the total
self-energy as a function of hole index (𝑖) for Pb4S4.

SSE-MO method comes from the fact that not all terms contribute equally to the overall self-energy
operator. A similar observation has also been made for the density-of-state MP2 method. [66] For
example, for the Pb4S4 system, the contribution for each term as a function of the hole-index, (𝑖),
is presented in Figure 5.1. Without loss of generality, the self-energy operator can be written as the
sum of 2-particle 1-hole (2p1h) and 1-particle 2-hole (1p2h) terms as shown in Equation 5.5.

Σ(2) (𝜔) =
𝑁occ∑︁
𝑖=1

𝐴
2p1h
𝑖

(𝜔) +
𝑁occ∑︁
𝑖=1

𝐴
1p2h
𝑖

(𝜔) (5.5)

It is seen that some terms contribute more than other terms. The SSE-MO method aims to
distribute the computation effort used to calculate of the overall self-energy operator in proportion
to the contribution of each of the terms and their associated errors. [114]
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5.3 Theory

Stratified Stochastic Enumerated Tensor Contraction

As an introduction to the application of SSE for the calculation of the self-energy operator, we
present the SSE approach for performing a general N-index tensor contraction. We start by
considering the following general tensor contraction 𝑆 = Tr{ABCD}.

𝑆 =

𝑁∑︁
𝑖1=1

𝑁∑︁
𝑖2=1

· · ·
𝑁∑︁

𝑖12=1
𝐴𝑖1𝑖2𝑖3𝐵𝑖4𝑖5𝑖6𝐶𝑖7𝑖8𝑖9𝐷𝑖10𝑖11𝑖12𝐺𝑖1𝑖2...𝑖12 (5.6)

One situation for which this type of tensor contraction is encountered is when the integration of a
4-point kernel in real space ⟨𝐴(r1)𝐵(r2)𝐶 (r3)𝐷 (r4)𝐺 (r1, r2, r3, r4)⟩ on a spatial grid with 𝑁 point
per dimension is being performed. This tensor contraction has 𝑁12 terms and a simple sequential
evaluation will require 𝑁12 terms. For the stratified stochastic enumeration approach, we will first
define a composite index 𝐾 such that 𝐾 = 1, . . . , 𝑁12. The composite index, K, uniquely maps
each ordered set of indices (𝑖1, 𝑖2, 𝑖3, . . . , 𝑖12) to an integer in 1, . . . , 𝑁12.

Λ𝐾 ≡ 𝐴𝑖1𝑖2𝑖3𝐵𝑖4𝑖5𝑖6𝐶𝑖7𝑖8𝑖9𝐷𝑖10𝑖11𝑖12𝐺𝑖1𝑖2...𝑖12 (5.7)

Using the composite index 𝐾 , we can define the summation as displayed in the following equation.

𝑆 =

𝑁12∑︁
𝐾=1

Λ𝐾 (5.8)

Next, we divide the entire range of 𝐾 into 𝑁 non-overlapping segments 𝑁seg = 𝑁 . The number
of terms in each segment is 𝑁𝑇 = 𝑁11. The summation over 𝐾 can be written in terms of the
segmented summation.

𝑆 = 𝑆1 + 𝑆2 + 𝑆3 + · · · + 𝑆𝑁 (5.9)

𝑆1 =

𝑁𝑇∑︁
𝐾=1

Λ𝐾 (5.10)

𝑆2 =

𝑁𝑇∑︁
𝐾=1

Λ𝐾+𝑁𝑇
(5.11)

𝑆3 =

𝑁𝑇∑︁
𝐾=1

Λ𝐾+(2𝑁𝑇 ) (5.12)

... =
... (5.13)

𝑆𝑁 =

𝑁𝑇∑︁
𝐾=1

Λ𝐾+((𝑁−1)𝑁𝑇 ) (5.14)
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The partial averages are defined as follows.

�̄�1 =
𝑆1

𝑁𝑇
, �̄�2 =

𝑆2

𝑁𝑇
, . . . , �̄�𝑁 =

𝑆𝑁

𝑁𝑇
(5.15)

The total sum can be written as displayed in the equation below.

𝑆 = 𝑁𝑇 [�̄�1 + �̄�2 + · · · + �̄�𝑁 ] (5.16)

In SSE, the sequential segment average, �̄� , is approximated using the stochastic average,

�̄�SSE
1 (𝑀1) =

1
𝑀1

𝑀1∑︁
𝐾 ∼

swr
[1,...,𝑁𝑇 ]

Λ𝐾 (5.17)

�̄�SSE
2 (𝑀2) =

1
𝑀2

𝑀2∑︁
𝐾 ∼

swr
[1,...,𝑁𝑇 ]

Λ𝐾+(2𝑁𝑇 ) (5.18)

... =
... (5.19)

�̄�SSE
𝑁 (𝑀𝑁 ) =

1
𝑀𝑁

𝑀𝑁∑︁
𝐾 ∼

swr
[1,...,𝑁𝑇 ]

Λ𝐾+((𝑁−1)𝑁𝑇 ) (5.20)

where the subscript in 𝐾 ∼
swr

[1, . . . , 𝑁𝑇 ] denotes “sampling-without-replacement". For any seg-
ment “𝑝", the SSE average approaches the sequential average as 𝑀𝑝 → 𝑁𝑇 .

lim
𝑀𝑝→𝑁𝑇

�̄�SSE
𝑝 (𝑀𝑝) = �̄�𝑝 (5.21)

The SSE estimate of the total summation is presented in the equation below.

𝑆SSE = 𝑁𝑇

𝑁∑︁
𝑝=1

�̄�SSE
𝑝 (𝑀𝑝) (5.22)

The allocation of the sampling points for each segment is proportional to the variance in the SSE
segment average �̄�SSE

𝑝 .

𝑀𝑝 ∝ �̄�SSE
𝑝 (5.23)

∝ V[�̄�SSE
𝑝 ] (5.24)

The SSE approach is based on stratified sampling, which has been used extensively for reducing
sampling error in Monte Carlo calculations[94, 64, 65] and a brief description stratified sampling
is presented in the supporting information. The SSE method is not restricted to square tensors and
can be applied to rectangular tensors as well. We recommend a row-major composite indexing
scheme. For an index vector (𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝐷), where 𝐷 is the dimension of the tensor and each
index (𝑖𝑑 , 𝑑 = 1, 𝐷) is in the range (𝑖𝑑 = 1, . . . , 𝑁𝑑), the row-major composite index 𝐾 can be
calculated using the following expression.

𝐾 = 1 +
𝐷∑︁
𝑑=1

©«
𝑑−1∏
𝑗=1

𝑁 𝑗
ª®¬ (𝑖𝑑 − 1)

 (5.25)
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Second-order Dyson Equation

In this work we are interested in calculating the IPs of chemical systems. The component of the
1-particle Green’s function, G(𝜔), that contains information about the IPs can be expressed in the
Lehman representation as follows. [37]

𝐺 𝑝𝑞 (𝜔) = lim
𝜂→0+

⟨Ψ𝑁
0 |𝑎†𝑞

1
𝜔 − (𝐸𝑁0 − 𝐻) − 𝑖𝜂

𝑎𝑝 |Ψ𝑁
0 ⟩ (5.26)

where, 𝐺 𝑝𝑞 is the matrix element of the matrix representation of the operator in canonical Hartree-
Fock (HF) orbital basis {𝜒𝑝},

𝑓 |𝑝⟩ = 𝜖𝑝 |𝑝⟩, (5.27)

{𝑎†𝑞, 𝑎𝑝, } are creation and annihilation operators defined with respect to the HF orbitals, {𝐸𝑁0 ,Ψ
𝑁
0 }

are the exact ground state energies and wave function, and 𝐻 is the electronic Hamiltonian. By
inserting a complete set of projectors, 1 =

∑
𝑚 |Ψ𝑁−1

𝑚 ⟩⟨Ψ𝑁−1
𝑚 |, we obtain the following equation.

𝐺 𝑝𝑞 (𝜔) = lim
𝜂→0+

∑︁
𝑚

𝐴∗𝑚𝑞𝐴𝑚𝑝

𝜔 − (𝐸𝑁0 − 𝐸𝑁−1
𝑚 ) − 𝑖𝜂

(5.28)

As shown in Equation 5.28, the Green’s function’s poles correspond to the vertical IPs of a many-
electron system.

𝜔pole = 𝐸IP (5.29)

The quantity |𝐴𝑚𝑝 |2 is the residue of the pole and is known as the pole strength.

𝐴𝑚𝑝 = ⟨Ψ𝑁−1
𝑚 |𝑎𝑝 |Ψ𝑁

0 ⟩ (5.30)

The limit 𝜂 → 0+ in Equation 5.28 is traditionally associated with this expression because of
its use in performing the Fourier transform from the time-domain to frequency-domain and will
be suppressed in the rest of the derivation. Analogous to the many-body Green’s function, the
uncorrelated HF Green’s function G0 is given by the following expression. [37]

𝐺0
𝑝𝑞 (𝜔) = ⟨Φ𝑁

0 |𝑎
†
𝑞

1
𝜔 − (𝐸𝑁HF − 𝐻0)

𝑎𝑝 |Φ𝑁
0 ⟩ (5.31)

which immediately simplifies to following diagonal representation. [37]

𝐺0
𝑖 𝑗 (𝜔) =

𝛿𝑖 𝑗

𝜔 − 𝜖𝑖
(5.32)

where 𝑖, 𝑗 = 1, 𝑁occ are indices for occupied orbitals and 𝜖𝑖 is the orbital energy. The above equation
recovers the Koopmans’ approximation to the IPs, which is defined as 𝐸Koopmans

IP = −𝜖𝑖.
In the frequency representation, the relationship between the correlated 1-particle Green’s

function, 𝐺, and the uncorrelated Green’s function 𝐺0 is given by the well-known Dyson equation.
[28]

G(𝜔) = G0(𝜔) + G0(𝜔)𝚺(𝜔)G(𝜔) (5.33)
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Here, Σ is the self-energy operator. The relationship between the correlated and uncorrelated
Green’s function can be derived using various techniques including time-dependent perturbation
theory, time-independent perturbation theory, coupled-cluster theory, the configuration interaction
method, and electron-propagator methods. [37, 110, 83, 84, 16] The above operator equation can
also be presented in various representations such as plane-waves, real-space grids, and canonical
HF orbitals. [92, 39, 62] In this work, we use canonical HF orbitals to represent the Dyson
equation.[28] To facilitate the calculation of the poles, it is useful to express Equation 5.33 in terms
of inverse operators by multiplying 𝐺−1(𝜔) from left and 𝐺−1

0 (𝜔) from the right.

G−1(𝜔) = G−1
0 (𝜔) − 𝚺(𝜔) (5.34)

Once G(𝜔) is determined for an appropriate set of values of 𝜔, the poles can be observed by
constructing a plot of G(𝜔) versus 𝜔. Approximating the total self-energy operator by diagonal
representation,

𝚺(𝜔) ≈ diag[𝚺(𝜔)] (5.35)

allows for analytical inversion of the Dyson equation into the following simplified expression,[28]

𝜔0
𝑖 + Σ𝑖𝑖 (𝜔) = 𝜔 (5.36)

where𝜔0
𝑖

is the orbital energy of occupied orbital (𝑖) and𝜔 = −𝐸IP. We have used the second-order
approximation to the self-energy operators, which in the canonical MO basis is defined as,[28]

Σ𝑖𝑖 ≈ Σ
(2)
𝑖𝑖

(𝜔) = 1
2

∑︁
𝑗𝑎𝑏

⟨𝑖 𝑗 |𝑟−1
12 |𝑎𝑏⟩𝐴⟨𝑎𝑏 |𝑟

−1
12 |𝑖 𝑗⟩𝐴

𝜔 + 𝜖 𝑗 − 𝜖𝑎 − 𝜖𝑏
(5.37)

+ 1
2

∑︁
𝑗𝑎𝑘

⟨𝑖𝑎 |𝑟−1
12 | 𝑗 𝑘⟩𝐴⟨ 𝑗 𝑘 |𝑟

−1
12 |𝑖𝑎⟩𝐴

𝜔 + 𝜖𝑎 − 𝜖 𝑗 − 𝜖𝑘

where i, j, and k indicate occupied spin orbitals and a and b indicate virtual spin orbitals.
Using the restricted Hartree-Fock (RHF) formulation, the correction to the orbital energies

using the second-order self-energy expression can be written as,

𝜖
(2)
𝑝 = 𝜖𝑝 + Σ

(𝐶)
𝑝 (𝜔) + Σ

(𝐷)
𝑝 (𝜔) + Σ

(𝐸)
𝑝 (𝜔) + Σ

(𝐹)
𝑝 (𝜔) (5.38)

where the RHF expressions for the self-energy terms are defined as,

Σ
(𝐶)
𝑝 (𝜔) = 2

∑︁
𝑖𝑎𝑏

𝑉𝑖𝑎𝑝𝑏𝑉𝑖𝑎𝑝𝑏

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
(5.39)

Σ
(𝐷)
𝑝 (𝜔) = −

∑︁
𝑖𝑎𝑏

𝑉𝑖𝑎𝑝𝑏𝑉𝑖𝑏𝑝𝑎

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
(5.40)

Σ
(𝐸)
𝑝 (𝜔) = −2

∑︁
𝑖 𝑗𝑎

𝑉𝑖𝑝 𝑗𝑎𝑉𝑖𝑝 𝑗𝑎

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
(5.41)
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Σ
(𝐹)
𝑝 (𝜔) =

∑︁
𝑖 𝑗𝑎

𝑉𝑖𝑝 𝑗𝑎𝑉𝑖𝑎 𝑗 𝑝

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
(5.42)

Here, we have used the following compact notation for the energy denominators,

𝐸
2p1h
𝑖𝑎𝑏

(𝜔) = 𝜔 + 𝜖𝑖 − 𝜖𝑎 − 𝜖𝑏 (5.43)

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔) = 𝜖𝑖 + 𝜖 𝑗 − 𝜔 − 𝜖𝑎 (5.44)

and the 𝑟−1
12 matrix elements are defined using the chemist’s notation for the indices.

𝑉𝑝𝑞𝑠𝑡 =

∫ +∞

−∞
𝑑r1𝑑r2𝜓𝑝 (r1)𝜓𝑞 (r1)𝑟−1

12𝜓𝑠 (r2)𝜓𝑡 (r2) (5.45)

Next, we will develop the SSE-MO approach for evaluating the self-energy operator.

Stratified Stochastic Enumeration of Self-energy

We begin by defining a set S2p1h of ordered integers (𝑖, 𝑎, 𝑏),

S2p1h = {(𝑖, 𝑎, 𝑏)} 𝑖 = 1, . . . , 𝑁occ; (𝑎, 𝑏) = 1, . . . , 𝑁vir (5.46)

which contains all the possible combinations of indices that occur in 2p1h self-energy expression.
We will use the composite index 𝐾 = (𝑖, 𝑎, 𝑏) to enumerate this ordered set of integers. The size
of set S2p1h is given as,

𝐾
2p1h
max = |S2p1h | = 𝑁occ × 𝑁2

vir (5.47)

Using this notation, we can define a general form of the 2p1h self-energy term as follows.

𝑋
2p1h
𝑝 =

𝐾
2p1h
max∑︁
𝐾=1

𝐴𝑝𝐾𝐵𝑝𝐾

𝐸
2p1h
𝐾

(5.48)

where,

𝐴𝑝𝐾 ≡ 𝑉𝑖𝑎𝑝𝑏 (5.49)

𝐵𝑝𝐾 ≡ 𝑉𝑖𝑎𝑝𝑏 for Σ
(𝐶)
𝑝 (5.50)

𝐵𝑝𝐾 ≡ 𝑉𝑖𝑏𝑝𝑎 for Σ
(𝐷)
𝑝 (5.51)

In Equation 5.48 the summation is performed sequentially for all terms. In the stochastic enumer-
ation (SE) approach the sequential sum is replaced by a stochastic summation. We define a new
operator Σ̃ which is defined as follows,

�̃�
2p1h
𝑝 = 𝐾

2p1h
max × 1

𝑁MO
sample

𝑁MO
sample∑︁

𝐾 ∼
swr

S2p1h

𝐴𝑝𝐾𝐵𝑝𝐾

𝐸
2p1h
𝐾

(5.52)
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and where 𝐾 is sampled from the set S2p1h. This sampling is performed without replacement
and the notation 𝐾 ∼

swr
S2p1h is used to emphasize this procedure (sample-without-replacement).

The 𝑁MO
sample is sample size and bounded from above by 𝐾2p1h

max . In the limit when the sample size

approaches 𝐾2p1h
max the following limiting condition is satisfied.

𝑋
2p1h
𝑝 (𝜔) = lim

𝑁MO
sample−→𝐾

2p1h
max

�̃�
2p1h
𝑝 (𝜔) (5.53)

Simple stochastic enumeration will involve performing the sampling over multiple runs and aver-
aging the final results.

�̃�
2p1h,avg
𝑝 =

1
𝑁runs

[�̃�2p1h,1
𝑝 + �̃�2p1h,2

𝑝 + · · · + �̃�2p1h,Nruns
𝑝 ] (5.54)

The variance is defined as follows.

V[�̃�2p1h
𝑝 ] =

𝑁runs∑︁
𝐿=1

[�̃�2p1h,avg
𝑝 − �̃�2p1h,L

𝑝 ]2 (5.55)

We expect the variance to disappear when 𝑁MO
sample approaches 𝐾2p1h

max ,

lim
𝑁MO

sample−→𝐾
2p1h
max

V[�̃�2p1h
𝑝 ] = 0 (5.56)

To reduce the variance of the overall calculations, we introduce stratification in the sampling
procedure. This is achieved in two steps. First, the set S2p1h is decomposed into a union of
non-intersecting subsets,

S2p1h = S2p1h,1 ∪ S2p1h,2 ∪ S2p1h,3 · · · ∪ S2p1h,NMO
seg (5.57)

=

𝑁MO
seg⋃

𝑀=1
S2p1h,M (5.58)

where the subsets are non-overlapping.

S2p1h,M ∩ S2p1h,M′
= ∅ for 𝑀 ≠ 𝑀′ (5.59)

The number of elements in subset M is denoted as 𝐾2p1h,M
max .

𝐾
2p1h,M
max = |S2p1h,M | (5.60)

In the second step, �̃�2𝑝1ℎ is calculated using summation over all the subsets.

𝑋
2p1h
𝑝 =

𝑁MO
seg∑︁

𝑀=1

𝐾
2p1h,M
max∑︁
𝐾=1

𝐴𝑝𝐾𝐵𝑝𝐾

𝐸
2p1h
𝐾

(5.61)
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The stratified stochastic enumeration of the MO indices (SSE-MO), which uses stochastic enumer-
ation for segment sampling, is described by the following equation.

�̃�
2p1h
𝑝 (𝜔) =

𝑁MO
seg∑︁

𝑀=1

𝐾
2p1h,M
max

𝑁
MO,M
sample

𝑁
MO,M
sample∑︁

𝐾 ∼
swr

S2p1h,M

𝐴𝑝𝐾𝐵𝑝𝐾

𝐸
2p1h
𝐾

(𝜔)
(5.62)

To write the expressions in compact notation, we introduce the following for stochastic summation.

∑︁
𝐾

≡
𝑁MO

seg∑︁
𝑀=1

𝐾
2p1h,M
max

𝑁
MO,M
sample

𝑁
MO,M
sample∑︁

𝐾 ∼
swr

S2p1h,M

(5.63)

Using this notation, we can write the following expression.

�̃�
2p1h
𝑝 (𝜔) =

∑︁
𝐾

𝐴𝑝𝐾𝐵𝑝𝐾

𝐸
2p1h
𝐾

(𝜔)
(5.64)

A similar treatment is performed for the 1p2h terms. The combined result for the total self-energy
operator is given as,

Σ𝑝 (𝜔) = 2
∑︁
𝑖𝑎𝑏

𝑉
𝑖𝑎𝑝𝑏

𝑉
𝑖𝑎𝑝𝑏

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
−

∑︁
𝑖𝑎𝑏

𝑉
𝑖𝑎𝑝𝑏

𝑉
𝑖𝑏𝑝𝑎

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
− 2

∑︁
𝑖 𝑗𝑎

𝑉
𝑖𝑝 𝑗𝑎

𝑉
𝑖𝑝 𝑗𝑎

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
+

∑︁
𝑖 𝑗𝑎

𝑉
𝑖𝑝 𝑗𝑎

𝑉
𝑖𝑎 𝑗 𝑝

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
(5.65)

Calculation of Optimal Sampling Points for MO-space Stratified Sampling

To calculate optimal sampling points, we define the segment average as,

𝑌
2p1h,M
𝑝 =

1
𝑁

MO,M
sample

𝑁
MO,M
sample∑︁

𝐾 ∼
swr

S2p1h,M

𝐴𝑝𝐾𝐵𝑝𝐾

𝐸
2p1h
𝐾

(𝜔)
(5.66)

which allows us to write the following expression.

�̃�
2p1h
𝑝 =

𝑁MO
seg∑︁

𝑀=1
𝑘

2p1h,M
max 𝑌

2p1h,M
𝑝 (5.67)

It is important to note that 𝑌2p1h,M
𝑝 is a stochastic variable for which the average value, 𝑌2p1h,M,avg

𝑝 ,
can be obtained by sampling over multiple runs.

𝑌
2p1h,M,avg
𝑝 =

1
𝑁runs

𝑁runs∑︁
𝐿=1

𝑌
2p1h,M,L
𝑝 (5.68)

The variance is defined as,

V[𝑌2p1h,M
𝑝 ] = 1

𝑁runs

𝑁runs∑︁
𝐿=1

[𝑌2p1h,M,avg
𝑝 − 𝑌2p1h,M,L

𝑝 ]2 (5.69)
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The variance of 𝑌 goes to zero as 𝑁MO,M
sample approaches 𝐾2p1h,M

max ,

lim
𝑁

MO,M
sample−→𝐾

2p1h,M
max

V[𝑌2p1h,M
𝑝 ] = 0 (5.70)

To distribute the sampling points optimally, we define the following weight factor,

𝑤var
𝑀 =

V[𝑌2p1h,M
𝑝 ]∑𝑁MO

seg
𝑀 ′ V[𝑌2p1h,M′

𝑝 ]
(5.71)

In addition to that we also define another weight factor that depends on the magnitude of the terms,

𝑤
mag
𝑀

=
|E[𝑌2p1h,M

𝑝 ] |∑𝑁MO
seg

𝑀 ′ |E[𝑌2p1h,M′
𝑝 ] |

(5.72)

The sampling is performed in batches, and the variance is updated after completion of a batch. The
number of sampling points for each segment has the general form of,

𝑁
MO,M
sample = 𝑁base + (𝑤var

𝑀 × 𝑁opt) + (𝑤mag
𝑀

× 𝑁opt) (5.73)

where all segments get 𝑁base sample points per batch irrespective of the segment average and
variance. 𝑁opt indicates the number of additional sample points that are distributed in a manner
that is proportional to the normalized weights, which depend on the segment average and variance.

Low-discrepancy Sampling without Replacement Using Quasi-Monte Carlo Method

It is important to note that obtaining 𝐾 ∼
swr

S is a correlated sampling process. It is intrinsically
non-Markovian and depends on the entire history of the string of previously generated indices.
One way to achieve this in discrete integer space is by performing self-avoiding random walks.
However, sampling in the self-avoiding random walker is local in nature, and therefore is not
ideal for variance reduction in each segment. Here we use quasi-Monte Carlo sampling and
a low-discrepancy integer sequence to perform sampling within each segment.[94, 64, 65] The
linear congruent generator for low-discrepancy quasi-random numbers is modified for generation
of integer sequences.[94] The sampling index for a segment 𝑀 is defined as 𝐾 (𝑀) and can have
values in the range [1, . . . , 𝐾 (𝑀)

max ]. The exact value of 𝐾 (𝑀)
max for each segment is known at the start

of the calculation and is a consequence of the stratification procedure described in Equation 5.3.
Associated which each segment are two integer random numbers which we define as 𝑞 (𝑀) and 𝑟 (𝑀) .
The variable 𝑞 (𝑀) impacts the discrepancy of the points and is an integer random number chosen
randomly from the interval 𝑞 (𝑀) ∼ [10, 50]. Using 𝑞 (𝑀) , we define the following sequence from
which 𝑟 (𝑀) is selected randomly.

𝑟 (𝑀) ∼ [1, 2, 3, . . . , 𝑞 − 1, 0] (5.74)

Using 𝑞 (𝑀) and 𝑟 (𝑀) , the low-discrepancy sequence is defined as,

𝐾 (𝑀) = (𝑛 × 𝑞 (𝑀)) + 𝑟 (𝑀) (5.75)

𝑛 = [1, 2, 3, . . . , ⌊𝐾 (𝑀)
max/𝑞 (𝑀)⌋] (5.76)

where ⌊𝐾 (𝑀)
max/𝑞 (𝑀)⌋ is the floor of the ratio.
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Control Variate for Monte Carlo Evaluation of Two-electron Integrals

In this section, we extend the stochastic procedure developed in the previous section for numerical
evaluation of the two-electron integrals. Monte Carlo evaluation of the two-electron integrals is
not a requirement for implementing the SSE-MO method, and the SSE-MO procedure described
in Equation 5.3 can be used whenever the two-electron repulsion integrals, 𝑉𝑝𝑞𝑠𝑡 , are available in
MO representation. However for large systems, it is computationally advantageous to avoid the
AO-to-MO two-electron transformation and instead, to numerically integrate directly in the MO
representation using the Monte Carlo scheme.

Associated with each MO pair function, 𝜓𝑝 (r)𝜓𝑞 (r), we define a control-variate function,
𝜓cv
𝑝𝑞 (r). The control variate function must satisfy two important features. First, 𝜓cv

𝑝𝑞 (r) must be
non-factorizable as a product of functions that depend only 𝑝 and 𝑞 indices.

𝜓cv
𝑝𝑞 (r) ≠ 𝑓𝑝 (r) × 𝑓𝑞 (r) (5.77)

Second, the two-electron integrals, [𝜓cv
𝑝𝑞 (r1) |𝑟−1

12 |𝜓
cv
𝑠𝑡 (r2)], must be known analytically. Adding

and subtracting the control variate function, we express the MO product function as follows.

𝜓𝑝 (r)𝜓𝑞 (r) = 𝛼𝑝𝑞𝜓cv
𝑝𝑞 (r) + [𝜓𝑝 (r)𝜓𝑞 (r) − 𝛼𝑝𝑞𝜓cv

𝑝𝑞 (r)] (5.78)
= 𝛼𝑝𝑞𝜓

cv
𝑝𝑞 (r) + 𝑑𝑝𝑞 (r) (5.79)

Here, 𝛼𝑝𝑞 is the control variate and 𝑑𝑝𝑞 (r) is the difference function. Using the above expression,
the two-electron integral can be expressed as,

𝑉𝑝𝑞𝑠𝑡 = 𝑉
cv
𝑝𝑞𝑠𝑡 + 𝐷 𝑝𝑞𝑠𝑡 (5.80)

where,

𝑉cv
𝑝𝑞𝑠𝑡 = 𝛼𝑝𝑞𝛼𝑠𝑡 [𝜓cv

𝑝𝑞 (r1) |𝑟−1
12 |𝜓

cv
𝑠𝑡 (r2)] (5.81)

and,

𝐷 𝑝𝑞𝑠𝑡 = 𝛼𝑝𝑞 [𝜓cv
𝑝𝑞 (r1) |𝑟−1

12 |𝑑𝑠𝑡 (r2)] + 𝛼𝑠𝑡 [𝑑𝑝𝑞 (r1) |𝑟−1
12 |𝜓

cv
𝑠𝑡 (r2)] + [𝑑𝑝𝑞 (r1) |𝑟−1

12 |𝑑𝑠𝑡 (r2)] (5.82)

The control variate, 𝛼𝑝𝑞, is defined as the quantity that minimizes the following weighted-variance
function.

argmin
𝛼

∑
r∈𝑆space [𝜓𝑝 (r)𝜓𝑞 (r) − 𝛼𝜓cv

𝑝𝑞 (r)]2 |𝜓𝑝 (r)𝜓𝑞 (r) |2∑
r∈𝑆space |𝜓𝑝 (r)𝜓𝑞 (r) |2

= 𝛼𝑝𝑞 (5.83)

Here, 𝑆space is a set of sampling points in 3D space from which r is drawn at random. The
control-variate functions, 𝜓cv

𝑝𝑞, are represented by Gaussian functions. For 𝑝 = 𝑞, a single Gaussian
function is used and for 𝑝 ≠ 𝑞 a linear combination of two Gaussian functions is used.

𝜓cv
𝑝𝑝 =

(𝑎𝑝𝑝
𝜋

)3/2
𝑒−𝑎𝑝𝑝 (r−A𝑝𝑝)2

(5.84)

𝜓cv
𝑝𝑞 = 𝑐𝑝𝑞

[(𝑎𝑝𝑞
𝜋

)3/2
𝑒−𝑎𝑝𝑞 (r−A𝑝𝑞)2 −

(
𝑏𝑝𝑞

𝜋

)3/2
𝑒−𝑏𝑝𝑞 (r−B𝑝𝑞)2

]
for (𝑝 ≠ 𝑞) (5.85)
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This form of the control variate function guarantees the orthonormality conditions for the MOs.

⟨𝜓𝑝 |𝜓𝑞⟩ = ⟨𝜓cv
𝑝𝑞⟩ = 𝛿𝑝𝑞 (5.86)

The widths and the centers of the Gaussian functions are determined using a moment-matching
condition. The weighted moments for any pair of molecular orbitals are calculated as,

𝜇𝑝𝑞 (𝑚𝑥 , 𝑚𝑦, 𝑚𝑧) =
∑

r∈𝑆space [𝜓𝑝 (r) (𝑥𝑚𝑥 𝑦𝑚𝑦 𝑧𝑚𝑧 )𝜓𝑞 (r)] |𝜓𝑝 (r)𝜓𝑞 (r) |2∑
r∈𝑆space |𝜓𝑝 (r)𝜓𝑞 (r) |2

(𝑚𝑥 , 𝑚𝑦, 𝑚𝑧 = 0, . . . , 3)

(5.87)

and the moments for the control-variate functions are obtained analytically.

𝜇cv
𝑝𝑞 (𝑚𝑥 , 𝑚𝑦, 𝑚𝑧) = ⟨𝜓cv

𝑝𝑞 (𝑥𝑚𝑥 𝑦𝑚𝑦 𝑧𝑚𝑧 )⟩ (5.88)

The coefficients for the control-variate function are obtained by performing a steepest-descent
search on the following loss-function.

argmin
𝑎𝑝𝑞>0,𝑏𝑝𝑞>0,A𝑝𝑞 ,B𝑝𝑞

∑︁
𝑚𝑥 ,𝑚𝑦 ,𝑚𝑧=0,3

[𝜇𝑝𝑞 − 𝜇cv
𝑝𝑞]2 (5.89)

The equations Equation 5.83 and Equation 5.89 completely define the control-variate function and
are used to calculate the 𝑉cv

𝑝𝑞𝑠𝑡 term.

Monte Carlo Evaluation of Two-electron Integrals Using Real-space Stratified Sampling

Since𝑉cv
𝑝𝑞𝑠𝑡 is analytical, only the 𝐷 𝑝𝑞𝑠𝑡 terms are calculated numerically using the stratified Monte

Carlo procedure. We use a combination of ratio estimator, control variate, and stratified sampling
techniques to efficiently and accurately evaluate the MO integrals. For calculating 𝐷 𝑝𝑞𝑠𝑡 we define
the following two-electron kernel function,

𝐷 𝑝𝑞𝑠𝑡 =

∫ +∞

−∞
𝑑r1𝑑r2𝑇𝑝𝑞𝑠𝑡 (r1, r2)𝑟−1

12 (5.90)

where,

𝑇𝑝𝑞𝑠𝑡 (r1, r2) = 𝛼𝑝𝑞 [𝜓cv
𝑝𝑞 (r1)𝑑𝑠𝑡 (r2)] + 𝛼𝑠𝑡 [𝑑𝑝𝑞 (r1)𝜓cv

𝑠𝑡 (r2)] + [𝑑𝑝𝑞 (r1)𝑑𝑠𝑡 (r2)] (5.91)

Associated with each 𝐷 𝑝𝑞𝑠𝑡 integral, we define a control variate 𝑓 cv
𝑝𝑞𝑠𝑡 as,

𝑓 cv
𝑝𝑞𝑠𝑡 (r1, r2) =

1
4
[|𝜓𝑝 (r1) |2 + |𝜓𝑞 (r1) |2] × [|𝜓𝑠 (r2) |2 + |𝜓𝑡 (r2) |2] (5.92)

where the integral of the control variate is 1 for all values of 𝑝, 𝑞, 𝑠, 𝑡.∫ +∞

−∞
𝑑r1𝑑r2 𝑓

cv
𝑝𝑞𝑠𝑡 (r1, r2) = 1 (5.93)

The calculation of 𝐷 𝑝𝑞𝑠𝑡 requires evaluation of the six-dimensional integral over all space. Tradi-
tionally, Monte Carlo integration is performed over an N-dimensional unit cube by transforming
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the integral range from [−∞, +∞] to [0,1]. One approach to achieve this is by using the following
transformation,

𝑡 =
𝑥

1 + 𝑥 (5.94)

∫ +∞

−∞
𝑑𝑥 𝑓 (𝑥) =

∫ +∞

0
𝑑𝑥 [ 𝑓 (𝑥) + 𝑓 (−𝑥)] =

∫ 1

0
𝑑𝑡𝐽 (𝑡) [ 𝑓 (𝑥) + 𝑓 (−𝑥)] (5.95)

However this procedure introduces singularity in the form of the Jacobian 𝐽 (𝑡) in the integration
kernel. In this work, we use a finite-grid approximation to evaluate the integral over a finite volume,∫ +𝑎

−𝑎
𝑑r 𝑓 (r) = 𝑉3D⟨ 𝑓 ⟩ = 1 ± 𝜖 (5.96)

where the limits selected are large enough so that 𝜖 ≤ 10−5 for all MOs. Using 𝑓 cv
𝑝𝑞𝑠𝑡 , we define the

following ratio estimator for Monte Carlo evaluation of the 𝐷 𝑝𝑞𝑠𝑡 integral.

𝐷 𝑝𝑞𝑠𝑡 =

∫ +∞
−∞ 𝑑r1𝑑r2𝑇𝑝𝑞𝑠𝑡 (r1, r2)𝑟−1

12∫ +∞
−∞ 𝑑r1𝑑r2 𝑓

cv
𝑝𝑞𝑠𝑡 (r1, r2)

≈
⟨𝑇𝑝𝑞𝑠𝑡𝑟−1

12 ⟩
⟨ 𝑓 cv
𝑝𝑞𝑠𝑡⟩

(5.97)

The averages ⟨𝑇𝑝𝑞𝑠𝑡𝑟−1
12 ⟩ and ⟨ 𝑓 cv

𝑝𝑞𝑠𝑡⟩ are defined as follows.

⟨𝑇𝑝𝑞𝑠𝑡𝑟−1
12 ⟩ =

1
𝑁

space
sample

∑︁
r1,r2∈Sspace

𝑇𝑝𝑞𝑠𝑡 (r1, r2)𝑟−1
12 (5.98)

⟨ 𝑓 CV
𝑝𝑞𝑠𝑡⟩ =

1
𝑁

space
sample

∑︁
r1,r2∈Sspace

𝑓 CV
𝑝𝑞𝑠𝑡 (r1, r2) (5.99)

We introduce stratification in the sampling of points in real-space by dividing the entire space into
a set of 𝑁space

seg non-overlapping regions with identical volumes.

Sspace =

𝑁
space
seg∑︁
𝑀=1

S (𝑀)
space (5.100)

𝑉6D =

𝑁
space
seg∑︁
𝑀=1

𝑉
(𝑀)
seg = 𝑁

space
seg ×𝑉seg (5.101)

The stratified sampling estimate of the averages is then defined as,

⟨𝑇𝑝𝑞𝑠𝑡𝑟−1
12 ⟩ =

𝑁
space
seg∑︁
𝑀=1

𝑉seg

𝑉6𝐷

1
𝑁

space,M,pqst
sample

∑︁
r1,r2∈S (𝑀 )

space

𝑇𝑝𝑞𝑠𝑡 (r1, r2)𝑟−1
12 (5.102)
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𝑁
space,M,pqst
sample is the number of sampling points associated with the spatial segment, 𝑀 for indices
𝑝, 𝑞, 𝑠, 𝑡. Similar to the stratification strategy in Equation 5.73, the sampling points for each segment
are proportional to the variance of the integral kernel in that segment.

𝑁
space,M,pqst
sample ∝ V𝑀 [𝑇𝑝𝑞𝑠𝑡 (r1, r2)𝑟−1

12 ] (5.103)

∝ E𝑀 [|𝑇𝑝𝑞𝑠𝑡 (r1, r2)𝑟−1
12 |] (5.104)

We use common-random-number (CRN) sampling for sampling within a segment. The CRN
method has been used extensively for reducing variance[94, 64, 65] and a brief summary of the
method is presented in [115]. In the evaluation of the integral, this means that at any point in time,
if a random number 𝜂1 is used in the evaluation of 𝑇𝑝𝑞𝑠𝑡 , then that same random number is used
for evaluation of 𝑓 cv

𝑝𝑞𝑠𝑡 in the same segment. To emphasize this usage, we use superscript “CRN"
(common random number) in the following expression.

𝐷 𝑝𝑞𝑠𝑡 =
⟨𝑇𝑝𝑞𝑠𝑡𝑟−1

12 ⟩
⟨ 𝑓 cv
𝑝𝑞𝑠𝑡⟩

=

∑𝑁
space
seg

𝑀=1
1

𝑁
space,M,pqst
sample

∑
r1,r2∈S (𝑀 )

space
𝑇𝑝𝑞𝑠𝑡 (rCRN

1 , rCRN
2 )𝑟−1

12∑𝑁
space
seg

𝑀=1
1

𝑁
space,M,pqst
sample

∑
r1,r2∈S (𝑀 )

space
𝑓 cv
𝑝𝑞𝑠𝑡 (rCRN

1 , rCRN
2 )

(5.105)

Iterative Solution of the Dyson Equation

Combining the results from Equation 5.3 and Equation 5.3, we can express the full self-energy
operator as the sum of two terms,

Σ𝑝 (𝜔) = Σcv
𝑝 (𝜔) + ΔΣ𝑝 (𝜔) (5.106)

The first term Σcv
𝑝 (𝜔) depends only on control-variate functions and is evaluated analytically.

Σcv
𝑝 (𝜔) = 2

∑︁
𝑖𝑎𝑏

𝑉cv
𝑖𝑎𝑝𝑏

𝑉cv
𝑖𝑎𝑝𝑏

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
−

∑︁
𝑖𝑎𝑏

𝑉cv
𝑖𝑎𝑝𝑏

𝑉cv
𝑖𝑏𝑝𝑎

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
− 2

∑︁
𝑖 𝑗𝑎

𝑉cv
𝑖𝑝 𝑗𝑎

𝑉cv
𝑖𝑝 𝑗𝑎

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
+

∑︁
𝑖 𝑗𝑎

𝑉cv
𝑖𝑝 𝑗𝑎

𝑉cv
𝑖𝑎 𝑗 𝑝

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
(5.107)

The second term contains the different terms and is defined as follows.

ΔΣ𝑝 (𝜔) = 2
∑︁
𝑖𝑎𝑏

𝐷
𝑖𝑎𝑝𝑏

𝑉cv
𝑖𝑎𝑝𝑏

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
−

∑︁
𝑖𝑎𝑏

𝐷
𝑖𝑎𝑝𝑏

𝑉cv
𝑖𝑏𝑝𝑎

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
− 2

∑︁
𝑖 𝑗𝑎

𝐷
𝑖𝑝 𝑗𝑎

𝑉cv
𝑖𝑝 𝑗𝑎

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
+

∑︁
𝑖 𝑗𝑎

𝐷
𝑖𝑝 𝑗𝑎

𝑉cv
𝑖𝑎 𝑗 𝑝

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)

+ 2
∑︁
𝑖𝑎𝑏

𝑉cv
𝑖𝑎𝑝𝑏

𝐷
𝑖𝑎𝑝𝑏

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
−

∑︁
𝑖𝑎𝑏

𝑉cv
𝑖𝑎𝑝𝑏

𝐷
𝑖𝑏𝑝𝑎

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
− 2

∑︁
𝑖 𝑗𝑎

𝑉cv
𝑖𝑝 𝑗𝑎

𝐷
𝑖𝑝 𝑗𝑎

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
+

∑︁
𝑖 𝑗𝑎

𝑉cv
𝑖𝑝 𝑗𝑎

𝐷
𝑖𝑎 𝑗 𝑝

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)

+ 2
∑︁
𝑖𝑎𝑏

𝐷
𝑖𝑎𝑝𝑏

𝐷
𝑖𝑎𝑝𝑏

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
−

∑︁
𝑖𝑎𝑏

𝐷
𝑖𝑎𝑝𝑏

𝐷
𝑖𝑏𝑝𝑎

𝐸
2p1h
𝑖𝑎𝑏

(𝜔)
− 2

∑︁
𝑖 𝑗𝑎

𝐷
𝑖𝑝 𝑗𝑎

𝐷
𝑖𝑝 𝑗𝑎

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
+

∑︁
𝑖 𝑗𝑎

𝐷
𝑖𝑝 𝑗𝑎

𝐷
𝑖𝑎 𝑗 𝑝

𝐸
1p2h
𝑖 𝑗𝑎

(𝜔)
(5.108)

The single-shot determination of the self-energy operator is performed by evaluating the self-energy
at the HOMO energy.

𝜔Koopmans = 𝜖HOMO (5.109)
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𝜔one−shot = 𝜖HOMO + Σ𝑝 (𝜖HOMO) (with 𝜓𝑝 = 𝜓HOMO) (5.110)

The full iterative solution of the Dyson equation is obtained by evaluating Σ𝑝 (𝜔) for a range of 𝜔
and then finding the point where,

𝜔iter = 𝜖HOMO + Σ𝑝 (𝜔iter) (with 𝜓𝑝 = 𝜓HOMO) (5.111)

The SSE-MO method allows for a third approximation for 𝜔. We can solve the Dyson equation
iteratively using Σcv

𝑝 (𝜔)

𝜔∗ = 𝜖HOMO + Σcv
𝑝 (𝜔∗) (with 𝜓𝑝 = 𝜓HOMO) (5.112)

and then include the correction from ΔΣ𝑝.

𝜔iter,cv = 𝜖HOMO + Σcv
𝑝 (𝜔∗) + ΔΣ𝑝 (𝜔∗) (with 𝜓𝑝 = 𝜓HOMO) (5.113)

Calculation of Derivatives

The first derivative of the self-energy, with respect to 𝜔, is useful for locating the poles of G(𝜔),
and is defined as follows.

𝑑Σ𝑝𝑝 (𝜔)
𝑑𝜔

= −1
2

∑︁
𝑗 ,𝑎,𝑏

⟨𝑖 𝑗 | |𝑎𝑏⟩ ⟨𝑎𝑏 | |𝑖 𝑗⟩(
𝜔 + 𝜖 𝑗 − 𝜖𝑎 − 𝜖𝑏

)2 − 1
2

∑︁
𝑎, 𝑗 ,𝑘

⟨𝑖𝑎 | | 𝑗 𝑘⟩ ⟨ 𝑗 𝑘 | |𝑖𝑎⟩(
𝜔 + 𝜖𝑎 − 𝜖 𝑗 − 𝜖𝑘

)2 . (5.114)

The higher-order derivatives of the self-energy operator can then be obtained from the higher-order
powers of the denominator.

𝑑𝑛

𝑑𝑥𝑛

[
1

𝐸
2𝑝1ℎ
𝑖𝑎𝑏

(𝜔)

]
=

(−1)𝑛𝑛!
(𝜔 + 𝜖𝑖 − 𝜖𝑎 − 𝜖𝑏)𝑛+1 (5.115)

𝑑𝑛

𝑑𝑥𝑛


1

𝐸
1𝑝2ℎ
𝑖 𝑗𝑎

(𝜔)

 =
𝑛!

(𝜖𝑖 + 𝜖 𝑗 − 𝜔 − 𝜖𝑎)𝑛+1 (5.116)

In the SSE-MO method, the derivative of Σ𝑝 is obtained by replacing the energy denominator with
the higher powers of the denominator,

1
𝐸

2𝑝1ℎ
𝑖𝑎𝑏

(𝜔)
−→ (−1)𝑛𝑛!

(𝜔 + 𝜖𝑖 − 𝜖𝑎 − 𝜖𝑏)𝑛+1 (5.117)

1
𝐸

1𝑝2ℎ
𝑖 𝑗𝑎

(𝜔)
−→ 𝑛!

(𝜖𝑖 + 𝜖 𝑗 − 𝜔 − 𝜖𝑎)𝑛+1 (5.118)

The contributions from Σcv
𝑝 are obtained analytically, and the contributions from the ΔΣ𝑝 are

obtained from the stochastic enumeration procedure described above. Because the derivative does
not impact 𝑟−1

12 , which is present in expression for the self-energy, the calculation of the derivatives
can be performed concurrently while the calculation of ΔΣ𝑝 is being performed. This approach
was used for the construction of the spectral function and is presented in Table 5.4.
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Computational Details

The SSE-MO method was applied in order to investigste the ionzation potentials of PbS and CdS
QDs. In addition, benchmark calculations for Ne, H2O, and CH4 were also performed. The
single-particle states and energies were obtained from HF calculations using the 6-31G* basis for
Ne, H2O, and CH4 and the LANL-2DZ ECP basis for the quantum dots. These HF calculations
were performed using the TERACHEM electronic structure package. The SSE-MO calculations
were performed by dividing the MO-index space into 𝑁occ number of segments. The 6D Cartesian
space was divided into 100 non-overlapping regions. A total of 𝑁sample ∼ 109 sampling points were
used for calculating the self-energy at each value of 𝜔 and the sampling points were distributed
using the stratification strategy described earlier. We used the relative standard deviation, 𝜎rel,
also known as coefficient of variance for defining the convergence criteria for the calculated IPs
(Equation 5.119).

𝜎rel =
𝜎

𝜇
(5.119)

In this work, we enforced 𝜎rel < 10−2 to be the criteria for convergence for each segment.

5.4 Results

10-electron System

For benchmarking and testing, the SSE-MO method was used to calculate the IPs of Ne, H2O, and
CH4. The results for these chemical systems are presented in Table 5.1. The IPs were calculated
using both single-shot and iterative solution of the Dyson equation and the results between the
two approaches were found to be very similar with a maximum difference of 0.17 eV. In all cases,
the SSE-MO results were found to be in good agreement with the previously reported results.
For CH4 and H2O, the IPs obtained using the SSE-MO method were compared to IPs calculated
using the MC-MP2 method. The MC-MP2 method is a stochastic method which has been used to
construct the self-energy operator. [123] Since the SSE-MO method is also a stochastic method,
when possible, it would be ideal to compare the IPs obtained from the SSE-MO method to another
stochastic method. The IP of Ne obtained using the SSE-MO method was compared to an IP
value obtained from a conventional MP2 calculation. [50] Additionally, the IPs of the 10-electron
systems, obtained using the SSE-MO method, were compared to IPs calculated using the IP-EOM-
CCSD(T) method. This comparison was made because IP-EOM-CCSD(T) is a highly accurate
method and is generally considered to be the gold standard for testing the accuracy of IPs obtained
from newly developed first-principles quantum chemistry methods. [96]
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Ionization Potential of PbS and CdS Quantum Dots

The SSE-MO method was applied for calculating the IPs of Pb4S4, Pb44S44, Pb140S140, Cd6S6,
Cd24S24, and Cd45S45, by way of both single-shot and iterative solution of the Dyson equation. The
IPs from the single-shot solution and from the iterative solution of the Dyson equation are presented
in Table 5.2 and Table 5.3, respectively. We note that the calculated IPs are vertical ionization
potentials and do not include contributions from the quantum mechanical treatment of nuclear
degrees of freedom. Figure 5.2 illustrates the graphical verification of the self-consistency of the
iterative procedure for Pb140S140. We observe that the curve for Σ(𝜔) +𝜔0 versus 𝜔 intersects with
the curve for 𝜔 versus 𝜔 at that the value of 𝜔 for which the diagonal approximation to the Dyson
equation converges. To highlight the efficiency of the SSE-MO method, the computational time
associated with the use of the SSE-MO method, which employs stratified stochastic enumeration
for summation, is compared to the estimated computational time for constructing the self-energy,
using sequential enumeration. This comparison is presented for the PbS systems in Table 5.4.
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Figure 5.2: Curve labeled 𝜔 intersects with the curve labeled 𝜔0 + Σ at the value of 𝜔 for which
the diagonal approximation to the Dyson equation converges, for Pb140S140.

The frequency dependence of the 1-particle Green’s function was evaluated near the poles and
is presented in Figure 5.3, Figure 5.4, and Figure 5.5.

When compared to 𝐺0(𝜔), the poles of 𝐺 (𝜔) were found to have higher values of 𝜔 indicating
that for these systems, inclusion of electron correlation effects resulted in a lower IP than Koopmans’
IP values. Comparison between 𝐺 and 𝐺0 shows that inclusion of electron correlation in IPs
becomes more important for larger dots. Comparison between the single-shot versus iterative
solution of Dyson equation also exhibits similar trends, where the need for iterative solutions
become more important for larger dots. Upon examination of Table 5.2 and Table 5.3, it can
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Figure 5.3: Poles of 𝐺0(𝜔) and 𝐺 (𝜔) for Pb4S4.
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Figure 5.4: Poles of 𝐺0(𝜔) and 𝐺 (𝜔) for Pb44S44.

be observed for both the single-shot and iterative solution of the Dyson equation, the ionization
potentials of the PbS dots monotonically decrease with increasing dot size. This particular trend
in the IPs with respect to dot size is generally expected. [74] In contrast, for the CdS dots, the
trend in IP with respect to dot size was observed to be non-monotonic. Although the optical and
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Figure 5.5: Poles of 𝐺0(𝜔) and 𝐺 (𝜔) for Pb140S140.

Table 5.2: Self-energy and Ionization Potentials (eV) of PbS and CdS Quantum Dots from Single-
shot Solution

System Koopmans’ Self-energy from single-shot solution IP from single-shot solution
Pb4S4 8.28 0.65 7.63 ±0.05

Pb44S44 7.13 0.22 6.91 ±0.04
Pb140S140 6.91 0.09 6.82±0.05

Cd6S6 5.25 0.42 4.837 ±0.04
Cd24S24 6.25 0.09 6.16 ±𝜖 < 0.01
Cd45S45 6.09 0.23 5.86 ±0.02

electronic properties of quantum dots are often thought to display well-defined monotonic trends
with respect to system size, these trends may not always be purely monotonic. For example, it has
been demonstrated that the first excitation energies of CdS quantum dots may not always display a
purely monotonic trend, with respect to dot size. [73]

For each PbS system, the required computational time for the construction of the self-energy,
using sequential enumeration (Table 5.4), was estimated using the time required for the evaluation
and summation of the first 1000 terms of both 2p1h and 1p2h components of the self-energy for
Pb4S4. In general, the estimated time (𝑡2p1h

2 ) required for constructing the 2p1h term of a given
system can be calculated as given below in Equation 5.120.

𝑡
2p1h
2 = N2p1h

2 ×
(
𝑡
2p1h
1

N2p1h
1

)
(5.120)
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Table 5.3: Self-energy and Ionization Potentials (eV) of PbS and CdS Quantum Dots from Iterative
Solution

System Koopmans’ Self-energy from iterative solution IP from iterative solution
Pb4S4 8.28 0.61 7.66 ±0.01

Pb44S44 7.13 0.17 6.96 ±0.01
Pb140S140 6.91 0.28 6.71 ±0.08

Cd6S6 5.25 0.41 4.84±0.01
Cd24S24 6.25 0.08 6.16 ±𝜖 < 0.01
Cd45S45 6.09 0.22 5.87 ±0.01

Table 5.4: Computational time for constructing self-energy: SSE-MO vs. Sequential Enumeration

System Sequential enumeration time SSE-MO time
Pb4S4 1.07 hours 1.96 minutes

Pb44S44 59.24 days 17.04 minutes
Pb140S140 1438.24 days 66.93 minutes

In Equation 5.120, N2p1h
1 represents the number of terms of the 2p1h component of the self-energy

for Pb4S4, which were evaluated and subsequently summed, using sequential enumeration. In this
work, N2p1h

1 was chosen to be equal to 1000, which accounts for the terms of the 2p1h component
of the self-energy for the MO-indices 𝑗 = 1, . . . , 10 and 𝑎, 𝑏 = 1, . . . , 10. N2p1h

2 represents the
total number of terms that would need to be evaluated and then summed when constructing the
2p1h term of the self-energy for any given system, using sequential enumeration. In this work,
𝑡
2p1h
1 represents the time that was required to evaluate and then sum the first 1000 terms of the

2p1h component of the self-energy for Pb4S4. 𝑡2p1h
2 represents the estimated time required for the

construction of the 2p1h term, using sequential enumeration, for any given system.
In the second column of Table 5.4, the sequential enumeration time represents the estimated

computational time required for the construction of the total self energy (2p1h + 1p2h), using
sequential enumeration. The SSE-MO time is the measured computational time required for the
construction of the total self energy, using the SSE-MO method, which employs stratified stochastic
enumeration. Upon examination of Table 5.4 it can be observed that the use of the SSE-MO method
results in a drastic decrease in the computational time for construction of the self-energy for all
of the PbS systems investigated. It is relevant to point out that due to the adaptive nature of the
SSE-MO method, the efficiency of the method is independent of the system investigated.

Single-pole Approximation to the Spectral Function

We define the single-pole approximation to the spectral function as,

𝐴sp(𝜔) =
ImΣ(𝜔)

(𝜔 − 𝜖𝑝)2 + (ImΣ(𝜔))2 (5.121)
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where the subscript ‘sp’ in 𝐴sp denotes that we are looking at the form of the spectral function near
the pole (𝜔 = 𝜖𝑝). The imaginary part of the self-energy operator can be approximated from the
first derivative of the self-energy, with respect to 𝜔, as described in Equation 5.3. For example, the
imaginary part of the following quantity 𝐼 (𝜔),

𝐼 (𝜔) =
∑︁
𝑛

𝑥𝑛

𝑦𝑛 (𝜔) + 𝑖𝑏
=

∑︁
𝑛

𝑥𝑛 (𝑦𝑏 − 𝑖𝑏)
𝑦2
𝑛 (𝜔) + 𝑏2

(5.122)

is given by,

Im[𝐼 (𝜔)] = −𝑏
∑︁
𝑛

𝑥𝑛

𝑦2
𝑛 (𝜔) + 𝑏2

(5.123)

In Figure 5.6, the ratio 𝐴wp/𝐴max
wp is plotted as a function of 𝜔/𝜔opt for the three PbS QDs. The
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Figure 5.6: 𝐴wp/𝐴max
wp (ordinate) plotted as a function of 𝜔/𝜔opt (abscissa) for PbS systems.

𝐴wp/𝐴max
wp is the ratio of 𝐴sp(𝜔) and the maximum value of 𝐴sp(𝜔). 𝜔opt is the value of 𝜔 at which

diagonal approximation to the Dyson equation converges.

linewidth of the plot was found to be narrowest for the Pb4S4 and broadest for Pb44S44. This
feature indicates that the relative lifetime of the quasi-hole in (Pb4S4) is longer than the other dots
in the series. Similar analysis for the CdS QDs in Figure 5.7 revealed that the line-width is smallest
for Cd24S24. decreases with increasing dot size. The results from the spectral analysis highlight
the importance of including frequency dependency in the self-energy operator. The plots also
demonstrate the impact of many-body correlations in the these systems. Specifically, in the absence
of electron-electron correlation, the limit 𝜎 → 0 will reduce the plots to a Dirac delta function.
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Figure 5.7: 𝐴wp/𝐴max
wp (ordinate) plotted as a function of 𝜔/𝜔opt (abscissa) for CdS systems.

𝐴wp/𝐴max
wp is the ratio of 𝐴sp(𝜔) and the maximum value of 𝐴sp(𝜔). 𝜔opt is the value of 𝜔 at which

diagonal approximation to the Dyson equation converges.

5.5 Discussion

Correlated Sampling in the Combined Cartesian and Molecular Orbital Index Space

The main philosophy of the SSE-MO method is to perform correlated sampling in a joint real-space
and occupation-number space (Table 5.5). Assuming a discretization of 100 points per Cartesian
coordinate, the total number of points needed for exhaustive sampling is in the range of 1016 − 1020

as shown in Table 5.5. However, not all spatial components of all the molecular orbitals contribute
equally and uniformly to the calculation of the self-energy. There are certain combinations of
MOs whose form in specific regions of the Cartesian space correlate strongly with the error in
the self-energy calculations. Through the use of a two-step stratified sampling scheme in both
Cartesian and MO space, the SSE-MO method provides a systematic and adaptive procedure to
identify the important contributors. We have used a combination of ratio estimator, control-variate,
and stratified sampling techniques for the efficient and accurate evaluation of the MO integrals.
The key quantity that implements and controls this concept is the 𝑁space,M,pqst

sample term. This term
represents the number of spatial sampling points for the Mth spatial segment for the correction term
𝐷 𝑝𝑞𝑟𝑠 associated with indices 𝑝, 𝑞, 𝑟, 𝑠 and depends on both the spatial and MO indices. The total
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Table 5.5: Total number of sampling points in the combined MO-Cartesian space assuming 100
points per Cartesian coordinate.

System N2p1h N1p2h NMO
space NMO

space × N6D
space

Pb4S4 3.87 ×104 1.76 ×104 5.63 ×104 5.63 ×1016

Pb44S44 5.15 ×107 2.34 ×107 7.50 ×107 7.50 ×1019

Pb140S140 1.18 ×109 6.37 ×108 1.82 ×109 1.82 ×1021

Cd6S6 7.02 ×105 3.32 ×105 1.03 ×106 1.03 ×1018

Cd24S24 4.50 ×107 2.13 ×107 6.62 ×107 6.62 ×1019

Cd45S45 2.96 ×108 1.40 ×108 4.36 ×108 4.36 ×1020

number of sampling points is given by the following expression.

𝑁 total
sample =

𝑁MO
seg∑︁

𝑀=1

𝑁
space
seg∑︁
𝐿=1

𝑁
MO,M
sample × 𝑁

space,M,L
sample ≈ 109 (5.124)

As shown in Equation 5.103, this number was directly obtained from the variance of the integral
kernel, which also includes the contribution from the 𝑟−1

12 operator. Note that these sampling
points were not used to evaluate the full r12-integral kernel, but instead were used to evaluate
only the component of the full r12-integral kernel not included in the control-variate expression.
The Cartesian space sampling for each spatial segment was performed using simple Monte Carlo
sampling. This process can be enhanced by using low-discrepancy random numbers, which is a
quasi-Monte Carlo approach. We expect that using the quasi-Monte Carlo approach will accelerate
the overall calculation process.

Segment-based Analysis of Sampling Error

The error in the calculated IP using the SSE-MO method originates from the sampling error
associated with sampling the integral kernel in the combined Cartesian-MO space. However, not
all segments contribute equally to the numerical error. The goal of SSE-MO is to distribute the
computational effort in proportion to the contributions from each segment. One insight generated
from the SSE-MO calculation is information about the contribution of each segment to the total
self-energy operator. We define the cumulative percent contribution for the segments as,

𝐶 (𝑀) = 100 ×
∑𝑀
𝑖=1 𝑆(𝑖)∑𝑁seg
𝑖=1 𝑆(𝑖)

(5.125)

where 𝑆(𝑖) is the contribution to the self-energy for each segment. The cumulative percent
contribution of the segments to the total self-energy operator is denoted as 𝐶 (𝑀) and is presented
for the PbS and CdS quantum dots in Figure 5.8 and Figure 5.9, respectively. Analysis of the
results revealed that the 2p1h and 1p2h terms show very different behavior. In all cases it was
found that only few segments, typically ≤ 50, had significant contributions to the 1p2h component
of the self-energy operator. In contrast, for the 2p1h component, the cumulative sum of the percent



46

Figure 5.8: Cumulative sum of the percent contributions of the segments composing the sample
space for the 2p1h and 1p2h terms of the self-energy (ordinate) versus the segment index (abscissa)
for Pb4S4 (Figure A), Pb44S44 (Figure B), and Pb140S140 (Figure C).

contribution increased in a much more gradual manner. The distributions of the standard deviations
associated with the segments for the 2p1h and 1p2h terms of the self-energy for the two largest
quantum dots, (Pb140S140 and Cd45S45), are presented in Figure 5.10 and Figure 5.11, respectively.
Analysis of the distributions reveals that the sampling error in the 2p1h term is significantly smaller
than the sampling error in the 1p2h term for the two largest quantum dots. These plots also show
that the overall sampling error in the calculated IP is dominated by the sampling error in the 1p2h
term. The advantage of the SSE-MO method is that, by construction, the SSE-MO scheme is able
to extract this information dynamically during the course of the calculation and then allocate more
sampling points to segments that have high sampling errors. Because SSE-MO is based on stratified
sampling, the conventional stratified sampling error analysis[109] is applicable for the sampling
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Figure 5.9: Cumulative sum of the percent contributions of the segments composing the sample
space for the 2p1h and 1p2h terms of the self-energy (ordinate) versus the segment index (abscissa)
for Cd6S6 (Figure A), Cd24S24 (Figure B), and Cd45S45 (Figure C).

error in the IP calculations. In addition to this segment-based analysis, the overall sampling error in
the calculated IPs as a function of the number of sampling points used to construct the self-energy
for Pb140S140 quantum dot is presented in Figure 5.12.
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Figure 5.10: Frequency distributions of the standard deviations (units of eV) for the segments that
compose the sample space of the 2p1h and 1p2h terms of the self-energy operator for Pb140S140.

Figure 5.11: Frequency distributions of the standard deviations (units of eV) for the segments that
compose the sample space of the 2p1h and 1p2h terms of the self-energy operator for Cd45S45.
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Figure 5.12: Sample standard deviation (𝜎𝑥) in ionization potential (units of eV) versus the number
of sampling points used to construct the self-energy for Pb140S140.
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Connection with Diagrammatic Monte Carlo

The SSE-MO method is conceptually similar to diagrammatic MC (diagMC), where terms are
evaluated stochastically. However, there are key differences between the two methods. SSE-MO
is not diagram-based and the relative importance of the terms are not evaluated using topological
connectivity of the vertices. Also, the SSE-MO method uses stratified sampling as opposed to
importance sampling, where emphasis is placed on reducing numerical error through variance
minimization and numerical effort is predominantly spent on computing the correction term to the
self-energy operator. As an intrinsically adaptive approach, the calculation puts more points where
they are needed in order to achieve reduction of numerical error.

Comparison with Laplace-transformed approach: The SSE-MO method does not perform
Laplace-transformation, but instead relies on stochastic enumeration to reduce the computational
cost. Consequently, only 3D and 6D spatial integrals are solved numerically. As a consequence,
higher-order derivatives of the self-energy operator (𝑑𝑛Σ/𝑑𝜔𝑛) can be obtained with relative ease
and with very little additional computational cost during the self-energy calculation. This not only
allows for calculation of the imaginary component of the self-energy operator, but also open doors
for iterative solution of the Dyson equation by Taylor-series expansion of the self-energy operator.

𝜔0
𝑝 + Σ(𝜔0

𝑝) +
(
𝜕Σ(𝜔)
𝜕𝜔

)
𝜔0

𝑝

(𝜔 − 𝜔0
𝑝) +

(
𝜕2Σ(𝜔)
𝜕𝜔2

)
𝜔0

𝑝

(𝜔 − 𝜔0
𝑝)2 + · · · = 𝜔 (5.126)

Because we are not using a Laplace transformation, the SSE-MO method is well-suited to extending
the self-energy calculation to Σ(3) , using the P3 correction developed by Ortiz and co-workers.[88]
For example, the Laplace transformation of the following term in the P3 expression∑︁
𝑎𝑏𝑐𝑖 𝑗

⟨𝑝𝑎 | |𝑖 𝑗⟩⟨𝑞𝑎 | |𝑏𝑐⟩⟨𝑏𝑐 | |𝑖 𝑗⟩
(𝜔 + 𝜖𝑎 − 𝜖𝑖 − 𝜖 𝑗 ) (𝜖𝑖 + 𝜖 𝑗 − 𝜖𝑏 − 𝜖𝑐)

=

∫
𝑑r1 . . . 𝑑r6

∫
𝑑𝑡𝑑𝑡′𝐾 (𝑥1, 𝑦1, 𝑧1, . . . , 𝑥6, 𝑦6, 𝑧6, 𝑡, 𝑡

′)

(5.127)

will involve the Monte Carlo numerical integration of a 20-dimensional integral. In the SSE-MO
implementation, the dimensionality of the spatial integral will still be six and the MO index will be
sampled from the 3p-2h space.∑︁

𝑎𝑏𝑐𝑖 𝑗

≈
∑︁

k
with k ∈ {𝑁3

vir × 𝑁
2
occ} (5.128)

Equation 5.128 can be viewed as the stochastic tensor contraction over the MO indices and can
potentially be applied to other branches of quantum mechanics.

Selection of Control-variate Functions

The use of moment-based fitting ensures that the integral of the Mth-order multinomial comes out
to be exact. For this work, a maximum of two Gaussian functions were used and was found to be
adequate. For more challenging systems, the number of Gaussian functions can be systematically
increased. In addition, metrics other than the moments can be used as criteria for the selection of
the Gaussian functions. The choice of the control-variate functions is not restricted to Gaussian
functions. For QDs, it is possible to take advantage of the approximate spherical symmetry of
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the system and construct the control-variate functions from the hydrogenic wavefunctions with
effective hole and particle masses.

𝜓cv
𝑖 (r) = 𝑅𝑛𝑙 (𝑟, 𝜇hole

eff )𝑌𝑙𝑚 (𝜃, 𝜙) for hole states (5.129)
𝜓cv
𝑎 (r) = 𝑅𝑛𝑙 (𝑟, 𝜇elec

eff )𝑌𝑙𝑚 (𝜃, 𝜙) for particle states (5.130)

Although both density fitting[53] and the control variate schemes use Gaussian functions, their
purpose and implementation are very different. When using the control variate scheme, the goal is
to reduce numerical error. When using density fitting, the goal is to approximate it. Specifically in
the control variate, the integral of 𝑓𝑝𝑞 is expressed as:

Control variate: ⟨ 𝑓𝑝𝑞⟩ = 𝛼⟨ 𝑓 0
𝑝𝑞⟩ + ⟨( 𝑓𝑝𝑞 − 𝛼 𝑓 0

𝑝𝑞)⟩ (5.131)

⟨ 𝑓 0
𝑝𝑞⟩ → Calculate analytically (5.132)

⟨( 𝑓𝑝𝑞 − 𝛼 𝑓 0
𝑝𝑞)⟩ → Calculate numerically (5.133)

Density fitting: ⟨ 𝑓𝑝𝑞⟩ ≈ ⟨ 𝑓 0
𝑝𝑞⟩ (5.134)

There are two main differences between control variate and density fitting:

1. When using the control variate scheme, the error in fitting the integral is always calculated.
The error in the estimation of the integral comes from the numerical approximation to the
analytical fitting error. If we were to replace the numerical integral, ⟨( 𝑓 − 𝑓0)⟩, by an
analytical integral, we would recover the exact integral. The origin of error in density fitting
comes from the finite expansion of the auxiliary basis. While in the control variate the error
is from the numerical approximation to the residue-error integral, ⟨( 𝑓 − 𝑓0)⟩.

⟨( 𝑓 − 𝑓0)⟩analytical ≈ ⟨( 𝑓 − 𝑓0)⟩MonteCarlo (5.135)

2. Unlike density-fitting’s attribute of fit-once-use-everywhere, the control variate approach is
kernel dependent. This means that the integrals ⟨ 𝑓𝑝𝑞𝐾𝐴⟩ and ⟨ 𝑓𝑝𝑞𝐾𝐵⟩ will have different
control variate parameters 𝛼𝐴 and 𝛼𝐵, respectively. These parameters are obtained by
minimizing the variance as shown below:

min
𝛼

⟨[( 𝑓𝑝𝑞 − 𝛼 𝑓 0
𝑝𝑞)𝐾𝐴]2⟩ → 𝛼𝐴 (5.136)

min
𝛼

⟨[( 𝑓𝑝𝑞 − 𝛼 𝑓 0
𝑝𝑞)𝐾𝐵]2⟩ → 𝛼𝐵 (5.137)

One approach to do the above integrals efficiently is to first expand the square term and then perform
the 𝛼-independent integrals separately as shown below.

𝐼𝐴 (𝛼) = ⟨[( 𝑓𝑝𝑞 − 𝛼 𝑓 0
𝑝𝑞)𝐾𝐴]2⟩ (5.138)

= 𝛼2⟨( 𝑓 0
𝑝𝑞𝐾𝐴)2⟩ + 2𝛼⟨ 𝑓 0

𝑝𝑞 𝑓𝑝𝑞𝐾
2
𝐴⟩ + ⟨( 𝑓𝑝𝑞𝐾𝐴)2⟩ (5.139)
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5.6 Conclusions

This work presents the development and implementation of the stratified stochastic enumeration
of molecular orbitals (SSE-MO) method for construction of the self-energy operator. The central
idea of this method is to express the self-energy operator in a composite space, which is generated
by combining the 3D Cartesian space of molecular orbitals with the discrete integer space of
the molecular orbital indices. In conjunction, a stratified sampling Monte Carlo scheme was
also developed for the efficient evaluation of the complex self-energy operator and its frequency
derivatives. The SSE-MO method was applied to a series of CdS and PbS QDs, and the IPs of
these QDs were obtained from both single-shot and iterative solution of the second order diagonal
approximation to the Dyson equation. The results from these calculations showed that the IPs
decreased with increasing dot size. The imaginary component of the self-energy operator was
used to construct the single-pole frequency-dependent spectral functions of the quantum dots. The
quantum dots with the longest relative lifetimes of the quasi-hole state were identified. Although it
is known that the results obtained from calculations of the self-energy are basis set dependent[27,
22], the performance of the SSE-MO method itself is independent of the choice of basis set. The
adaptive nature of the SSE-MO method enables the identification of the important contributors
to the overall self-energy, in any given basis, and subsequently enables the optimal allocation of
sampling effort, regardless of the size of the chosen basis set. The strategy of stochastic enumeration
used in the SSE-MO method can also be interpreted in the broader context of stochastic tensor
contraction methods and can be applied to other areas of quantum mechanics, where the sequential
enumeration of summations is computationally prohibitive. [114]
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Chapter 6

Background: Time-Dependent Schrödinger
Equation and Time-dependent Perturbation Theory

6.1 Scope of Chapter Content

This chapter provides a basic introduction to first-order time-dependent perturbation theory (TDPT).
Light-matter interactions are central to many chemically relevant processes, such as photoemission
and inverse photoemission processes. Experimentally, processes involving light-matter interactions
are often probed using spectroscopic techniques. It is relevant to mention that there are some non-
trivial disadvantages when using experimental techniques for initial screening or identification of
materials for specific applications of interest. For example, one of these disadvantages is that in
order to investigate light-matter interaction induced processes in materials, the material must first
either be procured or synthesized. Either the procurement or synthesis of the material can become
inefficient, in terms of both monetary cost and time. This is especially true if many of the initially
investigated materials prove to be ineffective or inadequate for the specific application of interest.
Before introducing TDPT, the Time-dependent Schrödinger equation (TDSE) is discussed. From a
theoretical perspective, TDPT is a very useful tool for formally describing light-matter interactions
in chemical systems and materials.

6.2 Time-Dependent Schrödinger Equation

To begin this discussion about the TDSE, we will first consider the following time-independent
Schrödinger equation (TISE).

𝐻𝜓𝑛 = 𝐸𝑛𝜓𝑛 (6.1)

In Equation 6.1, the Hamiltonian does not depend on time and is defined as follows.

𝐻 = 𝐻0 +𝑊 (6.2)

In Equation 6.2, 𝑊 is a time-independent potential. Assume that we know the solutions to
Equation 6.1. We will refer to these solutions as 𝜓𝑛 (𝑡 = 0).

Now consider the TDSE, which is given as follows.

𝑖ℏ
𝑑

𝑑𝑡
|Ψ(𝑡)⟩ = 𝐻 |Ψ(𝑡)⟩ (6.3)
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Given that the solutions to Equation 6.2 are known, the solutions to Equation 6.3 can be expressed
as follows.

|Ψ𝑛 (𝑡)⟩ = 𝑒−𝑖𝐸𝑛𝑡/ℏ |𝜓𝑛 (𝑡 = 0)⟩ (6.4)

Suppose that we are interested in determining the expectation value of some operator, 𝐴, for this
time dependent state. This can be achieved as outlined in Equation 6.5.

𝐴(𝑡) = ⟨Ψ𝑛 (𝑡) |𝐴|Ψ𝑛 (𝑡)⟩ = ⟨Ψ𝑛 (0) |𝑒+𝑖𝑡𝐸𝑛/ℏ𝐴𝑒−𝑖𝑡𝐸𝑛/ℏ |Ψ𝑛 (0)⟩ = ⟨Ψ𝑛 (0) |𝐴|Ψ𝑛 (0)⟩ = 𝐴(0) (6.5)

Although the solution provided in Equation 6.4 does indeed describe the time evolution of our
system, upon examination of Equation 6.5 we observe that the expectation value of 𝐴 does not
depend on time. Therefore, the states, Ψ𝑛 (𝑡), are referred to as stationary states. [107, 2]

6.3 Introduction to Time-dependent Perturbation Theory: First-Order

Consider the following time-dependent Hamiltonian.

𝐻 (𝑡) = 𝐻0 +𝑊 (𝑡) (6.6)

In Equation 6.6, 𝑊 (𝑡) is a time-dependent potential and 𝐻0 is time-independent and has known
eigenfunctions and eigenvalues (𝜓𝑛 and 𝐸𝑛). We now write the TDSE as follows.

𝑖ℏ
𝑑

𝑑𝑡
|Ψ(𝑡)⟩ = 𝐻 (𝑡) |Ψ(𝑡)⟩ (6.7)

Next we use Equation 6.4 to expand Ψ(𝑡) as follows.

|Ψ(𝑡)⟩ =
∑︁
𝑛

𝑏𝑛 (𝑡)𝑒−𝑖𝐸𝑛𝑡/ℏ |𝜓𝑛 (𝑡 = 0)⟩ =
∑︁
𝑛

𝑏𝑛 (𝑡)𝑒−𝑖𝐸𝑛𝑡/ℏ |𝜓𝑛 (0)⟩ (6.8)

Note that in Equation 6.8, the coefficients, 𝑏𝑛 (𝑡), are time dependent. Next, we substitute Equa-
tion 6.8 into Equation 6.7 and obtain the following.

𝑖ℏ
𝑑

𝑑𝑡

∑︁
𝑛

𝑏𝑛 (𝑡)𝑒−𝑖𝐸𝑛𝑡/ℏ |𝜓𝑛 (0)⟩ = 𝐻 (𝑡)
∑︁
𝑛

𝑏𝑛 (𝑡)𝑒−𝑖𝐸𝑛𝑡/ℏ |𝜓𝑛 (0)⟩ (6.9)

By substituting 𝐻0 +𝑊 (𝑡) for 𝐻 (𝑡) we obtain the following expression.

𝐻0
∑︁
𝑛

𝑏𝑛 (𝑡)𝑒−𝑖𝐸𝑛𝑡/ℏ |𝜓𝑛 (0)⟩ +𝑊 (𝑡)
∑︁
𝑛

𝑏𝑛 (𝑡)𝑒−𝑖𝐸𝑛𝑡/ℏ |𝜓𝑛 (0)⟩ = 𝑖ℏ
𝑑

𝑑𝑡

∑︁
𝑛

𝑏𝑛 (𝑡)𝑒−𝑖𝐸𝑛𝑡/ℏ |𝜓𝑛 (0)⟩

(6.10)

Next, we left multiply by ⟨𝜓𝑘 (0) |𝑒𝑖𝐸𝑘 𝑡/ℏ and obtain the following.

𝐸𝑘𝑏𝑘 (𝑡)𝑒−𝑖𝐸𝑘 𝑡/ℏ +
∑︁
𝑛

𝑏𝑛 (𝑡)𝑒𝑖𝐸𝑘 𝑡/ℏ𝑒−𝑖𝐸𝑛𝑡/ℏ⟨𝜓𝑘 (0) |𝑊 (𝑡) |𝜓𝑛 (0)⟩ = 𝑖ℏ
𝑑

𝑑𝑡
𝑏𝑘 (𝑡)𝑒−𝑖𝐸𝑘 𝑡/ℏ (6.11)
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By setting 𝜔𝑘𝑛 = (𝐸𝑘 −𝐸𝑛)/ℏ and taking the first derivative of the right-hand side of Equation 6.11
we observe following.

𝑖ℏ
𝑑

𝑑𝑡
𝑏𝑘 (𝑡) =

∑︁
𝑛

𝑏𝑛 (𝑡)𝑒𝑖𝜔𝑘𝑛𝑡𝑊𝑘𝑛 (𝑡) (6.12)

In Equation 6.12,𝑊𝑘𝑛 (𝑡) is defined as given below.

𝑊𝑘𝑛 (𝑡) = ⟨𝜓𝑘 (0) |𝑊 (𝑡) |𝜓𝑛 (0)⟩ (6.13)

Let us assume that we know that at 𝑡 = 0 the system is in some state, which we will denote as 𝑗 .
We will also assume that at time, 𝑡, the perturbation is small so that the change in the coefficients is
negligible. At 𝑡 = 0, these assumptions impose the following conditions on the coefficients. [107,
2]

𝑏 𝑗 (𝑡 = 0) = 𝑏 𝑗 (0) = 1 (6.14)

𝑏𝑛 (𝑡 = 0) = 𝑏𝑛 (0) = 0 for 𝑛 ≠ 𝑗 (6.15)

At time, 𝑡, the conditions imposed on the coefficients are as follows.

𝑏 𝑗 (𝑡) ≃ 1 (6.16)

𝑏𝑛 (𝑡) ≃ 0 for 𝑛 ≠ 𝑗 (6.17)

By integrating both sides of Equation 6.12 from 0 to 𝑡 and applying the above conditions, we can
obtain 𝑏𝑘 (𝑡) using the following expression. [107, 2]

𝑏𝑘 (𝑡) − 𝑏𝑘 (0) =
1
𝑖ℏ

∫ 𝑡

0
𝑑𝑡′𝑒𝑖𝜔𝑘 𝑗 𝑡

′
𝑊𝑘 𝑗 (𝑡′) (6.18)

Since 𝑘 is the final state of our system, we can set 𝑏𝑘 (0) = 0 and re-write Equation 6.18 as follows.

𝑏𝑘 (𝑡) =
1
𝑖ℏ

∫ 𝑡

0
𝑑𝑡′𝑒𝑖𝜔𝑘 𝑗 𝑡

′
𝑊𝑘 𝑗 (𝑡′) (6.19)

The expression in Equation 6.19, provides the first-order approximation to the coefficients, 𝑏𝑘 (𝑡),
from time-dependent perturbation theory. Using Equation 6.19, the transition probability, for
transition from the initial state ( 𝑗) to the final state (𝑘), can be obtained as follows. [107, 2]

𝑃 𝑗 𝑘 (𝑡) = |𝑏𝑘 (𝑡) |2 =

���� 1
𝑖ℏ

∫ 𝑡

0
𝑑𝑡′𝑒𝑖𝜔𝑘 𝑗 𝑡

′
𝑊𝑘 𝑗 (𝑡′)

����2 (6.20)

It is important to highlight that the validity of Equation 6.18, Equation 6.19, and Equation 6.20 is
contingent upon the assumption that the time-dependent perturbation,𝑊 (𝑡), is small. Additionally,
within this frame-work, knowledge of the eigenfunctions and eigenvalues of 𝐻0 is required. [107,
2]
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Chapter 7

Enhancement of Spontaneous Photon Emission in
Inverse Photoemission Transitions in Semiconductor
Quantum Dots

7.1 Scope of Chapter Content

This chapter presents a computational and theoretical investigation into the inverse photoemission
processes in a variety of quantum dots (CdS, CdSe, PbS, and PbSe). Inverse photoemission occurs
when an incident electron is captured by a material in one of the high energy unoccupied states.
This captured electron then subsequently de-excites to a lower energy unoccupied state, resulting in
the emission of a photon. We investigated the inverse photoemission (IPE) processes in these dots,
both in the absence of an external electric field and when the dots are in the presence of a Stark field.
Furthermore, we studied the effect of field direction and magnitude on the inverse photoemission
transition probabilities and the energies of the emitted photons. In order to construct the spectra
for the CdS, CdSe, PbS, and PbSe dots, we combined the Frequency-Dependent Geminal-Screened
interaction kernel method (FD-GSIK) [73] with time-dependent perturbation theory.

The reason we are interested in the inverse photoemission processes in quantum dots is because
insight into the IPE processes in quantum dots can provide insight that is valuable for a variety
of applications such as, the development of scintillators and for achieving a greater understanding
of the surface chemistry of these materials by studying their unoccupied states. Additionally,
investigation into the effect an external electric field on the IPE processes in these materials
can provide important information that can aid in the identification of materials that are useful
for electroluminescence applications and for the development of new highly controllable photon
sources. It is essential to highlight that investigating the effects of the direction and magnitude of
an external electric field on the IPE spectra of these materials can provide insight into information
that can be used to systematically enhance the inverse photoemission processes in materials or alter
the energy of the emitted photon. Here, we present evidence of field-induced enhancement of IPE
intensities, field-dependent control of emitted photon frequencies, and enhancement of light-matter
interaction using directed Stark fields.
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7.2 Introduction

Inverse photoemission (IPE) occurs when a material captures an incident electron in one of the
high-energy unoccupied states, which then can subsequently de-excite to a lower-energy unoccupied
state by spontaneous emission of a photon. One can infer information about the unoccupied states
using the kinetic energy of the incident electron and the energy of the emitted photon. IPE, which
is also referred to as radiative electron capture, has been previously used for studying electron–ion
radiative recombination in electron scattering events. [25, 80]

IPE spectroscopy has been used to investigate the unoccupied states of various chemical sys-
tems and materials,[113, 21, 40, 68] for example, the LUMO energies of various 𝜋-conjugated
organic molecules and molecular organic semiconductors. [44, 29, 129] In conjunction with other
techniques, IPE spectroscopy has been used to investigate the band structure of spatially aligned
graphene nanoribbons on stepped Au(788) surfaces and has also been used to probe the con-
duction bands of solar cell components and PbS quantum dots in thin films. [77, 105, 76] IPE
spectroscopy has also been used to investigate the effects of ion bombardment on the unoccupied
electronic surface states of Ni(110). [127] A newer technique, low-energy inverse photoemission
spectroscopy (LEIPS), was developed to circumvent the damaging effects of IPE spectroscopy
on organic semiconductors. [126] It has been shown that the signal intensity for LEIPS can be
enhanced by exploiting the occurrence of surface plasmon resonance in Ag nanoparticles. [118]

The IPE process has also been theoretically and computationally investigated for some chemical
systems. For example, the inverse photoemission and photoemission processes in NiO have been
simulated by the use of complete active space self-consistent field theory and periodic many-body
G0W0 calculations. [1] In another work, the density of states of the valence and conduction
bands of metal halide perovskites were theoretically investigated using density functional theory
and experimentally investigated using IPE spectroscopy, along with ultraviolet photoemission
spectroscopy. [35]

IPE spectroscopy enables the investigation of states that cannot be accessed using single-photon
photoemission spectroscopy.[113] Additionally, IPE spectroscopy is an alternative to two-photon
photoemission spectroscopy and near-edge X-ray absorption fine structure (NEXAFS), which can
provide direct and clear information about the unoccupied states in materials. [121, 14, 13, 81, 113]
IPE spectroscopy allows for the investigation of unoccupied states while avoiding the complications
that arise due to the formation of a core hole. As a result, electron–hole interactions do not need to
be considered. [81, 113, 14]

The quantum chemical investigation of the IPE process introduces additional challenges com-
pared to charge-neutral electronic excitations due to the unbound nature of the incoming electron.
Consequently, one has to deal with not only bound states with 𝐸 < 0 but also scattering states
with 𝐸 > 0. The computational investigation of IPE processes in quantum dots (QDs) introduces
additional difficulties not encountered for small molecules. Specifically, quantum dots have a high
density of states which dramatically increase the number of possible virtual-to-virtual transitions.
For example, in the case of Pb140S140, which is the largest system studied in this work, the total
number of possible transitions, that can take part in the IPE process is in excess of 1 million.
Additionally, due to the large number of molecular orbitals and basis functions, the treatment
of electron–electron correlation becomes challenging because of the computationally expensive
AO-to-MO transformation of the required two-electron integrals.

In this study, we demonstrate that the judicious selection of external static electric field strengths
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and directions (henceforth referred to as the Stark fields) can significantly enhance spontaneous
photon emission from the IPE transitions. We present a new theoretical approach, developed by
combining the frequency-dependent geminal-screened interaction kernel method (FD-GSIK)[73]
with time-dependent perturbation theory, for investigating IPE transitions in CdS, CdSe, PbS, and
PbSe QDs. The central quantity of interest for the IPE process is the lineshape function, 𝑔(𝜔),
and the ratio, 𝑔(𝜔2)/𝑔(𝜔1), which can be used to quantify the relative transition probability of
photon emission as a function of the emitted photon frequency (𝜔). The presence of a Stark field
modifies the molecular orbitals and the molecular orbital energies{𝜖field-on

𝑝 , 𝜒field-on
𝑝 } (Figure 7.1).

Consequently, this changes both the QD–electron and QD–light interaction terms and modifies

Figure 7.1: Impact of Stark field on IPE process. Incoming electrons have a distribution of kinetic
energies (shown in purple). Application of external electric field changes the molecular orbital
energies (shown in green) and the frequency of the emitted photon (ℏ𝜔field-on, shown in red).

the ability of the QD to capture the incoming electron and spontaneously emit a photon with
a given frequency. We quantify the change in the IPE transitions by defining the three critical
metrics associated with the IPE lineshape (𝑔(𝜔)). The first is 𝐼enhancement (Equation 7.1), which
quantifies the change in the most prominent transition (denoted by 𝑔max) in the IPE spectra due to
the application of the Stark field. We define 𝐼enhancement as

𝐼enhancement =
𝑔field-on

max (𝜔) − 𝑔field-off
max (𝜔)

𝑔field-off
max (𝜔)

. (7.1)

Second, Δ𝜔Stark quantifies the effect of the Stark field on the frequency of the dominant transistion
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in the IPE spectra (Equation 7.2). Formally Δ𝜔Stark is defined as

Δ𝜔Stark = 𝜔field-on − 𝜔field-off. (7.2)

Finally, the overall impact of the Stark fields on light–matter interactions is quantified by Δ𝑔lineshape,
which is defined as the cumulative change in the lineshape over the frequency range of [𝜔1, 𝜔2]
and is given by

Δ𝑔lineshape =
1

𝜔2 − 𝜔1

∫ 𝜔2

𝜔1

𝑑𝜔

���𝑔field-on
lineshape(𝜔) − 𝑔

field-off
lineshape(𝜔)

���
𝑔field-off

lineshape(𝜔) + |𝜂 |
. (7.3)

7.3 Theory

First-order propagator for spontaneous emission

𝑖ℏ
𝑑

𝑑𝑡
𝑈rad(𝑡, 𝑡0) = [𝐻 +𝑊 rad(𝜔, 𝑡)]𝑈rad(𝑡, 𝑡0) (7.4)

The first-order approximation to the exact propagator in the eigenbasis of 𝐻 (𝑈 (1)
rad (𝑡)) is known

from time-dependent perturbation theory.

⟨Ψ𝑛 |𝑈 (1)
rad (𝑡, 𝑡0) |Ψ𝑚⟩ =

1
𝑖ℏ

∫ 𝑡

0
𝑑𝜏𝑒𝑖𝜔𝑛𝑚𝜏/ℏ⟨Ψ𝑛 |𝑊 rad(𝜔, 𝜏) |Ψ𝑚⟩ (7.5)

The light-matter interaction is treated using the electric-dipole approximation and the time-
dependence of the field is treated as sine wave, as demonstrated in Equation 7.6.

⟨Ψ𝑛 |𝑊 rad(𝜏, 𝜔) |Ψ𝑚⟩ =
1
2𝑖
𝑊

dipole
𝑛𝑚 (𝑒𝑖𝜔𝜏 − 𝑒−𝑖𝜔𝜏) (7.6)

Substituting Equation 7.6 into Equation 7.5, the first-order propagator can be expressed as,

⟨Ψ𝑛 |𝑈 (1)
rad (𝑡, 𝑡0) |Ψ𝑚⟩ =

−𝑊dipole
𝑛𝑚

2ℏ

∫ 𝑡

0
𝑑𝜏𝑒𝑖(𝜔𝑛𝑚+𝜔)𝜏/ℏ − 𝑒𝑖(𝜔𝑛𝑚−𝜔)𝜏/ℏ (7.7)

and after integration we obtain,

⟨Ψ𝑛 |𝑈 (1)
rad (𝑡, 𝑡0) |Ψ𝑚⟩ =

𝑊
dipole
𝑛𝑚

2𝑖ℏ

[
1 − 𝑒𝑖(𝜔𝑛𝑚+𝜔)𝑡/ℏ

𝜔𝑛𝑚 + 𝜔 − 1 − 𝑒𝑖(𝜔𝑛𝑚−𝜔)𝑡/ℏ

𝜔𝑛𝑚 − 𝜔

]
(7.8)

which can then be simplified to the sine function line-shape as follows.

⟨Ψ𝑛 |𝑈 (1)
rad (𝑡, 𝑡0) |Ψ𝑚⟩ =

𝑊
dipole
𝑛𝑚

2𝑖ℏ

[
𝑖𝑒𝑖(𝜔𝑛𝑚+𝜔)𝑡/ℏ sin[(𝜔𝑛𝑚 + 𝜔)𝑡/2]

(𝜔𝑛𝑚 + 𝜔)/2
− 𝑖𝑒𝑖(𝜔𝑛𝑚+𝜔)𝑡/ℏ sin[(𝜔𝑛𝑚 − 𝜔)𝑡/2]

(𝜔𝑛𝑚 − 𝜔)/2

]
(7.9)
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⟨Ψ𝑛 |𝑈 (1)
rad (𝑡, 𝑡0) |Ψ𝑚⟩ =

𝑊
dipole
𝑛𝑚

2ℏ
sin[(𝜔𝑛𝑚 − 𝜔)𝑡/2]

(𝜔𝑛𝑚 − 𝜔)/2
𝑒𝑖(𝜔𝑛𝑚+𝜔)𝑡/ℏ (7.10)

The final result shows that,

|Ψ(𝑡)⟩ = 𝑈rad(𝑡, 0) |Ψin⟩ (7.11)

and the probability of transition to the final state is given as

𝑃 𝑓 (𝑡) = |⟨Ψ 𝑓 |Ψ(𝑡)⟩|2 (7.12)

We define the transition rate per unit time Γ 𝑓 as,

𝑃 𝑓 (𝑡) = 𝑡Γ 𝑓 (7.13)

where Γ 𝑓 is obtained using numerical approximation to first-order derivative,

Γ 𝑓 =
𝑃 𝑓 (𝑡 + Δ𝑡)

Δ𝑡
(7.14)

The initial state preparation is defined as:

|Ψin⟩ = Ω+ |Ψ𝑁
0 ⟩ (7.15)

The expression for the Möller operator in the eigenket of H is given as

⟨Ψ𝑁+1
𝑛 |Ω+ |Ψ𝑁

0 ⟩ =
∑︁
𝑏

∫ +∞

−∞
𝑑k𝜌inc(k)⟨k|𝑤e−dot |𝑏⟩⟨Ψ𝑁+1

𝑛 |𝑏† |Ψ𝑁
0 ⟩ (7.16)

The probability density 𝜌inc(k) is defined as,

𝜌inc(k) = 𝐶𝜃 (𝐸inc −
ℏ2𝑘2

2𝑚
) (7.17)

and the proportionality constant 𝐶 is obtained from the normalization condition. Integrating over
k-space we get,

𝐶−1 =

∫ +∞

−∞
𝑑k𝜃 (𝐸inc −

ℏ2𝑘2

2𝑚
) (7.18)

Transforming into spherical polar coordinates and integrating over the angular coordinates,

𝐶−1 = 4𝜋
∫ +∞

0
𝑑𝑘𝑘2𝜃 (𝐸inc −

ℏ2𝑘2

2𝑚
) (7.19)

which can be written as,

𝐶−1 = 4𝜋
∫ 𝑘max

0
𝑑𝑘𝑘2 =

4
3
𝜋𝑘3

max (7.20)
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where,

𝐸inc =
ℏ2𝑘2

max
2𝑚

(7.21)

The interaction between the incoming electron and the QD is given by,

⟨k|𝑤e−dot |𝑏⟩ = ⟨k|𝑣ext |𝑏⟩ +
𝑁∑︁
𝑖=1

⟨k𝑖 |𝑟−1
12 (1 − 𝑃12) |𝑏𝑖⟩ (7.22)

Substituting,

⟨Ψ 𝑓 |Ψ(𝑡)⟩ = ⟨Ψ 𝑓 |𝑈rad(𝑡, 0)Ω+ |Ψ𝑁
0 ⟩ (7.23)

Inserting a complete set of eigenkets of the 𝐻,

⟨Ψ 𝑓 |Ψ(𝑡)⟩ =
∑︁
𝑚

⟨Ψ 𝑓 |𝑈rad(𝑡, 𝜔) |Ψ𝑚⟩⟨Ψ𝑚 |Ω+ |Ψ𝑁
0 ⟩ (7.24)

which implies,

⟨Ψ 𝑓 |Ψ(𝑡)⟩ =
∑︁
𝑏

∑︁
𝑚

∫ +∞

−∞
𝑑k𝜃 (𝐸inc −

ℏ2𝑘2

2𝑚
)⟨Ψ 𝑓 |𝑈rad(𝑡, 𝜔) |Ψ𝑚⟩⟨k|𝑤e−dot |𝑏⟩⟨Ψ𝑁+1

𝑚 |𝑏† |Ψ𝑁
0 ⟩

(7.25)

Defining the pole-strength 𝐴𝑚𝑏 as,

𝐴𝑚𝑏 = ⟨Ψ𝑁+1
𝑚 |𝑏† |Ψ𝑁

0 ⟩ (7.26)

and the matrix element 𝑤e−dot
k𝑏 as,

𝑤e−dot
k𝑏 = ⟨k|𝑤e−dot |𝑏⟩ (7.27)

The probability amplitude can be expressed as follows.

⟨Ψ𝑎 |Ψ(𝑡)⟩ = 1
2ℏ

∑︁
𝑏

∑︁
𝑚

∫ +∞

−∞
𝑑k𝜌inc(k)𝑊dipole

𝑎𝑚 𝑤e−dot
k𝑏 𝐴𝑚𝑏

sin[(𝜔𝑎𝑚 − 𝜔)𝑡/2]
(𝜔𝑎𝑚 − 𝜔)/2

𝑒𝑖(𝜔𝑛𝑚+𝜔)𝑡/ℏ (7.28)

Calculation of zero-field inverse photoemission spectra

The electron capture process and subsequent spontaneous emission of the photon were calculated
using time-dependent perturbation theory (TDPT). The TDPT formulation had been derived earlier
for treating radiative electron capture in electron–ion and electron–atom scattering. Using TDPT,
it can be shown that up to first-order, the contribution to the IPE transition probability amplitude,
𝑇k𝑎, is given by the Feynmann–Goldstone diagram shown in Figure 7.2. The incoming electron
beam was described using a plane wave basis, |k⟩, with a distribution function of 𝜌inc(k). The
distribution function was constructed such that the kinetic energy of the incoming electron is
uniformly distributed in the range of 0–5 eV and is given by 𝜌inc(k) ∝ 𝜃 (𝐸inc − ℏ2𝑘2

2𝑚 ), where the
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Figure 7.2: Feynman–Goldstone diagram for the first-order approximation to the inverse photoe-
mission transition amplitude.

proportionality constant was obtained by enforcing that ⟨𝜌inc(k)⟩ = 1. The electron–QD interaction
(vertex 1 in Figure 7.2) includes both one-body (𝑣ext) and two-body interactions (𝑟−1

12 Coulomb and
exchange). The field–matter interaction is treated semiclassically where the radiative de-excitation
process between states |𝑏⟩ and |𝑎⟩ is treated using the electric dipole approximation (vertex 2 in
Figure 7.2), and the EM field was treated as a time-dependent periodic field with frequency 𝜔.
Using Figure 7.2, the first-order approximation to the ( |k⟩ → |𝑎⟩) IPE transition amplitude is given
as

𝑇k𝑎 (𝜔, 𝑡) =
1

2ℏ

𝑁vir∑︁
𝑏

𝑊
QD–elec
k𝑏 𝑊

QD–light
𝑏𝑎

𝜃 (𝑏 − 𝑎) (7.29)

× sin[(𝜔𝑎𝑏 − 𝜔)𝑡/2]
(𝜔𝑎𝑏 − 𝜔)𝑡/2

𝑒𝑖(𝜔𝑎𝑏+𝜔)𝑡/ℏ,

where𝑊QD–elec
k𝑏 and𝑊QD–light

𝑎𝑏
are the coupling matrix elements for QD–electron and QD–light inter-

actions, and 𝜃 (𝑏− 𝑎) ensures that the transitions are de-excitations. The sine term in Equation 7.29
is the resonance contribution to transition amplitude, and the corresponding anti-resonance term,
with 𝜔𝑎𝑏 + 𝜔, was ignored. The lineshape function, 𝑔(𝜔), was obtained by integrating over the
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distribution of incoming k-vectors and all de-excitation channels and is given as

𝑔(𝜔) = lim
𝑡→+∞

∑︁
𝑎

∫ +∞

−∞
𝑑k𝜌inc(k) |𝑇k𝑎 (𝑡) |2. (7.30)

The 𝑡 → +∞ limit of sin(𝜃𝑡)/(𝜃𝑡) results in the delta function 𝛿(𝜔𝑎𝑏 − 𝜔). The IPE spectra were
obtained by numerically calculating the long-time limit of Equation 7.30, and the value of 𝑡max was
obtained by setting 𝑡max𝜔𝑎𝑏 = 1000 for the transition with the highest oscillator strength.

The first-order correction to the IPE transition amplitudes due to electron–electron correla-
tion was obtained using the frequency-dependent geminal-screened interaction kernel (FD-GSIK)
method.[7, 8, 9, 73] The FD-GSIK method was used to obtain accurate de-excitation energies
𝜔FD-GSIK
𝑎𝑏

, which were then used in Equation 7.29. In addition to FD-GSIK, electron–electron
correlation effects can also be included using the vertex correction derived from MBPT.[61, 60]
We compare the IPE spectrum, obtained using the FD-GSIK method, with the spectrum obtained
using vertex-corrected MBPT [61, 60]. We restricted the energy of the incoming electron, which
initiates the inverse photoemission event, to be less than or equal to 5 eV. We calculated the relative
transition probabilities of observing the spontaneous emission of a photon in the range of 3 to 6 eV
for all of the dots. For each spectrum, the relative transition probability (ordinate) was obtained
by dividing the transition probability, at each value of 𝜔 (abscissa), by the maximum transition
probability value. In all cases, the results from the FD-GSIK method were tested against the MBPT
vertex correction method [61], and both methods were found to be in good agreement with each
other.

The structures for the dots were obtained from their respective bulk lattices. The Hartree–Fock
calculations were performed using the LANL2DZ basis with the LANL2DZ ECP potential using
the TERACHEM electronic structure package. The integration over the plane-wave basis was per-
formed stochastically where the incident energy 𝐸inc was used to fix the magnitude of the k-vector
and was sampled with 1 meV spacing in the range 0 to 5 eV. The direction of the k-vector was
sampled uniformly by picking unit vectors on a unit sphere using the Marsaglia algorithm. [71, 78]

Calculation of Stark effect on IPE spectra:

The effect of the external DC Stark field was included as the one-body potential to the field-free
Fock operator,

𝑓 field-on = 𝑓 field-off − 𝐸Stark(n̂Stark · r). (7.31)

The field-free Fock operator was diagonalized to obtain the field-dependent dressed molecular or-
bital and energies [10] {𝜖field-on

𝑝 , 𝜒field-on
𝑝 }, which were then used for the calculation of the 𝑔field-on(𝜔)

lineshape function (Equation 7.30). The direction of the Stark field was selected to be along the
Cartesian directions (n̂Stark = x,y,z) for a range of 𝐸Stark, and the resultant increase in IPE transition
probability is presented in Table 7.3. The maximally coupled electric field directions were deter-
mined by fixing the 𝐸Stark = 1 and searching over n̂ directions such that Δ𝑔lineshape is maximized.
The maximally coupled electric field directions are formally defined as

n̂max-coupled
Stark = arg max

𝐸Stark=1,n̂Stark∈unit sphere
Δ𝑔lineshape. (7.32)
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In this work, we restricted the set of the directions to be composed of 26 unique directions on the
unit sphere, where each component of these vectors was restricted such that they can only take on
values of either -1,0, or +1. This resulted in a set of 27 vectors, out of which the [0, 0, 0] vector
was discarded, and the remaining vectors were normalized to one.

7.4 Results

Zero-field inverse photoemission spectra

In subplot A of Figure 7.3, we see that there are two prominent peaks of the inverse PE spectra
of Cd24S24, while in subplot B we see that there are four prominent peaks of the Inverse PE
spectrum of Cd45S45. The peak with the greatest intensity for Cd24S24 occurs at 3.091 eV. The
second most prominent peak of this spectrum occurs at approximately 3.65 eV. The peak with the
greatest intensity for Cd45S45 occurs at 3.030 eV. The second largest peak of this spectrum occurs
at approximately 3.85 eV while the third and fourth largest peaks occur at approximately 3.65 and
3.25 eV, respectively. As can be observed from interpreting Figure 7.3, the most probable energy
of the emitted photon, due to the occurrence of an inverse PE event, is very close to 3 eV for both of
the CdS dots. In subplot A of Figure 7.4, we see that there are four prominent peaks of the inverse

Figure 7.3: Subplots A and B (relative transition probability versus 𝜔) display the inverse pho-
toemission spectra obtained using the FD-GSIK method and MBPT for the Cd24S24 and Cd45S45
quantum dot, respectively.

PE spectra of Cd24Se24, while in subplot B we see that there are three prominent peaks of the
Inverse PE spectrum of Cd54Se54. The peak with the greatest intensity for Cd24Se24 occurs at 3.333
eV. The second most prominent peak of this spectrum occurs at approximately 3.15 eV, while the
third and fourth largest peaks occur at approximately 4.50 and 3.50 eV, respectively. The peak with
the greatest intensity for Cd54Se54 occurs at 3.273 eV. The second and third largest peaks of this
spectrum occur at approximately 3.80 eV and 4.00 eV, respectively. In subplot A of Figure 7.5, we
see that there are four prominent peaks of the inverse PE spectra of Pb44S44, while in subplot B we
see that there are six prominent peaks of the Inverse PE spectrum of Pb140S140. The peak with the
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Figure 7.4: Subplots A and B (relative transition probability versus 𝜔) display the inverse photoe-
mission spectra obtained using the FD-GSIK method and MBPT for the Cd24Se24 and Cd54Se54
quantum dots, respectively.

greatest intensity for Pb44S44 occurs at 3.091 eV. The second most prominent peak of this spectrum
occurs at approximately 3.40 eV, while the third and fourth largest peaks occur at approximately
3.50 and 3.25 eV, respectively. The peak with the greatest intensity for Pb140S140 occurs at 3.788
eV. The second and third largest peaks of this spectrum occur at approximately 3.65 eV and 3.20
eV, respectively, while the fourth, fifth, and sixth largest peaks occur at approximately 4.15 eV, 4.10
eV and 3.05 eV, respectively In subplot A of Figure 7.6, we see that there are five prominent peaks

Figure 7.5: Subplots A and B (relative transition probability versus 𝜔) display the inverse pho-
toemission spectra obtained using the FD-GSIK method and MBPT for the Pb44S44 and Pb140S140
quantum dots, respectively.

of the inverse PE spectra of Pb29Se29, while in subplot B we see that there are two prominent peaks
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of the Inverse PE spectrum of Pb52Se52. The peak with the greatest intensity for Pb29Se29 occurs at
0.909 eV. The second and third largest peaks of this spectrum occur at approximately 1.10 eV and
0.60 eV, respectively, while the fourth and fifth largest peaks occur at approximately 0.10 eV and
2.00 eV, respectively. The peak with the greatest intensity for Pb52Se52 occurs at 3.212 eV, while
the second most prominent peak of this spectrum occurs at approximately 3.15 eV .

Figure 7.6: Subplots A and B (relative transition probability versus 𝜔) display the inverse photoe-
mission spectra obtained using the FD-GSIK method and MBPT for the Pb29Se29 and Pb52Se52
quantum dots, respectively.

Field-induced increase of IPE transition probability

In this work, the energies of the incoming electrons, which initiated the IPE transitions, were
restricted to be less than or equal to 5 eV. The impact of the external static electric field on QDs was
investigated for five different electric field strengths (denoted as 𝐸Stark = 𝐸1, . . . , 𝐸5) with values
[−2,−1, 0, +1, +2] × 10−5𝐸au along three Cartesian (x,y,z) directions. The field strengths were
selected to be weak and non-ionizing for all the QDs studied with 𝑒𝑎0𝐸Stark/𝐸IP ≤ 10−5, where 𝐸au
is the electric field in atomic units, 𝑒 is the charge of the electron, 𝑎0 is the Bohr radius, and 𝐸IP
is the ionization potential. For each electric field, the value of 𝜔 at which the maximum relative
transition probability occurs corresponds to the most probable energy of the photon that is emitted
as a result of an inverse photoemission event, under the conditions previously described. In order
to effectively visualize the spectra for all of the electric fields on a single plot for each direction,
we shifted the values of the relative transition probabilities for each spectrum by adding a unique
constant. The E1 spectrum was shifted upwards by adding 12 to each value of the relative transition
probability and the E2 spectrum was shifted upwards by adding 9 to each value of the relative
transition probability. The E3 and E4 spectra were shifted upwards by adding 6 and 3 to each value
of the relative transition probabilities, respectively. The values of the relative transition probability
were not shifted for the E5 spectrum. In Table 7.1, descriptions of the electric fields, E1, E2, E3,
E4, and E5, are provided. The greatest enhancement of the IPE transition probabilities for Cd24S24
and Cd45S45 was achieved with an electric field aligned with these dots along the x-axis, while
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Table 7.1: Electric Field Vector Information

field x-component y-component z-component
E1x −2.0 × 10−5 0.0 0.0
E2x −1.0 × 10−5 0.0 0.0
E3x 0.0 0.0 0.0
E4x 1.0 × 10−5 0.0 0.0
E5x 2.0 × 10−5 0.0 0.0
E1y 0.00 −2.0 × 10−5 0.0
E2y 0.00 −1.0 × 10−5 0.0
E3y 0.0 0.0 0.0
E4y 0.00 1.0 × 10−5 0.0
E5y 0.00 2.0 × 10−5 0.0
E1z 0.00 0.00 −2.0 × 10−5

E2z 0.00 0.00 −1.0 × 10−5

E3z 0.0 0.0 0.0
E4z 0.00 0.00 1.0 × 10−5

E5z 0.00 0.00 2.0 × 10−5

Table 7.2: Percent change in maximum relative transition probabilities for electric fields along x,
y, and z directions (Equation 7.1).

Chemical System 𝐼x
enh. 𝐼

y
enh. 𝐼z

enh.

Cd24S24 156% −5% 152%
Cd45S45 205% 200% 168%
Cd24Se24 33% 56% 117%
Cd54Se54 161% 35% 188%
Pb44S44 15% 15% 25%

Pb140S140 94% 19% 94%
Pb29Se29 268% 98% 279%
Pb52Se52 24% −14% −14%

for Cd24Se24 and Cd54Se54 the greatest enhancement occurred in the presence of an electric field
aligned along the z-axis (Table 7.2). Out of all the QDs, the most significant enhancement of the
IPE transition probability was observed for Pb29Se29 when the field was aligned along the z-axis.
The Stark field also suppresses the IPE transition probability for some systems. For example, for
Pb52Se52 we observed a decrease in the IPE transition probability for the fields aligned along the y-
and z-axes (Table 7.2). Figures 7.7-7.14 contain plots of the relative transition probability (ordinate)
versus 𝜔 (abscissa) for CdS, CdSe, PbS, and PbSe quantum dots, in the presence of electric fields
of differing strengths (E1, E2, E3, E4, and E5), aligned with the dots along either the x, y, or z axis.
For each spectrum in figures 7.7-7.14, the relative transition probability was obtained by dividing
the transition probability at each value of 𝜔 by the maximum value of the transition probability for
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the E3 spectrum. It is relevant to note that the spectrum labeled E3, was obtained for the quantum
dots in the absence of an electric field. For the plots subplots A in each figure, the electric fields
are aligned with the quantum dots along the x-direction. For subplots B and C, the electric fields
are aligned with the quantum dots along the y-direction and z-direction, respectively.

Figure 7.7: Relative transition probability (ordinate) versus𝜔 (abscissa) for Cd24S24 in the presence
of electric fields aligned along the x-direction (Subplot A), y-direction (Subplot B), and z-direction
(Subplot C).

Field-induced shift in frequency of spontaneously emitted photon

The frequency of the emitted photons at maximum intensity depended strongly on the direction of
the Stark field. For example, in the case of Cd54Se54, in the presence of the 𝐸2 field aligned along
the z-axis, the energy of the emitted photon was found to be blue-shifted by 0.727 eV. However,
for fields 𝐸4 and 𝐸5, no shift in the emitted frequency was observed. The Stark shift in the
emitted frequency (defined in Equation 7.2) was found to be blue-shifted for all the QDs (Table 7.3)
except for Cd24Se24 and Pb29Se29, both of which exhibited a red-shift. These field-dependent
IPE calculations demonstrate (Table 7.3) that the non-ionizing weak Stark fields studied here are
capable of generating a shift in the emitted photon frequency in the range of [−0.8, +0.8] eV.
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Figure 7.8: Relative transition probability (ordinate) versus𝜔 (abscissa) for Cd45S45 in the presence
of electric fields aligned along the x-direction (Subplot A), y-direction (Subplot B), and z-direction
(Subplot C).

Table 7.3: Change in emitted photon energies (eV) at the maximum relative transition probabilities
for electric fields aligned along x, y, and z directions (Equation 7.2).

Chemical 𝜔field-off Δ𝜔field-on
x Δ𝜔field-on

y Δ𝜔field-on
z

System

Cd24S24 3.091 0.061 0.061 0.061
Cd45S45 3.030 0.848 0.848 0.848
Cd24Se24 3.333 -0.212 -0.212 -0.303
Cd54Se54 3.273 0.545 0.727 0.727
Pb44S44 3.091 0.424 0.424 0.424

Pb140S140 3.788 0.606 0.606 0.606
Pb29Se29 0.909 -0.848 0.000 -0.727
Pb52Se52 3.212 0.182 0.152 0.152
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Figure 7.9: Relative transition probability (ordinate) versus 𝜔 (abscissa) for Cd24Se24 in the
presence of electric fields aligned along the x-direction (Subplot A), y-direction (Subplot B), and
z-direction (Subplot C).
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Figure 7.10: Relative transition probability (ordinate) versus 𝜔 (abscissa) for Cd54Se54 in the
presence of electric fields aligned along the x-direction (Subplot A), y-direction (Subplot B), and
z-direction (Subplot C).
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Figure 7.11: Relative transition probability (ordinate) versus𝜔 (abscissa) for Pb44S44 in the presence
of electric fields aligned along the x-direction (Subplot A), y-direction (Subplot B), and z-direction
(Subplot C).
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Figure 7.12: Relative transition probability (ordinate) versus 𝜔 (abscissa) for Pb140S140 in the
presence of electric fields aligned along the x-direction (Subplot A), y-direction (Subplot B), and
z-direction (Subplot C).
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Figure 7.13: Relative transition probability (ordinate) versus 𝜔 (abscissa) for Pb29Se29 in the
presence of electric fields aligned along the x-direction (Subplot A), y-direction (Subplot B), and
z-direction (Subplot C).
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Figure 7.14: Relative transition probability (ordinate) versus 𝜔 (abscissa) for Pb52Se52 in the
presence of electric fields aligned along the x-direction (Subplot A), y-direction (Subplot B), and
z-direction (Subplot C).
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Enhancement of light–matter interaction using directed Stark field

The direction of the applied Stark field can be used to enhance light–matter coupling and increase the
spontaneous emission characteristic of the QDs. We demonstrated this phenomenon by calculating
the cumulative change in the IPE spectra (Equation 7.3) as a function of Stark field direction while
restricting the field strength to 10−5𝐸au. A search over a set of directions was performed, and the
direction corresponding to the maximum change in the IPE lineshape over the entire frequency
range was selected. We refer to this direction as the maximally coupled direction because this
directed Stark field induced the most significant change in the light–matter interaction in the QDs.
The IPE spectra for Cd24S24 in the presence of the maximally coupled field displayed the greatest

Table 7.4: Overall change in the IPE spectra for maximally coupled directed Stark fields (Equa-
tion 7.3).

Chemical Δ𝑔lineshape Optimized Stark field
System direction

Cd24S24 193% [ 1√
3
,− 1√

3
,− 1√

3
]

Cd45S45 189% [0, 1, 0]
Cd24Se24 115% [0,− 1√

2
,− 1√

2
]

Cd54Se54 103% [− 1√
2
, 0,− 1√

2
]

Pb44S44 66% [− 1√
3
,− 1√

3
,− 1√

3
]

Pb140S140 148% [ 1√
3
, 1√

3
,− 1√

3
]

Pb29Se29 155% [− 1√
3
,− 1√

3
, 1√

3
]

Pb52Se52 189% [ 1√
2
,− 1√

2
, 0]

enhancement of light–matter coupling (193%), while Pb44S44 displayed the least enhancement
(66%). In figures 7.15-7.18, the IPE spectra (relative transition probability versus 𝜔) are displayed
for the CdS, CdSe, PbS, and PbSe quantum dots when in the presence an electric field direction with
which they are maximally-coupled. The spectra for when an external electric field is absent (E3)
are also displayed in these plots. Again, it is important to note that the maximally-coupled electric
field direction does not necessarily correspond to the field that results in the largest total relative
transition probability. Instead, the field directions with which the dots are maximally-coupled
produce the largest change in the maximum relative transition probabilities compared to maximum
relative transition probabilities observed in the absence of an electric field.

For most of the quantum dots, the presence of the maximally-coupled electric field produces a
noticeable shift in the energy of the emitted photon compared to energy of the emitted photon in
the absence of an electric field, as is verified by Figure 7.15-Figure 7.18. For example, in subplot
A of Figure 7.15 we see that when the Cd24S24 is in the presence of the maximally-couple field,
the most probable energy of the emitted photon is 3.939 eV, while in the absence of an electric
the most probable energy of the emitted photon is 3.091 eV. It is of paramount importance to note
that these maximally-coupled electric fields are fields that result in either the greatest enhancement
or de-enhancement of the inverse photoemission processes. For example, the maximally-coupled
electric fields de-enhance the IPE processes in the Pb44S44 and Pb140S140 dots (Figure 7.17).
Conversely, the maximally-coupled electric fields enhance the IPE processes in the CdS, CdSe,
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and PbSe QDs. In particular, especially strong enhancement of the IPE processes is observed for
Cd24S24 (Figure 7.15) and Pb29Se29 (Figure 7.18).

Figure 7.15: Relative transition probability versus 𝜔 for Cd24S24 (subplot A) and Cd45S45 (subplot
B), in the presence of electric fields with which the dots are maximally coupled, along with the
spectra for the E3 field.

Figure 7.16: Relative transition probability versus𝜔 for Cd24Se24 (subplot A) and Cd54Se54 (subplot
B), in the presence of electric fields with which the dots are maximally coupled, along with spectra
for the E3 field.

We also see that when in the presence of the maximally-coupled fields the number of prominent
peaks in the inverse PE spectra, for all of the systems studied, decreases compared to when an
external electric field is absent. In subplot A of Figure 7.15, we see that there is one dominant peak,
at 3.939 eV, of the spectrum for Cd24S24 in the presence of the maximally-coupled field, while there
are multiple prominent peaks when an external field is absent. In subplot B of Figure 7.15, we also
see that there is also only one dominant peak, at 3.182 eV, of the inverse PE spectrum for Cd45S45
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Figure 7.17: Relative transition probability versus𝜔 for Pb44S44 (subplot A) and Pb140S140 (subplot
B), in the presence of electric fields with which the dots are maximally coupled, along with spectra
for the E3 field.

Figure 7.18: Relative transition probability versus𝜔 for Pb29Se29 (subplot A) and Pb52Se52 (subplot
B), in the presence of electric fields with which the dots are maximally coupled, along with spectra
for the E3 field.

in the presence of the maximally-coupled field, but multiple prominent peaks are observed when
an external field is absent.

In subplot A of Figure 7.16, we see that there is one dominant peak, at 3.515 eV, of the spectrum
for Cd24Se24 in the presence of the maximally-coupled field, while there are multiple prominent
peaks when an external field is absent. In subplot B of Figure 7.16, again we see that there is only
one dominant peak, at 4.000 eV, for the spectrum for Cd54Se54 in the presence of the maximally-
coupled field, but again we see that multiple prominent peaks are observed when an external field
is absent.

By examination of subplot A of Figure 7.17, we see that there are two prominent peaks of the
spectrum for Pb44S44 in the presence of the maximally-coupled field. The most dominant peak for
Pb44S44 in the presence of the maximally-coupled field and in the absence of an external field both
occur at 3.091 eV. We also observe a peak at approximately 3.90 eV, on the spectrum for Pb44S44,
in the presence of the maximally-coupled field. This particular peak is not present in the inverse
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PE spectrum of this dot when an external electric field is absent. In subplot B of Figure 7.17,
we see that there are multiple prominent peaks on the spectrum Pb140S140 in the presence of the
maximally-coupled field. The most prominent peak observed for this systems spectrum when the
maximally-coupled field is present occurs at 3.455 eV. Additionally, by comparing subplot B of
Figure 7.5 and subplot B of Figure 7.17 we observe that the peaks of the spectrum for Pb140S140
in the absence of an external field, occurring at approximately 3.05 eV and 3.65 eV, are greatly
enhanced when the maximally-coupled field is present.

In subplot A of Figure 7.18, we see that there is one dominant peak at 0.364 eV on the spectrum
for Pb29Se29 in the presence of the maximally-coupled field, while there are multiple prominent
peaks when an external field is absent. In subplot B of Figure 7.18, we also see that there is also
only one dominant peak, at 3.394 eV, of the inverse PE spectrum for Pb52Se52 in the presence of
the maximally-coupled field, while two prominent peaks are observed when an external field is
absent. Additionally, we observe that for Pb29Se29 in the presence of the maximally-coupled field,
the most probably energy of the emitted photon is 0.545 eV less than the most probable energy
of the photon emitted when an external field is absent. When Pb52Se52 is in the presence of the
maximally-coupled field, the most probably energy of the emitted photon is 0.182 eV greater than
the most probable energy of the photon emitted when an external field is absent. When in the
presence of the maximally-coupled fields, the number of prominent peaks in the inverse PE spectra
of all of the systems studied, decreases compared to when an external electric field is absent.

7.5 Discussion

Spontaneous photon emission and enhancement of light–matter coupling: As compared to
photoluminescence spectroscopy which involves both spontaneous and stimulated photon emis-
sion, IPE spectroscopy is unique because it involves only the spontaneous emission of a photon.
This provides a remarkable experimental opportunity to solely investigate the spontaneous emissive
characteristics of quantum dots. However, the absence of an incoming radiation field also intro-
duces new challenges in controlling the light–matter interactions which can otherwise be achieved
by changing the intensity, power, frequency, and other optical characteristics of the incident radia-
tion field. In this work, we have demonstrated that the application of Stark fields can significantly
enhance light–matter interactions and favorably impact the IPE process. Specifically, we have
identified field directions that result in the greatest enhancement of light–matter interactions for
CdS, CdSe, PbS, and PbSe QDs, and we have found a significant increase in the IPE transition
probabilities for these systems (Table 7.4). These results demonstrate that the customization of
IPE transition probabilities can be achieved by systematically applying Stark fields, which can be
relevant for electroluminescence applications.[128]
Accessing unoccupied states with low particle-hole oscillator strengths: As opposed to ab-
sorption spectroscopy, IPE spectroscopy does not require a radiation field to induce particle-hole
excitations to generate electronically excited states. Consequently, IPE can be used to investigate
particle–hole excited states with low oscillator strengths which are optically dark. In conjunction
with photoluminescence spectroscopic techniques, IPE spectroscopy can be used to generate en-
hanced maps of optically bright and dark low-lying excited electronic states in QDs. Knowledge
about excited states with low oscillator strengths can also aid in attaining greater insight into the
electrochemical and cyclic voltammetric characteristics of quantum dots. [36, 85, 63, 48, 69]
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Photon emission with sub-bandgap energies: One of the distinguishing characteristics of the IPE
process is that photon emission occurs due to unoccupied-to-unoccupied level transitions. Conse-
quently, because of the intra-band nature of the transitions, the IPE process can potentially generate
photons with energies smaller than the bandgap in wide-bandgap semiconductor materials. For
example, in QDs, the HOMO–LUMO gaps for Pb44S44 and Pb140S140 were found to be 6.30 and
5.6 eV, respectively, while the energies of the emitted photons, resulting from the IPE process, were
found to be 3.1 and 3.8 eV, respectively (Table 7.3).
Stark field control of intra-band transition: The application of a Stark field can be used not only
to increase the intensity of the IPE transition (Table 7.2) but also to change the frequency of the
emitted photon (Table 7.3). This provides an exciting opportunity for narrow-bandgap materials to
optimize the IPE transitions to have a strong spectral overlap with interband particle–hole transi-
tions. For example, in the case of Cd54Se54, the HOMO–LUMO gap is 1.8 eV and field-free IPE
photon energy is 3.3 eV. We also demonstrate, for Cd54Se54, that the application of a directed Stark
field can facilitate an increase in the IPE photon energy from 3.3 to 4.0 eV (Table 7.3).

7.6 Future Directions

In future works, the methodology presented here can be used to investigate the inverse photoemission
processes in a greater variety of materials. Furthermore, because of the observed enhancement in
the IPE transition probabilities for these dots, due the application of the maximally-coupled electric
fields, future investigation into this effect for a greater variety of fields, and also a greater range of
dot sizes may be warranted. Additionally, the effect of the presence of alternating current fields
on the IPE transition probabilities and emitted photon energies can be investigated for a variety of
materials in the future.
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Chapter 8

Nonlinear Stark effect and field-assisted
photoionization in PbS semiconductor quantum dots

8.1 Scope of Chapter Content

This chapter presents a theoretical and computational investigation into field-assisted photoion-
ization in PbS quantum dots. In particular, we investigated how the IPs, for ionization from the
HOMO, of Pb4S4, Pb44S44, and Pb140S140 are impacted by the application of non-ionizing Stark
fields, of differing strengths and directions. The ability to control the position of energy levels
in quantum dots is of great importance for the optimization of optoelectronic devices. In order
to obtain a first-order approximation to the field-dependent Green’s function IPs, of these PbS
systems, we employed the recently developed SSE-MO method accompanied by the use of a Padé
approximation. The results presented in this chapter suggest that the ionization potentials of PbS
quantum dots can be controlled by carefully fine-tuning the magnitude and direction of external
static electric fields.

8.2 Introduction

When in the presence of an external electric field, the optical and electronic properties of chemical
systems are altered. This phenomenon is known as the Stark effect. In many-electron systems,
electronic and optical properties display a non-linear dependence on the strength of an external
electric field (nonlinear Stark effect). For quantum dots, this effect is usually referred to as the
quantum-confined Stark effect. [75, 12, 10] The effects of external electric fields on the optical
properties of quantum dots have been investigated in previous works. [75, 10, 34, 41] It has
also been demonstrated that some properties of nanomaterials such as photoconductivity and
photoluminescence intensity can be modulated by the application of an external electric field.
Additionally, the relationship between QD ionization in the presence of an electric field and
fluorescence quenching has also been a topic of interest. Although the processes of ionization
and exciton ionization has been observed in nanomaterials when in the presence of an external
electric field, an in depth investigation into the relationship between the strength and direction of
static external electric fields and the ionization potentials, for ionization from the HOMO, of PbS
quantum dots has not yet been conducted. [90, 67, 108, 52, 97]

This chapter presents a theoretical and computational investigation into how the IPs, for ion-
ization from the HOMO, of Pb4S4, Pb44S44, and Pb140S140 are impacted by the application of
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Stark fields of differing strengths and directions. In particular, we examined this relationship for
electric fields aligned along axes either parallel or orthogonal with respect to the expectation value
of the dipole moment operator of the HOMOs of these PbS systems. Additionally, we investigated
how the IPs, for ionization from the HOMO, are impacted by external electric fields aligned with
these systems along the x, y, or z axis. A first-order approximation to the field-dependent IPs
were obtained, by single-shot solution of the Dyson equation using the recently published SSE-MO
method, in conjunction with the use of a Padé approximation [114] The use of the Padé approx-
imation, as outlined in the Theory section of this chapter, enables the calculation of sufficiently
accurate field-dependent IPs, in an extremely efficient manner. By comparing the IPs obtained
from the use of the Padé approximation with the field-dependent IPs obtained from the single-shot
solution of the Dyson equation, we demonstrate that sufficiently accurate approximations to IPs can
be obtained using a Padé approximation to the field-dependent self-energy.

8.3 Theory

Field-dependent self-energy operator

To account for the affect of the external electric fields we define the field-dependent Fock operator
as,

𝑓 field-on = 𝑓 field-off − E · r (8.1)

where r is the position operator and E is an electric field vector. The components of both r and E are
in atomic units. The field-dependent dressed orbitals and energies were obtained by diagonalizing
the field-on Fock operator.

𝑓 field-on |𝜒field-on
𝑝 ⟩ = 𝜖field-on

𝑝 |𝜒field-on
𝑝 ⟩ (8.2)

We then define the field-dependent self-energy as given in Equation 8.3.

Σ
(2),field-on
𝑖𝑖

(𝜔) = 1
2

∑︁
𝑗𝑎𝑏

⟨𝑖field-on 𝑗field-on |𝑟−1
12 |𝑎
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12 |𝑖
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𝑗
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+ 1
2
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𝑗𝑎𝑘
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𝑗
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𝑘

In this work, we use only the field-dependent orbital energies to construct the self-energy. This
serves as a first-order approximation to the Green’s function IP when the external electric fields
are present. The first-order approximation for the field-dependent self-energy is displayed in
Equation 8.4.

Σ
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Padé approximation to field-dependent self-energy operator

In addition to the full field-dependent self-energy operator, we also present an approximate deriva-
tion based on the Padé approximation. We start with the diagonal approximation to the Dyson
equation and define the reduced self-energy operator 𝑅field-on as,

𝑅(𝐸) = Σfield-on(𝐸)
𝜔field-on

0 (𝐸)
(8.5)

𝜔field-on = 𝜔field-on
0 + 𝜔field-on

0 𝑅field-on(𝐸) (8.6)

By expressing both the numerator and denominator a series expansion in E we obtain,

𝑅(𝐸) = Σfield-on(𝐸)
𝜔field-on

0 (𝐸)
=
Σfield-off + 𝛼1𝐸 + 𝛼2𝐸

2 + . . .
𝜔field-off

0 + 𝛽1𝐸 + 𝛽2𝐸2 + . . .
(8.7)

However, because of the non-linearity of the Stark effect, the coefficients for the linear terms can
be ignored so that,

𝛼1 = 𝛽1 = 0 (8.8)

which implies,

Σfield-on(𝐸)
𝜔field-on

0 (𝐸)
=
Σfield-off + 𝛼2𝐸

2

𝜔field-off
0 + 𝛽2𝐸2

= 𝛾0 + 𝛾1𝐸 + . . . (8.9)

By taking the first derivative of Equation 8.9 we obtain 𝛾1(𝐸) which is given below in Equation 8.10.

𝛾1(𝐸) =
𝑑

𝑑𝐸

(
Σfield-off + 𝛼2𝐸

2

𝜔field-off
0 + 𝛽2𝐸2

)
=

2𝛼2𝐸

𝜔field-off
0 + 𝛽2𝐸2

− 2𝛽2𝐸
Σfield-off + 𝛼2𝐸

2

(𝜔field-off
0 + 𝛽2𝐸2)2

(8.10)

Note that,

𝛾1(𝐸 = 0) = 0 (8.11)

which implies, that up to first order, the following expression is true.

Σfield-on(𝐸)
𝜔field-on

0 (𝐸)
=

Σfield-off

𝜔field-off
0

(8.12)

We define the Padé approximation to the field-dependent self-energy operator as follows.

Σfield-on,PA(𝐸) = 𝛾0𝜔
field-on
0 (𝐸) (8.13)

where,

𝛾0 =
Σfield-off

𝜔field-off
0

(8.14)
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Upon examination of Equation 8.13 and Equation 8.14, it can be observed that a first-order approx-
imation to the field-dependent self-energy, Σfield-on,PA(𝐸), can be obtained directly from "field-on"
Koopmans’ IP (𝜔field-on

0 (𝐸)) and the "field-off" Koopmans’ IP (𝜔field-off
0 ) and self-energy (Σfield-off).

This is a particularly convenient result, which indicates that it is not strictly necessary to construct
the self-energy operator, each field investigated. Instead, within the framework of this approxima-
tion, we only need to obtain 𝜔field-on

0 (𝐸) and to construct the self-energy for "field-off" scenarios,
for each system investigated. It is relevant to note that 𝜔field-on

0 (𝐸), for each system, was obtained
for each unique field investigated.

Computational details

In Table 8.1, we provide the labels by which we refer to the different electric fields throughout
this work in the column labeled Electric Field. The magnitudes of the electric field vectors, in
atomic units, are denoted as 𝐸mag in Table 8.1. These magnitudes indicate the strengths of the
electric fields investigated. It is relevant to note, that the negative sign accompanying some of the
field strengths is indicative of the direction that these external electric fields are approaching the
dots. For example, an external field that is aligned with a dot along the x-axis, with a strength of
−3.0×10−2 (E1 field), is approaching the quantum dot from the -x direction, while an external field
that is aligned with a dot along the x-axis, with a strength of 3.0 × 10−2 (E7 field), is approaching
the quantum dot from the +x direction. Therefore, the fields used for this example are aligned with
a quantum dot along the same axis, but approach the QD from opposite ends. The single-particle

Table 8.1: Electric field vector magnitudes

Electric Field 𝐸mag (au)
E1 −3.0 × 10−2

E2 −2.0 × 10−2

E3 −1.0 × 10−2

E4 0.00
E5 1.0 × 10−2

E6 2.0 × 10−2

E7 3.0 × 10−2

states and energies for the PbS quantum dots were obtained from Hartree-Fock calculations using
the LANL-2DZ ECP basis. The TeraChem electronic structure package was used to perform these
Hartree-Fock calculations for the PbS quantum dots in the absence of an external electric field.
Instead of performing AO-to-MO transformations, we evaluated each MO at 1 million points in
3-dimensional Cartesian space and stored the results on a grid. Using these pre-computed grids
enables us to perform required integrals in the MO basis using Monte Carlo integration.
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8.4 Results and Discussion

Comparison of field-dependent Padé approximation IPs with field-dependent Green’s
function IPs

In Figure 8.1 we compare the field-dependent IPs obtained using the Padé approximation and
the field-dependent Green’s function IPs, obtained using the SSE-MO method for Pb140S140, in
the presence of electric fields that are aligned orthogonal with respect to the expectation value
of the dipole moment operator of the HOMO. The field-dependent IPs obtained using the Padé
approximation are extremely similar to the field-dependent Green’s function IPs, obtained using the
SSE-MO method, as demonstrated by Figure 8.1. [114] The largest discrepancy between the IPs
obtained from the the Padé approximation and the Green’s function IPs occurs for the E3 orthogonal
field, for which the IP obtained from the Padé approximation is 0.035 eV less than the Green’s
function IP (Figure 8.1).

Figure 8.1: Comparison of Padé approximation IPs and Green’s function IPs obtained using first-
order approximation (Equation 8.4) and the SSE-MO method, for Pb140S140. Electric fields are
aligned along an axis that is orthogonal with respect to the expectation value of the dipole moment
operator of the HOMO.

In this section we present results describing the impact of external electric fields, of varying
strength and direction, on the IPs of Pb4S4, Pb44S44, and Pb140S140, for ionization from their
HOMOs. It is important to note that the external electric fields chosen for this investigation are not
strong enough to ionize these systems.

In this work, the field-dependent IPs of Pb4S4, Pb44S44, and Pb140S140 were determined using
the Padé approximation. In Figure 8.3, we demonstrate the dependence of the IPs of these PbS
systems on the strength and direction of external electric fields aligned with these dots along axes
either parallel or orthogonal with respect to the expectation value of the dipole moment operator
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of the HOMOs. In Figure 8.1, we demonstrate that the field-dependent IPs of Pb140S140, obtained
from the use of the Padé approximation, are comparable to the field-dependent Green’s function
IPs obtained using the SSE-MO method. Additionally, we demonstrate how the IPs, for ionization
from the HOMO, are impacted when external electric fields are aligned with these PbS systems
along the x, y, or z axes (Figure 8.4).

Impact of external Stark field aligned parallel or orthogonal with respect to the expectation
value of the dipole moment operator of the HOMO

The IPs of Pb4S4 are very similar for both the weakest parallel and orthogonal fields, while for
the stronger fields, we observe a greater difference between the IPs of Pb4S4 for the parallel and
orthogonal fields, as is demonstrated by Figure 8.2. In the presence of the E6 and E7 orthogonal
fields, the IPs of Pb4S4 are lower than the IPs observed for the parallel fields with these same
strengths. Conversely, when in the presence of the E1 and E2 parallel fields, the IPs of Pb4S4 are
slightly lower than the IPs observed for the orthogonal fields with these same strengths (Figure 8.2).
The IPs of Pb44S44 when in the presence of the parallel fields are very similar to the IPs observed
for the orthogonal fields, for both weaker and stronger fields (Figure 8.2). When the Pb140S140 dot
is in the presence of the E1, E2, E6, and E7 parallel fields, the IPs observed are lower compared
to the IPs observed for the orthogonal electric fields of corresponding strengths (Figure 8.2). It
is relevant to note that the relationship between IP and the strengths of the external parallel and
orthogonal fields is nonlinear for Pb4S4, Pb44S44, and Pb140S140, as demonstrated in Figure 8.2.

By further examining Figure 8.2, we can compare how the IPs of Pb4S4, Pb44S44, and Pb140S140
are impacted by the presence of external electric fields aligned with the dots along axes parallel
with respect to the expectation value of the dipole moment operator of their HOMOs. The parallel
external electric fields have a greater impact on the IPs of Pb44S44 and Pb140S140 compared to the
IPs of Pb4S4. Interestingly, we observe that when in the presence of the E1 and E7 parallel fields,
the IP of Pb140S140 is greater than the IP of Pb44S44. Additionally, we observe that the curves of
Field-dependent IP versus Electric field strength, for Pb44S44 and Pb140S140, intersect twice. One
of these intersections occur when the strength of the external parallel field is between that of the E2
field and E1 field. The second intersection occurs when the strength of the external parallel field is
between that of E6 field and the E7 field. This suggests that the IPs of Pb44S44 and Pb140S140 are
equivalent when in the presence of parallel external static fields with strengths corresponding to the
values at which these intersections occur. The IPs of Pb4S4 and Pb44S44 decrease as the strength
of the external electric field increases (Figure 8.2).

In Figure 8.3, we compare how the IPs of Pb4S4, Pb44S44, and Pb140S140 are impacted by
external electric fields aligned along axes orthogonal with respect to the expectation value of the
dipole moment operator of their HOMOs. Similar to the trend observed for the parallel fields, we
observe that the presence of the orthogonal external electric fields have a greater impact on the IPs
of Pb44S44 and Pb140S140 compared to the IPs of Pb4S4, as is demonstrated in Figure 8.3. When
in the presence of fields with strengths between that of the E1 and E2 orthogonal fields, the IP of
Pb140S140 is greater than the IP of Pb44S44. This is also observed for some orthogonal fields with
strengths between that of the E6 and E7 fields. We also observe that the curves of Field-dependent
IP versus Electric field strength, for Pb44S44 and Pb140S140, intersect twice. These intersections
occur when the strength of the external orthogonal field strengths are close to the strengths of the
E2 and E6 fields. This suggests that the IPs of Pb44S44 and Pb140S140 are identical when in the
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Figure 8.2: Impact of static external electric fields on the ionization potentials of Pb4S4, Pb44S44,
and Pb140S140. The fields were aligned with these systems along axes parallel with respect to the
expectation value of the dipole moment operator of their HOMOs.

Figure 8.3: Impact of static external electric fields on the ionization potentials of Pb4S4, Pb44S44,
and Pb140S140. The fields were aligned with these systems along axes orthogonal with respect to
the expectation value of the dipole moment operator of their HOMOs.

presence of some orthogonal external static fields with strengths that correspond to the locations at
which these intersections occur. Similar to what was observed for the parallel fields, in Figure 8.3
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we see that the IPs of Pb4S4 and Pb44S44 decrease as the strength of the external electric field
increases.

Impact of external Stark field aligned along the x, y, and z axis

In figure Figure 8.4, we examine how the IPs of Pb4S4, Pb44S44, and Pb140S140 are affected by the
presence of external electric fields aligned with these dots along the x, y, or z axis. The IPs of
Pb4S4 are similarly impacted by the presence of electric fields of corresponding strengths aligned
along either the x, y, or z axis (Figure 8.4).

Figure 8.4: Inter-system comparison of the impact of static external electric fields on the ionization
potentials of Pb4S4, Pb44S44, and Pb140S140, The fields were aligned with these systems along the
x (subplot A), y (subplot B), or z axes (subplot C).

For fields of corresponding strength aligned with Pb44S44 along the x and y axes, the IPs of are
extremely similar, as demonstrated in (Figure 8.4). Other than for the E1 and E7 fields, the IPs are
lower when the external field is aligned with Pb44S44 along the z axis compared to the situation in
which the external field is aligned with the dot along either the x or y axis. Additionally, we see
that when in the presence of fields aligned along either the x or y axis, the IP of Pb44S44 decreases
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as field strength increases. When the external fields are aligned with Pb44S44 along the z axis, we
initially observe that the IP of Pb44S44 decreases as field strength increases, but as the field strength
is increased from -0.02 au (E2 field) to -0.03 au (E1 field) and from 0.02 au (E6 field) to 0.03 au
(E7 field), we observe an increase in the IP (Figure 8.4).

For fields of corresponding strengths aligned along the x or z axis, the IPs of Pb140S140 are very
similar, as shown in Figure 8.4. Compared to the IPs observed when the fields are aligned with
Pb140S140 along the x or z axis, the IPs of Pb140S140 are lower when the external fields are aligned
with the dot along the y axis. We also observe that in the presence of fields aligned along the x,
y, or z direction, the IP of Pb140S140 initially decreases as field strength increases, but when field
strength is increased from -0.02 au (E2 field) to -0.03 au (E1 field) and from 0.02 au (E6 field) to
0.03 au (E7 field), we observe an increase in the IP (Figure 8.4).

Additionally, by examining Figure 8.4 we can compare how the IPs, of Pb4S4, Pb44S44, and
Pb140S140, are impacted by the presence of external electric fields aligned with these systems along
x, y, or z axis. The presence of these static electric fields have a greater impact on the IPs of Pb44S44
and Pb140S140 compared to the IPs of Pb4S4. Due to the presence of external electric fields aligned
with the dots along the x, y, or z axes, we observe that for Pb44S44 and Pb140S140, the curves of
field-dependent IP versus electric field strength intersect once when the field strength is between
-0.02 au (E2 field) and -0.03 au (E1 field) and again when the field strength is between 0.02 au (E6
field) and 0.03 au (E7 field). Again, we note that the occurrence of these intersections indicate that
for the fields aligned along x, y, or z axis, there exists particular field strengths for which the IPs of
Pb44S44 and Pb140S140 are equivalent. As expected, we observe that the relationship between the
IPs of Pb4S4, Pb44S44, and Pb140S140 and external field strength is nonlinear for the fields aligned
along the x, y, or z axis (Figure 8.4).

8.5 Conclusions

This chapter presented results demonstrating how the IPs, for ionization from the HOMO, of Pb4S4,
Pb44S44, and Pb140S140 are impacted by the application of Stark fields of differing strengths and
directions. Results that demonstrate how the IPs of these PbS systems are impacted by fields
of differing strengths, aligned along axes either parallel or orthogonal to the expectation value
of the dipole moment operator of their HOMOs, were presented. Additionally, this chapter also
presented results demonstrating how the IPs of these systems are impacted by static external
electric fields aligned with these systems along either the x, y, or z axis. We employed the use of
the Padé approximation to calculate the field-dependent IPs of these PbS systems in an accurate
and extremely efficient manner. By using Pb140S140 in the presence of static external fields that
are aligned along an axis orthogonal to the expectation value of the dipole moment operator of the
HOMO as an example, we demonstrated that the IPs obtained from the Padé approximation are in
good agreement with the first-order approximation to the field-dependent Green’s function IPs. It
is relevant reiterate that calculating the field-dependent IP using the Padé approximation to the field
dependent self-energy, requires only the field-independent self-energy and the field-independent
Koopmans’ IP along with the field-dependent Koopmans’ IP. As a result, a sufficiently accurate
approximation to the field-dependent Green’s function IPs, for many different external fields, can
be obtained without constructing the field-dependent self-energy operator for each of the external
fields investigated.
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For Pb4S4, we demonstrated that as IP decreases as relative field strength increases for all of
the fields studied. Additionally, we found that for Pb44S44 the IP decreases as the relative strength
of the external fields increases for all of the fields studied, with the exception of the field aligned
along the z-axis. When the external field is aligned with Pb44S44 along the z direction, we observed
that the IP initially decreased as the relative field strength increased, but then began to increase for
the stronger external fields. For all of the fields studied, we found that the IP of Pb140S140 initially
decreased as the relative field strength was increased, but then began to increase for the stronger
external fields. Furthermore, for all of the fields studied, we found that the the IPs of Pb44S44 and
Pb140S140 were more dramatically impacted by the presence of the external static fields compared to
the IPs of Pb4S4. Interestingly, the results from this study suggest that for all of the field directions
investigated there exist particular relative field strengths, for which the IPs of Pb44S44 and Pb140S140
are equivalent.

The results presented in this chapter indicate, that by fine-tuning the direction and magnitude
of an external static field, the ionization potentials of materials can be finely controlled. The ability
to predict the impact of external electric fields on the positions of energy levels in a material, can
be applied for the purpose of enhancing photocatalytic reactions and optimizing photoelectrodes,
photomultipliers, and tandem solar cells. It is also relevant to emphasize that the methodology
presented here can be adapted in order to predict the field-dependence of other properties of
materials, including excitation energies and electron affinities.
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