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ABSTRACT 

The African forest elephant (Loxodonta cyclotis) is a critically endangered and cryptic 

species that inhabits the rainforests of Central Africa. Forest elephant populations are severely 

threatened by poaching for the ivory trade, and an improved understanding of forest elephant 

behavior and habitat use, and of the anthropogenic pressures that threaten their existence, is 

essential for conservation of the species. However, their remote tropical rainforest habitat poses 

logistical constraints on research and makes forest elephants very difficult to observe and study 

visually. Limited data collection methods have also inhibited our ability to understand the 

determinants of poaching activity that is driving forest elephants toward extinction. This 

dissertation addresses forest elephant behavior, ecology, and conservation questions that span 

multiple scales by capitalizing on the advantages of passive acoustic monitoring (PAM) to detect 

elephant vocalizations and gunshots. At the finest scale, Chapter 1 examines forest elephant 

vocal repertoire use at a forest clearing in the Central African Republic and discusses 

implications for PAM. The different vocalization types of the repertoire varied in the generality 

or specificity by which they were used by certain age-sex classes of elephants. An understanding 

of these patterns is important for PAM of forest elephants, as they determine the population (or 

subset) that is detected and sampled. At the intermediate scale, Chapter 2 examines forest 

elephant landscape-scale response to individual poaching events detected in a PAM study 

system. Elephants within 10 km of gunfire events responded to poacher presence (before 

gunshots were fired) and to gunshots themselves, exhibiting behavioral changes in either vocal 

activity, site usage, or both. These results suggest that, in addition to the outright killing of 

targeted individuals, poaching activity affects the general population of elephants across the 

landscape. At the broadest scale, Chapters 3 and 4 used detections of elephant vocalizations and 



gunshots to analyze the distributions of forest elephants and poaching events across a 50-sensor 

PAM grid spanning 1250 km2 of rainforest in Republic of Congo, for a period of over 3 years. 

To elucidate the determinants of these distributions, elephant and gunshot detection data were 

combined with habitat and landscape variables quantified using satellite remote sensing. In 

Chapter 3, variation in poaching risk depended primarily on factors related to poacher 

accessibility, such as distance to major rivers and logging roads. These results can guide the 

allocation of anti-poaching patrol effort to cover high-risk areas at times of increased 

vulnerability. Chapter 4 examined the habitat resources and anthropogenic pressures (e.g., 

poaching and logging) that influence forest elephants’ use of the landscape. Elephant occurrence 

probabilities decreased over the 3 years of the study and were seasonally dependent, increasing 

in the wet season. Ongoing logging activity deterred forest elephants from using nearby sites, but 

previously logged areas provided important habitat resources. By leveraging remote sensing 

methods to expand the scale and resolution of data collection, this dissertation aimed to advance 

our understanding of forest elephant behavior and ecology, and confronted questions that will 

improve conservation efforts to protect the species from extinction.  
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2 

The African forest elephant (Loxodonta cyclotis; Fig. I.1) is a critically endangered and 

cryptic species that inhabits the rainforests of Central Africa (Blake & Hedges, 2004; Blanc, 

2008). The ivory trade poaching that has decimated elephant numbers across Africa has had 

devasting consequences for populations of the forest elephant (Blake et al., 2007; Blake & 

Hedges, 2004; Gobush et al., 2021; Maisels et al., 2013). Between 2002 and 2011, 62% of the 

entire population and 30% of their geographic range was lost primarily due to poaching (Maisels 

et al., 2013). In the face of this ongoing threat, the ability to understand forest elephant behavior, 

landscape and habitat use, and the anthropogenic pressures that threaten their existence is of 

utmost importance to conserve the species (Blake & Hedges, 2004; Blanc, 2008; Maisels et al., 

2013; Thompson, Schwager, & Payne, 2009; Thompson, Schwager, Payne, et al., 2009). 

However, their dense tropical rainforest habitat poses logistical constraints on research and 

makes forest elephants very difficult to observe visually (Blake & Hedges, 2004; Wrege et al., 

2010, 2012). For this reason, relatively little is known about this species compared to the African 

savanna elephant (Loxodonta africana) and Asian elephant (Elephas maximus; Blake & Hedges, 

2004). Much of what is known about forest elephants comes from visual observations at 

naturally occurring forest clearings known as bais, where elephants congregate to obtain 

minerals (Klaus et al., 1998; Turkalo & Fay, 1995) and engage in social interactions (Turkalo & 

Fay, 1995). However, it is likely that individual elephants spend only a small proportion of their 

lives in bais (Turkalo et al., 2013), where habitat characteristics, social contexts, and elephant 

behaviors differ from that of the forest proper (Fishlock & Lee, 2013; Hedwig et al., 2019). 

Therefore, research is needed to elucidate forest elephant behavior and ecology in the forest 

itself, where they are difficult, if not impossible, to study visually. Historically, these forest-

focused (i.e., non-bai) studies have relied on dung transects to infer forest elephant presence 
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(Barnes et al., 1991; Blake et al., 2007; Buij et al., 2007; Hall et al., 1997; Theuerkauf et al., 

2001; White, 1994; Yackulic et al., 2011). While useful for certain applications, dung transect 

methods can suffer from limited spatiotemporal scope and resolution, considerable time and 

financial costs, inadequate sampling effort, biases, and inaccurate state variable estimates (e.g., 

abundance estimates; Hedges, 2012; Laguardia, Gobush, et al., 2021).  

 Limited data collection methods have inhibited our ability to understand not only forest 

elephant ecology, but also the determinants of poaching activity that threatens the species with 

extinction. Illuminating the environmental drivers of poaching pressure would benefit forest 

elephant conservation by facilitating prediction of poaching activity in time and space, and by 

improving the allocation of anti-poaching patrol effort and the efficacy of intervention 

(Lavadinović et al., 2021; Moore et al., 2021; Moreto & Lemieux, 2015). However, limited 

spatiotemporal scope and sampling biases have constrained analyses of poaching activity just as 

they have for analyses of forest elephant distributions (Doormaal et al., 2021; Gavin et al., 2010; 

Hedges, 2012; Keane et al., 2011; Moreto et al., 2014). Our limited understanding of forest 

elephant ecology and of the drivers of poaching pressure remains a hindrance to conservation of 

the species (Fishlock & Breuer, 2015). 

 Remote sensing methods offer potential solutions to the challenges impeding the 

sampling and analyses of forest elephant and poaching distributions. Over the past few decades, 

the development of remote sensing approaches (e.g., satellite remote sensing) has revolutionized 

our ability to sample and study ecological phenomena at drastically expanded scales and with 

higher consistencies than previously possible, thereby extending the range of scientific inquiry 

(Gillespie et al., 2008; Pfeifer et al., 2012; Roughgarden et al., 1991). Classification and mapping 

of land cover, vegetation, and/or habitat types, performed on space-borne imagery, can augment 
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ground surveys and greatly improve distributional knowledge of different habitats over ever 

larger study areas (Duro et al., 2007; Gillespie et al., 2008; Pfeifer et al., 2012). Maps of 

classified habitats and landscape features (e.g., roads) derived from satellite remote sensing can 

in turn be integrated into analyses of landscape use patterns of wildlife species (e.g., African 

forest elephants [Beirne et al., 2021; Mills et al., 2018]) and of patterns of human disturbance 

(e.g., habitat conversion and illegal hunting [Clements et al., 2014]). 

While mapping of study area habitats and landscape features from satellite imagery offers 

important advantages, the detection of focal animal species is not often possible from space 

because most species are too small to be resolved (Gillespie et al., 2008) or are obstructed from 

view. Forest elephants, for example, are hidden from the vertical vantagepoint by the rainforest 

canopy. In general, a major challenge in ecological research is the detection of species that are 

cryptic or that inhabit inaccessible areas (e.g., forest elephants and whales; Thompson, 2004). 

Even for more readily observed species (e.g., birds), it can be difficult to collect data over large 

spatial and temporal scales, which constrains the range of potential questions that can be 

addressed with scientific research (Van Parijs et al., 2009; Wiens, 1989). These issues can 

potentially be remedied by employing another type of remote sensing known as passive acoustic 

monitoring (PAM; Blumstein et al., 2011; Van Parijs et al., 2009). A variety of taxa, including 

frogs, birds, fish, insects, and mammals, produce sounds for reasons such as mate attraction, 

territory defense, navigation, and communication within social groups (Bradbury & 

Vehrencamp, 2011). Through such sound production, animals leak information into the 

environment. Biologists can capitalize on that information using PAM, which employs acoustic 

sensors to record signals from species of interest, from which information about the ecology of 

the system can be inferred (Blumstein et al., 2011; Van Parijs et al., 2009). Acoustic sensors can 
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be set up and left to record continuously for months or years at a time, drastically expanding the 

spatiotemporal coverage of data collection (Van Parijs et al., 2009) and facilitating studies in 

remote, hard-to-access sites (Wrege et al., 2010, 2017). For sound-producing animals, especially 

those that are cryptic or inhabit remote sites where visual observation is impractical, PAM can 

partially alleviate the constraints on data collection that limit research potential. In this context, 

as a remote sensing approach that improves sampling capabilities, PAM is analogous and 

complementary to the use of satellite imagery; space-borne imagery can be used to quantify large 

scale phenomena such as habitat patterns across the landscape, while PAM can be leveraged to 

detect and quantify the distributions of species or activities within those landscapes (Wrege et al., 

2017). 

To improve our understanding of the elusive, visually-cryptic African forest elephant, 

which inhabit remote habitats that pose logistical constraints on research, a combination of 

satellite remote sensing and PAM are a potentially powerful analysis framework. With a PAM 

approach, forest elephants can be detected across grids of acoustic recorders by their most 

common vocalization type, known as rumbles. Rumbles are composed primarily of very low 

frequencies (Poole et al., 1988), which attenuate in the environment less rapidly than higher 

frequencies (Ingard, 1953). This makes rumbles detectable at relatively far distances and thus 

favorable signals for use in PAM (Thompson, Schwager, & Payne, 2009; Wrege et al., 2017). In 

addition to rumbles, gunshots from poaching events are readily detectable on PAM recorders 

(Astaras et al., 2017, 2020; Branch et al., 2022; Wrege et al., 2017). Acoustic detections of 

rumbles and gunshots can therefore be used to reveal the spatiotemporal distributions of both 

forest elephants and poaching activity (Wrege et al., 2017). Using statistical models, these 

distributions can be linked to relevant variables such as habitat features acquired from satellite 
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imagery. By employing these complementary remote sensing approaches, it is therefore possible 

to illuminate the factors that influence forest elephants’ use of the landscape as well as the 

environmental determinants of poaching pressure. 

The overall objective of my dissertation research is to answer forest elephant behavior, 

ecology, and conservation questions that span multiple scales by capitalizing on the advantages 

of remote sensing, with a focus on PAM. My chapters incorporate both theoretical and applied 

research, but my hope is that all the chapters will contribute to the conservation of this critically 

endangered species. My research covers a broad range of spatial and temporal scales, from direct 

observations of elephant behavior occurring over a few meters and seconds to multi-year PAM 

data remotely collected across a 1250 km2 expanse of rainforest. At the finest and smallest scale, 

Chapter 1 examines forest elephant vocal behavior at a forest clearing called Dzanga bai in the 

Central African Republic, and discusses the implications of patterns in their repertoire use for 

PAM at larger scales. At the intermediate scale, Chapter 2 addresses the question of how forest 

elephants respond to individual instances of poaching events detected in a PAM study system. At 

the broadest scale, Chapters 3 and 4 combine PAM and satellite remote sensing to examine 

factors that influence of the distribution of poaching events and forest elephant habitat use across 

1250 km2 of rainforest in Republic of Congo, for a period of over 3 years. Insights gained at the 

fine and intermediate scales (Chapters 1 and 2) inform the larger, landscape-scale projects 

(Chapters 3 and 4), so that certain findings are integrated across chapters and scales.  

Our limited understanding of forest elephant ecology and of the drivers of poaching 

pressure remains a limitation to the successful conservation of the species (Fishlock & Breuer, 

2015). This dissertation addresses some of these knowledge gaps not only to advance our basic 
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understanding of forest elephant behavior and ecology, but to do so by confronting specific 

questions that I hope will improve conservation efforts to preserve the species.  
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Figure I.1 African forest elephants (Loxodonta cyclotis) in Dzanga bai, Central African Republic 

 

 



 
 

9 

 

 

 

CHAPTER 1 

 

Implications of target signal choice in passive acoustic monitoring:  

An example of age and sex dependent vocal repertoire use in African forest elephants 

(Loxodonta cyclotis) 

 

 

Colin R. Swider1, Daniela Hedwig2, Peter H. Wrege2, Susan E. Parks1 

 

 

1Bioacoustics and Behavioral Ecology Lab, Biology Department, Syracuse University, Syracuse, 
New York, USA 

2Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of 
Ornithology, Cornell University, Ithaca, New York, USA 

 

 

 

Modified version in preparation for submission to Remote Sensing in Ecology and Conservation  

 

 

 

 



 
 

10 

Abstract 

Passive acoustic monitoring (PAM) is a useful tool for sampling acoustically active 

animal species, particularly for elusive, visually cryptic species inhabiting remote or inaccessible 

habitats. Key advantages of PAM are large spatial coverage and continuous, long-term 

monitoring. In most cases, a signal detection algorithm is utilized to locate sounds of interest 

within long sequences of audio data. It is important to understand the demographic/contextual 

usage of call types when choosing a particular signal to use for detection. Sampling biases may 

result if sampling is restricted to subsets of the population, for example when detectable 

vocalizations are produced only by a certain demographic class. Using the African forest 

elephant repertoire as a case study, we test for differences in call type usage among different age-

sex classes. We identified disproportionate usage by age-sex class of four call types— roars, 

trumpets, rumbles, and combination calls. This differential usage of signals by demographic 

class has implications for the use of particular call types in PAM for this species. Our results 

highlight that forest elephant PAM studies that have used rumbles as target signals may have 

under-sampled adult males in this species. The addition of other call types to PAM frameworks 

may be useful to leverage additional population demographic information from these surveys. 

Our research exemplifies how an examination of a species’ acoustic behavior can be used to 

better contextualize the data and results from PAM and to strengthen the resulting inference.    

 

Introduction 

The methods used to sample animal populations, including how individuals of a species 

are detected, directly impact the inferences that can be drawn from these data (Thompson, 2004; 

Williams et al., 2002). Ideally, the sampled population should be identical to the target 
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population to which inference is applied, but this is often not achieved. In many cases the 

sampled population differs from the target population because sampling effort is restricted to a 

subset of the target population (Williams et al., 2002). In ornithological research, for example, 

many studies have relied on the auditory detection of male birdsong. Much of our understanding 

of avian ecology and distribution therefore derives from what is known about the location of 

singing/breeding males, and either intentionally or unintentionally disregards females and non-

breeding individuals (Buckland, 2006; Burnham et al., 2004; Odom & Benedict, 2018). Such 

biases must be identified and addressed in statistical methods or when interpreting results.  

Passive acoustic monitoring (PAM) is a form of animal population sampling that uses 

autonomous acoustic recorders to continuously record signals from species of interest and the 

environment (Blumstein et al., 2011; Sugai et al., 2019; Van Parijs et al., 2009). PAM can 

drastically expand spatial and temporal coverage of data collection for acoustically active species 

(Van Parijs et al., 2009), facilitate studies in remote, hard-to-access sites, and provide a solution 

for sampling elusive, visually cryptic, or rare species and events (Wrege et al., 2010, 2017). As 

with any form of animal population sampling, potential biases exist that should be considered 

when choosing signals for PAM (Van Parijs et al., 2009). Acoustic detection methods apply only 

to the acoustically active individuals of a population. Depending on the species, only a particular 

demographic class may vocalize, or different classes may use different call types (Marques et al., 

2013; Stevenson et al., 2015). Therefore, the demographic specificity or generality of call types 

should be considered when identifying the most suitable signal used for detection in PAM 

studies.  

When evaluating potential candidate target signals for PAM, practical considerations— 

source amplitude, propagation characteristics, susceptibility to masking from ambient noise, 
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feasibility of algorithmic detection, etc. (Darras et al., 2016; Ellinger & Hödl, 2003; Llusia et al., 

2011)— usually take priority over an examination of the signal’s demographic specificity or 

generality. Target signals in PAM studies are often chosen out of convenience (e.g., they are 

easily detectable, or they are well established and commonly used in the existing literature) or 

because they are the only option if little is known about the repertoire and acoustic behavior of 

the species of interest (e.g., Clark et al., 2010). Indeed, PAM study species are not often readily 

observed visually, so detailed behavioral data can be difficult to acquire (e.g., cetaceans; Clark et 

al., 2010). The full repertoire and the degree to which the call types are used differentially by 

subsets of a population are rarely fully understood or investigated (but see Parks et al., 2011). 

When obtainable, consideration of such behavioral information is highly advantageous (Parks et 

al., 2011; Van Parijs et al., 2009; Wood et al., 2020) because it can guide comparison and choice 

of candidate signals with varying degrees of age-sex specificity and value for PAM. Signals used 

by a single demographic class (e.g., male breeding song) could be unsuitable if the goal is to 

make population-level inference, because the sampled and target populations would differ. On 

the other hand, such a signal provides demographic information in addition to species presence; 

the age and sex of the calling individual can be inferred. Such signals could be useful as 

complementary target signals in a PAM study where demographic information is desired (e.g., 

Matthews et al., 2014).  

In many PAM studies, inferences from signal detections are intended to apply to the 

entire population (e.g., distributional maps or density estimation). A signal used by both sexes 

and all age classes conveys the advantage of representative sampling from the overall population 

and provides the most comprehensive data for population-level inference. This is one reason that 

the North Atlantic right whale (Eubalaena glacialis) upcall and African forest elephant 
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(Loxodonta cyclotis) rumble are appropriate target signals for PAM— they are produced by all 

age-sex classes and therefore presumably sample the acoustic activity of the population as a 

whole (Davis et al., 2017; Parks et al., 2011; Thompson, 2009). While these types of signals are 

of great value for PAM, the degree to which such vocalizations are produced proportionally by 

different age-sex classes is not always examined, limiting the interpretation of PAM results. 

Here, we demonstrate how detailed knowledge of vocal behavior can improve 

demographic inference from PAM studies. We use a case study of the African forest elephant 

(Loxodonta cyclotis), a critically endangered species inhabiting the rainforests of central Africa 

(Gobush et al., 2021). Forest elephants remain the least studied of the three extant elephant 

species due in part to their elusiveness and the difficulties posed by their inaccessible and remote 

habitat (Blake & Hedges, 2004). Given the limitations to direct visual observation in the forest, 

PAM is one of the best methods for studying the species (Blake & Hedges, 2004; Wrege et al., 

2010, 2012). PAM studies of forest elephants have employed only a single call type— the 

rumble— despite the awareness of a wider repertoire of sound types (Keen et al., 2017; Swider et 

al., 2022; Thompson, Schwager, & Payne, 2009; Wrege et al., 2010, 2012, 2017). Like many 

visually cryptic species for which PAM is used, limited data are available on the acoustic 

behavior and full repertoire use of forest elephants (but see Hedwig et al., 2021; Thompson, 

2009). Forest elephants therefore serve as a demonstrative example of the implications of target 

signal choice in PAM. In this study, we quantify the differential usage of the forest elephant 

acoustic repertoire by individuals in different age-sex classes. Our results contribute new insight 

into the interpretation of forest elephant PAM studies that use only rumbles as target signals, and 

suggest that adding other call types to PAM frameworks could provide additional insight into 

population demographic information.  
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Methods 

Study site 

We collected data from an elevated platform overlooking a 10-ha natural forest clearing 

called Dzanga bai in Dzanga-Ndoki National Park, Central African Republic (2.963°N, 

16.365°E). Dzanga bai provides an opportunity to visually observe the otherwise visually cryptic 

forest elephants, who congregate in the clearing in large numbers to access mud and water 

containing dissolved minerals (Klaus et al., 1998) and to engage in social interactions (Turkalo & 

Fay, 1995). Demographic scans, acoustic recordings, and visual observations took place between 

11:00 and 16:30 during two field seasons: December 2018 - February 2019, and February - 

March 2020.   

Demographic scans 

To investigate age and sex dependent usage of call types, it was necessary to establish the 

baseline proportions of elephants of each age-sex class represented within the bai. This controls 

for differences between demographic classes in their availability to be sampled (Altmann, 1974). 

On a subset of data collection days (n = 31), we performed scans of the bai in which we assigned 

individuals to a sex and age class. We limited these scans to elephants within a predetermined 

sampling area corresponding to the area from which most of our recorded vocalizations 

originated. The only portions of the bai that were excluded were those so far from the platform 

that visual observations were unreliable.  

Using a simplification of existing aging protocols (Turkalo, 2013), we classified forest 

elephants into four age classes that correspond to important biological development stages— 

infant, juvenile, subadult, and adult. We assigned elephants to age classes based on their height 

relative to their mother’s height, or to the height of a typical adult female if no mother was 
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present. Very young elephants that fit easily under their mother’s belly and armpit were 

classified as infants. At around one year of age, infants transition to juveniles, which were 

defined as under half mother’s height but above mother’s belly height. This marks the 

development of vegetation-eating abilities to supplement nursing. At 5 to 6 years old, elephants 

attain half the height of their mother, at which point they have likely completely stopped nursing 

and their behavior becomes more independent. Using this benchmark, individuals that were 

greater than half the height of their mother, but less than full adult height, were classified as 

subadults. This subadult category is more inclusive of younger elephants than previous aging 

rubrics (e.g., Turkalo, 2013), which would categorize some of our smaller subadults (e.g., just 

over half mother’s height) as juveniles/calves. Elephants were classified as adults at the height of 

a typical adult female— at approximately 20 years of age. We determined the sex of individuals 

of all age classes except for infants, for which sexing was inaccurate due to inadequate viewing 

of the small genitalia at a distance.  

Because the 31 scan days were distributed over 1.5 months, most of the demographically 

surveyed elephants were likely unique individuals. However, forest elephants remain around 

Dzanga bai for an average of 2-3 days per visit (Turkalo et al., 2013), so some individuals were 

probably included in scans on adjacent days. In this analysis, the sampling unit of interest was 

not the individual elephant, but rather the demographic structure of the bai population on a given 

day. Therefore, the minor subset of repeatedly surveyed individuals should not constitute 

pseudo-replication or distort our calculation of the baseline demographic structure. 

We calculated demographic class proportions from the age-sex counts summed (pooled) 

across the 31 scans. This overall baseline demographic distribution served as a control for 

variability in sampling availability between classes. The 31 individual demographic scans had 
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been performed every day of data collection during the 2020 field season, but no scans were 

performed during the first field season (late 2018/early 2019). To verify that our pooled scans 

represent a stable baseline demographic distribution for Dzanga bai, and to justify applying this 

baseline distribution to the 2018/2019 field season for which we didn’t have demographic data, 

we (1) examined variation in the demographic structure across the 31 scan days of the second 

field season, and (2) made comparisons to our preexisting demographic data from Dzanga bai. 

Using the ‘MultinomialCI’ package in R (R Core Team, 2022; Villacorta, 2021), we calculated 

simultaneous 95% confidence intervals for the multinomial proportions of our baseline (pooled) 

demography distribution (Johnson & May, 2000; Sison & Glaz, 1995). We plotted the proportion 

of the population (and 95% CIs) represented by each age-sex class. We then overlaid the 

proportion of each class from each of the 31 individual un-pooled scan days. Next, we reviewed 

demographic data collected by the Elephant Listening Project at Dzanga bai during previous 

fieldwork in 2017 and 2018 (prior to our 2018/2019 field season for which we lacked 

demographic scans). From these earlier data we extracted age-sex class proportion metrics with 

which to compare and evaluate the baseline demography distribution calculated from our 2020 

field season.   

Audio recording and visual observations 

From the platform overlooking Dzanga bai, we recorded audio continuously with an 

Earthworks QTC omnidirectional microphone (frequency response: 4Hz-40kHz ± 1dB) and 

Sound Devices MixPre3 audio recorder (frequency response: 10Hz-80kHz ± 0.5dB), set to 45-

55dB re 20µPa, with a sampling rate of 48 kHz and 16-bit resolution. The continuous recordings 

were accompanied by opportunistic visual observations of vocalizing elephants. While focal 

follows would result in more complete and potentially less-biased sampling, they do not allow 
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enough rare vocal events to be observed because the rate of vocalization for any given individual 

elephant is low. However, because there are typically so many elephants in the bai, collective 

vocal activity of the group is relatively high. Opportunistic sampling (Altmann, 1974) allowed us 

to capitalize on this overall high vocal activity and collect far more data across the range of 

vocalizations in the repertoire. 

We noted any vocalizations that we observed, almost all of which could be categorized as 

roars, trumpets, rumbles, or rumble-roars (combinatorial calls sensu Pardo et al., (2019); Fig. 

1.1). We focused analyses on these four vocalizations because (1) they are discrete, 

distinguishable call types that can be manually classified (provided high SNR recordings), (2) 

they make up the vast majority of all the vocalizations produced by forest elephants, and (3) they 

are produced loudly and frequently enough to be theoretical candidates for target signals in 

PAM. Occasionally, some roar-like vocalizations, particularly from infants and juveniles, 

deviated from the stereotypical roar, likely due in part to small body size. Rather than attempt to 

subjectively classify these as separate call types (e.g., “cries”, “barks”), we instead use “roar” in 

broad reference to all noisy, broadband vocalizations that lack the clear harmonic structure of 

call types such as rumbles (Hedwig et al., 2021; Thompson, 2009).  

We attributed these vocalizations to individuals on the basis of behavior— open mouth, 

shaking head and ears, running, repeated sequence of calls by same individual, etc. (Poole et al., 

1988; Thompson, 2009)— or by auditory localization if the calling individual was sufficiently 

spatially isolated from other elephants. We noted the sex and age class of the caller and any other 

interacting individuals. We also made note of the behavioral context of the vocal event, for 

which we adapted the behavioral classification system developed by Hedwig et al., (2021). We 

classified each vocalization into one of eight contexts— affiliation, competition (e.g., 
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displacements from water holes), defensive (e.g., chasing other species; ‘anti-predatory’ sensu 

Hedwig et al., (2021)), sexual, nursing, separation (i.e., distressed searching), alone (non-

distressed), and unspecific (see Hedwig et al., (2021) Table 1 for detailed descriptions of 

behavioral contexts).   

Acoustic analysis 

Continuous audio spectrograms of observation sessions were made in Raven Pro 1.6 (KLY-

CCB, Cornell, 2019). We manually reviewed and annotated the spectrograms with reference to 

field notes to verify behavioral observations. Any observations that did not match the record of 

vocalizations revealed by the spectrogram, or that could not be assigned to a particular elephant 

of known sex and age class, were excluded from subsequent statistical analyses.  

Statistical analyses of vocalizations 

To determine if certain call types are differentially used by age-sex classes, we compared 

the numbers of calls emitted by each class to the expected probability based on baseline class 

proportions within the bai using chi-square goodness-of-fit tests. This was followed by pairwise 

tests between sexes and adjacent age classes. Infants were excluded from pairwise tests involving 

sex because we lacked accurate sex data.  

To visualize any disproportionate usage of vocalizations across the age-sex classes, we 

plotted the data in two ways. First, we created standard bar plots from the raw call counts by 

demographic class, without any demographic correction. Second, we plotted an index that 

weighed the raw call counts by the proportions, or sampling availability, of each age-sex class 

within the bai. We calculated this index as the proportion of calls produced by an age-sex class 

divided by the average proportion of elephants in the baseline population belonging to that class. 

The index thus corrects for uneven representation of the different demographic classes in the bai. 
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Values of 1.0 indicate that the proportion of calls recorded from a particular age-sex class is the 

proportion expected based on that classes’ prevalence in the bai. Values greater or less than 1.0 

indicate disproportionately more of less usage than would be expected.  

 

Results 

Demographic scans 

A total of 1809 forest elephants were assigned to age-sex classes over the 31 days we 

performed the demographic scans in 2020. The different age-sex classes varied substantially in 

their representation within the bai (Fig. 1.2). However, within-class variation across the 31 scan 

days was limited. The consistently narrow CIs of the pooled class proportions, and the 

corresponding pattern of individual scan proportions suggest a stable demographic class structure 

across our individual scan days (Fig. 1.2). This justified the use of a pooled overall baseline 

demographic distribution as a control for sampling availability. 

The pre-existing demographic data collected in 2017-2018 included fewer demographic 

classes and used slightly different class criteria. Consequently, we were able to extract 

population proportion metrics or derivatives thereof (e.g., sex ratios) for only some of our age-

sex classes of interest. Over 24 days in 2017, a 5.2 average adult F:M ratio was reported from 

Dzanga bai, which agrees with the 4.71 (95% CI: 3.49-7.06) ratio from our present study. From 

data collected in March - May 2018 (n = 32 scan days), we calculated population proportions for 

adult females (0.308) and infants (0.055; sexes combined). These derived class proportions also 

fall within the 95% CIs of the baseline demography proportions for the present study (Fig. 1.2). 

Lastly, a 3F:2M long-term average sex ratio from 20 years of Dzanga bai elephant sightings was 

reported by Turkalo et al., (2013). This matches our overall F:M ratio of 1.46 across all age 
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classes. These agreements with historical and with 2017-2018 data suggest that we can 

appropriately apply our 2020 baseline demography distribution to the 2018/2019 field season for 

which we lack demographic scan data.  

Vocalizations 

We acoustically recorded and, simultaneously, visually observed 1213 vocalizations 

attributable to particular elephants within the bai (Table 1.1). The four call types differed in the 

rate and evenness with which they occurred in different behavioral contexts (Table 1.2). 

Rumbles were used most often in affiliative and separation contexts but were not uncommon in 

other contexts. Rumbles were the only call type used in all behavioral contexts and they 

exhibited the most evenness across contexts. Roars, combination calls, and trumpets were each 

used in 6 of the 8 contexts. Combination calls occurred primarily in competitive and separation 

contexts but were somewhat common in association with other behaviors. Roars and trumpets 

exhibited the most unevenness across and specificity to certain contexts, with roars occurring 

overwhelmingly in competitive and trumpets in defensive (chasing other species) contexts (Table 

1.2).  

The 351 recorded combination calls included six varieties with differing numbers and 

orders of rumble and roar components, although the majority were roar-rumbles or rumble-roar-

rumbles, which together made up 76% of all combination calls. For the purposes of this analysis, 

we do not differentiate between the different arrangements.   

Statistical analyses 

Overall Chi-square goodness-of-fit tests for each of the four call types revealed 

disproportionate usage across age-sex classes (overall test p-values < 0.0001). However, the 

patterns of use with age, within and between sexes, differed depending on call type. 
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Rumbles 

We recorded most rumbles from subadult and adult females (Fig. 1.3a top). When 

considering the baseline proportions of elephants of each age-sex class represented within the bai 

and available to be sampled, we reveal disproportionate use of rumbles from infants and 

subadults (Fig. 1.3a middle). The alternating changes in usage between age-classes (sexes 

combined) are statistically significant (Fig. 1.3a middle; p-values < 0.001). The disproportionate 

rumble use in subadults is driven by frequent rumble production in females (Fig. 1.3a bottom). 

While a small, borderline significant (p = 0.055) dominance in rumble usage by males occurs in 

juveniles, usage becomes predominantly female for subadults and adults (Fig. 1.3a bottom; p-

values <0.01). For males and females separately, changes in rumble usage between age classes 

are all statistically significant (p-values < 0.01), except between juvenile and subadult males 

(Fig. 1.3a bottom; p = 0.19).  

Roars 

Most of our recorded roars were produced by subadults, especially by males (Fig. 1.3b 

top & middle). Compared with adjacent age classes, the prevalent subadult usage (sexes 

combined) is statistically significant (Fig. 3b middle; p-values < 0.0001). Roars are 

predominantly used by males across all age classes, even when accounting for sampling 

availability differences (Fig. 1.3b bottom). However, this sex difference is statistically significant 

only for the adult age class, in which roar use is drastically dominated by males (p < 0.0001). 

Significant increases in roar usage between juveniles and subadults exist for both sexes 

separately (Fig. 1.3b bottom; p-values < 0.0001). The subsequent decrease in female roar 

production in adulthood is also statistically significant (Fig. 1.3b bottom; p < 0.0001). In 

contrast, adult males maintain disproportionately high roar production.   
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Combination calls 

We recorded the most combination calls from subadult males (Fig. 1.3c top). When 

accounting for baseline demographic availability differences, combination calls are used 

disproportionately by infants, juveniles, and subadults; usage then decreases drastically in 

adulthood (Fig. 1.3c middle; subadult to adult p < 0.0001). Across all age classes, combination 

calls are primarily produced by males, a trend that is statistically significant for adults (Fig. 1.3c 

bottom; p < 0.01). For both males and females separately, the decrease in combination call usage 

between subadults and adults is statistically significant (Fig. 1.3c bottom; p-values < 0.001). 

Trumpets 

Trumpets were recorded mostly from subadult elephants (Fig. 1.3d top & middle). 

Compared with adjacent age classes, the prevalent subadult trumpet production (sexes combined) 

is statistically significant (Fig. 1.3d middle; p-values < 0.001). Adjusting for availability 

differences between sexes, these subadult trumpets were produced disproportionately by females 

(Fig. 1.3d bottom; p < 0.001). Apart from the subadult age class, trumpets appear to be used 

primarily by males, although these sex differences are not statistically significant. For females, 

the changes in trumpet production between juvenile, subadult, and adult age classes are 

statistically significant (Fig. 1.3d bottom; p-values < 0.0001).  

 

Discussion  

The behavioral contexts in which vocalizations are used is an important consideration in 

PAM, as this will impact where, when, and how often signals can be detected (Van Parijs et al., 

2009). In planning a PAM study for African forest elephants using a single call type, based on 

our results we would expect to detect the most signals if we targeted rumbles. Rumbles (n = 599) 



 
 

23 

are far more common than the other three call types under consideration (Table 1.1), and also the 

only call type used in every behavioral context (Table 1.2). In addition to being the least frequent 

call type in our study (n = 70), trumpets are indicative of only one or two particularly high-

emotion contexts, for example when elephants aggressively chase other species such as a giant 

forest hogs or forest buffalo. Similarly, roars were used overwhelmingly (94%) in the single 

context of competitive behavior (Table 1.2). We might therefore favor rumbles as a PAM target 

signal because they are both most common overall and most evenly representative of the range 

of behavioral states of forest elephants. However, context-specific vocalizations (e.g., roars and 

trumpets) can provide valuable information if the goals of PAM are to distinguish between the 

occurrence of such behaviors or to identify and map important forest elephant resources— bais, 

fruiting trees, mud pits, etc.— where competition and roar usage would likely be high.   

Our results highlight the importance of considering the demographic specificity of 

potential PAM signals. The age-sex specificity of a target vocalization determines the subset of 

the population that is sampled with PAM and must be considered when interpreting monitoring 

studies. We quantified the age and sex dependent usage of four vocalizations in the forest 

elephant repertoire. While each call type was used by both sexes and all ages, this usage was 

notably uneven across demographic classes. Rumble usage transitioned from mostly male in 

juveniles to predominantly female as age increased (Fig. 1.3a bottom). Roars were produced 

primarily by males across all ages, and adult females exhibited a pronounced curtailment of roar 

use compared to subadult females and adult males (Fig. 1.3b bottom). Combination calls were 

also more often used by males than females, and were more common from younger elephants, 

with usage decreasing with age for both sexes (Fig. 1.3c bottom). Trumpets showed a slight 
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tendency toward male production except for in subadults, when females notably increased 

trumpet usage (Fig. 1.3d).  

The rumble has been the target signal of choice for PAM of forest elephants (Wrege et 

al., 2017). Until now, the extent to which rumbles are produced disproportionately by particular 

age-sex classes has not been explicitly tested. An assumption in PAM of forest elephants has 

been that the rumbles detected on remote acoustic recorders are mostly from adult females and 

their small family units, and that adult males have largely gone unsampled (P.H. Wrege, personal 

communication). The results of the present study generally support this assumption, but also 

suggest that PAM should detect rumbles from males of other age classes (Fig. 1.3a bottom 

panel), so males are not likely to go entirely unsampled. While rumbles do exhibit significant 

differences in usage between demographic classes, their use across all behavioral contexts (Table 

1.2; Hedwig et al., 2021) and by both sexes across all ages (Fig. 1.3a bottom), likely moderates 

the potential unevenness in production across demographic classes. A similar moderating effect 

may act on combination calls, which are used in almost as many behavioral contexts as rumbles 

(Table 1.2). Combination calls, however, exhibit disproportionate male usage across all ages and 

a more pronounced decrease in use with age (Fig. 1.3c middle & bottom). Roars and trumpets 

also exhibit clear age and sex dependencies, thus unevenly representing certain population 

subsets. However, the addition of these demographically specific vocalizations into PAM 

frameworks could help leverage population demographic information from acoustic recordings. 

Combination calls could provide insight related to the presence of younger age classes, while 

roars would give greater detection power to adult males that produce rumbles at lower rates than 

adult females. Roars are produced disproportionately more by adult males than by most other 

classes, especially compared to adult females (Fig. 1.3b bottom). If competitive interactions 
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involving roars occur frequently enough in the forest (e.g., at fruiting trees, mud pits, etc.), use of 

roars in PAM could balance the sampled population to match the target population more closely, 

improving statistical inference. This variability in the age-sex specificity of different 

vocalizations highlights how the choice of PAM signal determines the population (or subset) that 

is sampled. Certain vocalizations (e.g., rumbles) more equally represent the demographic classes 

of a population and provide more comprehensive data for population-level inference, but may 

still under-sample certain classes (e.g., adult male forest elephants that are unlikely to travel with 

adult female-led family groups). Vocalizations that exhibit more disproportionate usage among 

demographic classes (e.g., roars) can provide increased detection of a particular subset of the 

population.  

Once identified, these types of differential rates in signal production can be used to aid 

interpretation of results or leveraged in the statistical analyses themselves. In a detection/non-

detection or occupancy analysis (Mackenzie et al., 2002), the results would apply to the 

demographic classes that are primarily sampled, not necessarily the population as a whole. For 

example, an occupancy study on habitat use that employs roars or combination calls as target 

signals would primarily reveal the habitat use patterns of male forest elephants compared to a 

study that uses rumbles, which over-represent females. A more sophisticated approach would be 

to explicitly leverage the age-sex specificity of vocalizations in the statistical models. For 

example, extensions to basic occupancy approaches, such as multi-state models, can incorporate 

auxiliary information like age- or sex-specific vocalizations to improve inference (MacKenzie et 

al., 2018; Wood et al., 2020). In a multistate model, rumbles could be used for one occupancy 

state, and roars or combination calls for another, thus maximizing the amount of information 

gleaned from the acoustic record.   
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In a density estimation framework, the estimator equation can be adjusted to account for 

sampling bias due to demographic specificity of the target signal. This is possible if the 

proportion of individuals that vocalize is known, or if call rate, detection probability, or some 

other multiplier can be adjusted to reflect overall population density rather than the density of 

vocal individuals only (Marques et al., 2013; Stevenson et al., 2015). In the relatively 

straightforward example of a fully sex-specific signal (e.g., a vocalization produced only by 

males), call counts can be combined with estimates of sampling availability and sex ratio to 

estimate overall population abundance (Driscoll, 1998; Fischer et al., 1997). When the target 

signal is used by both sexes or across multiple age-classes, more complicated developments of 

abundance or density estimators may be necessary (e.g., Thompson, Schwager, Payne, et al., 

2009). In any case, knowledge of the demographic specificity of potential PAM target signals 

will facilitate the implementation of acoustic-based density/abundance estimators.   

This study focused on identifying potential differences in vocal repertoire use between 

age-sex classes, to inform PAM studies at the landscape scale. Forest elephants are particularly 

challenging because, across the landscape, they are highly dispersed and extremely cryptic. 

Elusiveness and challenges to visual observation are characteristics shared by many species for 

which PAM is employed (e.g., cetaceans); this is a major justification for implementing a PAM 

approach. It is therefore not surprising that vocal patterns with respect to demographic classes 

are poorly understood for many of the species for which PAM is used— it is difficult to observe 

and document these species’ acoustic behavior. In the case of forest elephants, forest clearings 

(bais) provide a unique opportunity to observe and collect data that would be exceptionally 

difficult in the forest itself. However, these clearings act as social arenas that bring a self-

selected portion of the larger population together in much higher densities than in the forest 
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proper. We operate under the assumption that our observation and recording of vocal activity 

was not biased toward any particular age-sex class. The obvious way such a bias could arise is 

from differences between age-sex classes in their availability to be observed/sampled (e.g., more 

adult female than male elephants in the bai; Altmann, 1974). We directly accounted for this 

potentiality by quantifying the baseline age-sex class structure of the bai population and 

comparing the observed call frequencies to this demographic “control” (i.e., we controlled for 

sampling availability). Nevertheless, we recognize that the sub-population of bai visitors might 

itself be demographically biased with respect to the overall population. This sort of bias may not 

be entirely ameliorated by our control of sampling availability through quantifying the 

demographic structure within the bai.  

Due to differences in density and context, elephant behavior also likely differs 

substantially between bai and forest (Hedwig et al., 2019). For example, the tendency of males to 

disproportionately produce roars may be a consequence of the frequent competition for access to 

mineral pits in the bai, which could involve more males due to their larger size and 

predisposition for risk-taking. If such competition is unique to the bai, this result may not apply 

to the forest in general. On the other hand, the forest harbors resources such as fruiting trees and 

mud pits that may stimulate similar competitive interactions, in which case our results should 

transfer to the forest.  

This study advanced our understanding of forest elephant repertoire use. However, to 

fully resolve the discrepancies in call rates between age-sex classes, particularly in the forest 

itself rather than the bai, biologging acoustic tag studies are needed in which an acoustic recorder 

is integrated into a collar attached to the elephant. The use of acoustic recording tags to obtain 

call rates and acoustic behavior data has been successfully demonstrated with other species for 
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which PAM is employed (e.g., cetaceans; Parks et al., 2011, 2019). While elephant collaring is 

invasive compared to PAM, it is one method to obtain call rates from individual animals and 

groups in the forest environment. These call rates are an integral component of density 

estimation equations (Marques et al., 2013) and can also inform occupancy studies by allowing 

researchers to optimize study design characteristics such as survey length (Bailey et al., 2007; 

MacKenzie et al., 2018).   

Our research exemplifies how examining the acoustic behavior of a focal species can 

better contextualize the data and results from PAM. The choice of target signal will sometimes 

introduce a bias toward sampling a particular subset of the population. Call types used more 

equally across demographic classes will provide more reliable data for population-level 

inference, as the sampled population more closely reflects the target population. On the other 

hand, vocalizations that are specific to one sex or age class confer the ability to differentiate 

specific demographic classes of interest. Researchers should consider the assumptions behind 

their choice of target signal, and either account for sampling biases accordingly (e.g., adjust 

statistics or interpretation) or leverage biases to their advantage (e.g., extract demographic or 

contextual information from recordings). A benefit of the PAM approach is that archived 

acoustic datasets can be revisited when new information becomes available. Once behavioral 

data (e.g., demographic specificity of the vocal repertoire) on a species of interest becomes 

available, previously collected acoustic data can be retroactively analyzed to reveal additional 

population information and insights.  
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Figures and tables 

 
 
Figure 1.1 Spectrograms of representative examples of the four common forest elephant call 
types. Roars (a) are noisy broadband vocalizations extending into comparatively high 
frequencies (Poole, 2011). Trumpets (b) are the quintessential elephant sound, often high-pitched 
and somewhat tonal, produced by an expulsion of air through the trunk, rather than by the larynx 
as with the other call types (Poole, 2011). Rumbles (c) are harmonically rich, tonal signals with 
components near or within the infrasonic range (Poole et al., 1988; Thompson, 2009). Note the 
change in frequency range between (b) and (c). Combination calls, like this rumble-roar-rumble 
(d), include at least one rumble and one roar component produced contiguously as a single 
vocalization (Poole, 2011; Stoeger-Horwath et al., 2007). Spectrograms were made with Raven 
Pro 1.6 software (KLY-CCB, Cornell, 2019) with 2153-point (for (a) and (b)) and 6022-point 
(for (c) and (d)) Hamming windows, 90% overlap, and 8192-point discrete Fourier transform. 
Recording sample rate was 48 kHz.  
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Figure 1.2 We assigned a total of 1809 elephants to age-sex classes over the course of 31 data 
collection days in 2020 (numbers of elephants of each class is shown). Overall baseline 
demographic proportions (pooled across 31 scan days) are shown as black circles with 
multinomial 95% confidence intervals. Individual (un-pooled) scan proportions are shown as 
adjacent X’s.  
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Figure 1.3 The frequency with which (a) rumbles, (b) roars, (c) combination calls, and (d) 
trumpets were produced by forest elephants of different age-sex classes. Raw call counts (top 
panels) do not account for baseline differences in the number of elephants in the bai representing 
each age class (i.e., sampling availability). To employ such a correction, we plotted the 
proportion of calls from each demographic class divided by the proportion of elephants in the 
baseline population belonging to that class (middle and bottom panels). Values around 1.0 
(horizontal dotted lines) indicate that the proportion of calls from a particular age-sex class is 
what would be expected given that classes’ representation in the bai. Values greater or less than 
1.0 suggest disproportionately more or fewer calls than would be expected. Asterisks between 
sexes of a given age class, or between adjacent age classes of a given sex, indicate statistically 
significant differences in call type usage (alpha level = 0.05). Approximate ages classes: Infant 
<1 year; juvenile 1-6 years; subadult 7-20 years; adult 20+ years.  
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Table 1.1 Numbers of recorded calls (n = 1213) of each type by age-sex class. Aside from the 67 
calls from infants (sexes combined), we recorded 630 calls from females and 516 from males.  
 
  Infant Juvenile Subadult Adult Total 

  Female Male Female Male Female Male 
Rumbles 40 47 61 157 109 167 18 599 

Roars 6 10 10 45 80 19 23 193 
Combination 20 61 59 60 114 24 13 351 

Trumpets 1 4 6 29 20 7 3 70 
 
 
 
 
 
 
 
 
Table 1.2 Number of instances in which each call type occurred in different behavioral contexts. 
We defined contexts based on Hedwig et al., (2021), with minor modifications. 
 

  Rumbles Roars Combination Trumpets All Call Types 
Affiliation 198 1 24 3 226 

Competition 78 181 145 3 407 
Defensive 5 0 0 47 52 

Sexual 8 1 0 1 10 
Nursing 24 4 37 0 65 

Separation 178 4 124 12 318 
Alone 86 0 14 0 100 

Unspecific 22 2 7 4 35 
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Abstract 

African forest elephants (Loxodonta cyclotis) are a critically endangered and visually 

cryptic species that inhabits Central African rainforests. Using a 1250 sq-km grid of 50 acoustic 

sensors in Republic of Congo, we investigated the landscape-scale behavioural response of forest 

elephants to poaching events. We detected eight automatic weapon fire events over 1.5 years of 

recording (2017—2019). We examined detections of elephant vocalizations across grid sites 

within 10 km of the gunfire events in the 48 hours surrounding the gunfire, and in paired 48-hour 

control periods free of gunfire. Fewer vocalizations were detected before gunfire events than 

during control periods, suggesting elephants show behavioural responses to poacher presence 

before any shots are fired. Immediately following the gunfire events a significant increase in 

elephant calls was detected, which may indicate increased communication to facilitate group 

cohesion and movement. Elevated call levels dropped to lower-than-baseline rates after several 

hours, suggestive of a sustained response. These patterns indicate forest elephants respond to 

both poacher presence and to gunfire events themselves. As these patterns may reflect 

behaviours that mediate population processes, conservation strategies should account for the 

potential of poaching to impact populations via indirect effects on non-target elephants in the 

area.   

 

Keywords 

African forest elephant, Rumble, Endangered species, Gunfire, Loxodonta cyclotis, Passive 

acoustic monitoring, Poaching, Vocalizations 
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Introduction 

While African forest elephants (Loxodonta cyclotis) have few natural predators, poaching 

is analogous to predation and constitutes a grave threat to this critically endangered species 

(Blake & Hedges, 2004; Gobush et al., 2021; Maisels et al., 2013). It is unclear how forest 

elephants that are not killed by poaching respond to poaching pressure, although there is 

evidence that they change visitation patterns to forest clearings when local levels of elephant 

poaching are high (Fishlock, 2010; Maisels et al., 2015; Vanleeuwe et al., 1997). Studies have 

also revealed that forest elephants respond to human disturbance by temporarily (e.g., for several 

months) changing their distribution (Rabanal et al., 2010) and becoming more nocturnal (Wrege 

et al., 2010). However, studies of poaching effects have relied on proxies of poaching pressure, 

such as distance to access roads, rivers, or human settlements. These proxies serve as 

explanatory variables in models that include a measure of animal response as the response 

variable (e.g., animal abundance increases with distance to access road, which serves as a proxy 

of poaching pressure; Barnes et al., 1991, 1997; Blake et al., 2007, 2008; Hall et al., 1997; 

Laurance et al., 2006; Maisels et al., 2013; Yackulic et al., 2011). These studies have shown that 

forest elephants engage in risk avoidance behaviour including avoidance of roads, which 

researchers often interpret as avoidance of perceived poaching pressure (Blake et al., 2007, 2008; 

Yackulic et al., 2011). Unfortunately, these proxies do not consistently reflect levels of poaching 

pressure. Sometimes they are unsubstantiated and lack ground-truthing to confirm their 

correlation with actual poaching levels (Blake et al., 2008). Even when ground-truthing does 

exist, the relationship between proxy values and poaching levels is inconsistent and hard to 

generalize; Blake et al., (2007) found that signs of forest elephant poaching decreased with 
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distance to the nearest road, while Laurance et al., (2006) found no relationship between hunting 

pressure and distance to roads.  

Passive acoustic monitoring (PAM) offers an avenue to explore poaching impacts on 

wildlife more directly. PAM draws inference from autonomous acoustic sensors that can 

continuously record signals from species of interest and the environment (Blumstein et al., 2011; 

Van Parijs et al., 2009). In a PAM context, poaching pressure can be directly quantified by 

counting the number of gunshots detected at acoustic sensors (Astaras et al., 2017; Wrege et al., 

2017). This allows poaching impacts on landscape use and other behaviours to be investigated 

directly— a major improvement over indirect proxies such as distance to roads. Poaching 

attempts and behavioural responses can be detected and quantified using the record of acoustic 

data.  

Insights from the field of conservation behaviour indicate that studying such responses 

can contribute to the conservation of endangered species (Berger-Tal et al., 2016; Berger-Tal & 

Saltz, 2016; Blumstein & Fernandez-Juricic, 2004). Detectable patterns in vocal activity can 

reflect underlying behaviours that mediate population processes such as immigration, emigration, 

survival, and reproduction. Quantifying such behaviours can therefore inform population 

management and conservation (Berger-Tal et al., 2016; Berger-Tal & Saltz, 2016; Blumstein & 

Fernandez-Juricic, 2004). Forest elephants may abandon areas with high poaching pressure, 

thereby forsaking otherwise high-quality habitat. This would mean that in addition to directly 

killing elephants, poaching could have indirect population-level consequences (Blumstein & 

Fernandez-Juricic, 2010; Frid & Dill, 2002). A first step in exploring such indirect population 

effects is to test whether forest elephants respond in a detectable way to individual poaching 

events. Anecdotal evidence suggests that forest elephants reduced their use of a forest clearing 
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following gunfire (personal observation), and temporarily avoided a poached conspecific carcass 

(Stephan et al., 2020). Other than these examples, to our knowledge no one has systematically 

investigated forest elephant response to individual poaching events on any scale. For those 

elephants that are not directly killed but that witness or hear the event at a distance, do gunshots 

elicit an acoustically detectable response?  

There are several reasons to expect changes in vocal behaviour in response to poaching 

events, particularly in the use of rumble vocalizations. Rumbles are harmonically rich 

vocalizations with frequency components near or within the infrasonic range (i.e., below 20 Hz; 

Poole et al., 1988; Thompson, 2009). Rumbles are used in a variety of contexts, including group 

cohesion and movement coordination (Leighty et al., 2008; Poole et al., 1988). After a poaching 

incident, elephants might increase rumble production to coordinate the reunion of family units 

following separation, or movement away from the dangerous area. Alternatively, rumbles could 

function as alarm signals that propagate information away from the disturbance, as demonstrated 

in the alarm calls of a variety of taxa (Caro, 2005; Hollén & Radford, 2009). We unite these 

possibilities and refer to this as the ‘coordination’ hypothesis— due to the disruptive nature of 

poaching attempts, rumble production increases following the events.  

 A contrasting possibility would be fewer rumbles following a poaching attempt than 

before. Forest elephants could immediately abandon the area and redistribute to less dangerous 

locations, resulting in an absence of elephants and their vocalizations. We refer to this as the 

‘abandonment’ hypothesis. Alternatively, elephants could reduce their vocal activity without 

leaving the area. Reducing vocalization to avoid detection by predators is a tactic shared among 

many taxa (Parks et al., 2019; Ruxton, 2009). As poaching is the closest thing to predation that 

forest elephants experience, they may respond to poaching activity in a similar manner. We refer 
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to this as the ‘crypsis’ hypothesis. We used a PAM approach to test these hypotheses that forest 

elephants respond to poaching events in a way that is acoustically detectable.   

 

Methods 

Data Acquisition 

A grid of 50 acoustic sensors was established in Nouabalé-Ndoki National Park (NNNP), 

Republic of Congo, by the Elephant Listening Project (ELP, KLY-CCB, Cornell) in 

collaboration with the Wildlife Conservation Society (Fig. 2.1). Sounds were recorded 

continuously between December 2017 and May 2019 using acoustic recorders (Koch et al., 

2016) with a sampling rate of 8 kHz and 16-bit resolution. The grid covers an area of 1250 km2 

(mean inter-sensor distance of 5.5 km [SD=1.4]), with portions extending into an adjacent 

forestry concession. Batteries were replaced and data were retrieved from the sensors 

approximately every four months. Controlled experiments conducted near a ranger training site 

in the same forest indicate that gunshots are detected at distances of at least 2 km from the 

sensors. We used a template-based detector algorithm trained on recorded gunshots to search the 

continuous audio dataset for gunfire (see Wrege et al., 2017 Appendix S3 for detector details). 

The algorithm’s putative gunshot detections were then manually reviewed via spectrographic and 

auditory analysis by experienced personnel. During this process, all false positive gunshot 

detections were removed from the dataset. For confirmed gunshots, we manually inspected 

spectrograms to verify that no additional missed gunshots occurred within 24 hours of the focal 

shot(s). We aggregated any shots occurring within 30 minutes of one another into ‘gunfire 

events’, because these would likely represent a single hunting or elephant poaching attempt. 

Gunfire events were each detected at a single sensor only, which we defined as the gunfire event 
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site. From December 2017 through May 2019, we detected eight automatic gunfire events (Fig. 

2.2a), each at a different site and date (Fig. 2.1). From our interviews with anti-poaching patrol 

teams in NNNP and nearby national parks, we have high confidence that automatic weapon fire 

(e.g., AK47) events represent attempted elephant kills, whereas single-action weapon fire likely 

includes illegal hunting of other species. While single action hunting events were more common 

(we detected over 50 during the study period), we limited analyses to the eight automatic weapon 

fire events to focus on elephant poaching per se, rather than illegal hunting in general. This also 

allowed us to focus on events that would most likely elicit a behavioural response (automatic 

weapon fire events contain many gunshots; Fig. 2.2a). Anticipating that the number of gunshots 

in the events might influence elephant response, we quantified the intensity of each event as the 

number of individual rounds fired. 

The presence of elephants near a gunfire event site was indicated by detection of their 

rumble vocalizations (Fig. 2.2b). Rumbles are a favorable signal for this purpose because they 

are the most common vocalization and are used by both sexes and all age classes (Poole et al., 

1988; Stoeger et al., 2014). These signals are also well-suited for PAM due to their low 

frequencies, which are less prone to environmental attenuation than higher frequencies (Ingard, 

1953), allowing a greater detection range than other signal types. Our previous detection distance 

experiments indicate that we can detect rumbles at a range of 500-600 m, corresponding to a 

detection area of approximately 0.79-1.13 km2 around each of the grid’s 50 sensors. We used an 

automated detector algorithm to extract rumbles from the continuous audio dataset. This 

algorithm is based on a feature extraction and classification system and uses time- and 

frequency-domain features to provide a likelihood that a detected signal is an elephant rumble 

(Keen et al., 2017). We manually reviewed the detector output to confirm detections and remove 
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all false positives from the dataset. We evaluated detector performance by manually reviewing 

spectrograms from a subset of the continuous audio data to find all existing rumbles. Comparing 

this to the detector output for the same period, we calculated the average proportion of existing 

rumbles found by the detector to be 75%.  

For each gunfire event, we included rumbles from all sensor sites within 10 km of the 

event site. This resulted in clusters of five to fifteen sensors analyzed for each event (mean 9.1 

sensors per event cluster; Fig. 2.1). This decision was based on review of several forest elephant 

GPS collaring studies, which found that while forest elephants are capable of higher speeds, 

mean daily travel distances and/or displacements are between 1 and 9 km (Blake, 2002; Blake et 

al., 2008; Kolowski et al., 2010; Mills et al., 2018). Including sensors out to 10 km from the 

poaching site afforded us high confidence of detecting behaviours of elephants that were exposed 

to or aware of the poaching event. As we were uncertain of the timescale over which a response 

might occur, we included elephant calling activity occurring within 24 hours before and after 

each gunfire event. We predicted that any potential response would be most pronounced and 

detectable in the period immediately following each event.    

To establish a baseline of elephant vocal activity in the absence of any gunfire, we 

established one 48-hour control period for each of the eight event clusters, during which no 

gunshots of any kind were detected (single-action or automatic). For each control, we quantified 

rumble detections at all sites in the cluster, so that each control utilized the exact set of sensors as 

its corresponding gunfire event. This controlled for spatial variation in elephant abundance 

across the grid sites and promoted comparability between gunfire and control periods. We 

centered each control period three days prior to its corresponding gunfire event, at the exact same 

time of day as the gunshots. However, for some events this interval had to be shifted longer to 



 
 

43 

avoid data gaps at particular sensors (maximum interval: 10 days). We kept this interval short to 

minimize any effect of seasonal change in elephant abundance and promote comparability 

between control and gunfire events, rather than to uphold any assumption of individual-level 

closure— we expected individual elephants to move freely between sites (turnover of 

individuals).  

Statistical modeling 

Initial GLMMs: comparison to baseline activity 

Having accounted for the elephant rumbles in the 48-hour periods centered on each 

gunfire event and in the 48-hour control periods free of gunfire, we first implemented a modeling 

strategy to detect potential elephant responses to gunfire events, and to determine if responses 

differ from baseline activity. Our design improved upon simpler spatio-temporal sampling 

designs (e.g., baseline, before-after, simple Before-After-Control-Impact [BACI], etc.) by 

including multiple control and impact sites (n = 8 clusters of 5-15 sites), and by incorporating a 

“staircase” structure (Walters et al., 1988) in which treatments and control periods are staggered 

through time rather than all occurring simultaneously. These design features remedy the issues 

associated with simpler designs— namely, the inability to isolate treatment effects from 

potentially confounding random events, due to a lack of spatial replicates and temporal 

staggering (Underwood, 1992, 1994; Walters et al., 1988).  

We expected any initial response to such dramatic events to be immediate— within 

several hours of the gunfire. However, we also wanted to accommodate the potential for a 

sustained response, perhaps with different temporal or behavioural characteristics than the 

immediate response. We divided the 24-hour period after the gunshots into an ‘immediate’ 

(hours 1 to 5) and a ‘sustained’ (hours 6 to 24) interval, each of which was paired to the 
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corresponding interval from before the gunfire (hours -1 to -5 and -6 to -24, respectively). We 

located the division between the two intervals based on qualitative patterns noticed during initial 

data exploration. We chose a non-overlapping ‘sustained’ interval— hours 6 to 24 rather than 

hours 1 to 24— so that the measurement of potential sustained effects would be unconfounded 

by immediate responses. We matched each of these two intervals to a corresponding model to 

test for an immediate and sustained behavioural response. We constructed generalized linear 

mixed-effects models (GLMMs) using the ‘glmmTMB’ package (Brooks et al., 2017) in R (R 

Core Team, 2022). The response variable was the rumble count at each sensor (site) for each of 

the eight gunfire events and eight control periods (n = 294 counts). Note that rumble counts were 

made at each of the five to fifteen sensors within 10 km of the gunshot site, not just the sensor at 

which the gunfire was detected. We included event ID as a random effect to control for these 

repeated measures (multiple sensors within an event cluster). We included distance of each 

sensor to the gunshot detection sensor to account for potentially stronger responses closer to the 

poaching sites. Our predictor variable of major interest— period— defined the time intervals 

over which rumbles were counted at each sensor. For the ‘immediate’ model, we defined period 

as the five hours before vs. after the gunshots, and the analogous intervals from control periods. 

We incorporated period as a fixed effect with three levels (before, after, control) to detect any 

responses to gunfire and to contrast this with baseline activity. Using an information theoretic 

framework (Burnham & Anderson, 2002), we compared a period X distance interaction model to 

a null model and to simpler main effects models. To account for zero inflation in the rumble 

count data, we specified all GLMMs as hurdle models with truncated negative binomial 

distributions. These two-part models allow the probability of zero-counts and non-zero counts 

(conditional abundance) to be modeled independently (Mullahy, 1986). We explored modeling 
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both components as a function of period, distance, and/or their interaction. However, the zero-

inflation (zero-count) component consistently fit the data best as a function of a constant 

intercept. We therefore structured the zero-inflation component as intercept-only for all GLMMs, 

while modeling the conditional component with the variables described above (see Table 2.1 for 

candidate model structure). We followed this same strategy for the ‘sustained’ model, but with 

period defined as -24 to -6 hours before and 6 to 24 hours after the gunshots (and the analogous 

intervals from control periods). 

We controlled for the influence of natural diel vocalization patterns on our measurement 

of elephant response in three ways. First, we centered the control periods at the exact time of day 

that the gunshots occurred in the corresponding gunfire events. Second, we implemented 

‘sustained’ models whose intervals extended ±24 hours from the time of the gunshots, so that 

any natural diel rumble patterns would be encapsulated by both the before and after periods. 

Lastly, we compared the times of the eight gunfire events to control period rumbles and to a 

model fit to these baseline rates (Fig. 2.S1), confirming their unbiased distribution. 

Subsequent GLMMs: event variability 

Focusing only on the before-after data from gunfire events (no control periods), we 

examined how the ‘immediate’ behavioural response was influenced by event intensity, 

measured as the number of gunshots comprising each event. We included the number of 

gunshots as a fixed effect, as well as its interaction with period and distance. Our relatively small 

sample size and the zero-inflated nature of the data would not accommodate a 3-way interaction 

between all three variables. The interaction between period and number of gunshots was of most 

interest because it represented our hypothesis that elephants would respond to gunfire events in a 

way that varied with event intensity. We compared this model to a null model and to other 
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candidate models with 2-way interactions and/or main effects only (see Table 2.S1 for candidate 

model structure). We again included ‘event ID’ as a random effect. We implemented this 

modeling strategy for the ‘immediate’ period only, as our aim was to elucidate the short-lived 

behavioural response immediately following gunfire (see Results).  

We therefore represented the ‘coordination’ and ‘abandonment’/‘crypsis’ hypotheses as 

candidate models for comparison, and allowed for variation in response due to event intensity 

(number of gunshots), distance, and time relative to the gunfire (‘immediate’ vs. ‘sustained’ 

intervals). Variables that we accounted for but did not include in the final modeling framework 

are presented in 2.S1 Text. We used an information theoretic approach for model selection and 

parameter estimation to arbitrate between these competing hypotheses, while accommodating the 

null hypothesis of no response. Model selection and inference proceeded according to Akaike’s 

Information Criterion and model weights (Burnham & Anderson, 2002). Finally, to visualize the 

temporal characteristics of any responses, we plotted rumbles over time. We divided the 48-hour 

gunfire events into 1-hour bins and for each bin we summed the rumbles across all sensors for 

each event cluster.  

 

Results 

The gunfire events contained on average 34.3 gunshots (SD=27.9; range: 7-81) and had a 

median duration of 2.5 minutes (mean: 8.5; range: 0.17-33.7). A total of 516 elephant rumbles 

were detected for use in analyses, 187 (36%) during gunfire events and 329 (64%) during control 

periods. The temporal distribution of these rumbles relative to gunfire events varied substantially 

(Fig. 2.3a), but generally there were more rumbles following a gunfire event than preceding it. 

This pattern was especially prominent during the five hour ‘immediate’ intervals (Fig. 2.3b).  
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Initial GLMMs: comparison to baseline activity  

There was no support for an influence of period or distance in the zero-inflation model 

component, so this was structured as intercept-only for all models (Table 2.1). The probability of 

zero rumbles on a single sensor during a given period was 0.92 (inverse logit of 2.47) for the 

‘immediate’ and 0.81 (inverse logit of 1.46) for the ‘sustained’ interval (Table 2.2). For the 

conditional (non-zero count) model component, during the ‘immediate’ interval, the period + 

distance model ranked definitively higher than the other candidate models (Table 2.1)—strong 

support that variation in rumble counts was influenced by period and distance. Rumbles per 

sensor were lower before gunfire events compared to control periods (βperiodBef estimate < 0; p = 

0.016; Table 2.2; Fig. 2.4a), and higher after gunfire events than before (p = 0.006; Fig. 2.4a). 

Rumble counts increased with distance from the poaching event site/sensor (βdistance estimate > 0; 

p = 0.013; Table 2.2; Fig. 2.5). For the ‘sustained’ interval, the period model ranked the highest, 

but was followed by the null and period + distance models within 2 AIC units (Table 2.1). 

Rumble counts did not differ between before and after gunfire periods (period model before-after 

p = 0.976; Fig. 2.4b). However, rumble counts from both before and after gunfire periods were 

significantly (or marginally significantly) lower than in control periods (βperiodBef&Aft estimates < 

0; Table 2.2; Fig. 2.4b). Distance was far less important in the ‘sustained’ period (p = 0.782; 

Table 2.2). 

Subsequent GLMMs: event variability 

The zero-inflation component was structured as intercept-only for all models (Table 2.3). 

The probability of zero rumbles on a single sensor during a given period was 0.91 (inverse logit 

of 2.33; Table 2.4). For the conditional component, while no model unambiguously 

outperformed all others, there was strong support for the influence of both period and number of 
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gunshots on elephant response—these two variables composed the two top-ranked models (Table 

2.3). The period + number of gunshots additive model ranked highest according to AIC, 

followed by the period X number of gunshots interaction model and other candidates within 2 

AIC units (Table 2.3). The four top-ranked models (within 2 AIC units of the top model) make 

similar predictions. All four predict a higher number of rumbles per sensor in the 5-hour period 

after the gunfire events than before (βperiodAft estimates > 0; Table 2.4). Three of the four top 

models predict rumbles to increase with the number of gunshots composing the events (βshots 

estimates > 0; Table 2.4). According to the second-ranked interaction model, the effect of period 

is strengthened as the number of gunshots constituting an event increases (βperiodAft*no. gunshots = 

0.02; Table 2.4). This trend is corroborated in rumbles summed across all sensors of the 

individual event clusters, where post-gunfire rumble counts increase more drastically for events 

characterized by many gunshots (Fig. 2.6; note that the summed rumbles visualized here differ 

from the GLMMs, which used rumble counts at each sensor). There was some support for an 

effect of distance, with rumble counts increasing with distance from the poaching event 

site/sensor (βdistance estimates > 0; Table 2.4).  

 

Discussion  

 We reveal two behavioural responses of forest elephants to poaching activity. The two 

responses each exhibit a distinct pattern of elephant vocalizations. Each response occurs at a 

different time (before versus after gunfire) and presumably results from a different aspect of 

poaching activity (poacher presence versus gunfire). 

The first discovery of this study is a reduction in rumble vocalizations when poachers are 

in the vicinity, even before any gunshots are fired. The pattern of overall higher rumble counts in 
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control periods compared to before-gunfire periods pertained to both ‘immediate’ and ‘sustained’ 

interval data (Fig. 2.4ab; Table 2.2). Period is an important variable in the top models for both 

intervals, where significant or marginally significant differences exist between control and 

before-gunfire rumble counts (Fig. 2.4ab; Table 2.2). This suggests that forest elephants may be 

responding directly to the presence of poachers in the forest. As poachers move into an area, 

elephants may reduce their vocalization rate (‘crypsis’), move away in avoidance 

(‘abandonment’), or some combination of the two. The potential impact of these different 

behavioural responses on elephant ecology could be significant. From a survival perspective, 

acoustic crypsis would not be effective because poachers do not use elephant vocalizations to 

locate (and then kill) them, but the behaviour might be a more general response to fear. 

Abandonment could affect access to important resources and shift the distribution of elephants 

on the landscape, potentially increasing competitive interactions. Unfortunately, PAM has 

difficulty separating these alternatives because the absence of vocalizations does not necessarily 

mean the animals are not present.  

This study also found an acute but short-lived response to gunfire characterized by 

increased rumbles immediately after gunfire, followed by a decrease to lower-than-baseline 

rumble counts after several hours (Fig. 2.4). In the initial GLMMs comparing gunfire and control 

period activity, the superiority of the period + distance model over all other candidate models for 

the ‘immediate’ interval suggests that this response represents a legitimate departure from 

baseline activity (Fig. 2.4a; Tables 2.1 & 2.2) and from normal diel variation in call rate (Fig. 

2.S1). The spike in vocalizations following gunfire is apparent (Fig. 2.3b). 

The subsequent GLMMs of only gunfire event data provide further evidence of this 

response. The highest-ranked models all contain the period variable (Table 2.3) and provide 
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evidence of increased vocalization following gunfire (βperiodAft estimates > 0; Table 2.4). We can 

appropriately draw inference from the top four models (ΔAIC < 2), as their cumulative AIC 

weight equals 0.67 (Tables 2.3 & 2.4), and the remaining models in the candidate set received 

substantially less support (Table 2.S1). These models support the ‘coordination’ hypothesis— 

due to the disruptive nature of poaching events, rumble production increases afterward in 

accordance with an elevated need for communication and coordination. This may be indicative 

of the important role that rumble vocalizations play in group cohesion. Alternatively, rumbles 

following a poaching event could be alarm signals, propagating information regarding the 

disturbance away from the focal site.  

We also provide evidence that this response to gunfire is partially dependent on event 

intensity. Three of the four top models predict rumbles to increase with the number of gunshots, 

and there was some evidence that events characterized by more gunshots resulted in more drastic 

increases in rumbles from before to after periods (Table 2.4). When rumbles are summed across 

all sensors for each event cluster, the influence of the number of gunshots on elephant response 

is apparent (Fig. 2.6). Multi-shot events might be associated with attacks on larger groupings of 

elephants, resulting in higher numbers of traumatized individuals communicating with the 

population. Alternatively, events involving only a few shots might be less detectable at a distance 

and could go unnoticed or misinterpreted by elephants far from the poaching site.  

Some of the variability in response is likely due to the distribution of elephants in the 

vicinity prior to the gunfire events, irrespective of the number of gunshots fired. We are less 

likely to detect a response if very few elephants are in the area when the poaching attempt 

occurs. An important element of future analyses will be to explore baseline changes in elephant 

distribution at varying time scales and with all 50 sensors of the grid. This highlights one of the 
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major tradeoffs involved with PAM— while it allows continuous data collection on otherwise 

unachievable spatial and temporal scales, the amount of data and effort required for extracting 

signals of interest can be enormous.   

Another issue related to the unknown elephant distribution is the potential for systematic 

bias in elephant abundance between gunfire and control periods. As poaching necessarily occurs 

where and when elephants are present, the gunfire event periods could be more likely to have 

elephants present, and in higher abundance, compared to control periods in which elephant 

presence is not a given. However, given that the majority (64%) of all rumbles occurred during 

control periods, such a bias is highly unlikely in our dataset. In general, our sampling strategy of 

using identical clusters of sensors for control periods and gunfire events, separated by a short 

time interval, was designed to control for variation in elephant abundance.  

The observed changes in calling behaviour immediately following gunfire likely involve 

elephants not directly targeted but that hear the gunshots, as well as more distant individuals that 

learn of the disturbance through communication. As mentioned above, multi-shot events could 

theoretically expose more individuals directly to poaching trauma, which in turn could trigger 

elevated vocalization rates. However, we do not believe the activity of directly targeted elephants 

to underlie the responses we have discovered, for three reasons. Forest elephants generally move 

in family groups of two to three individuals, or solitarily in the case of bulls (Fishlock et al., 

2008; Morgan & Lee, 2007; White et al., 1993). For a given poaching attempt, we therefore do 

not expect there to be numerous escaping elephants that could contribute to a vocal response. 

Second, rumbles were never detected simultaneously with gunfire, and only once was a rumble 

vocalization identified within five hours after gunfire at the poaching site itself. Third, during the 

‘immediate’ interval, distance featured prominently in the top model of the initial GLMMs 
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(Table 2.2)—rumble counts were higher at sensors farther away from the gunfire site than at 

nearby sensors (Fig. 2.5). Therefore, detected responses to gunfire involve elephants distributed 

throughout the area around the poaching attempts (within approx. 10 km), but not necessarily 

directly targeted individuals that experienced the poaching attempt firsthand.  

Compared to the immediate post-gunfire vocal activity, we observe a very different 

pattern in the ‘sustained’ interval. Following the high vocal activity immediately after gunfire, 

rumble counts drop to levels that are similar to pre-gunfire periods, and significantly lower than 

control periods (Fig. 2.4b; Table 2.2). This indicates that the initial vocal increase in response to 

gunfire is short-lived and is followed by a sustained response of lower-than-baseline vocal 

activity. Again, calling frequency could be low because individuals have relocated to other 

potentially less dangerous areas (‘abandonment’) or because they have restricted acoustic 

communication (‘crypsis’). Our current sampling and analysis scheme does not allow us to 

illuminate the mechanism underlying the sustained reduction in vocalization.  

 This study generated useful findings and implications for continued PAM research on 

African forest elephants. We now know that we can detect an acute but short-lived behavioural 

response to individual poaching attempts that would be unobservable through any other means. 

We know that we can expect this response to be characterized by increased elephant vocal 

activity immediately following gunfire events, whereas previously we may have expected the 

opposite (reduced vocal activity). This is followed by a reduction in calls to below baseline rates, 

indicating a sustained response. We have also revealed a reduction in elephant vocalizations 

while poachers are in the vicinity, before any gunshots are fired. These contrasting before-after 

patterns will be helpful in developing future PAM sampling schemes investigating forest 

elephants and poaching. An important next step is to look at longer time scales and ask, for 
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example, whether forest elephants abandon otherwise high-quality habitat because of continued 

or intermittent poaching pressure.  

 The implications of this research for the conservation of African forest elephants are 

substantial. Together, the response patterns suggest that poaching attempts influence the 

behaviour of non-target elephants in the vicinity. While the acute behavioural changes appear 

short-lived, we provide some evidence of a sustained response. We reveal increases and 

decreases in vocal activity, lending support to both the ’coordination’ and the 

‘abandonment’/’crypsis’ hypotheses, with their associated behaviours each dominating at a 

different point in time. If these behaviours incur costs and occur in many individuals, they may 

manifest as population-level consequences by influencing the vital processes of survival, 

reproduction, immigration, and emigration. In addition to the outright killing of target 

individuals, our study suggests that poaching has indirect consequences for non-target forest 

elephants which should be considered by future conservation strategies.  
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Figures and tables 

 
 
Figure 2.1 Map of the 50-sensor study grid, spanning portions of Nouabalé-Ndoki National Park 
(NNNP) and the adjacent forestry concession. Black dots indicate sensors and red star symbols 
indicate the eight sensors at which automatic weapon fire events were detected, numbered 
chronologically by event date. The circle centered on gunfire site/event one is an example of the 
10 km distance within which rumble counts from all sensors were analyzed with GLMMs for a 
given event. The red dot in the inset panel indicates the location of the study area in Republic of 
Congo in central Africa.  
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Figure 2.2 Spectrogram of (a) a portion of an automatic weapon fire event, zoomed in on a burst 
of four shots fired in rapid succession, followed by several 1- and 2-shot segments, and (b) a 
series of forest elephant rumble vocalizations, including two overlapping rumbles from different 
individuals (at 12-19 seconds). Spectrograms made with Raven Pro 1.6 software (Raven Pro, 
KLY-CCB, Cornell, 2019) with 1040-point (130-ms) and 2300-point (288-ms) Hamming 
windows (for (a) and (b), respectively), a 90% overlap, and a 4096-point discrete Fourier 
transform. 
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Figure 2.3 The total number of elephant rumbles per hour, summed across all sensors of each 
event cluster, for (a) the entire 48-hours centered on each gunfire event, and (b) the ‘immediate’ 
interval of ±5 hours from each gunfire event. The black vertical line at hour zero is the instance 
of the gunfire. The coloured lines represent these sums for each independent gunfire event. The 
thick black line represents rumbles summed across all eight gunfire events. The dashed grey line 
represents rumbles summed across all eight control events. 
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Figure 2.4 Initial GLMM predictions from the top models of the (a) ‘immediate’ and (b) 
‘sustained’ intervals. Error bars represent 95% confidence intervals. * indicates p ≤ 0.05 and ** 
indicates p = 0.077.  
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Figure 2.5 Initial GLMM predictions for the ‘immediate’ interval top model period + distance. 
Marginal means of predicted rumbles per sensor are averaged over the three periods (control, 
before, and after) and shown as a function of distance from the gunfire event site/sensor. Dashed 
grey lines indicate 95% confidence intervals. 
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Figure 2.6 Elephant rumbles for the eight individual gunfire events, summed across all sensors 
of an event, for the ‘immediate’ interval of ±5 hours from the gunshots. Note that these summed 
rumbles on the y-axis differ from the GLMMs, which used rumbles per sensor.  
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Table 2.1 Summary of initial GLMMs predicting counts of elephant rumbles per sensor in the 
'immediate' and 'sustained' intervals around gunfire events, ranked by AIC. In the initial 
GLMMs, the models compare rumble counts from before gunfire, after gunfire, and control 
periods, and consider distance from the poaching event site/sensor. All candidate models include 
a random effect for event ID. 
 

Interval Conditional 
Component 

Zero-Inflated 
Component 

# 
Parameters 

Log-
likelihood AIC ΔAIC AIC 

Weight 

Immediate 

per+dist intercept  7 -131.86 277.73 0 0.62 
distance intercept  5 -135.22 280.45 2.7 0.16 
per*dist intercept  9 -131.61 281.23 3.5 0.11 
period intercept  6 -135.01 282.02 4.3 0.07 

intercept (null) intercept  4 -137.77 283.54 5.8 0.03 

Sustained 

period intercept  6 -290.28 592.57 0 0.42 
intercept (null) intercept  4 -292.65 593.30 0.7 0.28 

per+dist intercept  7 -290.25 594.49 1.9 0.16 
distance intercept  5 -292.63 595.27 2.7 0.11 
per*dist intercept  9 -289.94 597.89 5.3 0.03 
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Table 2.2 Initial 'immediate' and 'sustained' interval GLMM parameter estimates, standard errors 
(in parentheses), and p-values for candidate models within 2 AIC units of the top model for each 
interval. Estimates and SEs are on the link scale of the GLMMs (conditional component = 
truncated negative binomial with log link; zero-inflation component = binomial with logit link). 
While the contrast is not shown, before and after periods differed significantly for the 
'immediate' interval (p = 0.006; more rumbles after) but not for the 'sustained' interval (period 
model p = 0.976). All models include a random effect for event ID. 
 
 

Interval Model Conditional Component Parameter Estimates Zero-Inflated  
Intercept  Period (=Before) Period (=After) Distance Intercept 

Immediate per+dist 1.41(0.47) 
p=0.003 

-2.06(0.86) 
p=0.016 

0.18(0.67) 
p=0.795 

0.31(0.12) 
p=0.013 

2.47(0.22) 
p<0.001 

Sustained 

period 1.52(0.67) 
p=0.023 

-1.07(0.60) 
p=0.077 

-1.09(0.56) 
p=0.050 - 1.46(0.15) 

p<0.001 

null 0.60(1.42) 
p=0.672 - - - 1.46(0.15) 

p<0.001 

per+dist 1.54(0.67) 
p=0.021 

-1.09(0.61) 
p=0.074 

-1.13(0.57) 
p=0.049 

0.03(0.09) 
p=0.782 

1.46(0.15) 
p<0.001 
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Table 2.3 Summary of candidate set of subsequent GLMMs, which used gunfire event data only 
and considered the influence of period, event intensity (number of gunshots) and distance from 
the gunfire event sensor/site. Models predict counts of elephant rumbles per sensor in the 
'immediate' period, ±5 hours from the gunshots. All models include a random effect for event ID. 
Models composed of combinations of variables that received very little support (model weights ≤ 
0.05) have been excluded from the table (the full candidate set can be found in Table 2.S1). 
 
 

Conditional 
Component 

Zero- 
Inflated 

Component 

# 
Parameters 

Log-
likelihood AIC ΔAIC AIC 

Weight 

per + shots Intercept 6 -70.66 153.32 0 0.25 
per*shots Intercept 7 -70.12 154.24 0.9 0.16 
per + dist Intercept 6 -71.22 154.44 1.1 0.14 

per + shots + dist Intercept 7 -70.39 154.78 1.5 0.12 
per*shots + dist Intercept 8 -69.94 155.89 2.6 0.07 
intercept (null) Intercept 4 -76.13 160.27 7.0 <0.01 
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Table 2.4 Parameter estimates, standard errors (in parentheses), and p-values for the four top 
candidates of the set of subsequent GLMMs, ranked by ΔAIC and model weight. Models predict 
elephant rumble counts per sensor for the 'immediate' interval, ±5 hours from the gunshots, and 
consider the influence of period, event intensity (number of gunshots) and distance from the 
gunfire event sensor/site. Estimates and SEs are on the link scale of the GLMMs (conditional 
component = truncated negative binomial with log link; zero-inflation component = binomial 
with logit link). All models include a random effect for event ID.  
 

Model ΔAIC 
(weight) Conditional Component Parameter Estimates 

Zero-
Inflated  

Intercept  PeriodAft Shots Distance PerAft*Shots Intercept 

per + shots 0     
(0.25) 

-0.28(0.58) 
p=0.627 

1.92(0.55) 
p=<0.001 

0.03(0.01) 
p=0.009 - - 2.33(0.29) 

p<0.001 

per*shots 0.9 
(0.16) 

0.08(0.61) 
p=0.893 

1.46(0.67) 
p=0.029 

0.01(0.02) 
p=0.506 - 0.02(0.02) 

p=0.296 
2.33(0.29) 
p<0.001 

per + dist 1.1 
(0.14) 

-0.51(0.68) 
p=0.451 

2.01(0.67) 
p=0.003 - 1.03(0.50) 

p=0.040 - 2.33(0.29) 
p<0.001 

per+shots+
dist 

1.5 
(0.12) 

-0.35(0.60) 
p=0.562 

1.92(0.56) 
p<0.001 

0.02(0.02) 
p=0.180 

0.40(0.59) 
p=0.490 - 2.33(0.29) 

p<0.001 
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Supplemental material 

 

 
 
Figure 2.S1(a)We plotted the mean number of control period rumbles per sensor for each hour 
of the day (open circles). We fit a quadratic linear model with the form Rumbles ~ TOD + 
TOD^2 to this baseline data (black line). The model summary is provided in (b). We compared 
this baseline rumble curve to the times of day of the eight gunfire events (rug at top of figure). 
The gunfire event times are evenly distributed with respect to the inflection point of the rumble 
curve, with events falling on either side. Therefore, we conclude that natural diel rumble patterns 
are unlikely to systematically bias our measurement of vocal response to gunfire events. We 
plotted the mean number of gunfire event rumbles per sensor for comparative purposes (filled 
circles). 
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Table 2.S1 Full candidate set of subsequent GLMMs, which used gunfire event data only and 
considered the influence of period, event intensity (number of gunshots) and distance from the 
gunfire event sensor/site. Models predict counts of elephant rumbles per sensor in the 
'immediate' period, ±5 hours from the gunshots. All models include a zero-inflated component as 
a function of a constant intercept and a random effect for event ID.  
 

Conditional 
Component 

No. 
Par. LL AIC ΔAIC AIC 

Weight 
per + shots 6 -70.66 153.32 0 0.25 
per*shots 7 -70.12 154.24 0.9 0.16 
per + dist 6 -71.22 154.44 1.1 0.14 

per + shots + dist 7 -70.39 154.78 1.5 0.12 
per*shots + dist 8 -69.94 155.89 2.6 0.07 

per*dist 7 -71.18 156.36 3.0 0.05 
period 5 -73.24 156.49 3.2 0.05 

dist*shots + per 8 -70.28 156.56 3.2 0.05 
per*dist + shots 8 -70.34 156.68 3.4 0.05 

shots 5 -73.91 157.81 4.5 0.03 
distance 5 -74.57 159.15 5.8 0.01 

dist + shots 6 -73.80 159.60 6.3 0.01 
intercept (null) 4 -76.13 160.27 7.0 <0.01 

dist*shots 7 -73.78 161.55 8.2 <0.01 
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Appendix 2.S1 Accounting for ‘nuisance’ variables  

Initial GLMMs: comparison to baseline activity 

We did not include a variable for logging in the candidate models. Much of the logging 

area is now inactive concession that was logged over 7 years prior to the start of our study, so 

this would not impact our detected responses. Only one of the eight gunfire events (event 1; Fig. 

2.1) occurred within the active portion of the concession, where selective logging was restricted 

to relatively small areas at any given time. Instead of including a variable for this one event, we 

checked logging data to verify that no logging activities overlapped or interfered with our 

measurement periods for that event. 

Subsequent GLMMs: event variability 

It is possible that event duration (time over which gunshots were discharged) could 

reflect event intensity, and therefore have an effect similar to the number of gunshots. Because 

we expected duration and number of shots to effect elephant response in similar ways, and 

because these two variables were correlated (r = 0.36, p < 0.001), we chose to include only 

number of shots in the final suite of candidate models. We made this decision after modeling 

both variables and determining that number of shots explained more variation in the data in an 

information theoretic framework. 
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Abstract 

 Poaching and bushmeat hunting are major causes of diminishing wildlife populations and 

global biodiversity loss. The ability of conservation efforts to combat these activities, through 

law enforcement patrols for example, is limited by our understanding of the determinants of 

where and when poaching occurs. Much of the research on the drivers of poaching has focused 

on scales and variables that are not relevant to prediction and intervention at the landscape scale. 

Furthermore, the opportunistic and biased data collected by patrols themselves are unsuitable for 

robust statistical analyses and inference. In this study, we examined the proximate environmental 

determinants of the distribution of poaching and bushmeat hunting in a national park and 

adjacent logging concessions in Republic of Congo. We employed a passive acoustic monitoring 

(PAM) framework to systematically collect unbiased data amenable to statistical inference on the 

determinants of the distribution of gunfire events. Over 3.25 years of recording starting in late 

2017, we detected 86 gunfire events across a grid of 50 acoustic recorders. We analyzed the 

spatiotemporal distribution of these events as a function of covariates pertaining to the 

hypotheses that poaching/hunting risk is determined by accessibility (e.g., distance to rivers and 

roads), deterrence (e.g., patrol effort), target species abundance (e.g., relative abundance of forest 

elephants), or a combination thereof. Distance to major rivers and its interaction with season 

emerged as the most influential determinant of gunfire event risk, with lower risk characterizing 

sites farther from rivers, especially during the dry season. Other covariates that explained the 

distribution of gunfire events included habitat, ongoing logging activity, and proximity to 

permanent roads and temporary logging roads. Increased local patrol effort only slightly reduced 

the risk of gunfire events in the TTE analysis. However, a potential effect of patrol effort on 

overall gunfire event rates became apparent at broader scales across the entire study area. 



 
 

70 

Protected area designation and the relative abundance of elephants were among the 

uninformative predictors. Overall, variation in risk was determined primarily by accessibility to 

potentially exploitable areas. Our results can be used to guide and optimize the allocation of 

patrol effort to high-risk areas at times of increased vulnerability. Our study exemplifies how a 

PAM approach can be used to overcome the limitations of biased data collection common to 

studies in this field.   

   

Introduction 

Poaching, often defined as the illegal killing, taking, or harvesting of protected wildlife, 

is an issue that spans local to international and global scales, and is associated with an equally 

extensive array of social, political, economic, and environmental drivers (Burn et al., 2011; 

Hauenstein et al., 2019; Lavadinović et al., 2021). It is a phenomenon that detrimentally affects 

wildlife populations, species and population management goals, human safety, and conservation 

efforts worldwide (Haenlein & Smith, 2017; Lavadinović et al., 2021). While poaching is 

commonly associated with megafauna such as elephants and rhinos, it encompasses the illegal 

taking of any protected species, making it a worldwide phenomenon that is not limited to 

particular taxa (Lavadinović et al., 2021). It includes, for example, illegal bushmeat hunting of 

diverse species (although not all bushmeat hunting is illegal, e.g., local hunting; Lavadinović et 

al., 2021; Poulsen et al., 2009). Overhunting for bushmeat has reduced wildlife populations and 

caused local extinctions of numerous species throughout the global tropics (Corlett, 2007; Fa et 

al., 2002; Milner-Gulland & Bennett, 2003; Peres & Palacios, 2007). The overharvesting of 

wildlife is one of the most widespread and leading causes of local extinctions and of the global 

decline in biodiversity (Fa et al., 2002; Milner-Gulland & Bennett, 2003; Vié et al., 2009).  
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Poaching associated with the ivory trade has severely impacted populations of all three 

extant elephant species (two in African, one in Asia; Aryal et al., 2018; Blake & Hedges, 2004; 

Maisels et al., 2013; Wittemyer et al., 2014). Since 1979, African elephant (Loxodonta spp.) 

populations have suffered an estimated overall reduction of 72% (Chase et al., 2016; Jackson, 

2013; Robson et al., 2017). Recent evidence suggests that while elephant poaching rates have 

fluctuated over the past few decades, rates remain high and are increasing in some areas (Chase 

et al., 2016; Underwood et al., 2013; Wittemyer et al., 2014). Research that has considered the 

two African elephant species independently has revealed that poaching has decimated 

populations of the critically endangered African forest elephant (Loxodonta cyclotis; Blake & 

Hedges, 2004; Gobush et al., 2021; Maisels et al., 2013). Between 2002 and 2011, 62% of the 

entire population and 30% of their geographic range was lost primarily due to poaching (Maisels 

et al., 2013). 

Conservation efforts to combat poaching and illegal bushmeat hunting often employ anti-

poaching patrols as a primary wildlife law enforcement tool (Dobson et al., 2019; Hilborn et al., 

2006). Effective law enforcement patrols have been identified as a crucial factor for the 

successful conservation of large mammal species in particular (Bruner et al., 2001; Hilborn et al., 

2006; Tranquilli et al., 2012). Inadequate law enforcement, by contrast, can result in rapid losses 

in biodiversity (Peres & Terborgh, 1995; Tranquilli et al., 2012). Patrols are often tasked with 

protecting large expanses of terrain with limited resources (Peres & Terborgh, 1995; Plumptre et 

al., 2014). Insufficient personnel and monetary resources, ineffective management, and lack of 

evidence-based decision-making frameworks can reduce the ability of patrol effort to provide 

adequate protection for vulnerable species and areas (Gavin et al., 2010; Hilborn et al., 2006; 
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Keane et al., 2011; Plumptre et al., 2014). Research that provides guidance on the allocation of 

resources and optimization of patrol effort is therefore of high value (Moore et al., 2018, 2021).       

Understanding the drivers of poaching and bushmeat hunting would aid conservation by 

allowing prediction of when and where poaching will occur, facilitating intervention. Studies on 

determinants of poaching and illegal hunting have often been on regional, national, 

multinational, or global scales to reveal political and socioeconomic drivers of poaching pressure 

(e.g., corruption, political stability, poverty, GDP; Burn et al., 2011; Hauenstein et al., 2019; 

Lavadinović et al., 2021). Studies that illuminate such drivers can potentially inform high-level 

strategy to address poaching but are less useful for tactical, on-the-ground interventions and 

apprehension of poachers. To improve the efficacy and optimize the use of available 

conservation law enforcement resources, more research is needed that examines the 

environmental predictors of when and where poaching occurs at the proximate or landscape scale 

(Lavadinović et al., 2021; Moreto & Lemieux, 2015). Far fewer studies focus on the predictor 

variables of poaching and bushmeat hunting at this scale (e.g., ecological drivers sensu 

Lavadinović et al., (2021); Moreto & Lemieux, 2015). In a systematic review of the illegal 

hunting literature, Lavadinović et al., (2021), found that the majority of studies worldwide focus 

only on the resulting environmental impacts. Only a small percentage of studies explore the 

determinants underlying the distribution of illegal hunting, a better understanding of which 

would facilitate prediction of illegal hunting activity in time and space (Lavadinović et al., 2021; 

Moreto & Lemieux, 2015). Of this limited research, many studies have discernable limitations. 

Some studies have used proxies of the likelihood of poaching events (e.g., distance to access 

roads and human settlements) and investigated their impacts on animal populations (Barnes et 

al., 1991, 1997; Blake et al., 2007, 2008; Hall et al., 1997; Laurance et al., 2006; Maisels et al., 
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2013; Yackulic et al., 2011), while fewer studies investigate the proximate determinants of 

poaching pressure itself (see Burn et al., 2011; Zafra-Calvo et al., 2018). Some studies have 

found that signs of poaching and bushmeat hunting decrease with distance from roads (Blake et 

al., 2007; Branch et al., 2022), while others indicate that hunting pressure decreases with 

distance to villages and logging camps, but not with distance to roads (Laurance et al., 2006). 

The distribution of poaching pressure may therefore be determined by some, but not all, types of 

access points into wildlife species habitat.  

The influence of logging activity, which provides access to remote forests through the 

construction of temporary logging roads, has also been implicated in increased levels of 

bushmeat hunting (Poulsen et al., 2009, 2011). Rates of poaching and illegal hunting should also 

be dependent on the frequency or intensity of anti-poaching patrols (Doormaal et al., 2021; 

Moreto et al., 2014; Wrege et al., 2017), which in turn can correlate with the degree of land 

protection (e.g., national parks vs. forest concessions). Temporal trends of elevated hunting 

levels prior to major holidays have also been documented in various systems (Astaras et al., 

2017, 2020; Moreto & Lemieux, 2015; Viollaz et al., 2021). It is also possible that poachers and 

bushmeat hunters simply seek out areas where the abundance of target species is high 

(Ferreguetti et al., 2018; Matos et al., 2020). A more thorough investigation that simultaneously 

evaluates the variety of potential determinants of poaching and bushmeat hunting pressure is 

warranted. As some of these factors are likely context dependent, more location-specific studies 

are also necessary. Such knowledge would advance conservation efforts by informing anti-

poaching patrols and potentially allowing prediction of when and where poaching attempts will 

occur (Lavadinović et al., 2021; Moreto et al., 2014). 



 
 

74 

To achieve such goals, another major issue must be addressed. Perhaps the biggest 

limitation of research on poaching and hunting drivers to date is that data are usually not 

collected in a manner suitable for statistical analyses and scientific inference (Gavin et al., 2010; 

Hedges, 2012; Keane et al., 2011). As noted, proxies such as distance to hunter access points 

often serve as indices of poaching pressure in lieu of quantification of poaching attempts per se 

(Barnes et al., 1991, 1997; Blake et al., 2007, 2008; Hall et al., 1997; Laurance et al., 2006; 

Maisels et al., 2013; Yackulic et al., 2011), in part due to the extreme difficulties of observing 

actual poaching attempts. When evidence of actual poaching events is observed, it is typically 

opportunistically collected by anti-poaching patrol personnel and takes the form of elephant 

carcasses, signs of poacher activity (e.g., camps), or the poachers themselves (Moreto et al., 

2014). Such opportunistic data poses challenges to statistical analyses as it is rarely 

systematically collected with the characteristics required for statistical inference, namely 

randomness and replication (Doormaal et al., 2021; Gavin et al., 2010; Keane et al., 2011). 

Instead, patrols often travel opportunistic and biased routes based on ease of access, prior 

knowledge, informant tips, and previously detected poaching events (Doormaal et al., 2021; 

Gavin et al., 2010; Johnson et al., 2016; Keane et al., 2011). Furthermore, the amount and quality 

of the data recorded by patrols is affected by the patrolling efforts themselves (e.g., the amount 

of terrain covered), and is therefore not an objective reflection of the actual distribution of 

poaching events (Hedges, 2012; Moreto et al., 2014). In summary, much of the data has been 

biased and unsuitable for inclusion in predictive models (Gavin et al., 2010; Keane et al., 2011). 

It is in part this constraint that has limited the ability to elucidate the drivers of poaching pressure 

that in turn could be used to inform anti-poaching efforts and predict poaching activity. 
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We employ a data collection approach that remedies these shortcomings, co-opting a 

technique usually used to study animals— passive acoustic monitoring (PAM)—to detect and 

investigate gunshots from poaching. PAM uses acoustic sensors capable of continuously 

recording environmental sounds, including vocalizations from species of interest such as African 

forest elephants (Wrege et al., 2017), over large areas of landscape. Acoustic signals from human 

activity and disturbance, such as gunshots from poaching, can also be detected with PAM 

(Astaras et al., 2017, 2020; Branch et al., 2022; Wrege et al., 2017). PAM thus presents a unique 

and novel way to study the determinants of the distribution of poaching activity with (1) a more 

direct quantification of poaching levels (rather than an indirect proxy), (2) a temporal and spatial 

resolution unachievable by previous means (e.g., walked transects in search of hunter signs; 

Astaras et al., 2017, 2020; Wrege et al., 2017), and (3) a systematic and unbiased data collection 

scheme characterized by elements of random sampling and replication, all of which facilitate 

statistical inference. 

We used a grid of acoustic sensors deployed across the rainforest landscape in northern 

Republic of Congo to detect instances of poaching and bushmeat hunting, and to explore the 

spatial and temporal variables that influence their distribution. We hypothesized that the level of 

poaching and hunting activity across the landscape, quantified as the number of gunfire events 

detected over time, would be determined by three major factors—accessibility, deterrence, and 

target species abundance. To explore these hypotheses, we constructed models with spatial and 

temporal predictor variables associated with accessibility (e.g., distance to access points), 

deterrence (e.g., patrol effort), and animal abundance (e.g., elephant vocalization detections), and 

confronted the models with data collected with a PAM approach. 
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Methods 

Data acquisition 

In late 2017, a grid of 50 acoustic recorders was established in northern Republic of 

Congo by the Elephant Listening Project (ELP, KLY-CCB, Cornell) in collaboration with the 

Wildlife Conservation Society (WCS). The grid covers 1250 km2 (mean inter-sensor distance of 

5.5 km [SD = 1.4]) of Nouabalé-Ndoki National Park (NNNP) and adjacent forestry concessions 

(Fig. 3.1). Acoustic recordings were made continuously between November 2017 and January 

2021 using Swift recorders (Koch et al., 2016) with a sampling rate of 8 kHz and 16-bit 

resolution. Batteries were replaced and data were retrieved from the recorders approximately 

every 4 months. Controlled experiments near a ranger training site in the same forest revealed 

that gunshots can usually be detected at distances of at least 2 km from the recorders. A 

template-based detector algorithm trained on recorded gunshots was used to search the 

continuous audio data for gunfire (see Wrege et al., 2017 Appendix S3 for detector details). 

Putative gunshots identified by the algorithm were then manually verified via spectrographic and 

auditory analysis by experienced personnel. All false-positive gunshot detections were removed 

from the dataset. For confirmed gunshots, we manually examined spectrograms to verify that no 

additional gunshots had occurred within 24 h of the detected focal shot(s). We aggregated any 

shots occurring within 1 hour of one another into ‘gunfire events’, which would likely represent 

a single elephant poaching or bushmeat hunting attempt. The gunfire events were each detected 

at a single recorder only, which we designated the gunfire event site. Automatic weapon fire 

events likely represented attempted elephant kills, whereas single-action weapon fire could 

include both elephant poaching and bushmeat hunting of other species (Swider et al., 2022). 

Time-To-Event (TTE) Analysis 
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We analyzed detected gunfire events in a time-to-event (TTE) framework with Cox 

proportional hazards (Cox PH) models extended for recurrent events (multiple events per site). 

For the TTE analysis, study onset was set to December 15, 2017— the date at which all 

recorders across the grid were deployed and continuously recording. In 2020, our acoustic record 

was interrupted by complications from the Covid-19 pandemic, resulting in an approximately 2-

month data gap starting in June 2020. We therefore set the end of the TTE analysis to April 30, 

2020, before this interruption occurred. We measured time to gunfire events in days since study 

onset (December 15, 2017). 

Although the PAM approach allowed for near-continuous monitoring, some recording 

gaps were expected given such a long recording period and many recorders. Many of the 50 

recording sites experienced at least some recording interruptions due to routine equipment 

maintenance, battery failures, and equipment malfunctions. Such gaps in the otherwise 

continuous acoustic record are potentially problematic for time-to-event analyses. Jolani et al., 

(2021) present a useful review of such “missing outcome” scenarios in TTE analyses and 

compare several methods for resolving the issue. They suggest multiple imputation— often 

considered the gold standard for management of missing data— as the least biased method for 

dealing with missing outcome data. We decided against imputation because gunfire events were 

so rare that (1) we would not be comfortable introducing an unobserved “fake” gunfire event into 

a missing data period, and (2) imputation would likely predict event non-occurrence anyway. We 

therefore chose the method of assuming event non-occurrence for the missing periods in our 

recordings. When events of interest are frequent, this method can introduce considerable bias 

(Jolani et al., 2021). However, given the rarity of gunshots, the probability of a gunfire event 

occurring at a site while the recorder was not functional is small. While we acknowledge that this 
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approach could slightly lower our overall estimates of gunfire event rates, it should not influence 

the comparison of covariate effects on gunfire event risk. 

Occasionally, recorder malfunctions resulted in longer gaps in recording, at which point 

we censored the TTE data. To determine a systematic length threshold for censoring, we used the 

overall rate of events per site to calculate the time interval over which the probability of an event 

occurring would reach 0.05. This turned out to be approximately one month: for any sites 

experiencing a recording gap longer than one month, we right-censored the data at the time of 

recorder malfunction.  

We included both time-independent and time-dependent covariates, the latter of which 

we quantified over monthly intervals. Our predictor variables pertained to our hypotheses that 

poaching and bushmeat hunting risk is determined by poacher accessibility to a given area, 

factors that deter poaching, target species abundance, or a combination of these factors (Table 

3.1). All distance-related variables were quantified using QGIS software (QGIS 3.22, 2022).  

Accessibility-related covariates 

We expected roads to influence the accessibility of different sites, and therefore the 

degree of gunfire event risk. In our study area, both permanent roads and ephemeral logging 

roads could influence variation in accessibility. Permanent roads exist to the east, south, and west 

of the region of the national park where our acoustic grid was located (Fig. 3.1). We measured 

the distance of each site to the nearest permanent road, also including a major logging road that 

was in use during most of the study period.  

Temporary logging roads potentially contribute to the accessibility of study sites and the 

national park in general. Logging roads permeate both logging concessions of our study area, in 

some instances extending to the park border. Logging roads are “closed” and cease to be 
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maintained once logging of a particular zone of the concession is complete. Over the course of 

several years, these are progressively invaded by secondary growth, but nonetheless could 

potentially facilitate access by foot travel. The old logging concession contained roads closed for 

over a decade, but road remnants were still visible on Landsat 8 imagery taken in 2017-2021. In 

the operational concession, roads were actively built and used from study onset until September 

2019. Almost all the logging roads in the operational concession had been built prior to study 

onset, although a small network was added in association with ongoing logging activity in 2017-

2019 (see below). We attempted to capture the potential differences in accessibility in these two 

areas with alternative specifications of the strata: sites within 2 km or inside of either concession, 

versus within 2 km or inside of only the operational concession. Sites in the NP (other than those 

within 2 km of logging concessions/roads) constitute another level of the variable, as no roads 

extend past the NP border (Table 3.1; Fig. 3.1). We also compared alternative specifications of 

this covariate by grouping sites according to the hard boundaries of the strata, rather than within 

a 2-km buffer (Table 3.1; Fig. 3.1).   

 Aside from road-related accessibility, logging activity per se could increase levels of 

illegal hunting because logging workers may engage in bushmeat hunting themselves, and 

logging vehicles are sometimes used to transport hunters and collected bushmeat (Poulsen et al., 

2009; Robinson et al., 1999). We included a binary, time-varying covariate for whether logging 

activity— clearing logging roads, felling trees, moving downed trees to logging roads, and 

transportation out of the concession— was ongoing within 2 km of recording sites (Table 3.1). 

These activities occurred near some sites of the operational concession from study onset to 

September 2019. Data on these activities were provided by the logging company, Congolaise 

Industreille des Bois (CIB). Because logging activity likely drives away elephants (see Chapter 
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4) and bushmeat species (Poulsen et al., 2011), the expected effect on gunfire events could be 

positive (due to increased hunting associated with logging personnel) or negative (due to reduced 

target species abundance; Table 3.1).  

Rivers also potentially contribute to the accessibility of hunting locations (Ferreguetti et 

al., 2018), facilitating travel in two ways. Some watercourses are passable by pirogue, local 

wooden canoes capable of navigating shallow water. The depth and navigability of rivers varies 

between wet and dry seasons, but in general the mainstems of the Ndoki and Guoalougo rivers 

can support such travel. Watercourses, large and small, can also increase accessibility via the 

elephant trails that are often located adjacent to them. These riverine trails (Blake, 2002) tend to 

be well traveled by elephants, resulting in wide open paths that can greatly ease foot travel for 

humans. We defined two river covariates: distance to nearest mainstem of the Ndoki or 

Guoalougo rivers (relevant to pirogue travel), and distance to nearest mainstem or primary 

tributary (relevant to foot travel; Table 3.1; Fig. 3.1). Distances were measured using GIS 

watercourse layers. These layers were created by manual tracing of digital elevation models and 

confirmed with on-the-ground GPS mapping performed during routine maintenance of the 

acoustic grid. Because navigability should vary with rainfall, we also included a seasonality 

interaction term with each month categorized as wet (>60 mm of rain) or dry (<60 mm of rain) 

(Beck et al., 2018). Rainfall data were collected continuously throughout the study at four 

weather stations in and around the acoustic grid study area; millimeters of rain per month were 

averaged across the four stations. To accommodate a potential time lag in the effect of rainfall, 

we also compared models with the interaction terms fit with the seasonal status (wet vs. dry) of 

the previous month (Table 3.1). The Cox PH models in our analysis predict risk of poaching 

activity as a function of time and of relevant covariates by comparing the numbers of detected 
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gunfire events between sites that differ in their covariate values. Because seasonality is collinear 

with time and static across all sites, the Cox PH models could not accommodate a main effect of 

season. We therefore explore the potential effect of rainfall in a separate analysis (see Non-TTE 

analyses below).  

Deterrence-related covariates 

Our main deterrent-related covariate of interest was anti-poaching patrol effort, which we 

quantified as total monthly foot patrol distance (kilometers) using GPS tracks of patrol routes 

provided by WCS. For the TTE analysis, we calculated total monthly foot patrol distance at each 

site using two spatial scales— within 2 km and 10 km of the recorder location (Fig. 3.2; Table 

3.1). These represent the effect of patrol effort acting either at a very local scale in an immediate 

manner (i.e., poachers detecting and avoiding rangers in the forest), or acting in a broader 

regional sense (i.e., poachers monitoring overall levels of patrol effort and planning activities 

accordingly). We imposed an a priori constraint on patrol effort parameter values, allowing only 

negative effects on the risk of gunfire events. To accommodate the possibility of a lag time in the 

effect of patrol effort, we also fit and compared models with patrol effort values from the 

previous month.  

The other deterrence-related covariate of interest was overall level of protection: national 

park versus concessions. This variable is also pertinent to road-facilitated accessibility (Table 

3.1). To reflect protection, we included this categorical variable with the 2 levels specified as NP 

versus both concessions (old and operational) combined. To reflect operational road-related 

accessibility, we re-specified the levels to differentiate between the presence of absence of 

operation logging roads (operational concession vs. NP and old concession combined). During 

model comparison, support for models with the former specification would indicate either 
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nominal protected status or access to roads of any condition are important, but not operational 

roads or logging activity per se. Alternatively, support for models with the latter specification 

would suggest operational logging activity and associated newer roads are important, but not 

nominal protected status or old road remnants. In this way, comparing models with alternative 

specifications of covariate levels could potentially arbitrate between competing hypothesized 

determinants of gunfire event risk (Table 3.1).  

Target species abundance covariates  

While accessibility and deterrence were our hypotheses of interest, we needed to account 

for a null hypothesis that the distribution of detected gunfire events reflects the distribution of 

animals (i.e., poachers and bushmeat hunters use areas of high target species abundance, 

independently of accessibility or deterrence; Ferreguetti et al., 2018; Matos et al., 2020). As a 

proxy for forest elephant abundance, we included a standardized metric of elephant detections at 

each recording site (Table 3.1). We also compared models with a 1-month lag for this covariate, 

to accommodate the possibility of increased poaching activity at sites with high elephant 

abundance in the previous month. The presence of forest elephants near each site was indicated 

by detection of their rumble vocalizations. Rumbles are an appropriate signal to use as a proxy 

for elephant abundance because they are the most common vocalization and they are used by 

both sexes and all age classes and in many behavioral contexts (Chapter 4; Hedwig et al., 2021; 

Poole et al., 1988; Stoeger et al., 2014; Thompson, 2009). Previous detection distance 

experiments indicate that we can detect rumbles at a range of 500–600 m, resulting in a detection 

area of approximately 0.79–1.13 km2 around each of the 50 recorders. An automated detector 

algorithm based on a feature extraction and classification system (Keen et al., 2017) was used to 

extract rumbles from the continuous audio data set. For 3 randomly selected days per week, the 
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detector output was reviewed to confirm putative rumble detections and remove false positives 

from the data set. Using the 3 verified days per week, site-specific mean rumble detections per 

day were calculated over monthly intervals (Table 3.1).  

We also quantified habitat type around each of our recording sites, under the premise that 

target species abundance or diversity varies with habitat (Poulsen et al., 2011). Using Landsat 8 

satellite imagery paired with ground truth locations obtained during WCS foot surveys, we 

performed a supervised classification of habitat type across our study area (Appendix). We 

classified pixels into 3 categories: 1) forest composed of mixed tree species, 2) monodominant 

forest composed of Gilbertiodendron sp., and 3) an “open” class that included river floodplain 

with sparser canopy than upland forest (or no canopy), open-canopy swamps, open water, 

aquatic vegetation and grasses, and forest clearings. In NNNP, fruit tree density, a potentially 

important indicator of animal food resources, is highest in terra firma mixed forest compared to 

Gilbertiodendron monodominant forest and lowland habitats (e.g., our “open” class; Blake, 

2002). The proportion of mixed species forest around each site is therefore an indicator of 

resource availability, making it a potential proxy for animal abundance or diversity. This is 

especially pertinent in the wet season because more tree species, and the highest proportion of 

individual trees, fruit during the months of highest rainfall (Blake, 2002). Within the 2-km radius 

gunshot detection range around each of the 50 recorders, we calculated the percentage of forest 

pixels that were classified as mixed forest (Appendix). We also included a seasonality interaction 

term with each month categorized as wet or dry (Table 3.1). 

While greater proportions of mixed forest around each site could reflect animal resources 

and abundance and therefore increase the risk of gunfire events, it could also potentially 

influence site accessibility, with the opposite effect. Mixed forest understory is often thick and 
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difficult to penetrate, reducing accessibility and likely hindering successful hunting attempts 

because lines of sight are heavily interrupted. Gilbertiodendron monodominant forests, by 

comparison, generally have much more open understories (Blake, 2002), facilitating both 

accessibility by foot travel and presumably the targeting of animals. If the proportion of mixed 

species forest acts on the risk of gunfire events by reducing accessibility rather than increasing 

target species abundance, we anticipated that it would have a negative effect on the rate of 

detected gunfire events.  

While we included distance to river covariates primarily as measures of site accessibility, 

these metrics could correlate with animal abundance as well. This is especially plausible during 

the dry season, when river mainstems and larger tributaries serve as water sources after smaller 

streams throughout the forest have dried up. These covariates therefore pertain also to the target 

species abundance hypothesis in addition to accessibility (Table 3.1). 

Cox PH model structuring and comparison 

We implemented recurrent event Cox PH models with the ‘survival’ package (Therneau, 

2023) in R (R Core Team, 2022), using the counting process formulation of Andersen & Gill 

(1982). The data were clustered by site and a robust variance estimator was used to account for 

correlation between events at the same site (Andersen & Gill, 1982; Therneau & Grambsch, 

2000). The relative rarity of gunfire events constrained our ability to construct and compare 

extensive global models, models with many covariates, or models with multiple interaction 

terms. Our approach was to compile a candidate model set by composing sub-models of 6 or 

fewer covariates, structured in ways that could potentially arbitrate between competing 

hypotheses. Where alternative specifications of the same general predictor were possible (e.g., 

distance to nearest mainstem vs. distance to nearest mainstem or primary tributary), only one was 
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allowed in a particular candidate model. For numerical variables, we included only uncorrelated 

pairs of covariates (r < 0.6; Hebblewhite et al., 2014; Petracca et al., 2019) in models 

simultaneously. The four spatial categorical covariates, indicated by asterisks in Table 3.1, were 

related variations of a common strata system that each used an alternate specification of levels, 

and were thus highly correlated with one another (chi-sq. p-values < 0.01). We included only one 

such covariate in each candidate model, while holding our a priori combinations of numerical 

predictors constant. We evaluated support for candidate models using AICc and model weights 

(Burnham & Anderson, 2002), and considered for inference only models within 2 AICc units of 

the highest ranked model. We verified that these candidate models met the proportional hazards 

assumption using scaled Schoenfeld residuals (Grambsch & Therneau, 1994). We present the 

hazard ratios (HRs) of all covariates included in this set of top models for their potential 

predictive value. Model averaging was not appropriate due to the constraints we imposed when 

structuring sub-models— not all covariates were allowed to appear simultaneously in all 

candidate models. Therefore, we use the most parsimonious model containing each covariate to 

report effect sizes (HRs) and produce figures; for most covariates, this was the highest ranked 

model in the top model set.       

Non-TTE analyses   

Some variations of time-dependent covariates of interest had identical values for all sites 

and therefore could not be used to arbitrate between candidate Cox PH models. We explored 

these variables independently from the TTE analysis by plotting and fitting curves to the data. 

These variables included monthly rainfall, monthly patrol effort across the entire study area, the 

influence of Christmas and New Year’s (with the expectation of elevated bushmeat hunting in 

preparation for the holidays), and the influence of an anti-poaching ranger training program that 
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occurred in early 2018. For exploring the potential effect of monthly rainfall, which could 

influence the accessibility of the acoustic grid study area in general, millimeters of rain per 

month were averaged across four weather stations, as previously described. Total monthly patrol 

effort was measured as kilometers of foot patrols across the entire acoustic grid study area, 

delineated by a convex hull using a 2-km buffer around the outer sites (Fig. 3.2). In testing for a 

holiday effect, we compared gunfire event detection rates in the 2 months leading up to 

Christmas and New Year’s (November and December of each year) to event rates of non-holiday 

months. To illuminate the apparent decrease in rate of poaching and bushmeat hunting events 

over the course of the study, especially in relation to the 2018 ranger training program, we fit a 

generalized linear model (GLM) to the monthly gunfire events detected across the entire study 

grid, using a Poisson distribution.  

 

Results 

From November 2017 to January 2021, we detected a total of 86 gunfire events (Fig. 3.3) 

composed of both automatic (e.g., AK47; n = 8) and single-action (n = 78) weapon fire. The total 

number of events at each site ranged from 0 to 10 (mean = 1.72; SD = 1.73). The monthly rate of 

gunfire event detection decreased over the 3.25 years of the study (Fig. 3.4). We tested recorder 

functionality and confirmed that this trend was likely not a result of decreasing functionality or 

sensitivity of the recorders over time.  

TTE (Cox PH) analysis 

 Of the 86 total gunfire events, 75 were included in the TTE analysis (Dec. 15, 2017 – 

April 30, 2020); 11 events were excluded because of study period truncation and interval 

censoring due to recording interruptions. No model unambiguously outperformed all others, as 
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indicated by AICc and model weights (Table 3.2). Thirteen candidate models appeared in the set 

of top models (within 2 AICc units of the highest ranked model). All 13 top models included 

distance to river mainstem and its interaction with seasonality (wet vs. dry months), revealing 

this as the most influential covariate in determining illegal hunting activity (Table 3.2). Risk of 

gunfire events decreased as distance to rivers increased (1st ranked model HRDist. to river mainstem = 

0.811; Table 3.2; Fig. 3.5a), and this effect was weaker in wet months (Fig. 3.5a).  

Proportion of mixed forest received the next highest amount of support, appearing in 11 

of the 13 top models (Table 3.2). Sites with lesser percentages of mixed forest cover had greater 

risks of gunfire events than sites dominated heavily by mixed forest (1st ranked model HRProp. 

mixed forest = 0.202; Table 3.2; Fig. 3.5b). Distance to permanent roads and ongoing logging 

activity also received substantial support, appearing in 4 and 5 of the top models, respectively 

(Table 3.2). The risk of gunfire events was slightly higher for sites farther from permanent/semi-

permanent roads (1st ranked model HRDist. to road = 1.056; Table 3.2; Fig. 3.5c). Ongoing logging 

activity within 2 km in any given month substantially reduced the risk of gunfire events 

compared to sites and months without such activity (2nd ranked model HRcurrent logging activity = 

0.353; Table 3.2). 

Covariates that received less support, appearing in 2-3 of the top models, included 

concurrent-month patrol effort at the 10-km scale and the categorical variables of whether sites 

were within 2 km of either logging concession/roads or within 2 km of the operational 

concession/roads only (Table 3.2). According to the highest ranked model, sites within 2 km of 

either concession (and their associated logging roads) were at a higher risk of gunfire events 

(HRWithin 2km either concession = 1.696; Table 3.2). The hazard curves in Fig. 3.5a-c were produced 

using the highest ranked model and sites greater than 2 km from either concession for prediction. 
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Identical curves are produced when using sites within 2 km, but the expected number of events is 

1.696 times higher, indicating substantially increased risk with proximity to either old or 

operational concessions and their logging roads. An increase in risk was also suggested for sites 

within 2 km of the operation concession only (3rd ranked model HRWithin 2km operation concession = 

1.952; Table 3.2). The amount of anti-poaching patrol effort within 10 km in the concurrent 

month slightly reduced the risk of gunfire events, with HRs of 0.994-0.995 (Table 3.2). Patrol 

effort within 2 km had a similar effect but was included in only one of the top models and thus 

considered less influential (Table 3.2).  

Finally, the interaction of proportion of mixed forest with seasonality (wet vs. dry month) 

appeared in only one model of the top model set (Table 3.2). This model suggests the influence 

of proportion of mixed forest, which reduces risk of gunfire events, is not as strong in the wet 

months (i.e., risk is reduced less in the rainy months; Table 3.2). Covariates not listed in Table 

3.2— the protection and logging strata variables, distance to nearest mainstem or primary 

tributary, mean elephant detection rate, and previous month patrol effort— were not among the 

top candidate models and are not considered supported.   

Non-TTE analyses   

Total monthly gunfire event detections across the entire acoustic grid decreased with 

sequential month from study onset (GLM βSequentialMonth = -0.07 (log link scale), p < 0.0001; Fig. 

3.6). Monthly gunfire events peaked in early 2018, when patrol effort was low because rangers 

were undergoing a training program (Figs. 3.6 & 3.7 top). Following this period, total monthly 

gunfire events decreased steadily and then remained low (Figs. 3.6 & 3.7 top panel). However, 

when plotted as a function of monthly total patrol effort across the entire study area, monthly 

gunfire event rates exhibited no apparent relationship with patrol effort (Fig. 3.7 bottom). 
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Similarly, monthly gunfire event rates lacked a clear relationship with monthly rainfall (Fig. 3.8). 

The slope of linear models fit to the data did not differ from zero (p-values of 0.52 and 0.96 for 

patrol effort and rainfall, respectively). Splines fit with smoothing parameters of 0.9 further 

indicate a lack of discernable trends. The monthly rate of gunfire events in the two months prior 

to Christmas and New Year’s (November and December) did not differ from other months (p = 

0.63), although unbalanced sample sizes (pre-holiday months versus other months) likely 

influenced the accuracy of standard errors and our ability to detect an effect.  

 

Discussion 

 In this study we employed a PAM approach to systematically collect unbiased data on 

poaching and bushmeat hunting activity, in a manner amenable to statistical inference. We 

identified landscape-scale environmental predictor variables that can be used to identify areas 

(and seasons) at higher risk of poaching and bushmeat hunting activity. Our results can inform 

and potentially increase the efficacy of anti-poaching efforts, which are tasked with patrolling 

and protecting vast areas with often limited resources. Guided by models and covariates with 

predictive potential, patrol effort could be adapted to increase the probability of intervening with 

or deterring poaching and illegal bushmeat hunting activity. 

 The most influential determinant of poaching risk was distance to nearest river mainstem 

(Ndoki and Goualougo rivers), and its interaction with season (wet versus dry months; Table 

3.2). The risk of poaching and bushmeat hunting decreased with distance from main rivers (Fig. 

3.5a), lending support to our hypothesis that rivers provide poachers with a means of accessing 

exploitable areas. The influence of mainstems but not of primary tributaries is consistent with the 

idea that poachers navigate the main watercourses by pirogue, but tributaries are likely too small 
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or shallow. The importance of rivers in our analysis is consistent with research from Brazil that 

found distance to water— used as a proxy for site accessibility— to be one of the most 

influential variables for predicting the distribution of poaching activity (Ferreguetti et al., 2018). 

While rivers have received less attention than roads as potential avenues for poacher access, our 

results contribute to the evidence that watercourses are influential determinants of illegal hunting 

activity that should be considered more thoroughly in future research. 

An alternate explanation for the effect of higher risk near rivers is that potentially high 

elephant abundance near water provides more opportunities for poachers. We do not consider 

this to be the likely cause of the distance to river effect, however. We included average rumble 

rates at each site as a proxy for the relative abundance of elephants, in order to accommodate the 

“null” hypothesis that poaching risk reflects variation in elephant abundance, regardless of 

accessibility or deterrence factors. The elephant abundance covariate received no support, as 

indicated by its absence from the top model set. This suggests the effect of rivers on poaching 

risk involves access rather than the distribution of forest elephants.  

While we could account for the relative abundance of elephants, we had no method of 

estimating the relative abundance of bushmeat species, other than through indirect habitat 

covariates. It is plausible that animal abundance correlates with distance to rivers, and that sites 

closer to rivers experience more hunting due to higher densities of common bushmeat species. 

This could explain why distance from rivers reduced the risk of gunfire events more drastically 

in the drier months (Fig. 3.5a). In the dry season, when small streams throughout the forest have 

dried up, animals may be attracted to habitat near the major watercourses, creating profitable 

hunting sites near rivers. In the rainy season, when small streams are plentiful throughout the 

forest, animal populations may be more dispersed, thereby curtailing the effect of distance to 
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rivers on the distribution of gunfire events (Fig. 3.5a). However, many bushmeat species in the 

study area (e.g., duikers, monkeys; Poulsen et al., 2011) are territorial. We therefore might not 

expect any seasonal shifts in the distribution of bushmeat species with respect to watercourses. In 

research conducted near our study area, Poulsen et al. (2011) found that the abundance of many 

common bushmeat species varied with forest type and other habitat characteristics, but the 

analysis did not include distance to rivers as an explanatory variable. Regardless of the 

mechanism behind the effect of distance to rivers— accessibility versus target species 

abundance— our results can be used to inform conservation efforts. For example, patrol effort 

could be adapted to cover vulnerable locations near major watercourses at times of elevated risk.  

 Proportion of mixed forest also emerged as an important environmental determinant of 

the distribution of gunfire events. Sites composed of higher percentages of mixed forest were at a 

lower risk of poaching and bushmeat hunting (Fig. 3.5b). This contrasts with our hypothesis that 

high fruit availability in mixed forests would result in high target species abundance and 

predispose such sites to hunting. However, these results support the alternate hypothesis that 

mixed forest sites are less suitable for hunting because the dense understory inhibits foot travel 

(accessibility) and presumably also the successful targeting of animals. Different stands of mixed 

forest vary in their understory characteristics and the ease through which they can be travelled, 

however. Where there are large or numerous elephant trails, mixed forests can be traversed just 

as easily as open-understory Gilbertiodendron forests. The importance of mixed forest as an 

influence on site accessibility therefore remains unclear. 

Another consideration is that Gilbertiodendron forests are usually located adjacent to 

rivers and thus often contain well-travelled riverine elephant trails (Blake, 2002). These 

monodominant forests were the other major forest type included in our habitat classification 
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(Appendix). Accordingly, sites characterized by low proportions of mixed forest often had 

relatively high proportions of Gilbertiodendron habitat. If the open understories or riverine trails 

of the Gilbertiodendron forests result in higher rates of poaching and bushmeat hunting, either 

through increased accessibility or target species abundance, this could have contributed to the 

low hazard ratios estimated for mixed forest sites, simply because they lack the Gilbertiodendron 

habitat type. Regardless of the specific mechanism underlying the mixed forest effect, our results 

show that habitat type can shape the distribution of poaching and bushmeat hunting activity. 

 Increasing distance to permanent roads had the unanticipated effect of increasing the risk 

of gunfire events. This contrasts with previous research that found elevated poaching/hunting 

activity closer to roads (e.g., Blake et al., 2007; Branch et al., 2022). Anti-poaching rangers are 

often stationed at multiple outposts located along the permanent roads of our study area, so 

distance to nearest road likely correlates with distance to nearest ranger outpost. It is not 

surprising, then, that sites farther from ranger outposts experience more gunfire events, where 

poachers and bushmeat hunters are less prone to apprehension (e.g., Moore et al., 2018). 

Mapping the exact locations of these outposts and including a distance to nearest outpost 

covariate in the modeling framework will be a useful next step in teasing apart the influence of 

road-related accessibility versus ranger-related deterrence. If small satellite stations and outposts 

reliably deter poaching and bushmeat hunting activity in their vicinities, expanding the 

distribution of these outposts could be an effective way to prevent poaching (Moore et al., 2018) 

without necessarily increasing the distances covered by mobile foot patrols. This could be an 

attractive option if resources for patrolling protected areas are limited.   

 To assess the effects of ongoing logging activity, we determined the months in which 

logging roads were cleared and trees were actively felled, moved to the nearest logging road, and 
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transported out of the operational concession. During these active time periods, sites within 2 km 

of these activities experienced substantially reduced risks of gunfire events (HRs of 0.348 to 

0.389; Table 3.2). This was initially surprising in light of previous evidence that logging workers 

sometimes engage in bushmeat hunting and aid in the transportation of hunters and bushmeat 

products (Poulsen et al., 2009; Robinson et al., 1999). However, in the operational concession of 

our study area, CIB was expected to operate according to the requirements established with 

certification by the Forest Stewardship Council (FSC). Among other things, FSC certification 

requires the logging company to control illegal hunting by employees, monitor changes in fauna, 

and ensure the protection of endangered species (FSC, 2014).  The decrease in gunfire event risk 

associated with ongoing logging activity may indicate that CIB was effective in its regulation of 

employee hunting activity. However, at sites and times when logging activity was not ongoing, 

risk of gunfire events at sites within and nearby the logging concessions was high compared to 

sites deeper in the national park. Any potential poaching deterrence resulting from CIB 

management was short lived and constrained to only sites in close proximity to ongoing logging 

activity, rather than throughout the entire concession.  

Another explanation for the risk-reducing effect of ongoing logging is that the habitat 

disturbance associated with these activities drives animals out of the vicinity (Poulsen et al., 

2011), thereby diminishing the hunting prospects at these sites. In Chapter 4, I show that ongoing 

logging activity is one of the most important variables that influences the distribution of forest 

elephants, significantly reducing the probability of elephant occurrence at nearby sites. These 

activities should therefore reduce successful hunting prospects in the vicinity, whether the target 

species are elephants or bushmeat species. This explanation is further supported by the fact that 

gunfire event risk was reduced at these sites only during times of ongoing logging activity. By 
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comparison, sites that were in or within 2 km of the logging concessions, irrespective of the 

timing of ongoing logging activity, experienced higher overall risk at all times compared to sites 

farther from the concessions (HRs of 1.384 to 1.952; Table 3.2). Therefore, while ongoing 

logging activity may curtail concurrent poaching and hunting, the baseline risk at sites within or 

in close proximity to concessions is higher in general. The system of temporary logging roads 

likely facilitates access and predisposes these areas to exploitation by poachers and bushmeat 

hunters. Interestingly, designation as protected area— and the deterrence value that it 

theoretically imparts— did not influence the risk of gunfire events. This lends further support to 

the hypothesis that risk is determined primarily by accessibility related to logging roads, rather 

than nominal level of protection. Our results suggest that even older, non-operational logging 

roads facilitate accessibility, as the highest ranked model and 2 others in the top model set 

suggest increased risk at sites in or within 2 km of the either concession (old or operational; HRs 

of 1.384 to 1.696; Table 3.2). Still, proximity to operational logging roads, which are less 

overgrown and more easily traveled, had a greater effect of increasing risk, as expected (HRs of 

1.706 to 1.952; Table 3.2). Conservation efforts would benefit from a thorough investigation of 

the rate at which ephemeral logging roads succumb to forest succession, and how these changes 

determine accessibility and poaching/hunting activity in the impacted areas. 

We provided limited evidence in the TTE analysis of a deterrence effect in the form of 

anti-poaching patrol activity. Increasing patrol effort, quantified as the total distance of foot 

patrols travelled each month, resulted in slightly reduced risk of gunfire events in the concurrent 

month— ongoing patrols appear to be a mild deterrent to poaching activity in our study area. 

This effect of patrol effort was more influential at the 10-km scale than at the 2-km scale (the 10-

km covariate appears in more candidate models; Table 3.2). These results suggest that patrol 
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effort has less influence at the local, immediate scale (i.e., deterrence in the form of avoidance of 

rangers by poachers in the forest). Rather, patrol effort seems to deter poaching in a more 

regional sense, potentially because knowledge of increased protection discourages poachers from 

exploiting broader areas that receive more thorough patrol coverage. Given the small effect sizes, 

and the inclusion of these covariates in only a few of the top models (Table 3.2), we are reluctant 

to draw much inference about the efficacy of patrol effort from the results of our TTE analysis. 

However, a potentially important effect of patrol effort emerges when considering the overall 

trends in total monthly gunfire events in relation to patrol activity and training (Figs. 3.6 & 3.7 

top). Grid-wide patrol effort was reduced in early 2018 because rangers were undergoing an 

extensive training program and spending less time on field patrols (Fig. 3.7 top). During this 

period of reduced patrol effort, the rate of gunfire event detections was higher than any other 

period of the study, which provides an indication of what might be expected if law enforcement 

patrols were removed from the system (Figs. 3.6 & 3.7 top). When patrol effort returned to 

normal levels following the training period, the rate of gunfire events decreased (Fig. 3.7 top), 

suggesting that poaching and bushmeat hunting activity in our study system is indeed influenced 

by patrol effort. Furthermore, following the ranger training period, gunfire event rates remained 

at low levels for the remaining years of the study (Figs. 3.6 & 3.7 top). This may indicate that the 

ranger training in early 2018 was effective and improved the capabilities of patrols to deter 

illegal hunting activity. While hopeful, this evidence is circumstantial, and the relationship 

between grid-wide gunfire event rates and overall patrol effort remains unclear (Fig. 3.7 bottom). 

Our results suggest that patrol effort exerts an influence at some spatial and temporal scales but 

not others. The scale at which patrols are most effective needs to be examined with continued 

research, including analyses with finer temporal resolutions and higher sample sizes (i.e., more 
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detected gunfire events). Improving our understanding of patrol effort as a determinant of the 

distribution of poaching activity will be fundamental in optimizing the allocation of conservation 

law enforcement resources. 

 We examined monthly rainfall independently from the TTE analysis, as a potential 

determinant of overall accessibility to the study area and thus the distribution of gunfire events. 

We found no evidence of constrained poaching or bushmeat hunting activity in the rainy seasons 

(Fig. 3.8), as would be expected if accessibility were impeded by extensive swamp and 

inundated forest areas. While the interaction between distance to rivers and seasonality (wet vs. 

dry months) was an important result of the TTE analysis (Fig. 3.5a; Table 3.2), monthly rainfall 

considered alone does not appear to influence the rate of gunfire events detected across the entire 

PAM grid (Fig. 3.8). Bushmeat hunters may overcome any wet season obstacles because the 

need to provide food or income through bushmeat hunting is constant year-round. Alternatively, 

elucidating the effects of rainfall may require analyses that include both spatial and temporal 

dimensions, rather than temporal considerations alone. This would explain the importance of 

season in the TTE analysis (Fig. 3.5a) which examined variation across space (sites) and time, 

but the absence of a rainfall effect when considering the entire study area without spatial 

partitioning (Fig. 3.8). A potentially informative next step would be to map seasonally inundated 

forests throughout the study area and examine gunfire detections in these areas as a function of 

season.   

 While this study focused on landscape scale environmental determinants of poaching and 

bushmeat hunting, we also accounted for the potential socioeconomic influence of national 

holidays. It has been suggested that poaching and bushmeat hunting activity is higher in the 

months preceding Christmas and New Year’s, as people attempt to accumulate food or monetary 
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resources in preparation for the holidays (Astaras et al., 2017, 2020; Moreto & Lemieux, 2015; 

Viollaz et al., 2021). While we found no evidence of this phenomenon, our ability to detect a 

trend was limited by an unbalanced sample size of relevant months (pre-holiday months versus 

all other months). These potential patterns would likely be more effectively studied by pairing a 

PAM study with measures of bushmeat products entering local households and markets (e.g., 

Poulsen et al., 2009).   

 The overall number of gunfire events detected across the acoustic grid each month was 

highest toward the beginning of the study in 2018 and decreased over the subsequent 3 years of 

recording. While increased patrol efficacy resulting from the ranger training program may be 

partly responsible, the causes and significance of this trend remain unclear. Poachers often 

monitor conservation law enforcement effort closely (WCS, personal communication), and it is 

plausible that knowledge of the acoustic grid study spread through local poaching networks and 

is also acting as a deterrent. While speculative, this is consistent with growing evidence that 

research activity can deter illegal hunting (Branch et al., 2022; Junker et al., 2017). In NNNP, 

poachers may be concentrating activities farther north in the national park to avoid detection. A 

logical extension of this analysis would be to compare our gunfire event detection trend to 

evidence of poaching activity collected by patrols throughout the rest of the national park, 

including north of the study area. Examining patrol data collected over the same period could 

illuminate whether regional poaching rates are truly declining or if the distribution of gunfire 

events is simply shifting locally. However, as discussed previously, analysis and interpretation of 

patrol data requires caution if it has been collected in a manner unsuitable for common statistical 

approaches. 
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 Using PAM to systematically collect spatiotemporal data on gunfire events, this study 

allowed poaching and bushmeat hunting activity to be statistically analyzed without the 

limitations imposed by opportunistic and biased data collection common to much of the research 

in this field. We provide evidence of environmental variables that influence the distribution of 

poaching and bushmeat hunting in NNNP and adjacent logging concessions. Our results suggest 

that the distribution of gunfire events is likely affected by a combination of the hypothesized 

categories of determinants— accessibility, deterrence, and target species abundance. However, 

the accessibility hypothesis received the most support and from our perspective is the most 

useful predictor of poaching and hunting activity. Proximity to major rivers and its interaction 

with season emerged as the most reliable variable explaining variation in risk of gunfire events. 

We suggest that patrol effort be adaptively adjusted by season to cover vulnerable areas near 

major watercourses. Our results also indicate that habitat and ephemeral logging concession 

roads influence accessibility to potentially exploitable sites, and that these roads may facilitate 

access long after they have been “closed” and become non-operational to logging companies. We 

suggest that conservation efforts use these results to estimate site-specific accessibility and guide 

the allocation of patrol coverage accordingly, rather than considering factors such as designation 

of protected area status alone. We advocate for continued research using PAM or other robust 

methods to systematically collect unbiased data on poaching and bushmeat hunting activity. 

These data will solidify our understanding of the environmental determinants of these activities, 

facilitate prediction of when and where they will occur, and aid conservation efforts in their 

intervention.  
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Figures and tables 

 
Figure 3.1 The grid of 50 acoustic recorders, covering portions of NNNP and adjacent logging 
concessions. The “old” concession, west of the Ndoki river, was selectively logged prior to 2010. 
The “operational” concession, east of the Ndoki and Goualougo rivers, was selectively logged 
during the years of the study, from 2017 to 2019. River mainstems, primary tributaries, and 
permanent/semi-permanent roads are shown, indicating potential avenues of access for poachers 
and bushmeat hunters. Ephemeral logging roads (shown in grey) are more navigable in the 
operational logging concession compared to the old concession, where only remnants remain. No 
roads of any kind exist in the national park. The red dot in the inset map shows the approximate 
location of the study area in northern Republic of Congo in central Africa.      
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Figure 3.2 Anti-poaching patrols conducted from 2017 to 2021 covered both the national park 
and adjacent logging concessions. We quantified patrol effort— an expected deterrent of 
poaching and bushmeat hunting activity— on multiple spatial scales. For site specific 
measurements (TTE analysis), we used the total distance (km) of foot patrols per month within a 
2-km radius (black circles) and a 10-km radius (not shown) from each recorder site (black dots). 
We also quantified monthly patrol effort across the entire study grid, defined by a convex hull 
with a 2-km buffer around the outer sites.   
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Figure 3.3 We detected a total of 86 gunfire events across the 50-sensor PAM grid over a 3.25-
year period starting November 2017. The diameter of the red circles indicates the total number of 
gunfire events detected at each site, which ranged from 0 to 10 (mean = 1.72; SD = 1.73). At 13 
of the 50 recorder sites, no gunfire events were detected (unfilled circles).  
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Figure 3.4 Monthly gunfire events across all 50 recorders of the PAM study grid, differentiated 
by national park recorders (grey portions of bars) and logging concession recorders (black 
portions of bars). Years are indicated between tick marks at the top of the figure. Grey 
background areas indicate rainy seasons, defined as months receiving more than 60 mm of rain. 
The region of diagonal hash lines indicates an approximately 2-month period in 2020 during 
which recording was interrupted due to the Covid-19 pandemic. 
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Figure 3.5 The expected number of gunfire events (which can be interpreted as risk) as a 
function of time since the start of the TTE study (Dec. 15, 2017). Risk of gunfire events was 
greater for sites closer to river mainstems than for sites farther away, but the magnitude of this 
effect was reduced in wet months (a). Risk was greater for sites whose forested area was 
characterized by lower proportions of mixed forest (b). Risk was greater for sites farther from the 
nearest permanent/semi-permanent road (c). The highest-ranked model was used to predict all 
curve values. The numeric covariates of the model that were not the focus of each panel were 
held at their average values, while percentile values were used for the focal covariate. For (a), 
distance values of 2.83 km (25th percentile) and 9.39 km (75th percentile) were specified for close 
and far sites respectively. For (b) and (c), the five specified proportions or distances were the 0th, 
25th, 50th, 75th, and 100th percentile values of the variable. The predicted curves are shown for 
sites farther than 2 km from either concession (categorical variable included in highest ranked 
model). Identical curves are produced when using sites within 2 km from either concession (not 
shown), but the expected number of events is 1.696 times higher, indicating that close proximity 
to the concessions and their logging roads increases risk of gunfire events.    
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Figure 3.6 The total monthly gunfire events detected across all sensors of the PAM grid 
decreased over the study period from late 2017 to early 2021, as indicated by a GLM (Poisson 
distribution) fit to the monthly gunfire event count data (βSequentialMonth = -0.07 (log link scale), p < 
0.0001). The grey shaded area indicates a period in early 2018 when grid-wide anti-poaching 
patrol effort was reduced because rangers were undergoing an extensive training program. 
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Figure 3.7 Gunfire events and total patrol effort (Lowess curve; smoothing parameter of 0.13) 
across the entire grid study area, from Nov. 2017 to May 2020, after which data collection was 
interrupted due to the Covid-19 pandemic (top panel). Patrol effort was substantially reduced in 
early 2018 (indicated by the red box) when rangers underwent an extensive training program. 
After this training period, monthly gunfire event detections exhibited a decreasing trend over the 
remainder of the study (see Fig. 3.6). When taken out of chronological context, the number of 
monthly gunfire events exhibited no clear relationship with total patrol effort (bottom panel). The 
slope of a linear model fit to the data did not differ from zero (p = 0.52). A smoothing spline fit 
to the data confirms the absence of a clear trend (smoothing parameter of 0.9). 
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Figure 3.8 Gunfire events and monthly rainfall from Nov. 2017 to May 2020 (top panel). The 
number of monthly gunfire events exhibited no clear relationship with rainfall (bottom panel). 
The slope of a linear model fit to the data was not significantly different from zero (p = 0.96). A 
smoothing spline fit to the data confirms the absence of a trend (smoothing parameter of 0.9). 
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Table 3.1 Specifications of the general predictor variables used in the TTE modeling framework. 
Each general predictor and its alternative specifications represent one of the hypotheses that the 
distribution of gunfire events is determined by accessibility, deterrence, or target species 
abundance. Our predictions for the effect of each covariate on the risk of gunfire events are 
displayed in the last column. 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hypothesis Specifications Predicted 
effect 

Distance to nearest permanent road -

Within 2 km of operational logging roads (yes/no)* +

Within 2 km of any logging roads, old or operational (yes/no)* +

Operational logging/roads stratum, 2 levels (operational concession vs. NP and old concession)* +/-

Ongoing logging activity (tree felling and transport) within 2 km, by month (yes/no)a either

Distance to nearest river mainstema -

Distance to nearest mainstem or primary tributarya -

Distance to nearest mainstem X Season (wet vs. dry month)a -

Distance to nearest mainstem or primary tributary X Season (wet vs. dry month)a -

Montly patrol effort within 2 km (distance of foot patrols travelled) -

Montly patrol effort within 10 km (distance of foot patrols travelled) -

Protection, 2 levels (NP versus either concession)b* -/+

Mean elephant rumble detection rate, by month +

Proportion of mixed species forestb either

Proportion of mixed species forest X Season (wet vs. dry month) +

De
te

rr
en

ce Patrol effort

Overall protection

Ta
rg

et
 S

pe
ci

es
 

Ab
un

da
nc

e Elephant abundance

Animal resources 
(proxy for abundance)

General Predictor

Ac
ce

ss
ib

ili
ty

Roads

Rivers

Ongoing 
logging 
activity

* = spatial categorical covariates that are variations of a common strata system 
a = can also influence animal abundance 
b = can also influence accessibility 
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Table 3.2 Set of top candidate models (within 2 AICc units of highest model) ranked according 
to AICc. No model in the top set unambiguously outperformed the others, indicated by low delta 
AICc values and model weights. Hazard ratios (HRs) are provided for each of the covariates 
included in the models. HRs greater than 1.0 indicate that the effect of the covariate is to increase 
the risk of gunfire events. HRs less than 1.0 indicate a risk-reducing effect. HRs closer to 1.0 
indicate weaker effect sizes than those farther from 1.0. (Note: HRs have a different 
interpretation for interaction terms and reflect the ratio of effect size differences between factor 
levels). Some covariates appeared in many or all the top models, indicating substantial support as 
predictors of poaching and bushmeat hunting risk. Some covariates listed in Table 3.1 did not 
appear in any of the top models and are thus not considered supported. 
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Abstract 

Knowledge of species distributions in space and time is crucial for understanding a 

species’ basic ecology and for facilitating the protection of important sites and habitats for 

conservation. This is particularly important for endangered species like African forest elephants, 

who are influenced not only by habitat resources but also by anthropogenic pressures such as 

poaching and logging. Our knowledge of forest elephant behavior and ecology is relatively 

limited, in part due to difficulties imposed by their remote rainforest habitat. Many forest 

elephant studies have been limited in spatiotemporal scope by the constraints of methods such as 

dung transects. Others have focused only on a narrow selection of predictor variables or included 

only anthropogenic pressures while disregarding the habitat characteristics that also shape forest 

elephant distributions. There is a need for more comprehensive research that includes a diversity 

of variables and expands the spatial and temporal scales of data collection. In this study, we 

simultaneously examined anthropogenic- and resource-related determinants of forest elephant 

landscape use. We used a passive acoustic monitoring (PAM) approach to broaden the scale of 

data collection beyond what is achievable with many other methods. Over 3.25 years of 

continuous recording, we detected thousands of elephant rumble vocalizations across a grid of 50 

acoustic recorders, covering 1250 km2 of rainforest landscape in northern Republic of Congo. 

We used Bayesian multi-season occupancy models to investigate covariates hypothesized to 

influence forest elephant landscape use, including both habitat resources and anthropogenic 

disturbances such as poaching pressure, which we quantified by acoustically detecting gunshots 

across the PAM grid. Important relationships that emerged included an overall declining trend in 

forest elephant occurrence in the study area over the 3.25 years of recording; higher occurrence 

probability in the wet seasons, potentially indicative of seasonal movements in and out of the 
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study area; and a deterrent effect of ongoing logging activity that reduced occurrence probability. 

We provide some evidence that sites previously disturbed by selective logging constitute habitat 

that is just as important as undisturbed protected areas. Poaching activity did not appear to 

impact elephant use of the landscape at the temporal scale and resolution of our analysis. Our 

results contribute to our understanding of forest elephant behavior and ecology, although more 

data and research are needed to confirm some of our proposed relationships and effects. As our 

understanding of the determinants of forest elephant distributions improves, we hope that 

findings such as these will be integrated into the adaptive management of conservation efforts 

(e.g., patrol effort) and anthropogenic activities (e.g., logging), to minimize disturbance and 

more effectively protect this critically endangered species.  

 

Introduction 

A major goal of the ecological subdisciplines focusing on habitat use and spatial 

distribution is to identify the particular habitat types that are most suitable for a species, with the 

goal of understanding the basic ecology of the species or of predicting important habitat for 

conservation purposes (Blumstein & Fernandez-Juricic, 2010; Stamps, 2009).  Knowledge of 

species’ distributions in space and time is critical in that it enables decision making about which 

resource patches, habitats, and/or landscapes to prioritize for protection (Blumstein & 

Fernandez-Juricic, 2010; Cooke, 2008). This is particularly important for endangered species 

such as elephants, whose use of the landscape is influenced not only by habitat resources but also 

by devastating anthropogenic activities such as poaching (Blake et al., 2008; Yackulic et al., 

2011). While considerable attention has been paid to the landscape and habitat use of African 

savanna elephants (Loxodonta africana, e.g., Martin et al., 2010; Western, 1975; Western & 



 
 

115 

Lindsay, 1984), there are fewer analogous studies with African forest elephants (Loxodonta 

cyclotis), in part due to the logistical constraints and difficulty of observation in their dense 

rainforest habitat. Those studies that do exist have focused on the effects of human disturbance 

while placing less emphasis on natural environmental covariates (e.g., Barnes et al., 1991, 1997; 

Blake et al., 2007, 2008; Hall et al., 1997; Laurance et al., 2006; Maisels et al., 2013; Yackulic et 

al., 2011; but see Blake, 2002; Buij et al., 2007; Morgan & Lee, 2007; Theuerkauf et al., 2001 as 

exceptions), apart from relating elephant movement to fruiting trees (Blake & Inkamba-Nkulu, 

2004; Short, 1981, 1983; White, 1994) and bai mineral deposits (Blake & Inkamba-Nkulu, 2004; 

Turkalo et al., 2013; Turkalo & Fay, 1995; Vanleeuwe & Gautier-Hion, 1998). Furthermore, the 

vast majority of studies have relied on dung transects to infer forest elephant presence (Barnes et 

al., 1991; Blake et al., 2007; Buij et al., 2007; Hall et al., 1997; Theuerkauf et al., 2001; White, 

1994; Yackulic et al., 2011). While useful for certain applications, dung transect methods often 

suffer from limited spatiotemporal scope and resolution, considerable time and financial costs, 

inadequate sampling effort, and biased or inaccurate state variable estimates (e.g., abundance 

estimates; Hedges, 2012; Laguardia, Gobush, et al., 2021). Therefore, there is a need to 

simultaneously evaluate the effects of both resource-based (e.g., dominant vegetation type) and 

disturbance-based (e.g., degree of poaching pressure) covariates that influence forest elephant 

landscape and habitat use, and to do so over a larger spatial and temporal extent, which is 

possible using methods such as passive acoustic monitoring (PAM) rather than relying on dung 

transects. We still do not adequately understand forest elephant habitat use or how it is 

influenced by human activities (Fishlock & Breuer, 2015). We do not know which types of 

habitat will be crucial for sustaining forest elephant populations (Fishlock & Breuer, 2015), or to 
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what degree elephants will survive along gradients of increasing anthropogenic disturbance 

(Kolowski et al., 2010). 

Forest elephant habitat use can be examined in the framework of optimal foraging theory, 

which suggests that animals should choose feeding locations and food sources that maximize 

their average rate of energy intake, which in turn should increase fitness (Charnov, 1976; 

Pulliam, 1974; Stephens & Krebs, 1986). When available, foragers should opt for more 

profitable resource patches or food items, all other things being equal (Lima & Dill, 1990; 

Pulliam, 1974; Stephens & Krebs, 1986). Forest elephants take advantage of a variety of food 

sources including grass, leaves, bark, roots, and stems (Blake, 2002; Short, 1981), but fruit from 

fruiting trees is their preferred food when available, likely due to its higher energetic and 

nutritional payoff (Blake, 2002; Blake & Inkamba-Nkulu, 2004; Short, 1981, 1983; White, 

1994). In NNNP, fruit availability tracks precipitation, with the most tree species and the highest 

proportion of individual trees fruiting during the months of highest rainfall (Blake, 2002; 

Groenenberg et al., 2016). Fruit tree density is highest in terra firma mixed-forest upland sites of 

NNNP (Blake, 2002), which might be expected to serve as important habitat, particularly during 

the wet season. However, in drier periods when fruit is scarce, the higher-quality leafy browse 

near wetlands and rivers, or in secondary forests previously disturbed by logging, may attract 

forest elephants to swampy lowland or previously disturbed sites (Blake, 2002; White, 1992). 

Hence, the importance of habitat types and particular sites may change seasonally for forest 

elephants (Buij et al., 2007; Eggert et al., 2014) like it does for savanna elephants, in which 

seasonal movements to track water sources and areas of high grass productivity are well 

documented (e.g., Western, 1975).  
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The basic optimal foraging framework can be amended to include situations of foraging 

under predation risk or disturbance (Brown & Kotler, 2004; Frid & Dill, 2002; Gilliam & Fraser, 

1987; Lima & Dill, 1990), which is arguably the default state for most species, as most species 

serve as prey for at least some others (Lima & Dill, 1990). While foraging under predation risk, 

animals must balance their need for food and safety, a task that is particularly pertinent and 

difficult when high-quality feeding areas are also the most dangerous. This trade-off can be 

optimized by monitoring changes in risk over time and selecting sites that provide adequate 

energy acquisition without intolerable exposure to predators or disturbance (e.g., by minimizing 

the ratio of predation risk to net energy intake; Brown & Kotler, 2004; Frid & Dill, 2002; 

Gilliam & Fraser, 1987; Lima & Dill, 1990). While forest elephants have few natural predators, 

poaching by humans is analogous to predation and constitutes a grave threat to individual 

animals and the persistence of the species as a whole (Blake & Hedges, 2004; Blanc, 2008; 

Maisels et al., 2013). Studies that have sought to understand the effects of poaching pressure on 

forest elephants have often relied on proxies of poaching risk, such as distance to nearest access 

roads. These studies have shown that forest elephants engage in risk avoidance behavior 

including avoidance of roads, which has been interpreted as avoidance of poaching pressure 

(Blake et al., 2007, 2008; Yackulic et al., 2011). It may be that forest elephants are actively 

avoiding areas with high poaching pressure and therefore forsaking otherwise high-quality 

habitat that is made unsuitable by human activity. This could lead to reduced energy intake and 

reproductive rates and associated population level consequences (Blumstein & Fernandez-

Juricic, 2010; Frid & Dill, 2002). Our understanding of these potential effects would benefit 

from research methods such as PAM, where poaching pressure can be measured directly by 

counting the number of gunshots detected at acoustic recorders distributed across the landscape. 
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An advantage of the PAM approach is that the more straightforward quantification of poaching 

pressure allows the effects of these activities on elephant habitat use to be measured in a direct 

manner (Astaras et al., 2017, 2020). 

The impact of logging activity on forest elephants has received less attention than that of 

poaching, although forest elephants seemingly avoid human activity in general (Barnes et al., 

1991; Blake et al., 2008; Buij et al., 2007). There is considerable evidence that animals perceive 

and respond to non-lethal human disturbance and predation risk in the same way, and thus 

disturbance may result in the same trade-offs between foraging efficiency and maintenance of 

adequate safety as does predation risk per se (Frid & Dill, 2002). The reason that non-lethal 

human disturbance stimuli and predation risk are interchangeable in the optimal foraging 

framework is that both elicit behavioral responses that divert energy away from maximizing 

foraging efficiency (Frid & Dill, 2002). Therefore, in addition to altering their landscape use in 

response to poaching pressure, forest elephants may also forsake high-quality habitat because of 

logging activity. On the other hand, temporary access roads created in logging concessions result 

in an increase in secondary re-growth of leafy browse, which may be attractive to forest 

elephants, particularly during the drier months when fruit is less available at undisturbed mixed 

forest sites (Blake, 2002; White, 1992). Therefore, one might expect reduced elephant landscape 

use at sites with ongoing logging activity, but increased use of previously logged sites where 

human activity has returned to low levels, but perhaps only when fruit availability at undisturbed 

mixed forest sites is low. 

We implemented a PAM approach to collect data on forest elephant and gunfire event 

distribution over 3.25 years in NNNP and the adjacent logging concessions in northern Republic 

of Congo. We analyzed forest elephant detection/non-detection data with multi-season 
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occupancy models to examine the environmental variables that influence forest elephant use of 

the landscape. These variables pertained to either anthropogenic disturbance (e.g., poaching and 

logging pressure) or habitat resources (e.g., forest type). We anticipated that the effects of these 

different covariates would change between the wet and dry seasons due to the shifting 

importance of elephant food resources (Table 4.1). In particular, we expected prevalent use of 

mixed forest habitat in wetter months and a shift to usage of previously disturbed sites with 

abundant browse in the drier months, depending on the spatiotemporal distribution of poaching 

and logging activity.  

   

Methods 

Acoustic data acquisition 

Forest elephant detection data were collected with a PAM approach, using a grid of 50 

acoustic recorders established in Nouabalé-Ndoki National Park (NNNP), Republic of Congo, 

and the adjacent logging concessions (Fig. 4.1). Acoustic grid and recording details are provided 

in Swider et al., (2022) and in Chapters 2 & 3. The grid covered 1250 km2 (mean inter-sensor 

distance of 5.5 km [SD = 1.4]) and recorded continuously from November 2017 to March 2021. 

Recorder sites belonged to one of 3 different strata: the national park (29 sites), the old 

concession that was selectively logged prior to 2010 (11 sites), and the operational concession, 

selectively logged throughout the study until September 2019 (10 sites; Fig. 4.1).  

The presence of forest elephants at each site was indicated by detection of rumble 

vocalizations. Rumbles are an appropriate signal to use for detection because they are the most 

common vocalization and they are used by both sexes and all age classes and in many behavioral 

contexts (Chapter 4; Hedwig et al., 2021; Poole et al., 1988; Stoeger et al., 2014; Thompson, 
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2009). Their low frequencies also make them favorable for PAM because they are less 

susceptible to environmental attenuation than higher frequency vocalizations (Ingard, 1953). 

Previous detection distance experiments indicate that we can detect rumbles at a range of 500-

600m, resulting in a detection area of approximately 0.79-1.13 km2 around each of the 50 

recorders (Fig. 4.1). An automated detector algorithm based on a feature extraction and 

classification system (Keen et al., 2017) was used to extract rumbles from the continuous 3.25-

year audio data set. For 3 randomly selected days per week, the detector output was manually 

reviewed to confirm putative rumble detections and remove false positives from the data set. To 

evaluate detector performance, spectrograms of 267 days throughout the study period were 

manually reviewed to establish a “truth” dataset of identified rumbles. We compared these data 

to the reviewed detector output for the same days and found the average percentage of existing 

rumbles identified by the detector per day to be 68.6%. 

Modelling approach 

 We analyzed elephant detection/non-detection data and covariates that we hypothesized 

to influence forest elephant distribution (see below) with Bayesian multi-season occupancy 

models using the ‘spOccupancy’ package (Doser et al., 2022) in R (R Core Team, 2022). We 

used months as primary sampling periods (the “seasons” of multi-season models sensu 

Mackenzie et al., 2003; MacKenzie et al., 2018), starting with January 2018, as this was the first 

full month that all acoustic recorders of the grid were installed and recording continuously. We 

included all months through March 2021, except for June-September 2020 (data collection 

interrupted by Covid-19 pandemic) and January-February 2021 (interruptions due to equipment 

malfunctions). This resulted in 33 months used as primary sampling periods. We used the 3 

random days per week for which the detector output had been manually verified to compile 12 
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days per month with which to estimate detection probability (i.e., to serve as secondary sampling 

periods or “surveys” sensu Mackenzie et al., 2003; MacKenzie et al., 2018). Therefore, each 

primary sampling period (month) included 12 survey days, 3 of which were randomly allocated 

to each week, so that sampling covered the duration of each month. One or more rumbles 

detected within the 24 hours of each survey indicated forest elephant presence. Throughout the 

3.25 years of recording, equipment failures resulted in at least some gaps in recording at most 

sites. Therefore, sites occasionally had fewer than 12 surveys each month, or in some cases 

lacked data for a given month entirely. Occupancy modeling is a flexible approach that can 

accommodate such missing or unbalanced surveys (Doser et al., 2022; MacKenzie et al., 2018). 

We compared models with different combinations of covariates representing the effects of 

anthropogenic disturbance and habitat resources on forest elephant landscape use, while 

accounting for variables that could impact the probability of detecting forest elephants (Table 

4.1).     

Anthropogenic disturbance covariates 

We used the PAM grid to detect gunshots from poaching and bushmeat hunting activity 

(Chapter 3), an anticipated determinant of forest elephants’ use of the landscape (Swider et al., 

2022). Controlled experiments near a ranger training site in the same forest revealed that 

gunshots can usually be detected at distances of at least 2 km from the recorders. A template-

based detector algorithm trained on recorded gunshots was used to search the continuous audio 

data for gunshots (see Wrege et al., 2017 Appendix S3 for detector details). Putative gunshots 

identified by the algorithm were then manually verified via spectrographic and auditory analysis 

by experienced personnel. All false-positive gunshot detections were removed from the dataset. 

For confirmed gunshots, we manually examined spectrograms to verify that no additional 
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gunshots had occurred within 24 hours of the detected focal shot(s). We aggregated any shots 

occurring within 1 hour of one another into ‘gunfire events’, which would likely represent a 

single elephant poaching attempt. The gunfire events were each detected at a single recorder 

only, which we designated the gunfire event site. Automatic weapon fire events likely 

represented attempted elephant kills, whereas single-action weapon fire could include both 

elephant poaching and bushmeat hunting of other species (Swider et al., 2022). We quantified 

poaching/gun-hunting covariates using all detected events because (1) we are unable to 

definitively differentiate between elephant poaching and bushmeat hunting events, and (2) 

gunshots may contribute to elephants’ perception of risk and use of the landscape irrespective of 

the species that is targeted (i.e., non-lethal disturbance stimuli; Frid & Dill, 2002). We included 

two versions of the poaching/hunting pressure covariate in the occupancy models— number of 

events in each primary period, and cumulative number of events having occurred since study 

onset (Table 4.1). These represent the potential of forest elephants avoiding sites with currently 

high poaching risk or avoiding sites with historically high poaching risk over the course of the 

study. 

In addition to poaching activity, we expected logging activity to be an anthropogenic 

disturbance that would deter forest elephants from using affected sites. Variability in logging 

activity is correlated with protected area designation in our study system (logging concession 

versus national park). To capture broad scale variability in logging pressure (and protected 

status), we included the stratum to which each site belonged as a covariate (Fig. 4.1). We 

specified the levels of this variable in alternate ways to arbitrate between multiple hypotheses 

(Table 4.1). To reflect protection, we specified 2 strata to differentiate between NP and 

concession (old and operational combined). During model comparison, support for models with 
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this specification would indicate that protected status is important, or that selective logging 

results in habitat changes that in turn affect elephant distribution. To reflect the potential effect of 

operational logging per se, we re-specified the 2 strata to differentiate between the presence or 

absence of operational logging (operational concession vs. NP and old concession combined). 

Support for models with this specification would suggest that operational logging activity 

influences forest elephant distribution, but not the protected status of sites or logging-induced 

habitat changes per se. In the final version, we specified all 3 strata separately: national park, old 

concession, or operational concession (Table 4.1). Support for models with this specification 

would indicate that operational logging activity, protected status, or logging imposed habitat 

changes could all be important. 

To explore the potential effects of selective logging at a finer spatiotemporal resolution, 

we mapped variability in ongoing logging activity using data provided by the logging company, 

Congolaise Industreille des Bois (CIB). These activities included clearing temporary logging 

roads, felling trees, moving downed trees to the nearest logging road, and transporting trees out 

of the concession. We included a binary, time-varying (monthly) covariate for whether these 

activities were ongoing within 600 m of recorder sites (Table 4.1; 600 m is our estimated 

detection range for forest elephant rumbles). This covariate allowed us to account for the 

potential of forest elephants to adjust site usage in accordance with selective logging activity in a 

more immediate, localized, and dynamic manner than could be reflected by the strata covariates 

(discussed above). 

Habitat resource-related covariates 

 Our main habitat covariate of interest was the amount of mixed species forest that 

characterizes the sites across the grid, and the potential interaction with season. The amount of 
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mixed forest should reflect the availability of fruit— an indispensable component of the forest 

elephant diet— because fruit tree density in NNNP is highest in mixed forest compared to other 

habitats (Blake, 2002). This is especially pertinent in the wet season when fruiting rates are 

highest (Blake, 2002). Using Landsat 8 30-m resolution satellite imagery paired with ground 

truth locations obtained during Wildlife Conservation Society foot surveys, we performed a 

supervised classification of habitat type across our study area (Appendix). We classified pixels 

into 3 categories: 1) forest composed of mixed tree species, 2) monodominant forest composed 

of Gilbertiodendron sp., and 3) an “open” class that included river floodplain with sparser 

canopy than upland forest (or no canopy), open-canopy swamps, open water, aquatic vegetation 

and grasses, and forest clearings. Within a 600-m radius around each of the 50 recorders, we 

calculated the percentage of pixels that were classified as mixed forest (Appendix). We included 

a seasonality interaction term with each month categorized as wet (>60 mm of rain) or dry (<60 

mm of rain) (Beck et al., 2018). Rainfall data from four weather stations in and around the 

acoustic grid were averaged to determine season. With the exception of February 2018 (wet), 

rainy season was March-November and dry season December-February of each year. Seasonality 

of primary period was included as a main effect on occurrence and as an interaction with 

proportion of mixed forest (Table 4.1). 

 While we anticipated mixed forest and corresponding fruit availability to be important in 

the wet season, a shift of resource use may occur in the drier months. We hypothesized that 

increased browse resources associated with secondary succession in logging concessions may 

attract forest elephants to these previously disturbed sites in the dry season when fruit is limited. 

To accommodate this potentiality, we included an interaction of seasonality (wet versus dry 

months) with the logging strata covariates discussed previously (Table 4.1).   
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 Other resource-related covariates included distance to the nearest river mainstem (Ndoki 

and/or Guoalougo rivers), and distance to the nearest bai or eyanga (Table 4.1)— clearings with 

resources that are attractive to forest elephants (Klaus et al., 1998; Turkalo & Fay, 1995). 

Distances were measured on GIS layers of watercourses, using QGIS software (QGIS 3.22, 

2022). These layers were created by manual tracing of digital elevation models and confirmed 

with on-the-ground GPS mapping that we implemented during routine maintenance of the 

acoustic grid.  

 Lastly, preliminary analyses indicated that forest elephant raw occupancy estimates 

(uncorrected for detection) had declined throughout the study period (see Results Fig. 4.2). To 

account for this possibility, we included primary sampling period itself as a continuous covariate 

that would reveal any linear trends in occupancy (site use) over time (Table 4.1). 

Detection covariates 

 We accounted for three variables that could potentially influence the detection probability 

for forest elephants in our study system. Unlike occurrence covariates, which can vary only by 

site and primary period, detection probability covariates can also vary survey to survey (Doser et 

al., 2022; MacKenzie et al., 2018). Swider et al. (2022) (Chapter 2) showed that forest elephants 

likely alter their acoustic behavior in the 24 hours before or after gunfire events. We therefore 

included a site-specific binary detection covariate for whether a gunfire event had occurred 

within two days of any survey day (Table 4.1). Other factors that can interfere with the acoustic 

detection of forest elephants are rain and thunder, which are characterized by low frequency 

sound in the same range as elephant rumble vocalizations. Using the weather stations for which 

we had the most consistent data over the course of the study, we calculated the average daily 

rainfall over weekly intervals, and included these values as a detection probability covariate that 
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could vary between surveys of different weeks (Table 4.1). Lastly, we allowed a random effect 

for primary sampling period that would accommodate differences in detection probability among 

the months of the study (Table 4.1), due to changes in forest elephant abundance in the grid area 

over time, for example. 

Model structuring and comparison 

As a criterion for Bayesian model comparison, we used the Widely Applicable 

Information Criteria (Watanabe, 2010). In addition to WAIC, we compared candidate models 

based on their predictive performance, using deviance calculated via k-fold cross-validation (CV; 

Hooten & Hobbs, 2015). By using different subsets of the data for model fitting (training) and 

validation (testing), this deviance metric measures a model’s out-of-sample predictive 

performance and is another criterion by which to compare candidate models (Hooten & Hobbs, 

2015). We used vague normal priors— the default values provided by the ‘spOccupancy’ 

package— for occurrence and detection coefficients (Doser et al., 2022). To account for potential 

spatial autocorrelation among the 50 grid sites, we compared 2 structures for each candidate 

model. In the spatially explicit version, we used recorder site UTM coordinates to include a 

spatial random effect using an ‘exponential’ covariance model. We compared this to a simpler 

version in which we included a non-spatial random effect for site.  

We started the model selection process by constructing global models that included all 

the occurrence covariates previously described. Three versions of the global model were 

possible, corresponding to the 3 alternate ways in which we specified the strata covariate that 

represented level of protection and/or logging concession (indicated by asterisks in Table 4.1). 

We used these global models to then determine the best structure for the detection probability 

model component, which we subsequently held constant for the rest of the model selection 
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process. After identifying the best-performing global model, we compared it to simpler models 

in which one occurrence covariate was removed at a time (sometimes the excluded main effect 

was part of an interaction term, in which case the interaction was also excluded). For some 

covariates, removal from the global model clearly reduced model performance, resulting in 

higher values for both WAIC and deviance in the reduced model. This indicated that the 

excluded covariate was important. In other cases, WAIC remained relatively unchanged (e.g., 

delta WAIC < 0.5), but deviance decreased substantially, suggesting better performance without 

the excluded variable; covariates responsible for these changes in metrics were deemed 

uninfluential. After establishing each covariate’s importance by running models with each one 

removed at a time, we re-ran the global model with the uninfluential covariates removed to arrive 

at the final model. The WAIC and deviance from 4-fold CV identified this final model as the 

best candidate model. To assess the Goodness-of-fit of the final model, we performed posterior 

predictive checks using the Freeman-Tukey fit statistic to calculate a Bayesian p-value (low 

values indicate lack of fit; Doser et al., 2022; Kéry & Royle, 2015).   

  

Results 

PAM detection data 

From January 2018 to March 2021, we detected a total of 28,381 elephant rumbles across 

the 50 acoustic recorder sites and 33 months (each containing 12 survey days). Of the 19,800 

possible surveys (50 sites * 33 months * 12 survey days), we had data for 17,816 (90%). The 

10% of survey days for which we lacked data (e.g., due to recorder malfunctions) were “NAs” in 

the occupancy model detection history. Of the 17,816 useful surveys, forest elephants were 

detected in 3862 (21.7%) and undetected in 13,954 (78.3%). Preliminary plotting of detections 
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indicated that forest elephant raw occupancy estimates (uncorrected for detection) had declined 

throughout the study period (Fig. 4.2). This justified the inclusion of primary sampling period 

itself as a covariate that could reveal any linear trends in occupancy over time. Plotted rumble 

detections from dry season months (December and January) and wet season months (July and 

August) from 2018 and 2019 suggested a shifting distribution between seasons (Fig. 4.3). 

We detected a total of 86 gunfire events composed of both automatic (e.g., AK47; n = 8) 

and single-action (n = 78) weapon fire. The total number of events at each site ranged from 0 to 

10 (mean = 1.72; SD = 1.73) (Ch. 3 Fig. 3.3). As covariate values, gunfire events per primary 

period (month) ranged from 0 to 3, and cumulative gunfire events since study onset ranged from 

0 to 10.   

Habitat resource quantification 

 We achieved an overall accuracy of 0.92 with the supervised classification of habitat 

types using Landsat 8 satellite imagery, and similar per-class accuracies (Appendix Table A.1). 

The proportion of mixed species forest within 600 m of recorder sites ranged from 0.15 to 0.93 

(Appendix Fig. A.3). Distances from recorder sites to nearest river mainstems ranged from 0.70 

km to 15.59 km (mean = 6.35 km). Distances to nearest clearings (bais and eyangas) ranged 

from 0.69 km to 24.52 km (mean = 10.74 km).    

Model selection 

For the spatial autocorrelation component, the simpler non-spatial models consistently 

outperformed the more complex spatially explicit models, indicating spatial random effects were 

unnecessary. We therefore report on model selection and results using the more parsimonious 

models that included a non-spatial random effect for site. For the detection model component, 

which we investigated using the global models, the most parsimonious structure included only 
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the random effect of primary sampling period. Gun events within 2 days of surveys were not 

frequent enough to estimate a parameter coefficient and justify inclusion. Including mean daily 

rainfall for detection probability also made models less parsimonious. We therefore specified the 

detection model components as a random effect for primary period and used this detection 

structure throughout model selection. 

Of the three global models, the version with the strata covariate specified with 3 levels 

outperformed the other two versions according to WAIC and 4-fold CV deviance (Table 4.2). 

Other than the specification of the strata covariate, all other model components were identical 

across the 3 global models (Table 4.2). We proceeded with model selection using the 3-level 

strata specification for the simpler models, excluding one covariate at a time. Removal of most 

covariates from the global model revealed their importance through either (1) increases in both 

WAIC and deviance of the reduced model, or (2) substantial increases in WAIC but decreases in 

deviance (Table 4.3). These covariates explained some variation in the data and/or had predictive 

(out-of-sample) power. Only two covariates— gun events per month and cumulative gun 

events— were deemed uninfluential. When excluded from the global model, WAIC remained 

relatively static while deviance decreased, indicating better performance in their absence; these 

two covariates were removed from the final model (Table 4.3).  

Final model and covariate effects 

For the final model, Bayesian p-values calculated from posterior predictive checks 

revealed adequate model fit (p = 0.54), and R-hat values close to 1.0 (and < 1.1) indicated 

convergence of all parameter estimates. Overall detection probability of forest elephant rumbles 

was ~0.28. While all occurrence covariates in the final model were deemed important during the 

model selection process, they varied in effect sizes and whether their 95% credible intervals 
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overlapped with zero (Table 4.4; Fig. 4.4). Overall probability of forest elephant occurrence 

showed a decreasing trend with primary period throughout the study (Fig. 4.5) and was higher in 

wet than in dry months (Figs. 4.4 & 4.5). Both trends were important, as indicated by CIs non-

overlapping with zero (Table 4.4; Fig. 4.4). Forest elephant site usage decreased with increasing 

distance from rivers, while usage increased with increasing distance from clearings (Table 4.4; 

Fig. 4.4). Ongoing logging activity had the important effect of decreasing forest elephant 

occurrence (CIs non-overlapping with zero; Fig. 4.4). Increasing proportions of mixed forest 

increased the probability of forest elephant site usage (Table 4.4; Fig. 4.4), although this effect 

was constrained to the dry seasons; the important interaction of proportion mixed forest and 

primary period seasonality (wet vs. dry) nullified this effect in the wet season (Figs. 4.4 & 4.6). 

Probability of site usage was lowest in the national park, intermediate in the operational 

concession, and highest in the old logging concession (Fig. 4.7), although CIs for these 

parameter estimates overlapped with zero (Table 4.4; Fig. 4.4). Increasing occurrence 

probabilities accompanying the shift from the dry to the wet season were strongest for the 

operational concession and weaker for the old concession and national park sites (Fig. 4.7), 

although CIs for these interaction parameter estimates similarly overlapped with zero (Table 4.4; 

Fig. 4.4). 

 

Discussion 

 In this study, we improved our understanding of African forest elephant landscape and 

habitat use by using a PAM approach to increase the spatiotemporal extent and resolution of data 

collection, and by simultaneously evaluating both anthropogenic disturbance pressures and 

habitat resources. Our results illuminate the important habitat characteristics and landscape 
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features that shape the distribution of forest elephants in time and space, and how that 

distribution changes under the influence of certain anthropogenic pressures. These findings also 

have potential to aid conservation efforts by revealing the habitats, sites, and time periods most 

important for protection in NNNP and the adjacent logging concessions— for example, by 

increasing anti-poaching patrol effort in important areas (e.g., old logging concessions) and at 

times when elephant occurrence probabilities are high (e.g., rainy seasons).  

 Some of our results confirmed our expectations for how certain environmental covariates 

would influence forest elephant use of the landscape. Ongoing logging activity— clearing 

temporary roads, felling trees, dragging trees to the nearest logging road, and transporting trees 

out of the operational concession— clearly reduced forest elephants’ use of nearby sites, as 

expected. The anticipated effect of distance to river was also confirmed— sites closer to major 

river mainstems were characterized by higher occurrence probabilities, indicating permanent 

water sources as important features of the landscape. This result is consistent with prior research 

suggesting that forest elephants are frequently constrained by water availability, despite 

inhabiting tropical rainforests (Blake, 2002; Buij et al., 2007; Mills et al., 2018).  

Our results regarding the main effect of primary period seasonality are also relevant to 

the seasonal importance of water sources for forest elephants. Analyses of movement data 

suggest that forest elephants travel farther and engage in more directed movements during 

periods of higher rainfall. They more readily take extended excursions away from permanent 

water sources during the wet season when ephemeral sources of rainwater are abundant, but they 

may be reluctant to use habitat far from reliable water sources in the drier months (Blake, 2002; 

Buij et al., 2007; Mills et al., 2018). If forest elephant movement in our study area is higher in 

the wet season as these studies suggest, these increased movements could be responsible for the 
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increased occurrence probabilities that characterize the wet months (βPrimaryPeriodSeasonality(Wet) > 0 

and CIs not overlapping zero; Fig. 4.4). These higher wet season occurrence probabilities result 

in part from rumble detections at more sites in the wet months— oscillating seasonal trends are 

evident in the plotted monthly proportions of sites where elephants were detected, uncorrected 

for imperfect detection (Fig. 4.2). Occurrence probability may be higher in the wet season 

because the frequency with which forest elephants move between sites (site turnover) could be 

higher due to increased travel distances. An alternate possibility is that elephants immigrate into 

the acoustic grid study area during the rainy season but move to other parts of the national park 

(e.g., to the north) in the drier months (e.g., Blake, 2002). While our current PAM sampling and 

analysis framework does not allow us to arbitrate between these potential hypotheses, the latter 

explanation seems likely. Our results complement those of Blake (2002), who provided evidence 

of such movement patterns occurring in the same study area, including seasonal movements 

between the southern and northern regions of the park. Blake (2002) suggested that forest 

elephants leave the study area in the dry season and travel north to take advantage of bais 

clustered in a more northern sector of the park. Our results, which tentatively support this 

hypothesis, contribute to our awareness of forest elephant landscape use and movement patterns, 

and are also potentially informative for conservation efforts charged with protecting elephants in 

and around NNNP. Anti-poaching patrol effort, for example, could be increased in the study area 

during the wetter months of higher elephant occurrence, when the population may be at a higher 

density and more susceptible to poaching. However, the spatiotemporal scale at which patrol 

effort most effectively controls poaching activity in the study area remains unclear (Chapter 3), 

and further research is needed in order to optimize the allocation of these conservation resources.  
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Our impression based on preliminary data exploration (Fig. 4.2) that overall usage of the 

study area by forest elephants was decreasing over the 3.25 years of the study was confirmed by 

the negative effect (trend) of primary period on occurrence (Fig. 4.5). Whether this decline in 

elephant occurrence reflects diminishing populations (e.g., because of poaching or habitat 

changes) is an important consideration for further research. However, it is possible that patterns 

in elephant landscape use occur over long periods (e.g., years), and that our detected trend 

reflects the NNNP population shifting among different regions of the park, rather than a 

population decline. For example, while we revealed patterns in forest elephant use of the study 

area on a seasonal time scale (Figs. 4.4-4.7), site usage patterns characterized by several years 

and larger areas (e.g., park sectors) are also possible. To differentiate between a potential 

population decline versus distributional shifts, population size estimation methods could be used 

to complement a PAM approach (e.g., Brand et al., 2020; Laguardia, Bourgeois, et al., 2021; 

Laguardia, Gobush, et al., 2021). 

 Other results were more surprising and contradicted our initial hypotheses. Increasing 

proportions of mixed forest resulted in higher site usage in drier months, but this effect 

disappeared in the wet season (Fig. 4.6), opposite to our predictions. We had expected the 

attractive effect of mixed forest to operate more strongly in the wet season, when fruit 

availability in mixed forests is highest (Blake, 2002). Our use of proportion of mixed forest area 

and its interaction with seasonality to reflect fruit availability almost certainly failed to capture 

nuances in the timing and location of important fruit resources. While fruiting generally tracks 

precipitation for a diversity of species found in mixed forest, there are also less predictable but 

highly prolific fruiting events that happen, for example, in mast fruiting years in 

Gilbertiodendron monodominant forests. Gilbertiodendron mast fruiting events are 
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asynchronous between stands and occur on average only once every 4 years (Blake & Fay, 1997; 

Hart, 1995), making them a less predictable and less reliable resource compared to the seasonal 

fruiting cycles in mixed forest. Nonetheless, stands of mast fruiting Gilbertiodendron can yield 

several tons of fruit per hectare (Blake & Fay, 1997) and forest elephants opportunistically take 

advantage of these abundant resources (Blake & Fay, 1997; Short, 1981, 1983). Our inability to 

identify where and when any such events may have occurred during our study period may be a 

limitation of our habitat type by season analysis. However, because these mast events are short-

lived and patchily and sparsely distributed in time and space, it is unlikely that these events are 

responsible for our unexpected results regarding the effect of mixed forest. Even so, identifying 

and integrating mast fruiting events into analyses would improve our understanding of forest 

elephant resource use. A potentially informative next step would be to analyze sequences of 

satellite imagery taken over relatively short intervals (e.g., monthly), attempt to distinguish any 

spectral signatures of mast fruiting events, map their occurrence in time and space, and integrate 

this information as a covariate in occupancy analyses.  

It is possible that the unanticipated mixed forest effect resulted in part from our inclusion 

of “shoulder season” primary periods (months), which may have hindered our ability to capture 

clear seasonal trends. While we categorized each month as either wet or dry according to amount 

of rainfall, some of these months likely occurred in the transition period between dry and rainy 

seasons. If forest elephants shift their use of resources seasonally, these “shoulder” months 

would likely encompass such transitions. One way to confirm or refute our current results would 

be to perform a multi-season occupancy analysis with fewer primary periods, with the “shoulder” 

seasons excluded, for example. A related option would be to employ several single-season 
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occupancy models, each one comprised of detection data from only the core periods of the rainy 

and dry seasons as to avoid transitional months.  

We compared multiple specifications of the levels of the stratum covariate (NP, old 

concession, operational concession) in an attempt to reveal whether forest elephant landscape use 

depended primarily on protected status, operational logging activity, or logging induced habitat 

resources (e.g., secondary regrowth). As previously described, comparing the global models with 

the alternative specifications of this stratum covariate could help arbitrate between hypotheses 

regarding the importance of these different factors. Our results indicate that this covariate is best 

modeled with all 3 strata specified independently (Global v1; Table 4.2). This suggests that 

protected status, operational logging activity, and logging related habitat characteristics all 

influence the distribution of forest elephants across the landscape to some degree. The global 

models with the strata combined into 2 levels (Global v2 and Global v3; Table 4.2) performed 

less well in explaining variation in the data (WAIC) and in prediction (k-fold CV deviance). We 

were therefore not able to arbitrate or rule out the importance of any of these 3 potential 

influences by comparing alternate specifications of the stratum covariate.    

Comparing the parameter estimates of the 3 strata, on the other hand, can indicate which 

of these 3 factors— protected status, operational logging activity, or logging related habitat 

resources— are most influential. The relative importance and effects of the 3 strata were 

unanticipated. For example, overall occurrence was lower in the national park than in the logging 

concessions (Fig. 4.7). This suggests that whatever advantages are afforded by nominal protected 

status are outweighed by the value of resources in the concessions. We did expect logging 

concessions to offer important resources for forest elephants in the form of increased browse 

abundance due to secondary regrowth of sites disturbed by selective logging (Blake, 2002; 
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White, 1992). However, we anticipated these browse resources to be more important in the dry 

season, when fruit availability is limited. For this reason, the direction of the interaction of 

stratum with primary period seasonality came as a surprise. The increase in site usage in the wet 

season was stronger in the logging concessions than in the national park (Fig. 4.7)— the opposite 

of what we had predicted (although the CIs of parameter estimates overlapped with zero). It may 

be that the resources affiliated with logging concessions (e.g., secondary browse) are attractive 

and consistent enough that use of the habitat is high regardless of potential fruit availability in 

other areas. Furthermore, the logging concessions also contain mixed species forest, so potential 

effects of secondary regrowth in disturbed logging sites and fruiting in mixed forest are not 

entirely separable in our analysis. Accordingly, the expectation of overall higher occurrence 

probability in the national park was based on the hypothesized negative effects of the logging 

concession strata (e.g., logging activity/disturbance) and on differences in protection, not on 

differences in the amount of mixed forest and fruit availability between strata. While we revealed 

an important deterrent effect of ongoing logging activity (Table 4.4; Fig. 4.4), such activities 

occurred only in the operational concession during the first 2/3 of the study period—many 

concession sites and primary periods were not characterized by any ongoing logging activity. 

This allowed the overall positive effect of logging stratum habitat resources to overcome the 

poignant negative (but spatiotemporally limited) effect of ongoing logging activity (Fig. 4.4).  

It is also useful to consider patterns in logging pressure at the longer scale of a forest 

elephant lifetime, which can exceed 70 years (Turkalo et al., 2018). Adult elephants that 

experienced historical logging activity in the old concession may associate that area with human 

disturbance more strongly than they do the operational concession, in which logging began more 

recently. Despite resource extraction activities having transitioned to the operational concession, 
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elephants may still remember it as characterized by less human disturbance than the old 

concession. It is possible that this historical context has contributed to the pattern of occurrence 

probabilities that we detected (i.e., highest in the operational concession).   

Regardless of the degree to which historical context influences elephant site usage in 

addition to the more immediate response to disturbance that we have revealed, our results 

indicate that the value of logging concession habitat for forest elephants is dynamic and 

dependent on both season and the timing of resource extraction activities. Management of 

logging activity for forest elephant conservation should take these results into consideration and 

plan the timing of logging activity to result in minimal interruptions to the natural patterns of 

elephant landscape use. At present, providing recommendations is difficult because the 

importance of the stratum effects and their interactions with season remains uncertain (50% 

and/or 95% CIs overlap with zero; Fig. 4.4). As more data from the acoustic grid become 

available for integration into this modeling framework, we hope to solidify our understanding of 

these interactions and provide concrete recommendations for the management of logging 

activities and the allocation of conservation law enforcement resources (e.g., patrol effort).  

 While ongoing logging activity was a distinct deterrent to elephant site usage, we 

detected no effect of poaching/gunfire events, the other major anthropogenic disturbance under 

investigation in this study. Neither the number of gunfire events per month nor the cumulative 

number of gunfire events since study onset were influential enough to be included in the final 

model (Table 4.3). This was surprising, given that recent research has indicated that gunfire 

events influence either forest elephant vocal behavior, use of nearby sites, or both (Swider et al., 

2022; Chapter 2). However, these previous findings focused on forest elephant response to 

gunfire events at a much more immediate and high-resolution time scale (Swider et al., 2022). 
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The temporal resolution of the current analysis may not have been sufficient to capture any 

variability in elephant landscape use resulting from recent or cumulative gunfire events. 

Similarly, gunfire-induced changes in elephant habitat use behavior may be ephemeral, and site 

use and distribution may return to baseline status in a relatively short elapse of time (Swider et 

al., 2022; Chapter 2). This is especially likely if the gunfire events have occurred in high quality 

habitat where the value of resources outweighs the level of risk perceived by the elephants. 

Ongoing research is expanding upon the recent response to gunfire research (e.g., Swider et al., 

2022) to determine the time scale at which gunfire events affect forest elephant behavior, the 

time required for behavior to return to normal/baseline activity, and the degree to which this 

depends on metrics of habitat quality (Verahrami, Swider, personal communication). Results of 

this upcoming work will be of interest to foraging theory— specifically, foraging under 

predation risk— and will improve our understanding of how forest elephants respond to 

anthropogenic disturbance and balance the needs of safety versus food acquisition. 

 This study has revealed some of the anthropogenic disturbance- and habitat resource-

related variables that influence the use of the NNNP landscape by African forest elephants. 

Particularly important patterns included an overall declining trend in forest elephant occurrence 

over the 3.25 years of the study; higher occurrence probability in the wet seasons; higher 

occurrence probabilities closer to major rivers; a deterrent effect of ongoing logging activity that 

decreased elephant site usage; and the changing importance of mixed species forest between 

seasons. Poaching activity did not impact forest elephant use of the landscape at the temporal 

scale and resolution of our analysis. Forest elephants’ use of the landscape in and around NNNP 

is influenced by a combination of both anthropogenic disturbances and habitat resources. These 

results shed light on our understanding of forest elephant ecology and can be used for planning 
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and managing conservation initiatives (e.g., patrol effort) and anthropogenic activity (e.g., 

logging) to protect the species and minimize disturbance to their landscape use patterns.  
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Figures and tables 

 
 
Figure 4.1 The grid of 50 acoustic recorders, covering portions of NNNP and adjacent logging 
concessions. The “old” concession, west of the Ndoki river, was selectively logged prior to 2010. 
The “operational” concession, east of the Ndoki and Goualougo rivers, was selectively logged 
during the initial years of the study, from 2017 to 2019. The 600-m approximate detection 
distance for forest elephant rumbles is displayed as a circle around each recorder. The red circle 
in the inset map shows the approximate location of the study area in northern Republic of Congo 
in central Africa.    
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Figure 4.2 Raw proportions of sites at which forest elephants were detected, uncorrected for 
detection probability, as a function of months since January 2018. A linear model fit to the data 
suggests a trend of decreasing site usage by forest elephants (Adjusted R-sq. = 0.45, p < 0.0001). 
This preliminary trend supported the decision to include primary sampling period as an 
occupancy model covariate.  
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Figure 4.3 Forest elephant rumble detection data suggested a shifting distribution between (a) 
dry and (b) wet seasons. The proportions of surveys with rumble detections displayed here used 
data from 8 of the primary periods— December and January (dry season) and July and August 
(wet season) from 2018 and 2019. Data from 2020 was excluded from this figure because 
recording in the focal months was interrupted due to the Covid-19 pandemic. 
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Figure 4.4 Final model parameter estimates on the logit scale; positive or negative values can be 
interpreted as having a positive or negative effect on forest elephant occurrence, respectively. 
Circles indicate the median parameter value from the posterior distribution. Thick and thin line 
segments indicate the 50% and 95% credible intervals (CIs), respectively. Parameter estimates 
whose 95% CIs did not overlap with zero are displayed as black circles and lines. Grey filled 
circles and lines indicate the 95% CI overlapped with zero; grey unfilled circles indicate the 50% 
CI overlapped with zero. The intercept (reference level) is where Stratum = National Park, 
Primary period seasonality = Dry, and Ongoing logging activity = No.     
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Figure 4.5 Overall probability of forest elephant occurrence showed a decreasing trend over the 
course of the study and was higher in the rainy months than in the dry months. 
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Figure 4.6 In the dry season, forest elephant site usage increased with increasing proportion of 
mixed species forest characterizing sites. The important interaction with primary period 
seasonality (CIs non-overlapping zero; Fig. 4.4) nullified the effect of mixed forest during the 
rainy season. 
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Figure 4.7 Forest elephant site usage was highest in the old logging concession, intermediate in 
the operational concession, and lowest in the national park, although parameter estimate CIs 
overlapped zero (Fig. 4.4). The increase in occurrence probability between the dry and wet 
seasons was strongest for the operational concession and weaker for the old concession and 
national park, although CIs for these interaction parameter estimates similarly overlapped zero 
(Fig. 4.4). 
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Table 4.1 Covariates included in the multi-season occupancy models included occurrence 
variables related to anthropogenic disturbance (poaching/hunting and logging), habitat resources, 
and time since study onset. Variables pertinent to detection probability were included to account 
for imperfect detection of forest elephants. Predicted effects of each covariate on either 
occurrence or detection are displayed in the last column. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Covariate Predicted effect 

Number of gunfire events per primary period (i.e., month) -

Cumulative number of gunfire events since study onset -

Ongoing logging activity within 600 m, by primary period (yes/no) -

Operational logging strata, 2 levels (NP and old concession vs. operational concession)* +/-

Protection strata, 2 levels (NP vs. either concession)*a +/- (season dependent)

Protection/Logging strata, 3 levels (NP vs. operational vs. old concession)*a +/-/- (season dependent)

Proportion mixed foresta + (wet season)

Distance to nearest river mainstem (Ndoki and/or Guoalougo rivers) -

Distance to nearest bai/eyanga -

Seasonality of primary sampling period (wet vs. dry months) + or -

Primary sampling period (i.e., season, month) (main effect indicating trend) -

Primary sampling period (i.e., season, month) (random effect) NA

Gunfire event within 2 days of survey + or -

Mean daily rainfall, weekly intervals (indicating rain/thunder) -

Primary sampling period (i.e., season, month) (random effect) NADe
te

ct
io

n 
Pr

ob
ab

ili
ty

Ti
m

e

Oc
cu

rre
nc

e

Hypothesis

H
ab

it
at

 r
es

ou
rc

es

A
nt

hr
op

og
en

ic
 d

is
tu

rb
an

ce

* = spatial categorical covariates that are variations of a common strata system 
a = also included as an interaction with seasonality of primary period (wet vs. dry months) 
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Table 4.2 Of the three global models, the version with the strata covariate specified with 3 levels 
outperformed the other two versions according to WAIC and 4-fold CV deviance. Other than the 
specification of the strata covariate, all other model components were identical across the 3 
global models. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rank Name Strata covariate 
specification Occurrence fixed covariates Detection 

covariates WAIC Deviance   
(4-fold CV)

1 Global v1
Protection/logging 

strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 

Dist clearing, Primary period, Ongoing logging, Gun 
events/mo, Cumul gun events, (1|site)

(1|Prim 
period)

17312.549 18437.64

2 Global v2
Operational 

logging strata,         
2 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 

Dist clearing, Primary eriod, Ongoing logging, Gun 
events/mo, Cumul gun events, (1|site)

(1|Prim 
period)

17313.285 18454.67

3 Global v3
Protection strata,      

2 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 

Dist clearing, Primary period, Ongoing logging, Gun 
events/mo, Cumul gun events, (1|site)

(1|Prim 
period)

17315.137 18457.12
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Table 4.3 Candidate models ranked by WAIC and 4-fold CV deviance. The global model was 
compared to models in which each covariate was excluded at a time. Sometimes the excluded 
main effect was part of an interaction term, in which case the interaction was also excluded. 
Comparing the WAIC and 4-fold CV deviance between the global model and models with each 
covariate excluded allowed us to assess the importance of each variable. Covariates that we 
deemed uninfluential were removed from the final model. Covariates remaining in the final 
model (bottom row of table) have explanatory and predictive power. All candidate models shared 
the same structure for the detection component (random effect of primary period) and for the 
spatial autocorrelation component (non-spatial random effect of site).   
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WAIC 
rank Name Strata covariate 

specification Occurrence fixed covariates Excluded occurrence 
covariates WAIC Deviance   

(4-fold CV)
Dev. 
rank

Remove 
cov. from 

final mod?

1 Global Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 

Dist clearing, Primary period, Ongoing logging, Gun 
events/mo, Cumul gun events

None 17312.549 18437.64 7 NA

2 Global minus 
Gunevents/mo

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 
Dist clearing, Primary period, Ongoing logging, 

Cumul gun events

Gun events/mo 17312.855 18424.63 4 Yes

3
Global minus 

Cumul gun 
events

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 

Dist clearing, Primary period, Ongoing logging, Gun 
events/mo

Cumul gun events 17312.974 18422.4 3 Yes

4 Global minus 
Dist to clearing

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 

Primary period, Ongoing logging, Gun events/mo, 
Cumul gun events

Dist to clearing 17313.52 18450.18 10 No

5
Global minus 

Stratum* 
PPwet/dry

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Prop mix forest, 
Prop mix*PPwet/dry, Dist river, Dist clearing, 

Primary period, Ongoing logging, Gun events/mo, 
Cumul gun events

Stratum* PPwet/dry 17314.501 18427.49 5 No

6 Global minus 
Dist to river

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist clearing, 
Primary period, Ongoing logging, Gun events/mo, 

Cumul gun events

Dist to river 17314.62 18536.97 12 No

7
Global minus 
Stratum (and 
interaction)

NA

Prim period wet/dry, Prop mix forest, Prop 
mix*PPwet/dry, Dist river, Dist clearing, Primary 
period, Ongoing logging, Gun events/mo, Cumul 

gun events

Stratum, 
Stratum*PPwet/dry 17316.04 18439.24 8 No

8

Global minus 
Prop mix 
forest* 

PPwet/dry

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Dist river, Dist clearing, Primary 
period, Ongoing logging, Gun events/mo, Cumul 

gun events

Prop mix*PPwet/dry 17318.574 18411.46 1 No

9

Global minus 
Prop mix forest 

(and 
interaction)

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Dist river, Dist clearing, Primary period, Ongoing 

logging, Gun events/mo, Cumul gun events

Prop mix forest, Prop 
mix*PPwet/dry 17318.909 18420.51 2 No

10

Global minus 
Prim period 

wet/dry (and 
interactions)

Protection/logging 
strata, 3 levels

Stratum, Prop mix forest, Dist river, Dist clearing, 
Primary Period, Ongoing logging, Gun events/mo, 

Cumul gun events

Prim period wet/dry, 
Stratum*PPwet/dry, 
Prop mix*PPwet/dry

17319.11 18430.87 6 No

11
Global minus 

Ongoing 
logging

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 
Dist clearing, Primary period, Gun events/mo, 

Cumul gun events

Ongoing logging 17325.689 18461.59 11 No

12 Global minus 
Primary period

Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 
Dist clearing, Ongoing logging, Gun events/mo, 

Cumul gun events

Primary period 17349.429 18441.95 9 No

13 Null NA None All 17381.179 18579.97 13 No

Top Final model Protection/logging 
strata, 3 levels

Prim period wet/dry, Stratum, Stratum*PPwet/dry, 
Prop mix forest, Prop mix*PPwet/dry, Dist river, 
Dist clearing, Primary period, Ongoing logging

Gun events/mo, 
Cumul gun events 17312.044 18426.65 - -
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Table 4.4 Mean parameter estimates (logit scale) and quantile values from their posterior 
distributions, estimated using the final model. 
 

 

 
 

 

 

 

 

 

 

 

 

 

2.50% 50% 97.50%
Intercept (Stratum=Nat'l Park; Ongoing logging 

activity=No; Prim period seas=Dry)
1.8383 0.6675 0.501 1.8569 3.152

Proportion mixed forest 1.1077 0.8591 -0.6499 1.1042 2.7747
Primary period seasonality (wet) 0.9628 0.4706 0.0445 0.97 1.8757

Distance to river -0.161 0.0611 -0.2868 -0.1594 -0.0428
Distance to clearing 0.0696 0.0386 -0.0032 0.0686 0.1443

Stratum (Operational concession) 0.2964 0.564 -0.8324 0.2973 1.3922
Stratum (old concession) 1.0024 0.5915 -0.1387 1.0043 2.1718
Primary period (for trend) -0.0561 0.0088 -0.0726 -0.056 -0.0391

Ongoing logging activity (yes) -1.9741 0.597 -3.1333 -1.9772 -0.8296
Prop mixed forest* PPseasonality (wet) -1.3605 0.6855 -2.7119 -1.3649 -0.0266

PPseasonality (wet)*Stratum (operational concession) 0.435 0.4496 -0.5068 0.4456 1.3026
PPseasonality (wet)*Stratum (old concession) 0.1472 0.4676 -0.7832 0.1462 1.0373

Occurrence random effect variance (logit scale)
Site 1.5289 0.4984 0.7954 1.4569 2.6616

Detection fixed effects (logit scale)
Intercept -0.964 0.0591 -1.0544 -0.9643 -0.8703

Detection random effect variance (logit scale)
Primary period 0.0549 0.0175 0.0297 0.0521 0.0971

Posterior quantiles
Mean SDOccurrence fixed effects (logit scale)
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APPENDIX  
 
 
 

Supervised classification of satellite imagery to quantify habitat types across the Nouabalé-

Ndoki National Park acoustic grid study area 
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Rationale 

Identifying and quantifying the habitat type(s) around each of the 50 recorders of the 

Nouabalé-Ndoki National Park (NNNP) acoustic grid is an integral part of Chapters 3 and 4, as 

habitat is a potentially important predictor variable for the distributions of both gunfire event 

(Ch. 3) and forest elephant (Ch. 4) detections across the landscape. Assessing habitat is 

especially important for Chapter 4, as the main objective of the chapter is to understand forest 

elephant habitat and landscape use, and how this is influenced by both resources and 

anthropogenic disturbance.  

I required a metric that would reflect the variability in the amount of mixed forest (forest 

composed of mixed tree species) around each of the 50 recorder sites of the acoustic grid. In 

NNNP, fruit tree density is highest in terra firma mixed forest compared to other habitat types 

such as Gilbertiodendron monodominant forest (Blake, 2002). The proportion of mixed species 

forest around each site is therefore an indicator of the availability of fruit, an indispensable food 

source for forest elephants. This is especially relevant in the rainy season because fruiting 

generally tracks precipitation; the most tree species and the highest proportion of individual trees 

fruit during the months of highest rainfall (Blake, 2002).   

 

Methods 

Imagery (provided courtesy of the US Geological Survey) 

To find appropriate satellite imagery, I searched the USGS database (USGS, 2016) for 

satellite data of the NNNP study area taken since recording started in late 2017. Frequent cloud 

cover over the Congo Basin rainforest limits the utility of much of the satellite imagery taken of 

this part of the world (Friedl et al., 2006), so finding cloud-free imagery was a top priority. I 
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filtered the database to include only imagery with less than 5% cloud cover. This drastically 

reduced the set of candidate imagery, of which I found two Landsat 8 (30-m resolution) scenes 

that together covered the full extent of the acoustic grid area. No single Landsat 8 scene provided 

full coverage of the study area. One scene covered the northern and one the southern extent of 

the study area, although the scenes overlapped in the mid-latitudes. The acquisition dates for the 

two sets of imagery were April 24, 2019, and March 28, 2021. I do not consider the 

approximately two-year interval between acquisition dates to be an issue because the distribution 

of forest types in the study area should not have changed over this time scale. Importantly, the 

two scenes were taken at approximately the same time of year (March/April). This helps control 

for factors that could otherwise introduce variation in reflectance measurements, such as 

seasonal differences in atmospheric conditions, sun angles, extents of open water (e.g., rivers, 

swamps), and conditions of foliage (Lillesand et al., 2015). The imagery that I selected was 

available as fully pre-processed Level 2 Science Products (L2SP), and therefore required no 

additional correctional processing or calibration (e.g., atmospheric, radiometric, geometric) prior 

to use. To remove extraneous land area distant to the acoustic grid, I clipped the raster areas of 

each Landsat scene to a convex hull area surrounding the grid sites, using a 10-km buffer around 

the outer sites.  

Training and testing the classifier 

While several habitat sub-types can be considered, I categorized the acoustic grid study 

area into three main classes. I classified the two major forest types of the study area as either 

mixed forest composed of many tree species, or monodominant forest composed of trees in the 

genus Gilbertiodendron; this is a common stratification system used for this area (e.g., Blake, 

2002). My third category, which I refer to as “open”, included habitats associated with water that 
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all exhibited similar spectral signatures— river floodplain with sparser (or no) canopy, open-

canopy swamps, open water (rivers), aquatic vegetation and grasses, and small clearings known 

as bais and eyangas. By representing different combinations of Landsat spectral bands 1-7 as 

false color images, I was able to visually discriminate between pixels of the three land cover 

types of interest. Translating the near infrared (NIR) band into the visible spectrum (e.g., into the 

red band) was particularly useful, as a high percentage of NIR light is reflected by plant leaves. 

Habitats composed of different tree and plant species reflect NIR light to varying extents, 

depending on the amount and composition of chlorophyll in the leaves of the species that 

constitute the habitat (Lillesand et al., 2015; Wegman et al., 2016). In this way, visualizing NIR 

as red in the false color images allowed me to visually identify changes in habitat types over 

space. 

Ground truth habitat data was obtained during surveys conducted on foot by the Wildlife 

Conservation Society (WCS) in 2016-2019. Several hundred habitat-labeled points were 

available for each of the habitat classes of interest, from within and around the acoustic grid 

study area. I used these points to verify the habitat types that were discriminable in the false 

color representations of the satellite imagery (Fig. A.1). For each of the two Landsat scenes 

covering the study area, I created approximately 300 polygons (“regions of interest”) of known 

(ground truth) habitat type, using QGIS software (QGIS 3.22, 2022). I allocated a habitat-

stratified random selection of 2/3 of the polygons to provide pixels for training the classifier. The 

pixels of the remaining 1/3 of the polygons were used to test the classifier’s accuracy. 

Prior to performing the supervised classification, I manually masked all cloud and cloud 

shadow pixels from the raster of both scenes. This was possible because the area of cloud cover 

was less than 1% in each of the now spatially reduced scenes (clipped to the study area), 
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allowing me to identify and mask these pixels by hand. I also manually masked a section of 

permanent road that ran through the corner of the clipped study area. Manually masking the 

cloud and road pixels reduced the number of required classes in the supervised classification and 

avoided having to train the model with these “nuisance” classes. This simplified the model and 

likely improved the accuracy of predictions. The supervised classification therefore included 

only the three habitat classes of interest— mixed forest, monodominant (Gilbertiodendron sp.) 

forest, and open (river floodplain, swamp, clearings, etc.). 

The atmospheric conditions and therefore the spectral characteristics differed slightly 

between the two sets of imagery (northern and southern scenes) due to their different acquisition 

dates. Such differences could potentially introduce errors if a single classification were 

implemented on a mosaic of the two scenes combined. I therefore performed a classification on 

each of the two scenes separately. Using spectral bands 1-7, I implemented the classifier as a 

random forest algorithm using the ‘RStoolbox’ package (Leutner et al., 2022) in R (R Core 

Team, 2022). To train the classifier, 1000 pixels for each of the three habitat classes were 

randomly selected from the set of training polygons for each scene. To serve as reference data 

for evaluating the accuracy of each classification, another 1000 pixels per class were randomly 

selected from the set of polygons reserved for testing. For each scene, I calculated several 

accuracy metrics from the confusion matrices resulting from each classification. 

 

Results 

Accuracy assessment 

Accuracies derived from confusion matrices revealed that the two classifications (one for 

each scene) performed well and had very similar accuracies (Table A.1). Overall accuracy is the 
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total number of correctly classified pixels divided by the total number of reference pixels. 

Producer’s accuracy (i.e., sensitivity, or recall) is the proportion of correctly classified pixels per 

class (the number of correctly classified pixels in a class divided by the number of test pixels 

used for that class). This metric reflects how well the model recognizes a given class (Lillesand 

et al., 2015; Wegman et al., 2016). User’s accuracy, or precision, is the number of correct 

predictions relative to the total number of times a class was predicted (the number of correctly 

classified pixels in a class divided by the number of pixels classified as that class). This metric 

represents the probability that a given pixel is predicted to the correct class. The Kappa value 

indicates the extent to which the correct predictions are due to "true" agreement versus "chance" 

agreement (Lillesand et al., 2015; Wegman et al., 2016). The Kappa values in Table A.1 suggest 

the classifications are approximately 87% better than a classification resulting from chance.  

Output and calculation of covariates 

Given that neither classification outperformed the other— both had relatively high 

accuracy metrics (Table A.1)— I quantified habitat type from each one separately. Because the 

two classified scenes overlapped substantially in the mid latitudes of the acoustic grid area, there 

were two possible versions of the final mosaicked output raster and classified habitat maps. Each 

version is a mosaic of the classified northern and southern scenes, but they differ in which one 

overlays and therefore masks the other in the overlapping region (Fig. A.2). 

Using the output raster files of habitat-classified pixels, I was able to quantify the 

proportion of area of each habitat type in any arbitrary portion of the study area. I calculated 

these proportions for areas with radii of 600 m and 2 km, centered on each of the 50 recorder 

locations. These distances correspond to the approximate acoustic detection distances for 

elephant rumbles and gunshots, respectively. Around each site, the proportion of area composed 
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of a given habitat type is the number of pixels classified to that type divided by the total number 

of pixels in the defined area.  

For the northern- and southernmost recorder sites (outside the region of overlap between 

the two scenes), I calculated these proportion metrics from the corresponding classified output 

raster. Most sites, however, were located within the region of overlap in the mid latitudes of the 

grid. For these sites, I averaged the proportion estimates calculated from each of the two 

classified output rasters. These metrics serve as potentially important spatial covariates that may 

explain the distribution of poaching event (Ch. 3) and forest elephant (Ch. 4) detections across 

the acoustic grid study area (Fig. A.3).  
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Figures and tables 

 
Figure A.1 A false color rendition of the Landsat 8 satellite imagery over the southern extent of 
the acoustic grid. The NIR band is shifted into the visible red band to aid in discriminating 
different vegetation/habitat types. River floodplain/swamp pixels appear turquoise, pink, or 
occasionally purple, likely depending on differences in composite vegetation and water levels in 
the mainstem floodplain (blue) versus the tributaries (pink). The Gilbertiodendron 
monodominant forests, often found adjacent to the river floodplain/swamp, appear as dark green 
pixels. Mixed species forest, which makes up almost all the area that is not open/floodplain or 
monodominant forest, has an overall reddish appearance. Recorder sites are displayed as white 
dots. 
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Figure A.2 Classified habitat maps created from model predictions. The classified northern and 
southern scenes were mosaicked to produce maps encompassing the entire extent of the acoustic 
grid study area. The two map versions differ by which classified scene overlays (and masks) the 
other in the region of overlap at mid latitudes. In version (a), the northern scene overlays the 
southern scene in the middle region of the grid. In version (b) the southern scene masks the 
northern. The similarity between the two map versions indicates high agreement between the 
predictions of the two classifications. 
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Figure A.3 Variation in the proportion of mixed forest area within 600 m of acoustic recorder 
sites, displayed as varying intensities of green. Values ranged from 0.15 (lightest green) to 0.93 
(darkest green). Proportions were calculated from rasters of habitat-classified pixels produced by 
the supervised classification. Note: radius of green areas is arbitrary (not equal to 600 m). 
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Table A.1 Summary of accuracies for the two classifications (northern and southern portions of 
the acoustic grid area). Both classifications had high overall and per-class accuracies. Accuracies 
were similar between the two scenes. Kappa values suggest that the classifications are ~87% 
better than what would be expected by chance. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mixed Mono Floodplain Mixed Mono Floodplain
Northern Landsat 8 scene 0.915 0.9209 0.8583 0.9503 0.8922 0.9036 0.9555 0.8683
Southern Landsat 8 scene 0.9184 0.9054 0.861 0.9554 0.9089 0.8404 0.9617 0.8702

Producers Accuracy (Sensitivity) Users Accuracy (Precision)Overall 
Accuracy

Classification Kappa
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Natural Resources Institute, University of Manitoba, Winnipeg, MB, Canada 
 
CERTIFICATIONS 
 

Standard First Aid and CPR Levels A-C certification 
Workplace Hazardous Materials Information System (WHMIS) certification 
Chemical Hygiene Plan and Hazardous Waste Management training 
H2S Alive certification 
Transportation of Dangerous Goods (TDG) certification 
Animal User Training Course (Wildlife and Behavioral Sciences) certification from University 
of Manitoba 
Institutional Animal Care and Use Committee (IACUC) course through Collaborative 

Institutional Training Initiative (CITI) Program 
Identifying and Overcoming Bias Training through Syracuse University  
PADI Advanced Open Water Diver SCUBA certification 
PADI Open Water Diver SCUBA certification 
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AWARDS AND RECOGNITIONS 
 

Syracuse University Biology Department Travel Grant for bioacoustics career symposium (May 
2022) 
2nd Place Best Standard Talk Award at the African Bioacoustics Community Conference (2020) 
Most Popular Movie Submission Award at the African Bioacoustics Community Conference 
(2020) 
Syracuse University Graduate Student Organization Travel Grant for fieldwork training 
(November 2018) 
Syracuse University Biology Department Travel Grant for conference presentation (June 2017) 
Syracuse University Graduate Student Organization Travel Grant for attending workshop (March 
2017) 
National Defense Science and Engineering Graduate Fellowship (2016-2019) 
Syracuse University Graduate Fellowship (awarded 2016, instated 2019-2021) 
Best Poster Presentation at the North America Congress for Conservation Biology (2014) 
Departmental Scholar for ESF Dept. of Environmental and Forest Biology for class of 2012 
Distinguished Biology Scholar Award for the ESF Dept. of Environmental and Forest Biology 
for class of 2012 
Distinguished Biology Scholar Award (All Majors) for ESF class of 2012 
ESF Alumni Scholar of class of 2012 
Graduated from SUNY ESF Summa cum laude (highest honors) (2012) 
President’s List every semester at SUNY ESF (2010-2012) 
Presidential Scholarship for SUNY ESF (2010) 
Graduation from FLCC with High Honors (2008 and 2010) 
Dean’s List every semester at FLCC (2006-2010) 
National Award of Accomplishment from National Society of Leadership and Success (2008)   
FLCC Foundation John M. Meuser Memorial Scholarship (2007)  
NYS Education Department Award for Academic Excellence (2006) 
NYS Education Department Robert C. Byrd Honors Scholarship (2006) 
Public Employees Federation Joseph Scacalossi Scholarship (2006)  
Finger Lakes Region Top 10% Scholarship (2006)  
Frederick Douglass and Susan B. Anthony Award in Humanities and Social Sciences from 
University of Rochester (2005) 
Designated a Finger Lakes Scholar by Hobart and William Smith College (2005) 
Chemistry Achievement Award from American Chemical Society (2004) 
 
CONFERENCE PRESENTATIONS AND INVITED PRESENTATIONS 
 

Presented in person 
 

Hedwig, D., Swider, C.R., Estabrook, B., and I. Kienast. 2021. Meet the Elephant Listening 
Project: Saving African Forest Elephants Using Sound. Cornell Lab of Ornithology Seminar, 
Nov. 17, 2021, Cornell University, Ithaca, NY (virtual event). 
https://academy.allaboutbirds.org/live-event/meet-the-elephant-listening-project-saving-african-
forest-elephants-using-sound/ 
 

Swider, C.R., Gemelli, C.F., Parks, S.E., and P.H. Wrege. 2020. Landscape use response to 
gunshot events in African Forest Elephants (Loxodonta cyclotis). African Bioacoustics 
Community Conference, Nov. 2-5, 2020, Muizenberg, South Africa (online in 2020).  

• Won 2nd Place Best Standard Talk Award at the African Bioacoustics Community 
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Conference (2020) 
 

Swider, C.R. 2019. Bioacoustics for conservation: Forest elephants and poaching pressure in the 
Congo Basin. Biology Department seminar series, May 1, 2019, State University of New York 
Potsdam, Potsdam, NY, USA. 
 

Swider, C.R. 2018. Insights into animal ecology using passive acoustics. Biology Department 
annual seminar series, April 3, 2018, Syracuse University, Syracuse, NY, USA. 
 

Swider, C.R., Parks, S.E., and M.V. Lomolino. 2017. Variation in dawn chorus acoustic 
complexity across a global latitudinal gradient. Acoustical Society of America: Joint Meeting of 
the Acoustical Society of America and the European Acoustics Association, June 25-29, 2017, 
Boston, Massachusetts, USA. 
 

Swider, C.R. 2017. Global soundscape ecology. Biology Department annual seminar series, 
March 28, 2017, Syracuse University, Syracuse, NY, USA. 
 

Rosa, P., Swider, C.R., and N. Koper. 2014. Isolating effects of anthropogenic noise on wildlife: 
design for high-fidelity playback experiments. Society for Conservation Biology: North America 
Congress for Conservation Biology, July 13-16, 2014, Missoula, Montana, USA. 

• Won award for Best Poster Presentation at the North America Congress for Conservation 
Biology (2014).  

 

Rosa, P., Swider, C.R., and N. Koper. 2014. Current research on grassland songbirds in Brooks 
and surrounding areas. Annual Cenovus Energy Langevin Safety Meeting, June 11, 2014, 
Heritage Inn, Brooks, Alberta, Canada.  
 

Coauthored but not presented in person 
 

Logan, A.T., Swider, C.R., Root-Gutteridge, H., and S.E. Parks. 2019. Vocal development and 
individuality in the Humboldt penguin (Spheniscus humboldti). 27th International Bioacoustics 
Congress, August 31-September 5, 2019, University of Sussex, Brighton, England.  
 

Ewing, S.J., Swider, C.R., Sullivan, M.E., and J. VanNeil. 2019. Chemical communication in 
gray squirrels: Using camera traps to uncover patterns in scent marking behavior. Animal 
Behavior Society Annual Conference and 36th International Ethological Conference, July 23-27, 
2019, University of Illinois, Chicago, USA. 
 

Koper, N., Bernath-Plaisted, J., Curry, C., Antze, B., Warrington, M., Nenninger, H., Swider, C., 
and P. Rosa. 2015. Effects of oil and gas infrastructure and operating noise on grassland 
songbirds in Alberta. The Wildlife Society Annual Meeting, October 21, 2015, Winnipeg, 
Manitoba, Canada.  
 

Koper, N., Rosa, P., Lockhart, J., Lwiwski, T., Rodgers, J., Molloy, K., Curry, C., Fischer, S., 
Swider, C.R., and J. Yoo. 2015. From mensurative to manipulative: diverse study designs to 
understand effects of anthropogenic disturbance and habitat fragmentation on grassland birds. 
Ontario Grassland Guild, March 24, 2015, MacDonald Stewart Art Centre, Guelph, Ontario, 
Canada. 
 

Koper, N., Rodgers, J., Yoo, J., Molloy, K., Bernath-Plaisted, J., Curry, C., Antze, B., 
Warrington, M., Nenninger, H., Swider, C.R., and P. Rosa. 2015. Effects of shallow gas and oil 
infrastructure and operating noise on grassland songbirds. Canadian Wildlife Service, March 23, 
2015, Edmonton, Alberta, Canada. 
 

Koper, N., Bernath-Plaisted, J., Curry, C., Nenninger, H., Rosa, P., and C.R. Swider. 2015. 
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Effects of energy infrastructure and operating noise on grassland songbirds. Alberta Chapter of 
the Wildlife Society, March 22, 2015, Delta Edmonton Centre, Edmonton, Alberta, Canada. 
 

Antze, B., Swider, C.R., and N. Koper. 2014. The effects of industrial noise on anti-predator 
communication in Savannah sparrows. Parks and Protected Areas Research Forum of Manitoba, 
November 21-22, 2014, Winnipeg, Manitoba, Canada.  

• Won 1st place, Natural Sciences presentations. 
 

Rosa, P., Swider, C.R., and N. Koper. 2014. Design for high-fidelity playback experiments: 
isolating effects of anthropogenic noise on grassland birds. Quebec Society for the Biological 
Study of Behaviour, 39th AGM, November 8, 2014, Montreal, Quebec, Canada.  
 

Koper, N., Rosa, P., Swider, C.R., Bernath-Plaisted, J., Nenninger, H., and B. Antze. 2014. 
Effects of oil infrastructure and operating noise on grassland songbirds. American Ornithologists 
Union Annual Meeting, September 6, 2014, YMCA of the Rockies, Estes Park, Colorado, USA. 
 

Koper, N., Rosa, P., Swider, C.R., Antze, B., Bernath-Plaisted, J., Nenninger, H., Rodgers, J., 
Yoo, J., and K. Molloy. 2014. Effects of oil and gas development on grassland birds. Cenovus 
Energy, May 30, 2014, Calgary, Alberta, Canada. 
 

Koper, N., Rosa, P., Antze, B., Bernaith-Plaisted, J., Nenninger, H., Leston, L., and C.R. Swider. 
2014. Effects of  
oil wells and noise on grassland songbirds in Alberta. St. George’s University, April 2014, 
Grenada, West Indies. 
 

Rosa, P., Swider, C.R., Leston, L., and N. Koper. 2014. A novel approach to playback 
experiments in the study of anthropogenic noise produced by oil infrastructure. The Wildlife 
Society, Manitoba Chapter: Bi-annual Conference and Annual General Meeting, March 14, 
2014, Oak Hammock Marsh, Manitoba, Canada.  
 
POPULAR SCIENCE AND PRESS ATTENTION   

Griffin, S.H. “Listening to Elephants”. Syracuse University. Syracuse, New York, USA. July 28, 
2020. https://www.syracuse.edu/stories/phd-student-colin-swider-elephant-communication/ 
 

Ryan, T. “Endangered elephants ‘eavesdrop’ on poachers in Republic of Congo”. Radio France 
Internationale. Paris, France. October 30, 2020. https://www.rfi.fr/en/africa/20221030-critically-
endangered-forest-elephants-eavesdrop-on-poachers-in-drc 
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