
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

Dissertations - ALL SURFACE at Syracuse University

5-14-2023

Numerical Methods for Integral Equations Numerical Methods for Integral Equations

Yuzhen Liu
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

Recommended Citation Recommended Citation
Liu, Yuzhen, "Numerical Methods for Integral Equations" (2023). Dissertations - ALL. 1684.
https://surface.syr.edu/etd/1684

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of
SURFACE at Syracuse University. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1684?utm_source=surface.syr.edu%2Fetd%2F1684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

We first propose a multiscale Galerkin method for solving the Volterra integral equations

of the second kind with a weakly singular kernel. Due to the special structure of Volterra

integral equations and the “shrinking support” property of multiscale basis functions, a large

number of entries of the coefficient matrix appearing in the resulting discrete linear system

are zeros. This result, combined with a truncation scheme of the coefficient matrix, leads

to a fast numerical solution of the integral equation. A quadrature method is designed

especially for the weakly singular kernel involved inside the integral operator to compute

the nonzero entries of the compressed matrix so that the quadrature errors will not ruin the

overall convergence order of the approximate solution of the integral equation. We estimate

the computational cost of this numerical method and its approximate accuracy. Numerical

experiments are presented to demonstrate the performance of the proposed method.

We also exploit two methods based on neural network models and the collocation method

in solving the linear Fredholm integral equations of the second kind. For the first neural

network (NN) model, we cast the problem of solving an integral equation as a data fitting

problem on a finite set, which gives rise to an optimization problem. In the second method,

which is referred to as the NN-Collocation model, we first choose the polynomial space as the

projection space of the Collocation method, then approximate the solution of the integral

equation by a linear combination of polynomials in that space. The coefficients of the linear

combination are served as the weights between the hidden layer and the output layer of the

neural network. We train both neural network models using gradient descent with Adam

optimizer. Finally, we compare the performances of the two methods and find that the

NN-Collocation model offers a more stable, accurate, and efficient solution.

Numerical Methods for Integral Equations

By

Yuzhen Liu

B.S., Henan University of Technology, 2010

M.S., Sun Yat-sen University, 2012

Ph.D., Sun Yat-sen University, 2016

M.S., Syracuse University, 2021

Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics

Syracuse University

May 2023

Copyright © Yuzhen Liu 2023

All Rights Reserved

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Lixin

Shen. During my three years of study at Syracuse University. Professor Shen gave me a

great deal of support and encouragement for my research, coursework, and job searching.

Without his help, I could not have successfully passed every academic milestone of my Ph.D.

program. I also very much appreciate that Prof. Shen sacrificed a lot of his personal time

to revise my Ph.D. thesis and gave me so much useful feedback.

I am grateful to the faculty members and staff at Syracuse University, especially Profes-

sors Uday Banerjee, Pinyuen Chen, Leonid Kovalev, Graham Leuschke, Moira McDermott,

Minghao Rostami, Qinru Qiu, and William Wiley for their inspiring courses and various

kinds of help. I also sincerely appreciate my committee members Professors Uday Banerjee,

Pinyuen Chen, and Qinru Qiu.

I am thankful to all my colleagues, classmates, and friends for making my life in Syracuse

enjoyable. Especially thanks to Jianchen Wei, Jianqing Jia, Bhargavi Parthasarathy, Jesse

Hulse, and Chishu Yin.

Finally, my frankest and greatest appreciation belongs to my mom. She is my hero. She

sacrificed her own happiness to raise me and my brother after my father passed away when

I was only one year old. I would be nowhere without her love and support. No matter what

kind of difficulties encountered, her love keeps encouraging me to be fearless and lightening

me in the long dark night. Glory to my mom.

iv

Contents

Acknowledgements iv

1 Introduction 1

1.1 Problem Statement . 1

1.2 Motivations . 2

1.3 Contributions of This Dissertation . 3

1.4 Organization of This Dissertation . 4

2 A Multiscale Galerkin Method for Solving Volterra Integral Equations of

the Second Kind with Weakly Singular Kernels 6

Symbols 10

2.1 Volterra Integral Equations with Weakly Singular Kernels 11

2.2 Multiscale Galerkin Methods . 15

2.2.1 Multiscale Basis Functions . 16

2.2.2 Formulation of Multiscale Garlekin Methods 24

2.3 Matrix Compression . 26

2.3.1 Computational Complexity . 34

2.4 A Numerical Quadrature Scheme . 35

2.5 Numerical experiments . 44

2.6 Conclusion . 48

v

3 Preliminary Review of Machine Learning 51

3.1 Feed-forward Deep Neural Network . 52

3.1.1 Deep Neural Network Design . 52

3.2 Activation Function . 53

3.3 Cost Function . 55

3.4 Regularization . 57

3.5 Back-propagation . 58

3.6 Gradient Decent . 58

3.6.1 Batch Gradient Decent . 59

3.6.2 Stochastic Gradient Descent . 59

3.7 Momentum . 60

3.8 Adaptive Learning Rate Algorithm . 61

3.9 Xavier Initialization . 63

3.10 Summary . 65

4 Solving Fredholm Integral Equations of the Second Kind using a Neural

Network Model 66

4.1 Introduction . 66

4.2 Fredholm Integral Equation of the Second Kind 67

4.3 Neural Network Formulations . 68

4.4 Numerical Integration . 70

4.5 Results . 70

4.6 Conclusion . 74

5 A Collocation method-based Neural Network model for Solving Fredholm

Integral Equations 77

5.1 NN-Collocation Formulations . 78

5.2 Results . 81

vi

5.3 Conclusion . 87

6 Special Function Neural Network (SFNN) Models 89

6.0.1 Challenges of special functions . 91

6.1 Special function neural network (SFNN) model 93

6.2 Results . 95

6.3 Future work . 102

6.4 Conclusion . 102

7 Conclusion and Future Work 105

vii

Chapter 1

Introduction

1.1 Problem Statement

This dissertation studies numerical methods for solving integral equations. An integral

equation is an equation containing an unknown function under the integral sign. In general,

an integral equation has the form of

cu(x) = f(x) + µ

∫ b

a

k(x, s)u(s) ds, (1.1)

where the function k(·, ·) is called the kernel of the integral equation, µ is a non-zero constant,

c ∈ {0, 1}. Both k(·, ·) and f are given functions while u is unknown and needs to be

determined. According to the value of c in the above equation, the associated integral

equations have two main types.

• c = 0. Equation (1.1) is called the integral equation of the first kind;

• c = 1. Equation (1.1) is called the integral equation of the second kind.

Fredholm integral equations and Volterra integral equations are two well known integral

equations. Specifically, if both the integral limits a and b in (1.1) are constants, the integral

equation is called a Fredholm integral equation. When one of the integral limits is a con-

1

2

stant, the other is the variable x, the resulting integral equation is called a Volterra integral

equation.

Integral equations have wide applications in engineering and mechanics. Fredholm in-

tegral equations appear as mathematical models for some problems in signal and image

processing while Volterra integral equations usually arise in various fields of physics and

engineering, e.g. potential theory and Dirichlet problems, and diffusion problems. These

integral equations usually can’t be solved analytically, therefore, seeking efficient numerical

methods to solve them is practically important. In this thesis, we will propose a multi-

scale Galerkin method for solving Volterra integral equations of the second kind and neural

network-based methods for solving Fredholm integral equations.

1.2 Motivations

Numerical methods for approximating the solutions of integral equations have been stud-

ied extensively in the literature. Traditional numerical methods including quadrature meth-

ods, collocation methods, and Galerkin methods are well known and developed prior to the

mid-1980s. Unfortunately, all of these approaches result in linear systems with dense dis-

cretization matrices, and when the order of the coefficient matrix is large, the computational

cost for generating the matrix and then solving the corresponding linear system is huge.

This is identified as a bottleneck in traditional numerical methods.

The application of multiscale methods in computational mathematics in recent decades

has enlightened a new direction for solving integral equations. Compared to traditional

numerical methods, multiscale methods make use of the multiscale feature and the vanishing

moment property of the multiscale piecewise polynomial basis for a singular integral equation

resulting in a numerically sparse coefficient matrix, which, in combination with a truncation

strategy, leads to a fast numerical solution of the Fredholm integral equation. Despite

its success in solving Fredholm integral equations [1] [2] [3], the application of multiscale

3

methods to Volterra integral equations has yet to be explored. Given the specific structure

of Volterra integral equations, we propose that the multiscale Galerkin method would be a

suitable fit to solve Volterra integral equations with singular kernels. To be more specific,

this method introduces a new integral, with the integral limits x of the Volterra integral

being the variable of the integration of this new integral. This structure, along with the

”shrinking support” property of the multiscale basis functions, results in a large number of

entries in the resulting matrix being zeros, reducing a significant computational cost.

Additionally, the increasing popularity of deep learning neural networks has sparked in-

terest in applying them to solve mathematical problems [4] [5] [6] [7]. Motivated by the

successful application of this technique in other domains and the theoretical foundation es-

tablished by universal approximation theory [8], we believe that deep learning neural network

models have the potential to be a viable approach for solving integral equations. Our initial

Neural network (NN) approach is entirely based on learning by casting the original problem

into a data-fitting problem. However, this approach falls short in terms of performance com-

pared to the current existing mathematical methods for solving Fredholm integral equations.

This deficiency may be due to an inadequate representation space. To address this issue,

we refine our approach by restricting the representation space to a polynomial space, as

polynomial spaces are dense in the solution space of integral equations.

.

1.3 Contributions of This Dissertation

In this thesis, we employ various approaches based on Galerkin, Collocation methods,

and the neural network model to solve Volterra and Fredholm integral equations. Main

contributions of this dissertation are as follows.

• We applied the multiscale Galerkin method to solve the Volterra integral equation

of the second kind with a weakly singular kernel. The multiscale feature and the

4

vanishing moment property of the multiscale piecewise polynomial basis lead to a

linear system with a numerically sparse coefficient matrix. We designed a truncation

scheme for that coefficient matrix and developed a fast numerical algorithm based on

the compression scheme. We proposed a numerical quadrature rule for estimating the

nonzero entries. The error control strategy of the quadrature rule is designed so that the

quadrature error will not ruin the overall convergence order of the multiscale Garlekin

method. In summary, we reduced the computational cost from s(n)2 to s(n) log s(n)

without ruining the convergence order of the approximation solution, where s(n) is the

dimension of the underlying multiscale basis.

• We developed two approaches to solve Fredholm integral equation with neural network

models. In the first approach, we observed that the neural network models do have the

potential to solve Fredholm integral equation as the universal approximation theorem

implies, but the accuracy cannot compete with the existing traditional mathematical

methods, due to either an inadequate representational space or limitations of the learn-

ing algorithm utilized. To improve the performance of our neural network model, we

incorporated the traditional collocation method with the neural network model in our

second approach. The numerical results showed that the improved model outperformed

other existing methods.

1.4 Organization of This Dissertation

The outline of the rest of this dissertation is as follows.

Chapter 2 presents our main contribution on multiscale methods for solving Volterra

integral equations. We begin by outlining the general setup of the multiscale Galerkin method

for solving the Volterra integral equation of the second kind with a singular kernel. We then

review the construction of multiscale basis functions and provide a truncation strategy for

the coefficient matrix that results from the proposed multiscale Galerkin method. Finally, we

5

propose a numerical quadrature strategy for computing the nonzero entries of the compressed

coefficient matrix.

Chapter 3 gives a preliminary review of machine learning. In particular, we review basic

machine learning concepts that will be used in the following chapters.

Chapter 4 is about solving Fredholm integral equations of the second kind based on a

neural network model.

Chapter 5 is to further improve the approach in Chapter 4. We propose a method that

is based on the Collocation method by restricting the representational space of the neural

network model into a polynomial space.

Chapter 6 is devoted to the special function neural network model [7], which is an addi-

tional research work that I did during my internship at Argonne National lab.

Chapter 7 is the conclusion of this thesis.

Chapter 2

A Multiscale Galerkin Method for

Solving Volterra Integral Equations of

the Second Kind with Weakly

Singular Kernels

Volterra integral equations are named after Italian mathematician Vito Volterra (1860-

1940) who first introduced them in his paper “Sull’integrazione di alcune equazioni funzion-

ali” in 1903. In Volterra’s paper, he studied equations of the form:

Ku = f (2.1)

with the integral operator K defined by

(Ku)(x) =
∫ x

0

k(x, s)u(s)ds, x ∈ [0, T] with T <∞.

However, this equation was first named as Volterra integral equation of the first kind by

Lalesco in 1908. Volterra’s work on integral equations laid the foundations for many of

6

7

the modern methods and techniques used in the field today. In the decades that followed,

Volterra integral equations became an important area of research in mathematics and physics.

A detailed description of Volterra’s contributions in integral equations can be found in [9].

Mathematically, a Volterra integral equation is an equation which involves an unknown

function and an integral of that function. Furthermore, if the unknown function appears

only under the integral sign of the Volterra equation, the integral equation is called a first

kind Volterra integral equation. The general form of a first kind Volterra integral equation

can be written as: ∫ x

0

k(x, s)u(x)ds = f(x), x ∈ [0, T].

In contrast, if the unknown function u appears both inside and outside the integral sign of

the Volterra equation, the corresponding equation is called a second kind Volterra integral

equation:

u(x) +

∫ x

0

k(x, s)u(x)ds = f(x), x ∈ [0, T],

where function k is called the kernel function, k and f are given functions, while u is the

unknown function and needs to be determined.

A Volterra integral equation of the first kind is equivalent to a Volterra integral equation

of the second kind under some conditions on their kernels. To see it, taking the first-order

derivative with respect to x on both sides of the first kind Volterra integral equation leads

to

k(x, x)u(x) +

∫ x

0

∂k(x, s)

∂x
u(s) ds = f ′(x).

Assume that k(x, x) ̸= 0. We obtain from the above equation that

u(x) +

∫ x

0

1

k(x, x)

∂k(x, s)

∂x
u(s) ds =

f ′(x)

k(x, x)
,

which is a second kind Volterra integral equation. Volterra integral equations of the first

kind are inherently ill-posed problems, meaning that the solution is generally unstable, and

8

small changes to the problem can cause very large changes to the answers obtained. To

overcome the ill-posedness, different regularization methods, like Tikhonov regularization

and Lavrentiv regularization, can be applied to convert a first kind Volterra integral equation

to a second kind one. For these reasons, the discussion in this thesis will be mainly given for

the Volterra integral equations of the second kind.

Volterra integral equations arise from many applications such as demography, population

dynamics, elasticity, plasticity, semi-conductors, scattering theory, seismology, fluid flow

dynamics, chemical reactions, and oscillation theory [10]. Volterra integral equations can

also be derived from initial value problems [11]. These equations are usually difficult to

solve analytically, numerical methods are often needed. There are a variety of methods

such as the successive approximations method, Laplace transform method, spline collocation

method, Runge-Kutta method, and more recently developed methods including the Adomian

decomposition method, the modified decomposition method, and the variational iteration

method to handle Volterra integral equations.

A class of Volterra integral equations with weakly singular kernels plays an important role

in many applications including microscopy, seismology, radio astronomy, electron emission,

atomic scattering, and radar ranging, see [12] and the references therein. The kernel in

a Volterra integral operator is singular if the kernel becomes infinite at one or more points

within the range of integration. This kernel is weakly singular if it is singular and the integral

of the absolute value of the kernel function is finite. Two such typical kernels have forms

k(x, s) = g(x, s)|x− s|θ−1

and

k(x, s) = g(x, s) log |x− s|,

where g is a smooth function, 0 ≤ s ≤ x ≤ 1, and 0 < θ < 1. In the above two kernels,

the singularity occurs when s approaches x. The existence of the solution to the Volterra

9

integral equation with a weakly singular kernel was discussed in [13].

Galerkin methods are typically exploited for the discretization of Volterra integral opera-

tors, which belong to the type of projection methods. A common characteristic of projection

methods is their ability to address equations of the form Au = f , where A : X → X is a

bounded linear operator, X is a Hilbert space. In these method, a sequence {Xn : n ∈ N}

of subspaces of X is specified and an element un in Xn is selected in such a way that the

residual error

rn := Aun − f (2.2)

is deemed “small” in some sense. Different strategies for making rn “small” produce different

projection methods. In particular, for Galerkin methods, the residual is chosen as

rn = Aun − f ∈ X⊥
n ,

this is equivalent to

PnAun = Pnf (2.3)

where Pn : X → Xn is the orthogonal projection operator. Without carefully choosing

bases of Xn, (2.3) will result in a linear system of equations with a dense coefficient matrix

generally. A dense matrix potentially leads to an expensive computational algorithm for

solving the resulting linear system. Therefore, it will be desirable to have a sparse matrix

by carefully choosing an orthogonal basis.

In this chapter, we will develop a multiscale Garlekin method for solving Volterra integral

equations with weakly singular kernels. To this end, we will choose the basis of Xn from a

set of multiscale piecewise polynomials.

Symbols

N Set of positive integers

R All the real number

Zn Set of integers {0, 1, 2, . . . , n− 1} for n ∈ N

Zj
µ Zµ × · · · × Zµ (j times)

I [0, 1]

ϕϵ(I) {ϕϵ(x) : x ∈ I}

Iϵ,µ [ϵ
µ
, ϵ+1

µ
]

L2(I) Linear space of all real-valued square-integrable func-

tions

L∞(I) Linear space of all real-valued essentially bounded mea-

surable functions

(u, v)
∫ 1

0
u(x)v(x)dx

∥u∥p Norm of Lp(I)

Pσ The space of all polynomials of degree less than or equal

to σ − 1 on I

W σ,p Sobolev Space

Hσ W σ,2

B(X) Banach Space on X

∥K∥ Norm of operator K in B(L2(I))

Xi Multiscale polynomial space with multiscale level i

10

11

Wi Orthogonal complement of Xi in Xi+1

s(i) dimXi

w(i) dimWi

m dimW1

card(A) Cardinality of A

Un {(i, j) : i ∈ Zn, j ∈ Zw(i)}

ν(ei) µi−2ϵ0 + · · · + µϵi−3 + ϵi−2, for some ei =

(ϵ0, ϵ1, · · · , ϵi−2) ∈ Zi−1
µ , where i ∈ N and i > 1.

uij jth basis of Wi

Sij Support set of basis function uij

di meas(Sij)

∪⊥ Union of orthogonal sets

⊕⊥ Orthogonal direct sum of spaces

χΩ Characteristic function of the set Ω

dist(A,B) min{|x− s| : x ∈ A, s ∈ B}

I(f)
∫ 1

0
f(x)dx

2.1 Volterra Integral Equations with Weakly Singular

Kernels

We begin with the definition of a Volterra integral operator with a weakly singular kernel.

Definition 1 (Volterra integral operator with weakly singular kernels). Let S := {(x, s) :

0 ≤ s ≤ x ≤ 1} ⊂ I × I. For a given continuous function g on I × I and a parameter

0 < θ < 1, we define a function k : S → R as follows:

k(x, s) = g(x, s)|x− s|θ−1. (2.4)

12

Then, the operator K given by

(Ku)(x) =
∫ x

0

k(x, s)u(s) ds, x ∈ I (2.5)

is called the Volterra integral operator with the weakly singular kernel k.

As shown in the next result, the Volterra integral operator K, given in Definition (1), is

well-defined on L2(I) and a bounded linear operator.

Proposition 1. The integral operator K defined by (2.5) with a weakly singular kernel k

in (2.4) is a bounded linear operator from L2(I) to L2(I) with the operator norm ∥K∥ ≤

Mg(I)/θ, where Mg(I) = sup {|g(x, s)| : x, s ∈ I}.

Proof. First, for any u ∈ L2(I) we know by the Fubini theorem that

∫ 1

0

∫ x

0

u2(s)|x− s|θ−1 ds dx =

∫ 1

0

u2(s)

(∫ 1

s

|x− s|θ−1 dx

)
ds ≤ 1

θ
∥u∥22. (2.6)

Therefore, the function v defined for all x ∈ I as

v(x) :=

∫ x

0

u2(s)|x− s|θ−1 ds

exists at almost every x ∈ I and is integrable.

Next, for every pair (x, s) ∈ S := {(x, s) : 0 ≤ s ≤ x ≤ 1} we observe that

|k(x, s)u(s)| ≤ Mg(I)|u(s)| · |x− s|θ−1

≤ Mg(I)

2
|x− s|θ−1 +

Mg(I)

2
u2(s)|x− s|θ−1.

Since both terms on the right-hand side of the above inequality are integrable with respect

to 0 ≤ s ≤ x, we conclude that |k(x, s)u(s)| is finite for almost every s ∈ [0, x].

13

Finally, by the Cauchy-Schwarz inequality, we have that

[(Ku)(x)]2 =

(∫ x

0

k(x, s)u(s) ds

)2

≤
(∫ x

0

g2(x, s)|x− s|θ−1 ds

)(∫ x

0

u2(s)|x− s|θ−1 ds

)
≤

M2
g (I)

θ
v(x).

Hence, K is defined on L2(I) and maps L2(I) to L2(I) with

∥Ku∥22 ≤
M2

g (I)

θ2
∥u∥22,

for u ∈ L2(I). This completes the proof.

The Volterra integral equation of the second kind with a weakly singular kernel is

f(x) = u(x) +Ku(x), x ∈ I, (2.7)

where f ∈ L2(I) is known and K the Volterra integral operator is given in Definition 1. The

existence of a solution to (2.7) and the properties of the corresponding solution were discussed

in [13–16] and the references therein. Particularly, for f being a continuous function on I,

we recall an existence theorem from [13].

Theorem 2.1.1. Consider the integral equation

f(x) = u(x) +

∫ x

0

(x− s)θ−1M(x, u(s)) ds, x ∈ [0, 1], θ ∈ (0, 1), (2.8)

where M : S × R → R with S = {(x, s) : 0 ≤ s ≤ x ≤ 1}. Assume that f is continuous in

[0, 1] and real analytic in (0, 1), and let the kernel M(x, y) be real analytic in S × R. Then

the solution u of (2.8) is real analytic in the open interval (0, 1).

This theorem clearly indicates that the solution of the Volterra integral equation of the

14

second kind (2.7) is analytic if f is continuous and M(x, u(s)) = g(x, s)u(s) with g being

analytic in S.

In the following discussion, we will concentrate on numerical solutions to the Volterra

integral equations of the second kind. Projection methods and quadrature methods are

two popular approaches for the numerical treatment of the Volterra integral equation of

the second kind. Projection methods, such as the Collocation and Galerkin methods, aim

to find an approximating operator of the Volterra integral operator; quadrature methods

including the trapezoidal rule, Simpson’s rule, and Gaussian quadrature approximate the

integral in the integral equation by replacing the integral with sum. There are many other

approaches for solving Volterra integral equations of the second kind with a weakly singular

kernel. For example, a method based on the double exponential transformation was proposed

in [17] and an interpolation method based on the barycentric Lagrange interpolation was

discussed in [18]. However, these approaches all result in linear systems with numerically

dense coefficient matrices.

In this chapter, we will present a multiscale Galerkin method for solving (2.7) using mul-

tiscale piecewise polynomials, incorporating a compression strategy, and a carefully designed

numerical integration scheme. Multiscale methods have played a crucial role in approximat-

ing the solution of integral equations. Due to its vanishing moment and ”shrinking support”

properties of the multiscale piecewise polynomial basis, the multiscale method results in a

linear system with a numerically sparse coefficient matrix which allows us to develop fast

numerical algorithms. Besides that, considering the special structure of Volterra integral

equations and the Galerkin method, a large number of entries of the resulting coefficient ma-

trix would be zeros. Thus, the multiscale Galerkin method would be an efficient candidate

for solving Volterra integral equation. Since the continuity of function g in (2.4) doesn’t

affect the way we design our numerical integration strategy, for simplicity, we particularly

15

consider the Volterra integral equation with the weakly singular kernels:

k(x, s) = a(x− s)θ−1, 0 < θ < 1, (2.9)

where a is a nonzero constant.

We will give a brief review of the multiscale Galerkin method in the next section.

2.2 Multiscale Galerkin Methods

The main purpose of this section is to present multiscale Galerkin methods for solving

the Volterra integral equation (2.7). Let’s first give a brief review of the classical Galerkin

method.

Let Y := L2(I) and let N denote the set of all natural numbers. Suppose that Yi, i ∈ N ,

is a sequence of finite-dimensional subspaces of Y such that

Y = ∪i∈NYi.

Let Pi be the orthogonal projection from Y onto Yi, i.e., Piv = v for all v ∈ Yi. Then, the

Galerkin method for solving (2.7) is to find ui ∈ Yi such that

(I + PiK)ui = Pif. (2.10)

When a basis of the subspace Yi is chosen, the operator equation (2.10) is equivalent to a

system of linear equations. More precisely, let the set {vj : j = 1, 2 . . . , Di} be the orthogonal

basis of Yi, where Di := dimYi, then solving the operator equation (2.10) is equivalent to

seek an approximate solution

ui =

Di∑
j=1

bjvj ∈ Xn,

16

such that

(ui + PiKui, vj) = (f, vj), for j = 1, 2, . . . , Di. (2.11)

hold. (2.11) can be further rewritten as the following system of equations:



(v1 + PiKv1, v1) (v2 + PiKv2, v1) · · · (vDi
+ PiKvDi

, v1)

(v1 + PiKv1, v2) (v2 + PiKv1, vDi
) · · · (vDi

+ PiKDi
, v2)

· · · · · · · · · · · ·

(v1 + PiKv1, vDi
) (v2 + PiKv2, vDi

) · · · (vDi
+ PiKv2, vDi

)





b1

b2

· · ·

bDi


=



(f, v1)

(f, v2)

· · ·

(f, vDi
)


.

Normally, the above system has a dense coefficient matrix. To have a numerically sparse

coefficient matrix, we should pay special attention to the choice of the basis for each Yi. In

this thesis, a multiscale piecewise polynomial basis will be adopted and the corresponding

method for solving the operator equation (2.10) is called the multiscale Galerkin method.

2.2.1 Multiscale Basis Functions

We propose to use the Multiscale-Galerkin method to solve the integral equation (2.7)

with the weakly singular kernel (2.9). To this end, we first review the way to construct the

multiscale basis functions [1] [19] that generate a sequence of finite-dimensional subspaces

of L2 space.

There are two main ingredients in the construction of the multiscale basis. The first one

is a set of contractive mappings on I while the other one is a subspace X0 of L2(I). For a

fixed positive integer µ > 1, we define a set {ϕϵ : ϵ ∈ Zµ} of contractive mappings on I by

ϕϵ(t) :=
ϵ+ t

µ
, t ∈ I, ϵ ∈ Zµ.

Let Iϵ,µ := [ϵ
µ
, ϵ+1

µ
], then clearly, ϕϵ(I) = Iϵ,µ, and {Iϵ,µ : ϵ ∈ Zµ} forms a partition of I. i.e.,

I = ∪ϵ∈ZµIϵ,µ and meas(Iϵ,µ ∩ Iϵ′,µ) = 0 if ϵ ̸= ϵ′.

17

Associated with these mappings, we introduce a set of orthogonal isometries {Tϵ : ϵ ∈ Zµ},

where each Tϵ : L2(I) ∩ L∞(I)→ L2(I) is defined by

(Tϵf)(t) :=
√
µ(f ◦ ϕ−1

ϵ)(t)χIϵ,µ(t) =


√
µf(µt− ϵ), t ∈ Iϵ,µ,

0, t /∈ Iϵ,µ,
(2.12)

for f ∈ L2(I)∩L∞(I). The purpose of the isometry Tϵ is to transform the given function in

the horizontal direction. To pin down this problem, let’s take a point of view of the simplest

case where µ = 2.

Example 2.2.1 Let µ = 2 and suppose

f(x) :=

 −(x−
3
10
)2 + 7

10
, if x ∈ [0, 1],

0, otherwise,
(2.13)

then if we apply operators Tϵ, for ϵ ∈ Z2 on f , we will have

T0f(x) :=

 −(2x−
3
10
)2 + 7

10
, if x ∈ [0, 1

2
],

0, otherwise.
(2.14)

and

T1f(x) :=

 0, otherwise,

−(2x+ 13
10
)2 + 7

10
, if x ∈ [1

2
, 1].

(2.15)

Fig. 2.2.1 and Fig. 2.2.2 illustrate the results of applications of operators Tϵ.

Next, we recall one result from [1], which shows that the functions resulting from appli-

cations of the operators Tϵ with different ϵ are orthogonal.

18

Figure 2.2.1: Graph of f

(a) (b)

Figure 2.2.2: (a) Graph of T0f ; (b) Graph of T1f .

Proposition 2. For f, g ∈ L2(I) and ϵ, ϵ′ ∈ Zµ, we have

(Tϵf, Tϵ′g) = ∆ϵ,ϵ′(f, g). (2.16)

where (·, ·) is the inner product of L2(I) and

∆ϵ,ϵ′ :=

 1, if ϵ = ϵ′,

0, otherwise.
(2.17)

19

Let X0 := Pσ be the space of all polynomials of degree less than or equal to σ − 1 on I.

With the given subspace X0 and linear operator Tϵ, we generate recursively a sequence of

multiscale piecewise polynomial spaces {Xi}i∈N by

Xi+1 = ⊕ϵ∈ZµTϵXi, i ≥ 0. (2.18)

Obviously, Xi is the space of piecewise polynomials of degree less than or equal to σ − 1

with dimension s(i) := σµi and Xi−1 ⊆ Xi. Let X0 denote an orthonormal basis for X0,

then Proposition 2 ensures that, for each i ≥ 0, elements in TϵXi are orthonormal and

TϵXi ⊥ Tϵ′Xi for any ϵ, ϵ
′ ∈ Zµ with ϵ ̸= ϵ′. This result, combines with (2.18), implies that

Xi+1 := ∪⊥ϵ∈Zµ
TϵXi, for i ≥ 0 (2.19)

forms an orthonormal basis for Xi+1.

In order to construct the multiscale basis of Xn, we further decompose Xn as the or-

thogonal direct sum of its subspaces. To be more precise, let Wn denote the orthogonal

complement of Xn−1 in Xn, and with the convention that W0 = X0, we have

Xn =W0 ⊕⊥W1 ⊕⊥ · · · ⊕⊥Wn. (2.20)

For convenience, we denote m := dimW1, then

m := dimX1 − dimX0 = (µ− 1)σ,

and

w(i) = dimXi − dimXi−1 = µi−1m for i > 1.

To establish a multiscale orthonormal basis for Xn, it suffices to construct an orthonormal

basis Wi for the subspace Wi. The technique we used is the Gram-Schmidt Orthonormal-

20

ization. Let X0 := {u0l : l ∈ Zσ} be an orthogonal basis of X0 on I. Our goal is to construct

an orthonormal basis {u1j : j ∈ Zw(1)} of space W1. To this end, we first construct a basis

X1 := [v̂1j : j ∈ Zs(1)] of X1 via (2.19). From the functions in X1, we form a linearly inde-

pendent set {u1j}m−1
j=0 that are orthogonal to all elements of X0. Next, we orthonormalize

these m functions. Mathematically, we begin with

v10 = u10 and u10 =
v10√∫ 1

0
v210(x) dx

.

The next function is formulated as

u11 =
v11√∫ 1

0
v211(x) dx

with

v11 = u11 + a10u10, where a10 = −
∫ 1

0

u11(x)u10(x) dx.

Following this procedure, we have

u1i =
v1i√∫ 1

0
v21i(x) dx

with

v1i = u1i + ai0u10 + ai1u11 + · · ·+ ai,i−1u1,i−1,

where

aij = −
∫ 1

0

u1i(x)u1j(x) dx, i ∈ Zw(1), j = 0, 1, . . . , i− 1.

With this construction, the set {u1i}m−1
j=0 serves as an orthonormal basis for W1.

In the following example, we choose µ = 2, σ = 3 to demonstrate the process of generating

the orthonormal basis for the space W1, based on the given orthonormal basis of W0.

21

Example 2.2.2 Let µ = 2, σ = 3, and an orthonormal basis of W0 are given by

u00(t) = 1, u01(t) =
√
3(2t− 1), t ∈ [0, 1].

Apply operator T0 on u00 and u01, respectively, we obtain

v̂10(t) := (T0u00)(t) =

 1, t ∈ [0, 1
2
]

0, t ∈ (1
2
, 1],

(2.21)

and

v̂11(t) := (T0u01)(t) =


√
3(4t− 1), t ∈ [0, 1

2
]

0, t ∈ (1
2
, 1].

(2.22)

Likewise, apply operator T1 on u00 and u01 respectively, we obtain

v̂12(t) := (T1u00)(t) =

 0, t ∈ [0, 1
2
]

1, t ∈ (1
2
, 1],

(2.23)

and

v̂13(t) := (T1u01)(t) =

 0, t ∈ [0, 1
2
]

√
3(4t− 3), t ∈ (1

2
, 1].

(2.24)

Then for any v̂ ∈ X1, there exist some constants c1, c2, c3, c4 such that

v̂ = c1v̂10 + c2v̂11 + c3v̂12 + c4v̂13.

To obtain a basis for W1, we first search for a pair of independent functions in X1 that

are orthogonal to X0. This is equivalent to solving the system of equations:


∫ 1

0
(c1v̂10 + c2v̂11 + c3v̂12 + c4v̂13)(t)u00(t)dt = 0,∫ 1

0
(c1v̂10 + c2v̂11 + c3v̂12 + c4v̂13)(t)u01(t)dt = 0.

(2.25)

22

To simplify the process, we set c2 = c4 = 1 and c2 = 1, c4 = 0, respectively, and solve the

resulting system of equations. In this way, we find a basis of W1 as follows:

 u10(t) :=
√
3
3
v̂10 + v̂11 −

√
3
3
v̂12 + v̂13,

u11(t) :=
√
3
6
v̂10 + v̂11 −

√
3
6
v̂12.

(2.26)

Finally, we just need to use the Gram-Schmidt process to construct an orthonormal basis

{u10, u11} of W1, based on u10, u11.

For the construction of the basis of Wi, i = 2, 3, · · · , n, we refer to the following propo-

sition.

Proposition 3. For i ∈ N ,

Wi+1 = ∪ϵ∈ZµTϵWi (2.27)

forms an orthonormal basis of Wi+1.

Proof. We propose to prove this proposition by induction. Assume thatWi is an orthonormal

basis of Wi for some i ≥ 1, then we only need to show that Wi+1 is an orthonormal basis of

Wi+1. For that end, let W = ∪ϵ∈ZµTϵWi, then by Proposition 2, we know that elements in

W are orthonormal. Since Wi ⊆ Wi ⊂ Xi, we conclude that

W ⊂ ∪i∈ZµTϵXi = Xi+1. (2.28)

On the other hand, the induction hypothesis that Wi ⊥ Xi−1, combines Proposition 2 en-

suring that TϵWi ⊥ Tϵ′Xi−1 for any ϵ, ϵ′ ∈ Zµ, or in other word, W ⊥ Xi. This result and

(2.28) imply that W ⊂ Wi+1. The desired result is ensured by the fact that elements in W

are orthonormal and Card W = dimWi+1.

According to Proposition 3, each basis function uij may be expressed in terms of con-

secutive application of operators Tϵ to a basis function of W1. To see that, note that each

23

j ∈ Zµi−1 can be uniquely written as

j = µi−2ϵ0 + · · ·+ µϵi−3 + ϵi−2, i = 2, 3, . . . , n

for some ei = (ϵ0, ϵ1, . . . , ϵi−1) ∈ Zi−1
µ . We define

Tei := Tϵ0 ◦ Tϵ1 ◦ · · · ◦ Tϵi−2
,

then, for j ∈ Zw(i), j = ν(ei)m+ ℓ with i > 1 and ℓ ∈ Zm, we have

uij = Teiu1ℓ,

with support

Sij := Iν(ei),µi−1 =

[
ν(ei)

µi−1
,
ν(ei) + 1

µi−1

]
, i = 2, 3, . . . , n.

In particular, Sij = I for i = 0, 1. Thus, we conclude that {uij : (i, j) ∈ Un} forms a

multiscale orthonormal basis of Xn. For convenience, in the rest of the paper, we use [qij, q
′
ij]

to represent [ν(ei)
µi−1 ,

ν(ei)+1
µi−1] assuming that j = ν(ei)r+ ℓ for some ei = (ϵ0, ϵ1, . . . , ϵi−2) ∈ Zi−1

µ .

We end this subsection by presenting a simple example that demonstrates the relationship

between the second subscript j of the multiscale basis function uij and the location of the

support set Sij.

Example 2.2.3 Let µ = 2, σ = 3, then m = µ(σ − 1) = 2× 3− 2 = 4.

In particular, for i = 2 and j ∈ Zw(2) = Z8, we can represent j as

j = 4(ϵ0) + ℓ, for ϵ0 ∈ Z2, ℓ ∈ Z4.

To be more specific, the wavelet basis at level i = 2 was grouped into two sets of four

24

functions each having the same “support interval”, i.e.

S20 = S21 = S22 = S23 = [0,
1

2
],

and

S24 = S25 = S26 = S27 = [
1

2
, 1].

Similarly, at level i = 3, for j ∈ Zw(3) = Z16, j can be expressed as:

j = 4(2ϵ1 + ϵ0) + ℓ, for ϵ0, ϵ1 ∈ Z2, ℓ ∈ Z4,

which implies 16 wavelet basis was grouped into 4 sets of 4 functions each sharing the same

“support interval” with length 1
4
.

2.2.2 Formulation of Multiscale Garlekin Methods

With the sequence of multiscale piecewise polynomial spaces Xn and under the fact that

∪n∈NXn is dense in L2(I), we can define the orthogonal projector

Pn : L2(I)→ Xn

which for u ∈ L2(I) satisfies

(u− Pnu, uij) = 0, ∀ uij ∈ Xn. (2.29)

In what follows, the notation a ∼ b means that there are two positive constants c and

c′ such that ca ≤ b ≤ c′a. We use c to denote a universal constant that can be distinct at

different occurrences.

Proposition 4. The following properties hold [1]:

25

1. “Vanishing moment property”: For any p ∈ Pσ the set of polynomials of degree less

than or equal to σ − 1 on I, (uij, p) = 0, for (i, j) ∈ Un.

2. For each j ∈ Zw(i), there exist a ei ∈ Zi−1
µ such that for j = ν(ei)m+ ℓ with i > 1 and

ℓ ∈ Zm, and uij(s) = 0, s /∈ Sij.

3. There exists a constant c such that for (i, j) ∈ Un,

∥uij∥2 = 1 and ∥uij∥∞ ≤ cµi/2.

4. “Shrinking support property”: If denote di := meas(Sij), then s(i) ∼ µi, w(i) ∼ µi and

di ∼ µ−i.

5. The operator Pi are well defined and converge pointwise to the identity operator I in

L2(I) as i→∞, that is, for each g ∈ L2(I), limi→∞ ∥Pig − g∥2 = 0 holds.

6. There exists a positive constant c such that, for all u ∈ Hσ(I), ∥u−Pnu∥2 ≤ cs(n)−σn∥u∥Hσ .

The proof of these properties can be found in [1]. The multiscale Galerkin method of the

integral equation (2.7) is to find un ∈ Xn that satisfies the operator equation

(I +Kn)un = Pnf, (2.30)

where Kn = PnK. Using the multiscale bases {uij : (i, j) ∈ Un} as basis for spaces Xn , the

above Galerkin method is to seek a vector bn := [bij : (i, j) ∈ Un] such that the function

un :=
∑

(i,j)∈Un

bijuij ∈ Xn

satisfied

(un, ui′j′) + (Kun, ui′j′) = (f, ui′j′), ∀ ui′j′ ∈ Xn, (i′, j′) ∈ Un, (2.31)

26

or equivalently, bn is the solution of the linear system of equations

(En +Kn)bn = fn, (2.32)

where

En := [(uij, ui′j′) : (i, j), (i
′, j′) ∈ Un],

Kn := [(Kuij, ui′j′), (i, j), (i′, j′) ∈ Un],

and

fn := [(f, ui′j′), (i
′, j′) ∈ Un].

Due to the orthogonality property of the multiscale bases, we conclude that En is a block

diagonal matrix. Noting that the coefficient matrix Kn is a dense matrix, when its size s(n)

is large, it is expensive to generate it. By properties 1 and 4 of Proposition 4, the use of the

multiscale basis allows us to compress the matrix Kn to a sparse matrix due to the absolute

values of a significant amount of its entries being relatively small. As a consequence, a fast

numerical algorithm can be developed.

2.3 Matrix Compression

In this section, we propose a matrix compression strategy for the coefficient matrix of the

linear system (2.32). The results in this subsection are new and form a part of the original

work in this thesis.

We partition Kn as a block matrix

Kn := [Kii′ : i, i
′ ∈ Zn+1],

where

Kii′ := [Kij,i′j′ : j ∈ w(i), j ∈ w(i′)],

27

and Kij,i′j′ takes the form:

Kij,i′j′ =

∫
Si′j′

Kuij(x)ui′j′(x) dx

= a

∫
Si′j′

∫ x

0

(x− s)θ−1uij(s) ds ui′j′(x) dx

= a

∫
Si′j′

∫
[0,x]∩Sij

(x− s)θ−1uij(s)ui′j′(x) ds dx, (i, j), (i′, j′) ∈ Un.

(2.33)

According to Sij := [qij, q
′
ij] and Si′j′ = [qi′j′ , q

′
i′j′] the supports of uij and ui′j′ in the above

equation, there are four different cases that are described in Figures 2.3.3-2.3.6.

0 qi′j′ x q′i′j′
qij q′ij

Figure 2.3.3: case 1

qi′j′ qij q′ij q′i′j′

Figure 2.3.4: case 2

qij qi′j′ q′i′j′ q′ij

Figure 2.3.5: case 3

• Case 1. The support of ui′j′ lies to the left of the one of uij, i.e. q′i′j′ ≤ qij, since

meas([0, x]
⋂
Sij) = 0, we have Kij,i′j′ = 0.

• Case 2, 3. Either [qi′j′ , q
′
i′j′] ⊆ [qij, q

′
ij] or [qij, q

′
ij] ⊆ [qi′j′ , q

′
i′j′], dist(Sij, Si′j′) = 0. The

entries corresponding to those cases usually would be “large”, so we just leave these

unchanged.

• Case 4. The support of uij lies to the left of the support of ui′j′ , i.e. q
′
ij ≤ qi′j′ , when

the distance between those two support sets is larger than some predefined threshold,

28

qij q′ij
qi′j′ q′i′j′

Figure 2.3.6: case 4

the absolute value of Kij,i′j′ will be sufficiently small in magnitude to some degree of

precision, they can be neglected without affecting the overall accuracy of the approxi-

mation.

Thus, we propose a matrix truncation strategy for the entries of Kn that satisfy case 4.

For that end, let’s give an estimate of Kij,i′j′ first. For the case that q′ij ≤ qi′j′ , we have the

following estimate for Kij,i′j′ .

Lemma 1. For i, i′ ∈ Zn+1, σ as a positive integer, if q′ij ≤ qi′j′ and there is a constant

r > 1 such that

dist(Sij, Si′j′) ≥ r(di + di′), (2.34)

then there exists a positive constant c such that

|Kij,i′j′ | ≤ c(didi′)
σ− 1

2

∫
Si′j′

∫
Sij

1

(x− s)2σ+(1−θ)
ds dx, (2.35)

where di := meas(Sij).

Proof. Let x0, s0 be centers of the sets Sij and Si′j′ , respectively. Obviously, for x ̸= s, k(x, s)

has continuous partial derivatives, we apply Taylor’s theorem to k(x, s) at the point x0, s0,

yielding

k(x, s) = p(x, s) + q(x, s) +
(s− s0)σ(x− x0)σ

(σ!)2
Rσ(x, s),

where p(x, ·), q(·, s) are polynomials of total degree ≤ σ − 1 in x and s, respectively, and

Rσ(x, s) :=

∫ 1

0

∫ 1

0

θσ−1
1 θσ−1

2 Dσ
xD

σ
s k(x+ θ2(x0 − x)), s+ θ1(s0 − s)) dθ2 dθ1.

On the other hand, since q′ij ≤ qi′j′ , we have Sij ∩ [0, x] = Sij. By the vanishing moment

29

property of uij and ui′j′ (Proposition 4) we have that

∫
Sij

(

∫
Si′j′

p(x, s)ui′j′(x) dx)uij(s) dx = 0

and ∫
Si′j′

(

∫
Sij

q(x, s)uij(s) ds)ui′j′(x) dx = 0,

which leads to

Kij,i′j′ = a

∫
Si′j′

∫
Sij

(s− s0)σ(x− x0)σ

(σ!)2
Rσ(x, s)uij(s)ui′j′(x) ds dx.

With property 3 and property 4 of proposition 4, we continue to have the estimate that

|Kij,i′j′ | ≤
c

(σ!)2
d
σ− 1

2
i d

σ− 1
2

i′

∫
Si′j′

∫
Sij

|Rσ(x, s)| ds dx. (2.36)

By the mean value theorem, the following inequality

|Rσ(x, s)| ≤ (2σ − 1)!(x′ − s′)−(2σ+(1−θ)) (2.37)

hold for some x′ ∈ Si′j′ and s
′ ∈ Sij. Furthermore, for any x ∈ Si′j′ , s ∈ Sij the assumption

(2.34) yields

(x′ − s′) ≥ (1− r−1)(x− s), (2.38)

Thus, combining (2.37) and (2.38) and substituting them into (2.36) proves the desired

result.

Next, for each i, i′ ∈ Zn+1, we define a truncation parameter as

δii′ := max{µ−n+α(n−i)+α′(n−i′), r(di + di′)}. (2.39)

For the matrix Kn, we compress it into a new matrix K̃n := [K̃ii′ : i, i
′ ∈ Zn+1], where each

30

block K̃ii′ as a compressed matrix of Kii′ is given by

K̃ij,i′j′ :=


0, if qi′j′ − q′ij ≥ δii′

0, if q′i′j′ ≤ qij

Kij,i′j′ , otherwise.

(2.40)

We then replace the matrix Kn in the linear system (2.32) by K̃n and find a vector b̃n =

[̃bij : (i, j) ∈ Un] that solves the compressed linear system

(En + K̃n)b̃n = fn. (2.41)

Next, we introduce an abstract operator K̃n which corresponds to the compressed matrix K̃.

Definition 2. Define a linear operator K̃n on Xn as

K̃nuij =
∑

(l,k)∈Un

blk,ijulk,

and

K̃n(αuij + βui′j′) = αK̃nuij + βK̃nuij,

where

blk,ij = (K̃nE
−1
n)lk,ij.

Then we have the following proposition.

Proposition 5. Solving the linear integral equation (2.41) is equivalent to finding

ũn =
∑

(i,j)∈Un

b̃ijuij ∈ Xn

31

such that

(I + K̃n)ũn = Pnf. (2.42)

Proof. For (i, j), (i′, j′) ∈ Un,

(K̃nuij, ui′j′) =
∑

(l,k)∈Un

blk,ij(ulk, ui′j′) = (K̃nE
−1
n En)ij,i′j′ (2.43)

Equation (2.43) implies that

K̃n = {(K̃nuij, ui′j′) : (i, j), (i
′, j′) ∈ Un},

we complete the proof.

We give the estimate of the discrepancy between ∥Ki′i − K̃i′i∥2 in the next lemma. For

convenience, we first introduce a notation

Dj′

δii′
:= {j : j ∈ Zw(i), qi′j′ − q′ij > δii′}.

Obviously, for fixed i, i′, j′,Dj′

δii′
is the index set of j corresponding toKij,i′j′ that we truncated

off.

Lemma 2. For a positive integer σ, then for any r > 1, there exists a constant c such that

if we choose truncation parameter δii′ := max{µ−n+α(n−i)+α′(n−i′), r(di + di′)}, the following

inequality holds,

∥Kii′ − K̃ii′∥2 ≤ c(didi′)
σδ−2σ+θ

ii′ (2.44)

Proof. First of all, since the spectral radius of a matrix is less than or equal to any of its

matrix norms, the following inequality holds,

∥Kii′ − K̃ii′∥22 ≤ ∥Kii′ − K̃ii′∥1∥Kii′ − K̃ii′∥∞, (2.45)

32

now we just need to estimate ∥Kii′−K̃ii′∥∞ and ∥Kii′−K̃ii′∥1,respectively. By the definition

of K̃ii′ , we have

∥Kii′ − K̃ii′∥∞ = max
j′∈Zw(i′)

∑
j∈Dj′

δii′

|Kij,i′j′|,

then following the estimate of Kij,i′j′ from lemma 1, we further have

∥Kii′ − K̃ii′∥∞ ≤ c(didi′)
σ− 1

2 max
j′∈Zw(i′)

∑
j∈Dj′

δii′

∫
Si′j′

∫
Sij

1

(x− s)2σ+(1−θ)
ds dx

≤ c(didi′)
σ− 1

2di′ max
j′∈Zw(i′)

max
x∈Si′j′

∑
j∈Dj′

δii′

∫
Sij

1

(x− s)2σ+(1−θ)
ds

≤ c(didi′)
σ− 1

2di′

∫
t>δii′

1

t2σ+(1−θ)
dt

≤ c(didi′)
σ− 1

2di′δ
−2σ+θ
ii′ .

(2.46)

Similarly, by the definition of the L1 norm of a matrix, we have

∥Kii′ − K̃ii′∥1 = max
j∈Zw(i)

∑
j′∈Dj

δii′

|Kij,i′j′ |

≤ c(didi′)
σ− 1

2 max
j∈Zw(i)

∑
j′∈Dj

δii′

∫
Si′j′

∫
Sij

1

(x− s)2σ+(1−θ)
ds dx

≤ c(didi′)
σ− 1

2di max
j′∈Zw(i′)

max
s∈Sij

∑
j′∈Dj

δii′

∫
Si′j′

1

(x− s)2σ+(1−θ)
dx

≤ c(didi′)
σ− 1

2di

∫
t>δii′

1

t2σ+(1−θ)
dt

≤ c(didi′)
σ− 1

2diδ
−2σ+θ
ii′ .

(2.47)

Substituting the above two estimates into the right-hand side of (2.45) yields the desired

results.

The next theorem provides a stability estimate for operator I − K̃n.

Theorem 2.3.1. Let σ be a positive integer and r > 1. Suppose that we choose truncation

33

parameter δii′ := max{µ−n+α(n−i)+α′(n−i′), r(di+ di′)} with α = 1, α′ > σ
2σ−θ

, then (I − K̃n)
−1

exists and is uniformly bounded.

Proof. According to the proof of Lemma 5.11 in [1] and the result from Lemma 5, for any

u, v ∈ X , we have

|(Kn − K̃n)Pnu,Pnv)| ≤
∑

i,i′∈Zn+1

c(didi′)
σ(δii′)

−(2σ−θ)∥u∥2∥v∥2

≤
∑

i,i′∈Zn+1

µ(σ−α(2σ−θ))(n−i)+(σ−α′(2σ−θ))(n−i′)µ−θn∥u∥2∥v∥2
(2.48)

On the other hand, (Kn − K̃n) = Pn(Kn − K̃n) leads to

∥(Kn − K̃n)Pnu∥ = sup
v∈X ,∥v∥2 ̸=0

|(Pn(Kn − K̃n)Pnu, v)|
∥v∥2

= sup
v∈X ,∥v∥2 ̸=0

|(Kn − K̃n)Pnu,Pnv)|
∥v∥2

(2.49)

Since there exists a constant c such that µ(σ−α(σ−θ)(n−i)+(σ−α′(σ−θ)(n−i′)µ−θn ≤ c, (see the

proof of Theorem 5.12 in [1]), combining equation (2.48) with (2.49) yields

∥(Kn − K̃n)v∥ ≤ c∥v∥2. for v ∈ Xn.

This, with the stability estimate of the standard Galerkin method yields

∥(I − K̃n)v∥ ≥ ∥(I − Kn)v∥ − ∥(Kn − K̃n)v∥ ≥ c∥v∥2,

for any v ∈ Xn. The above stability estimate ensures the desired result of this Theorem.

We establish the convergence order of ũn in the following theorem.

Theorem 2.3.2. Let σ be a positive integer, u ∈ Hσ(I) be the exact solution of equation

(2.7). Suppose the truncation parameters δii′ are chosen as

δii′ := max{µ−n+α(n−i)+α′(n−i′), r(di + di′)} (2.50)

34

with α = 1 and α′ > σ
2σ−θ

, then there exists a constant c such that

∥u− ũn∥ ≤ cs(n)−σ∥u∥Hσ(I),

Proof. See the proof of theorem 5.13 in [1].

2.3.1 Computational Complexity

The number of non-zero entries of the compressed matrix is used to evaluate the compu-

tational complexity of the proposed multiscale Galerkin method. In the next Theorem, we

give an estimate for N (K̃n), the number of nonzero entries in matrix K̃n.

Theorem 2.3.3. For each i, i′ ∈ Zn+1, and arbitrary r > 1, we choose the truncation

parameter δii′ satisfy

δii′ ≤ max{µ−n+α(n−i)+α′(n−i′), r(di + di′)} (2.51)

then

N (K̃n) :=

 O(s(n) log
2(s(n)), α = α′ = 1,

O(s(n) log(s(n)), otherwise.
(2.52)

Proof. We first estimate the number of nonzero entries of block K̃ii′ . we denote

Si
i′j′ := {x ∈ I : 0 ≤ q′i′j′ − x ≤ di + di′ + δii′ or 0 ≤ x− q′i′j′ ≤ di}}.

The zero entries of block K̃ii′ mainly come from two parts. Part one includes those entries

due to the truncation procedure while the other part contains those entries involving the

basis functions uij and ui′j′ satisfying q
′
i′j′ ≤ qij. Thus, if K̃ij,i′j′ ̸= 0, Sij must be a subset of

35

Si
i′j′ . Since there are k basis functions uij having support contained in Sij, we have

N (K̃i,i′) ≤ σ
∑

j′∈w(i′)

meas(Si
i′j′)

µ−(i−1)
≤ k2(2di + di′ + δii′)µ

i+i′−1

≤ σ2µi+i′−1((r + 1)(di + di′) + di + µ−n+α(n−i)+α′(n−i′)).

(2.53)

Because

N (K̃n) =
∑

i′∈Zn+1

∑
i∈Zn+1

N (K̃ii′), (2.54)

we substitute estimate (2.53) into (2.54), and obtain

N (K̃n) ≤
∑

i′∈Zn+1

∑
i∈Zn+1

σ2µi+i′−1((r + 2)µ−i+1 + (r + 1)µ−i′+1) + µ−n+α(n−i)+α′(n−i′))

= 2σ2(r + 2)(n+ 1)
∑

i∈Zn+1

µi + µn−1
∑

i∈Zn+1

µ(α−1)(n−i)
∑

i′∈Zn+1

µ(α′−1)(n−i′)

=

 O(µ
n(n+ 1)2), α = α′ = 1,

O(µn(n+ 1)), otherwise,

(2.55)

as n → ∞. Finally, the desired result of this theorem follows from the fact that µn ∼

s(n).

In order to solve (2.41), we still need to estimate the nonzero entries of the matrix

K̃n. In the next section, we will describe a numerical quadrature scheme which is specially

designed according to our singular kernel so that the quadrature errors will not ruin the

overall convergence order of the approximate solution of the integral equation.

2.4 A Numerical Quadrature Scheme

The nonzero entries of the matrix K̃n are defined in terms of double integrals whose

integrands involve the products of the weakly singular kernel and a piecewise polynomial.

In this section, we shall present a numerical quadrature scheme to compute these nonzero

36

entries.

The entries of matrix K̃n are integrals of integrands in the form

kij,i′j′(x) := (

∫ x

0

k(x, s)uij(s)ds)ui′j′(x),

for x ∈ Si′j′ and (i, j) ∈ Un. To compute Kij,i′j′ := I(kij,i′j′), we divide Si′j′ into p equal

subintervals of width h := µ−i′+1

p
with endpoints [ti

′
a , t

i′
a+1], for a ∈ Zp and ti

′
a := qi′j′ + ah.

Then we use the following composite q points Gaussian quadrature rule

I(S(kij,i′j′)) :=
∑
a∈Zp

∑
ι∈Zq

ωa
ι kij,i′j′(τ

a
ι),

to approximate I(kij,i′j′). Here ω
a
ι and τaι are the associated Gauss weights and Gauss points

on [ti
′
a , t

i′
a+1], respectively.

Next, we turn to estimate each kij,i′j′(τ
a
ι). To this end, for any γ ∈ (0, 1) and w ∈ N , we

define set πii′ := {ζl := x− γl : l ∈ Zw} ∪ {ζw := x}, rearrange the elements of

(πii′ ∪ {qij, q′ij}) ∩ Sij

in the increasing order, and write them as a new sequence qij = q0 < q1 < · · · < qm′ =

min{q′ij, x} with m′ ≤ w + 2. We define

kij(x, s) := k(x, s)uij(s)

and the associated partition of [0, x] ∩ Sij as

Π(kij) := {Qα := [qα, qα+1) : α ∈ Zm′}.

Obviously, for any Qα, there exists an l ∈ Zw such that Qα ⊂ [ζl, ζl+1]. We approximate

kij,i′j′ on each interval Qα ⊂ [ζl, ζl+1] using the Gauss-Legendre quadrature. That is, we first

37

construct a piecewise polynomial Sα(kij) of order k
′ which interpolates kij at the Gauss points

on Qα and is equal to zero outside Qα, in case that x ≤ q′ij, we set Sm′−1(kij) = 0. Next, we

define S(kij) =
∑

α∈Zm′ Sα(kij) and use I(S(kij))(x)ui′j′(x) to approximate kij,i′j′(x).

In the rest of this section, we analyze the convergence order of this integration method.

We first introduce two index sets

Zj′

δii′
:= {j : j ∈ Zw(i), dist(Sij, Si′j′) ≤ δii′ and q′i′j′ ≥ qij},

and

Zℓ
i′j′,i := {j ∈ Z

j′

δii′
: j = υ(ei)σ + ℓ},

for some ei ∈ Zi−1
µ . Then, for ℓ ∈ Zσ and (i′, j′) ∈ Un, we set

uiℓ,i′j′ =
∑

j∈Zℓ
i′j′,i

uij,

and

hiℓ,i′j′(x) = (

∫ x

0

k(x, s)uiℓ,i′j′(s) ds)ui′j′(x),

Obviously, for j1, j2 ∈ Z l
i′j′,i, if j1 ̸= j2, meas(Sij1

⋂
Sij2) = 0.

It follows the above composite q point Gaussian quadrature rule that

I(S(hiℓ,i′j′)) :=
∑
a∈Zp

∑
ι∈Zq

ωa
ι hiℓ,i′j′(τ

a
ι).

Next, we give the approximation of the I(S(hiℓ,i′j′)) according to our quadrature strategy.

Let

π(hiℓ,i′j′) = ∪j∈Zℓ
i′j′,i

(πii′ ∪ {qij, q′ij}) ∩ Sij,

then we rearrange the elements of π(hiℓ,i′j′) in the increasing order and write them as a new

sequence qiℓ = q0 < q1 · · · < qm′′ = min{q′iℓ, x}.

38

Associated with the above notations, we define

fiℓ,i′j′ := k(x, s)uil,i′j′(s),

Π(fiℓ,i′j′) := {Qα := [qα, qα+1) : α ∈ Zm′′}.

and

S(fiℓ,i′j′) =
∑

α∈Z
m

′′

Sα(fiℓ,i′j′), h̃iℓ,i′j′ = I(S(fiℓ,i′j′))ui′j′ ,

Our next lemma gives the estimate of the difference between I(hiℓ,i′j′) and I(S(h̃iℓ,i′j′)).

Lemma 3. Let Eiℓ,i′j′ := I(hiℓ,i′j′) − I(S(h̃iℓ,i′j′)), for p, q ∈ N , p > 0, q > 0, there exists a

positive constant c such that for any i ∈ Zn+1, ℓ ∈ Zσ, (i
′, j′) ∈ Un and γ ∈ (0, 1), we have

the estimate

Eiℓ,i′j′ ≤ c0p
−2q + cpq(

c1γ
θw

θ
+ c2(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di + di′ + δii′)µ

i−1]k),

The proof of this lemma requires one technical lemma. Actually, by the triangle inequal-

ity, we have

|Eiℓ,i′j′| ≤ |I(hil,i′j′)− I(S(hiℓ,i′j′))|+ |I(S(hiℓ,i′j′))− I(S(h̃iℓ,i′j′))| (2.56)

For the first term on the right side of (2.56), according to the error estimate of the composite

Gauss formula, there exists a positive constant c0 such that

|I(hiℓ,i′j′)− I(S(hiℓ,i′j′))| ≤ c0p
−2q (2.57)

By choosing p, q large enough, this error will be sufficiently small. Thus, we just need to

estimate the second term and we have the following lemma.

Lemma 4. There exists a constant c such that for any i ∈ Zn+1, j ∈ Zj′

δii′
, (i′, j′) ∈ Un and

39

γ ∈ (0, 1),

|I(S(hiℓ,i′j′))−I(S(h̃iℓ,i′j′))| ≤ cpq(
c1γ

θw

θ
+c2(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di+di′+δii′)µ

i−1]σ). (2.58)

Proof. We introduce index set Γl := {α ∈ Zm′′ : Qα ∈ Π(fiℓ,i′j′), Qα ⊂ [ζl, ζl+1]}, for l ∈ Zw.

Associated with these index sets, we set

El(fiℓ,i′j′) :=
∑
α∈Γl

∫
Qα

|fiℓ,i′j′ − S(fiℓ,i′j′)| ds

and

E(fiℓ,i′j′(x)) :=
∑
Γl ̸=∅

El(fiℓ,i′j′).

We first estimate Ew−1(fiℓ,i′j′). If x < q′iℓ, we have

Ew−1(fiℓ,i′j′) ≤ a

∫ x

ζw−1

|(x− s)θ−1uiℓ,i′j′(s)| ds ≤
c1γ

θw

θ
. (2.59)

Otherwise, for all l ∈ Zw, by the error estimate of Gaussian quadrature, there exist ηα ∈ Qα

such that

El(fiℓ,i′j′) :=
∑
α∈Γl

|D2k′
s fil,i′j′(x, ηα)|

(2k′)!

∣∣∣∣∫
Qα

(s− τα0)2 · · · (s− ταk′−1)
2 ds

∣∣∣∣ ,
where ταi , i ∈ Zk′ are the k′ zeros of the Legendre polynomial of degree k′ on Qα. By the

Leibniz rule of a product of two functions, we obtain that

|D2k′

s fiℓ,i′j′(ηα)| ≤
∑
β∈Zσ

Cβ
2k′ |D

2k′−βk(x, ηα)u
β
iℓ,i′j′(ηα)|

≤
∑
β∈Zσ

Cβ
2k′(x− ηα)

−(2k′+1−θ−β)µβ(i−1)|
∑

j∈Zℓ
i′j′,i

uβ1ℓϕ
−1
e(s)|.

(2.60)

40

Since γl+1 ≤ x− ηα ≤ di + di′ + δii′ , we have

El(fiℓ,i′j′(x)) ≤ c
γ−(l+1)(2k′+1−θ)

(2k′ − σ)!
(γl − γl+1)2k

′+1
∑
β∈Zσ

[(di + di′ + δii′)µ
i−1]β

≤ c2

(
1− γ
γ

)2k′+1

γ(l+1)θ[(di + di′ + δii′)µ
i−1]σ.

(2.61)

Therefore,

E(fiℓ,i′j′) =
∑
Γl ̸=∅

El(fiℓ,i′j′) ≤
c1γ

(θ)w

θ
+

w−1∑
l=1

El(fij)

=
c1γ

(θ)w

θ
+ c2(

1− γ
γ

)2k
′+1γθ[(di + di′ + δii′)µ

i−1]σ
w−1∑
l=1

γθl

≤ c1γ
(θ)w

θ
+ c2(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di + di′ + δii′)µ

i−1]σ.

(2.62)

Using estimate (2.62), we have

|I(S(hiℓ,i′j′))− I(S(h̃iℓ,i′j′))| = |
∑
a∈Zp

∑
ι∈Zq

ωa
ι hiℓ,i′j′(τ

a
ι)−

∑
a∈Zp

∑
ι∈Zq

ωa
ι h̃iℓ,i′j′(τ

a
ι)|

≤
∑
a∈Zp

∑
ι∈Zq

ωa
ι |hiℓ,i′j′(τaι)− h̃iℓ,i′j′(τaι)|

=
∑
a∈Zp

∑
ι∈Zq

ωa
ι |(I(fiℓ,i′j′(τaι))− I(S(fiℓ,i′j′(τaι))))ui′j′(ιa)|

≤ cpqE(fiℓ,i′j′)

≤ cpq(
c1γ

(θ)w

θ
+ c2(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di + di′ + δii′)µ

i−1]σ).

(2.63)

Lemma 3 follows from lemma 4 and the triangle inequality (2.56). Similarly as before,

we define K̂n := [K̂ii′ : i, i
′ ∈ Zn] with

K̂ii′ := [K̂ij,i′j′ : j
′ ∈ Zw(i), j ∈ Zw(j)],

41

where

K̂ij,i′j′ :=

 0, if qi′j′ − q′ij ≥ δii′ or qij > q′i′j′

I(S((k̃ij,i′j′))), otherwise.
(2.64)

for (i, j), (i′, j′) ∈ Un.

Instead of solving (2.42), we solve

(En + K̂n)b̂n = fn, (2.65)

for [b̂ij : (i, j) ∈ Un] and use

ûn :=
∑

(i,j)∈Un

b̂ijuij ∈ Xn

to approximate the exact solution u.

In the next lemma, we give an estimate for the discrepancy between the block K̃ii′ and

K̂ii′ .

Lemma 5. There exists a positive constant c such that for all i, i′ ∈ Zn+1 and n ∈ N ,

∥K̃ii′ − K̂ii′∥2 ≤ c0σp
−2q + c1σpq(c

γθw

θ
+ c2(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di + di′ + δii′)µ

î−1]σ). (2.66)

where î = max{i, i′}.

Proof. We first note that

∥K̂ii′ − K̃ii′∥∞ = max
j′∈Zw(i′)

∑
l∈Zσ

|E(hil,i′j′)|,

therefore, by using lemma 3, we have that

∥K̂ii′ − K̃ii′∥∞ ≤ c0σp
−2q + c1σpq(

cγθw

θ
+ c2(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di + di′ + δii′)µ

i−1]σ).

42

Likewise, we can prove that

∥K̂ii′ − K̃ii′∥1 ≤ c0σp
−2q + c1σpq(

cγθw

θ
+ c2(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di + di′ + δii′)µ

i′−1]σ).

Since

∥K̂ii′ − K̃ii′∥22 ≤ ∥K̂ii′ − K̃ii′∥∞∥K̂ii′ − K̃ii′∥1, (2.67)

we have

∥K̂ii′ − K̃ii′∥2 ≤ c0kp
−2q + c1kpq(

cγθw

θ
+ c2(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di + di′ + δii′)µ

î−1]σ). (2.68)

Likewise, we introduce an abstract linear operator K̂n which corresponds to the matrix

K̂n. Similar as the proof of Proposition 5 that we presented in section 2.3, we also can show

that solving the linear integral equation (I + K̂n)ûn = Pnf is equivalent to solve the new

linear system of equations (2.65).

In order to ensure that the numerical integration will not ruin the convergence order of the

Galerkin method, we choose special q, w for each i, i′ ∈ Zn+1 and use q(i, i′), w(i, i′) to indicate

q, w with respect to different i, i′, respectively. The existence and uniform boundness of

operator (I+K̂n)
−1 is guaranteed by Lemma 5 and the specific way we choose q(i, i′), w(i, i′)

in the next theorem (See proof of theorem 2.3.1).

Theorem 2.4.1. If u ∈ Hσ(I), for i, i′ ∈ Zn+1, δii′ are chosen as

δii′ := max{µ−n+α(n−i)+α′(n−i′), r(di + di′)}, (2.69)

with α = 1, 1 > γ > 1
2
and α′ > σ

2σ−θ
, moreover, for fixed p ∈ N , choose

q(i, i′) ≥ σ(i+ i′) log µ

2 log p
, (2.70)

43

k′ ≥
−σ(̂i+i+i′) log µ

log(1−γ
γ

)
− 1

2
, (2.71)

and

w(i, i′) ≥ −σ(i+ i′) log µ

θ log γ
, (2.72)

then there exists a positive constant c and a positive integer N such that for all n > N ,

∥u− û∥ ≤ cs(n)−σ∥u∥Hσ(I).

Proof. Since (di + di′ + δii′) ≤ (r−1 + 1)δii′ , we have

[(di + di′ + δii′)µ
î−1]σ ≤ c(δii′µ

î−1)σ.

In order to prove this theorem, according to the proof of lemma 5.13 in [1], it suffices to

prove that

c0p
−2q(i,i′)+c1pq(i, i

′)(
c1γ

θw(i,i′)

θ
+c3(

1− γ
γ

)2k
′+1 γθ

1− γθ
[(di+di′+δii′)µ

î−1]σ) ≤ cδ
−(2σ−θ)
ii′ µ−σ(i+i′),

we only need to show that by the way we choose q(i, i′), w(i, i′), for some positive constants

c, the following inequalities hold:

p−2q(i,i′) ≤ cδ
−(2σ−θ)
ii′ µ−σ(i+i′),

pq(i, i′)
c1γ

θw(i,i′)

θ
≤ cδ

−(2σ−θ)
ii′ µ−σ(i+i′),

and

(
1− γ
γ

)2k
′+1 γθ

1− γθ
[(di + di′ + δii′)µ

î−1]σ) ≤ cδ
−(2σ−θ)
ii′ µ−σ(i+i′).

By taking the logarithmic function on both side, one can verify this hold, thus, the conclusion

44

of this theorem follows. On the other hand, by triangle inequality, we have

∥Kii′ − K̂ii′∥2 ≤ ∥Kii′ − K̃ii′∥2 + ∥K̃ii′ − K̂ii′∥2 ≤ c(δii′)
−(2σ−θ)µ−σ(i+i′) (2.73)

By proof of theorem 5.13 in [1], we can have the desired results.

2.5 Numerical experiments

In this section, we present numerical examples to demonstrate the accuracy of the pro-

posed multiscale Galerkin method and to verify the error estimates derived in the previous

section. The computations associated with the examples are performed by visual studio

2017.

We choose µ = 2, r = 1.2, γ = 0.8, q = 32, p = 5 in the following numerical experience.

The basis functions of X0 are given by

u00 = 1, u01 =
√
3(2t− 1), u02 =

√
5(6t2 − 6t+ 1)

and the orthonormal basis function of W1 are given by

u10 :=

 1− 6t, t ∈ [0, 1
2
]

5− 6t, t ∈ (1
2
, 1].

(2.74)

u11 :=


√
93
31

(240t2 − 116t+ 9), t ∈ [0, 1
2
]

√
93
31

(3− 4t), t ∈ (1
2
, 1].

(2.75)

u12 :=


√
93
31

(4t− 1), t ∈ [0, 1
2
]

√
93
31

(240t2 − 364t+ 133), t ∈ (1
2
, 1].

(2.76)

45

Table II: L2 error between approximate solution and exact solution for Example 2.5.1.

σ n s(n) ∥u− un∥2
3 5 96 6.310376e− 04
3 6 192 1.189533e− 04

Table III: Absolute Error between approximate solution and exact solution for Example
2.5.1.

x Exact Solution Absolute Error for n = 5 Absolute Error for n = 6
0.0 0.000000 0.000000e+ 00 0.000000e+ 00
0.1 0.316288 2.722910e− 06 8.077163e− 06
0.2 0.447214 1.152158e− 05 1.097334e− 06
0.3 0.547723 1.530953e− 05 1.476194e− 06
0.4 0.632456 2.440685e− 05 6.315013e− 06
0.5 0.707107 2.108546e− 05 2.477836e− 06
0.6 0.774597 2.085941e− 05 9.794490e− 07
0.7 0.836660 2.231643e− 05 1.578995e− 06
0.8 0.894427 2.201259e− 05 6.668973e− 07
0.9 0.948683 2.587488e− 05 4.117267e− 06
1.0 1.000000 2.755061e− 05 4.593362e− 06

Example 2.5.1 Consider the weakly singular VIE of the second kind with θ = 1/2, a =

1
Γ(1/2)

,

u(x) +
1

Γ(1/2)

∫ x

0

u(s)√
x− s

ds = Γ(3/2)x+ x1/2.

The exact solution to the above integral equation is u(x) = x1/2. The computed results

are listed in Table II and III.

For this example, un approximate u in order 10−6 except on a small interval around

[1/256, 1/128] where the approximate order is 10−4, by taking larger σ or n, the maximum

error can be reduced quite well. For example, for σ = 4, n = 7, ∥u−un∥2 is reduced to order

10−6.

46

Table IV: L2 error between the approximate solution and the exact solution for Example
2.5.2.

σ n s(n) ∥u− un∥2
3 5 96 1.915886e− 05
3 6 192 6.104507e− 06

Table V: Absolute Error between the approximate solution and the exact solution for Ex-
ample 2.5.2.

x Exact Solution Absolute Error for n = 5 Absolute Error for n = 6
0.0 0.00 0.000000e+ 00 0.000000e+ 00
0.1 0.01 6.147957e− 07 1.128921e− 05
0.2 0.04 1.410004e− 07 1.935597e− 06
0.3 0.09 1.331423e− 06 3.114641e− 06
0.4 0.16 1.428655e− 05 6.661716e− 06
0.5 0.25 7.754397e− 06 3.004420e− 06
0.6 0.36 1.716972e− 05 2.106952e− 06
0.7 0.49 2.300065e− 05 3.140744e− 06
0.8 0.64 2.653462e− 05 9.921378e− 07
0.9 0.81 3.505066e− 05 3.932623e− 06
1.0 1.00 3.925652e− 05 2.004118e− 06

Example 2.5.2 Consider the weakly singular VIE of the second kind with θ = 1/2, a = 1,

u(x) +

∫ x

0

u(s)√
x− s

ds = x2 +
16

15
x

5
2 .

The exact solution is u(x) = x2. Numerical results are listed in Table IV and V.

Example 2.5.3 Consider the weakly singular VIE of the second kind with θ = 0.9, a1 =

1
Γ(0.9)

,

u(x) +
1

Γ(0.9)

∫ x

0

u(s)

(x− s)0.1
ds =

Γ(
√
3 + 1)

Γ(
√
3 + 1.9)

x
√
3+0.9 + x

√
3.

The exact solution is u(x) = x
√
3. Numerical results are listed in Table VI and VII.

To show the efficiency of our method, we plot matrix K̂n according to our truncation

47

Table VI: L2 error between the approximate solution and the exact solution for Example
2.5.3.

σ n s(n) ∥u− un∥2
3 5 96 4.071175e− 06
3 6 192 2.721076e− 06

Table VII: Absolute Error between the approximate solution and the exact solution for
Example 2.5.3.

x Exact Solution Absolute Error for n = 5 Absolute Error for n = 6
0.0 0.000000 0.000000e+ 00 0.000000e+ 00
0.1 0.018533 4.900351e− 06 4.566543e− 06
0.2 0.061567 3.998990e− 07 4.326019e− 07
0.3 0.124262 2.096073e− 06 2.070912e− 06
0.4 0.204525 1.785370e− 06 1.742832e− 06
0.5 0.301023 3.550855e− 06 3.147336e− 06
0.6 0.412807 2.210742e− 06 2.279901e− 06
0.7 0.539140 5.206239e− 07 5.714249e− 07
0.8 0.679433 1.084797e− 06 1.168992e− 06
0.9 0.833193 4.057441e− 09 3.132106e− 09
1.0 1.000000 3.244073e− 06 3.282330e− 06

48

strategy. Figures 2.5.7 and 2.5.8 shows the distribution of values of K̂n with n = 4 and

n = 5, respectively. Black grids represent nonzero entries, gray grids represent zero entries

corresponding to case 1 while white grids represent entries that were compressed to zeros.

Table VIII lists the number of entries we need to calculate with our numerical quadrature

rule after compression. Tn means the number of entries corresponding to case 1. On means

the number of entries that can be truncated. Cn represents the total number of entries that

we need to calculate. When n > 7, the value of s(n) log s(n)
Cn

∼ 10.

Figure 2.5.7: Value distribution of matrix K̂4.

2.6 Conclusion

The Multiscale-Galerkin method has been applied for solving the linear Volterra integral

equation of the second kind with a weakly singular kernel. In this approach, we take advan-

49

Figure 2.5.8: Value distribution of Matrix K̂5.

tage of the structure of the Volterra integral equation and the shrinking support property

of multiscale basis functions to eliminate large many zero entries of the resulting coefficient

matrix. For example, let Tn represent the number of zero entries in Kn, then T4/s(4)
2 is

639/2304, T5/s(5)
2 is 3303/9216, T6/s(6)

2 = 15255/36864. When n is getting larger, the ra-

tio Tn/s(n)
2 is getting smaller. The numerical results show that the efficiency of our method

and its accuracy in approximating exact solutions can compete with the existing methods

Table VIII: Numerical result for truncation strategy

n s(n) Tn On Cn
s(n) log s(n)

Cn

4 48 639 270 186 7.5
5 96 3303 2151 3762 8.6
6 192 15255 12114 9495 9.4

50

for solving Volterra integral equations.

Chapter 3

Preliminary Review of Machine

Learning

In recent years, deep learning neural networks as a type of machine learning model are

getting more and more popular. A wave of interest in applying deep learning neural networks

to solving all kinds of mathematical equations emerged. Inspired by the existing works, we

have tried to apply the deep learning neural network model to solve integral equations and

to evaluate special functions. In this chapter, we shall give a brief review of basic machine

learning concepts which will be used in the following chapters of this thesis. For details of

machine learning concepts, one can refer to [20] [21] [22].

Most tasks of a deep learning algorithm consist of learning a function that maps an input

vector to an output vector based on an optimization algorithm. The main components of

a deep learning algorithm include a dataset, a feed-forward neural network model, a cost

function, and an optimization algorithm. We shall review these components in the following

sections.

51

52

3.1 Feed-forward Deep Neural Network

We begin with the description of a feed-forward deep neural network model. The goal

of a feed-forward neural network is to approximate some function f(X) given input X by

defining a mapping f ∗(X;w, b) and training the values of the parameters w, b that can lead

to best function approximation in some sense. A feed-forward neural network model is

usually associated with a directed acyclic chain structure which describes how functions are

composed from one side of the chain to the other side. To be more specific, the output

of the neural network model ŷ = f ∗(X;w, b) is obtained by applying affine transformation

z = wX + b accompanied with an activation a(z) function on each layer, which results in a

chain of composite functions aL ◦ aL−1 ◦ · · · ◦ a1. In this case, the function ai represents ith

layer of the network. The overall length of the chain is called the depth of the model by [20].

The name “deep learning” arose from this terminology.

3.1.1 Deep Neural Network Design

Consider a feed-forward neural network with input X0, output XL, and L+ 1 layers. At

each layer ℓ for ℓ = 1, . . . , L+ 1, we have

• Xℓ−1 input nodes, with Xℓ−1 a column vector, Xℓ−1 ∈ RNℓ−1×1

• Wℓ weights, with Wℓ a matrix, Wℓ ∈ RNℓ−1×Nℓ

• bℓ biases, with bℓ a column vector, bℓ ∈ RNℓ×1

Let us call zℓ = WℓXℓ−1 + bℓ the input to the ℓth layer, and Xℓ = aℓ(zℓ) the output of

ℓth layer, where aℓ is an activation function. As a result, the neural network model to

approximate the unknown function at layer ℓ is given as

Xℓ = aℓ(WℓXℓ−1 + bℓ),

which would recursively contribute to the network output ŷ = XL = aL(WLXL−1 + bL).

53

Fig. 3.1.1 shows a four layers feed-forward neural network with two hidden layers, where

X0 = [x0, x1, x2, x3], X1 = [h
(1)
1 , h

(1)
2 , h

(1)
3 , h

(1)
4] and X2 = [h

(2)
1 , h

(2)
2 , h

(2)
3].

x0

x1

x2

x3

Input layer
X0

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer X1

h
(2)
1

h
(2)
2

h
(2)
3

Hidden
layer X2

ŷ1

Output
layer ŷ

Figure 3.1.1: An example of a feed-forward neural network.

For simplicity, in the rest of the paper, we shall use w, b to represent all the parameters

Wℓ and bℓ, for ℓ = 1, 2, . . . , L, respectively, and use θ to represent (w, b).

3.2 Activation Function

From the above section, we can see that activation functions are applied to the output

data of the previous layer before passing them to the next layer. The purpose of the activation

function is to introduce non-linearity into the output of a neuron. A network comprised

of only linear functions is easy to train, but cannot learn complex functions. Nonlinear

activation functions allow neural networks to model complex non-linear functions, hence the

neurons have the ability to learn more complex structures in the data. Commonly used non-

linear activation functions are sigmoid, tanh, and Relu (See [23], [24]), which are defined as

follows, respectively,

1. Sigmoid: a(t) = 1
1+e−t , Fig. 3.2.2.

2. Hyperbolic tangent: a(t) = et−e−t

et+e−t , Fig. 3.2.3.

3. Rectified Linear: a(t) = max{0, t}, Fig. 3.2.4.

54

Figure 3.2.2: Graph of the sigmoid function

The activation functions discussed above each possess distinct advantages and limitations.

Sigmoid and tanh, being differentiable everywhere, are crucial for the effective back-propagation

required in training deep neural networks. In addition, their smooth and monotonic shape

makes optimization easier and helps avoid getting stuck in local minima. However, both

functions suffer from a general problem, known as ”saturation”, wherein the output almost

remains constant as the input grows too large or too small, resulting in near-zero gradients.

This, in turn, negatively affects the learning process and the model’s weight adjustment.

Another significant limitation of sigmoid and tanh is the “vanishing gradients” problem.

“Vanishing gradients” cause the gradients to “vanish” during back-propagation, which makes

it difficult to know the direction for parameter adjustment to optimize the model (See [20]).

On the other hand, Relu doesn’t suffer from the “vanishing gradients” problem and is simple

and computationally efficient. Nonetheless, the lack of differentiability at zero can cause

challenges in optimization algorithms like gradient descent. Furthermore, Relu’s tendency

to discard negative values can hamper the model’s ability to fit the data properly.

55

Figure 3.2.3: Graph of the Hyperbolic tangent function

3.3 Cost Function

In order to evaluate the performance of a designed deep neural network model, we also

need to choose an appropriate quantitative measure. In the field of machine learning, people

use the cost function, also known as the objective function, to measure “how wrong the

model is”, i.e. the difference between the predicted output of a model and the true output.

Most neural networks use the negative log-likelihood as their cost function (See, for example,

[20] [21] [22]), which is given by

C(θ) = −Ex,y∼pdata log pmodel(y|x, θ), (3.1)

where pdata denotes probability distribution of the data while pmodel denotes the predicted

probability distribution by the learning algorithm and pmodel(y|x, θ) denotes the correspond-

ing conditional probability function of y given x. The specific form of the cost function C

depends on how the pmodel(y|x, θ) is defined. In particular, if we assume that, for each data

point x, the predict value y is drawn from a Gaussian distribution with mean f ∗(x, θ) and

56

Figure 3.2.4: Graph of the Relu function

variance σ2, i.e.

pmodel(y|x, θ) :=
1√
2πσ2

exp− (f∗(x,θ)−y)2

2σ2 ,

then by applying the principle of Maximum likelihood, we recover the mean squared error

(MSE) cost

C(θ) = 1

2
Epx,y∼data

∥y − f ∗(x, θ)∥2. (3.2)

Details can be found in section 5.5 in [20] and the references therein. MSE is commonly

used for regression models. We adopt MSE as our cost function for neural network models

presented in this thesis. Specifically, for a given data set D := {(x1, y1), (x2, y2), . . . , (xn, yn)}

and a deep learning model with L layers, the MSE cost between training data and the model

distribution can be formulated as:

C(θ) = 1

n

n∑
i=1

L(aL(xi; θ), yi) (3.3)

57

where

L(aL(xi; θ), yi) = (yi − aL(xi; θ))2, i = 1, 2 . . . , n (3.4)

is called the squared loss, which represents the squared error incurred by one single sample.

3.4 Regularization

A good machine learning algorithm should perform well not just on the training data,

but also on unseen data. In order to improve the performance of the model on test data,

many strategies have been explored. These strategies are known collectively as regulariza-

tion. In [20], the author defines regularization as “any modification we make to a learning

algorithm that is intended to reduce its generalization error but not its training error.” Sim-

ply speaking, regularization is a technique used to prevent “overfitting”. One commonly

used regularization strategy in the regression model is adding extra terms in the objective

function, which discourages the model from assigning too large values to any parameter, such

as L1 (e.g. Lasso regression) regularization and L2 (e.g. Ridge regression) regularization.

Lasso regression (3.5) adds a L1 norm penalty while Ridge regression (3.6) adds a L2 norm

penalty to the original objective function, and λ ∈ (0,∞) is a hyperparameter that weights

the relative contribution of norm penalty term in the objective function, in other words, it

determines the trade-off between model complexity and overfitting.

In general, by adding a regularization term, the model is encouraged to have small co-

efficients, which led to a simpler, more interpretable model with improved generalization

performance. In particular, in this thesis, we choose L2 regularization considering it’s differ-

entiable everywhere. Lasso regression is not differentiable at zero, but it usually results in

sparse solutions, for that reason, it can be used for feature selection.

Lasso regression : C1(aL(xi; θ), yi) =
1

n

n∑
i=1

(aL(xi; θ)− yi)2 +
λ

n

∑
j∈L

∥Wj∥1 (3.5)

58

Ridge regression : C2(aL(xi; θ), yi) =
1

n

n∑
i=1

(aL(xi; θ)− yi)2 +
λ

n

∑
j∈L

∥Wj∥22 (3.6)

3.5 Back-propagation

When we use a feed-forward neural network, the input provides the initial information

that then propagates up to the output layer through hidden layers and finally produces

the predicted output. This process is called forward propagation. The back-propagation

algorithm (See [25]) is an automatic differentiation algorithm that allows the information

from the cost C to flow backward through the network by computing the gradients ∂C
∂w

and

∂C
∂b
. Specifically, the error in the predicted output will be propagated to the parameters on

each hidden layer in the form of gradients.

3.6 Gradient Decent

The objective during training is to minimize the value of the cost function by iteratively

adjusting the model’s parameters. To this end, iterative optimizers are utilized for train-

ing the neural networks. Gradient descent is an optimization algorithm used to minimize a

function by iteratively updating its parameter in the direction of the steepest descent. This

is achieved by computing the gradient of the function with respect to its parameters and

updating them accordingly until the optimization algorithm converges to a minimum. Math-

ematically, for a given differentiable function f(w), w ∈ Rn, according to Taylor expansion,

with sufficient small ∥wk+1 − wk∥2, we have

f(wk+1) ≈ f(wk) + (wk+1 − wk)
T∇f(wk). (3.7)

For the purpose of minimizing f(w), we expect that for each iteration,

f(wk+1)− f(wk) < 0, k ∈ N,

59

thus, we update w through

wk+1 = wk − α∇f(wk), (3.8)

where α > 0 is called the learning rate.

In particular, to achieve the goal of minimizing the cost function of the neural network

C, weights and bias can be updated as follows according to (3.8),

Wℓ ← Wℓ − α
∂C
∂Wℓ

(3.9)

bℓ ← bℓ − α
∂C
∂bℓ

(3.10)

for ℓ = 1, . . . , L.

3.6.1 Batch Gradient Decent

Gradient descent optimization algorithms that use the entire training set are called batch

gradient methods. In batch gradient descent, the gradients of all training samples are com-

puted, averaged, and then used to update the model’s parameters. The approach involves

processing the entire training set during each iteration or epoch. Batch gradient descent is a

reliable and efficient optimization algorithm for small datasets. However, the computational

cost of processing large datasets becomes excessive. To tackle this problem, people have

proposed using statistical estimation of the gradient instead of the mean gradient of the

entire dataset. Stochastic Gradient Descent is one of the optimization algorithms based on

this idea.

3.6.2 Stochastic Gradient Descent

Gradient descent optimization algorithms that use only a single example at a time are

called stochastic methods. Stochastic gradient descent (SGD) (See [26]) or minibatch SGD is

probably the most used optimization algorithm for machine learning in general. In minibatch

60

stochastic gradient descent (SGD), we consider using k samples in each minibatch to take

a single step. We can obtain an unbiased estimate of the gradient by taking the average

gradient on a minibatch of k samples drawn independently and identically from the data-

generating distribution. The following steps are taken in one epoch for minibatch SGD:

1. Take k samples randomly.

2. Feed those samples to the neural network.

3. Calculate the average of the gradients of k samples.

4. Use the gradient we calculated in the last step to update the weights.

5. Repeat the above steps for all the samples in the training data set.

Mathematically, the above procedure can be formulated as follows:

Wℓ ← Wℓ − α
1

k

k∑
i=1

∂L
∂Wℓ

, (3.11)

bℓ ← bℓ − α
1

k

k∑
i=1

∂L
∂bℓ

. (3.12)

3.7 Momentum

The stochastic gradient descent (SGD) algorithm is widely used in machine learning,

but its efficiency can be limited due to noisy gradients, especially for objective functions

with poorly conditioned Hessian matrices. To address this issue, Polyak (1987) (See [27])

introduced the concept of momentum, which accelerates the learning of the algorithm by

overcoming the oscillations in gradients. In comparison with the SGD, SGD with momentum

introduces a new variable v (velocity), which is the exponentially weighted moving average

of past gradients. The idea behind “momentum” can be analogous to particle motion in

61

physics. Instead of just considering the current gradient to update θ = (w, b), momentum

also factors in previous gradients. The process can be written as follows:

v0 = 0 (3.13)

vn = βvn−1 + (1− β)∇θC(XL(xi; θ), yi) (3.14)

θ ← θ − αvn. (3.15)

Here we use subscript n to represent nth iteration. β ∈ (0, 1) is called the momentum

constant, it determines how fast the influence of the previous gradient decay. The effects

of SGD and SGD with Momentum on a cost function that has elongated contour lines are

illustrated in Figure 3.7.5 [28].

(a)

(b)

Figure 3.7.5: (a) SGD update: The red path indicates the learning rule followed by stochastic
gradient decent algorithm; (b) SGD with Momentum: The red path depicts the path followed
by the momentum learning rule, while the green line and blue indicate the current gradient
decent direction and previously accumulated gradient decent direction, respectively.

3.8 Adaptive Learning Rate Algorithm

The previous approach uses the same fixed learning rate for all weights updates. But in

practice, it is necessary to change the learning rate gradually. Since large learning rate for

weights that have steep gradient may cause over-correction, while a small learning rate for

62

weights that has gentle gradient leads to converging too slowly. In the face of this, it’s natural

to propose the idea that we should change the learning rate over time. Well-known adaptive

learning rate algorithms are AdaGrad, RMSProp, and Adam. For AdaGrad, this algorithm

individually adapts the learning rates of all model parameters by scaling them inversely

proportional to the square root of the historical square values of the gradient (See [29]), it

works well for convex function. But if the cost function is not convex, AdaGrad shrinks

the learning rate according to the entire history of the gradient and may have made the

learning rate too small before arriving at the local minima (See [20]). RMSProp (See [30])

modifies AdaGrad by replacing the sum of previously squared gradients with an exponentially

weighted moving average. Briefly speaking, RMSProp discards extreme gradients from the

past that makes it converge rapidly whenever it finds a local convex bowl. Adam (See [31]

and Algorithm 1 below) can be understood as a modified combination of momentum and

RMSProp, it possesses the strengths of both methods and also utilizes initialization bias

correction terms to account for their initialization at the origin. It’s one of the states of art

optimizers that consistently delivers exceptional performance. Therefore, we have selected

the Adam optimization algorithm for the purpose of minimizing in this thesis.

Algorithm 1 Adam Algorithm [31]

Input Stepsize: α, Exponential decay rate for the moment estimate:β1, β2 ∈ [0, 1). Initial
parameter vector θ0, first moment vector m0 = 0, second moment vector v0 = 0, iteration
time: n = 0.
While θn not converge do:

Sample a minibatch of k examples {(x1, y1), . . . , (xk, yk)} from the training set.
Compute gradient at nth iteration: gn ← ∇θ

∑k
i=1 Cn(aL(xi; θn−1), yi))

n← n+ 1
Update biased first moment estimate: mn = β1mn−1 + (1− b1)gn
Update biased second moment estimate: vn = β2vn−1 + (1− β2)g2n
Compute bias-corrected first moment estimate: m̂n ← mn/(1− βn

1)
Compute bias-corrected second moment estimate: v̂n ← vn/(1− βn

2)
Update parameter: θn ← θn−1 − αm̂n/(

√
v̂n + ϵ)

In the above algorithm, ϵ is a small constant term that is used to prevent division by

zero. By default, ϵ = 10− 8, α = 0.001, β1 = 0.9, β2 = 0.99.

63

3.9 Xavier Initialization

Deep learning models are a form of iterative algorithm and thus require the initialization

of the parameters to commence iterations. The initial points play a crucial role in deter-

mining the convergence of the algorithm, and when the algorithm does converge, the rate of

convergence of the algorithm is also contingent upon the initial points selected. The aim of

a carefully designed weight initialization is to enhance the convergence rate by preventing

layer activation outputs from exploding or vanishing during the course of a forward pass

through a deep neural network. If either situation mentioned above occurs, loss gradients

will either be too large or too small to flow backward.

As an illustration, when the sigmoid function is utilized as an activation function, if the

weights are excessively small, the variance of the input signal declines as it proceeds through

each layer in the network, eventually leading to the input value falling within the range where

the sigmoid function behaves in a nearly linear fashion, consequently resulting in the loss of

the model’s nonlinearity. On the other hand, if the weights are excessively large, the variance

of input data tends to surge rapidly, attaining a value within the range where the sigmoid

function is almost flat. This, in turn, causes the gradient to be zero, and learning ceases

prior to reaching the minima. To address this issue, Xavier Glorot and Yoshua proposed

the Xavier initialization (See [32]). Xavier initialization involves selecting the initial weights

from a normal distribution with a mean of zeros and a variance that is based on the number

of inputs and outputs of the layer:

W ∼ N [0,

√
2√

n1 + n2

] (3.16)

where n1 is the number of inputs to the nodes and n2 is the number of outputs from the

layer. The main idea behind Xavier initialization is to initialize the weights of a neural

network layer in such a way that the variance of the outputs of the layer is roughly equal to

the variance of its inputs.

64

In the rest of this section, we use network Fig. 3.1.1 as an example to show how (3.16)

could maintain the variance of activations and back-propagated gradients all the way up or

down the layers of a network.

To prevent the gradients of the network’s activations from vanishing or exploding, we shall

stick to two rules. Firstly, the mean of the activation outputs should be zero. Secondly, the

variance of the activation outputs should stay the same across every layer. For simplicity,

let’s assume that the input X0 and weights W1 are drawn from independent identically

distributed Gaussian distributions, respectively. Moreover, for illustration purposes, we also

assume that the network 3.1.1 only consists of a chain of matrix multiplications, with no

nonlinearities. Then the input value h
(1)
1 of the first hidden layer can be formulated as

h(1) =
3∑

i=0

w1ixi, (3.17)

where w1i, i = 0, 1, 2, 3 represent the weights between the input layer and the first neuron of

the first hidden layer. Taking variance of both sides of (3.17), and by the fact that the input

X0 and weights W1 are iid, we have

Var(h
(1)
1) :=

3∑
i=0

Var(w1ixi) =
3∑

i=0

[E(xi)
2Var(w1i) + E(w1i)

2Var(xi) + Var(w1i)Var(xi)],

(3.18)

since the input X0 and weights W1 all have mean zero, (3.18) can further be reduced to

Var(h
(1)
1) :=

3∑
i=0

Var(w1i)Var(xi) = 4Var(w1i)Var(xi). (3.19)

If we expect the variance of output h
(1)
1 to be the same as variance of input X0, we need

Var(w1i) = 1
4
. Generally, to ensure that the variance of output matches that of input, it

is necessary to set Var(w1i) =
1
N
, where N is the number of neurons on the corresponding

output layer. In other words, the weights of each layer must be randomly sampled from

a normal distribution N(0, 1
N
). This applies to both forward propagation and backward

65

propagation.

Xavier initialization is a widely used method for initializing weights in neural networks,

and it has been shown to be effective in a variety of applications.

3.10 Summary

Deep learning is a type of machine learning. It can simulate models that involve a greater

amount of compositions, so it has more potential than other machine learning models in

solving mathematical problems. The next two chapters will discuss the application of deep

learning in solving integral equations.

Chapter 4

Solving Fredholm Integral Equations

of the Second Kind using a Neural

Network Model

4.1 Introduction

The universal approximation theorem [33] [34] states that a feed-forward network with a

linear output layer and at least one hidden layer with any “squashing” activation function

can approximate any Borel measurable function from one finite-dimensional space to another

with any desired accuracy, provided that the network is given enough hidden units [32]. This

theorem provides a theoretical foundation for solving various kinds of mathematical equations

with deep learning models. Since solutions of Fredholm integral equations (FIEs) lies in the

space where functions are Borel measurable, provided that their solution exists, it should be

feasible to use deep learning neural network model to handle Fredhlom integral equations.

In this chapter, we present our approach for solving Fredholm integral equations of the

second kind via a neural network model. A brief review of the Fredholm integral equation is

provided in section 2, while section 3 presents a formulation of the neural network method

66

67

for second-kind FIEs. In section 4, numerical experiments are conducted to demonstrate the

performance of the proposed method.

4.2 Fredholm Integral Equation of the Second Kind

In this section, we give a brief review of Fredholm integral equations of the second kind.

Unlike Volterra integral equations which have variable integral limits, a Fredholm equation

is an integral equation in which the kernel function term has constants as integration limits.

But similar to Volterra integral equations, Fredholm integral equations also can be divided

into the first kind and the second kind. A Fredholm integral equation of the first kind is an

integral equation of the form

f(t) =

∫ 1

0

k(t, s)u(s)ds, t ∈ [0, 1], (4.1)

while a Fredholm integral equation of the second kind can be expressed as

f(x) = u(x) + µ

∫ 1

0

k(x, s)u(s)ds, x ∈ [0, 1], µ ̸= 0, (4.2)

where the Fredholm integral operator is defined by

(Ku)(x) =
∫ 1

0

k(x, s)u(s) ds.

We will focus on Fredholm integral equations of the second kind due to the fact that the

first kind equations can be converted to the second kind through regularization. However,

for the purpose of evaluating the performance of a deep learning model in solving integral

equations, we have chosen to begin with simpler cases. Specifically, we have opted to work

with continuous functions for the kernel k(t, s) : [0, 1] → [0, 1] and f(t) : [0, 1] → R. The

existence of the solution of Fredholm integral equations of the second kind with a continuous

68

kernel is discussed in [1].

4.3 Neural Network Formulations

Recall that the Fredholm integral equation of the second kind takes the form:

f(x) = u(x) + µKu(x), x ∈ [0, 1], (4.3)

with the integral operator defined by

Ku(x) =
∫ 1

0

k(x, s)u(s) ds.

A neural network model for solving (4.3) is to find an approximate solution uw,b(x) such that

Cw,b =
1

n

n∑
i=1

Lw,b(xi) +
λ

n
∥w∥22 (4.4)

with

Lw,b(xi) = (µKuw,b(xi) + uw,b(xi)− f(xi))2,

can be minimized. {x1, x2, . . . , xn} is a set of distinct points in [0, 1].

Specifically, let’s consider a neural network model comprises of one hidden layer with m

hidden units and one linear output unit, then uw,b can be formulated as

uw,b(x) = W2(a1(W1x+ b1)) + b2. (4.5)

The above process is illustrated in Fig. 4.3.1. The weights between the input layer and

the hidden layer of the network are W T
1 := [w11, w12, . . . , w1m], the activation function on

neurons of the hidden layer is a1, and the weights between the hidden layer and output layer

are W T
2 := [w21, w22, . . . , w2m], additionally, zi = a1(W1xi + b1).

69

...
xi

a1(W1xi + b1)

W2zi + b2

Input
layer

Hidden
layer

Ouput
layer

Figure 4.3.1: Diagram of NN-collocation model.

By taking partial derivative of Cw,b with respect to wlr, bl, respectively, we have

∂Cw,b

∂wlr

=
2

n

∑
j∈Zn

(Uj + µKj − fj)(
∂Uj

∂wlr

+ µ
∂Kj

∂wlr

) +
2λ

n
wlr,

and

∂Cw,b

∂bl
=

2

n

∑
j∈Zn

(Uj + µKj − fj)(
∂Uj

∂bl
+ µ

∂Kj

∂bl
),

where

Uj = uw,b(xj),

Kj =

∫ 1

0

k(xj, s)uw,b(s) ds, (4.6)

∂Kj

∂wlr

=

∫ 1

0

k(xj, s)
∂uw,b(xj)

∂wlr

ds, (4.7)

∂Kj

∂bl
=

∫ 1

0

k(xj, s)
∂uw,b(xj)

∂bl
(4.8)

fj = f(xj)

for j ∈ Zn, l = 1, 2 and r = 1, 2, . . . ,m. The most expensive computational cost are from

calculating Kj,
∂Kj

∂wlr
and

∂Kj

∂bl
, where the integrands involve parameter w, b. We have to

70

recalculate the integrals whenever we get w, b updated. In order to save computational cost,

instead of using the entire training data set to calculate the gradient, we choose mini-batch

Stochastic gradient descent (SGD) with sample size k to estimate
∂Cw,b

∂wlr
and

∂Cw,b

∂bl
. The whole

procedure is summarized in Algorithm 2.

Algorithm 2 Our Algorithm

1: Input regularization parameter λ, number of training data n, training set Sn := {xi : i ∈
Zn} and mini-batch size k. Initialize the weights {wj : j ∈ Zm} by Xavier initialization
[32].

2: Compute Uj, Kj,
∂Uj

∂wlr
,
∂Uj

∂bl
,
∂Kj

∂wlr
,

∂Kj

∂bl
and then ∂C

∂wlr
, ∂C
∂bl

.

3: Update the weights wlr and of bl with the Adam optimizer [35], until meet a stop criteria
4: Compute uw,b via (4.5) with the optimal weights Wi, i = 1, 2.

4.4 Numerical Integration

In order to calculate Kj,
∂Kj

∂wlr
and

∂Kj

∂bl
, we need to develop an efficient numerical method

to estimate integrals involved in (4.6), (4.7) and (4.8) with high accuracy. Since kernel

k(x, s) is continuous, we choose Gaussian quadrature within tolerance to approximate these

integrals.

4.5 Results

In this section, we will present three examples of various types of Fredholm integral

equations to illustrate the performance of our proposed neural network (NN) model. Our

algorithm was implemented in Python using the Numpy library [36] for efficient matrix ma-

nipulation. Our neural model comprises one hidden layer with ten hidden units and one

linear output unit. Although adding more hidden neurons or training points can potentially

improve the model’s performance, this approach may not always be viable due to the van-

ishing gradient problem. In our numerical experiments, we used a training set of n = 1000

numbers sampled uniformly at random from the interval [0, 1], while the test set consisted

71

Table I: Partial iterative results of the loss function for Example 1.

Iteration loss Iteration loss
10 22.18 150 0.005
20 3.05 200 0.0004
50 0.29 500 0.00032
100 0.025 1000 0.00025

of n = 1000 numbers equally spaced from the same interval.

Example 1. Consider the following linear FIE of the second kind

u(x)−
∫ 1

0

2ex+yu(y) dy = ex.

The equation has u(x) = ex

2−e2
as its exact solution.

For example 1, the number of training iterations is 1000. The loss function converges to

e − 4, and the generalization MSE converges to 9.4e − 5. Figure 4.5.2 shows the graphs of

the exact solution and the neural network’s approximate solution, the red curve depicts the

graph of the Exact solution while the green curve depicts the graph of the neural network’s

approximate solution. The convergence of the loss function is shown in Fig. 4.5.3(a), 4.5.3(b)

shows the generalization MSE between the exact solution and the approximation solution.

Partial iterative results of the loss function showed in Table II.

Figure 4.5.2: Example 1: Exact solution vs Neural network approximate solution.

72

(a) (b)

Figure 4.5.3: Example 1: (a) Convergence of the loss function; (b) MSE between the exact
solution and the approximation solution.

Table II: Partial iterative results of the loss function for Example 2.

Iteration loss Iteration loss
10 0.13 200 0.0004
20 0.09 250 1.89e-5
50 0.03 400 2.9e-6
100 0.01 500 2.78e-6

Example 2. Consider the following linear FIE of the second kind

u(x) +

∫ 1

0

x(exy − 1)u(y) dy = ex − x.

The equation has the u(x) = 1 as its exact solution.

For Example 2, the number of iterations is 500. The loss function converges to e−6, and

the generalization MSE converges to 2.7e − 6. Figure 4.5.4 shows the graphs of the exact

solution and the neural network approximate solution. The convergence of the loss function

is shown in Fig. 4.5.5(a), 4.5.5(b) shows the generalization MSE between the exact solution

and the approximate solution. Partial iterative results of the loss function showed in Table

II.

73

Figure 4.5.4: Example 2: Exact solution vs Neural network approximate solution.

Table III: Partial iterative results of the loss function for Example 3.

Iteration loss Iteration loss
10 5.24 200 0.0056
20 0.44 500 0.0011
50 0.048 1000 0.0002
100 0.0083 1200 0.00013

Example 3. Consider the following linear FIE of the second kind

u(x)−
∫ 1

0

9xyu(y) dy = x2.

The equation has he exact solution u(x) = x(x− 9
8
).

For example 3, the number of iteration is 1000. The loss function converges to e − 4,

and the generalization MSE converges to 1.3e− 4. Figure 4.5.6 show the graphs of the exact

solution and the neural network approximate solution. The convergence of the loss function

is shown in Figure 4.5.7(a), 4.5.7(b) shows the corresponding generalization MSE. Partial

iterative results of the loss function showed in Table III.

74

(a) (b)

Figure 4.5.5: Example 2: (a) Convergence of the loss function; (b) MSE between the exact
solution and the approximation solution.

4.6 Conclusion

In this chapter, we presented our approach for solving Fredholm integral equations of the

second kind via a neural network model. The problem with this approach is its expensive

computation cost since the solution is totally attained by learning. To be more specific,

each time the weights get updated, one has to re-compute to integral which involves the

product of the kernel and the derivative of the approximate solution with respect to the

weights. Furthermore, numerical errors are introduced when evaluating the integral, and as

the number of iterations increases, the cumulative error also grows. It is also worth noting

that even though the universal approximation theorem states that a multi-layer perceptron

with a large number of layers can approximate any Borel measurable function, it does not

guarantee that we can find the optimal parameter values to correspond to the optimal func-

tion. The representative capacity of the learning algorithm plays a significant role in this

regard. Although the neural network model exhibits promising results in solving integral

equations, the accuracy of this approach is inferior to other existing mathematical methods.

These findings reinforce our concerns that applying deep learning models to solve mathe-

matical problems without a comprehensive understanding of the optimization process can

75

Figure 4.5.6: Example 3: Exact solution vs Neural network approximate solution.

lead to significant uncertainties.

To address the inadequate representative capacity and the significant computational bur-

den of computing the integrals at each iteration, we propose an alternative approach which

combines the traditional collocation method with Adam optimization in the next chapter.

76

(a) (b)

Figure 4.5.7: Example 3: (a) Convergence of the loss function; (b) MSE between the exact
solution and the approximation solution.

Chapter 5

A Collocation method-based Neural

Network model for Solving Fredholm

Integral Equations

Our first attempt to employ a neural network for solving Fredholm integral equations,

as discussed in chapter 4, doesn’t work well due to the limited representational capacity of

the model. To be more specific, the model specifies a family of functions in the form of

w2(e
−(w1x+b)) + b2 that the learning algorithm can choose from. But without a sufficient

number of neurons in the hidden layer, functions in this form may not be guaranteed to

approximate the exact solution well. In response, we introduce an alternative approach in

this chapter based on the collocation method, which improves the initial neural network

model by restricting its representational capacity to a polynomial space. That is, we first

choose the space of polynomials as the projection space for the collocation method, then

approximate the solution of the integral equation by a linear combination of polynomials in

that space. This model can also be viewed as a neural network learning model, but with

different activation functions in the hidden layer. The coefficients of the linear combination

of polynomials function are served as the weights between the hidden layer and the output

77

78

layer of the neural network. In the remainder of this chapter, we refer to this model as the

NN-Collocation model for brief.

The collocation method is another popular projection technique for solving integral equa-

tions that has garnered significant attention in practical applications. One of the key advan-

tages of this method is its simplicity and flexibility, particularly when utilized to incorporate

neural network models. It offers an ideal structure for converting integral equations into

data-fitting models, without the need for introducing additional integrals as is the case with

the Galerkin method. Consequently, the computational requirements associated with collo-

cation are considerably lower.

We organize this chapter into two sections. In section 1, we present the formulation of the

neural network (NN)-Collocation method for the second kind FIEs. Numerical experiments

are provided in Section 2 to demonstrate the performance of the proposed method.

5.1 NN-Collocation Formulations

We consider an integral equation that takes the form of

u(x) + µ

∫ 1

0

k(x, y)u(y) dy = f(x), x, y ∈ [0, 1], (5.1)

where f ∈ C[0, 1], k(x, y) ∈ C[0, 1]× C[0, 1] are known, u ∈ C[0, 1] is unknown and

K(u) =
∫ 1

0

k(x, y)u(y) dy,

is the Fredholm integral operator. With this notation, the above integral equation can be

rewritten as

(I + µK)u = f. (5.2)

where I is the identity operator.

In chapter 2, we introduced the intuition behind the Galerkin method, which seeks an

79

approximate solution that makes the residual small via minimizing ∥Aun − f∥, where A :=

I + µK. In comparison, the Collocation method makes the residual rn := Aun − f small by

making it zero on some finite set of points. Specifically, we choose a finite dimensional space

Xn and a finite set S ⊂ [0, 1] of points, and want to find an approximate solution un ∈ Xn

such that

Aun(x)− f(x) = 0, for x ∈ S.

In particular, the traditional collocation method solving integral equation (5.2) seeks vectors

wn := [wj : j ∈ Zn] such that

un =
∑
j∈Zn

wjψj (5.3)

is the solution of

(I + µK)un(xi) = f(xi), i ∈ Zm (5.4)

where S = {xi : i ∈ Zm} is a finite subset of [0, 1], {ψj}nj=1 are the basis functions of the

projection space Xn. The equivalent system of equations form of (5.4) is

(En + µKn)wn = fn, (5.5)

where

En = {Eij, i ∈ Zm, j ∈ Zn},

Kn = {Kij, i ∈ Zm, j ∈ Zn},

fn = {fi, i ∈ Zm},

with

Eij = ψj(xi), Kij =

∫
s

k(xi, y)ψj(y) dy, fi = f(xi).

The NN-Collocation method based on this idea tries to minimize the cost function which

80

is formulated by the means square error with L2 regularization

C = 1

m

∑
i∈Zm

Ln(f̂(xi,wn), fi) +
λ

m
∥wn∥22 (5.6)

with the loss function

Ln(f̂(xi,wn), fi) = (f̂(xi,wn)− fi)2, (5.7)

where f̂(xi,wn) := (I + µK)un(xi), λ is the regularization parameter, ∥wn∥2 represents the

Euclidean norm of wn. With the notations introduced in (5.5), the loss function (5.7) of the

NN-Collocation model can be rewritten as

Ln(f̂(xi,wn), fi) =

(∑
j∈Zn

(Eij + µKij)wj − fi

)2

. (5.8)

In other words, we use {(xi, fi)}mi=0 as our training data set to implement a learning process

for a trail model such that the MSE between the predicted value (I+µK)un and exact value

of (I+µK)u at the training data set is minimized while emphasizing on maximizing margin

to avoid the overfitting problem.

The process described above can be interpreted as a feed-forward network with one hidden

layer and a linear output layer. The weights between the input layer and the hidden layer

of the network are all set to 1, while the activation function of the jth neuron in the hidden

layer is ϕj(x) = (I + µK)ψj(x), and the weights between the hidden layer and the output

layer are wis. The network is illustrated in Fig. 5.1.1.

We intend to find wn that can minimize C by using the gradient descent with Adam

optimizer. To this end, we need to calculate ∂Ln

∂wj
s. By taking partial derivative with respect

to wj in (5.8), we have

∂Ln

∂wj

= 2(
∑
k∈Zn

(Eik + µKik)wj − fi)(Eij + µKij). (5.9)

81

...
xi

ϕ1(xi)

ϕn(xi)

∑
i∈Zn

wiϕi(xi)

Input
layer

Hidden
layer

Ouput
layer

Figure 5.1.1: Diagram of NN-collocation model.

The primary computational cost is attributed to the calculations of Kijs, which involve

evaluating integrals, but only once. We store the values of (Eij + µKij)s in a matrix. In

this paper, we use the Gauss-quadrature for the evaluation of Kijs. The whole procedure is

summarized in Algorithm 3.

Algorithm 3 Our Algorithm

1: Input regularization parameter λ, number of training data m, training set S := {xi :
i ∈ Zm}. Initialize the weights {wj : j ∈ Zn} by Xavier initialization [32].

2: Compute ϕj(xi) := Eij + µKij, and store the result in matrix A with Aij = ϕj(xi),
i ∈ Zm, j ∈ Zn.

3: Compute ∂C
∂wj

= 1
m

∑
i∈Zm

∂Ln

∂wj
+ 2λ

m
wj according to chain rule.

4: Update the weights wj with the Adam optimizer.
5: Compute the approximation of (5.3) by using the optimal weights {wi : i ∈ Zn}.

5.2 Results

For the purpose of comparison, we use the same numerical examples listed in chapter 4 to

demonstrate the NN-Collocation model’s performance. The projection space is polynomial

space with shifted Legendre polynomials on interval [0, 1] of degree up to n as bases. we

utilized a training set of m = 2000 numbers sampled uniformly at random from the interval

82

[0, 1]. Testing sets consisting of 2000 evenly spaced values on the interval [0, 1].

Example 1. Consider the following linear FIE of the second kind

u(x)−
∫ 1

0

2ex+yu(y) dy = ex,

with the exact solution u(x) = ex

2−e2
.

For n = 6, the generalization MSE is e − 09 after 20000 iterations, and the associated

optimal weights are

wn = [−0.23858496,−0.15568655,−0.11762842,

0.02070347,−0.0158611, 0.00271201].

Figure 5.2.2(a) shows the graph of the exact solution and the approximate solution, the red

curve depicts the graph of the exact solution while the green curve depicts the graph of

the approximate solution, and Figure 5.2.2(b) shows the generalization MSE. The numerical

results can be found in Table I.

(a) (b)

Figure 5.2.2: Example 1: (a) Exact solution vs NN-Collocation approximate solution with
n=6; (b) MSE between the exact solution and the approximate solution.

83

Table I: The MSE error for Example 1.

n MSE on Training set MSE on Testing set
3 1.09689663e-06 9.59122925e-07
4 1.27886941e-07 1.12720023e-07
5 1.8071884e-08 2.2415795e-08
6 1.0746993e-09 2.98199195e-09
7 1.72614602e-09 1.53534553e-09

Table II: The MSE error for Example 2.

n MSE on Training set MSE on Testing set
3 0.00474284 0.00475947
4 7.23014255e-05 7.26806487e-05
5 8.22319408e-07 6.70043825e-07
6 8.39516517e-08 1.02247121e-07
7 2.89689923e-11 2.40565254e-11

Example 2. Consider the following linear FIE of the second kind

u(x) +
1

3

∫ 1

0

e2x−
5y
3 u(y) dy = e2x+

1
3 ,

with the exact solution u(x) = e2x.

For n = 7, the generalization MSE is around e − 11 after 30000 iterations, and the

corresponding optimal weights are

wn = [1.87982320, 2.75563720, 1.95524998, 5.05200551e− 01,

2.75259395e− 01, 5.81048575e− 04, 1.72820486e− 02].

Figure 5.2.4(a) shows the graph of the exact solution and approximate solution, and

Figure 5.2.4(b) shows the generalization MSE. The numerical results can be found in Table

II.

Example 3. Consider the following linear FIE of the second kind

u(x) +

∫ 1

0

x(exy − 1)u(y) dy = ex − x,

84

Figure 5.2.3: Example 2: Exact solution vs NN-Collocation approximate solution with n=6;

Figure 5.2.4: Example 2: MSE between the exact solution and the approximation solution.

with the exact solution u(x) = 1.

For n = 4, the generalization MSE is around e − 15 after 30000 iteration with optimal

weights

wn = [9.99998676e− 01, 2.92296511e− 06,

−2.37639142e− 06, 9.37088253e− 07].

85

And order of accuracy around e−16 for n = 3 after 50000 iteration with optimal weights

wn = [9.99999927e− 01, 1.43643199e− 07,−8.92090066e− 08]

Figure 5.2.6(a) shows the graph of the exact solution and approximate solution, and

Figure 5.2.6(b) shows the accuracy measured in MSE. The numerical results can be found

in Table III.

Figure 5.2.5: Example 3: Exact solution vs NN-Collocation approximate solution with n=6

Figure 5.2.6: (Example 2: MSE between the exact solution and the approximate solution.

86

Table III: The MSE error for Example 3.

n MSE on Training set MSE on Testing set
3 1.09178389e-16 9.83884687e-17
4 2.72825599e-15 2.19793864e-15
5 8.72100376e-12 7.84314389e-12
6 7.75215323e-11 6.39991518e-11
7 8.23544625e-11 9.99376595e-11

Table IV: The MSE error for Example 4.

a n MSE on Training set MSE on Testing set
0 3 2.00812521e-14 1.7978776e-14
0 4 2.20219156e-12 2.10087744e-12
5 3 1.25071358e-15 1.12903254e-15
5 4 3.17235264e-14 2.71073112e-14

Example 4. Consider the following linear FIE of the second kind

u(x)−
∫ 1

0

9xyu(y) dy = ax2 − 4x2,

with the exact solution u(x) = (a− 4)x(x− 9
8
).

The approximate solution has order of accuracy around e − 14 for a = 0, n = 3 after

30000 iteration, with optimal weights

wn = [−1.33333235, 4.49999805,−2.66666542]

For, n = 3, a = 5, the generalization MSE is around e − 15 after 30000 iteration, and the

corresponding optimal weights are

wn = [0.33333309,−1.12499951, 0.66666636]

Figure 5.2.8(a) and Figure 5.2.10(a) show the exact and approximate solutions for a =

0, n = 3 and a = 5, n = 3, respectively. Figure 5.2.8(b) and Figure 5.2.10(b) show the

corresponding accuracy measured in MSE. The numerical results can be found in Table IV.

87

Figure 5.2.7: Example 4: Exact solution vs NN-Collocation approximate solution with a = 0
and n = 3;

Figure 5.2.8: Example 4: MSE between the exact solution and the approximate solution
with a = 0 and n = 3.

5.3 Conclusion

Numerical results show that the NN-Collocation model provides solutions with higher ac-

curacy in comparison to the previous neural network approach for solving Fredholm integral

equations of the second kind. The model offers a low computational cost since the required

integrals only need to be evaluated once. It is worth pointing out that the accuracy of the

NN-Collocation model on the testing set is as good as on the training set, indicating that

the NN-Collocation model is stable and reliable. Moreover, this approach overcomes the

88

Figure 5.2.9: Example 4: Exact solution vs NN-Collocation approximate solution with
a=5,n=3

Figure 5.2.10: Example 4: MSE between the exact solution and the approximation solution
with a = 5, n = 3.

problem of the traditional collocation method which requires the number of bases to match

the number of collocation points to ensure a square matrix after discretization. However,

this NN-Collocation model only works for linear integral equations.

Chapter 6

Special Function Neural Network

(SFNN) Models

Robust implementations of special functions have been a concern in many scientific areas,

from electromagnetics to statistics. For example, the kernel of the Helmholtz equation in

a boundary integral formulation is based on Hankel functions, or the Matérn covariance in

statistics depends on the functions Gamma and modified Bessel. Traditionally these special

functions are implemented using known asymptotic expansions on certain critical intervals.

The strategy we introduce here is to replace asymptotic expansions with neural network (NN)

models taking advantage that NNs can be provably considered to be universal approximators.

This approach facilitates a plethora of operations previously inaccessible. For instance, high-

order derivatives of a neural network model preserve the accuracy of the trained model and,

as such, can be more reliable than derivatives of asymptotic expansions. Implementations

of series expansions may be computationally prohibitive and prone to numerical errors in

regions where they do not converge sufficiently fast. In the current work, we develop neural

network models to be a stand-in for special functions, focusing on the Bessel functions of the

first and second kind, and corresponding derivatives. Special functions may require different

series expansions for different ranges of the argument. We showcase a strategy for using the

89

90

same neural network model over any interval within the domain of definition of the function,

that would otherwise require different asymptotic expansion representations.

Special functions lack a formal definition, and a commonly accepted description of what

renders a function special is that it is non-algebraic. In this spirit, even commonly used

functions such as the trigonometric functions sine, cosine or the exponential and logarithmic

functions qualify as special functions. However, due to their ubiquitous use in applications,

their implementations are highly reliable, and due to their apparent simplicity, they also pos-

sess analytically known derivatives. Subsequently, the tendency is to regard as special some

of the functions less encountered in the literature, e.g., Bessel functions, hypergeometric func-

tions, etc. Bessel functions, for example, are known as solutions of differential equations, and

different parameters yield different types of Bessel functions. Particularly, the Bessel func-

tions of 1st and 2nd kind, denoted as J0(x) and Y0(x) stem from x2 d2y
dx2 +x

dy
dx
+(x2 − α2) y = 0

as a solution pair corresponding to y(x), where the arbitrary α is known as the order of the

Bessel function.

It should be noted that special functions garnered an unfair reputation of being a niche

topic in scientific computing. However, these functions are to be found in many areas of

computational science, as kernels of the Helmholtz equation, or in renowned algorithms

such as the Fast Multipole Method [37], or Ewald summation [38], and even in statistics

in the Matérn kernel. The study of such functions was prevalent prior to the advent of

high-performance computing and the general reliance on libraries in scientific computing.

The implementation of special functions relies on asymptotic expansions [39] in regions of

interest and may require different numerical treatments as they converge to either infinity

or in the vicinity of a zero, e.g., x where x satisfies f(x) = 0. Several libraries [40], [41]

have been developed to provide accurate evaluations across the interval of definition of such

functions, equipped with a range of dedicated algorithms [42]. In many circumstances, par-

ticularly for mathematical software such as MATLAB, numpy, Mathematica, the underlying

91

implementation is not readily available, it may be unreliable 1 and prone to errors as these

functions are subject to complex manipulations. The lack of numerically stable expressions

for some special functions or their by-products prompts a user to invoke multi-precision

libraries, which are notorious for slowing down computations.

In the current work, we advocate for replacing convoluted analytical expressions with

neural network models, which may converge slowly to a reliable model, however, these models

may be far more reliable in practice and intuitive to a novice user. This approach is justified

by theoretical results, such as the universal approximation theorem [?], which assure that a

multi-layer feed-forward neural network can mimic any known function. Additionally, such

models can be deployed as a JIT (just in time) library and trained at compute time.

The work is organized as follows, in Sec. 6.0.1 we detail some of the known issues crippling

special function evaluations and operations. In Sec. 6.1 we describe the approach to designing

neural network models and some of the theoretical results that can be used to define adequate

loss functions and accelerate the training phase. Sec. 6.2 gathers current results for some

basic special functions, here the Bessel functions of 1st and 2nd kind, as well as accuracy

considerations in using the neural network models in complex computations, while Sec. 6.3

and 6.4 summarize the status of the current work and identify future tracks.

6.0.1 Challenges of special functions

The main challenge posed by special functions is of a practical nature; handling complex

analytical expressions is cumbersome and time-consuming since the expressions and proper-

ties differ from one special function to another. Beyond this difficulty, the range of available

formulas, most notably gathered in compendiums [39], [43], prove to be insufficient as we seek

expressions for high-order derivatives, numerically stable formulations for complex orders,

or compounded special functions.

Of the many expressions available for a Bessel function let us assess the Bessel function

1www.advanpix.com/2016/05/12/accuracy-of-bessel-functions-in-matlab/

92

of the first kind, positive order α and real argument x, given in terms of Γ, the Gamma

function:

Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

.

We note a few of the under-reported issues encountered in applications

Numerical errors The truncation of series expansions used in conjunction with analytical

formulas to derive more complicated expressions using special functions leads to undesired

cancellations that alter the final result. It is well established that interlacing numerical

expressions with analytical formulas may be unreliable. Special functions libraries may be

deceiving to a user since they do not consistently uncover the specific low-level implementa-

tion.

Erroneous derivative computations Even if a series expansion is valid for a given func-

tion in a certain range, there is no guarantee that taking derivatives of each individual term

in the series yields a novel series sufficiently converged to the correct value or even a converg-

ing series. This aspect becomes highly problematic for derivatives of special functions, and

analytical derivatives used in numerical computations may introduce numerical mismatches

which accumulate and propagate.

Sensitivity to round-off errors The computation of derivatives is one of the most sensi-

tive operations to round-off errors. However, such sensitivities can also be observed for Bessel

functions of complex order, etc. In such cases, a multi-precision library could alleviate the

onset of round-off errors. Multiprecision libraries, though, lead to inefficient evaluations.

Therefore if the function is known and used extensively, an analytical derivative could be

better suited. However, explicit derivatives, if not evaluated themselves correctly or of a

different nature than the original function, may induce numerical artifacts.

93

6.1 Special function neural network (SFNN) model

We seek to develop neural network models that approximate special functions with high

accuracy, but are also sufficiently compact to be evaluated efficiently. The accuracy is de-

termined by the choice of loss function and activation functions, while the efficiency of a

neural network model depends on the size of the neural network layers. We focus primar-

ily on the accuracy of a neural network model, however we choose layer sizes that may be

implemented efficiently on Graphical processing units (GPU). We note that GPUs display

significantly higher computational speeds for arithmetically intense algorithms and reliable

SFNNs should be implemented at compiler level.

Consider a feed-forward neural network with input x0, output xL, and L layers. At each

layer ℓ, for ℓ = 1, . . . , L we have

• xℓ−1 input nodes, with xℓ−1 a column vector, xℓ−1 ∈ RNℓ−1×1

• Wℓ weights, with Wℓ a matrix, Wℓ ∈ RNℓ−1×Nℓ

• bℓ biases, with bℓ a column vector, bℓ ∈ RNℓ×1

Let us call zℓ = Wℓxℓ−1+ bℓ the input to a layer, and xℓ = aℓ(zℓ) the output of a layer, where

aℓ is an activation function. A special function neural network model (SFNN) is given at a

layer ℓ as

xℓ = aℓ(Wℓxℓ−1 + bℓ) ,

which would recursively contribute to the network output xL = aL(zL) = aL(WLxL−1 + bL).

To define a loss function there are several approaches available. We can either train the

SFNN by taking a data fitting approach, a residual minimization approach [44] or construct

a complex multi-objective loss function [45]. Here, we seek to model a function y(x) by

restricting ourselves to a cost functional

L(xL, y(x)) = ||xL − y(x)||∗ ,

94

where || · ||∗ can be the L1, L2 norms, or any other norm of choice.

SFNN design By adding an L2 regularization term we consider mainly loss functions of

the type

L(xL, y(x)) =
1

N

∑
i∈N

(xL − y(xi))2 + λ
∑
j∈L

∥Wj∥2 (6.1)

where N is the size of the training set, λ is the regularization parameter, and L the number

of layers. The training will be performed by drawing samples x ∈ Xt, where Xt is a random

distribution over a training interval [a, b]. The initialization of weights is performed using

the Xavier weight initialization [32].

The obtained SFNN model will be available as a function ŷ(x0) given as

ŷ(x0) = WLaL(. . .W2a1(W1x0 + b1) + b2 . . .) + bL , (6.2)

where a1, . . . , aL are the activation functions per layer, and x0 is the evaluation point which

should be in the training interval [a, b]. The restriction that a model is usually not available

outside its training interval poses no inconveniences for special function models since asymp-

totic series expansions are also valid only within certain ranges. The optimization algorithm

used for updating the weights and biases in the training phase is ADAM [35].

Large interval evaluations Since the initial weight and bias depend on the scale of the

input the performance of the training as well as accuracy decays for larger intervals. By

selecting smaller ranges, typically on the order of [a, b] with |a− b| < 10 we achieve higher

convergence and preserve well balanced weights and biases. We focus on small intervals

[a, b] and larger intervals, or intervals far away from the origin, are mapped to the original

[a, b]. We give preference to intervals centered around the origin, which has a two-fold

interpretation: a) assures a proper balance of the weights, b) conforms with the symmetry

properties of the modeled functions. The mapping of an interval [c, d] to the target interval

95

[a, b] relies on the formula

x ∈ [a, b], x∗ =
(x+ b)(d− c)

b− a
+ a .

This amounts to a shift of the model to be trained on [a, b], which yields the intermediary

model ŷ∗. To retrieve the correct value on the appropriate interval we reverse the shift of

ŷ(x∗) to

ŷ(x) = ŷ∗
(
(b− a)(x− c)

d− c
+ a

)
,

where ŷ(x) will now be the special function model on the interval [c, d].

The final goal of the current work is to provide reliable and efficient SFNNs which are

also flexible and have the following properties

• the SFNN model can be easily imported as a function composition

• the SFNN model can be identically generated across the entire domain of definition

without modifications.

• the SFNN model is easy to generate on-the-fly for novel special functions and their

derivatives

• minimal modeling is required of the user to generate novel SFNN models

6.2 Results

The main appeal of SFNN models is that they can provide reliable derivative compu-

tations, unattainable for expressions relying on series expansions. Although many existing

special functions libraries achieve computer precision accuracy in most of the domain of

definition, the absolute errors decrease to values close to single precision, i.e., 10−7 in cer-

tain regions. Coincidentally, since many GPU implementations are still in the range of

single-precision, such models can already be useful when double precision is not immediately

96

achievable. In this spirit, we find sufficient to impose an SFNN model accuracy on the order

of 10−8. Our initial goal is to obtain robust SFNN models, which can subsequently improve

by tightening the accuracy demands, extending the number of iterations, and computing the

weights and biases in multi-precision truncated to double-precision upon convergence.

We focus on two special functions: the Bessel function of 1st kind and zero-order J0(x)

and the Bessel function of 2nd kind and zero-order Y0(x), which we illustrate in Fig. 6.2.1.

These Bessel functions serve as a stepping stone to constructing other more sophisticated

functions, such as the Hankel function defined as H0
0 (x) = J0(x)+ iY0(x). Note that training

a neural network in the complex space can be highly difficult, and it is desirable to construct

a model for the Hankel function based on its real Re(H0(x)) and imaginary Im(H0(x))

components.

Figure 6.2.1: The behaviour of Bessel functions J0(x), Y0(x) on a large interval.

Bessel function of 1st kind Jα(x) One of the most challenging properties of Bessel

functions of 1st kind is owed to their highly oscillatory nature, see Fig. 6.2.1. Each zero of

the function poses problems to implementations. For example, MATLAB can achieve only

one correct digit in relative error in the vicinity of zeros 2. The absolute error of Bessel

function evaluations, however, is accurate within computer precision. The relative error

gains importance in contexts in which numerical differentiation is needed, or evaluations

which should yield cancellations unexpectedly lead to accumulations of errors, etc.

2www.advanpix.com/2016/05/12/accuracy-of-bessel-functions-in-matlab/

97

We note that for any real values of order α, the behavior of the Bessel function of the

first kind is similar in nature, and the difficulties of selecting and training an appropriate

SFNN model share sufficient similarities to allow us to focus on the order α = 0. In the

design of a model for J0(x) we identified that a simple network with a single hidden layer of

size N = 36 and the sigmoid

σ(x) =
1

1 + e−x
,

as the activation function provides the fastest convergence for an accuracy of 10−8. The full

model reads

ŷ(x0) = W2a1(W1x0 + b1) + b2 . (6.3)

The training was performed on the interval [−5, 5] and approximately 105 epochs were

necessary to attain the imposed accuracy. In Fig. 6.2.2 we illustrate the approximation

using intervals mapped to [−5, 5] which yield a robust model with bounded and balanced

weights and biases. We note that other mappings are possible as in Sec. 6.1, however we

did not observe significant advantages by choosing sub-intervals of [−5, 5], and [−5, 5]

represented an upper limit of interval size.

The model is validated by applying it to values outside the training set Xt, i.e. x0 /∈ {Xt}.

The error incurred between the model ŷ(x) and J0(x) provided by a special functions library

is illustrated in Fig. 6.2.3. The error behavior is bounded around 10−7, however, it has

offshoots at the end of the training interval. This was observed consistently for a range

of intervals, constraints, and layer sizes and is a numerical artifact that evokes the Gibbs

phenomenon encountered in high-order polynomial fitting. We observed that performing the

training on intervals [a, b] and applying the model on intervals [a+ ϵ, b− ϵ] with ϵ = 0.1 is

highly reliable and alleviates this issue. In Fig. 6.2.5 we show that training the model on a

rescaled interval using an affine transformation yields a SFNN model with similar properties

as for intervals in a small vicinity of the origin. The behaviour of the Bessel function in

the range [120, 125] would typically require a different series expansion than in the range

98

[−5, 5], see [46]. The error incurred by remapping the interval of definition to a region close

to the origin is insignificant. A higher impact could be expected on the evaluations of the

model itself. However, in Fig. 6.2.5 we note that the error range is bounded by 10−7 on the

inner domain with spikes at the interval ends as observed also for the model developed on

[−5, 5].

Figure 6.2.2: SFNN model of the Bessel function of 1st kind, J0(x), on the interval [−5, 5].

Figure 6.2.3: MSE for the SFNN model of the Bessel function of 1st kind, J0(x), on the
interval [−5, 5].

Bessel functions of the first kind are characterized by several symmetry properties [39]

that can be leveraged in constructing multi-objective loss functions. For example for an

integer order α we have that J−α(x) = (−1)αJα(x), and such knowledge has been previously

integrated in the loss function, see [45]. Since we intend to remove the modeling burden

from the user we avoided the incorporation of such identities in the loss function provided

99

,

Figure 6.2.4: SFNN model of the Bessel function of the 1st kind, J0(x), on the interval
[120, 125], using interval remapping.

,

Figure 6.2.5: MSE for the SFNN model of the Bessel function of 1st kind, J0(x), on the
interval [120, 125], using interval remapping.

in Eq. 6.1. However, we noticed that training on symmetric intervals as opposed to non-

symmetric ones is significantly slower in terms of number of iterations as well as numerical

stability of the produced model.

Bessel function of 2nd kind Yα(x) The Bessel function of 2nd kind, Yα(x) shares the

oscillatory behaviour of Jα(x) and poses an additional difficulty in the vicinity of x = 0

where it decays asymptotically as Yα(x) ≈ −∞. The numerical evaluation of Yα(x)|x≈0 is in

essence unfeasible and an interval too close to the origin is either provided as a limit value,

truncated or avoided altogether. To train an SFNN model for Y0(x) we restrict ourselves to

an interval away from zero and for the same loss function as in Eq. 6.1 we observe that a

100

larger network is necessary. Without compromising generality we focus on Y0(x), the Bessel

function of the second kind and zero order. In this case we consider a network with three

hidden layers given as

ŷ(x0) = W4(a3(W3a2(W2a1(W1x0 + b1) + b2) + b3) + b4 , (6.4)

with activation functions a1,3(x) = max(0, x) (ReLU) and a2(x) = σ(x) (sigmoid). The

training on the interval [0.1, 1] achieved the imposed tolerance of 10−8 in approximately

5× 103 epochs.

In Fig. 6.2.6 we illustrate a comparison between the model ŷ(x) and the reference im-

plementation Y0(x) on the interval [0.1, 1]. The error displayed in Fig. 6.2.7 exhibits the

same spikes at the end of the training interval and we recommend to consider in practice the

model ŷ : [0.1 + ϵ, 1− ϵ]→ R.

Figure 6.2.6: Bessel function of 2nd kind, Y0(x), on the interval [0.1, 1].

Derivatives of special functions One of the most glaring computational inconveniences

of special functions is that the most reliable expressions are derived analytically even if used

in complex numerical implementations. This interplay between analytical and numerical

evaluations may lead to precision mismatches that accumulate and propagate, leading ulti-

mately to entirely flawed results. A common source of inaccuracies arises from derivatives

of special functions. For example, the derivative of the Bessel function of 1st kind, zero

101

Figure 6.2.7: MSE for the SFNN model of the Bessel function of 2nd kind, Y0(x), on the
interval [0.1, 1].

order, can be determined analytically from known properties to be d
dx
J0(x) = −J1(x). It

is appropriate to implement the derivative of the first order Bessel as the negative Bessel

function of the first order, however, the evaluation error may not be of the same nature as

for the function J0.

Using a SFNN model representation for J0, as in Eq. 6.3, we can take derivatives safely

either using the automatic differentiation implementation of Tensorflow, or by traversing

the NN model using the chain rule and the known derivatives of activation functions. In

Fig. 6.2.8 we illustrate that the derivative of the constructed J0(x) SFNN model is a good

approximation of the analytical derivative −J1(x), and in Fig. 6.2.9 we illustrate that the

error preserves the behaviour of J0(x) and incurs an error less than one order of magnitude.

Figure 6.2.8: Derivative of the Bessel function of 1st kind and zero order on the interval
[−5, 5].

102

Figure 6.2.9: Error of the derivative of J0(x) on the interval [−5, 5].

6.3 Future work

The final goal of the current work is to construct reliable neural network models for

the approximation of special functions, which can be used by applications at compute time.

Although the current reliability does not surpass single-precision, we identified interesting

behaviors worthy of in-depth studies, such as off-shoots at interval ends and unconstrained

neural network behaviors consistent with known special functions properties. Incipient work

indicated that higher accuracy can be achieved by seeking convergence in higher-precision.

We intend to conduct specialized studies on neural network behavior in conjunction with

multi-objective loss functions, which embed function properties as well as minimize the

residual of the differential equation defining the special function. Most importantly we seek

to apply the neural network models to intractable expressions and derivatives of special

functions.

6.4 Conclusion

We explored the advantages and limitations of using neural networks as models for special

functions, referred to as SFNN (special function neural networks). The highlight of this work

is that we identified that intervals which traditionally require different asymptotic expansions

can be treated identically using neural network models. We chose two classical and well-

103

known functions, Bessel of 1st and 2nd kind, which display several numerically challenging

issues. Both functions are oscillatory and have a range of solutions on their interval of

definition, while Bessel of 2nd kind is undefined at the origin. The focus was on the design

and training of neural networks to preserve the numerical accuracy of the original functions.

The loss function was taken as a regularized MSE norm between the model output and

discrete values of the function under training. Different training intervals were explored, and

a strategy for large intervals was identified. Due to the oscillatory nature, smaller intervals

containing at most one or two zeros of the modeled function provide the best convergence

rate and accurate neural networks. To avoid spurious effects in the weights or biases, we

used an interval remapping strategy. Consistently we noted offshoots at the ends of the

training interval which we corrected by differentiating between the training interval [a, b]

and the model definition interval [a + ϵ, b− ϵ] with ϵ selected heuristically as ϵ = 0.1. The

maximal accuracy we obtained did not exceed 10−7. However, the error behavior is preserved

and the magnitude is bounded under derivative operations performed on the SFNN model

which indicates that such models have the potential to fully replace current special function

implementations.

Acknowledgment

This research was supported in part by an appointment with the National Science Foun-

dation (NSF) Mathematical Sciences Graduate Internship (MSGI) Program sponsored by

the NSF Division of Mathematical Sciences. This program is administered by the Oak Ridge

Institute for Science and Education (ORISE) through an interagency agreement between the

U.S. Department of Energy (DOE) and NSF. ORISE is managed for DOE by ORAU. All

opinions expressed in this paper are the author’s and do not necessarily reflect the policies

and views of NSF, ORAU/ORISE, or DOE. Additionally, this research was supported by

the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing

104

Research under Contract No. DE-AC02-06CH11357 at Argonne National Laboratory.

Government License. The submitted manuscript has been created by UChicago Argonne,

LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department

of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonex-

clusive, irrevocable worldwide license in said article to reproduce, prepare derivative works,

distribute copies to the public, and perform publicly and display publicly, by or on behalf of

the Government.

Chapter 7

Conclusion and Future Work

We employed the multiscale Galerkin method to solve Volterra integral equations of the

second kind with a weakly singular kernel in chapter 2. Through leveraging the structure

of the Volterra integral operator and the vanishing moment properties of multiscale basis

functions, we eliminated a substantial portion of zero entries from the coefficient matrix of

the corresponding discrete system of equations. We then designed a truncation strategy

to compress the coefficient matrix for the remaining nonzero entries. To estimate the rest

of the nonzero entries, we introduced a numerical quadrature rule, with an error control

strategy designed to prevent the quadrature error from ruining the overall convergence order

of the multiscale Galerkin method. The numerical results demonstrate the robustness of this

approach.

In chapters 4 and 5, we propose neural network models to solve numerically the linear

Fredholm integral equations of the second kind with a continuous kernel. The cost function

is defined using the average residual of the Fredholm integral equation on some finite set of

points and is optimized by the Adam method. The numerical results confirm the potential

of applying this method in solving integral equations, but the accuracy of the neural network

is not as good as that of the traditional mathematical method. Specifically, the approach

discussed in chapter 4 is totally by learning, the solution of this method is restricted in

105

106

form w2(
1

1+e−(w1x+b1)
) + b2. Without a sufficient number of neurons in the hidden layer, this

form of function has limitations in approximating the exact solution. To overcome this

limitation, in chapter 5, we adopt a new approach that first restricts the solution space

to the polynomial space and designed a Collocation method-based neural network model.

The second approach is more efficient and accurate than the first one and is comparable to

traditional mathematical methods in some cases. However, the performance of the neural

network model highly depends on the learning algorithm, especially the choice of the cost

function. In our proposed approaches in chapter 4 and chapter 5, instead of minimizing the

difference between the exact and approximate solutions directly, we minimize the average

residue of the integral equation at the given input data. Hence, even if we find the minimum

of the cost function value, we are not guaranteed to be close to the desired solution. This

is a typical under-fitting problem that occurs in machine learning algorithms. In our future

work, we plan to explore how to improve the cost function of the neural network model to

enhance its performance. One possible approach is to use quadrature methods to discretize

the integral equation and solve it for a range of input values. The resulting output values

then can be used as the training data for the neural network. Another potential way to

achieve this is to impose additional restrictions on the cost function. Additionally, it would

be worthwhile to investigate combining the collocation method and the Galerkin method,

with the cost function being the residue of the Fredholm integral equation resulting from

both methods.

In the last chapter, we developed a neural network model to approximate special functions

with high accuracy, the main appeal of our proposed SFNN model is that it can provide

reliable derivative computations [47]. The error behavior is preserved and the magnitude is

bounded under derivative operations performed on the SFNN model which indicates that

such models have the potential to fully replace current special function implementations.

Bibliography

[1] Z. Chen, C. A. Micchelli, and Y. Xu, Multiscale methods for Fredholm integral equations.

Cambridge University Press, 2015, vol. 28.

[2] Y. Liu, L. Shen, Y. Xu, and H. Yang, “A collocation method solving integral equation

models for image restoration,” JIE, pp. A 28. 263–307. 10.1216, 2016.

[3] C. A. Micchelli, Y. Xu, and Y. Zhao, “Wavelet galerkin methods for second-kind integral

equations,” Journal of Computational and Applied Mathematics, vol. 86, no. 1, pp. 251–

270, 1997, dedicated to William B. Gragg on the ocassion of his 60th Birthday. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S037704279700160X

[4] B. R. Effati, S., “A neural network approach for solving fredholm integral equations of

the second kind,” Comput and Applic 21, p. 843–852, 2012.

[5] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary

and partial differential equations,” IEEE transactions on neural networks, vol. 9, no. 5,

pp. 987–1000, 1998.

[6] Y. Guan, T. Fang, and D. Zhang, “Solving fredholm integral equations using deep

learning,” Int. J. Appl. Comput, 2022.

[7] Y. Liu and O. Marin, “Special function neural network (sfnn) models,” in 2021 IEEE

International Conference on Cluster Computing (CLUSTER), 2021, pp. 680–685.

107

108

[8] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are uni-

versal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[9] A. Weinstein., “Review: Vito Volterra: Opere mathematiche. memorie e note,” Amer.

Math. Soc. 70 (3), pp. 335–337, 1964.

[10] C. Corduneanu and I. Sandberg, Volterra Equations and Applications (1st ed.), 2000.

[11] A.-M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications,

2011.

[12] V. K. Singh, R. K. Pandey, and O. P. Singh, “New stable numerical solutions of singular

integral equations of abel type by using normalized bernstein polynomials,” Applied

Mathematical Sciences, vol. 3, no. 5, pp. 241–255, 2009.

[13] C. Lubich, “Runge-kutta theory for volterra and abel integral equations of the second

kind,” Mathematics of Computation, vol. 41, no. 163, pp. 87–102, 1983.

[14] R. K. Miller and A. Feldstein, “Smoothness of solutions of volterra integral equations

with weakly singular kernels,” SIAM Journal on Mathematical Analysis, vol. 2, no. 2,

pp. 242–258, 1971. [Online]. Available: https://doi.org/10.1137/0502022

[15] A. Friedman and M. Shinbrot, “Volterra integral equations in banach space,”

Transactions of the American Mathematical Society, vol. 126, no. 1, pp. 131–179, 1967.

[Online]. Available: http://www.jstor.org/stable/1994417

[16] G. Gripenberg, “On a nonlinear volterra integral equation in a banach space,” Journal

of Mathematical Analysis and Applications, vol. 66, no. 1, pp. 207–219, 1978. [Online].

Available: https://www.sciencedirect.com/science/article/pii/0022247X78902780

[17] K. Maleknejad and A. Ostadi, “Numerical solution of system of volterra integral equa-

tions with weakly singular kernels and its convergence analysis,” Applied Numerical

Mathematics, vol. 115, 01 2017.

109

[18] E. Shoukralla, B. Ahmed, M. Sayed, and A. Saeed, “Interpolation method for

solving volterra integral equations with weakly singular kernel using an advanced

barycentric lagrange formula,” Ain Shams Engineering Journal, vol. 13, no. 5, p.

101743, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S2090447922000545

[19] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representa-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7,

pp. 674–693, 1989.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

[21] C. Bishop, “Mixture density networks,” Aston University, WorkingPaper, 1994.

[22] K. P. Murphy, Machine learning : a probabilistic perspective.

Cambridge, Mass. [u.a.]: MIT Press, 2013. [Online]. Available:

https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/

dp/0262018020/ref=sr 1 2?ie=UTF8&qid=1336857747&sr=8-2

[23] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage

architecture for object recognition?” in 2009 IEEE 12th International Conference on

Computer Vision, ICCV 2009, ser. Proceedings of the IEEE International Conference

on Computer Vision, 2009, pp. 2146–2153, copyright: Copyright 2010 Elsevier B.V.,

All rights reserved.; 12th International Conference on Computer Vision, ICCV 2009 ;

Conference date: 29-09-2009 Through 02-10-2009.

[24] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-

chines,” in International Conference on Machine Learning, 2010.

[25] H. G. Rumelhart, D. and R. Williams, “Learning representations by back-propagating

errors,” Nature, pp. 323, 533–536. 13, 17, 22, 200, 221, 367,472,477, 1986a.

110

[26] L. Bottou, “Online algorithms and stochastic approximations,” in Online Learning and

Neural Networks, D. Saad, Ed. Cambridge, UK: Cambridge University Press, 1998,

revised, oct 2012. [Online]. Available: http://leon.bottou.org/papers/bottou-98x

[27] B. Polyak, “Some methods of speeding up the convergence of iteration methods,”

USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp.

1–17, 1964. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

0041555364901375

[28] Q. Qiu, “Introduction of machine learning,” 2021.

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning

and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. 61,

pp. 2121–2159, 2011. [Online]. Available: http://jmlr.org/papers/v12/duchi11a.html

[30] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio, “Rmsprop and equilibrated

adaptive learning rates for non-convex optimization.” CoRR, vol. abs/1502.04390,

2015. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1502.html#

DauphinVCB15

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,

2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[32] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in Proceedings of the thirteenth international conference on artificial

intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010, pp.

249–256.

111

[33] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. [Online].

Available: https://www.sciencedirect.com/science/article/pii/0893608089900208

[34] G. V. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathemat-

ics of Control, Signals and Systems, vol. 2, pp. 303–314, 1989.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[36] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,

M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del

Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,

W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with

NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:

https://doi.org/10.1038/s41586-020-2649-2

[37] N. Engheta, W. Murphy, V. Rokhlin, and M. Vassiliou, “The fast multipole method

(fmm) for electromagnetic scattering problems,” IEEE Transactions on Antennas and

Propagation, vol. 40, no. 6, pp. 634–641, 1992.

[38] J. Kolafa and J. W. Perram, “Cutoff errors in the ewald summation formulae for

point charge systems,” Molecular Simulation, vol. 9, no. 5, pp. 351–368, 1992. [Online].

Available: https://doi.org/10.1080/08927029208049126

[39] M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions with formulas,

graphs, and mathematical table,” in US Department of Commerce. National Bureau

of Standards Applied Mathematics series 55, 1965.

[40] W. Cody, “The construction of numerical subroutine libraries,” SIAM Review, vol. 16,

no. 1, pp. 36–46, 1974.

112

[41] L. W. Fullerton, “Portable special function routines,” in Portability of Numerical Soft-

ware. Springer, 1977, pp. 452–483.

[42] D. Amos, “Algorithm 644: A portable package for bessel functions of a complex argu-

ment and nonnegative order,” ACM Transactions on Mathematical Software (TOMS),

vol. 12, no. 3, pp. 265–273, 1986.

[43] “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release 1.1.2

of 2021-06-15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.

Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain,

eds. [Online]. Available: http://dlmf.nist.gov/

[44] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707,

2019.

[45] M. Ngom and O. Marin, “Fourier neural networks as function approximators and differ-

ential equation solvers,” Statistical Analysis and Data Mining: The ASA Data Science

Journal, 2020.

[46] G. Nemes, “Error bounds for the large-argument asymptotic expansions of the hankel

and bessel functions,” Acta Applicandae Mathematicae, vol. 150, no. 1, pp. 141–177,

2017.

[47] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an

unknown mapping and its derivatives using multilayer feedforward networks,”

Neural Networks, vol. 3, no. 5, pp. 551–560, 1990. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/0893608090900056

Biographical Data

NAME OF AUTHOR: Yuzhen Liu

PLACE OF BIRTH: Jining, Shandong, China

DATE OF BIRTH: September 4, 1988

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

Henan University of Technology, Zhengzhou, Henan, China

Syracuse University, Syracuse, New York, USA

Sun Yat-sen University, Guangzhou, Guangdong, China

DEGREES AWARDED:

B.S. Information and Computing Science, Henan University of Technology, 2010

M.S. Information and Computing Science, Sun Yat-sen University, 2012

PhD. Information and Computing Science, Sun Yat-sen University, 2016

M.S. Mathematics, Syracuse University, 2021

113

	Numerical Methods for Integral Equations
	Recommended Citation

	tmp.1692980282.pdf.ks00r

