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Abstract

Thin films can undergo large amplitude nonlinear deformation even under a small applied

force which makes predicting their behavior rather challenging. This dissertation focuses on

two phenomena in thin films: the morphological transition from sharp to smooth microstruc-

tures in geometrically-confined sheets, and a novel locomotion behavior of a thin floating film

placed on an interface with a curvature gradient.

In the first portion of the thesis, we use inflated membranes as model system to un-

derstand morphological transitions in confined films. We have developed methods to make

air-tight membranes out of sheets of materials with varying Young’s modulus and thickness.

We have observed that increasing the internal pressure in the membranes causes some sharp-

edged diamond-like structures called crumples to form. On further increase in pressure, these

crumples transition to smooth periodic wrinkles. We have measured this transition pressure

across a wide range of materials and geometries. We collect our data, as well as data from

other experiments on interfacial polymer films, in an empirical phase diagram for the transi-

tion from wrinkles to crumples. We further study the topography of the crumpling pattern

on the surface of the membrane and its relation to d-cones.

Small-scale structures like wrinkles and crumples can enable macroscopic shape change

of an entire sheet. In the second part of this thesis, we explore how shape changes of a film

(through small-scale wrinkling) can enable a film to feel body forces when placed on a liquid

with a non-uniform curvature. This study is motivated by examples from nature: arthropod

species that exploit the surface tension of water for aquatic locomotion. Current literature

addresses stiff or finitely bendable materials that retain their shape on liquid meniscus where

the fluid adjusts its interface to accommodate them via an interplay of surface tension and

buoyancy or gravity. We introduce an unexplored setting where thin monotonous film that

can easily deform by capillary forces is placed on a positively curved liquid meniscus. A thin

film can conform to a curved meniscus by forming small-amplitude wrinkles. Once released,

it sets in motion towards the flat center while returning to its symmetrical state. We are able



to identify the complex mechanics of propulsion experienced by thin film through numerical

simulations using Surface Evolver. Our results give a closer look at the velocity of thin film

and energetics of the system and its dependence on the position of the sheet on the interface.

Our finding curiously shows that an unstretchable film progresses 10 times faster than the

same film with finite stretching indicating the importance of elasticity in such systems.
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Figure 1: Pattern formation in thin films (a) Gyrification in a mechanical model of a
brain [2]. (b) Wrinkle patterns in deployable weather balloons [3]. (c) A partly bitten off
apple left for a day starts wrinkling around the bitten off edge. [4] (d) A crumpled graphene
film.[5]

1 Introduction

A wide variety of surfaces in nature are wrinkled, crumpled, or folded (Figure 1). These

patterns can have far-reaching effects: folds or ridges in the brain [1, 2] can increase the

neuron density, and wrinkles in leaves can change their wetting properties. The variety of

morphologies of a compressed film is quite large: they can be smooth and undulating, sharp

and focused, and this buckling can occur on small or large scales.

When we hold a piece of paper at one of its corner, we can see that it flops down

instead of remaining in the same plane. What if we now roll the paper and then hold it

at the same edge? We will see that that the paper now remains stiff and in plane. This

is because the paper has used up its free energy by folding. Further out of plane bending

will need the paper to stretch or compress which the paper think is costly, as bending in

two orthogonal directions must cause in-plane strains. This qualitatively shows that paper
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(thin film) prefers to bend rather than stretch as the latter costs significantly more energy.

Such bending deformations can lead to large-amplitude buckled shapes, even under a small

applied forces, which can make predicting their behavior challenging.

Thin films have shown several applications over the last decade in solar panels [6] for

energy generation to drug delivery[7]. Sharp, localized deformations create points of weakness

that can cause thin structures to fail. Understanding defects on thin films and predicting their

occurrences can not only prevent accidents but also help in developing more cost-effective

and long- lasting designs. On the flip side, buckling can also be beneficial for you. These

features can be used to effortlessly create texture over large surfaces. Studies have shown

that rough microstructures on (biomimetic) implant surface can promote biocompatibility

by promoting ingrowth of tissues.

Here we will study how membranes transition from sharp localized structures to smooth

undulations, when they are confined in various geometries and subjected to tensile stresses.

Then, we will study how a thin film floating on an interface responds to a mismatch in

geometries between the sheet and the surface. We will explore both its dynamic and static

characteristics in this setting.

1.0.1 What is "Wrinkling"?

Wrinkling is a mechanical instability that can be seen in a wide range of materials, from

a half eaten apple (see Figure 1c), to hanging curtains, to suspended graphene sheets [9].

They are just one example of a type of complex deformation whose behavior is governed by

a set of nonlinear partial differential equations, known as the Föppl–von Karman equations.

When a thin stiff film resting on a soft substrate is compressed, wrinkles occur. The

film would prefer a large wavelength buckling mode to minimize the elastic cost of bending.

But, the substrate under the film would prefer small-wavelength deformations, to minimize

its energy (for a solid foundation, its elastic energy; for a liquid substrate, its gravitational

potential energy). Thus, a balance needs to be found between these two extremes so that
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Figure 2: Wrinkling in various systems (a) Wrinkling occurs in nature in many in-
stances like the ones seen in Shar Pei dogs. [8] (b) Scanning Electron Microscope of wrinkled
graphene, compared with wrinkle patterns on a curtain [9].

the total energy is minimized. First we denote the height of the film as the given function:

h(x) = A sin

(
2πx

λ

)
(1)

Where, A is the amplitude and λ is the wavelength of the undulations.

The gravitation and bending energy can be denoted by:

Ug =
1

2
K

∫ ∞

−∞
h2(x)dx

∫ w

0

dy (2)

Ub =
1

2
B

∫ ∞

−∞

(
∂2

∂x2
h(x)

)2

dx

∫ w

0

dy (3)

where K denotes substrate stiffness and B corresponds to the bending modulus. Here w

denotes the width of the film.

On substituting the height function in the above integral we obtain,

Ug =
1

2
KA2w

∫ ∞

−∞
sin2

(
2πx

λ

)
dx (4)
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Ub =
1

2
BA2w

(
2π

λ

)4 ∫ ∞

−∞
sin2

(
2πx

λ

)
dx (5)

Thus the total energy is given by,

U = Ug + Ub =
1

2
KA2wI +

1

2
BA2wI

(
2π

λ

)4

(6)

Where, I is the integral.

Here we will assume that the amplitude is a dependent variable and is directly propor-

tional to the wavelength of the film. (A = Cλ) The balance between the substrate stiffness

and bending energies leads to the selection of wrinkles of an intermediate wavelength λ [10].

Thus in order to minimize the energy we take the partial derivative of eqn. 6 with respect

to λ
∂

∂λ
U =

∂

∂λ

(
1

2
KC2λ2wI +

1

2
BC2λ2wI

(
2π

λ

)4
)

= 0 (7)

Thus computing the above equation gives,

λ = 2π

(
B

k

) 1
4

(8)

1.0.2 From smooth wrinkles to sharp “crumples”

Unwrapping a candy wrapper or unravelling a crushed piece of paper reveals a vibrant and

complex surface with infinite configurations of disorder. These complex systems primarily

focus elastic energy at a point called d-cones or along a line called ridge. Such stress focusing

singularities can occur in systems spanning a wide range of length-scales: One can find

such structures on 2D graphene sheets to factory based wine tanks. Depending on the

circumstance they appear they can be blessing or nuisance. Crumpling in graphene sheet

promotes increase in surface area, high conductivity as well as stability against graphitization

[11] in comparison to its smooth counterpart. However, crumpling in the body of crashed

car or on wine tanks after earthquake [12] can reduce its longevity and become the origin of
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Figure 3: Crumpling in various systems (a) Crumples form on Candy wrappers by
twisting a flat sheet around the candy. (b) Crumpling in stainless steel wine tank caused by
earthquake. [12]

wear and tear. Thus, understanding them can be very beneficial to create or prevent them.

Unlike wrinkles, crumples are sharp structures that are localized over a small portion

of the surface. They are not periodic like wrinkles. These kinds of non-linear deformations

are still not very well understood.

1.0.2.1 D-cones

A developable cone (or d-cone) is a cone-like surface that is isometric to a plane almost every-

where, except the tip of the cone where a region of high curvature exists. This high-curvature

region has a large elastic energy density and large curvatures and strains. Experimentally,

the size of this “core” has been found to grow with the thickness of the material.

D-cones can be easily constructed by taking a circular sheet [13] that is forced axially

into a rigid cylindrical hoop of diameter smaller than the sheet. Figure 6 shows the formation

of d-cone.

The energy of the d-cone is composed of two parts: A bending contribution in the outer

region of the d-cone and stretching and bending region around the tip. [14] The bending
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Figure 4: Developable cone: An isolated sharp point on a crushed paper can be thought
of as a d-cone, constructed by indenting the center of a circular sheet resting on a hoop.

energy of the outer region is given by,

Ub ∼
∫ R

rc

Ebκ
2ρdρ ,

where B is the bending modulus given by

Eb =
Eh3

12(1− ν2)
,

and κ ∼ ϵ/ρ is the mean curvature of the cone. Substituting the above in bending energy

equation gives,

Ub ∼ ϵ2Eb log
R

rc

where rc is the cutoff radius.

The energy for the outer region of the cone [15] is given in polar coordinate terms as,

Eκ =
K

2

∫ π

−π

(ϕ+ ϕ”)2

R2
R
√

cos2 ϕ+ ϕ′2dθ
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where the radius of curvature κ = (ϕ+ϕ”)
R

There are other similar energy estimation for the

region apart from the core, one of which uses the theory of elasticity [13]. The Lagrange

functional is given by,

L(ψ) = Ub + λ

∫ π

−π

[1− (1 + ψ2 + ψ′2)
1
2

1 + ψ′2 ]dθ +

∫ π

−π

b(θ)(ϵ− ψ)dθ

Here ψ(θ) is the tangent between the generator of the surface and the horizontal. Here the

bending energy is given by,

Ub = (Eb/2)ln(Rp/Rc)

∫ π

−π

(ψ + ψ”)2(1 + ψ2)2

(1 + ψ2 + ψ′2)
5
2

dθ

where Rp is the radius of the sheet, Rc is the core size radius and Eb is the bending stiffness.

The second term corresponds to the inextensibility constraint and λ corresponds to the hoop

stress. The third term enforces the requirement that the deformed sheet lies in a perfect

cone z = ρϵ and ϵ = d
R
. When this functional is numerically computed it yields a solution

everywhere except for the tip of the cone. The figure 1 shows the numerically computed ideal

conical dislocation. They also estimates the size of the core Rc which is a balance between

the bending and stretching energy. If the core area is given by ∆S, the stretching energy in

the core is given by,

Ub ≈ Ebκ
2∆S

and the stretching energy is given by,

Us ≈ Esγ
2∆S

where γ is the in-plane strain and Es is the stretching stiffness. Balancing the energy yields

a scaling law,

Rc ≈
(
Eb

Es

) 1
6

ϵ−pR2/3; (9)
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where p = 1/3 when ϵ≪ 1 and p = 1/2 for ϵ ≈ O(1)

Here κ [14] is the mean curvature of the core. In core, there are two regions where the effect

of plasticity and stretching needs to be considered.The first region is the long scar and the

second part is near the tip. They find that the energy due to stretching is given by,

Us ∼ Ehϵ4r2c .

Minimizing the total energy gives a scaling for the core size as rc ∼ h/ϵ.

Liang et al. [16] the numerical analysis of the core yields scaling for the core radius to

be,

Rc ≈ h
1
3R

2
3

Their numerical test corroborates the prediction made by Cerda et al. [14]. In the coming

sections, I will explore the stress-focused structures in my inflated membrane system with

the scaling parameter of the core of the d-cone to investigate its commonality at large

confinement.

1.1 Interfacial films

Thin films when placed on a liquid interface can show various interesting features. The

geometry of the film along with the applied stress induces it to form wrinkles, fold or buckle

into sharp crumples depending on the more energetically favourable state.

1.1.1 Capillarity

Capillarity [17] is a category of liquid phenomena at small scales, where surface tension plays

a major role. We have noticed how liquid meniscus takes various shape depending on the

adhesion between the surface around the liquid and the liquid itself. Surface tension also

plays a very important factor in these interactions.

Similarly, we can overfill a dish with any liquid and it is held together by the dominance

8



Figure 5: Cheerios effect: Floating soap bubbles on water tend to clump around the rim
of the dish.

of surface tension until a certain volume. This liquid typically has convex sides extending to

the center up to a certain capillary length depending on the interplay of surface tension and

gravity. The center of such liquid drop is typically flat.

1.1.2 Sheet on Drop

One interesting phenomenon that we observe on interface system is when we float a few light

objects on water, they tend to collect at the center. We can see this kind of reflection in

our day to day life. When we leave last few pieces of Cheerios in our milk bowl, they tend
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Figure 6: Partly submerged spherical object: The shaded area represents weight of the
displaced liquid equivalent to the buoyant force on the object [18].

to clump up instead of being dispersed in the liquid. This is a surface phenomenon and is

called Cheerios effect.

When heavy objects like coins are placed on a liquid interface, they would like to break

the surface and fall through the liquid, but the surface tension of water can sometimes

prevent them from breaking the surface. Hence the coins remain afloat. However, the weight

of coins still creates a dip around the surface of the coin. These dips have heights lower than

the surface. So all the coins tend to conglomerate to essentially find the lowest heights on

the liquid surface. Similarly air bubble tend to rise up to the meniscus to escape the surface

since buoyant force forces the bubbles to leave the surface whereas surface tension prevent

the surface from breaking.

The interface and the interfacial slope can be defined by the equation h(r) and z′c

respectively and can be calculated through the vertical force balance of an isolated floating

sphere as seen in Figure 6.

The angle ϕc can be written in terms of the slope of the interfacial slope z′c as:

ϕc = π − θ + arctan z′c

In order to stay afloat, the weight of the sphere (4
3
πρsgR

3) needs to counterbalanced by the

buoyant force of the displaced liquid (shown in Fig 6) and the vertical component of the

surface tension along the contact region acting upward. The vertical surface tension (S⊥) is
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given by,

S⊥ = 2πR sinϕcγ sin (arctan z
′c)

arctan z′c =
z′c

(1 + z′c)
1
2

Simplifying,

S⊥ = 2πR sinϕcγ sin
z′c

(1 + z′c)
1
2

The buoyant force (FB)is given by,

FB = πρgR3

(
zc
R

sinϕc +
2

3
− cosϕc +

1

3
cos3 ϕc

)

Balancing the weight (W) of the floating object with S ⊥ and FB gives,

W = S⊥ + FB

4

3
πρsgR

3 = 2πR sinϕcγ sin
z′c

(1 + z′c)
1
2

+ πρgR3

(
zc
R

sinϕc +
2

3
− cosϕc +

1

3
cos3 ϕc

)
Substituting ϕc = π − θ + arctan z′c, and keeping the linear terms to z′c,

z′c sinϕc = B

(
2D − 1

3
− 1

2
cos θ +

1

6
cos3 θ

)
≡ BΣ (10)

where B is Bond number, D is interfacial density ratio. B ≡ R2

L2
c

and D = ρs
ρ

While the Cheerios effect in stiff objects is well studied, there are no physical framework

to understand how a thin film will react under same setting. Thin films are highly bendable

yet unstretchable materials. When thin film is typically placed on geometrically mismatched

liquid interface, they tend to acclimate with the surface by forming smooth undulating

features called wrinkles to relieve the stress from being on curvature mismatched surface

since it has very low bending cost unlike a stiff object placed on a interface that pulls up

liquid to conform with the surface since it is energetically more costly to bend. This system
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can be studied using the overfilled petri dish as explained in 1.1.3.

1.1.3 Computational approach to curvature-induced propulsion:

To investigate this phenomenon in depth, we desire a computational method that can calcu-

late the energy of the system in its different configurations. A simulation of the equilibrium

shape of a wrinkled sheet on a droplet can give us access to system energies that are not

readily measured in experiments. Furthermore, a simulation can allow us to change all the

relevant parameters in the problem, including surface tension, liquid density, and geometric

parameters such as the size of the sheet, size of the dish, and volume of water in the dish.

To perform such simulations, we use Surface Evolver, which is a C based software that

examine liquid surfaces created as simpilical complex that is governed by surface energy and

gravitational energy. It can also model some thin elastic objects through the incorporation of

elastic stretching energies. It uses optimization technique called gradient descent to optimize

the total energy of the system. In order to optimize a system through Surface Evolver, we

create a file containing the initial vertices, edges and body of the system along with the

iteration steps and constraints that needs to be applied to the system.

2 Stress focusing in inflated membranes

This chapter is based on a paper published in Physical Review X 10, 021008(2020)

with coauthors Y. Timounay, J. Stelzel, Z. Schrecengost, M. Ripp, and J. Paulsen [19].

My contribution was developing the inflated membrane system that helped us generalize the

wrinkle-to-crumple transition to a broader range of settings. I measured the morphology of

the crumpled phase in this system, and the threshold parameters for crumple formation. I

was also a direct mentor to coauthor J. Stelzel (REU student in summer 2018).
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2.1 Popular Summary

As our birthday approaches, don’t we start panicking about that one new wrinkle that

has popped up on our forehead? Aging and wrinkling are inevitable. Now, what about the

crumpled piece of paper you tossed in the trash? Are those crumples the same as the wrinkles

on your skin? You might be tempted to answer that these features are not very similar and

probably dependent on the material. But what if I told you that my research shows how

to morph sharp crumples into smooth wrinkles and back, demonstrating that these patterns

are far more universal than ever thought before. The inspiration for my experiment came

from what we usually find in our birthday parties- Mylar balloons. In the lab, we take

a plastic sheet and make balloon out of them by heat sealing the sides. When we slowly

inflate them with air, we observe that at high pressure, the bag tucks extra material into

smooth undulations, called “wrinkles”, whereas at a particular lower internal pressure, these

regions transition into sharper “crumples”. But why are we excited about this phenomenon?

To answer this, let’s back up 10 years, to the first time the wrinkle-to-crumple transition

was witnessed in the lab [20, 21]. Researchers saw this transition in an experiment where

a thin film was placed on a spherical water droplet. But it was not clear how general the

wrinkle-to-crumple transition could be. For instance, could it occur if the sheet was draped

in a saddle shape, or formed into a cylinder? Could it occur on larger-scale objects, much

larger than a droplet of water? Could it occur in soft materials like rubber, as well as stiff

materials like mylar? These questions had remained open for years, until my results gave

a resounding ‘yes’. In other words, I can now claim that the wrinkles on our skin and the

sharp ridges in a crushed wad of paper are fundamentally linked.

2.2 Introduction

When unrolling plastic wrap, handling a large flimsy poster, or watching a fluttering flag,

we witness a multitude of deformations available to thin sheets. In some cases, the shapes
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are smooth and diffuse like the undulating edge of a flower [22, 23, 24], while in others they

are sharp and localized like the ridges and corners in a crumpled piece of paper [25, 26,

27, 28]. Although much progress has been made to describe a wide range of deformations

and patterns, a general understanding of the transition from smooth to sharp topographies

under featureless confinement remains a major challenge. Such an understanding promises

broad practical implications from controlling surface patterning through buckling [29, 30]

to anticipating material degradation due to the focusing of stresses at elastic singularities

[31, 32, 33].

Many of these rich and complex morphologies stem from a basic consideration: A suf-

ficiently thin sheet prefers to minimize costly stretching deformations in favor of low-energy

bending. For sheets constrained to planar or gently curved topographies, wrinkles are an

effective method for relaxing compressive stresses while minimizing out-of-plane displace-

ments [34, 10, 35, 36]. Wrinkles can even allow an initially planar sheet to hug the con-

tour of a doubly-curved geometry, such as a sphere or saddle, with negligible stretching

[37, 38, 39, 40, 41, 42]. Yet, under sufficiently strong confinement, a sheet may concen-

trate strain energy along localized ridges or singular vertices to lower the total elastic energy

[43, 26, 44]. In this article we study the transition from smooth to sharp deformations in

general geometries, and we find a common response whereby wrinkles are replaced at large

imposed curvatures by a generic buckling motif, termed “crumples”.

The realization that both wrinkles and crumples can form sequentially under gradual

confinement was the outcome of recent work by King et al. [20, 21]. In their experiments,

an initially-flat circular sheet is placed on a spherical water meniscus. As the curvature of

the interface is gradually increased, a wrinkled state gives way to a different deformation

mode with a finite number of stress-focusing patterns (Figure 7a). This progression reveals

two distinct symmetry-breaking transformations: First, wrinkles break the axial symmetry

of the deformation field, and crumples subsequently break the axial symmetry of the stress

field [20]. Yet, despite the practical importance and fundamental nature of the crumpling
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transition, a predictive understanding has remained out of reach.

Here we study the wrinkle-to-crumple transition in a set of model experiments on macro-

scopic inflated membranes. To provide a broader context for my experiments, I also report

some of the experimental results by my coauthors on ultrathin polymer films. First, we show

that this transition appears to be generic: We observe a strikingly similar morphological tran-

sition in hyperbolic and cylindrical geometries. Moreover, by isolating the wrinkle-to-crumple

transition in a membrane inflated with gas, we show that the phenomenon is scale-free, and

we identify robust morphological features of the crumpled phase that are shared across a

diverse range of setups.

We then characterize the crumpling threshold. We cross this transition by varying

the curvature along the wrinkle crests in the interfacial films, and by modifying the tensile

stresses along wrinkles in the inflated membranes. We generalize an empirical threshold from

previous work [20] to give an approximate criteria for the transition, and we show that a full

account of the crumpling threshold must also include the fractional in-plane compression.

Wrinkles, folds, creases, ridges, blisters, and other buckled microstructures have been

studied extensively in recent years [45, 46, 47, 48, 49, 29, 30]. Crumple formation and

evolution have not been documented to a similar extent and are still poorly understood.

Our experimental measurements and phenomenological description provide a foothold for a

theoretical understanding of this ubiquitous transition.

2.3 Experimental Systems

The wrinkle-to-crumple transition was first reported in a setup where a thin circular sheet

rests on a spherical water droplet. Two other systems were developed by Monica Ripp and

Yousra Timounay, in geometries that differ from the spherical setup were studied. Polymer

films of thickness 40 < t < 630 nm and Young’s modulus E = 3.4 GPa by spin-coating

solutions of polystyrene (Mn = 99000, Mw = 105500, Polymer Source) in toluene (99.9 %,

Fisher Scientific) onto glass substrates, following Ref. [50]. The films were cut into various
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Figure 7: The crumple-to-wrinkle transition is seen in various geometries, bound-
ary conditions, and system sizes. The top row of this figure shows schematics of each
setup considered in this study with the Gaussian curvature in the area relevant to the tran-
sition marked underneath each schematic. (a) An intrinsically flat circular PS sheet (E=3.4
GPa) of with radius W = 1.5mm and thickness t = 77 nm on a liquid meniscus forms
crumples when the droplet is highly curved. (b) a PS sheet floating on a liquid bath forms
crumples when indented past a certain threshold depth. This image shows a film with W
= 11 mm and t = 436 nm. (c) The central portion of a rectangular PS sheet with t = 157
nm, width W = 3.3 mm, and length 9.7 mm on a cylindrical water meniscus compressed
uniaxially between two barriers. Wrinkles form whe the curvature is low and crumples form
when the curvature is increased along the wrinkles.(d) A square polyethylene bag (t = 102
µm, E = 210 MPa) forms wrinkles at high internal pressure, P. Crumples appear at lower
pressure. The bag is W = 20 cm wide when deflated. [19]
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shapes and float them onto deionized water with surface tension γ = 72 mN/m. These

experiments fall in a regime characterized by weak tension, γ/Y < 10−3, and negligible

bending stiffness, characterized by large “bendability” [35], ϵ1 = γW 2/B > 104, where Y =

Et and B = Et3/[12(1 − Λ2)] are the stretching and bending moduli,respectively, with

Λ the Poisson’s ratio. Such films can withstand only vanishingly small levels of in-plane

compression before they buckle out of plane. They indented a circular film of radius 11 < W

< 44 mm by a vertical distance δ using a spherical probe. At a threshold δ, wrinkles form

within a narrow annulus due to the azimuthal compression that would have been induced

by the contraction of circles. The wrinkled region grows with increasing δ until it covers the

sheet [51]. Beyond another threshold, some wrinkles increase in amplitude and develop into

crumples, while the amplitude in the intervening regions decreases. The transition resembles

the response in Figure 7(a), despite the markedly different geometry and loading.

Figures 7(a) and 7(b) leave open the possibility that geometric incompatibility plays an

important role in crumple formation. However, a crumpling transition can also be observed

in a cylindrical geometry, where the Gaussian curvature of the gross shape is conserved

while a principal curvature is made to vary. The buckled sheet forms parallel wrinkles that

transition into crumples beyond a threshold meniscus curvature [Figure 7(c)].

To probe the generality of this transition further, we perform experiments where we

quasistatically inflate sealed plastic membranes while measuring their internal pressure [Fig-

ure 7(d)]. Square membranes of width 10 < W < 31 cm and thickness 15 < t < 222 µm

are made by folding a rectangular sheet in half and sealing the three open sides. We use a

variety of materials, including low-density polyethylene, perfluoroalkoxy alkane (PFA), poly-

olefin shrink film (SYTEC MVP), aluminized Mylar, and natural rubber, in order to vary

the Young’s modulus over a wide range (2.0 < E < 1500 MPa), which we measure using a

tensile tester (TestResources Model 100P). This system and its findings will be elucidated

in the following sections.
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2.4 Experimental setup

2.4.1 Preliminary setup

Figure 8: Schematic graph showing the preliminary setup for performing the experiment.

In the nascent stage of the inflated membrane experiment, we had constructed a setup

with the membrane connected to the manometer which is a fluid filled U-tube that measures

the pressure using the liquid displaced from its original position. The other junction of

this valve was connected to the air inflow using a pressurized air can. However, this setup

had its drawbacks: first, recording the data for pressure in the membrane could have some

discrepancy as the pressure that was being recorded could be the pressure of the in-flowing

air from the can rather than the membranes, second, even though manometer itself gives

quite accurate measurement, the scale which measured the water displacement had 1 mm

as its smallest division making it difficult to record the smallest changes in pressure and

finally, there were chances of water overflow, if the membrane was not inflated slowly and

carefully. Hence the measurements had room for improvement. Therefore, we decided to

take a different approach using pressure gauge for higher accuracy in measurement.
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2.4.2 Pressure gauge

Figure 9: Pressure gauge calibration: (a) Measuring the pressure through pressure
gauge and manometer simultaneously. (b) Graph comparing the pressure data obtained
from manometer and the pressure gauge. Schematic graph comparing the pressure data
obtained from manometer and the pressure gauge.

Pressure gauge measure the force a fluid (liquid or gas) exerts per unit area. Pressure

gauges can be much more precise in it’s measurement in addition to being digital. Thus

we remodelled our setup with pressure gauge instead of manometer. But, before we start

discussing the final setup we need to verify if the pressure gauge used for this experiment is

giving us accurate results. We had previously developed a manometer setup to measure the

pressure. In order to verify the credibility of the pressure gauge data, we connected both

the manomemeter and pressure gauge to the plastic membrane and record the pressure. We

plot these data in x-y axis respectively (Figure 9). The slope obtained from the graph is

1.01. Thus, the two methods give consistent results.
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Figure 10: Inflating membrane experiment is recorded using DSLR camera with the corre-
sponding pressure measured using pressure gauge

2.4.3 Final Setup

We construct a membrane with myriads of materials (discussed in table 1) with two open-

ings. One of the opening is connected to the pressurized air cans supplying a colourless gas

to inflate the bag. The other opening is connected to the pressure gauge measuring instan-

taneous pressure of the inflating membrane. However, the pressure gauge is separated from

the rest of the setup so that the video can capture the transition in the bags as well as the

pressure corresponding to those changes. The camera is mounted on a tripod in front of this

setup.

We record a video of this setup from the point the bag starts inflating. These membranes

on inflating show crumples that transition to wrinkles. We study the crumples observed on

the side of the bag with non-sealing boundary. On inflating the membrane further, at certain

pressure these crumples transition to smooth periodic wrinkles.
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Figure 11: Thin film mounted between the clamps of the tensile testing instrument.

2.4.4 Tensile Testing

Tensile tester is an electromechanical machine that is implemented to determine material

strength and deformation behaviour until break. It is controlled by testing software in which

we input the machine settings and the parameters of the sample. Once we have the system

ready, we start recording the force applied and elongation of the specimen. We are measuring

the Young’s Modulus of the materials used for our system.

The materials used for constructing the membranes for our experiment has been carefully

studied for their Young’s modulus through tensile testing machine since it is an important

parameter for our experiment. At first, we prepare the samples by cutting rectangular strips

of respective materials of dimension 3" × 0.5" with excess 0.5" marked on either side of the

strip such that those demarcations can serve as guidelines for mounting the strip between

the clamps of tensile testing machine. We have collected samples by cutting rectangular
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Figure 12: Determining Young’s Modulus: The stress over strain graph for LDPE
sheets of 0.006" thick. Multiple film strips were measured for its two orientation. The region
between the red lines is used to determine the Young’s Modulus of the material.

strip in both lateral and perpendicular orientation from the roll such that we can verify if

the sheets have any bi-axial material properties. We have repeated this experiment for all

the materials that have been used to construct the membranes. The stress and strain data

for each materials are plotted. For precise value of Young’s modulus, we also measured the

thickness of the sheets using screw gauge with least count 0.0001".

Since the Young’s modulus is only relevant in Hookean regime, we have calculated

Young’s modulus in the region where stress is proportional to strain as shown in Figure 12

(within the red line). The Young’s modulus and the thickness of all the measured films are

shown in Table 1.

2.4.5 Membrane Construction

The materials in Table 1 come as sheets. These sheets are then used to carefully develop

membranes of specific sizes using various methods. The primary method that has been used

especially to make LDPE bags of varying thickness is, using heat impulse sealer shown in

figure 13.

Heat impulse sealer sends a pulse of electricity that provides high level of heat for a
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Material Young’s modulus(MPa) Thickness(µm )

Low Density Polyethylene(Transparent) 152 52.4
Low Density Polyethylene(Transparent) 183 103
Low Density Polyethylene(Transparent) 237 157

Low Density Polyethylene(Black) 297 49
Low Density Polyethylene(Black) 208 102

Mylar 1500 24.1
Perfluroalkoxy 391 27.4

Polyolefin 164 15.6
Polyolefin 170 18.1

Natural Rubber 2.05 163
Natural Rubber 2.18 222

Table 1: Materials used to construct membranes

few seconds when the handle is pressed down. The heat can be adjusted by the knob on

it. We found that keeping it at 5 while making LDPE membranes seal them optimally and

give them clean seams. However, for the Perfluroalkoxy(CHTP) membranes even after heat

sealing the seams, typically have some leaks. Hence, the seams are reinforced by applying

the epoxy glue and hot glue gun mixture. However, for materials like natural rubber we

need a different approach since the heat sealer has no effect on the sheet due to high melting

point of natural rubber. The membranes from natural rubber are developed by sealing the

edges with duct tape. If it shows any leak under inspection they are sealed with a hot glue

gun. The bags also need to have two openings- one for inflowing air in the bags and the

other for connecting it to the pressure gauge to measure the instantaneous pressure.

For the LDPE membranes, these openings can be sealed with hot glue gun. However

for the CHTP bags this need to glue with epoxy glue as well as a hot glue gun, due to the

surface properties of these sheets.

The membrane size for all these materials varies between 10 and 50 cm. The shape of

the membranes were also varied. We developed square, rectangle, tetrahedral, turnover and

empanada shaped membranes.
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Figure 13: (a)Heat impulse sealer. (b)Heat impulse sealer with a heat sealed LDPE mem-
brane.

Figure 14: Natural rubber square membrane of 0.006" thickness.

2.4.6 3D Scanner Setup

We used Next Engine 3D scanner to scan the surface of the membranes while under stress.

The 3D scanner can capture an object with multi-laser precision. The acute precision in

capturing the surface is very important for our system since we are looking closely at the

geometric frustrations on the membrane surface. Studying the topography of these mi-
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crostructure can reveal the physics behind these deformations. But before we talk about

our setup we had to make sure that the result from 3D scanner is precise. Hence, we first

scanned a known sample (see Appendix B for further details).

Figure 15: Scanning setup for studying the topography of the membranes.

The setup for our experiment is shown in figure 15. It has the membrane set on rotary

sample holder. The membrane is inflated to a certain pressure recorded by the pressure

gauge. The 3D scanner is placed about 9.5 inches away from the sample for a bracket scan.

The sample membrane is scanned at three angles and the three images are manually stitched

together to get the final scanned image. The coordinates of this image is extracted for further

analysis that will be discussed later.

2.5 Theory

2.5.1 Föppl-von Kármán equations

Here we discuss the Föppl-von Kármán equations in axial geometry that will form the basis

of our theoretical analysis and obtaining the confinement parameter α. This calculation is
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Figure 16: Planar axisymmetric stretching of a circular sheet.

taken from the thesis of H. King [21], where this calculation was done for their sheet on

droplet system. At mechanical equilibrium, there is no net force acting on the sheet and the

force balance equations are given by:

∇ · σ = 0 (11)

σ is the in-plane stress tensor.

B∇2Tr(κ) + σ · κ = FN (12)

B = Et3/12(1 − Λ2), Bending modulus of the sheet, E is the Young’s modulus, t is the

thickness of the sheet, Λ is the Poisson ratio, κ is the Curvature tensor, Tr(κ) is the mean

curvature, FN is the Applied normal force.

This system has axisymmetric stretching applied on it. The in-plane displacement is

given by: u(r, θ) = ur(r, θ)r̂ + uθ(r, θ)θ̂ and normal displacement ζ(r, θ). The strain tensor
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is given by:

E =


ϵrr ϵrθ ϵrϕ

ϵθr ϵθθ ϵθϕ

ϵϕr ϵϕθ ϵϕϕ

 (13)

Since our system is axisymmetric with no out of plane strain, the shear strain and out of

plane stress is zero. The strains are given by:

ϵrr =
∂ur
∂r

+
1

2

(
∂ζ

∂r

)2

(14a)

ϵθθ =
1

r

∂uθ
∂θ

+
1

r
ur +

1

2r2

(
∂ζ

∂θ

)2

(14b)

The tension tensor is :

T =


σrr σrθ σrϕ

σθr σθθ σθϕ

σϕr σϕθ σϕϕ

 =


σrr 0 0

0 σθθ 0

0 0 0

 (15)

We know stress can be written in terms of strain as Hooke’s Law:

σ = Eϵ (16)

The radial and tangential strain component in terms of stress is given by:

ϵrr =
1

Y
(σrr − Λσθθ) (17a)

ϵθθ =
1

Y
(σθθ − Λσrr) (17b)

Y = Et, is the Stretching Modulus, E is the Young’s modulus, Λ is the Poisson ratio.

Therefore, rearranging the above the equations, we find the tensorial form of stresses in
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terms of strain:

σrr =
Y

(1− Λ2)
(ϵrr + Λϵθθ) (18a)

σθθ =
Y

(1− Λ2)
(ϵθθ + Λϵrr) (18b)

Rewriting the Föppl-von Kármán equation 11 using 17 (a) and (b):

r̂ :
∂σrr
∂r

+
1

r
(σrr − σθθ) = 0 (19a)

θ̂ :
1

r

(
∂σθθ
∂θ

)
= 0 (19b)

Again rewriting the Föppl-von Kármán equation 12 using 17 (a) and (b) and obtaining the

normal force balance:

B∆2ζ0 − σrr
∂2ζ

∂r2
− 1

r
σθθζ

′
0 −

1

r2
σθθ

(
∂2ζ

∂θ2
+ r

∂ζ

∂r

)
= FN (20)

2.5.2 Sheet on drop case

Now we are considering Figure 7 (a) setup with a circular sheet placed on a liquid droplet.

It is an axisymmetric state system hence all the azimuthal derivative vanishes. However,

there is a normal deformation of ζ(r). Therefore, we can rewrite equation 19 (a) and 20 as:

r̂ : (
∂

∂r
+

1

r
)σrr =

1

r
(σθθ) (21)

ẑ : B∆2ζ0 − σrrζ”0 −
1

r
σθθζ

′
0 = P (22)
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P = 2γ/R is the Laplace Pressure, γ is the Surface tension, R is the radius of curvature.

The strain tensors from equation (14) are now:

ϵrr =
∂ur
∂r

+
1

2

(
∂ζ0
∂r

)2

(23a)

ϵθθ =
1

r
ur (23b)

Further, we also assume the cost for bending of thin films over liquid drop is negligible. The

FvK equations require that the slope on the sheet to be small. The slope (ζ ′(r) << 1) is

given by the ratio of the sheet size W and radius of curvature R. The boundary conditions

for these system are:

ζ ′0(0) = 0 (24a)

σrr(0) = σθθ(0) (24b)

σrr(W ) = γ (24c)

Substituting σθθ from equation 21 to 22 and integrating it once and and using the boundary

condition 24(a), we obtain the slope:

ζ ′0(r) = −Pr/σrr(r) (25)

Finally, it reduces to first order ODE for stress profile,

∂σ̃rr
∂r̃

=
1

r̃
(−σ̃rr + σ̃θθ) (26a)

∂σ̃θθ
∂r̃

=
1

r̃
(σ̃rr − σ̃θθ)− αr̃σ̃2

rr (26b)

Where σ̂rr = σrr/r and r̂ = r/W .

Solving equation (26) will give us radial and hoop stress as function of the confinement
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Figure 17: Schematic of a wrinkled rectangular patch, showing σ∥ and R∥. Their values and
the total length of the buckled region, l∥, are quantified in Table 2 for each setup.

parameter α,

α =
YW 2

2γR2
, (27)

which may be seen as a ratio of geometric strain (∼ W 2/R2) to mechanical strain (γ/Y ).For

the experiment in Figure 19(a), King et al. [20] predict the appearance of wrinkles when α =

αwr ≈ 5.16, consistent with their experiments, and they observe a theoretically unanticipated

crumpling transition when α = αcr ≈ 155.

2.6 Parameterization

To generalize this empirical threshold, so that it may be compared with other setups, we

replace γ, R, and W with the general set of variables introduced in Table 2. Thus,

α ≡
Y ℓ2∥
2σ∥R2

∥
(28)

For the case of a thin circular sheet on a droplet, King et al. [20] identify a basic di-

mensionless group governing the morphological transitions seen in experiment, given by

α ≡ YW 2/(2γR2), where R is the radius of curvature of the droplet [20]. We show, the

crumpling transition in these four experimental setups may be gathered in a single empirical
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Setup Control Parameter ℓ|| R|| σ||
Sheet on drop Droplet radius (R) W/2 (at transition) R/2 γ
Indentation Indentation depth (δ) W 2.62 ℓ2curv/δ γW/ℓcurv
Sheet on Cylinder Radius (R), Compression (∆) W R γ
Inflated Membrane Pressure (P) Measured Measured PR||

Table 2: Physical scales near the wrinkle-to-crumple transition. Expressions for the buckled
length (ℓ||), curvature along the wrinkles (R||), and tensile stress along the wrinkles (σ||),
which are pictured schematically in figure 17. Values for the sheet-on-droplet setup are
based on Ref. [20]. In this setup, R|| and σ|| vary spatially: we show their values at the
location r = W, where the curvature is largest. Values for the indentation are based on
the height profile ζ(r) in the relevant regime where wrinkles cover the sheet. In that case,
ζ(r) = δAi(r/ℓcurv)/Ai(0), where Ai(x) is the Airy function and ℓcurv = W 1/3ℓ

2/3
c with

ℓc =
√
γ/ρg being the capillary length [38, 40]. The curvature R−1

|| (r) = ζ“(r) is nearly
maximal at r = ℓcurv, so we take R|| and σ|| there. For the inflated membranes, σ|| ≈ PR||
comes from force balance on the small cylindrical patch, R|| is measured using a set of paper
stencils of circular arcs, and ℓ|| is measured by laying a string along the buckled region.
Reproduced from Timounay et al. [19]

phase diagram. In order to draw quantitative comparisons between these four setups, we

define a general set of variables for the region of the sheet that is wrinkled or crumpled. We

denote the length of this region by l∥, as drawn in Figure 19(c), which corresponds to the

length of wrinkles when they are present. An individual “crumple” has a length lcr < l∥ [also

indicated in Figure 7(c)]. We denote the radius of curvature and stress along the tensile

direction by R∥ and σ∥, respectively, as pictured in Figure 17. Table 2 shows estimates for

these variables in each setup. We use these variables to quantify the threshold for crumple

formation in Sec. 2.8.1. In Sec. 2.8.3, we clarify the morphology of the crumpled state and

how it evolves with increasing confinement.

2.7 Measurement and analysis

We find the transition point from crumples to wrinkles, by analyzing the video of the exper-

iment. We take a snapshot of the image from the video and analyze this image using the

ImageJ [52, 53] to obtain the length of the chord (a), the radius of curvature of the bag (R).

For the radius of curvature (R), we approximated that the height of the bag should be the

31



Figure 18: Schematic diagram for chord. [54]

diameter of the curved wrinkled surface. The length of the wrinkle is measured using the

following way:

We can assume the wrinkles to be the chords of the circle whose radius of curvature is

R. Thus from the figure 18 it is clear that we can measure the wrinkle length if we know the

length of the chord a and the radius of curvature R. The equation is:

W = 2R sin−1 a

2R
(29)

We later found an alternative method of measuring R which gave better results. We measure

the R by using stencils of various radius which are customized and fitted on the inflated bags

at the transition pressure and their corresponding radius of curvature is determined.

2.8 Results

2.8.1 Crumple Threshold

As the membrane is inflated, geometric constraints lead to buckling in four regions along

the perimeter. We image the buckled zone on the side of the membrane without a seal

while measuring the internal pressure with a digital pressure gauge. At low gauge pressures,

crumples are visible in this region; at a higher pressure, they transition into smooth wrinkles

[Figure 20]. Observing crumples in this setting without a liquid suggests that they are general
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Figure 19: Measuring R∥: (a)Stencils cut out of stiff board for various radius of curvature.
(b)Measurement of radius of curvature using stencils.

Figure 20: The membrane is inflated gradually. We first observe sharp crumples on the
surface followed by transition to smooth wrinkles at a certain pressure.

features that arise out of a minimization of elastic energies in the sheet plus a substrate energy

that helps impose the gross shape. . Figure 21(a) shows the crumpling thresholds measured

in the four setups, plotted as a function of l∥/R∥ and σ∥/Y , which characterize the magnitude

of the imposed curvature and tensile strains, respectively. (The right most points indicate

that the bags may undergo macroscopic strains of the order of 3% at the transition; the

polymer films experience significantly smaller strains.) For the experiments using floating

films, the threshold is traversed vertically by varying the imposed curvature 1/R∥. For the

inflated membranes, the threshold is crossed horizontally, as changing the internal pressure

causes k to vary, while l∥,R∥ remains approximately constant [see the inset in Fig. 21(a)].

The dashed line shows αcr = 155. Although there is significant scatter (corresponding to αcr

ranging from 23 to 700), this simple scaling organizes the data into a single phase diagram,
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Figure 21: Phase diagram for wrinkles and crumples. (a) Crumpling threshold mea-
sured in the four experimental setups in Fig. 7, including sheet-on-droplet data from King
et al. [20] and indentation data from Paulsen et al. [40]. Values of l∥,R∥ and σ∥/Y , are ei-
ther measured or deduced from other measured quantities (see Table 2). The sheet thickness
ranges from 40 <t < 630 nm for the polymer films and 15 < t < 222 µm for the inflated mem-
branes. Indentation data have Y = 72 µm and W shown in the legend. Sheet-on-cylinder
data have W = 3.2 mm and shown in the legend. Parameters for inflated membranes are
detailed in Fig. 22(a) and 22(b). The data are reasonably well described by Eq. (28) with
α = αcr = 155 (dashed line). Inset: Threshold curvature 1/R∥ for crumpling, versus wrinkle
length l∥, in the sheet-on-cylinder setup at fixed t and γ. Dashed line: Equation (28) with
αcr = 155. (b) Crumpling threshold versus bendability ϵ−1. The threshold is approximately
constant over a wide range of bendability.

34



covering a wide range of experimental setups with different sheet geometries and confinement

protocols.

2.8.2 Pressure Threshold

The threshold confinement αcr for inflated membranes may be recast as a threshold pressure.

Plugging σ∥ ≈ PR∥ into Eq. (28), we obtain

Pcr ≈
1

αcr

Y L2
∥

R3
∥

(30)

In principle, the threshold αcr may depend on the shape of the bag, but a good estimate

should be given by the value measured in the sheet-on-droplet experiments. Figure 22(a)

shows the measured threshold pressure in experiments where we gradually increase the inter-

nal pressure. We vary the stretching modulus Y over 2 orders of magnitude by constructing

bags from different polymer or rubber sheets. The data are captured by Eq. (30), and we

obtain αcr = 100± 30 by fitting for the numerical prefactor. We also measure the transition

upon decreasing the internal pressure in one bag of each material. The open symbols in

Fig. 22(a) show these measurements, which are systematically lower than the points for in-

creasing pressure. By cycling the pressure within each bag, we measure a ratio of transition

pressures of 0.55 for the polyethylene bag and a ratio between 0.71 and 0.76 for the other

four materials. We do not observe such a strong hysteresis in the sheet-on cylinder setup

[19]. One possible interpretation is that the larger strains imposed on the bags (estimated

by the range of σ∥/Y shown in Fig. 21) could lead to larger plastic deformations in both

the wrinkled and crumpled phases, thereby biasing the deformation pattern toward what is

already there. . We now move to test the generality of Eq. (30) by constructing bags of

different shapes, as pictured in Fig. 22(b). Predicting the inflated shape of the bag or the

locations of the buckled regions are both nontrivial tasks [55, 56, 57, 58, 59]. Nevertheless,

we may simply measure l∥ and R∥ at the crumpling transition. Plugging these measurements
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Figure 22: Pressure threshold for transitioning from sharp crumples to smooth
wrinkles in inflated membranes: (a) Experiments using square bags of various thickness
(15 < t < 222 m), width (10 < W < 31 cm), and Young’s modulus (2.0 < E < 1500
MPa). Open symbols show the transition for decreasing pressure; the rest of the data are
obtained by increasing the pressure. The data are well described by Eq. (30) with αcr = 100
(dashed line). Inset: l∥ and R∥ versus pressure for a square polyethylene bag (W = 20 cm,
t = 49 µm). Both quantities are relatively constant near the threshold pressure (dashed
line, Pcr). (b) Experiments with different bag shapes, which are shown in the insets prior to
inflation.We use a variety of polyethylene (E ∼ 200 MPa) and rubber (E ∼ 2 MPa) sheets
to vary the Young’s modulus and thickness, as denoted in the legend. Here, 9.4 < W < 31
cm. The crumpling threshold is consistent with the result for square bags, as shown by the
gray squares and dashed line that are repeated from (a).

into Eq. (30) gives a good estimate of the threshold pressure Pcr for each bag shape, size,

material, and thickness, as shown in Fig. 22(b). Moreover, our experiments show that l∥ and

R∥ do not vary significantly as a function of the pressure, as shown in the inset in Fig. 22(a)

for a square polyethylene bag. Thus, one may obtain a basic estimate of the minimum pres-

sure Pcr required to replace sharp crumples with smooth wrinkles by measuring l∥ and R∥

at lower pressures.

These results suggest that the bag geometry affects the crumpling threshold through a

straightforward mechanism, i.e., by creating a compressive zone and selecting l∥ and R∥ there.

However, as we found from experiments in the sheet-on-cylinder setup that the crumpling
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Figure 23: Crumple morphology: (a) Renderings of three-dimensional scans of an inflated
square polyethylene bag (t = 49 µm, E = 297 MPa, W = 20 cm), showing the topography of
wrinkles (top) and crumples (bottom). (b) Cross sections through a single buckled feature as
a function of the gauge pressure. The profiles are taken along the dashed lines in (a), and the
two circles highlight the sharp tips at the two ends of the crumple. (c) Cross sections along
a perpendicular direction, which show only a small change in width through the transition
[the same scale as (a),(b)].

threshold depends also on the compression ∆, which for the inflated membranes depends on

the bag geometry and the internal pressure. This additional consideration implies a more

nuanced coupling of the bag geometry to the crumpling transition, although it could still

be consistent with Eq. (30) with a threshold αcr that depends on the compression, i.e.,

αcr = αcr(∆).

2.8.3 Crumple Morphology

2.8.3.1 Crumple Topography

To define the difference between wrinkles and crumples more precisely, we use a laser scanner

to map the three-dimensional topography of a portion of an inflated membrane at several

internal pressures. Figure 23(a) shows renderings of the reconstructions at P = 6.3 kPa,
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Figure 24: Crumple topography: Local Gaussian curvature K for the scans shown in
Fig. 23 (a). The wrinkled state (top) shows large positive and negative curvatures along the
wrinkle crests and troughs. The crumpled state (bottom) localizes K and, hence, material
stresses.

where the sheet is wrinkled, and P = 0.87 kPa, where there are crumples, with P being the

gauge pressure. Figure 23(b) shows cross sections taken along the central trough, which we

track through a series of pressures during a single inflation. At low pressures, the crumple

trough is approximately flat and terminates at two localized regions of high curvature [red

circles in Figs. 23 (a)and 23(b)]. As the internal pressure increases, these kinks gradually

become smoother, while the crumple gets longer until it spans the length of the buckled

region; the crumple thereby converts into a smooth wrinkle.

Figure 23 (c) shows the evolution of the same buckled feature along a perpendicular

cross section, taken halfway between the crumple tips. This undulation is present through

the transition, and it serves to collect excess material due to lateral compression.

2.8.3.2 Gaussian Curvature

The observed wrinkle and crumple morphologies are linked to the distribution of stresses in

the sheet via Gauss’s theorema egregium. To gain insight into the stress field, we measure the

local Gaussian curvature [60] of the scans by fitting small regions to a quadratic polynomial

and extracting the principal curvatures from the coefficients of the fit, following Ref. [61].
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Figure 24 shows the measured curvature maps for the scans in Fig. 23(a). The wrinkled

morphology shows finite Gaussian curvatures in stripes of alternating sign. This result

is due to the nearly constant curvature along the x axis and the alternating positive and

negative curvature of the wrinkled profile along the y axis, which together imply finite strains

and stresses that are spatially extended. In contrast, the curvature map of the crumpled

morphology suggests that the material stresses are reduced throughout much of the sheet, at

the expense of higher stresses around the boundary of the individual crumples, most notably

at their tips. These data support a picture where crumples lower the total elastic energy by

condensing stresses to small regions in the sheet.

2.8.3.3 Crumple Length

Focusing now on a single crumple, we examine the cross sections in Fig. 23(b) once again.

One can see the crumple length lcr in these profiles at low pressures by noting the distance

between the pair of sharp kinks. The mechanism selecting this crumple length is not yet

known, and our first task is to identify the parameters that affect it. The cross sections in

Fig. 23(b) show that lcr grows as the pressure increases, suggesting that lcr depends on the

tensile stress σ∥. Optical images of the sheet-on-cylinder and indentation setups show that

lcr also depends on the radius of curvature along the wrinkles, R∥.

In order to build an empirical scaling relation for the crumple length, we gather images

in the indentation, sheet on- cylinder, and inflated membrane setups. Because these systems

span multiple scales, we are sensitive to any dependence on the length of the buckled region,

l∥. We record the longest crumple in each image, since smaller crumples may be associated

with boundary effects. In the sheet-on-cylinder setup, we also perform experiments with

σ∥ = γ = 36 mN/m by using a surfactant (sodium dodecyl sulfate). Possible scaling relations

for lcr are constrained by dimensional analysis and an observation from our experiments: At

the crumpling transition, the crumple length is comparable to the wrinkle length, i.e., lcr ≈ l∥.

Based on the crumpling threshold presented in the following section [Eq. (28)], we therefore
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expect that lcr ≈ l
(1−2β)
∥ R2β

∥ (σ∥/Y )β for some β. Our measurements over two decades in lcr

are reasonably described by

lcr = 5.6l0.4∥ R0.6
∥

(σ∥
Y

)0.3
(31)

as shown in Fig. 25(a), which corresponds to β = 0.3. Notably, the numerical prefactor in

Eq. (27) is set by the above arguments, so that is the only parameter we fit to arrive at

this result. Our data could also be consistent with β ranging from 0.2 and 0.4. We are not

able to produce a significantly better collapse by fitting the three exponents separately.

The above scaling relation does not have any explicit dependance on the lateral com-

pression applied to the sheet, which may explain some of the scatter in the data. Indeed,

the images in Fig. 25 show a chain of crumples evolving under increasing compression, which

causes lcr to grow. Thus, Eq. (27) is only approximate and should be modified to include a

dependence on the compression. Nevertheless, the ability of Eq. (27) to capture our results

from three very different systems supports our approach of describing the data using the

general set of variables in Table 2.

2.9 Discussion

We have shown that wrinkles are unstable to another buckled morphology at large curva-

tures, namely, sharp localized crumples. Although this transition was observed in previous

experiments on circular polymer films in a spherical geometry [20, 21], we have shown that

this symmetry-breaking event appears to be a generic phenomenon by isolating and charac-

terizing the transition in a wide range of experimental setups across multiple length scales.

These varied experimental geometries show that crumple formation is not unique to a partic-

ular overall Gaussian curvature; rather, crumples are sufficiently robust to form in spherical,

hyperbolic, and cylindrical settings. By showing that a quantitatively similar transition

occurs for both interfacial films and inflated membranes, our work suggests that a compe-

tition of elastic energies along with a suitable substrate energy is enough to give this rich
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Figure 25: Emergent scales in the crumpled phase. (a) Crumple length lcr, measured
from optical images in the sheet-on cylinder, indentation, and inflated membrane setups. The
sheet thickness and modulus are varied over a wide range by using rubber (E ∼ 2 MPa),
polyethylene (E ∼ 200 MPa), and polystyrene (E = 3.4 GPa) sheets. We also vary the
surface tension in the sheet-on-droplet setup (open symbols, 72 mN/m; closed symbols,
36 mN/m). The data are reasonably described by a simple expression involving l∥, R∥, and
σ∥ = Y [solid line, Eq. 31]. The two images show lcr increasing upon compression; this
behavior may account for some of the scatter in the data. Inset: lcr versus R∥, which does
not collapse the data.
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behavior. This view is plausible given the basic observation that wrinkle crests must traverse

a longer arclength than wrinkle troughs in curved topographies, implying costly stretching

[40]. Crumples may offer a lower-energy solution by condensing stresses to smaller regions

on the sheet. Indeed, our topographic measurements suggest that, at high confinement, a

portion of a crumple trough may be nearly developable (i.e., isometric to the original pla-

nar sheet). In contrast, the region near a crumple tip has significant localized stretching.

Whether this region is well approximated by a d-cone [25, 33, 62, 63, 64], as suggested by

King et al. [20, 21], remains to be elucidated. Accounting for the elastic cost of these struc-

tures, in a manner that is consistent with various geometric constraints, could give insight

into this transition. Another foothold for theoretical study comes from our results in the

sheet-on-cylinder setup at large α, which suggest a transition directly from a cylinder to

a crumpled state, without an intervening wrinkled state. These experiments open up the

possibility that, at a sufficiently large curvature, crumples might be modeled through an ex-

pansion around a smooth cylinder in analogy to what has been achieved for wrinkling in the

far-from-threshold approach [35, 37, 38, 41]. In contrast to the shell buckling of an axially

loaded hollow cylinder [63, 65, 66], the distinctive crumple morphology studied here relies on

hoop tension. Cylinders subjected to static circumferential tension are common in industrial

settings, for instance, in liquid storage tanks. We note a striking visual similarity between

crumples in the sheet-on-cylinder setup [Fig. 7(c)] and the localized buckling patterns that

were observed on stainless-steel wine tanks due to an earthquake [12].Crumples appear to be

highly adaptable to a variety of geometries, as shown by the range of experimental setups

explored here, and also the variety of membrane shapes. Qualitatively similar features have

also been observed in pressurized spherical shells [67] and rapidly crushed conical shells [68],

which raise questions about how intrinsic curvature and dynamics could influence stress fo-

cusing of the kind studied here. Many of the results presented in this article are suggestive of

a local view of crumpling—that is, a description of crumpling in terms of the local values of a

small set of variables. In particular, we have shown how the crumpling threshold depends on
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the curvature and system size via l∥/R∥, the in-plane tensile strain via σ∥/Y . We have also

presented a picture wherein the local value of the compression is key to understanding the

coexistence of wrinkles and crumples. Despite this promising local view that may capture

important aspects of the transition, nonlocal effects may matter as well. In the axisymmetric

setups studied here, the curvature and compression vary with the radial coordinate, but we

observe chains of crumples appearing along radial lines all at once rather than starting at

a location of high curvature and growing in extent with increasing confinement. There are

also hints of organization at intermediate scales in the crumpled phase: Chains of crumples

seem to have a well-defined spacing between them [l⊥ in Fig. 7(c) and θmin[19]]. Although

there are fluctuations in this spacing, it appears to have a reproducible minimum value,

which is smaller for thinner sheets. These observations are suggestive of a domain structure

[69, 70] where chains of crumples are separated by regions of smaller amplitude deformations

as a repeated motif. This structure stands in contrast to the space-filling buckling patterns

that are observed when a thin cylinder is axially compressed around a mandrel of slightly

smaller diameter [71, 72, 73]. Understanding the origin of this emergent mesoscopic length

scale, and why it arises for a fluid substrate but not for a solid mandrel, could allow one

to control these patterns with a suitably engineered substrate or sheet. On the microscale,

wrinkles have been used for metrologies of films [74], for making smart surfaces with tunable

wetting and adhesion [75, 76], and to conduct surface microfluidics [77]. Our results expand

the vocabulary of film deformations for advanced materials and illustrate how buckled mi-

crostructures may change their nature in curved topographies. Discovering the mechanism

of this symmetry- breaking instability remains an open challenge that should be the subject

of future work.
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3 Curvature Driven Propulsion of Thin Floating Films

The research in this chapter is currently being written up for publication in a peer-reviewed

journal. The work involves both experiments and simulations. My contribution was devel-

oping and conducting Surface Evolver simulations for this system, to measure the potential

energy of the system as a function of the position of the film and how it depends on the

system parameters. I discovered the dependence of the phenomena on the stretching modulus

of the film. I also mentored E. Vieru (Student in summer 2022) who I have supervised as a

part of this project.

3.1 Popular summary

Have you ever come across a water strider on one of your fishing or boating trips? Its

hypnotizing and fun to watch them gliding on the sparkling water. They make it look so

easy. You know it isn’t if you have ever tried water gliding! Even then we need some kind

of force giving us the push we need to move around the water on a board while maintaining

balance. What is the mystery behind such elegant self-propelled gliding motion?

Have you wondered why the foam that spreads over the surface of your freshly poured

beer gradually dissipates with remaining bubbles adhering to the edge of the mug? Both of

these events might look disparate but if we look closely, water striders and the long-lasting

bubbles in foam are both leveraging the surface tensions on liquids to get to their preferred

position. They are able to achieve that through a subtle dance in balancing the surface

tension of the liquid with the body weight of these objects. But what if we added another

layer of freedom to this problem? Unlike bubbles that don’t freely bend with interface, lets

consider a film that can bend freely like denatured milk protein called "milk skin". What if

we take a milk skin and place it on a liquid surface with a different curvature?

Based on my simulations, I can conclude that the film will prefer to be at the match-

ing curvature and propel itself towards the matching curvature while relieving its wrinkles.
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Moreover, the simulations predict the system energy for both stretchable and inextensible

films. Using a model for the drag on the film, we found the dependence of the velocity on

all the relevant factors like size of the film, the mensicsus height, and the capillary length of

the liquid. This is an interesting result and can have far reaching applications on how drugs

[7] are administered in our body to handling oil spills in the ocean.

3.2 Introduction

We have observed cheerios in breakfast bowls clump together when left alone. Cheerios effect

[18] is a well studied phenomenon where the effect of the surface dents created by cheerios or

any floating object breaks the surface symmetry of the fluid and helps them conglomerate at

an interface. Floating objects can create both positive or negative curvatures and attract the

same sign curvatures and repel reverse curvatures. Studies have shown the “cheerios effect”

with or without buoyant force. Light particles like air bubbles can aggregate as much as heavy

particles like quarter coins. Light particles balance themselves on the interface with buoyant

force pushing them out while surface tension prevents them from escaping the liquid creating

a positive curvature interface. Denser particles on the other hand balances themselves by the

gravitational energy pulling the particles down while surface tension prevents the particle

from breaking the interface thereby creating a negative curvature interface.

Nature has ample examples of water walking insects to terrestrial insects [78] [79] that

exploit the surface tension of water when they need to travel over water surface. Beetle

larvae intuitively bend their torso to generate curvature mismatch to generate energy that

can propel them towards the meniscus. Mimicking this phenomena, cargo shuttling [79] and

meniscus climbing gel robot [80] has been studied in a lab setting.

The objects studied under cheerios effect are usually materials that retain their shape

and the fluid adjusts its interface to accommodate these materials. We introduce an unex-

plored setting where thin films like milk skin that are easily deformable by capillary forces

are placed in a positively curved liquid surface. Thin film pinned to a curved liquid surface
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Figure 26: Water lily beetle can bend its body to create curvature mismatch for locomotion

enfold it while relieving the stress through small amplitude wrinkles. But when it is free to

move it propels itself towards the flat center. Directional transport of materials over fluid

by curvature variance can be an effective way to transport and administer thin film drugs

[7] to a known curvature surface in our body.

We use thin highly bendable films to study the effect of mismatched curvature. Thin

films are highly bendable but have high cost for stretching. Thin films have shown complex

microstructures when constrained to a surface [19]. When a thin film with no curvature is

placed on a meniscus, it can bend and relieve its stress by forming smooth undulating wrinkles

and wrapping the curved fluid surface [81]. Stiff materials typically pull the interface in a

positive or negative curvature whereas thin films create small wrinkles to create an uniform

stress field and adjust to the geometry of the fluid surface. The interface geometry is a

balance between liquid pulled up by the wrinkled thin film to conform to the fluid interface

and the surface tension preventing the deformation of the interface. We explore the behavior

of a bendable yet highly inextensible thin film on fluid with a mismatched curvature.

We are able to identify the complex mechanics of propulsion experienced by thin film

through model experiments and numerical simulations. Our results give a closer look at the

velocity of thin film and energetics of the system and its dependence on the position of the

sheet on the interface. Our finding curiously shows that an unstretchable film progresses 10
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times faster than the same film with finite stretching indicating the importance of elasticity

in such systems.

3.3 Phenomenology from experiment

Recent experiments in the Paulsen lab by Monica Ripp investigated a model setup where

a thin polymer film of radius W floating on a water bath with non-constant curvature,

accomplished by overfilling (to height h) a circular petri dish of radius L with water so

that the central region is flat while the outer boundary is doubly-curved (positive Gaussian

curvature) (Fig. 27 a). The liquid has surface tension γ = 0.072 N/m and density ρ = 1000

kg/m3.

The films are highly flexible (characterized by the bendability [20] ϵ−1 = γW 2/B > 103)

yet they resist in-plane stretching (characterized by the ratio γ/Y , which is of order 10−3

or smaller). The experiment begins by dragging the film (using a small metal probe) onto

the curved meniscus; to accommodate the geometric incompatibility, the film forms many

small-amplitude short-wavelength wrinkles around its edge. When the metal probe is lifted,

the sheet propels itself away from the meniscus towards the center of the dish. Once the

film has relocated to the flat central region of the bath, the wrinkles disappear and the sheet

gradually comes to rest.

3.4 Concept of theoretical model

Under the action of surface tension and gravity, thin interfacial solids can easily bend or

wrinkle under minute compressive stresses while strongly resisting in-plane stretching. It

is appealing to model these thin solids as inextensible, and this limit has been shown to

be sufficient to explain the wrapping of a droplet in a thin polymer film [82] or monolayer

graphene sheet [83], and the folding of an annular sheet submitted to different inner and

outer surface tensions [84]. This approach is motivated by the weak lateral tension and

negligible bending stiffness of these films (γ/Y → 0 and ϵ→ 0). In this asymptotic regime,
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Figure 27: Experimental Setup. (a) Side and top view of the experiment, where a thin
film is placed on the curved mensicus of an overfilled petri dish. (b) Composite image of
a time series when the film is let go. The geometric mismatch between the sheet and the
meniscus propels film towards the center.

the only relevant energies are due to gravity and surface tension:

U = Ugravity + γAfree . (32)

In this limit, the role of wrinkling is to allow the film to adopt an overall “gross shape” that

may be doubly curved.

3.5 Simulation

Here we study this model numerically for general geometries using Surface Evolver [85].

In our simulations, the sheet and liquid are discretized with triangular meshes using the

package meshpy, with a mesh length of 0.1. We pin a liquid meniscus on a circle of radius

L with surface tension γ and density ρ. We control its volume V to change the height of

the meniscus, h. The sheet is a disc of radius W , which is given zero bending modulus and

a stretching modulus Y . Mesh edges in the sheet are allowed to contract with no energy

cost, representing a coarse-grained description of small-scale wrinkling). We set Y/γ = 1012
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Figure 28: Coarse-grained model for wrinkling (a) A thin film forms wrinkles to adopt
a doubly-curved shape. (b) We model this wrinkling in Surface Evolver using a triangular
mesh where the edges may contract for free. This provides a suitable coarse-grained model
of the effect of wrinkling.

to produce approximately inextensible behavior [82]. The Poisson’s ratio of the film is:

νxz = νyz = 0, νxy = νyx = 0.8.

Figure 29: Side and top view of floating sheet system.

Our goal is to understand how curvature gradients on a liquid surface can drive the

spontaneous motion of a thin solid across it. Thus, we perform a series of simulations where
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the center of the sheet is held at a particular radial distance r from the center of the dish,

and the system energy is allowed to relax to search for the global energy minimum.

3.6 Energy measurements

Figure 30: Energy Plots: Simulation results where the sheet is positioned at a distance
r from the center of the dish. The system energy is comprised of surface and gravitational
energy. The inset show that the total energy has an exponential dependence on the radial
position.

Figure 30 shows the components of total energy. It consists of two components: the

surface energy of the uncovered liquid and the gravitational energy of the liquid. At the

curved edge where the sheet bends to wrap the curved surface of the liquid. The surface

energy decreases as the sheet moves towards the center. However, the gravitational energy
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decreases as we recede from the edge of liquid drop. The dominating energy is the surface

energy and the gravitational energy and the total energy follows a similar trend and de-

creases exponentially as the circular sheet moves farther from the edge of the liquid drop,

demonstrating the energetically favorable position for the sheet is at the center.

When Utotal versus r is replotted in log-linear axis, we get a clear exponential trend. It

is important to note that, this is an empirical finding and is not based on any developed

theory. But it is worth noting that a liquid meniscus has an exponential height profile in

the limit of small slopes, for a 1D problem, so it is natural to use ℓc as the length scale to

compare L−W − r with. We can fit the change in total energy with an exponential curve

given by, dU = A exp−bx.

This represents the total energy of the system, which varies with the position of the

sheet. Thus, we may convert it to a force on the sheet, by taking a derivative with respect

to the position coordinate:

Fdrive =
∂U

∂x
. (33)

For large fluid viscosities, this driving force will be in balance with a drag force due to the

shearing motion of the fluid, which we discuss now.

3.6.1 Drag model

In order to match our simulation velocity with the experiment, we are required to find a drag

model relevant to our system. We will discuss only the viscous regime cases here. The drag

experienced by the sheet while moving across an infinite viscous liquid, is given by Stokes

drag [86],

F =
16

3
µWu . (34)

This result is for a system with no boundaries; Ref. [87] used experiments to determine an

empirical correction to this law, in the form of a multiplicative factor. In the situation where
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there is a flat wall a distance H away from the film:

F =
16

3
µWu

(
1 + 0.81

(
W

H

)1.074
)

. (35)

3.7 Comparison to experiment

3.7.1 Non-Dimensionalization

In order to compare the simulation results to the experiments, we need to identify the correct

parameters that non-dimensionalize the physical system. In this section, primed parameters

indicate parameters for our simulation, while unprimed parameters were taken directly from

the experiment. We maintain the ratio of sheet/dish radius, as well as the capillary length

value to nondimensionalize other simulation parameters. The dish radius for all experiments

was 18.5mm, and we pick the W = 4.76 mm to equal a W ′ = 1 non-dimensional units.

The capillary length is given by

lc =

√
γ

ρg
(36)

Dividing it by the sheet radius W we get,

lc
W

=
l′c
W ′ =

1

W ′

√(
γ′

ρ′g′

)
(37)

We set surface tension γ′ and liquid density ρ′ to be 1. From here, we can calculate the

simulation value for g, the gravity constant.

0.146 =
1

3.887

√(
1

g′

)

0.567 =

√
1

g′
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Finally,

g′ = 3.108

We also non-dimensionalize the liquid volume using the sheet radius, W . For example,

to non-dimensionalize the experiment where the liquid volume V = 2.807 we do the following:

V

W 3
=

V ′

W ′3 (38)

Thus,

V ′ = 26.03

We also can find the capillary length for our simulation l′c from equation 1. Substituting

gravity, density and surface tension for our simulation we get,

l′c =

√
1

3.28

Therefore,

l′c = 0.55.

Thus tabling these parameters,

Experiment Simulation Non-dimensionalized by:
Sheet Radius (W ) 4.76 mm 1 W
Dish Radius (LD) 18.5 mm 3.886 W
Drop Volume (V ) 2.80725 cm3 26.029 W
Surface tension (γ) 73 mN/m 1 γ
Liquid Density (ρ) 0.997 kg/m3 1 ρ
Gravity (g) 9.81 m/s2 3.108 W,γ, ρ
Capillary Length (lc) 2.7 mm 0.567 W,γ, ρ

Table 3: Non-dimensionalization of experimental parameters for use in the simulations.
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3.7.2 Inextensible limit

In order to do compute velocity comparable to the experimental velocity, we have non-

dimensionalized the physical parameters and used them in our simulation. We did this at

first for viscosity µ = 48cp. Then we get the energy dU vs the (l − r)/lc. From that we

obtain,

U(x) = cem
(L−x)

lc . (39)

Fdrive =
δU

δx
(40)

But,

Fdrive = Fdrag

The latest drag force is given by eqn. 35. Calculating the velocity,

u(x) =
3

16
mc

1

µWlc(1 + 0.81(W
H
)
1.074

)
exp

m(L− x)

lc
(41)

However, in order to match the velocity obtained from fitting the simulation energy

with the experimental velocity data, we need to multiply equation 41 with a ratio:

u(x) =
3

16
mc

γexpW
2
exp

γsimW 2
sim

1

µWlc(1 + 0.81(W
H
)
1.074

)
exp

m(L− x)

lc
(42)

To calculate the ratio, let’s plug in the parameters: γsim = 0.88, Wsim = 1, γexp = 0.0659

N/m, Wexp = 0.00442 m, ρsim = 1, ρexp = 1209 kg
m3 , gsim = 3.095, gexp = 9.81 m

s2
.

Plugging in this values in equation 17,

u(x) = (1.463× 10−6)
3

16
mc

1

µWlc

(
1 + 0.81

(
W
H

)1.074) exp
m(L− x)

lc
(43)
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Figure 31: Comparing velocity derived from the inextensible film simulation with the drag
law shows discrepancy with experimental results.

Now the other unit conversion,

u(x) =
3

16
mc

ρexpgsimW
4
exp

ρsimgsimW 4
sim

1

µWlc(1 + 0.81(W
H
)
1.074

)
exp

m(L− x)

lc
(44)

Plugging in the values,

u(x) = (1.463× 10−6)
3

16
mc

1

µW (1 + 0.81(W
H
)
1.074

)
exp

m(L− x)

lc
(45)

Figure 31 shows that the simulation does not capture the experimental data. As we

will show next, the small but finite stretching of the sheet in the experiments makes a large

difference on the dynamics of the sheet. In the next section, we update our model to include

the stretching of the film.

3.7.3 Finite stretching in films

The same simulation approach allows us to use a finite Y , and now we measure Utotal =

Ugrav + Usurface + Ustretch:

Nevertheless, even small in-plane strains can be important when the imposed curvature

of the liquid is similarly small. Indeed, when a circular polymer film is placed on a curved
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Figure 32: Simulation results where the finitely stretchable sheet is positioned at
a distance r from the center of the dish: The system energy is comprised of surface,
gravitational and stretching energy. The inset shows the stretching energy separately to
show its exponential growing trend with the radial position from center to the edge.

liquid interface, radial wrinkles develop around the boundary of the film to accommodate

the imposed Gaussian curvature, while an inner “core” of the film is unwrinkled [20]. The

existence of positive Gaussian curvature in this core, in the absence of wrinkling, signals a

small but finite stretching of the film. We show that this finite stretching plays a significant
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Figure 33: The total energy is rescaled by substracting the total energy with the U(0) = a+c,
dU = U − U(0)

role in determining the energy of the system. In this case, the system energy is given by:

U = Ugravity + γAfree + Ustretch , (46)

where Ustretch is the elastic stretching energy stored in the sheet.

3.7.3.1 Scaling the total energy and velocity comparison

In order to simulate a sheet with finite stretching modulus, we must select an appropriately

scaled stretching modulus for our films. The stretching modulus, Y , is non-dimensionalized

by the surface tension, γ. Thus, we seek to match:

Y

γ
=
Y ′

γ′
, (47)

where in the experiments, Y = Et. (In contrast, there is no concept of thickness in the

simulations, so the value Y ′ is the only relevant variable there.)
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Figure 34: Comparing velocity derived from the finitely stretchable film with the drag law
shows good agreement with experimental results. The inextensible film simulations are also
shown for comparing how much the velocity can decrease on introducing finite stretching.

Given E = 3.4 GPa, t = 120 nm, γ = 0.06375 N/m and γ′ = 1 (from section 3.7.1), we

find the stretching modulus to run our simulation as Y ′ = 6400. This is considerably smaller

than the value used to probe the inextensible limit in the previous section (Y ′ = 1010).

The formalism to derive the velocity as shown in section 3.7.2 is repeated and the

predicted velocity is shown here. On examining the plot in figure 34, we see the finely

stretched film velocity conforms well with the experimental result. Also, we observe the

inextensible films are faster than the finitely stretchable film indicating ability of inextensible

film can store more energy when pinned at a geometrically mismatched curvature. This

confirms that the film has finite stretching and even a small stretching energy can drastically

reduce the velocity of thin film. Since the parameters are extracted from the experiment,

there were some concerns about the range of error in the volume measurement. Therefore,

we plug in the highest and lowest volume measurement data from the same experiment and

derive the corresponding simulation parameters. Figure 34 shows the range within which

the volume is expected to vary and we see the velocity varies negligibly thereby reaffirming

the agreement between the experiment and simulation.

58



3.8 Measuring the energy scalings

We seek an understanding of how the energy of the system depends quantitatively on the

properties of the liquid and the sheet. The liquid has a surface tension γ and gravitational

stiffness ρg that give rise to the capillary length ℓc =
√
γ/(ρg). The liquid is pinned at a

circular contact line of radius L and its height at the center is h. The sheet has a stretching

modulus Y and radius W .

As we will show, our central result is an empirical scaling for the total energy of the

system as a function of the radial position of the center of the film, r:

U(r) = f1(α)
γ√
ℓc

h1.5W 1.75

L0.75
exp(−f2(α)(L−W − r)/ℓc) , (48)

where α = Y
γ

√
h

ℓ3c
LδW β is a dimensionless “confinement” parameter that represents the ratio of

geometric strain
√
h

ℓ3c
LδW β and mechanically-induced strain γ

Y
, and f1(α), f2(α) are functions

that represent the form of the collapsed data. Notably, above a threshold stretching modulus,

they both approach constant values so that f1(α) = c1 and f2(α) = c2 in the inextensible

limit.

3.9 Stretchable vs Unstrechable films on liquid meniscus

From the previous section, it is clear that the velocity of the system varies with the film

stretchability indicating this to be one of the factors affecting this geometry driven propul-

sion.

In this section, we will delve into all the different parameters that are used in our

simulation and study their effect on the phenomena. To simplify this investigation, we

divide this in two parts: First we study only the unstretchable films. We further delve into

all the parameters varied for it: liquid volume, sheet radius, dish radius, surface tension of

the liquid, density of the liquid and gravity.
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3.9.1 Energy scaling

Our dominant energy values consist of two terms, gravitational and the surface tension:

UT = Ugrav + Usurface (49)

Assuming some constant configuration of the system,

Ugrav ∝ ρg

∫
V

z dV (50)

and

Usurface ∝ γ

∫
surface

dS (51)

These integrals are of units m4 and m2 respectively.

We can construct the units for the energy separately for each in this way, or we can

construct it in one product between the two energy coefficients raised to different powers.

An example follows:

[U ] =
kgm2

s2
= [γ]α[ρg]β[ℓ]δ

=

(
N

M

)α(
kg

m2s2

)β

(m)δ

=

(
kg

s2

)α(
kg

m2s2

)β

(m)δ

From this we can find two conditions that must be met, namely: α + β + δ = −3 and

α + β = −1. This necessitates that α = 3 and δ = −2. Then we have:

=

(
kg

s2

)3(
kg

m2s2

)−4

(m)−2

=
kg

s

m2s2

kg
=
kgm2

s2
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(a) Plot showing overfill height variation (b) Collapse figure for height variation

Figure 35: Figure showing height dependence

To find this equation that gives the total energy, we investigate all the physical variables

in our model and study their dependence on total energy.

To investigate the contribution of overfill height to the total energy, we vary the volume

of the liquid for this system and calculate the energy dependence of the system with the

radial position of the sheet. While the volume is varied, we keep all the other parameters

constant through different runs to isolate the dependency on volume. From figure 36, we

can not only confirm that overfill height plays a part in energy of this model, but also give

a quantitative exponent for the same.

Next the sheet radius of the film is varied while keeping all other observables constant.

We found that larger sheets produce larger energy trends. We suspect this is because sheets

covering more surface area produce larger curvature mismatch. Secondly, we found total

energy also scales with W . The figure 36 shows the radius variation. While this scaling

(a) Plot showing sheet radius variation (b) Collapse figure for Sheet radius variation W

Figure 36: Height dependence on total energy
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exponents can be obtained through trial and error, we obtained this exponents through

linear regression and compared it with manual fit to confirm the accuracy of the result.

After scaling both h and W component and finding their dependence, we explore all the

other components by varying them in our model. We have four other exponents that were

important parameters for our system. We deploy a multivariate linear regression model to

calculate the exponents for all the parameters. The final plot is shown in figure 37 where all

the energies are scaled by the calculated exponents along Y-axis and the X-axis is scaled by

the capillary length, lc .

Figure 37: Data collapse across all relevant observables for this phenomenon.
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We can fit this data to a function of the form

U ′(x) = cemx′
. (52)

Thus,

dU(r)

ρ0.25W 1.75h1.5g0.25L−0.75γ0.75
= cem

(L−W−r)
lc . (53)

dU(r) = cρ0.25W 1.75h1.5g0.25L−0.75γ0.75em
(L−W−r)

lc . (54)

We map out the quantitative dependence of the system energy on the surface tension, den-

sity, and overfill-height of the liquid, the radius of the sheet, and the size of the dish. The

denominator of Y-axis has the dimension of energy. Hence both X and Y axis are dimension-

less axes demonstrating universality of this model. This equation not only shows that energy

is lowest at the center as expected but also, quantify its dependence on all the observable of

this system. Therefore, we developed complete empirical model for the unstretchable film

predicting its dependence on all physical parameters relevant to this phenomena.

However, from our first section of this chapter it is clear that stretching play salient role

in energy. Thus, we verify that by varying the stretching modulus of the sheet.

3.9.2 Stretchable film

Here we will study the effect of the stretching modulus on the system energy. Figure 37

shows the energy dependence on all other physical parameters affecting this system. Based

on the model we see a power law dependence of these parameters to the energy. But we are

not sure how the stretching modulus will affect the system energy.

To check their dependence of energy on young’s modulus, we plot the coefficient A

and B from the energy exponential function as a function of Y. The figure 38 shows an

interesting phenomenon where we reduced stretching modulus systematically until we found

this surprising trend at a particular stretching modulus, Y where the coefficient of the energy,
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Figure 38: Energy coefficients from the equation U(r) = A expBr are plotted against the
streching modulus Y. This shows that both A and B becomes constant on reaching a thresh-
old Y.

A is no longer constant and reduces with the Y. This is interesting because the introduction

of a small yet finite energy changes the energy in the system drastically. This gives rise to

two separate regimes: a stretchable regime and an unstretchable regime.

We further checked if the observable of the system scales with the new “stretchable”

regime. We vary the overfill height h and the gravity g for this system. Since A scales

directly with the energy U (U = A expBx) we use A to investigate the scaling exponents for

Y. From figure 37, we already know the scaling exponents for energy in the “unstrechable”

regime. Now we explore the scaling exponents for the “stretchable” regime. The scaling

exponents for Y are found to be 0.5 with height and 1.5 with gravity.This collapse indicates

universality of this phenomena.

4 Conclusion

4.1 Summary

This work investigated multi-scale pattern formation behaviours of thin-film under different

settings and investigate its symmetry breaking phenomena.

In chapter 2, we studied symmetry breaking phenomena of crumples transitioning to
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Figure 39: Data Collapse for all observable relevant to this phenomenon.

wrinkles in various geometries and length-scales. We have captured the universality of this

phenomena through representing all these experiments in a phase diagram that can be rep-

resented by a threshold confinement factor αcr. We also qualitatively studied the surface

topography of crumples and wrinkles and show how localized high curvatures are embedded

at the ends of crumples indicating stress focusing at lower pressure that eventually redis-

tribute this stress over the membrane as it transition to wrinkles. We also found a scaling

relationship for crumple length that can explain the length scale of crumples observed across

three unique systems.

In the Chapter 3, we investigated thin film behaviour in a curvature mismatch setting.

We compared the velocity obtained from our model to the experimentally derived velocity

of the same system and have obtained good agreement. We have also identified how finite

stretching can give rise to a very different energy with respect to velocity in an unstretchable

film. We finally identified the power law dependence of various observable that play an

important role in such systems. We have found the empirical law that govern films in such
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system in the inextensible limit.

4.2 Future Directions

4.2.1 Behavior of d-cones under tensile stresses

King [21] observed the crumples with cusp-like structures at its end in his sheet on drop

system evolve from wrinkled micro structures. On probing with profilometer he observed

positive and negative gaussian curvature dipole focused at the cusp which made him suspect

these structures to have d-cone like structures. However, he also observed that the stress is

not strongly localized at the tips in his setup. He argued that radial tension is causing the

stress to smoothen out in the cusp region. He predicted that with higher curvature of the

drop, the stress will be more focused and these crumple structures will get sharper. However

their experiment is unable to explore this due to experimental limitations.

In my experimental setting, I wanted to study the same. The advantage of my membrane

system is our lateral tension is analogous to the radial tension in his setting, increases as

the pressure in the membrane builds up. Hence our membranes can capture the onset of

crumples that gradually smoothens out to smooth wrinkles as the lateral tension increases.

We have studied the topography of the membrane using 3D scanner. This showed that the

gaussian curvature at first is focused in the diamond shaped edges of the crumples. The

preliminary results corroborate the observations described above by King [21]. The gaussian

curvatures are initially sharply localized in the crumpled edges and as the pressure increases

in the membrane the gaussian curvature starts delocalizing indicating that the stress is being

distributed over the membrane.

Also, in our previous work [19], we have measured crumple length lcr. From that we

have an empirical formula measuring crumple length in various system settings. It is given

by,

lcr = l0.4∥ R0.6
∥ (σ∥/Y )0.3
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While this is an important piece of information that gives insight to the length of crumples,

it still does not provide with the answer if crumples seen in my system has any relationship

with the d-cone structures. To investigate this we need to look into the following: look

closely at the Gaussian curvature at the stress focused points at lower pressures and obtain

quantitative results to study the trends at the cusps, to investigate the length scale of these

edges through curvature profile analysis and studying core length. [88]

We first investigate the length scale of the cusps at the crumpled edges. This regions

are analogous to the crescent core region of d-cone.

4.2.1.1 Core length scaling

The core length [13] scaling for developable cone is given by eqn. 9 from sec. 1.0.2.1,

Rc ≈
(
Eb

Es

) 1
6

ϵ−pR2/3;

The first term of this equation corresponds to the material properties, second part corre-

sponds to the geometry of deformation and the last term relates to the length of moment

arm of reaction force along the hoop of radius R.

First I identify the relevant parameters for my system. Based on gaussian curvature

analysis, we know that the stress focusing occurs at the diamond-like edges of crumples

which is comparable to the crescent core of D-cone which experiences the same. We measure

core radius Rc of these edges for our system using ImageJ [52] to analyze the still images

of crumples (see figure 40) I have measured the core radius of the crumples for varying

membranes with thickness ranging from Square membranes of width, D 10 < W < 31 cm

and thickness 15 < t < 222 µm. The Young’s modulus vary over a wide range (2.0 < E

< 1500 MPa) as well for these experiments. Fig. 41 shows the data for Rc dependence on

varying P . We observe in each experiment, the Rc reduces with increasing pressure. This is

interesting obsservation since in a typical d-cone, the core radius radius reduces as the stress
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Figure 40: Introducing the crescent radius Rc that is being measured in this system to
compare its scaling with a typical d-cone.

Figure 41: Cresecent radius Rc versus Pressure P .
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localizes. But the opposite effect is observed here. But it is not surprising since unlike a

typical d-cone, this membranes are under an increasing lateral tension.

We scale the y-axis with the dimension of the membrane and scale the x-axis with the

strain on the membrane (PR∥/Et) and the ratio of crumple length lcr and the bag dimension

D. From figure 42, we see that the data collapse pretty well when plotted with the new axes.

Figure 42: Scaled cresecent radius Rc

D
versus scaled pressure

(
PR∥
Et

) (
ℓcr
D

)
.

This data can be fitted by the equation,

Rc

D
= 0.0014

(
PR∥

Et

)− 1
3
(
lcr
D

)− 1
3

(55)

The eqn. 55 can be rewritten as,

Rc = 0.0014

(
Et

PR∥

) 1
3
(
lcr
D

)− 1
3

D (56)

Eqn. 56 gives an empirical scaling for the crescent core under applied stress.
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4.2.2 Universal energy scaling for film on meniscus

While we are successful in building an empirical scaling equation for the system energy of

thin floating film in the inextensible limit, some more work needs to be done to find the

full picture for the systems with finitely stretchable film. So far, we have been successful in

finding the dependence of thin film with gravity g and overfill height h (see sec. 3.9.2).

The final universal scaling energy will cover both inextensible and finitely stretchable

system by eqn. 48,

U(r) = f1(α)
γ√
ℓc

h1.5W 1.75

L0.75
exp(−f2(α)(L−W − r)/ℓc) ,

where α = Y
γ

√
h

ℓ3c
LδW β is a dimensionless “confinement” parameter. We are performing

further simulation by only varying the length of the dish to isolate its dependence on the

energy scaling. Once we obtain that, we can calculate the W scaling through dimensional

analysis. Finally we will be able to derive the general scaling law for floating thin film system

irrespective of stretchability of the film.
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A Membranes: Fabrications and troubleshooting

The fabrication of membranes used in our experiments vary based on the materials. This ap-

pendix combines all of the methods along with the protocol to troubleshooting the problems

arising from constructing membrane to inflating and performing the desired experiments.

A.1 Varying Shape of the membrane

The membrane shape was varied to study its effect on the deformations under applied stress.

Figure 43: Cartoon showing the rectangular membrane construction out of a sheet. The
dotted lines on the membrane denotes the seals. The red line denotes the surface used for
conducting our experiments (a) Rectangular and square membrane construction (b) Trian-
gular membrane construction.

A.1.1 Square and Rectangle

The square and rectangle are initial membrane shapes constructed for our experiment. First,

we decide on the dimension of the membrane and the kind of material that we will be using

for the said experiment. We cut a piece of the thin sheet from the roll that is approximately

1.5 times the dimension of the membrane. This is important since the excess material will

be necessary to get an effective seal with a sizable border. We fold the material on itself

along the latitudinal axis. A straight line along the breadth of the folded sheet is marked
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by permanent marker. The sheet is sealed by heat impact seal along the straight line.

The adjacent unsealed edge is measured and marked by the specified length dimension and

sealed. Finally, the remaining edge along the breadth is marked and sealed along the specified

dimension. The order of sealing is important here. If the last edge sealed is the edge along

the length, chances of wrinkles forming at the sealed seam increases which in turn increases

the chances of leak. If the membrane has a wide border, it is trimmed to approximately 0.5

inches on all sides to prevent any border effect on our result. After membrane is prepared,

the dimension, material and thickness are written at the border.

A point to note here is the protocol to construct the membrane explained above is not

universal. In particular, CHTP and natural rubber does not seal by the heat impact sealer

since they have higher melting points than the temperature achievable by this tool. For

these materials the protocol of folding and measuring remains same. However, CHTP and

Natural rubber are sealed by epoxy adhesive and duct tape respectively. While working

with these materials, we draw out the sides using ruler and a marker. When we use epoxy

adhesive, we mix the epoxy resin and the hardener in 1 : 1 ratio well before using a stick to

apply the adhesive along the marked lines. Then the sheet is folded along the lines and set

aside to cure for about 15 minutes. The epoxy adhesive hardens very fast (≈ 4 minutes),

which necessitate the sheet be scaled and ready for constructing the membrane. In order to

fortify the edges, we also apply a layer of hot glue and let it rest and ready for creating the

openings which will be discussed in section 4.3. For the natural rubber, we use duct tape to

tape the edges.

A point that will apply to all membranes used in this experiment is: When the sheet is

folded onto itself, care must be taken to not press down on the seal-free edge of the membrane

to prevent introduction of any defects in this region.
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A.1.2 Triangular

The method remains very similar to the section 4.2.1 except for the way the sheet is folded

to obtain a triangular membrane. The initial thin sheet is folded diagonally (see figure 43b)

and the same sealing protocol as described in section A.1.1 is followed.

A.1.3 Empanada

Figure 44: Cartoon showing the empanada shaped membrane construction out of a sheet.
The dotted lines on the membrane denotes the seals. The red line denotes the surface used
for conducting our experiments.

The method for sealing "Empanada" or a semi-circular membrane is different compared

to the other shapes since its edge is rounded unlike the other shapes we have used in this

experiment. First we cut a piece of thin sheet as per our specified need. We fold the sheet

onto itself and used a compass to create a semi-circle of desired radius. It is very important

not to press the needle onto the surfaces since it can puncture the surface and create a source

for leak. Once the sheet is marked, we press the heat impact sealer in small discrete length

along the marked edge.

A.1.4 Tetrahedral

The protocol is same as the triangular membrane until the final the edge needs to be sealed.

Instead of simply sealing it along the remaining open edge, we pick the membrane by the
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Figure 45: Cartoon showing the tetrahedral shaped membrane construction out of a sheet.
The dotted lines on the membrane denotes the seals. The red line denotes the surface used
for conducting our experiments.

sealed seam and press the membrane normally onto the seam and seal the edge such that

the previous seam lies in the center of this seal.

A.2 Preparation of the openings in the membrane

After constructing the membranes we had to decide the best location to make openings in

them to inflate them as well as measure the internal pressure instantaneously. We didn’t

make the opening adjacent to seal-free side of the membrane since that is where we will

observe our desired transition. Hence we didn’t want to disturb its boundary. Instead we

chose to open the membrane on the opposing two corners since they are farthest from the

observable region. We cut openings just barely big enough to insert the flexible pipes into

it. This is very important since making opening larger than the pipe diameter increases the

chances of leaking to a large degree. I found cutting the tip in an angle helped inserting

the pipe in the holes comparable to the pipe diameter. Once the holes are cut we initially

plugged the pipe and used the glue gun for most material (except for CHTP where we apply

epoxy adehesive instead). However, I found adding a little glue to the tip before inserting

it in the openings, gave us considerably less leakage which was observed using the method

discussed in section 4.4.

Introducing holes in the rubber membranes, can be tricky after it is sealed with duct
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tape. Hence when the membrane is made, we place the transparent elastic tube in between

the overlapping membrane while it gets sealed. To ensure the region around tube is leak

free, we apply hot glue to strengthen the seal.

A.3 Troubleshooting

To make sure that the membrane is not leaking, I performed a leak test by filling up a

large beaker or a bowl with water and dip all the edges of the membrane especially the

reinforced points (regions where the pipes has been inserted) after it has been inflated.If no

bubble forms in this regions when placed under water, it confirms that the the membrane is

leak-proof and ready for experiments. This check is particularly important while using this

membranes for topographical studies since, 3D modelling requires this membrane to hold its

pressure constant for over an hour while it is mounted on the 3D scanner and its surface

topography is modelled.

A.4 Inflating membrane

At the nascent stage of this project we inflated membranes by orally blowing air through

the pipe but that wasn’t a long term solution since it was difficult to control the influx of

air. We found an easier solution for inflating the membrane using the pressurized air cans.

However, the membrane needs to be inflated quasi-statically to allow the microstructural

deformations develop on the membrane gradually. This is a difficult process with air cans

since influx of air in the system needs to be managed manually. Over time, I realized the

best way of keeping the internal pressure of the membrane steady is by pressing the trigger

very slightly maintaining a steady influx of air such that the inflation of these membranes

occur very slowly. This still requires some practice especially if the intermediate deformation

shapes needs to be measured.
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A.5 Measuring Thickness

The materials used for this project comes from Mcmaster website where they typically have

their thickness tabulated. However, since thickness plays an important role in the final

calculations for our empirical model, we measure them in the lab using screw gauge for

higher precision. A piece of the sample sheet is cut and folded 4 to 8 times on itself and

this is placed between the anvil and the spindle of the screw gauge. The measured data

is divided by the number of folds in the sheet to obtain the thickness of the sheet. This

method is employed to reduce the inaccuracy in measuring lower dimensions. The error in

its measurement is taken equal to the least count of the screw gauge which is useful for

calculating the error bar for our model.

A.6 Measuring Young’s Modulus

We have used tensile tester to measure the Young’s modulus, Y for each material used in our

system. We standardized the sample size to be 2”X0.5” dimension strips. However, some of

the same material strip curl up and are difficult to mount. Moreover, to prevent the strips

from experiencing any plastic effect, we placed the prepared strips in between glass slides to

prevent any creases. Initially when the samples were mounted, we found that the samples

sometimes had some angular tension due to mounting error. To circumvent this issue, we

keep the sample inside the glass while it is mounted. We insert the strip of the sample

outside of glass in each clamps before removing the glass slides. This is done to prevent

introduction of angular torsion. This gave accurate reproducible results used for our study.

A.7 Lighting

Lighting in these experiments plays an important part in the ability to see the surface

deformations distinctly. Since most of the material used were opaque, having a lighted

background didn’t help in highlighting the microstructures. The experiments were run in
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Figure 46: Tensile testing samples: (a)Prepared samples of various materials. You can
notice how the sample on the left curls on itself making it difficult to mount (b) Sample is
placed between glass slides to prevent creases and help in the mounting process.

dark room with two light source at 45◦ angle. One light source is a square LED studio panel

light on a stand that was adjusted to the same level as the experiment. It is also fitted with

a smooth pattern light diffuser panel to soften the LED light and reduce harsh shadows.

On the other side, we fix a led light bulb on a stand. This bulb is adjusted such that the

light is a little above the membrane at a diagonal position with the light falling directly on

the surface of interest. This helps the light to reflect well from the microstructures on the

surface.

A.8 Camera and Image Analysis

The camera used for the experiments is Nikon D5300 model. The camera is placed on a

tripod on level with the experimental setup. The legs of the tripod are levelled. The camera

is adjusted to best focus on the seamless edge placed at the front by modulating the aperture.

All the videos of the experiments are used for finding quantitative data. At first, we

identify the point of transition for the membrane from wrinkle to crumple from the video.

We save this frame and use Fiji software to extract the radius of curvature, R⊥ along the
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Figure 47: Scanner Calibration: Cylindrical post used as a sample object for calibration
along with its scanned output

longitudinal axis and length of crumples l⊥. Since the images don’t have universal units, we

determine the measurement by choosing an object in frame with known length as frame of

reference for all the subsequent measurement. The frame of reference used in our experiment

was the height of the digital dial screen (20 mm).

B A Guide to the 3D Scanning and analysis

3D scanning is performed using the Next Engine scanner model: . The scanner comprises of

two parts: the scanning laser equipment and the mounting stage for the sample.

The scanner can do a complete scan of an object or a "bracket scan" that will only

capture the object within 180◦ range. Since our region of interest is only one side of the

membrane, we need only a bracket scan for our sample. To capture the best result bracket

scan does the surface scanning in three steps and angles: with object placed perpendicularly

from the scan and from two different angles from either sides.

We measured the dimensions of the post using vernier calipers. This data was then

compared with the values calculated from the scanned image. We found that when the

sample was placed at the distance of 9.5" from the scanner, the error was between 0.5−2.3%,

showing high precision in its measurement. We calibrate the scanner and analysis code on

the smooth metal cylinder, yields spatial fluctuations in the Gaussian curvature on the order

of 0.01 cm2, which is one indicator of the measurement precision.
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B.1 Data Cleanup and extraction

After the scan is completed, it gets automatically stitched together to form the complete

scanned membrane. However, we preferred doing it manually since it gave better alignment

among the three scans from different angles. In order to do that, we first unstitch the three

scans and take two scans at a time and put pins at the matching point on both scans. We

put at least three such pins on each scans relative to the others and manually stitch them

together for the complete scan. After obtaining the complete scan, we trim the surface to

remove points lying outside of membrane surface and excess materials that need to be deleted

to clean the data for analysis. The unwanted points are selected using the trimming tool

and deleted to obtain the final result.

After the data cleanup, we extract the data in “.xyz” format, which contain the three

dimensional Cartesian coordinates of the scanned membrane.

B.2 Data Analysis

The data analysis is done by taking extracted coordinates to plot the height map at the

crumple region to observe data using ProFit. We also investigate the Gaussian and Mean

curvatures of our system. This was initially performed using the python code written by Z.

Schrecengost in our group which I have since modified for other analysis discussed below.

While our initial results with this code gave us good result, I wanted to crosscheck the

results obtained from this program with other available methods. I have used a software

called “Cloud Compare” [89]. The results are consistent with each other. However, gaussian

curvature in “ Cloud Compare” is unsigned. Thus we stick to the python code for the

curvature analysis.
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C Surface Evolver

C.1 Wrinkling

Wrinkling occurs in the interfacial plastic film since it is energetically cheaper than stretching

at a geometrically incompatible interface. In order to mimic this physical process, we use

“relaxed_elastic”, one of the surface evolver method where the compression energy is made

zero to encourage wrinkling.

Using the Cauchy-Green stress tensor,

C =
1

2
(FQ− I)

where Q is the inverse of the unstrained gram matrix and F is the strained gram matrix.

The corresponding energy density is given by,

(
1

2(1 + ν)
(Tr(C2) +

ν ∗ (TrC)2

(1− (dim− 1) ∗ ν)

)

Where ν is the Poisson ratio for the thin film.

C.2 Choice of Poisson’s ratio

Thermodynamics restricts the permissable values of the Poisson’s ratio for an equilibrium

isotropic 3D solid to lie between −1 and 0.5. However, the default Poisson’s ratio in Surface

evolver is set at 0.8. This is permitted because we are working with a 2D elastic model, for

which there is assumed to be no coupling between the x and z deformations (or between the

y and z deformations) so that ν refers to the coupling of the x and y deformations only. For

example, if such a solid is incompressible, it will have a “planar” Poisson’s ratio of ν = 1.

Other values of ν are permitted as well. Hooke’s law in two dimensions can be written
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as:

σij =
Y

(1 + ν)

(
ϵij +

ν

(1− ν)
(ϵxx + ϵyy)δij

)
(57)

where i, j ∈ x, y. This relation is well behaved for any −1 < ν < 1.

A large portion of our simulations probe the inextensible limit, by using extremely large

values of Y/γ ∼ 1012. For those simulations, we used the default planar Poisson’s ratio value

of ν = 0.8. In this limit, the numerical value of the Poisson’s ratio is inconsequential, since

the material undergoes negligible stretching deformations. In particular, all terms in Eq. 57

involving ϵij vanish in the limit that σij/Y → 0, regardless of the value of ν.

In other simulations, we sought to model the behaviors under finite stretching. Here,

the Poisson’s ratio becomes relevant and needs to be chosen to model the deformation of

the material under finite tensile stresses. The Poisson’s ratio of polystyrene film used in

the experiments is 0.34. Hence, we chose that as our planar Poisson’s ratio in our Surface

Evolver simulations that model the finite-stretching case.

C.3 Gradient Descent

Surface Evolver uses iterative method to optimize the energy by calculating the gradient of

energy and consequently moving each vertex towards the direction of the negative gradient

times the multiplier factor called "scale". A typical gradient descent iteration in surface

evolver first calculates the force vector at each vertex obtained from the gradient of the total

energy including the vertex with constraints, saves the current vertex position, finds the

optimal scale factor that need to be multiplied by the direction of motion that is used to

displace each vertex. All the constraints are then enforced and any vertices violating that

will be projected to the constrains. Finally, the new energies, volumes are calculated are

calculated and printed. These steps are repeated as necessary. But this alone would be

enough to prove convergence since this is a first order method.

However, gradient descent is not very time efficient and it can keep zig-zaging in the
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same energy valley without reaching the optimal energy. This is improved by implementing

conjugate gradient descent in our optimization.

C.4 Adding Gravity

Figure 48: Systematic check: Comparing gravitational energy of systems with varying
sheet size. The sheet is located on the central flat portion of the liquid, so that it should
not change the height profile of the liquid as we vary its radius, and the gravitational energy
should not change. The results validate this check.

We model the experiment conducted by Ripp. et al., by adding density to the Body

of liquid in the system. The force of gravity is enforced through a density parameter that

applies to all meshing facets that belong to the droplet of water.

Ug =

∫∫
body surface

Gρ
z2

2
k⃗ · d⃗S

Gravity can be added to surface evolver with the command “gravity constant” followed by

the assigned value of gravity. The other way to add gravity is by the command “gravity method′′.

Both these methods worked identically hence we chose to go with the command “gravity constant”
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to standardize the protocol.

To ensure that the volume under the sheet is considered dense by the model, we perform

a control test where we vary the sheet size while holding other parameters constant. If the

volume under the sheet is in fact considered dense, then this change should not affect the

gravitational energy of the system. While the sheet size might affect the gross shape of the

droplet, which might force some of the water to a higher or lower height, the difference in

energy should not be significant compared to the cylinder of volume below the sheet.

C.5 The Ansatz Problem and Volume iteration (Voliter)

Initial model uses an ansatz for the gross shape of the droplet describing it as the cap of a

sphere. This ansatz is a perfectly reasonable approximation for the behaviour of a droplet

not experiencing any gravitational pull.

The introduction of gravity to this model produced some serious problems in simulation.

The sheet mesh would often fail with strange non-physical bumps and ridges would appear

in the shape. The spherical cap ansatz is simply non-compatible with a system with gravity.

The height profile in this cases looked nonphysical. In order to counter the non-physical

height profile, we took off the previous ansatz that raises the liquid to a certain height before

optimizing thereby making the liquid start from zero height. It showed some promise since

the trend looked physical(the total energy increased as the sheet went to the edge) and the

bump vanished. However, we could not raise the system over a certain height volume (>20)

without it failing to optimize the system. It also failed with lower mesh sizes (<0.2) as well.

We speculated that since the volume increases from to 0 to the max volume, surface evolver

is unable to handle the surface variation beyond a threshold final volume. We speculated,

that the volume need to be increased in steps.

We found that there is a command in surface evolver ’B’ that can also change the volume

in gradual step. However, this also didn’t solve the problem and caused mesh failures, ridges,

bumps. Therefore, to handle this, we came up with new way of implementing the volume
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increase called “Volume Iteration”. “Volume iteration” algorithm increases the volume in steps

by breaking the total volume from zero to final value at a constant increment. Initially, the

surface with the film on it at zero volume is used as input file for energy optimization. This

surface is optimized using SE. After SE generates the final mesh output, we extract the

vertices, edges and facets of the final zero volume surface to create a new SE input file with

the next volume and this process is repeated until the system reaches its final volume.

This gave us physical results that was used in the second chapter of this thesis.

C.6 Height profile study and comparison with the experiment

Figure 49: Height Profile Matching: Simulating the model with the non-dimensionalized
parameters from the experiment and superimposing it on the liquid drop to test qualitative
profile matching.

We also performed a qualitative test on the height profile of the liquid to ensure our

simulation model is able to create a realistic liquid profile when provided with the experimen-
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Figure 50: Height Profile reflection: The left side of the height profile is reflected on the
right side.(a) Height profile when the film is at 1.1 from center. (b) Height profile when the
film is at 2.5 from center.

tally derived parameters. Figure 49 confirms that our simulated liquid bath superimposes

quite well with the experimental system’s side view.

We also made sure that the height profile didn’t have any unphysical behaviour when

the sheet is placed at different position on the liquid surface. We check that by overlapping

the left side of the height profile with the right. Fig. 50 shows that they look physical. We

can also see in fig. 50 that as the film is displaced towards the edge, the profile changes due

to the increase in curvature mismatch as expected.
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