
Syracuse University Syracuse University 

SURFACE at Syracuse University SURFACE at Syracuse University 

Dissertations - ALL SURFACE at Syracuse University 

8-26-2022 

Switched Kinematic and Force Control for Lower-Limb Motorized Switched Kinematic and Force Control for Lower-Limb Motorized 

Exoskeletons and Functional Electrical Stimulation Exoskeletons and Functional Electrical Stimulation 

Chen-Hao Chang 
Syracuse University, jtes5313@gmail.com 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Chang, Chen-Hao, "Switched Kinematic and Force Control for Lower-Limb Motorized Exoskeletons and 
Functional Electrical Stimulation" (2022). Dissertations - ALL. 1655. 
https://surface.syr.edu/etd/1655 

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at 
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of 
SURFACE at Syracuse University. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=surface.syr.edu%2Fetd%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1655?utm_source=surface.syr.edu%2Fetd%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Abstract

Millions of people experience movement deficits from neurological conditions (NCs) that impair

their walking ability and leg function. Exercise-based rehabilitation procedures have shown the

potential to facilitate neurological reorganization and functional recovery. Lower-limb powered

exoskeletons and motorized ergometers have been combined with functional electrical stimu-

lation (FES) to provide repetitive movement, partially reduce the burden of therapists, improve

range of motion, and induce therapeutic benefits. FES evokes artificial muscles contractions and

can improve muscle mass and strength, and bone density in people with NCs. Stationary cycling

is recommended for individuals who cannot perform load-bearing activities or have increased

risks of falling. Cycling has been demonstrated to impart physiological and cardiovascular bene-

fits. Motorized FES-cycling combines an electric motor and electrical stimulation of lower-limb

muscles to facilitate coordinated, long-duration exercise, while mitigating the inherent muscle fa-

tigue due to FES. Lower-limb exoskeletons coupled with FES, also called neuroprostheses or hy-

brid exoskeletons, can facilitate continuous, repetitive motion to improve gait function and build

muscle capacity. The human-robot interaction during rehabilitative cycling and walking yield a

mix of discrete effects (i.e., foot impact, input switching to engage lower-limb muscles and elec-

tric motors, etc.) and continuous nonlinear, uncertain, time-varying dynamics. Switching con-

trol is necessary to allocate the control inputs to lower-limb muscle groups and electric motors

involved during assisted cycling and walking. Kinematic tracking has been the primary control

objective for devices that combine FES and electric motors. However, there are force interac-

tions between the machine and the human during cycling and walking that motivate the design of

torque-based controllers (i.e., exploit torque or force feedback) to shape the leg dynamics through

controlling joint kinematics and kinetics. Technical challenges exist to develop closed-loop feed-

back control strategies that integrate kinematic and force feedback in the presence of switching

and discontinuous effects. The motivation in this dissertation is to design, analyze and implement

switching controllers for assisted cycling and walking leveraging kinematic and force feedback



while guaranteeing the stability of the human-robot closed-loop system.

In Chapter 1, the motivation to design closed-loop controllers for motorized FES-cycling and

powered exoskeletons is described. A survey of closed-loop kinematic and force feedback control

methods is also introduced related to the tracking objectives presented in the subsequent chapters

of the dissertation.

In Chapter 2, the dynamics models for walking and assisted cycling are described. First, a bipedal

walking system model with switched dynamics is introduced to control a powered lower-limb

exoskeleton. Then, a stationary FES-cycling model with nonlinear dynamics and switched con-

trol inputs is introduced based on published literature. The muscle stimulation pattern is defined

based on the kinematic effectiveness of the rider, which depends on the crank angle. The experi-

mental setup for lower-limb exoskeleton and FES-cycling are described.

In Chapter 3, a hierarchical control strategy is developed to interface a cable-driven lower-limb

exoskeleton. A two-layer control system is developed to adjust cable tensions and apply torque

about the knee joint using a pair of electric motors that provide knee flexion and extension. The

control design is segregated into a joint-level control loop and a low-level loop using feedback

of the angular positions of the electric motors to mitigate cable slacking. A Lyapunov-based sta-

bility analysis is developed to ensure exponential tracking for both control objectives. Moreover,

an average dwell time analysis computes an upper bound on the number of motor switches to

preserve exponential tracking. Preliminary experimental results in an able-bodied individual are

depicted. The developed control strategy is extended and applied to the control of both knee and

hip joints in Chapter 4 for treadmill walking.

In Chapter 4, a cable-driven lower-limb exoskeleton is integrated with FES for treadmill walk-

ing at a constant speed. A nonlinear robust controller is used to activate the quadriceps and ham-

strings muscle groups via FES to achieve kinematic tracking about the knee joint. Moreover,

electric motors adjust the knee joint stiffness throughout the gait cycle using an integral torque



feedback controller. A Lyapunov-based stability analysis is developed to ensure exponential

tracking of the kinematic and torque closed-loop error systems, while guaranteeing that the con-

trol input signals remain bounded. The developed controllers were tested in real-time walking

experiments on a treadmill in three able-bodied individuals at two gait speeds. The experimental

results demonstrate the feasibility of coupling a cable-driven exoskeleton with FES for treadmill

walking using a switching-based control strategy and exploiting both kinematic and force feed-

back.

In Chapter 5, input-output data is exploited using a finite-time algorithm to estimate the target

desired torque leveraging an estimate of the active torque produced by muscles via FES. The

convergence rate of the finite-time algorithm can be adjusted by tuning selectable parameters.

To achieve cadence and torque tracking for FES-cycling, nonlinear robust tracking controllers

are designed for muscles and motor. A Lyapunov-based stability analysis is developed to en-

sure exponential tracking of the closed-loop cadence error system and global uniformly ultimate

bounded (GUUB) torque tracking. A discrete-time Lyapunov-based stability analysis leverag-

ing a recent tool for finite-time systems is developed to ensure convergence and guarantee that

the finite-time algorithm is Hölder continuous. The developed tracking controllers for the mus-

cles and electric motor and finite-time algorithm to compute the desired torque are implemented

in real-time during cycling experiments in seven able-bodied individuals. Multiple cycling trials

are implemented with different gain parameters of the finite-time torque algorithm to compare

tracking performance for all participants.

Chapter 6 highlights the contributions of the developed control methods and provides recommen-

dations for future research extensions.
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1

Chapter 1

Introduction

1.1 Background

After a traumatic brain injury, spinal cord injury (SCI), or stroke, people experience movement

deficits, cardiovascular diseases, negative psychological effects, and lack of independence. Re-

habilitation machines, exoskeletons, and powered orthoses seek to assist or replace limb func-

tions to improve the quality of life of people with neurological conditions. Automatic and semi-

automatic machines such as powered exoskeletons and motorized exercise cycles have been com-

bined with functional electrical stimulation (FES) to regain function, provide repetitive training,

partially reduce the burden of therapists, improve range of motion, and induce therapeutic and

cardiovascular benefits [1], [2]. FES evokes artificial muscle contractions to achieve arm and leg

movements. The implementation of FES closed-loop feedback controllers have been demon-

strated for upper-limb rehabilitation [3], [4], locomotion [5]–[8], and lower-limb cycling [9]–

[13]. Lower-limb rehabilitation machines aim to produce coordinated leg movements by acti-

vating multiple lower-limb muscles along with the assistance of electric motors, which naturally

prolong the exercise duration by adding an extra control authority (i.e., electric motors aid to de-
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lay the onset of muscle fatigue by preventing over-stimulation). Challenges to achieve smooth

control via FES include accelerated muscle fatigue and the highly nonlinear muscle activation

rate for a given stimulation intensity input [14]. Therefore, motivation exists to develop robust

and adaptive human-robot closed-loop controllers that achieve natural and intuitive movement,

while providing rigorous proofs of stability of the coupled system.

A hybrid approach integrating robotic exoskeletons and FES provides the benefits of actively

stimulating paralyzed muscles and exploits the robot’s torque reliability to yield repetitive mo-

tion. Hybrid exoskeletons provide postural support, coordinate motion across multiple joints, and

apply bursts of electrical stimulation. Hybrid exoskeletons can contribute to delay the onset of

muscle fatigue by reducing the muscle stimulation duty cycle and improving endurance. Hybrid

exoskeletons have incorporated direct joint actuation and implemented closed-loop controllers

for the actuators and FES [15], [16]. Hybrid orthoses have been designed to lock and unlock leg

joints as a function of the gait cycle to provide upright stability and leg assistance using postural

controllers [7]. A hybrid neuroprosthesis (HNP) evaluated a finite state machine controller to co-

ordinate stimulation and exoskeleton inputs for stepping [17]. A hybrid system integrating an ex-

oskeleton to actuate hip and knee joints, and implanted neural stimulation has been developed to

increase gait speed in individuals with SCI [18]. Cooperative control between motor and muscle

loops has been developed to minimize the motor torque contribution and maximize the muscle-

generated joint torques via surface stimulation [15]. Synergy-based controllers address the prob-

lem of actuator redundancy in simulation to control muscles via FES and electric motors [19] and

account for the muscle activation dynamics and the inherent electromechanical delay of muscles.

Technical innovations are needed to advance the control design and analysis of hybrid exoskele-

tons to yield more natural and compliant interactions for people with varying levels of volition.

These can aid increasing gait speed and endurance since they remain limited with existing hybrid

devices [20].

Soft or cable-driven exoskeletons have the potential to be used for function restoration during gait
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rehabilitation when coupled with FES. Differently from exoskeletons with direct joint motor ac-

tuation, soft exoskeletons use wearable garments and Bowden cables to enable human transparent

movements for walking and running [21]–[26]. Cable-driven transmission mechanisms offload

actuators away from the human to reduce the weight imposed on the body, and such mechanisms

have been implemented for lower-limb [27], [28] and upper-limb [29], [30] assistance. Cable-

driven exoskeletons are also practical systems to prototype and test gait control designs with a

relatively low complexity and ease of configuration [31]. Lighter exoskeletons can provide less

resistance to muscle effort and could potentially reduce the metabolic costs of walking using

hybrid exoskeletons compared to more rigid exoskeletons [32]. Soft wearable exoskeletons and

ankle emulators have reduced the metabolic energy consumption during walking by optimizing

control parameters in able-bodied individuals and stroke survivors [33]–[35]. Soft exoskeletons

have implemented a human-in-the-loop paradigm [34], [36] demonstrating improvements in

walking speed and distance for post-stroke individuals. Integrating the system-level benefits of

cable-driven exoskeletons and muscle-driven benefits of FES can provide customized walking be-

haviors. However, challenges remain to design and evaluate feasible and intuitive control strate-

gies for cable-driven exoskeletons and FES during assisted walking, while developing rigorous

control analysis for the multi-joint hybrid system.

A fundamental research question for the development of hybrid exoskeletons is how to allocate

or segregate the control design for the powered actuators and muscles [15], [16], [37]. Kine-

matic tracking has been the primary control objective for rehabilitation devices and machines

that combine FES and powered actuation, where the desired trajectories can be tracked by mus-

cles, electric motors (i.e., the machine or robot) or both during walking and cycling [10], [37],

[38]. Recently, torque tracking objectives have been developed for motorized FES-cycling us-

ing admittance-based or impedance-based strategies with a Lyapunov-based analysis [39]–[41].

Cable-driven exoskeletons allow for the design of force feedback controllers, by including force

transducers, as a strategy to adjust the cable tension and influence joint kinematics and kinetics.

In particular, muscular and joint stiffness are essential for leg coordination and regulation of pos-
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ture [42], [43]. Stiffness control is motivated for human-machine interaction for its ability to ab-

sorb shock, robustness to perturbations, efficiency to release and store energy, and safety [44]–

[46]. Stiffness control has been widely used in industrial manufacturing machines, grasping for

robotic hands [47], upper-limb exoskeletons [48], ankle actuators [49], and surgical manipula-

tors [50]. Stiffness controllers traditionally have used impedance-based models to generate in-

teraction torques based on changes in the joint kinematics. Gait training was performed using

an admittance controller in a robot that converts desired assistance to joint trajectories and stiff-

ness profiles [51]. A hybrid FES-exoskeleton cooperative strategy exploited a torque field with

stiffness and damping for the motor control, while kinematic controllers were designed for the

muscles [52]. A motivation is to exploit the ability of the cable-driven exoskeleton to adjust the

joint stiffness and design FES controllers for muscles during walking.

A distributed approach can be developed to implement kinematic and force controllers during

walking experiments using layers. The high-level control layer includes the designed tracking

controllers to follow the desired kinematic or force trajectories [53], [54]. The low-layer allo-

cates control among actuators and generates the inputs that are applied to the lower-limb muscles

and electric motors that actuate the cables in the powered exoskeleton. A systematic and rigorous

low-level control design is needed to adjust the tension in the cable-pulley systems. Since cables

cannot transmit compression forces, at least two cables are required to control a 1-DOF joint to

provide an agonist-antagonist movement [55] (i.e., bi-directional joint motion). Despite the ad-

vantages of cable-driven mechanisms, two major challenges arise to ensure adequate control [56]:

(1) cables can experience a slack behavior if the tension is not accurately controlled, thus unde-

sirable backlash occurs in the torque transmission; (2) co-activation of agonist-antagonist cables

can lead to lack of coordination due to counteracting torques applied about a joint. Hence, it is

essential to develop effective control strategies to ensure coordinated motion and torque transfer

in a multi-joint cable-driven system.

Powered cable-driven exoskeletons aim to achieve precise joint tracking by activating a pair of
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electric motors to ensure bi-directional motion. This type of bi-directional actuation requires

switching between two electric motors to alternate between flexion and extension motions dur-

ing walking. This kind of input switching is ubiquitous to achieve leg coordination, yet there is a

lack of rigorous control design and stability analysis to examine the switching effects in the per-

formance of existing cable-driven powered exoskeletons for walking [28], [31], [53]. However,

input switching can destabilize otherwise stable subsystems [57]. Hence, motor input switching

poses a challenge to ensure stability of the closed-loop exoskeleton system. Different strategies

have been developed to address various kinds of switching effects. A dwell time analysis en-

sures a switched system achieves exponential stability under slow switching [57]. However, the

challenge for the bi-directional joint control using cable-driven systems is that the switching in-

stances are not known a priori (i.e., the timing at which switching occurs is unknown). Thus, a

dwell time analysis is likely restrictive and unfeasible to coordinate motor switching. Instead, an

average dwell time analysis [57] can be introduced to guarantee the stability of the switching sys-

tem by developing a condition on the maximum allowable number of switches (i.e., control allo-

cation switching) within a given time interval. To our knowledge, existing cable-driven exoskele-

tons [27], [28] have not exploited a switched systems approach to design and analyze controllers

that activate multiple actuators for walking.

Despite the numerous benefits of gait rehabilitation, FES-cycling is recommended for people

with upper-limb pathologies and impaired sensory feedback who are excluded from gait train-

ing or other high cardiovascular exercises. In motorized FES-cycling, surface electrical stimu-

lation is applied to multiple muscle groups to evoke active torque complemented by the assis-

tance of an electric motor [9]. Cadence and power tracking are two main control objectives for

FES-cycling, which have motivated the design and evaluation of controllers leveraging different

techniques. Robust controllers have been designed and implemented to track desired cadence tra-

jectories with and without motorized assistance [9], [58]–[60]. Adaptive-based control methods

involving switched dynamics have been recently introduced to compensate for model uncertain-

ties and improve tracking performance using iterative learning [13], repetitive learning [10], and
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concurrent learning [61] approaches. Power tracking controllers were designed to track prede-

termined desired torque trajectories using impedance and admittance techniques [41], [62], [63]

and a model-based feedback approach [64]. However, existing power tracking controllers usually

implement predetermined desired torque trajectories and thus are prone to experience degraded

performance due to the time-varying muscle dynamics and fatigue. Limited torque tracking per-

formance may require manual adjustments of the desired torque demand, which is not practical

in clinical settings. Thus, technical challenges remain to develop control methods that can adjust

the desired torque trajectory in real-time to improve power tracking, while capturing the muscle

force-producing ability and guaranteeing stability.

A potential strategy to improve power tracking in FES-cycling is to adjust the desired torque

target based on collected input-output data. For example, powermeters are usually integrated

in lower-limb cycles to measure the applied torque about the crank. However, the torque mea-

surements provided by powermeters include the collection of passive and active torque contri-

butions by the rider. Therefore, recent studies on FES-cycling have calculated estimates of the

active torque generated by muscles to segregate their torque contributions about the crank [41].

Impedance and admittance controllers for FES-cycling have implemented an indirect torque ap-

proach in which changes in the rider’s torque influence the cadence trajectory or vice versa (i.e.,

changes in cadence impact the torque trajectory) [41], [62], [63]. However, it remains unclear

how to exploit estimates of the active muscle torque to adjust the desired torque trajectory in real-

time independently and without affecting the desired cycle’s cadence. In addition, the approach

to adjust the torque demand needs to guarantee stability of the closed-loop torque error system

and have fast convergence (e.g., finite-time convergence) to capture the rider’s time-varying abil-

ity to generate active torque, which is influenced by muscle fatigue.

Finite-time stability is a well-studied concept in control systems that guarantees convergence to

an equilibrium in finite time and provides robustness with respect to disturbances. Thus, con-

trol performance can be improved by leveraging finite-time stability tools to obtain a faster rate
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of convergence compared to traditional asymptotic results. Stability results for continuous au-

tonomous systems, non-autonomous (i.e., time-varying systems), switched, and hybrid systems

have been reported in [65]–[68]. Finite-time stability results have been extended for adaptive pa-

rameter estimation [69], discontinuous (using Filippov solutions) and impulsive systems [70],

[71]. A finite-time method has been integrated with extremum seeking to maximize or minimize

a cost function and achieve real-time optimization with a fast convergence rate [72], [73]. Re-

cently, a discrete finite-time framework has leveraged input-output data to learn uncertain dy-

namics and guarantee robustness and nonlinear stability [74]. However, it is an open problem to

explore the feasibility of finite-time control tools to improve torque tracking performance and

ensure fast convergence in FES-cycling systems.

1.2 Outline of the Dissertation

In Chapter 2, the dynamics models of the robotic lower-limb exoskeleton with FES inputs and the

cycle-rider stationary cycling system are introduced. The bipedal walking model for exoskeleton

control is developed using a switched systems approach. The cycling model includes the switch-

ing effects of activating multiple muscle groups based on a state-dependent stimulation pattern

that exploits the kinematic effectiveness of the rider. The experimental setup and procedures are

also introduced in Chapter 2.

In Chapter 3, the control design to achieve knee joint extension and flexion using a cable-driven

exoskeleton is segregated into two layers. First, the joint layer (high-level) computes the control

input needed to track the desired kinematic joint trajectory, which is achieved through a robust

sliding-mode controller. Second, the motor layer (low-level) includes a pair of electric motors

to provide bi-directional motion about the knee joint. One motor, called the lead motor, imple-

ments the control input commanded by the joint layer to achieve the desired joint kinematics. The

second motor, called the follower motor, tracks the angle of the lead motor also using a robust
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sliding-mode controller. The goal for the follower motor controller is to minimize cable slacking

and improve response when switching occurs. To achieve leg extension and flexion, the electric

motors switch their roles between lead and follower motor. A Lyapunov-based stability analy-

sis is used to guarantee high-level exponential joint kinematic tracking. For the low-level layer,

additional stability analyses guarantee exponential tracking for the flexion and extension mo-

tors, when each is activated as the follower motor. Finally, an average dwell time analysis pro-

vides a condition on the maximum allowable number of motor switches to preserve exponential

convergence when allocating the control between the pair of motors. This low-level control de-

sign has been further applied to pairs of electric motors for both knee and hip joints to achieve

bi-directional motion in Chapter 4.

In Chapter 4, kinematic and torque tracking controllers are designed to activate the electric mo-

tors of a lower-limb cable-driven exoskeleton and muscles via FES to achieve treadmill walk-

ing at a constant speed. The hybrid exoskeleton and human are modeled as a four-link bipedal

walking system with state-dependent switched dynamics to describe the gait phase transitions

from stance phase to swing phase, and vice versa. The leg dynamics is modeled as a switched

system to characterize the pendulum dynamics within the swing phase and the inverted pendu-

lum dynamics within the stance phase, and their ongoing transitions during walking. The quadri-

ceps and hamstrings muscle groups are electrically stimulated using a nonlinear robust kinematic

feedback controller to guide the knee joints through their desired joint angles, while the electric

motors adjust the cable tension to achieve a desired torque using a stable stiffness model. The

electric motors provide torque assistance about the hip joints to track the desired hip joint angles.

The bipedal walking dynamics include low-level switching to determine the active muscles and

electric motors to achieve flexion and extension motion for the knee and hip joints. A Lyapunov-

based approach is developed to ensure exponential tracking of the kinematic and torque closed-

loop systems.

In Chapter 5, cadence and torque controllers are designed for power tracking using a motor-
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ized FES-cycling system. The cycle-rider system is modeled as a nonlinear, time-varying, state-

dependent switched dynamical system. To capture the time-varying muscle capacity to evoke ac-

tive torque, a finite-time torque control algorithm is developed to adjust the desired torque in real-

time by leveraging estimates of the active torque produced by muscles. The finite-time torque

controller leverages input-output data and is designed in discrete-time to adjust the peak torque

demand per crank cycle, and thus converge in finite-time. This torque strategy departs from ex-

isting cycling studies that implement predetermined desired torque trajectories that may require

manual tuning as the rider fatigues. A robust sliding-mode controller using an integral torque sig-

nal is designed to apply FES to the hamstrings, quadriceps, and gluteus muscle groups to track

the desired torque trajectory. Similarly, a robust sliding-mode controller is designed for the elec-

tric motor to achieve the desired cadence tracking objective. A Lyapunov-based stability analy-

sis is developed to ensure exponential cadence tracking and obtain a global uniformly ultimate

bounded (GUUB) result for torque tracking. A discrete-time Lyapunov-based analysis is used to

ensure the finite-time torque controller that generates the desired trajectory is Hölder continuous.

Chapter 6 concludes the dissertation. A summary of the dissertation is provided along with a dis-

cussion on potential extensions and future research directions based on the results developed in

previous chapters.
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Chapter 2

Dynamics Models and Experimental Setup

In this chapter, the bipedal walking model used to control the robotic lower-limb exoskeleton

with FES is presented using a switched systems approach [62]. The cycle-rider nonlinear dynam-

ics model with switched dynamics is presented [9], [58]. The experimental setup for lower-limb

exoskeleton and FES-cycling are described.

2.1 Lower-limb Exoskeleton Dynamics Model

2.1.1 Dynamics Model Derivation

A four-link bipedal walking system is derived in this section as illustrated in Figure 2.1. The fol-

lowing assumptions are used in the derivation.

Assumption 1. The walking system is restricted to movement in the sagittal plane.

Assumption 2. The model of the foot is neglected (i.e., point-foot contact with the ground is as-

sumed), and the ground contact is assumed to be rigid.

Assumption 3. There is no slipping between the point-foot and the ground.
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Assumption 4. The trunk dynamics is neglected and assumed to be rigid in the vertical direction.

A safety harness connected to an overhead support system is used to stabilize the trunk.

Assumption 5. The impact dynamics model and double-support phase are not considered for

treadmill walking. The double-support phase occurs instantaneously and the standing leg switches

from one side to the other.

x

y

+

+

+

_

Trunk

Figure 2.1: The figure represents the case when the standing leg is the right leg. Inertial frame
is attached to the point-foot. The trunk dynamics are neglected and the trunk is assumed to
be in a vertical position due to the safety harness and overhead support. The joint angles
are denoted by qRK , qLK , qRH , qLH (i.e., right (R), left (L), knee joint (K), and hip joint (H),
respectively). The CoM for each link is denoted as mRS,mLS,mRT ,mLT , where the sub-
scripts S, T represent shank and thigh. The unknown link lengths to the CoM are denoted by
lRSP , lRSD, lLSP , lLSD, lRTP , lRTD, lLTP , lLTD, where the subscripts P,D represent proximal (to-
ward body core) and distal (out of body core) direction.

The inertial frame is attached to the point-foot that is in contact with the ground. Each link can
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be treated as a point-mass. The unknown distance between each link’s end to its center of mass

(CoM), and unknown point-mass are illustrated in Figure 2.1. The measurable joint angles and

angular velocities are also illustrated in Figure 2.1. Following standard Lagrangian mechanics,

the Lagrangian can be defined as

L(q, q̇) = K(q, q̇)− V (q), (2.1)

where q : R≥t0 → R4 denotes joint angles, q̇ : R≥t0 → R4 denotes the joint angular velocities, K

denotes the kinematic energy, and V denotes the potential energy. The dynamic equation of the

walking exoskeleton system can be calculated as

d

dt

∂L

∂q̇
− ∂L

∂q
= τ, (2.2)

where τ represents the actuator torques.

2.1.2 Exoskeleton Dynamics Model

The hybrid exoskeleton and a human can be modeled as a four-link bipedal walking system in the

sagittal plane with a switching Euler-Lagrange model as [62]

Mρ(q)q̈ + Cρ(q, q̇)q̇ +Gρ(q) + Pρ(q, q̇) + dρ(t) = τE(q, q̇, t) + τM(q, q̇, t), (2.3)

where the subscript ρ ∈ R ≜ {1, 2} denotes the index of the switching dynamics using the

stance leg as the reference, such that ρ = 1 denotes the right leg as the stance leg and ρ = 2

denotes the left leg as the stance leg, as illustrated in Figure 2.2. The joint angle vector is defined

as q ≜ [qrk, qlk, qrh, qlh]
T : R≥t0 → R4 denoting the measurable joint angles (i.e., right (r), left

(l), knee joint (k), and hip joint (h), respectively), q̇ : R≥t0 → R4 and q̈ : R≥t0 → R4 denote the

measurable joint angular velocities and unmeasurable joint angular accelerations, respectively,
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Figure 2.2: Schematic of the human-exoskeleton system with switching dynamics. (A) The knee
joint angle qk and hip joint angle qh of the right leg are depicted in an initial standing position.
(B) The switching dynamics are illustrated using the stance leg as reference (i.e., support leg).
The subsystem ρ = 1 denotes when the right leg is in the stance phase and the left leg is in the
swing phase. The subsystem ρ = 2 denotes when the left leg is in the stance phase and the right
leg is the swing phase.

and t0 ∈ R≥0 is the initial time; Mρ : R4 → R4×4
>0 denotes the combined human-exoskeleton

inertia; Cρ : R4×R4 → R4×4 and Gρ : R4 → R4 denote the Centripetal-Coriolis and gravitational

effects, respectively; Pρ : R4 × R4 → R4 denotes the damping and viscoelastic effects; and

dρ : R≥t0 → R4 denotes lumped disturbances applied to the system by the legs (e.g., involuntary

forces and muscle spastic contractions), ground reaction effects, and any other unmodeled effects

present in the system.

The torque inputs in (2.3) include τE : R4 × R4 × R≥t0 → R4, which denotes the torque applied

by electric motors, and τM : R4 × R4 × R≥t0 → R4, which denotes the active torque produced

by active muscle contractions via FES. Hence, the hybrid exoskeleton integrates electric motors

and FES applied on the muscles to actuate the hip and knee joints as illustrated in Figure 2.3. The

cable-driven mechanism provides tension to flexor (fl) and extensor (ex) cables using electric

motors. Similarly, FES is applied to the hamstrings (ham) and quadriceps (quad) muscle groups

to achieve knee flexion and extension, respectively. Electric motors provide torque about both

knee and hip joints (Figure 2.3.A). FES evokes muscle contractions to generate torque about

the knee joint since the quadriceps and hamstrings are assumed to produce torque only about the
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knee joint (i.e., negligible hip coactivation). (Figure 2.3.B). The activation of hip flexors and ex-

tensors is challenging using surface FES [16], hence these muscles are not stimulated and do not

contribute to generate torque about the hip joint.

fl

fl

ex

ex

quad

ham

(A) (B)

fl
ex

Figure 2.3: Schematic of the hybrid exoskeleton actuation for walking. (A) The actuation of the
cable-driven exoskeleton is illustrated, where a couple of flexor and extensor cables on each joint
are tensioned to provide torque about the joints. (B) The FES applied to the quadriceps (quad)
and hamstrings (ham) muscle groups to generate torque about the knee joint is depicted.

Assumption 6. Muscles that span multiple joints such as the quadriceps and hamstrings mus-

cle groups produce torque about the knee joint (negligible hip coactivation). Hence, the muscle

biarticular effects [75] are neglected.

The torque produced by motors and muscles can be defined as

τE(q, q̇, t) ≜
8∑
e=1

Be(q, q̇)σe(t)ue(t), (2.4)

τM(q, q̇, t) ≜
4∑

m=1

Bm(q, q̇, t)σm(t)um(t), (2.5)

where the subscript e ∈ E = {1, 2, ..., 8} denotes the motor index, and m ∈ M = {1, 2, 3, 4}

denotes the muscle group index as illustrated in Table 2.1. The unknown individual motor control
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effectiveness is denoted as Be : R4 × R4 → R4×4
>0 , and the individual motor current inputs are

denoted as ue : R≥t0 → R4, ∀e ∈ E . The unknown individual muscle control effectiveness is

denoted by Bm : R4 × R4 × R≥t0 → R4×4
>0 and the individual muscle stimulation inputs are

denoted by um : R≥t0 → R4, ∀m ∈ M. The switching signals are defined as the piecewise

constant functions σe ∈ {0, 1} and σm ∈ {0, 1}, ∀e ∈ E ,m ∈ M.

Table 2.1: Flexion and extension motor indices for right and left hip and knee joints (top).
Quadriceps and hamstrings muscles indices for right and left leg (bottom).

Right Knee Left Knee Right Hip Left Hip
Extension Motor 1 3 6 8
Flexion Motor 2 4 5 7

Right Leg Left Leg
Quadriceps 1 3
Hamstrings 2 4

The following properties are exploited in Chapter 3 and Chapter 4.

Property 1. The inertia matrix Mρ(q) is positive definite and symmetric, and satisfies the in-

equalities cm ∥ξ∥2 ≤ ξTMρ(q)ξ ≤ cM ∥ξ∥2, ∀ξ ∈ R4, where cm and cM are known positive

constants, ∀ρ ∈ R [76].

Property 2. The inverse of the inertia matrix Mρ(q) is bounded as 1
cM
I ≤ M−1

ρ (q) ≤ 1
cm
I ,

∀ρ ∈ R, where I is the identity matrix [76].

Property 3. ∥Cρ(q, q̇)∥ ≤ cc ∥q̇∥, ∀ρ ∈ R, where cc is a known positive constant [76].

Property 4. ∥Gρ(q)∥ ≤ cg, ∀ρ ∈ R, where cg is a known positive constant [76].

Property 5. ∥Pρ(q, q̇)∥ ≤ cp1 + cp2 ∥q̇∥, ∀ρ ∈ R, where cp1 and cp2 are known positive con-

stants [77]–[79].

Property 6. The skew-symmetry 1
2
Ṁ − C = 0 [76].

Property 7. Be ∥ξ∥
2 ≤ ξTBeξ ≤ Be ∥ξ∥2, ∀ξ ∈ R4, where Be and Be are known positive

constants.
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Property 8. Bm ∥ξ∥2 ≤ ξTBmξ ≤ Bm ∥ξ∥2, ∀ξ ∈ R4, where Bm and Bm are known positive

constants.

Assumption 7. ∥dρ(t)∥ ≤ cd, ∀ρ ∈ R, where cd is a known positive constant.

2.2 Cycle-Rider Dynamics Model with Input Switching

The single degree-of-freedom stationary cycle-rider system is modeled with the following dy-

namics [58]

M(q)q̈ + C(q, q̇)q̇ +G(q) + P (q, q̇) + d(t) = τe(q, q̇, t) + τm(q, q̇, t), (2.6)

where q : R≥t0 → Q, q̇ : R≥t0 → R, and q̈ : R≥t0 → R are the measurable crank angle,

measurable crank angular velocity, and unmeasurable angular acceleration, Q ⊆ R denotes the

set of crank angles, and t0 ∈ R≥0 is the initial time; M : Q → R>0 denotes the combined

cycle-rider inertia; C : Q × R → R and G : Q → R denote the Centripetal-Coriolis and

gravitational effects, respectively; P : Q × R → R denotes the effect of passive viscoelastic

and damping forces in the rider’s joints; and d : R≥t0 → R denote the lumped disturbances

applied to the system and any other unmodeled effects. The torque applied by the electric motor

and produced by FES-induced muscle contractions are denoted by τe : Q × R × R≥t0 → R and

τm : Q × R × R≥t0 → R, respectively. FES is applied to the quadriceps, hamstrings and gluteal

muscle groups in a pattern that facilitates effective torque transmission about the crank [80]. The

torque produced by muscles and the lumped switched muscle control effectiveness are defined as

τm(q, q̇, t) ≜ Bσ(q, q̇, t)um(q, q̇, t), (2.7)

Bσ(q, q̇, t) ≜
∑
m∈M

Bm(q, q̇, t)σm(q), (2.8)
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Figure 2.4: Schematic of the muscle stimulation patterns based on the crank angle to yield for-
ward pedaling. The custom stimulation regions for each muscle group are calculated based on
the effectiveness to transfer torque about the crank as in [9]. The crank cycle is segregated into
FES and non-FES regions. Within the FES regions, muscles are stimulated to achieve the desired
torque tracking objective. Within the non-FES regions, FES is not applied due to the low effec-
tiveness to produce active torque. The electric motor is activated during the entire crank cycle to
achieve the cadence tracking objective.

respectively, where the FES control input each muscle is denoted by um : Q×R×R≥t0 → R. The

subscript σ ∈ S , where S is a finite set, indicates the index of Bσ and switches according to the

crank angle. The individual muscle control effectiveness Bm : Q × R × R≥t0 → R>0 is defined

as in [58], ∀m ∈ M, where the set M includes all the stimulated muscle groups. The state-

dependent switching signal for each muscle group is denoted as σm : Q → {0, 1}, ∀m ∈ M.

Figure 2.4 illustrates an example of the muscle stimulation patterns based on the crank angle.

Cycles are outfitted with powermeters that measure the net torque contributions about the crank.

Hence, direct measurements of the active torque contributions by muscles are not readily avail-

able. Thus, an estimate of the active torque produced by muscles is obtained similarly to [41] for

the subsequent control design. The measurable torque τ : R≥t0 → R obtained from the powerme-

ter contains active torque and passive torque from the cycling system. Therefore, the estimation

of the active torque τ̂m : Q× R× R≥t0 → R is defined as follows

τ̂m(q, q̇, t) = τ(t)− τpassive(q, q̇), (2.9)
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where τpassive : Q × R → R is the baseline measurement of the passive torque (i.e., the torque

required to drive the cycle-rider system without applying FES) recorded in a pretrial cycling test

at a constant cadence. The active torque τm in (2.7) is defined as

τm(q, q̇, t) = τ̂m(q, q̇, t) + ϵ(t), (2.10)

where ϵ ∈ R>0 is an upper bound of the active torque estimation error.

The torque applied by the electric motor about the crank is defined as

τe(q, q̇, t) ≜ Beue(q, q̇, t), (2.11)

where Be ∈ R>0 is the control effectiveness of the motor, and ue : Q × R × R≥t0 → R is the

control input for the motor.

The following properties are exploited in Chapter 5.

Property 9. The inertia matrix M(q) is positive definite and symmetric, and satisfies the inequal-

ities cm ≤M(q) ≤ cM , where cm and cM are known positive constants [76].

Property 10. |C(q, q̇)| ≤ cc|q̇|, where cc is a known positive constant [76].

Property 11. |G(q)| ≤ cg, where cg is a known positive constant [76].

Property 12. |P (q, q̇)| ≤ cp1 + cp2|q̇|, where cp1 and cp2 are known positive constants [9], [77]–

[79].

Property 13. The skew-symmetry 1
2
Ṁ − C = 0 [76].

Property 14. The lumped muscle switching control effectiveness is bounded as Bm ≤ Bσ ≤

Bm,∀σ ∈ S, where Bm and Bm are known positive constants [9].

Property 15. The control effectiveness of motor is bounded as Be ≤ Be ≤ Be,∀σ ∈ S, where

Be and Be are known positive constants [9].
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Assumption 8. |d(t)| ≤ cd, where cd is a known positive constant.

2.3 Experimental Setup

2.3.1 Lower-limb Exoskeleton Testbed

Treadmill walking experiments are provided to demonstrate the performance of the designed con-

trollers in Chapter 3 and Chapter 4. The control inputs are commanded as stimulation intensities

(i.e., pulse width control) to activate the quadriceps and hamstrings muscle groups and as currents

to the electric motors that actuate the powered cable-driven exoskeleton.

Testing were performed using a customized exoskeleton designed for fitting different body sizes

and maintaining alignment with the user’s joints. Figure 2.5 illustrates the exoskeleton testbed.

The actuator unit includes brushless 24 VDC electric motors (Maxon) to adjust the torque applied

by the cable-driven mechanisms. Optical encoders (US Digital) were mounted at each joint to

measure the joint angle and load-cells (OMEGA) were installed in series with the cables to mea-

sure cable tension. The controllers were implemented on a desktop computer (Windows 10 OS)

running a real-time target (QUARC 2.6, Quanser) via MATLAB/Simulink 2018a (MathWorks

Inc) with a sample rate of 1 kHz. The Quanser QPIDe DAQ board was used to read the encoders

and cable tensions, and control the servo motor drivers (Maxon) operating in current-controlled

mode. The Quanser Q8 USB board was used to read the encoders mounted on motors. A current-

controlled stimulator (RehaStim, Hasomed GmbH) delivered biphasic, symmetric, rectangular

pulses to the participant’s quadriceps and hamstring muscle groups. Self-adhesive PALS® elec-

trodes (3” by 5”)1 were placed on each muscle group in both legs. The stimulation current ampli-

tude and stimulation frequency were fixed at 80 mA and 60 Hz, respectively. A treadmill (Nordic

Track) equipped with an encoder (US Digital) to measure the belt’s angular displacement was

1Surface electrodes for the study were provided compliments of Axelgaard Manufacturing Co., Ltd.
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Figure 2.5: The exoskeleton testbed used for treadmill walking. The exoskeleton uses cables to
apply torque at each joint using electrical motors installed in the actuation unit. Surface FES is
applied on the quadriceps and hamstrings muscle groups. Additional components of the walking
system are labeled in the image.

used for walking at constant speeds. The speed of the treadmill was closed-loop controlled us-

ing a sliding-mode controller and implemented in a motor driver in current-control mode (Ad-

vanced Motion Controls)2. As safety measures, the participant had access to an emergency stop

button and software stop conditions were implemented to limit the amount of motor currents to

comply with the hardware limits and prevent large current transients from being applied to the

participant, and muscle stimulation intensities to prevent uncomfortable stimulation intensities.

Mechanical stops were designed to avoid moving the legs through unsafe joint angles, and the

participants wear a safety harness connected to a portable track system to prevent falling.

2The servo drive was provided in part by the sponsorship of Advanced Motion Controls.
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Figure 2.6: Motorized FES-cycling testbed. A) Current-controlled muscle stimulator. B) Brushed
DC motor. C) Surface Electrodes. D) Power meter and encoder. E) Torque Analysis Box.

2.3.2 FES-Cycling Testbed

Cycling experiments are provided to demonstrate the performance of the designed power tracking

controllers in Chapter 5. The control inputs are commanded as stimulation intensities (i.e., pulse

width control) to activate the quadriceps, gluteus, and hamstrings muscle groups and as currents

to the electric motor.

Testing was performed using a recumbent cycle (Sun Seeker ECO-TAD SX) mounted on an in-

door trainer and adapted with orthotic boots as shown in Figure 2.6. A brushed 24 VDC elec-

tric motor was mounted to drive the chain. An optical encoder (H1, US Digital) was mounted at

the crank to measure the crank position and a SRM Science Road Wireless Power Meter with

a custom Torque Analysis Box measured and broadcasted the torque data. An arduino Mega

is used to convert the torque measurements sent by the Torque Analysis Box to a digital signal

that can be used as feedback for the torque controller. The controllers were implemented on a
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desktop computer (Windows 10 OS) running a real-time target (QUARC 2.6, Quanser) via MAT-

LAB/Simulink 2018a (MathWorks Inc) with a sample rate of 1 kHz. The Quanser QPIDe DAQ

board was used to read the encoder signal and the digital torque signal from the Arduino, and

to control the motor driver (Advanced Motion Controls)3 operating in current-controlled mode.

A current-controlled stimulator (RehaStim, Hasomed GmbH) delivered biphasic, symmetric,

rectangular pulses to the participant’s quadriceps, gluteus, and hamstrings muscle groups. Self-

adhesive PALS® electrodes (3” by 5”)4 were placed on each muscle group in both legs. The stim-

ulation current amplitude and stimulation frequency were fixed at 80 mA and 60 Hz, respectively,

for all muscles. As safety measures, the participant had access to an emergency stop button and

software stop conditions were implemented to limit the amount of motor currents to comply with

the hardware limits, and muscle stimulation intensities to prevent uncomfortable stimulation in-

tensities.

3The servo drive was provided in part by the sponsorship of Advanced Motion Controls.
4Surface electrodes for the study were provided compliments of Axelgaard Manufacturing Co., Ltd.
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Chapter 3

A Switched Systems Approach for

Closed-loop Control of a Lower-Limb

Cable-Driven Exoskeleton

In this chapter and in the work in [81], a two-layer control system is developed to adjust cable

tensions and apply torque about the knee joint using a cable-driven exoskeleton using a pair of

electric motors. The joint layer (high-level) computes the control input needed to track the de-

sired kinematic joint trajectory. The motor layer (low-level) includes a pair of electric motors

to provide bi-directional motion about the knee joint. One motor, called the lead motor, imple-

ments the control input commanded by the joint layer to achieve the desired joint kinematics. The

second motor, called the follower motor, tracks the angle of the lead motor to mitigate slackness

when switching direction. Thus, the follower motor aims to minimize cable slacking and improve

response when switching occurs. The electric motors switch their roles between lead and fol-

low motor to achieve leg extension and flexion. Robust sliding-mode controllers are designed to

track the desired knee joint kinematic trajectory and desired kinematic trajectories for the elec-

tric motors. Lyapunov-based stability analysis is developed to ensure exponential tracking for
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both control objectives (i.e., high-level and low-level control), and an average dwell time analysis

computes an upper bound on the number of motor switches to preserve exponential tracking. An

experimental result with an able-bodied individual is presented to illustrate the tracking perfor-

mance and the switching effects.

3.1 Cable-driven Actuator System

The lower-limb exoskeleton provides torque about the knee joint and is actuated by electric mo-

tors using customized cable-driven mechanisms (i.e., forces are transmitted via Bowden cables).

A pair of electric motors achieves knee joint extension (ex) and flexion (fl). The two motors are

assigned the following roles:

1. The first motor is called the lead motor, which controls the knee joint kinematics to achieve

the desired motion (i.e., flexion or extension).

2. The second motor is called the follower motor, which follows the lead motor’s angle to

mitigate cable slackness and prevent undesired counteracting forces with the lead motor.

3.1.1 Human-Exoskeleton Dynamics Model

The single DoF knee-joint dynamics with exoskeleton control input (i.e., a reduced model from

(2.3) without FES inputs) is defined as

M(q)q̈ + C(q, q̇)q̇ +G(q) + P (q, q̇) + d(t) = τe(q, q̇, t), (3.1)

where M(q), C(q, q̇), G(q), P (q, q̇), d(t) ∈ R are defined in Section 2. In this chapter, the dynam-

ics model in 3.1 includes the inertial, centripetal-Coriolis, gravitational, damping and viscoelastic
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effects, and disturbances corresponding to the knee-joint shank dynamics. The torque produced

by the electric motors about the knee joint is denoted as τe ∈ R and the lumped, switched control

effectiveness are denoted by Bσ : R× R → R, and are defined as

τe(q, q̇, t) ≜Bσ(q, q̇)u(t), (3.2)

Bσ(q, q̇) ≜
∑
n∈N

Bnσn(t), (3.3)

where u : Rt≥0 → R is the high-level knee joint kinematic tracking controller (also called knee

joint controller), the subscript n ∈ {ex, fl} denotes the motor index, and N is the motor set. The

unknown individual motor control effectiveness is denoted as Bn ∈ R>0, ∀n ∈ N . The subscript

σ ∈ S , such that S is a finite set, indicates the index of Bσ, which includes the possible motor

combinations. A piecewise constant switching signal for each motor σn ∈ {0, 1}, ∀n is defined as

σex(u) ≜


0 if sgn(u) ≥ 0

1 if sgn(u) < 0

, (3.4)

σfl(u) ≜


1 if sgn(u) > 0

0 if sgn(u) ≤ 0

, (3.5)

where sgn(·) : R → {−1, 0, 1} is the signum function. The switching signals depend on the

knee joint control input u, where a positive and negative sign refers to knee flexion and exten-

sion, respectively. Therefore, the switching signals in (3.4) and (3.5) achieve the following: when

σn = 1, for n = {ex}, the extension motor becomes the lead motor and receives the magnitude

of the knee joint control input u. Concurrently, σn = 0, for n = {fl}, the flexion motor becomes

the follower motor and receives the low-level follower control input (called follower controller)

un : R≥t0 → R, for n = {fl}. Alternatively, when σn = 0, for n = {ex}, the extension motor be-

comes the follower motor and receives the follower control input un : R≥t0 → R, for n = {ex}.

Meanwhile, σn = 1, for n = {fl}, the flexion motor becomes the lead motor and receives the
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Figure 3.1: Schematic to depict the two-layer control system illustrated for knee flexion. The
high-level knee joint controller sends a flexion control input (u > 0) to the motor layer. The
switching signal is triggered as σfl = 1 to pass the magnitude of the knee control input (|u|) to
the flexion motor. The extension motor becomes the follower motor (σex = 0) and is tasked to
follow the angle of the flexion motor (lead motor) using the low-level follower controller (uex).
For knee extension, the high-level knee joint controller computes the extension input (u < 0);
thus, the extension motor becomes the lead motor and the flexion motor becomes the follower
motor.

magnitude of the knee joint control input u. A schematic of the two-layer control system is pre-

sented in Figure 3.1, where the knee joint control input is denoted by u, and the follower control

inputs for the extension and flexion motors are denoted by uex, ufl, respectively. Moreover, based

on the switching signals in (3.4) and (3.5), the following property is established and exploited in

the subsequent control design and stability analysis.

Remark 1. A mapping between the knee joint angle and each motor angular position is needed.

This mapping is feasible since there exists a relationship between the measurable knee joint angle

q and the flexion and extension motor angular positions denoted by θfl, θex ∈ R, respectively.

Given that the cable-driven mechanisms provide sufficient tension, the joint angle q and the an-

gular position of each motor θn : R≥t0 → R, for n ∈ {ex, fl} are coupled and dependent.
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The knee joint angle q is a strictly increasing function of the extension and flexion motor angles

θex, θfl, respectively (i.e., the relationships between θex, θfl and q are bijective). Hence, the func-

tion ϕn(θn) = q, for n ∈ {ex, fl} is analytic and its inverse exists globally. Experimental data

illustrating this function and its best linear fit are shown in Figure 3.2.

Figure 3.2: Experimental data depicting the knee joint angle q with respect to the motor angles
θn, for n ∈ {ex, fl} of the extension motor (solid blue line) and flexion motor (solid red line).
The dashed lines are the linear fit for the extension (blue) and flexion (red) motors with goodness
of fit R2 = 0.9969 and R2 = 0.9809, respectively.

Hence, the linear function ϕn : R → R is defined as

ϕn(θn) = vnθn + wn = q,∀n ∈ N , (3.6)

where vn, wn ∈ R are known constants.
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3.1.2 Electric Follower Motor Dynamics Model

The flexion and extension motor systems each include an electric motor, a gearbox and a cable

pulley. The follower motor system dynamics can be modeled as follows [76]

Jnθ̈n +Dnθ̇n + dn(t) = Bnun(t), (3.7)

where θn, θ̇n, θ̈n : R≥t0 → R denote the measurable follower motor’s angular position and ve-

locity, and unmeasurable angular acceleration, for n ∈ {ex, fl}. The inertia constant is denoted

as Jn ∈ R>0, the damping constant is denoted as Dn ∈ R, and disturbances and any other un-

modeled terms such as friction are denoted as dn ∈ R. The follower control input is denoted by

un : R≥t0 → R, where positive and negative signs refer to pulling and releasing cable tension,

respectively. The following properties are exploited in the subsequent control design and stability

analysis.

Property 16. cj ≤ Jn ≤ cJ ,∀n ∈ N , where cj, cJ ∈ R>0 are known positive constants. [76]

Property 17. |Dn| ≤ cDe, ∀n ∈ N , where cDe ∈ R>0 is a known constant. [76]

Assumption 9. |dn| ≤ cde, ∀n ∈ N , where cde ∈ R>0 is a known constant.

3.2 Control Development

The control objectives are twofold. First, the high-level knee joint controller is developed using

a robust sliding-mode controller for the lead motor to track desired the knee joint angle. Second,

the low-level follower controller is developed using a robust sliding-mode controller to track the

lead motor angle.
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3.2.1 High-Level Knee Joint Tracking Control

The measurable joint position tracking error ξ : R≥t0 → R and filtered tracking error η : R≥t0 →

R are defined as

ξ(t) ≜ qd(t)− q(t), (3.8)

η(t) ≜ ξ̇(t) + αξ(t), (3.9)

where α ∈ R>0 is a a selectable constant control gain, and qd(t), q̇d(t), q̈d(t) : R≥t0 → R are

bounded kinematic desired trajectories. The open-loop error system is obtained by taking the

time derivative of (3.9), pre-multiplying by M , substituting for (3.8), and then performing some

algebraic manipulation as

Mη̇ = χ− Cη −Bσu− ξ, (3.10)

where the auxiliary signal χ : R≥t0 → R is defined as

χ ≜M
(
q̈d + αξ̇

)
+ C (q̇d + αξ) +G+ P + d+ ξ. (3.11)

By using Properties 1-5, Assumption 7, (3.8), and (3.9), the auxiliary signal in (3.11) can be up-

per bounded as

|χ| ≤ ρ1 + ρ2∥z1∥+ ρ3∥z1∥2, (3.12)

where ρ1, ρ2, ρ3 ∈ R>0 are known constants, and z1 : R≥t0 → R2×1 is defined as

z1 ≜

[
ξ η

]T
. (3.13)

Given the open-loop error system in (3.10), the knee joint controller is designed as

u = k1η +
(
k2 + k3 ∥z1∥+ k4 ∥z1∥2

)
sgn (η) , (3.14)
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where k1, k2, k3, k4 ∈ R>0 are selectable, positive gain constants. The close-loop error system is

obtained by substituting (3.14) into (3.10) as

Mη̇ = χ− Cη − ξ −Bσ

(
k1η +

(
k2 + k3 ∥z1∥+ k4 ∥z1∥2

)
sgn (η)

)
. (3.15)

3.2.2 Low-Level Follower Motor Control

To mitigate cable slackness and counteracting forces, the low-level follower controller tracks

the angle of the lead motor (i.e., to improve the system’s response when the leader and follower

switch roles). Hence, the measurable motor position tracking error e : R≥t0 → R and filtered

tracking error r : R≥t0 → R are defined as

e(t) ≜ θfl(t)− θex(t), (3.16)

r(t) ≜ ė(t) + βe(t), (3.17)

where β ∈ R>0 is a selectable, constant control gain and θfl, θex ∈ R denote the previously

defined angular positions of the flexion and extension motors, respectively. The follower motor

control design is segregated for the extension and flexion motors as follows.

Extension motor (ex)

The follower controller for the extension motor is designed to track the flexion motor angle θfl.

Taking the time derivative of (3.17), pre-multiplying by Jex, substituting for (3.1), (3.2), (3.6) for

n = {fl}, (3.7) for n = {ex}, (3.16), and then performing some algebraic manipulation yields

Jexṙ = χex −Bexuex − e, (3.18)
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where the auxiliary signal χex : R≥t0 → R is defined as

χex = Jex

[
βė+

1

vfl
M−1

(
− Cq̇ −G− P − d+Bσu

)]
+Dexθ̇ex + dex + e. (3.19)

By using Properties 1-5, Property 7, Properties 16-17, Assumptions 7 and 9, (3.8), (3.9), (3.13),

(3.14), (3.16), (3.17), the auxiliary signal in (3.19) can be upper bounded as

|χex| ≤ c1 + c2∥ze∥+ c3∥ze∥2, (3.20)

where c1, c2, c3 ∈ R>0 are known constants, and ze : R≥t0 → R4×1 is defined as

ze ≜

[
ξ η e r

]T
. (3.21)

Given the open-loop error system in (3.18), the follower controller for the extension motor is de-

signed as

uex = k5r +
(
k6 + k7 ∥ze∥+ k8 ∥ze∥2

)
sgn(r), (3.22)

where k5, k6, k7, k8 ∈ R>0 are selectable, positive gain constants. The close-loop error system for

the extension motor is obtained by substituting (3.22) into (3.18) as

Jexṙ = χex − e−Bex

(
k5r +

(
k6 + k7 ∥ze∥+ k8 ∥ze∥2

)
sgn(r)

)
. (3.23)

Flexion motor (fl)

The follower controller for the flexion motor is to track the extension motor angle θex. Taking the

time derivative of (3.17), pre-multiplying by Jfl, substituting for (3.1), (3.2), (3.6) for n = {ex},

(3.7) for n = {fl}, (3.16), and then performing algebraic manipulation yields
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Jflṙ = χfl +Bflufl − e, (3.24)

where the auxiliary signal χfl : R≥t0 → R is defined as

χfl = −Jfl
[
βė+

1

vex
M−1

(
− Cq̇ −G− P − d+Bσu

)]
−Dflθ̇fl − dfl + e. (3.25)

By using Properties 1-5, Property 7, Properties 16-17, Assumptions 7 and 9, (3.8), (3.9), (3.13),

(3.14), (3.16), (3.17), the auxiliary signal in (3.25) can be upper bounded as

|χfl| ≤ c4 + c5∥ze∥+ c6∥ze∥2, (3.26)

where c4, c5, c6 ∈ R>0 are known constants, and ze is defined as in (3.21). Given the open-loop

error system in (3.24), the follower controller for the flexion motor is designed as

ufl = −k9r −
(
k10 + k11 ∥ze∥+ k12 ∥ze∥2

)
sgn(r), (3.27)

where k9, k10, k11, k12 ∈ R>0 are selectable, positive gain constants. The close-loop error system

for the flexion motor is obtained by substituting (3.27) into (3.24) as

Jflṙ = χfl − e+Bfl

(
−k9r −

(
k10 + k11 ∥ze∥+ k12 ∥ze∥2

)
sgn(r)

)
. (3.28)

3.3 Stability Analysis

The stability of the high-level knee joint and low-level follower controllers are examined through

the following theorems. Theorem 1 shows that exponential tracking is achieved for the knee kine-

matic tracking objective. Theorem 2 and 3 show that exponential tracking is achieved with the

follower low-level motor controllers applied to the extension and flexion motors, respectively.
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Theorem 4 develops an average dwell time analysis to provide an upper bound on the number of

motor switching instances (i.e., finite number of switching events occur) and guarantee exponen-

tial tracking.

Theorem 1. Given the closed-loop error system in (3.15), the knee joint controller in (3.14) en-

sures global exponential tracking in the sense that

∥z1(t)∥ ≤
√
b1
a1

∥z1(t0)∥ exp
(
−δ
2
(t− t0)

)
, (3.29)

∀t ∈ (t0,∞), where δ = 1
b1

min{α,Bk1}, provided the following sufficient gain conditions are

satisfied

k2 ≥
ρ1
B
, k3 ≥

ρ2
B
, k4 ≥

ρ3
B
. (3.30)

Proof. Let V : R × R × R≥t0 → R be a positive-definite, continuously differentiable function

defined as

V =
1

2
ξ2 +

1

2
Mη2, (3.31)

which satisfies the following inequalities

a1 ∥z1∥2 ≤ V (z1, t) ≤ b1 ∥z1∥2 , (3.32)

where a1 ≜ min
(
1
2
, 1
2
cm
)
, b1 ≜ max

(
1
2
, 1
2
cM
)
, and z1 is defined in (3.13). Let z1(t) be a Fil-

ippov solution to the differential inclusion ż1 ∈ K[h1](z1), where K[·] is defined as in [82]

and h1 is defined by using (3.9) and (3.15) as h1 ≜ [ ξ̇ Mη̇ ]. The control input in (3.2) and

(3.14) has the discontinuous motor effectiveness and signum function; hence, the time deriva-

tive of (3.31) exists almost everywhere (a.e.), i.e., for almost all t. Based on [83, Lemma 1], the

time derivative of (3.31), V̇ (z1(t), t)
a.e.
∈ ˙̃V (z1(t), t), where ˙̃V is the generalized time deriva-

tive of (3.31) along the Filippov trajectories of ż1 = h1(z1) and is defined as in [83] as ˙̃V ≜⋂
ς∈∂V ς

TK

[
ξ̇ η̇ 1

]T
(ξ, η, t). Since V (z1, t) is continuously differentiable in z1, ∂V =
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{∇V }, thus ˙̃V
a.e.
⊂
[
ξ Mη 1

2
Ṁη2

]
K

[
ξ̇ Mη̇ 1

]T
. After substituting for (3.9) and

(3.15), and canceling common terms, the generalized time derivative of (3.31) can be expressed

as

˙̃V
a.e.
⊂ −αξ2 + 1

2
Ṁη2 + η

[
χ− Cη −K[Bσ]

(
k1η +

(
k2 + k3 ∥z1∥+ k4 ∥z1∥2

)
K [sgn (η)]

) ]
,

(3.33)

where K[sgn(·)] = SGN(·) such that SGN(·) = 1 if (·) > 0; [−1, 1] if (·) = 0; −1 if (·) <

0, and K[Bσ] ⊂ [B, B̄]. Substituting for (3.12), and applying Properties 6-7, the expression in

(3.33) can be upper bounded as

˙̃V
a.e.

≤ −αξ2 −Bk1η
2 + (ρ1 −Bk2) |η|+ (ρ2 −Bk3) |η| ∥z1∥+ (ρ3 −Bk4) |η| ∥z1∥2 . (3.34)

Provided the sufficient gain conditions in (3.30), the previous inequality can be further upper

bounded as

˙̃V
a.e.

≤ −αξ2 −Bk1η
2
a.e.

≤ −δ1 ∥z1∥2 . (3.35)

where δ1 = min{α,Bk1}. Leveraging (3.32) and (3.35), the exponential tracking result in (3.29)

can be obtained. Using (3.31) and (3.35), V ∈ L∞, hence ξ, η ∈ L∞, thus z1 ∈ L∞. From (3.14),

u ∈ L∞. Since ξ, η ∈ L∞, then ξ̇ ∈ L∞ from (3.9), and hence, q, q̇ ∈ L∞. ■

Theorem 2. Given the closed-loop error system in (3.23), the follower controller for the exten-

sion motor in (3.22) ensures exponential tracking in the sense that

∥z2(t)∥ ≤
√
bex
aex

∥z2(tω)∥ exp
(
−λex

2
(t− tω)

)
, (3.36)

∀t ∈ (t0,∞), ∀ω, where tω ∈ W , such that W is a finite set, indicates the time at which the fol-

lower controller is activated for the extension motor at the ωth time, and λex = 1
bex

min{β,Bk5},
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provided the following sufficient gain conditions are satisfied

k6 ≥
c1
B
, k7 ≥

c2
B
, k8 ≥

c3
B
. (3.37)

Proof. Let Vex : R × R × R≥t0 → R be a positive definite, continuously differentiable function

defined as

Vex =
1

2
e2 +

1

2
Jexr

2, (3.38)

which satisfies the following inequalities

aex ∥z2∥2 ≤ Vex(z2, t) ≤ bex ∥z2∥2 , (3.39)

where z2 : R≥t0 → R2×1 is defined as

z2 ≜ [e r]T , (3.40)

and aex ≜ min
(
1
2
, 1
2
cj
)
, bex ≜ max

(
1
2
, 1
2
cJ
)
. Let z2(t) be a Filippov solution to the differen-

tial inclusion ż2 ∈ K[h2](z2), where h2 is defined by using (3.17) and (3.23) as h2 ≜ [ ė Jexṙ ].

The low-level control input in (3.22) has the discontinuous signum function; hence the time deriva-

tive of (3.38) exists almost everywhere (a.e.), i.e., for almost all t. Using similar arguments as in

the proof of Theorem 1, after substituting for (3.17) and (3.23), and canceling common terms, the

generalized time derivative of (3.38) can be expressed as

˙̃Vex
a.e.
⊂ −βe2 + rχex −Bexr

[
k5r +

(
k6 + k7 ∥ze∥+ k8 ∥ze∥2

)
K [sgn(r)]

]
. (3.41)

Substituting for (3.20) and applying Property 7, the expression in (3.41) can be upper bounded as

˙̃Vex
a.e.

≤ −βe2 −Bk5r
2 + (c1 −Bk6) |r|+ (c2 −Bk7) |r|∥ze∥+ (c3 −Bk8) |r|∥ze∥2. (3.42)

Provided the sufficient gain conditions in (3.37), the previous inequality can be further upper
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bounded as

˙̃Vex
a.e.

≤ −βe2 −Bk5r
2
a.e.

≤ −δ2∥z2∥2. (3.43)

where δ2 = min{β,Bk5}. Leveraging (3.39) and (3.43), the exponential tracking result in (3.36)

can be obtained. Using (3.38) and (3.43), Vex ∈ L∞, hence e, r ∈ L∞, thus z2 ∈ L∞. Since

ξ, η ∈ L∞ in (3.8) and (3.9) proven in Theorem 1, hence ze ∈ L∞. From (3.22), uex ∈ L∞. Since

e, r ∈ L∞, then ė ∈ L∞ from (3.17), and hence, θfl, θex ∈ L∞ (i.e., q ∈ L∞). ■

Theorem 3. Given the closed-loop error system in (3.28), the follower controller for the flexion

motor in (3.27) ensures exponential tracking in the sense that

∥z2(t)∥ ≤

√
bfl
afl

∥z2(tυ)∥ exp
(
−λfl

2
(t− tυ)

)
, (3.44)

∀t ∈ (t0,∞),∀υ, where tυ ∈ V , such that V is a finite set, indicates the time at which the follower

controller is activated for the flexion motor at the υth time, and λfl = 1
bfl

min{β,Bk9}, provided

the following sufficient gain conditions are satisfied

k10 ≥
c4
B
, k11 ≥

c5
B
, k12 ≥

c6
B
. (3.45)

Proof. Let Vfl : R × R × R≥t0 → R be a positive definite, continuously differentiable function

defined as

Vfl =
1

2
e2 +

1

2
Jflr

2, (3.46)

which satisfies the following inequalities

afl ∥z2∥2 ≤ Vfl(z2, t) ≤ bfl ∥z2∥2 , (3.47)

where z2 is defined in (3.40), afl ≜ min
(
1
2
, 1
2
cj
)
, bfl ≜ max

(
1
2
, 1
2
cJ
)
. Let z2(t) be a Filippov

solution to the differential inclusion ż2 ∈ K[h3](z2), where h3 is defined by using (3.17) and

(3.28) as h3 ≜ [ ė Jflṙ ]. The low-level control input in (3.27) has the discontinuous signum
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function; hence, the time derivative of (3.46) exists almost everywhere (a.e.), i.e., for almost all t.

Using similar arguments as in the proof of Theorem 2, after substituting for (3.17) and (3.28), and

canceling common terms, the generalized time derivative of (3.46) can be expressed as

˙̃Vfl
a.e.
⊂ −βe2 + rχfl −Bflr

[
k9r +

(
k10 + k11 ∥ze∥+ k12 ∥ze∥2

)
K [sgn(r)]

]
. (3.48)

Substituting for (3.26) and applying Property 7, the expression in (3.48) can be upper bounded as

˙̃Vfl
a.e.

≤ −βe2 −Bk9r
2 + (c4 −Bk10) |r|+ (c5 −Bk11) |r|∥ze∥+ (c6 −Bk12) |r|∥ze∥2. (3.49)

Provided the sufficient gain conditions in (3.45), the previous inequality can be further upper

bounded as

˙̃Vfl
a.e.

≤ −βe2 −Bk9r
2
a.e.

≤ −δ3∥z∥2, (3.50)

where δ3 = min{β,Bk9. Leveraging (3.47) and (3.50), the exponential tracking result in (3.44)

can be obtained. Using (3.46) and (3.50), Vfl ∈ L∞, hence e, r ∈ L∞, thus z2 ∈ L∞. Since

ξ, η ∈ L∞ in (3.8) and (3.9) proven in Theorem 1, hence ze ∈ L∞. From (3.27), ufl ∈ L∞. Since

e, r ∈ L∞, then ė ∈ L∞ from (3.17), and hence, θfl, θex ∈ L∞ (i.e., q ∈ L∞). ■

Theorem 4. A system of two electric motors has an average dwell time τa if there exist positive

numbers N0 ∈ Z+ and τa ∈ R>0 such that

Nn(T, t) ≤ N0 +
T − t

τa
,∀n ∈ {ex, fl}, (3.51)

where t ∈ [0, T ], T ∈ R>0, and Nn is the maximum allowable number of instances at which

each motor switches to become the follower motor. The switching system with two motors ensures

exponential tracking with average dwell time

τa >
ln (µ)

λ
. (3.52)
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Proof. Since N is a finite set, a2, b2, λ ∈ R can be chosen, independently of n, such that the

inequalities (3.39), (3.47), (3.43), and (3.50) hold to yield

a2 ∥z2∥2 ≤ Vn(z2, t) ≤ b2 ∥z2∥2 , ∀n ∈ N , (3.53)

˙̃Vn
a.e.

≤ −λṼn,∀n ∈ N , (3.54)

where a2 = min (aex, afl) , b2 = max (bex, bfl) , λ = min (λex, λfl). Let ti ∈ {t1, t2, . . . , tNn(T,0)} ⊆

W ∪V denotes the switching times at which the motors switch within the time interval [0, T ], and

one of the motors is switched at ti to become the follower motor within [ti, ti+1). Figure 3.3 illus-

trates the switching times ti, the flexion and extension motor inputs, and the number of switching

instances Nex and Nfl. Performing some algebraic manipulation in (3.53) yields

Vn(ti+1) (z2(ti+1)) ≤ µVn(ti) (z2(ti+1)) , (3.55)

where µ = b2
a2

. Based on the solution to the inequality in (3.54), a non-increasing piecewise dif-

ferentiable function can be defined as

W (t) = eλtVn(t) (z2(t)) . (3.56)

Defining t−i+1 as the instantaneous time before ti+1, and evaluating the inequality in (3.55) at t−i+1

to upperbound (3.56) yields

W (t−i+1) = eλt
−
i+1Vn(t−i+1)

(
z2(t

−
i+1)
)

(3.57)

≤ eλt
−
i+1µVn(t−i+1)

(
z2(t

−
i+1)
)
= µW (t−i+1) (3.58)

≤ µW (ti). (3.59)

The inequality in (3.59) defines a relationship for W within the interval [ti, t−i+1]. Applying this
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relationship recursively between [0, T−] yields the following inequalities

W (T−) ≤ W (t−Nn(T,0)
) ≤ µNn(T,0)−1W (0). (3.60)

Substituting (3.56) into (3.60) yields

eλTVn(T−) (z2(T )) ≤ µNn(T,0)−1Vn(0) (z2(0)) . (3.61)

Suppose that the system has the average dwell time property in (3.51), hence (3.61) can be writ-

ten as

Vn(T−) (z2(T )) ≤ exp

[
−λT +

(
N0 +

T

τa
− 1

)
ln(µ)

]
Vn(0) (z2(0)) . (3.62)

The previous inequality can be further upper bounded as

Vn(T−) (z2(T )) ≤ cA exp

[(
ln(µ)

τa
− λ

)
T

]
Vn(0) (z2(0)) , (3.63)

where cA = exp [(N0 − 1) ln(µ)] is a known constant. If τa satisfies the bound in (3.52), then

Vn(T−) (z2(T )) converges to zero exponentially, as developed similarly in [57]. ■

3.4 Experiment Results

An experiment with one able-bodied individual (male aged 29 years) is conducted to illustrate the

performance of the developed controllers in (3.14), (3.22) and (3.27) for the control of the knee

joint. Written informed consent was obtained prior to the beginning of the experiment. The par-

ticipant was not informed of the desired knee joint kinematic trajectories and was asked to avoid

providing voluntary input. The experimental setup is described in Section 2.3.1 with one leg in

standing position and is illustrated in Figure 3.4. The desired knee angle trajectory was defined

within a range of motion between 10 to 70 degrees with a period of 4 seconds. The control gains
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Figure 3.3: Schematic depicting the switching times ti, flexion and extension motor inputs, and
number of switching instances Nex, Nfl. A switching instance occurs when the motors switch to
become the follower motor. That is, the number of switching instances Nex, Nfl increase each
time the motors become follower motors.

introduced in (3.14), (3.22) and (3.27) were selected as follows: α = 10, β = 30, k1 = 1.2, k2 =

0.2, k3 = 7 × 10−3, k4 = 1 × 10−4, k5 = 0.01, k6 = 0.2, k7 = 5 × 10−4, k8 = 1 × 10−5, k9 =

0.01, k10 = 0.2, k11 = 5 × 10−4, k12 = 1 × 10−5. The experiment was implemented for a

duration of T = 80 seconds. Figure 3.5 depicts the knee joint tracking performance (top) and

the high-level knee control input u (bottom). Figure 3.6 presents the motor follower angle perfor-

mance (top), the applied follower motor inputs (middle), and the number of switching instances

over each cycle (bottom). During the experiment, 174 switching instances were counted for both

extension and flexion motors, thus Nex(80, 0) = Nfl(80, 0) = 174 in (3.51).

3.5 Discussion

The experimental results demonstrate the feasibility of the developed high-level knee joint track-

ing controller in (3.14) and low-level motors kinematic tracking controllers in (3.22) and (3.27).
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Figure 3.4: The cable-driven exoskeleton uses electric motors to actuate flexion and extension
cables to apply torque at the knee joint.

As depicted in Figure 3.5, the developed high-level knee joint controller has an average tracking

error of −3.9 ± 3.7 deg during the experiment. In the standing position, the kinematic tracking

error during knee flexion is larger than during knee extension, which resulted in higher control

input (i.e., to compensate for gravity).

The developed low-level controllers for the pair of motors yield an average kinematic tracking

error of −5.3 ± 63 deg. The developed control algorithm distributed the high-level and low-level

control inputs for different motors in Figure 3.6 (middle). The number of switching instances for

both motors over each knee movement cycle are illustrated in Figure 3.6 (bottom).

The obtained experimental result shows the feasibility of the developed high-level knee joint and

low-level motor controllers. The control design presented in this chapter demonstrates the switch-

ing control design for a single joint. This fundamental control design is leveraged to control the

knee and hip joints bilaterally during treadmill walking as implemented in Chapter 4.
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Figure 3.5: Knee joint desired trajectory qd and actual knee joint angle q (top). Knee flexion (fl)
is depicted with dashed lines and knee extension (ex) is depicted with solid lines. The high-level
joint tracking control input u (bottom).

3.6 Concluding Remarks

A two-layer control system was developed for a cable-driven exoskeleton to apply torque at the

knee joint. A robust sliding-mode controller was designed to track a desired knee kinematic tra-

jectory. A switched systems strategy was developed to activate a pair of electric motors using

sliding-mode controllers to achieve bi-directional control. The motivation of the control methods

was to achieve the desired joint kinematics and track a motor angle objective to mitigate potential

cable slackness and improve response in the system. A Lyapunov-based stability analysis is de-

veloped to ensure exponential tracking for joint tracking error and for the low-level motor track-

ing objective. An average dwell time condition is developed to compute a maximum allowable

switching number to guarantee exponential tracking for the switching motors.
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Figure 3.6: Motor tracking performance illustrating the motor flexion angle θfl (red) and motor
extension angle θex (blue) (top). The low-level motor follower control input for flexor ufl (red)
and extensor uex (blue) (middle). The number of switching instances for both extension and flex-
ion motors over each cycle (bottom).
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Chapter 4

Closed-loop Torque and Kinematic Control

of a Hybrid Lower-limb Exoskeleton for

Treadmill Walking

In this chapter and in the work in [62], kinematic and torque tracking controllers are designed

to activate the electric motors of a cable-driven lower-limb exoskeleton and muscles via FES for

treadmill walking at a constant speed. The hybrid exoskeleton and human system are modeled

as in Chapter 2 in which the leg dynamics are modeled as a switched system to characterize the

gait phase transitions during walking. A nonlinear robust controller is used to activate the quadri-

ceps and hamstrings muscle groups via FES to achieve kinematic tracking about the knee joint.

Electric motors adjust the knee joint stiffness throughout the gait cycle using an integral torque

feedback controller. A robust sliding-mode controller is developed to achieve hip joint kinematic

tracking using electric motors. The low-level motor controllers developed in Chapter 3 are used

to switch between the pair of motors to achieve flexion and extension motion for the hip and knee

joints. A Lyapunov-based stability analysis is developed to ensure exponential tracking of the

kinematic and torque closed-loop error systems, while guaranteeing that the control input signals
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remain bounded. The developed controllers were tested in real-time walking experiments on a

treadmill in three able-bodied individuals at two gait speeds.

4.1 Control Development

The control design is segregated for the stance and swing phases of walking. To absorb the foot

impact and guarantee trunk support during early stance, the stiffness in the knee joint is increased

and knee extensor activity is modulated [84], which ultimately contributes to enable body propul-

sion and initiate swing. On the other hand, during the swing phase, leg stiffness is reduced to in-

crease compliance and allow smooth knee joint kinematics and prepare for heel strike (i.e., con-

tact with the ground). Hence, the knee joint stiffness contributes for shaping the leg dynamics

along with the hip joint that assist body propulsion and preserve the rhythmic walking motion

[42], [85]. Inspired by such joint behaviors, a multiple control objective is developed to adjust the

joint stiffness and kinematics on both phases, while ensuring a stable rhythmic walking motion.

Two control objectives are developed as depicted in Figure 4.1. The first objective is to design

kinematic controllers (κ) to track knee and hip joint trajectories. A pair of electric motors achieve

the kinematic tracking objective for the hip joints, whereas FES applied to the quadriceps and

hamstrings achieve kinematic tracking for the knee joints. The second objective is to design a

knee joint stiffness controller (s) throughout the gait cycle using the electric motors that actuate

the knee joints. Since the electric motors and FES cooperate to achieve both control objectives,

the control effectiveness matrices can be segregated for the kinematic and stiffness control objec-

tives as depicted in Figure 4.1.C, where the lumped effectiveness Bκ and Bs are defined for the

kinematic and stiffness control loops, respectively. The control design for each objective is de-

veloped in the subsequent subsections. A robust control technique is applied to track the desired

angle trajectories and a torque controller is designed to track the desired knee stiffness on both

gait phases.
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Motor FES

Knee

Hip

Hip Objective:
Motors: Kinematic
FES: None

Knee Objective:
Motors: Stiffness 
FES:  Kinematic  

None

Effectiveness

Bκ
Bs

(A)

(B)

(C)

Figure 4.1: Schematic of the kinematic (κ) and stiffness (s) control tracking objectives. (A) The
hip joint is actuated only by the electric motors to achieve kinematic tracking (i.e., no FES is ap-
plied). (B) The knee joint is controlled to achieve both control objectives: electric motors track
the stiffness objective and the muscles track the kinematic objective. (C) The table shows the
control effectiveness matrices associated with the kinematic and stiffness control objective, Bκ

and Bs, respectively.

The following properties are exploited in the subsequent control design and stability analysis.

Property 18. The lumped kinematic switching control effectiveness is a diagonal matrix and is

bounded as Bκ ∥ξ∥
2 ≤ ξTBκξ ≤ Bκ ∥ξ∥2, ∀ξ ∈ R4, where Bκ and Bκ are known positive

constants.

Property 19. The lumped stiffness switching control effectiveness is a diagonal matrix and is

bounded as Bs ∥ζ∥
2 ≤ ζTBsζ ≤ Bs ∥ζ∥2, ∀ζ ∈ R2, where Bs and Bs are known positive

constants.

4.1.1 Kinematic Control

The human-exoskeleton dynamics with motor and muscle torque inputs in (2.3) can be expressed

in terms of the kinematic control objective as

Mρ(q)q̈ + Cρ(q, q̇)q̇ +Gρ(q) + Pρ(q, q̇) + dρ(t) = Bκ(q, q̇, t)uκ(t)︸ ︷︷ ︸
τκ

+ τs, (4.1)
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∀ρ ∈ R, where τκ, τs ∈ R4 are the torque inputs generated by the kinematic and stiffness con-

trollers, uκ : R≥t0 → R4 is the kinematic control input, and the lumped kinematic control effec-

tiveness Bκ ∈ R4×4
>0 is a positive definite diagonal matrix, defined as

Bκ ≜
8∑
e=5

Be(q, q̇)σe(t) +
4∑

m=1

Bm(q, q̇, t)σm(t), (4.2)

where the hip motors dedicated for kinematic tracking are represented by the motor index e =

{5, 6, 7, 8} as described in Table 2.1.

The measurable angular position tracking error eκ : R≥t0 → R4 and filtered tracking error rκ :

R≥t0 → R4 are defined as

eκ(t) ≜ qd(t)− q(t), (4.3)

rκ(t) ≜ ėκ(t) + αeκ(t), (4.4)

where α ∈ R is a selectable positive control gain and qd(t), q̇d(t), q̈d : R≥t0 → R4 are bounded

desired joint trajectories. Taking the time derivative of (4.4), substituting for (4.1) and (4.3), and

then performing algebraic manipulation yields

ṙκ = χρ − eκ +M−1
ρ (−Bκuκ − τs) , (4.5)

where the auxiliary signal χρ : R≥t0 → R4 is defined as

χρ = q̈d + αėκ + eκ +M−1
ρ (Cρq̇ +Gρ + Pρ + dρ) . (4.6)

By using Properties 2-5, Assumption 7, (4.3), and (4.4), the auxiliary signal in (4.6) can be upper

bounded as

∥χρ∥ ≤ c1 + c2 ∥zκ∥+ c3 ∥zκ∥2 ,∀ρ ∈ R, (4.7)
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where c1, c2, c3 ∈ R>0 are positive constants and zκ ≜

[
eTκ rTκ

]T
: R≥t0 → R8. Given the

open-loop error system in (4.5), the control input uκ ∈ R4 can be designed as

uκ = k1rκ + (k2 + k3 ∥zκ∥+ k4 ∥zκ∥2 + k5 ∥us∥)sgn(rκ), (4.8)

where k1, k2, k3, k4, k5 ∈ R>0 are selectable positive gains, and us is a subsequently designed

stiffness control input. The kinematic control input in (4.8) includes a feedback term and robust

control terms to reject the disturbance, and compensate for the state-dependent uncertain terms

in (4.6), and compensate for the stiffness input cross-term. The closed-loop error system can be

obtained by substituting (4.8) into the open-loop error system (4.5) as

ṙκ = χρ −M−1
ρ τs − eκ −M−1

ρ Bκ

(
k1rκ + (k2 + k3 ∥zκ∥+ k4 ∥zκ∥2 + k5 ∥us∥)sgn(rκ)

)
. (4.9)

Remark 2. To implement (4.8), us is initialized at zero (i.e., [0, 0]T ), such that ∥us∥ is bounded at

t = t0.

4.1.2 Stiffness Control

The stiffness control objective is to track a desired torque for the knee joints. Hence, the knee-

shank dynamics in (2.3) can expressed as

Mρk(qk)q̈k + Cρk(qk, q̇k)q̇k +Gρk(qk) + Pρk(qk, q̇k) + dρk(t) = τκk(t) +Bs(q, q̇)us(t)︸ ︷︷ ︸
τsk

, (4.10)

where the subscript k refers to the knee-joint dynamics, qk, q̇k ∈ R2 are the knee joint angles

and velocities, respectively. The terms Mρk ∈ R2×2
>0 , Cρk ∈ R2×2, and Gρk ∈ R2 denote the

inertia, centripetal-Coriolis, and gravitational effects, respectively; Pρk ∈ R2, τκk ∈ R2 denote

damping and viscoelastic effects, and torque applied about the knee joint by the kinematic con-
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troller, respectively; dρk ∈ R2 denotes unmodeled terms and disturbances acting about the knee

joints (e.g., interaction forces induced by the hip joints). The stiffness control input is denoted by

us : R≥t0 → R2 and the lumped stiffness control effectiveness Bs ∈ R2×2
>0 is a positive definite

diagonal matrix, defined as

Bs ≜
4∑
e=1

Be(q, q̇)σe(t), (4.11)

where the effectiveness dimension has been reduced from 4× 4 to 2× 2 since the stiffness control

objective is developed only for the knee joints. Hence, the torque due to the stiffness controller τs

about the hip joints is zero (i.e., τs = [τTsk, 0, 0]
T ). The knee joint torque inputs generated by the

kinematic and stiffness controllers are denoted as τκk, τsk ∈ R2, respectively.

To generate the desired torque, a stiffness model is designed as

τd(t) = K(t) (qdk − qk) , (4.12)

where K(t) : R≥t0 → R2×2
>0 is a selectable positive definite diagonal matrix representing virtual

knee-joint springs, and τd ∈ R2 denotes the generated desired knee torque trajectories. The de-

sired spring matrix is designed using Fourier series with periodic, continuous and differentiable

properties, such that K ∥ζ∥2 ≤ ζTK(t)ζ ≤ K ∥ζ∥2, ∀ζ ∈ R2, where K and K are known posi-

tive constants denoting the upper and lower bounds of K, respectively.

An integral-like torque tracking error es : R≥t0 → R2 is defined as

es(t) ≜
∫ t

t0

(τd (φ)− τk (φ)) dφ, (4.13)

where τk ≜ τκk + τsk is the measurable torque applied about the knee joints. Taking the derivative

of (4.13), setting the initial conditions to zero, and substituting the measurable torque inputs from

the right-hand side in (4.10) and (4.12) yields

ės(t) = K(t)eκk − τκk −Bsus, (4.14)
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where eκk, ėκk ∈ R2 are the knee joint position and velocity tracking errors defined as eκk ≜

qdk − qk, ėκk ≜ q̇dk − q̇k. The stiffness control input us ∈ R2 is designed as

us(t) = k6es + (k7eκk + k8 ∥uκk∥)sgn(es), (4.15)

where k6, k7, k8 ∈ R>0 are selectable positive control gains and uκk ∈ R2 is the knee joint kine-

matic controller input. The closed-loop stiffness error system is obtained by substituting (4.15)

into (4.14) to yield

ės = K(t)eκk − τκk −Bs

(
k6es + (k7eκk + k8 ∥uκk∥)sgn(es)

)
. (4.16)

4.1.3 Actuator Control Inputs

The kinematic and stiffness control tracking objectives combine muscle and motor inputs. Hence,

the relationship between the implementable control inputs ue and um and the designed uκ and us

can be defined as

ue = ke (Deuκ +Dsus) , (4.17)

um = kmDmuκ, (4.18)

where De = diag

([
0 0 1 1

])
, Ds =

 1 0 0 0

0 1 0 0


T

, and Dm = diag

([
1 1 0 0

])
are control allocation matrices, diag denotes diagonal matrices, and ke, km ∈ R>0, ∀m ∈ M,∀e ∈

E are selectable positive control gains for the electric motors and muscle groups, respectively.
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4.2 Stability Analysis

The stability of the kinematic and stiffness controllers that activate the electric motors and mus-

cles can be examined independently through the following two theorems. Theorem 5 shows

that given the closed-loop kinematic error system in (4.9), the joint kinematic controller in (4.8)

achieves exponential tracking. Theorem 6 shows that given the closed-loop stiffness error system

in (4.16), the torque controller in (4.15) achieves exponential tracking. All the control inputs and

error signals are shown to be bounded.

Theorem 5. Given the closed-loop error system in (4.9), the controller in (4.8) ensures exponen-

tial tracking in the sense that

∥zκ∥ ≤

√
λκ̄
λκ

∥zκ(t0)∥ exp
(
−ψκ

2
(t− t0)

)
, (4.19)

provided the following sufficient gain conditions are satisfied

k2 ≥
c1cM
Bκ

, k3 ≥
c2cM
Bκ

, k4 ≥
c3cM
Bκ

, k5 ≥
cMBs

cmBκ

. (4.20)

Proof. Let Vκ : R4 × R4 × R≥t0 → R be a nonnegative, continuously differentiable function

defined as

Vκ =
1

2
eTκ eκ +

1

2
rTκ rκ, (4.21)

which satisfies the following inequalities

λκ ∥zκ∥2 ≤ Vκ(zκ, t) ≤ λκ̄ ∥zκ∥2 , (4.22)

where λκ, λκ̄ ∈ R>0 are known positive bounding constants. The control input in (4.8) has the

discontinuous signum function (i.e., sliding-mode), and the torque inputs in (2.4)-(2.5) have input

switching effects; hence, the system’s trajectories cannot be solved in a classical sense. Let zκ(t)

be a Filippov solution to the differential inclusion żκ ∈ K[hκ](zκ), where K[·] is defined as [82]
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and hκ is defined using (4.4) and (4.9) as hκ ≜
[
h1 h2

]
, where h1 ≜ rκ − αeκ and h2 ≜ χρ −

M−1
ρ τs − eκ −M−1

ρ K[Bκ]
(
k1rκ +

(
k2 + k3 ∥zκ∥+ k4 ∥zκ∥2 + k5 ∥us∥

)
K[sgn(rκ)]

)
. Hence, the

time derivative of (4.21) exists almost everywhere (a.e.), i.e., for almost all time. Based on [83,

Lemma 1], the time derivative of (4.21), V̇κ(zκ(t), t)
a.e.
∈ ˙̃Vκ(zκ(t), t), where ˙̃Vκ is the generalized

time derivative of (4.21) along the Filippov trajectories of żκ = hκ(zκ) and is defined as in [83]

as ˙̃Vκ ≜
⋂
ξ∈∂Vκ ξ

TK

[
ėκ ṙκ 1

]T
(eκ, rκ, t). Since Vκ(zκ, t) is continuously differentiable

in zκ, ∂Vκ = {∇Vκ}, thus ˙̃Vκ
a.e.
⊂
[
eκ rκ

]
K

[
ėκ ṙκ

]T
. Therefore, after taking the time

derivative, the generalized time derivative of (4.21) can be expressed as ˙̃Vκ
a.e.
⊂ eTκ ėκ + rTκ ṙκ. After

substituting (4.3), (4.4), and (4.9), the generalized time derivative of (4.21) can be expressed as

˙̃Vκ
a.e.
⊂ −eTκαeκ + rTκχρ − rTκM

−1
ρ τs

− rTκM
−1
ρ K[Bκ]

(
k1rκ +

(
k2 + k3 ∥zκ∥+ k4 ∥zκ∥2 + k5 ∥us∥

)
K[sgn(rκ)]

)
. (4.23)

The generalized time derivative of (4.21) can be upper bounded using Property 18 as

˙̃Vκ
a.e.

≤ −α ∥eκ∥2 −
Bκ

cM
k1 ∥rκ∥2 +

(
c1 − k2

Bκ

cM

)
∥rκ∥+

(
c2 − k3

Bκ

cM

)
∥rκ∥ ∥zκ∥

+

(
c3 − k4

Bκ

cM

)
∥rκ∥ ∥zκ∥2 +

(
Bs

cm
− k5

Bκ

cM

)
∥rκ∥ ∥us∥ . (4.24)

Provided the gain conditions in (4.20) are satisfied, the inequality in (4.24) can be further upper

bounded as

˙̃Vκ
a.e.

≤ −W (zκ), (4.25)

where W ≜ α ∥eκ∥2 +
Bκ

cM
k1 ∥rκ∥2 is a positive definite function; hence, (4.25) satisfies the

conditions in [57] to guarantee that (4.21) is a common Lyapunov function across subsystems

ρ = {1, 2} (i.e., stance and swing phases of walking). The upper bound in (4.22) can be substi-
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tuted into the previous expression to yield

˙̃Vκ
a.e.

≤ −ψκṼκ, (4.26)

where ψκ ≜ 1
λκ̄

min
(
α,

Bκ

cM
k1

)
. Leveraging (4.22) and (4.26), the result in (4.19) can be ob-

tained. Using (4.21) and (4.26), Vκ ∈ L∞, hence, eκ, rκ ∈ L∞, which implies that zκ ∈ L∞, and

thus q, q̇ ∈ L∞. ■

Theorem 6. Given the closed-loop error system in (4.16), the controller in (4.15) ensures expo-

nential tracking in the sense that

∥es∥ ≤ ∥es(t0)∥ exp
(
−ψs

2
(t− t0)

)
, (4.27)

provided the following sufficient gain conditions are satisfied

k7 ≥
K

Bs

, k8 ≥
Bκ

Bs

. (4.28)

Proof. Let Vs : R2 × R≥t0 → R be a nonnegative, continuously differentiable function defined as

Vs =
1

2
eTs es. (4.29)

Let es(t) be a Filippov solution to the differential inclusion ės ∈ K[h](zq), where K[·] is de-

fined as [82] and h ≜ h3 is defined by using (4.16) as h3 ≜ K(t)eκk − τκk − K[Bs](k6es +

(k7eκk + k8 ∥uκk∥)K[sgn(es)]). The control input in (4.15) includes the discontinuous signum

function and the closed-loop error system in (4.16) has the lumped switched stiffness control ef-

fectiveness. Hence, the time derivative of (4.29) exists almost everywhere (a.e.), i.e., for almost

all time. After substituting for (4.16) and using similar arguments as in the proof of Theorem 5,
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the generalized time derivative of (4.29) can be expressed as

˙̃Vs
a.e.
⊂ eTs

(
K(t)eκk − τκk −K[Bs](k6es + (k7eκk + k8 ∥uκk∥)K[sgn(es)])

)
. (4.30)

An upper bound for the previous expression can be obtained by using Property 19 and substitut-

ing the upper bound of K(t) to yield

˙̃Vs
a.e.

≤ −Bsk6 ∥es∥
2 + ∥es∥ ∥eκk∥

(
K − k7Bs

)
+ ∥es∥ ∥uκk∥

(
Bκ − k8Bs

)
. (4.31)

Provided the gain conditions in (4.28) are satisfied, the inequality in (4.31) can be further upper

bounded as

˙̃Vs
a.e.

≤ −ψsṼs, (4.32)

where ψs ≜ Bsk6. Using (4.29) and (4.32), Vs ∈ L∞, hence, es ∈ L∞. Given the fact that

eκ ∈ L∞ from Theorem 5, which implies that τd ∈ L∞ in (4.12), then, τk ∈ L∞ in (4.13).

Based on τk ≜ τκk + τsk, leveraging Remark 2, and substituting (4.8) in τκk, it can be concluded

that us ∈ L∞. Thus, from (4.8) uκ ∈ L∞, which further implies that um, ue ∈ L∞ from (4.17)

and (4.18). ■

4.3 Experiment Results

Experiments are provided to demonstrate the performance of the kinematic and stiffness con-

trollers developed in (4.8) and (4.15) to control the knee and hip joints. Three able-bodied indi-

viduals (two males aged 29 years and one female aged 29 years) participated in the exoskeleton

protocol at Syracuse University. Written informed consent was obtained from each participant,

as approved by the Institutional Review Board at Syracuse University. The participants were in-

structed to avoid voluntarily contributing to the treadmill walking task. To mitigate the influence

of the ankle joint for propulsion, an orthotic boot is used to mechanically lock the ankle and pro-



55

vide foot cushion. The individuals could not see the walking performance plots during the experi-

ments. The experimental setup is described in Section 2.3.1.

A walking pretrial was performed wearing the exoskeleton in passive mode (i.e., the exoskele-

ton did not provide assistance to the participant) to record walking data for each participant to

generate the smooth desired kinematic trajectories qd, q̇d. The joint torque τk were computed in

real-time based on the force measurement from the load cells multiplied by the computed mo-

ment arm, which is a function of joint angles. The treadmill walking experiments have a duration

of 3 minutes.

The desired stiffness values K(t) ≜ diag

([
KR KL

])
were designed using Fourier se-

ries as KR(t) = KL(t + 1) = 1
2
a0 +

∑30
n=1 bn sin (nπt), where a0 = K1 + K2, bn =(

1
nπ

)
(K2 −K1 +K1 (−1)n − k2 (−1)n) with K1 = 10, K2 = 4. The control gains were tuned

to achieve satisfactory tracking performance during preliminary testing following the guidelines

described in the Appendix. The control gains introduced in (4.8) and (4.15) were selected as fol-

lows: k1 = 0.4, k2 = 0.35, k3 = 0.002, k4 = 0.0001, k5 = 0.05, α = 20, k6 = 0.05, k7 = 6.5, k8 =

0.05. The selectable positive control gains in (4.17) and (4.18) are ke = 0.8 and km ∈ [8, 12].

Table 4.1 summarizes the root-mean-squared (RMS) and average of the kinematic and stiffness

tracking errors for all subjects with the two tested gait speeds. The experimental results were an-

alyzed after the sixth gait cycle from the point at which the treadmill reached the desired steady-

state gait speed. During the first five gait cycles the participants began stepping on the treadmill

to smoothly reach the steady state constant walking speed. The kinematic tracking performance

for two participants at different gait speeds is illustrated in Figures 4.2-4.3, where the desired

joint trajectories are depicted in blue and the actual joint angles are in depicted in red. The kine-

matic joint trajectories corresponding to each gait cycle during a complete treadmill walking ex-

periment are depicted as a function of gait cycle percentage in Figure 4.4.

The control inputs are presented in Figure 4.5; the quadriceps and hamstrings muscle stimula-
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Table 4.1: Tracking results for each participant at high (0.8 mph) and low (0.5 mph) treadmill
walking speeds∗: RMS kinematic tracking error (moving window in seconds to complete a gait
cycle)1, average of kinematic tracking error eκ, and average of stiffness tracking error es 2.

Subject-Speed Leg RMS Kinematic Error (deg) eκ (deg) es (Nms)
Knee Hip Knee Hip Knee

S1-High
R 2.6± 1.8 2.1± 1.2 −0.1± 1.3 −0.5± 0.8 37.9± 6.0
L 5.4± 3.2 2.3± 1.5 −5.2± 1.9 −1.3± 0.7 37.3± 4.7

S1-Low
R 3.5± 2.0 1.1± 1.0 −3.1± 1.9 −0.4± 1.2 40.5± 21.4
L 3.7± 2.0 2.4± 2.0 −3.6± 1.3 −2.2± 1.5 67.7± 27.4

S2-High
R 3.0± 2.2 1.4± 1.0 0.0± 2.6 1.1± 0.8 57.3± 21.2
L 2.6± 1.8 1.2± 0.9 −1.4± 1.8 −0.9± 0.7 90.9± 31.0

S2-Low
R 5.0± 3.2 2.4± 1.5 3.9± 4.9 −0.1± 2.5 23.6± 9.7
L 8.5± 4.0 2.4± 1.5 8.5± 1.9 0.9± 1.2 −40.4± 12.7

S3-High
R 1.5± 0.9 4.7± 0.9 −1.0± 1.2 −4.7± 1.9 16.9± 6.0
L 3.8± 2.1 3.8± 1.9 3.7± 3.5 −3.7± 3.4 14.1± 4.9

S3-Low
R 8.2± 1.5 3.9± 1.5 −8.3± 1.4 −4.0± 1.9 30.0± 11.4
L 2.5± 1.8 4.4± 3.3 −1.7± 2.7 −4.1± 3.9 39.6± 15.6

Mean(S1-S3) 4.2 2.7 -0.7 -1.7 34.6
STD3(S1-S3) 2.2 1.5 2.2 1.7 14.3

∗ Reported as mean ± standard deviation (STD).
1 Moving window is selected for each participant based on his/her step length. For the three par-
ticipants, the moving window is selected within the range of 1.7-2.3 seconds for high speed walk-
ing and 2.7-3.6 seconds for low speed walking.
2 Averages evaluated over the gait cycle. The gait cycle starts with heel strike in the right leg.
3 Reports the mean over the standard deviations.

tion inputs um for both legs are displayed at the top, whereas the electric motor input commands

ue are depicted at the bottom. The muscle input switching is observed through the activation of

hams and quads to achieve flexion and extension, respectively. Similarly, the motor commands

are switching between the upper layer command um and the lower layer control commands ufl

and uex designed in Chapter 3.

The stiffness tracking errors for the left and right knee joints are presented in Figure 4.6. The

stiffness errors in Figure 4.6 are quantified using a moving time interval window of 1.99 seconds,

which is selected based on the walking speed and step length of the participant. Both integral

stiffness error signals remain bounded during the experiment. Figure 4.7 depicts the computed

foot trajectories in the sagittal plane for the two gait speeds, which further illustrates the influence

of the developed controllers and gait speed on the participant’s walking pattern.
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Figure 4.2: Kinematic tracking performance for Subject 2 (S2) after two minutes of treadmill
walking at high speed (0.8 mph). The top plots depict the left and right hip joint kinematics. The
bottom plots depict the left and right knee joint kinematics. The blue curves illustrate the desired
kinematic trajectories and the red curves show the actual joint angles.

4.4 Discussion

The experimental results demonstrate the feasibility of the controllers developed in (4.8) and

(4.15) to activate lower-limbs muscles via FES and provide torque assistance about the knee and

hip joints. The designed controllers exploited kinematic and torque feedback to achieve treadmill

walking at a constant speed. By adjusting the tuning of the stiffness controller the exoskeleton

provides higher or lower leg compliance, which directly influences the joint kinematics. In addi-

tion, adjusting the tuning of the muscle kinematic controllers can customize the stimulation in-

tensities applied to the quadriceps and hamstrings muscle groups. Therefore, coupling kinematic

and stiffness controllers for FES and electric motors can influence each individual’s gait kine-

matics and foot trajectories across different walking speeds as illustrated in Figure 4.4 and Fig-



58

130 132 134 136 138 140 142 144 146 148 150

0

10

20

30

40

50

60

70

80

90

130 132 134 136 138 140 142 144 146 148 150

-10

0

10

20

30

40

50

130 132 134 136 138 140 142 144 146 148 150

0

10

20

30

40

50

60

70

80

90

130 132 134 136 138 140 142 144 146 148 150

-10

0

10

20

30

40

50

Figure 4.3: Kinematic tracking performance for Subject 1 (S1) after two minutes of treadmill
walking at low speed (0.5 mph). The top plots depict the left and right hip joint kinematics. The
bottom plots depict the left and right knee joint kinematics. The blue curves illustrate the desired
kinematic trajectories and the red curves show the actual joint angles.

ure 4.7. As depicted in Figure 4.4, the developed controllers achieved repeatable and consistent

kinematic joint trajectories as a function of the gait cycle for participant S1. Moreover, consis-

tent joint kinematic patterns were obtained across all participants for both walking speeds, which

are described with a group average of the joint angle standard deviations: ±5.85 degrees for the

right knee, ±5.03 degrees for the right hip, ±8.57 degrees for the left knee, and ±5.88 degrees

for the left hip. Similarly, Figure 4.7 denotes the foot trajectories in the sagittal plane, which are

computed based on joint kinematics. The foot path is another indirect metric of gait consistency,

which could be further used to quantify human performance or design alternate control methods.

The integration of FES and cable-driven exoskeletons holds the potential to customize the human

interaction to restore or improve function in individuals with movement disorders by achieving

repetitive and coordinated walking.
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Figure 4.4: The kinematic joint trajectories corresponding to each gait cycle during the treadmill
walking experiment at high speed (0.8 mph) for Subject 1 (S1).

The results in this study align qualitatively with previously published results for exoskeletons that

include FES to activate lower-limb muscles. However, the differences in the control designs and

experimental test beds pose challenges to directly compare the obtained results in this study with

previous studies on hybrid exoskeletons. In [16], [37] a hybrid neuroprosthesis (i.e., a powered

exoskeleton with surface FES) was tested in one able-bodied individual and one participant with

SCI. The performance of the designed muscle and motor controllers was demonstrated during

overground walking assisted by a walker. In [15], a cooperative control approach was used to it-

eratively compute the muscle stimulations during walking assisted by an exoskeleton in individu-

als with SCI. Despite the advances in hybrid approaches to enable assisted walking in individuals

with paralysis for function restoration, technical innovations are still needed to achieve speeds

and distances for walking in the community [20].
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Figure 4.5: Distribution of the muscle and motor control inputs for Subject 2 (S2) during the high
speed walking trial (0.8 mph). The top plots depict the pulse widths generated by um and applied
to the quadriceps and hamstrings muscle groups for the left and right legs after two minutes of
treadmill walking. The bottom plots show the motor currents generated by ue and applied to the
motors that actuate the knee and hip joints of the left and right legs.

The joint tracking performance is influenced by the implementation of the controllers and the

unique characteristic of each individual. The hip joint kinematic tracking objective was achieved

by the electric motors. Improved hip kinematic performance was obtained compared to the knee

joint kinematic tracking as depicted in Figure 4.3 for S2 and reported in Table 4.1 across both

treadmill walking speeds. Alternatively, the knee joint kinematic tracking objective was achieved

by the activation of muscles via FES. Despite achieving the desired range of motion, the knee

joint tracking performance was negatively influenced by the muscle activation input delay across

all participants (as discussed in more detail in the subsequent paragraph). The electric motors

controlled the stiffness objective in the knee joint to adjust the cable tensions and provide a smooth

interaction for the shank throughout the gait cycle. An alternate approach could be for the mus-
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Figure 4.6: Stiffness tracking performance during treadmill walking at high gait speed (0.8 mph)
for Subject 1 (S1). The stiffness tracking performance is depicted in blue and red for the right and
left knee joints, respectively. The data is presented with a moving time interval window of 1.99
seconds, which is the time in seconds to complete a gait cycle.

cles and electric motors to cooperate to achieve improved knee joint tracking performance. How-

ever, the cooperative control of muscles and motors has to be carefully selected to avoid the ex-

oskeleton dominating the human output and thus resulting in passive walking [1].

Despite the fact that the stability analysis for the kinematic and stiffness controllers yields an ex-

ponential tracking result, there are inherent factors in the dynamics that influence the walking

performance. Hence, the implementation of the treadmill-based walking experiments experi-

ence several challenges. The active torque generated by the muscle contractions is influenced

by the electromechanical delay (EMD) inherent in the muscle activation dynamics, which de-

grades joint tracking performance. As depicted in Figure 4.2 and Figure 4.3, there exists a mus-

cle contraction delay (i.e., a time difference between the onset of the stimulation and the point

when the participant’s muscle force is effectively evoking active force) that affects the response

of the muscle during tracking. In practice, input delay influences not only the muscle generated

torque but also the response of the electric motors and cable-driven mechanisms. The muscle

stimulation response time is within approximately 100-300 ms [86], which influences the walk-
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Figure 4.7: Foot trajectories in the sagittal plane (i.e., the foot path in the x-z plane) at high(top)
and slow (bottom) speeds for Subject 2 (S2). The plots in the left column correspond to the left
leg and plots in the right column correspond to the right leg. The trajectories are computed using
collected joint angles, where the origin corresponds to the trunk position.

ing tracking performance especially for faster treadmill speeds. Further in [86], it was concluded

for the quadriceps that the EMD increases as the number of muscle contraction increases under

isometric conditions. A systematic way to compensate for muscle input delay is to design an

input delay compensator to inject a delay-free input in the closed-loop controller, as in previ-

ous results [37]. However, a control design to compensate for input delay raises technical chal-

lenges to analyze the stability of switched delayed systems, which is a control problem beyond

the scope of this dissertation. Moreover, an estimate of the input delay is likely needed for the

effective implementation of the delay-free controller. Muscles experience fatigue that can lead

to loss of performance. Similarly to compensating for input delay, the control design can be en-

hanced to cope with fatigue [37]. Muscle fatigue did not play a major role during the obtained

three-minute walking experiments in able-bodied individuals. However, muscle fatigue compen-

sation is needed for individuals with movement disorders who need a high dosage of locomotion
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training. Asynchronous stimulation patterns such as the ones developed in [87] can be imple-

mented for assisted walking to lessen the effects of fatigue. Hence, muscle fatigue and delay are

important factors to consider for the development of rehabilitative strategies using FES. More-

over, the measurement of the torque about the knee joint using load cells can be prone to noise,

which directly affects the quality of the torque tracking objective. Subsequent efforts are directed

to improve the force signal quality for the designed torque-based controllers.

From a control perspective, technical improvements in the control design for the muscles and

electric motors in the hybrid exoskeleton will be explored. The motivation behind the sliding-

mode control terms in (4.8) and (4.15) is to compensate for the upper bounds on disturbances and

uncertain nonlinearities in the dynamics model and analytically guarantee exponential tracking

using a switched system analysis. However, robust control methods exploiting high frequency

and high gain can accelerate the onset of muscle fatigue and potentially induce chattering effects.

Alternatives to sliding-mode control include using higher-order sliding mode or a continuous ver-

sion of the sliding-mode controller (e.g., high-slope saturation function using a boundary layer

as in [88]). Therefore, adaptive control methods are desirable to cope with uncertainty through

estimation of parametric and non-parametric uncertainty and improve tracking performance,

while reducing the need for high-frequency content feedback. The design and stability analysis

associated with adaptive control strategies are to be examined in subsequent efforts. Motivation

also exists to improve the design of torque tracking controllers. The stiffness tracking controller

in (4.15) uses an auxiliary integral signal of the torque feedback in (4.13). Thus, the knee stiff-

ness controller acts as an integral controller, which does not responds instantaneously yet re-

mains bounded as depicted in Figure 4.6. Despite the slower response of the stiffness integral

controller, higher order derivatives of the torque feedback signal are not required for the control

design and stability analysis. In fact, the derivative of the torque signal is usually not available

for feedback due to noise. Another important control challenge when developing kinematic and

stiffness controllers for muscles and motors is their ongoing dynamic interaction during exper-

iments, which raises the need to guarantee stability of both closed-loop error systems. The ap-
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proach in this chapter is to compensate for the interaction terms using a robust approach. Alterna-

tively, exploring passivity methods [88] or energy shaping [89] can lead to novel control designs

for assisted walking using hybrid exoskeletons. Finally, the desired joint kinematics in this study

were generated by exploiting preliminary data collected for each participant. The study of how

to optimize the kinematic gait pattern using trajectory optimization methods as in [90], [91] are

to be explored to customize the trajectories for each individual. Moreover, the developed control

methods need to be expanded to account for tracking objectives that do not depend on time but

rather on gait phase or a phase-dependent variable [89]. Time dependent trajectories might not

be suitable for walking training of individuals who can apply volition (e.g., stroke survivors) or

for locomotion in unstructured environments outside of the laboratory.

The walking performance obtained for the three able-bodied individuals motivates the evaluation

of the developed control approach in individuals with different levels of mobility (i.e., partici-

pants who require different assistance levels). The integration of lighter devices that minimize

resistance with control technology that promotes user’s volition is desired to maximize human

effort and intent in individuals with incomplete SCI and stroke survivors. It is expected that in-

dividuals with SCI could benefit from continuous stepping training at high intensities for a long

duration across multiple gait sessions [1].

4.5 Concluding Remarks

Hybrid exoskeletons combine motorized assistance and FES to exploit the benefits of activat-

ing paralyzed muscles and the torque reliability of the machine. Kinematic and stiffness tracking

controllers were designed and implemented to actuate electric motors and activate lower-limb

muscles to achieve treadmill walking at a constant speed. Two walking trials at different speeds

were conducted for each of the three participants. A bipedal walking model for the exoskele-

ton and human is developed using a switched systems approach that captures the transitions for
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stance to swing phase, and vice versa. For the knee joint, the muscles achieved kinematic track-

ing and the electric motor achieved the stiffness control objective by adjusting the cable tensions.

For the hip joint, the electric motors achieve the kinematic tracking objective. A Lyapunov-based

stability analysis is developed to yield exponential tracking for both the kinematic and stiffness

closed-loop systems. The results obtained in the able-bodied individuals demonstrate the ability

of the muscle and exoskeleton controllers to yield predictable, repetitive assisted walking on a

treadmill and motivates subsequent evaluation in people with NCs.

4.6 Appendix

Guidelines for Tuning the Control Gains

Hybrid exoskeletons integrate powered mechanisms and FES to provide assistance and activate

muscles during rehabilitative walking. Hybrid exoskeletons aim to improve walking ability and

build muscle capacity in individuals with movement deficits. However, the human-exoskeleton

dynamics are nonlinear, uncertain and time-varying, which pose technical and practical chal-

lenges. Closed-loop controllers are designed in (4.8) and (4.15) to overcome these challenges and

achieve treadmill walking using the hybrid exoskeleton. To implement the developed controllers

in real-time experiments, the practitioner selects control gains that influence the inputs applied

to the electric motors and muscles via FES. The goal is to adjust the control gains to achieve sat-

isfactory muscle response despite the nonlinear activation rate and time-varying dynamics. The

control gains are adjusted for the electric motors to achieve a fast electro-mechanical response

without inducing high transients, which can negatively affect the human-robot interaction in par-

ticular for individuals with neurological conditions. The control gains introduced in (4.8) and

(4.15) were tuned during a preliminary trial prior to the actual treadmill walking experiment.

During the pretrial for gain tuning, the kinematic controller in (4.8) was turned on first, which
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activates the electric motors that actuate the hip joints and the quadriceps and hamstrings muscle

groups. Once satisfactory performance was obtained for the hip and knee kinematic controllers,

then the knee stiffness controller was turned on to adjust the response of the electric motors that

actuate the knee joint. Additional tuning steps were conducted when both kinematic and stiffness

controllers were activated. The selection of the control gains in (4.4), (4.8), (4.15), (4.17), and

(4.18) is described below.

• α: This gain in (4.4) adjusts the kinematic controller proportionally to the hip and knee

joint angle error. The gain α influences the response of the electric motors that actuate the

hip joint and the muscles that generate torque about the knee joint. The gain α was selected

largest among all the control gains to bias the tuning of the control gains towards improv-

ing the joint angle kinematic tracking.

• k1: This gain in (4.8) adjusts the kinematic controller by weighting the joint angular posi-

tion error eκ and angular velocity error ėκ. This gain influences the hip joint electric motors

and muscles. This gain was tuned to achieve satisfactory response of the derivative term

(i.e., angular velocity) to reach the desired kinematic range of motion.

• k2 − k5: These gains in (4.8) adjust the kinematic controller by weighing the signum func-

tion sgn(rκ). The gain k2 compensates for the constant upper bound in (4.7), thus acts as

an offset that changes sign. The gain k3 weighs the norm of the composite error vector zκ,

thus acts as a linear term. The gain k4 weighs the norm squared of zκ. The gain k5 weighs

the norm of the stiffness input, which acts as a cross-term. These control gains are tuned

lower compared to the gains α, k1 since their values can amplify nonlinearities and yield

chattering effects. As a rule of thumb, k2 ≥ k3 ≥ k4 since they act as constant, linear, and

quadratic terms.

• k6: This gain in (4.15) adjusts proportionally the knee stiffness controller by weighing

the integral torque error es. This gain influences the knee joint electric motors. The gain
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is tuned to balance the stiffness response to prevent a bias to overshoot or undershoot the

desired stiffness trajectory.

• k7 − k8: These control gains in (4.15) adjust the knee stiffness controller by weighing the

signum function sgn(es). The gain k7 weighs the knee kinematic tracking error, thus acts as

a proportional term. The gain k8 weighs the norm of the knee joint kinematic input, which

acts as a cross term. These control gains are tuned to reduce the potential chattering effects

using force feedback.

• ke: This scaling gain in (4.17) adjusts the control command for each electric motor. The

gain weighs both the hip kinematic controller and knee stiffness controller.

• km: This scaling gain in (4.18) adjusts the control commands for each muscle (i.e., right

and left quadriceps and hamstrings). The gain was increased or decreased to compensate

for weaker or stronger muscle responses across the three participants to achieve joint kine-

matic tracking. In addition, stimulation sensitivity or discomfort was a factor in tuning the

muscle gains km,∀M.
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Chapter 5

Motorized FES-Cycling and Closed-Loop

Nonlinear Control for Power Tracking

using a Finite-Time Stable Torque

Algorithm

In this chapter, cadence and torque controllers are designed for power tracking using the motor-

ized FES-cycling system with dynamics introduced in Chapter 2. To capture the time-varying

muscle capacity to evoke active torque, a finite-time torque control algorithm is developed to ad-

just the desired torque in real-time by leveraging estimates of the active torque produced by mus-

cles. The finite-time torque controller leverages input-output data of the active torque produced

by muscles due the applied FES input to update the peak torque desired per crank cycle. This

torque strategy departs from existing cycling studies that implement predetermined desired torque

trajectories that can yield degraded cycling performance as the rider fatigues. A robust sliding

mode controller is designed for the electric motor to track a desired constant cadence trajectory.

Moreover, an integral torque feedback controller is designed to activate muscle groups to track
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the desired torque trajectory computed by the finite-time algorithm. A Lyapunov-based stabil-

ity analysis is developed to ensure exponential cadence tracking and a global uniformly ultimate

bounded (GUUB) result for torque tracking. A discrete-time Lyapunov-based analysis is used to

ensure the finite-time torque controller that generates the desired trajectory is Hölder continuous.

Experimental results in seven able-bodied individuals are presented to examine the feasibility of

the developed control methods. Multiple cycling trials are implemented with different gain pa-

rameters of the finite-time torque algorithm to compare tracking performance for all participants.

5.1 Control Development

The control design is segregated into cadence tracking control objective, finite-time control algo-

rithm to generate the desired torque trajectory, and torque tracking control objective. The first ob-

jective is to design a cadence controller for the electric motor to track a desired constant cadence

trajectory. The second objective is to design a discrete-time finite-time controller that generates

the target amplitude for the desired torque trajectory. The last objective is to design a torque con-

troller for the muscles via FES to track the desired torque trajectory.

5.1.1 Cadence Tracking Control

The measurable angular position tracking error e : R≥t0 → R and filtered tracking error r :

R≥t0 → R are defined as

e(t) ≜ qd(t)− q(t), (5.1)

r(t) ≜ ė(t) + αe(t), (5.2)
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where α ∈ R>0 is a selectable positive control gain and qd, q̇d, q̈d : R≥t0 → R are bounded

desired crank trajectories. For simplicity of notation, the explicit dependence of time, t, is here-

after suppressed unless required for clarity of exposition. After taking the time derivative of (5.2),

pre-multiplying by M , substituting for (2.6), (2.11) and (5.1), and performing some algebraic ma-

nipulation yields

Mṙ = χ−Beue − τm − e− Cr, (5.3)

where the auxiliary signal χ : R≥t0 → R is defined as

χ ≜M(q̈d + αė) + C(q̇d + αe) +G+ P + d+ e. (5.4)

The upper bound for the auxiliary signal in (5.4) can be obtained by using Properties 9-12, As-

sumption 8 as

χ ≤ c1 + c2 ∥z∥+ c3 ∥z∥2 , (5.5)

where c1, c2, c3 ∈ R>0 are positive constants and the composite error signal z : R≥t0 → R2 is

defined as

z ≜

[
e r

]T
. (5.6)

Given the open-loop error system in (5.3), the cadence control input for the electric motor ue can

be designed as

ue = k1r +
(
k2 + k3 ∥z∥+ k4 ∥z∥2 + k5|um|

)
sgn(r), (5.7)

where k1, k2, k3, k4, k5 ∈ R>0 are positive control gains, and the signum function is sgn(·) : R →

[−1, 1]. The cadence control input in (5.7) includes a feedback term and robust control terms to

reject the auxiliary signal in (5.4) and compensate for the muscle torque cross-term. The closed-

loop error system can be obtained by substituting the control input (5.7) into the open-loop error

system in (5.3) as

Mṙ = χ− e− Cr − τm −Be

(
k1r +

(
k2 + k3 ∥z∥+ k4 ∥z∥2 + k5|um|

)
sgn(r)

)
. (5.8)
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5.1.2 Finite-time Control

The purpose of the finite-time controller is to compute the target amplitude of the desired torque

trajectory. The implementation of arbitrary or predetermined torque trajectories is susceptible

to yield suboptimal cycling performance since the rider’s capacity is uncertain and time-varying

(e.g., after a neurological disorder, people retain different levels of residual function). In addition

due to the FES-induced muscle fatigue, motivation exists to update the desired torque amplitude

each cycle and eliminate the need to perform manual adjustments. The discrete finite-time con-

troller is designed as follows.

The desired torque trajectory τd : R≥t0 × R → R is designed as

τd(t, q) = A(ti)f(q), (5.9)

where ti ∈ R≥t0 , i ∈ N denotes the ith time the crank passes q = 0° (i.e., crank cycle index),

A : R≥t0 → R denotes the amplitude of the desired torque trajectory, and f : Q → R is a

normalized bounded profile of the desired torque that depends on the crank angle. The initial am-

plitude A(t0) for the desired torque is selected as a positive constant, hence τd is guaranteed to be

bounded during the first cycle. The desired torque estimation error ef : R≥t0 → R can be defined

as

ef (ti) ≜ A(ti)− τpeak(ti), (5.10)

where τpeak is the measurable peak active torque generated by muscles during the last crank cycle

and defined as

τpeak(ti) ≜ max (τ̂m(t)) ,∀t ∈ [ti−1, ti), (5.11)

where the estimate of the active torque τ̂m is obtained using (2.9).
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Taking the forward difference of (5.10) (i.e., ∆Ω(ti) ≜ Ω(ti+1)− Ω(ti)) yields

∆ef (ti) = ∆A(ti)−∆τpeak(ti). (5.12)

Based on the stability analysis in Section 5.2.2, the update law to generate the torque amplitude is

designed as

∆A(ti) = (D (ef (ti))− 1) ef (ti) + ∆τpeak(ti), (5.13)

where D : R≥t0 → R is defined as in [74]

D (ef (ti)) =

(
e2f
)β − λ(

e2f
)β

+ λ
, (5.14)

β ∈ (0, 1), and λ ∈ R>0 is a selectable positive constant. Substituting (5.13) and (5.14) into

(5.12) and performing some algebraic manipulations yields the closed-loop torque amplitude er-

ror system

∆ef =
−λ (D (ef ) + 1) ef(

e2f
)β . (5.15)

5.1.3 Torque Control Tracking

The purpose of the torque controller is to track the desired torque trajectory in the FES-regions

as depicted in Figure 2.4. To quantify the torque control objective, an integral-like error signal

eτ : R≥t0 → R can be defined as

eτ (t) =

∫ t

t0

(τd(ϕ)− τ̂m(ϕ)) dϕ, (5.16)
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where τd is the desired torque trajectory defined in (5.9). Taking the time derivative of (5.16),

setting the initial conditions to zero, and substituting for (2.7) and (2.10) yields

ėτ = τd −Bmum + ϵ. (5.17)

The muscle control input can be designed as

um = k6eτ + k7sgn(eτ ), (5.18)

where k6, k7 ∈ R>0 are selectable positive control gains. The closed-loop torque error system can

be obtained by substituting (5.18) into (5.17) as

ėτ = τd −Bm (k6eτ + k7sgn(eτ )) + ϵ. (5.19)

5.2 Stability Analysis

The stability of cadence and torque tracking controllers that activate the electric motor and apply

FES to muscles, respectively, can be examined independently. Theorem 5.2.1 shows that given

the closed-loop cadence error system in (5.8), the cadence controller in (5.7) achieves exponen-

tial tracking. Theorem 5.2.2 shows that the closed-loop error system in (5.15) using the discrete

finite-time controller in (5.13) is stable and Hölder continuous in discrete time. Theorem 5.2.3

shows that given the closed-loop torque error system in (5.19), the torque controller in (5.18)

achieves global uniformly ultimate bounded (GUUB) tracking.
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5.2.1 Cadence Tracking

Theorem 7. Given the closed-loop error system in (5.8), the controller in (5.7) ensures exponen-

tial tracking in the sense that

∥z(t)∥ ≤
√
λ2
λ1

∥z(t0)∥ exp
(
−ψ
2
(t− t0)

)
, (5.20)

provided the following sufficient gain conditions are satisfied

k2 ≥
c1
Be

, k3 ≥
c2
Be

, k4 ≥
c3
Be

, k5 ≥
Bm

Be

. (5.21)

Proof. Let V : R × R × R≥t0 → R≥0 be a nonnegative, continuously differentiable function

defined as

V =
1

2
e2 +

1

2
Mr2, (5.22)

which satisfies the following inequalities

λ1 ∥z∥2 ≤ V (z, t) ≤ λ2 ∥z∥2 , (5.23)

where λ1, λ2 ∈ R>0 are known positive bounding constants, and z is defined as in (5.6). The

control input in (5.7) has the discontinuous signum function (i.e., sliding-mode); hence, the sys-

tem’s trajectories cannot be solved in a classical sense. Let z(t) be a Filippov solution to the

differential inclusion ż ∈ K[h](z), where K[·] is defined as [82] and h is defined using (5.2)

and (5.8) as h ≜

[
h1 h2

]
, where h1 ≜ r − αe and h2 ≜ χ − e − Cr − τm − Be(

k1r +
(
k2 + k3 ∥z∥+ k4 ∥z∥2 + k5|um|

)
K[sgn(r)]

)
. Hence, the time derivative of (5.22) exists

almost everywhere (a.e.), i.e., for almost all time. Based on [83, Lemma 1], the time derivative of

(5.22), V̇ (z, t)
a.e.
∈ ˙̃V (z, t), where ˙̃V is the generalized time derivative of (5.22) along the Filip-

pov trajectories of ż = h(z) and is defined as in [83] as ˙̃V ≜
⋂
ξ∈∂V ξ

TK

[
ė ṙ 1

]T
(e, r, t).



75

Since V (z, t) is continuously differentiable in z, ∂V = {∇V }, thus ˙̃V
a.e.
⊂
[
e r

]
K

[
ė ṙ

]T
.

Therefore, after taking the time derivative, the generalized time derivative of (5.22) can be ex-

pressed as ˙̃V
a.e.
⊂ eė + Mrṙ + 1

2
Ṁr2. After substituting (5.1), (5.2), (5.8), cancelling common

terms, and applying Property 13, the generalized time derivative of (5.22) can be expressed as

˙̃V
a.e.
⊂ −αe2 + rχ− rτm − rBe

(
k1r +

(
k2 + k3 ∥z∥+ k4 ∥z∥2 + k5 |um|

)
K[sgn(r)]

)
. (5.24)

The generalized time derivative of (5.22) can be upper bounded by substituting (2.7), (5.5), and

using Properties 14-15 as

˙̃V
a.e.

≤ −αe2 − k1Ber
2 + (c1 − k2Be) |r|+ (c2 − k3Be) |r| ∥z∥

+ (c3 − k4Be) |r| ∥z∥
2 +

(
Bm − k5Be

)
|r||um|. (5.25)

Provided the gain conditions in (5.21) are satisfied, the inequality in (5.25) can be further upper

bounded as

˙̃V
a.e.

≤ −αe2 − k1Ber
2. (5.26)

The upper bound in (5.23) can be substituted into (5.26) to yield

˙̃V
a.e.

≤ −ψṼ , (5.27)

where ψ ≜ 1
λ2

min (α, k1Be). Leveraging (5.23) and (5.27), the result in (5.20) can be obtained.

Using (5.22) and (5.27), V ∈ L∞, hence, e, r ∈ L∞, which implies that z ∈ L∞, and thus

q, q̇ ∈ L∞. ■
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5.2.2 Finite-time Control

Theorem 8. Given the closed-loop error system in (5.15), the update law in (5.13) ensures (5.15)

is Hölder continuous in discrete time with exponent 1
1−δ in the sense that

Vf (ti+1) ≤ (v − (i+ 1)η)
1

1−δ , (5.28)

where v ∈ R>0 is defined as

v ≜
Vf (t0)

ε
, (5.29)

and ε, δ, η ∈ R>0 are positive constants.

Proof. Let Vf : R × R≥t0 → R≥0 be a positive definite, decrescent and radially unbounded

Lyapunov function defined as

Vf (ti) =
1

2
e2f (ti). (5.30)

Taking the first order forward difference (i.e., ∆(ab) = a∆b+ b∆a) of (5.30) yields

∆Vf (ti) = ef (ti)∆ef (ti). (5.31)

After substituting the closed-loop error system in (5.15) into (5.31), the following expression is

obtained

∆Vf (ti) = −λ (D (ef (ti)) + 1)
(
e2f (ti)

)1−β
, (5.32)

which can be further expressed as

Vf (ti+1)− Vf (ti) = −γV δ
f (ti), (5.33)

where δ ≜ 1 − β and γ : R≥0 → R≥0 is a positive definite function of Vf (ti) that satisfies the
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condition that there exists an ε ∈ R>0 such that

γ(Vf (ti)) ≜ 2λ (D (ef (ti)) + 1) ≥ η ≜ ε1−δ,∀Vf (ti) ≥ ε. (5.34)

Leveraging the result in [74] and the fact that Vf (ti+1) ≤ Vf (ti) from (5.33), the following in-

equality can be obtained to provide an upper bound for all cycles.

Vf (ti+1)− Vf (t0) = Vf (ti+1)− Vf (ti) + Vf (ti)− Vf (ti−1) + · · ·+ Vf (t1)− Vf (t0) (5.35)

≤ −η
(
V δ
f (ti) + · · ·+ V δ

f (t0)
)

(5.36)

≤ −(i+ 1)ηV δ
f (ti+1). (5.37)

Re-arranging the previous inequality yields

Vf (ti+1) ≤

(
Vf (t0)

V δ
f (ti+1)

− (i+ 1)η

) 1
1−δ

(5.38)

≤ (v − (i+ 1)η)
1

1−δ . (5.39)

Since Vf ∈ L∞, ef ∈ L∞. Since an initial bounded desired torque amplitude A(t0) is assigned to

the torque controller for the first cycle and um ∈ L∞ from Theorem 5.2.3, then τpeak, A ∈ L∞.

Further, ∆τpeak,∆A ∈ L∞. ■

5.2.3 Torque Tracking

Theorem 9. Given the closed-loop error system in (5.19), the controller in (5.18) ensures global

uniformly ultimate bounded (GUUB) tracking in the sense that

eτ (t) ≤

√
e2τ (t0)e

−ψτ (t−t0) +
2E

ψτ
(1− e−ψτ (t−t0)), (5.40)
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provided the following sufficient gain condition is satisfied

k7 ≥
τ̄d
Bm

. (5.41)

Proof. Let Vτ : R × R≥t0 → R≥0 be a nonnegative, continuously differentiable function defined

as

Vτ =
1

2
e2τ . (5.42)

Let eτ (t) be a Filippov solution to the differential inclusion ėτ ∈ K[h](eτ ), where K[·] is defined

as [82] and h ≜ h3 is defined by using (5.19) as h3 ≜ τd − K[Bm] (k6eτ + k7K[sgn(eτ )]) + ϵ.

The control input in (5.18) includes the discontinuous signum function and the closed-loop error

system in (5.19) has the lumped switched stiffness control effectiveness. Hence, the time deriva-

tive of (5.42) exists almost everywhere (a.e.), i.e., for almost all time. After substituting for (5.19)

and using similar arguments as in the proof of Theorem 5.2.1, the generalized time derivative of

(5.42) can be expressed as

˙̃Vτ
a.e.
⊂ eτ

(
τd −K[Bm] (k6eτ + k7K[sgn(eτ )]) + ϵ

)
. (5.43)

An upper bound for the previous expression can be obtained by using Property 14 and substitut-

ing the upper bound of τd to yield

˙̃Vs
a.e.

≤ −Bmk6e
2
τ + (τ̄d −Bmk7) |eτ |+ eτ |ϵ|. (5.44)

Provided the gain condition in (5.41) is satisfied, the inequality in (5.44) can be further upper

bounded as

˙̃Vτ
a.e.

≤ −ψτ Ṽτ + E, (5.45)

where ψτ ≜ Bmk6 and E ≜ eτ |ϵ|. Using (5.42) and (5.45), Vτ ∈ L∞, hence, eτ ∈ L∞. Thus,

um ∈ L∞ implies ue ∈ L∞. ■
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5.3 Experiment Results

Experiments are provided to demonstrate the performance of the designed controllers developed

in (5.7), (5.13), and (5.18). Seven able-bodied individuals (six males aged 19-29 years and one

female aged 19 years) participated in the FES-cycling protocol at Syracuse University. Written

informed consent was obtained from each participant, as approved by the Institutional Review

Board (IRB) at Syracuse University. The participants were instructed and reminded through the

cycling protocol to avoid voluntarily contributing to the pedaling task. Individuals were not in-

formed of the desired cadence or torque trajectories. Measurements of the participant’s legs were

recorded to compute the switching signals for each muscle group based on the rider’s kinematic

effectiveness (i.e., to define the FES regions in Figure 2.4 as in [58]). The experiment setup is

described in Section 2.3.2.

A pretrial was performed at the same constant cadence as in the cycling experiments to record

passive torque data τpassive used in (2.9) for each participant without applying FES. The desired

cadence trajectory q̇d smoothly approached a steady speed during a time interval of 15 seconds,

t ∈ [0, T1], T1 = 15. During this interval, the electric motor brought the rider to the desired speed

and FES was not applied to muscles. A transition time interval of 10 seconds, t ∈ [T1, T2], T2 =

T1 + 10 is used to gradually integrate FES in the experiment until reaching the steady state FES

regions. Within this transition interval, the FES inputs were set to um = 40µs to familiarize the

rider with applied FES. Finally after the transition period, the designed controllers were activated

and remained active until the end of the experiment, i.e., for t > T2 and t ≜ 180 seconds. All

cycling experiments were implemented for 3 minutes. Each participant completed 4 cycling trials

to implement different combinations of the gain parameters in (5.14) and determine feasibility of

the finite-time torque algorithm. The order of the cycling trials was randomized. As described in

the IRB protocol, rest breaks of 10 minutes were provided in between cycling trials. The control

gains introduced in (5.7), (5.13), and (5.18) were selected as follows: k1 = 3.5, k2 = 0.5, k3 =

0.01, k4 = 0.001, k5 = 0.01, α = 0.1, β = {0.1, 0.3, 0.5}, λ = {0.1, 0.3}, k6 ∈ [0.2, 0.3], k7 ∈
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[5, 15]. The desired torque profile f(q) in (5.9) is defined as f(q) = 1
2

(
sin
(
2q − π

2

)
+ 1
)

and the

initial value of the desired torque amplitude is set at A(t0) = 8 Nm.

Table 5.1 summarizes the root-mean-squared (RMS) cadence error, average of the instantaneous

cadence error, and average of the integral torque errors for all subjects and their correspond-

ing gain parameters implemented in (5.14). The experimental results were analyzed starting at

t = T2, which is the time the system reached the desired steady-state cadence and the closed-

loop muscle and motor controllers were activated. The kinematic tracking performance for par-

ticipant S1 is illustrated in Figure 5.1, where the desired cadence is depicted in blue and the ac-

tual cadence is depicted in red. The torque tracking error eτ is presented in Figure 5.2, which

remains bounded during the experiment. The torque tracking performance is illustrated in Fig-

ure 5.3, where the desired torque is depicted in light blue, the estimated active torque is depicted

in red, and the average estimated active torque with a moving window of 5 seconds is depicted

in solid blue. The average estimated active torque illustrates the evolution of the torque produced

by muscles during the experiment, which is an indirect measure of muscle fatigue (i.e., naturally

the torque produced by muscles decay due to FES-induced fatigue). Figure 5.4 shows the desired

torque estimation error ef (also referred as the finite-time tracking error) across each crank cycle

for different combinations of the gain parameters in (5.14). Figure 5.5 shows the electric motor

input command ue and the muscle stimulation inputs um for both legs in during the last 5 seconds

of a cycling trial.

Friedman tests were performed at a significance level of α = 0.05 to test for statistically signifi-

cant differences in tracking performance between the four cycling trials (i.e., 4 groups) each with

different gain parameters as reported in Table 5.1. The Friedman tests on the response of the four

cycling trials indicated that there were no statistically significant differences in the RMS cadence

error (p-value = 0.1053) and mean cadence tracking error (p-value = 0.9043). Alternatively, a

Friedman test indicated that there was a statistically significant difference between the four cy-

cling trials in the mean torque tracking error (p-value = 0.0134).
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Figure 5.1: Cadence tracking performance depicted for Subject 1 (S1). The cadence trajectory
smoothly approached a steady speed (50 RPM) until t = 15 with motor only. Then, within the
interval t = [15, 25], FES was integrated and set to um = 40µs. The closed-loop finite-time
and muscle torque controllers were activated at t = 25 and remained active until the end of the
experiment t = 180. The blue curve illustrates the desired cadence and the red curve shows the
actual cadence. The gain parameters in (5.14) are selected as β = 0.3 and λ = 0.3.

5.4 Discussion

The experimental results demonstrate the feasibility of the developed controllers in (5.7) and

(5.18) to track the desired cadence with an electric motor and torque trajectory by applying FES

to activate lower limb muscles. The finite-time control algorithm developed in (5.13) and (5.14)

adjusts the torque demand in real-time to cope and capture the rider’s time-varying ability to gen-

erate active torque. As depicted in Figure 5.1, the developed motor cadence controller is able to

maintain the rider’s speed within a range of less than ±1 RPM. In figure 5.2, the integral torque

tracking error remains bounded during the cycling trial showing a feasible interaction between

the desired torque demand (computed by the finite-time torque algorithm) and the active torque

produced by muscles, which depicted in Figure 5.3. The developed cadence controller yields an

average cadence tracking error of −0.03 ± 1.58 RPM across all participants. Cadence tracking
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performance is influenced by the interaction with the muscle torque controller. Thus, the motor

cadence (presented in Figure 5.5) compensates for the active torque generated by muscles, which

act as a disturbance in the cadence control loop. The influence of the muscle torque into the ca-

dence tracking objective can be quantified by the RMS cadence error included in Table 5.1.

0 20 40 60 80 100 120 140 160 180
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Figure 5.2: The integral-like torque tracking error eτ in (5.16) is depicted for Subject 4 (S4) dur-
ing the cycling trial with gain parameters in (5.14) selected as β = 0.3 and λ = 0.1. The tracking
error starts to be computed and integrated at t = 25.

The developed torque tracking controller achieves an average torque tracking error of 32.82 ±

19.50 Nms across all participants. As depicted in Figure 5.2, the integral-like torque tracking

signal eτ started to integrate the error at t = T2 = 25, when the torque tracking controller

is activated. The torque tracking error started to build up at the beginning (e.g., up to approxi-

mately 45 seconds) since the finite-time controller was adjusting the desired torque to capture

the rider’s ability to generate active torque (i.e., the finite-time controller leverages estimates of

the active muscle torque τ̂m). The integral torque tracking error decreased for periods during the

cycling trial (e.g., around 45-70 seconds) and overall remain bounded. The estimation of the ac-

tive torque and the desired torque trajectory are shown in Figure 5.3. The rider showed signs of

muscle fatigue throughout the experiment, evidenced by decay in the active torque generated,
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which may have resulted in increased torque tracking error (e.g., during 80-100 seconds in Fig-

ure 5.2. However, the developed finite-time controller kept adjusting the desired torque trajectory

based on the rider’s torque input data to cope with muscle fatigue. The ability to adapt the desired

torque trajectory is an important contribution in the present cycling study because the implemen-

tation of predetermined desired torque trajectories as in ([40]) would likely yield increased track-

ing errors and induce overstimulation of already fatiguing muscles. Figure 5.5 shows the FES

inputs applied to the muscles ensuring consistent torque output while preventing high stimulation

values that are typical for power tracking experiments implementing predefined torque trajecto-

ries ([40]). Thus, cycling trials with predetermined trajectories will require manual adjustments

of the torque demand to cope with the muscle fatigue. In addition, incorporating the ability to

adapt the desired torque trajectory in real-time holds the potential to extend the duration of the

cycling trial.

Figure 5.3: Torque tracking performance for Subject 4 (S4) during the cycling trial with gain pa-
rameters in (5.14) selected as β = 0.1 and λ = 0.1. The light blue curve illustrates the desired
torque τd and the red curve shows the estimated active torque τ̂m. The mean of the estimated ac-
tive torque ¯̂τm is computed using a 5 seconds moving window and depicted in solid blue. The
mean of the estimated active torque illustrates the time-varying trend of the torque produced by
muscles and captures the influence of muscle fatigue.
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Stability is guaranteed by the developed stability analyses and illustrated during the cycling tri-

als despite muscle input switching and the nonlinear cycle-rider dynamics. A challenge for the

implementation of FES-cycling experiments is related to the muscle activation dynamics. The

active torque generated by FES-induced muscle contractions is influenced by the inherent mus-

cle electromechanical delay (EMD). The time-varying EMD is approximately 100–300 ms [86]

and degrades the muscle torque tracking performance. A recent study has developed an input de-

lay compensator to inject a delay-free input in the closed-loop error system to compensate for

the muscle input delay [37]. However, constructive delayed control compensation requires addi-

tional control design and stability analysis, which is beyond the scope of this dissertation. In this

chapter, the motivation was to adjust the desired torque trajectory using the finite-time controller

leveraging estimates of muscle active torque (thus capturing the muscle activation dynamics) to

improve the cycling tracking performance.

The finite-time control technique enables the tuning of the desired torque trajectory (i.e., the

torque peak amplitude) by selecting the gain parameters β, λ in (5.14) to tune the controller’s rate

of convergence and the range of the update law in (5.13). Figure 5.4 presents the performance of

the finite-time controller during the four cycling trials for participant S4. The rate of convergence

in experiments can be tuned by tuning the control gains in (5.14) as proven in the stability analy-

sis in Theorem 5.2.2. In Figure 5.4, the number of crank cycles needed to reduce the initial peak

error and drive error ef to reach a steady error are around 30, 40, and 55 for β = 0.1, 0.3, 0.5,

respectively with a fixed λ = 0.1 (as depicted in the top left, bottom left, and top right figures,

respectively). For a fixed value of β = 0.3, it takes around 30 crank cycles to reach a steady er-

ror with λ = 0.3 (bottom right figure) and around 40 crank cycles to reach a steady error with

λ = 0.1 (bottom left figure). The experimental results demonstrate that the developed finite-time

controller has the ability to adjust the rate of convergence of desired torque trajectory, which vali-

dates the result in the stability analysis during real-time cycling experiments.

The obtained cycling performance in four able-able-bodied individuals shows the feasibility of
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Figure 5.4: The desired torque estimation error ef , i.e., the discrete finite-time tracking error,
is depicted for Subject 4 (S4) using four different gain parameter combinations in (5.14) corre-
sponding to the four cycling trials. Top left, bottom left, and top right figures implement λ = 0.1
with β = 0.1, 0.3, 0.5, respectively, depicting the differences in decay rate after the initial peak.
Bottom left and bottom right figures also provide a basis for comparison between for λ = 0.1 and
λ = 0.3 for β = 0.3 for illustrating the differences in decay rate following the initial peak.

the developed cadence and torque tracking controllers to account for the differences in leg func-

tion (e.g., muscle strength, muscle mass, etc.) and achieve satisfactory pedaling rates. The con-

trol strategy holds the potential to improve rehabilitative cycling in individuals with different

levels of lower-limb function and mobility since each individual will inherently need a differ-

ent level of assistance. In particular, the controller exploits estimates of the active muscle torque

to capture the rider’s time-varying ability for power tracking. This control feature is beneficial

for FES-cycling and rehabilitation applications to customize the desired trajectories in real-time.

Future work includes the implementation of the developed cycling strategy in individuals with

movement disorders such as people with chronic SCI who could benefit from the lower-limb ex-

ercise. Since the control method is able to adapt the torque demand in real-time, it is envisioned
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Figure 5.5: Electric motor and muscle stimulation inputs for Subject 1 (S1) during a 5-second
window in the cycling trial with gain parameters in (5.14) selected as β = 0.5 and λ = 0.1.
The left figure shows the motor current computed by ue. The right figure depicts the pulse widths
generated by um and applied to the quadriceps, hamstrings, and gluteus muscle groups for the left
and right legs.

that long-duration cycling trials could be implemented without the need to manually adjust the

torque demand and prevent early termination of the cycling experiment.

The statistical analysis indicates that the tuning of finite-time control parameters in (5.14) yields

a statistically significant difference in torque tracking, but not in cadence tracking. This is an ex-

pected result since the electric motor is controlled to independently regulate the cadence perfor-

mance with fixed control gains in (5.7) across cycling trials for all participants. Alternatively,

the finite-time controller exploits the rider’s torque data and generates the desired active torque

trajectory. Thus, changing the control parameters β, λ in (5.14) across the cycling trials yields

significant differences in the torque tracking performance quantified by the mean torque track-

ing error eτ . This implies that the developed finite-time approach is able to customize the desired

active torque for the participants in real-time. The sliding-mode control term in (5.7) compen-

sates for the muscle torque input τm that appears in the closed-loop cadence error dynamics in

(5.8) (i.e., mitigates the influence of torque tracking in the cadence loop). Therefore, the tuning

of finite-time control gains that directly influence the closed-loop torque error dynamics does not

yield a statistically significant difference in cadence tracking performance. Future work involves
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determining how to optimize the selection of the torque control parameters based on a target cy-

cling duration or comfort.

5.5 Concluding Remarks

Motorized FES-cycling combines the benefits of FES and the assistance provided by an electrical

motor to achieve consistent, stable lower-limb motion. This chapter developed and implemented

power tracking controllers and demonstrated their feasibility in cycling experiments. A cadence

controller is designed for the motor to track a desired constant cadence. FES is applied to the

lower-limb muscle groups using an integral-like torque tracking error signal. A discrete finite-

time algorithm is developed to generate the desired torque trajectory based on input-output data

leveraging estimates of the rider’s active muscle torque. Thus, the finite-time control method cap-

ture the rider’s ability to produce active torque in real time cycling experiments. Lyapunov-based

stability analyses are presented to guarantee an exponential cadence tracking and a global uni-

form ultimate bounded (GUUB) torque tracking results. A discrete-time Lyapunov-based stabil-

ity analysis is used to ensure the finite-time algorithm that generates the desired torque trajectory

is Hölder continuous and convergence is obtained in a finite number of crank cycles. Experimen-

tal results in seven able-bodied individuals are obtained during four cycling trials. Each cycling

trial implemented a different combination of the gain parameters of the finite-time torque algo-

rithm. As shown in the stability analysis, tuning the gain parameters in the finite-time algorithm

resulted in changes in the rate of convergence quantified in the number of crank cycles.
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Table 5.1: Tracking results for each participant1: RMS cadence tracking error, average of cadence
tracking error ė, and average of torque tracking error eτ .
β λ Subject RMS Cadence Error (rpm) ė (rpm) eτ (Nms)

0.1 0.1

S1 0.88±0.53 0.00±0.88 12.01±5.38
S2 2.15±1.22 -0.16±2.14 12.23±11.79
S3 1.76±0.99 -0.07±1.75 22.28±12.79
S4 1.93±1.02 0.10±1.93 12.18±7.80
S5 1.31±1.00 0.03±1.65 7.98±3.81
S6 1.58±0.78 -0.03±1.58 33.33±20.63
S7 2.05±1.22 -0.11±2.05 43.54±26.87

0.3 0.1

S1 1.21±0.67 -0.13±1.20 39.26±20.30
S2 1.26±0.76 -0.14±1.26 24.40±11.29
S3 1.62±0.93 -0.09±1.62 30.06±14.90
S4 1.93±1.10 0.00±1.93 18.23±8.22
S5 1.72±1.01 0.12±1.71 33.09±21.07
S6 1.91±1.14 -0.07±1.91 68.47±46.68
S7 2.40±1.30 0.08±2.40 106.33±70.57

0.3 0.3

S1 0.88±0.51 -0.02±0.88 12.38±5.85
S2 1.21±0.74 -0.17±1.19 33.69±25.25
S3 1.54±0.88 -0.01±1.54 11.28±6.97
S4 1.80±0.97 -0.03±1.80 18.72±8.99
S5 1.39±0.90 0.06±1.39 9.34±6.26
S6 0.95±0.53 0.03±0.95 14.53±11.18
S7 1.17±0.73 -0.07±1.16 31.05±21.01

0.5 0.1

S1 0.87±0.51 -0.05±0.87 46.81±25.41
S2 1.63±1.00 -0.24±1.61 66.39±36.29
S3 1.23±0.67 0.03±1.23 38.69±18.96
S4 2.06±1.18 -0.09±2.06 39.09±18.54
S5 1.74±0.94 0.07±1.74 25.92±14.51
S6 2.13±1.25 0.01±2.13 75.79±49.15
S7 1.57±1.05 -0.02±1.57 31.79±15.53

Mean(S1-S7) 1.48 -0.03 32.82
STD2(S1-S7) 0.91 1.58 19.50

1 Reported as mean ± standard deviation (STD).
2 Reports the mean over the standard deviations.
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Chapter 6

Conclusions

6.1 Contributions and conclusions

This dissertation focuses on developing controllers that leverage kinematic and force/torque

feedback for powered lower-limb machines modeled as nonlinear, time-varying, and uncertain

switched systems with disturbances. To achieve the desired tracking performance, closed-loop

controllers are developed to comply with the human dynamics while coping with the inherent

uncertainties in the human-robot parameters and rejecting disturbances that degrade performance.

The dissertation focuses on the design of switching nonlinear controllers and their stability through

Lyapunov-based methods. The design, analysis and implementation of controllers that activate

muscles and motors for assisted cycling and walking have implications for advancing lower-limb

rehabilitation and gait training. Ultimately, the benefits of hybrid exoskeletons and motorized cy-

cles have to be examined in clinical studies with people with NCs.

In Chapter 3, a hierarchical strategy was developed to segregate the control design into high- and

low-level layers for cable-driven exoskeletons. Cable-driven exoskeletons are powerful tools to

provide assistance during walking due to their light-weight components. However, coordinating
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the control between the pair of electric motors that actuate each joint requires stable switching

to achieve suitable leg flexion and extension. In addition, a constructive and systematic control

design is needed to mitigate cable slackness and prevent antagonistic activation of the cable-

pulley system that actuate the powered exoskeleton. The design and analysis of nonlinear robust

switching controllers were developed for the knee joint, leveraging switched systems theory and

a Lyapunov-based stability analysis. The developed controllers ensure exponential tracking for

both the kinematic joint tracking error (high-level) and motor tracking (low-level) objectives. The

experimental result for controlling the knee joint to ensure leg flexion and extension demonstrates

the feasibility of the developed controllers. The hierarchical structure is extended to actuate knee

and hip joints bilaterally during treadmill walking in Chapter 4.

In Chapter 4, the dual control objective of kinematic and stiffness tracking are accomplished by

designing controllers for the knee and hip joints. The stiffness controller is motivated for human-

robot interaction applications for its ability to absorb shock, robustness to perturbations, and

safety. Chapter 4 developed a novel control design to adjust the knee joint stiffness and guide

the joint kinematics through the collaboration of muscles and motors in the powered exoskeleton.

The analysis of the closed-loop kinematic and stiffness error systems provide stability guaran-

tees and boundedness of all the input signals. Subsequent work will focus on how to generate and

adapt the desired stiffness parameters in real-time to improve the leg interaction during walking.

The kinematic and stiffness controllers ensure exponential tracking despite the switching effects

and additive disturbances included in the model. The developed controllers were implemented

in three able-individuals during walking trials on a treadmill at two constant speeds. It is notable

in the experimental results that EMD is an important factor that negatively influences walking

performance using the hybrid exoskeleton as has been also reported in [16], [37]. Control design

innovations are necessary to compensate for the muscle input delay in the context of switched

systems during assisted walking with hybrid exoskeleton. Developing input-delay compensators

impose additional challenges in the design and analysis since the EMD is time-varying and un-

known for each muscle [86]. Moreover, the development of novel control methods that comply



91

and promote human voluntary effort are desired during gait rehabilitation to achieve a more nat-

ural gait pattern in individuals with neurological conditions. Advances in control methods and

wearable devices are needed to advance the utility of hybrid exoskeleton to improve the partici-

pant’s gait speed and endurance toward achieving community ambulation after an injury.

In Chapter 5, a power tracking objective was implemented for motorized FES-cycling in which

the muscles evoke active torque to track the desired torque trajectory and the motor keeps the

rider at a constant speed. A novel feature in the developed control methods is the inclusion of

a finite-time stable torque algorithm to adapt the desired peak torque demand for the muscles.

The motivation is for the finite-time controller to capture the rider’s muscle ability to produce

active torque in real-time using collected rider’s torque data due to the applied FES input. The

finite-time torque algorithm leverages estimates of the active torque using the feedback provided

by the powermeter in the cycle. A future research direction is to combine finite-time and adap-

tive control techniques to adjust the rate of convergence of adaptive estimates of parametric un-

certainty in the cycle-rider system, which can lead to improved tracking performance. Another

way to capture the muscle dynamics in real-time is using an ultrasound imaging approach [92].

This approach enables the estimation of the muscle dynamics and can provide surrogate signals

to explicitly quantify muscle fatigue, which can be exploited as a feedforward control term or to

modify the electric motor assistance (e.g., to compensate for the time-varying muscle fatigue).

The approach in Chapter 5 is motivated by the need to adapt the tracking controllers leveraging

non-invasive estimates of the human contribution during cycling. Chapter 5 leverages the lumped

active torque produced by the stimulated muscle groups in real-time, which exploits the state-

dependent stimulation pattern used in [9]. Exponential cadence tracking, globally uniform ulti-

mate bounded (GUUB) torque tracking, and Hölder continuous and convergence properties of

the finite-time controller are obtained. Experiments with different control gains in the finite-time

algorithm have been implemented to demonstrate the impact on convergence. The cycling track-

ing performance and convergence of the finite-time algorithm were examined in multiple trials in

seven able-bodied individuals.
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6.2 Research directions

The experiments conducted in this dissertation involved able-bodied individuals to test the con-

trol techniques and demonstrate their feasibility before recruiting people with movement disor-

ders. Validation of the developed control methods in individuals with movement deficits will be

conducted as part of future work. The reduced muscle mass and strength due to atrophy in people

with NCs will likely present additional control challenges such as requiring increased robotic and

FES assistance and experiencing faster rates of muscle fatigue that can lead to shorter experiment

duration (e.g., low repetition or dosage), thus reducing the rehabilitation benefits. Moreover, par-

ticipants with SCI are likely going to require increased trunk support for treadmill walking and

the use of a walker for overground gait training. Furthermore, hypersensitivity to FES (i.e., de-

graded sensory feedback) may result in limited neuromuscular benefits. A potential direction is

to develop a procedure to personalize the control gains to balance the need to yield suitable track-

ing performance and the sensory challenges that may limit the FES control authority in people

with NCs. Thus, the design of novel adaptive control techniques is motivated to identify critical

parameters of the dynamic system and improve how the control is shared to enhance the user as-

sistance as muscle fatigues.

The robust controllers developed in this dissertation leveraged a sliding-mode control technique

to compensate for the uncertainty in the human-robot models and disturbances to guarantee ex-

ponential tracking results, which are needed to obtain necessary rates of convergence for the

switched systems [57]. A drawback of sliding-mode control is the potential chattering effects that

may degrade tracking performance during experiments. High frequency control inputs can ac-

celerate muscle fatigue. Future research directions include the design of adaptive-based learning

controllers that seek to estimate uncertain parameters in the model to minimize the need to com-

pensate for uncertainties via sliding modes. Examples of such adaptive methods include repeti-

tive learning [10], concurrent learning [61], model free control [74], and neural networks. These

learning controllers add a feedforward inputs into the controller to rely less on high frequency
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feedback and still guarantee stability. However, adaptive switched controllers pose additional

challenges to guarantee exponential convergence since traditional adaptive methods only yield

asymptotic tracking results [88].

The dynamic model for the powered lower-limb exoskeleton with FES have limitations and ex-

ploit assumptions as described in Chapter 2. Future work seeks to develop gait models that cap-

ture foot impact effects (i.e., impact forces when the heel strikes the ground) to yield a hybrid gait

system model [93]. An open challenge is to integrate the hybrid gait model with the switching ef-

fects ubiquitous to control concurrently the exoskeleton and FES. New control formulations are

required to design human-robot controllers and analyze the stability of the hybrid gait system. In

this dissertation, the double support phase is assumed to be instantaneous during treadmill walk-

ing; however, the double support phase accounts for approximately 20% of the gait cycle [93]

during overground. The double support phase yields the 4-link lower-limb model a closed kine-

matic chain, which corresponds to an over-actuated system motivating optimal-based control

techniques [94]. Further modeling refinements for the present work include advancing the foot

segment model (beyond the single point ground contact used in this dissertation) and considering

the ground contact interaction (e.g., slip conditions and foot rotation). The desired kinematic tra-

jectories in this dissertation were recorded during walking trials in able-bodied individuals, which

may not be suitable for people with NCs. Optimization methods to generate kinematic trajecto-

ries suitable for the human interfacing the powered exoskeleton and FES will be explored [95].

Phase-based controllers that exploit gait detection algorithms are also motivated to generate state-

based trajectories rather than time-fixed gait patterns. The design, analysis and implementation

of the developed controllers in this dissertation for assisted walking and cycling are developed to

provide contributions and motivate new future research directions at the intersection of rehabilita-

tion engineering, control systems and robotics toward enhancing the quality of life of people with

NCs.
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