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Abstract

The Anti-de Sitter/Conformal Field theory (AdS/CFT) correspondence, also

known as holography, has been the focus of a great deal of interest and re-

search for the last two decades. It has improved our understanding of general

relativity and quantum field theories simultaneously through the interplay be-

tween these two different kinds of theories. However, there are still many aspects

of holography that we do not understand or demand further analysis. Pertur-

bative quantum field theory and perturbative metric expansion techniques are

not equipped to investigate holography in some of the most interesting regimes

such as the strongly interacting gravitational theory in anti-de Sitter space (that

potentially can have a dual field theory at the boundary with a small number of

degrees of freedom, hence away from the large N limit).

In this thesis, I have attempted to contribute to understanding holography in

these more difficult regimes. Specifically, I have used lattice techniques in Wick-

rotated Anti-de Sitter (AdS) spacetime to investigate holography. After a review

of the properties of Anti-de Sitter space and some continuum results, lattice

construction of the hyperbolic space and the algorithms used for analysis are dis-

cussed. Our initial attempt investigated free scalar fields in hyperbolic space in

two and three spacetime dimensions. It has been demonstrated that properties

of the bulk lattice geometry information are encoded in the dual CFT through

mapping the mass spectrum of the bulk scalar field to the scaling dimension of

the boundary CFT operators. Holography has also been investigated for the

nearest-neighbor Ising spin model on a hyperbolic space at various temperatures.

The principal focus has been measuring boundary correlation functions over a

range of temperatures. This yields a temperature-dependent scaling exponent

of the boundary operator. Scaling the magnetic susceptibility data at different

lattice volumes also allows us to compute the same scaling exponent, demon-

strating good agreement with the correlation function measurements. A phase

transition temperature in the bulk geometry can be seen to correlate with a min-



imal boundary scaling dimension. Lattice simulation results are complemented

with a discussion of the high-temperature expansion and the duality (in the sense

of Kramers and Wannier).

Finally, we show how lattice techniques can be used to probe strong fluctuations

of the bulk geometry. A new relation of the scaling dimensions to the bulk

mass is derived in this regime. We show that the backreaction of fermionic

matter fields can dramatically alter the nature of the bulk space. Hyperbolic

space configuration dominates the dynamically generated ensemble of simplicial

manifolds in the limit of a large number of Kähler-Dirac fields.

Apart from the apparent advantage of probing duality in this uncharted territory

of strong geometry fluctuation and strongly coupled field theories in hyperbolic

space, the tools developed in this thesis should allow investigation of different

aspects of quantum information science and tensor network ideas.
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Chapter 1

Gravity and holography

1.1 Introduction

The AdS-CFT correspondence, even though it has its origins in string theory, can be un-

derstood without recourse to that theory. In essence, it posits that specific quantum field

theories in d-dimensional flat space have a dual description in terms of a gravitational theory

in d + 1 dimensions. This is a strong-weak coupling duality – strongly coupled flat space

theories are described by weakly coupled gravity theories. In practice it has allowed for the

study of strongly coupled field theories in terms of classical solutions of gravitational systems.

It is best understood in the case of gravitational theories formulated on an anti-de Sitter

background, where the dual theory is a conformal field theory residing on the boundary of

anti-de Sitter space. The fact that a bulk gravity theory can be described as a field theory at

the boundary of that space is why the correspondence is often termed a holographic duality.

It is sometimes also referred to as gauge-gravity duality as it allows quantum mechanical

features of a gauge theory to be understood in terms of gravitational observables in the

dual theory - for example the finite temperature deconfinement of gauge theories in terms of

transitions between different types of classical black hole. For a preliminary review on the

subject matter, these review articles on AdS/CFT can be consulted [1–3].

One of the fascinating aspects of this duality is that it improves our understanding of

strongly coupled field theories using gravitational techniques. On the other hand, it also

opens a window on quantum gravity using flat space quantum field theory. It indeed serves

1



as a motivation to develop lattice techniques for investigating holography. Example of ap-

plications of holography where general relativity has improved our understanding of QFT

are AdS/QCD program [4–6] and AdS/CMT program [7–9]. Before the inception of duality,

lattice QCD was the only available tool to answer questions about the low energy regime of

QCD. The use of duality has provided important insights into the strongly coupled regime

of QCD. For example, the lower bound of the ratio of the shear viscosity to volume density

was derived for a large class of strongly coupled theories using the dual description of black

holes in AdS space [7]. Moreover, the techniques of duality have been used to estimate the

deconfinement temperature [10] and radiation properties of a quark in quark-gluon plasma

[11]. On the other hand, AdS/CMT prescription allows to explore strongly correlated con-

densed matter systems that are difficult to investigate with traditional condensed matter

techniques. Another nice example in this field is holographic superconductivity investigated

from the gravitational side of duality [12]. Cold atom experiments with optical lattices [13]

can potentially investigate duality in table-top CMT experiments. AdS/CFT also revealed

interesting physics pertaining to general relativity - for example, new black hole solution

have been found as a result of lattice studies. In the continuum, several such solutions were

found from the fluid/gravity correspondence [14], and from the investigation of superconduc-

tivity [12]. Another benefit of holographic studies has been the understanding of scenarios

where the black hole is formed due to a small deformation of AdS and the scenarios with

non-singular solutions (geons) to Einstein’s equation [15]. To address the same questions

for non-perturbative deformations lattice simulation is likely the only viable tool in the near

future.

Holography has had, and continues to have, an enormous effect on the amalgamation

of different sub-fields of physics – from particle physics to condensed matter, nuclear and

mathematical physics. Juan Maldacena proposed the correspondence in his seminal 1997

paper. From that point onward, it has been tested and proven to be correct in a myriad of

cases. It is known to be true rigorously in certain limits where the gravitational coupling

is weak and there are many local degrees of freedom. However there is no proof of the

conjecture for strong gravitational coupling or for systems with only small numbers of local

degrees of freedom per spacetime point. These regimes can be potentially tested using
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lattice simulation which hence forms the main focus of this thesis. As a result, lattice

studies will provide a potential avenue for exploring new kinds of conformal field theories. It

is also interesting to point out that new applications like the ones discussed in the previous

paragraph, can be originated from the lattice investigation as lattice studies potentially

probe the unknown sector of the duality. For example, exploring new sectors of the phase

diagram of different condensed matter systems which are in general not accessible to other

methods can be explored. Many condensed matter systems have a natural representation in

the lattice which hence provides an easier pathway for investigation using duality.

Now we describe the construction of this manuscript for the reader. In the remainder

of this chapter, we discuss the definition of AdS/CFT correspondence and review some

continuum results of the AdS/CFT dictionary. In the later part of the chapter, we review

lattice construction of the hyperbolic space, metropolis and cluster algorithms, and some

elementary discussion on dynamical triangulation. In chapter 2, we present the first test

of lattice holography, where we discuss free scalar field model on 2D and 3D hyperbolic

geometry. In the following chapter 3, we apply the lattice techniques to investigate a local

interacting theory – Ising model. Finally, in chapter 4, we present results of perturbative

and non-perturbative geometry fluctuation on scalar fields. We also show the backreaction

effects of Kaḧler-Dirac matter fields on asymptotically hyperbolic spacetime. We conclude

our discussion in chapter 5 summarizing the results and prospects of the work presented

here.

1.2 Maldacena’s conjecture

Maldacena’s seminal paper focused on the connection between a particular Yang-Mills theory

with N = 4 supersymmetry and SU(Nc) gauge symmetry in four dimensions and a certain

string theory propagating on a five dimensional anti-de Sitter space [16]. In more detail the

correspondence takes the form:

String theory on AdS5 × S5 ≡ N = 4 SU(N) gauge theory. (1.1)
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Evidence in favor of this theory came from both a matching of the isometries of AdS space

with the conformal symmetries of the boundary theory and a correspondence between the

scaling dimensions of certain operators in the N = 4 theory and the spectrum of states of the

bulk string theory in a certain limit. The correspondence can be proven perturbatively for

large Nc and strong gauge coupling. It’s interesting to point out that the global symmetries

of the two theories match. The isometry group of AdS5 is SO(4, 2) and of S5 is SO(6).

On the right hand side, N = 4 SYM demonstrates the same symmetry groups. SO(4, 2) is

the conformal group in 4D and SO(6) ∼ SU(4) is associated with the R-symmetry of the

boundary theory.

1.3 A holographic dictionary

Shortly after Maldacena’s paper, Witten proposed an ansatz that allows us to relate the

supergravity of the bulk with the field theory of the boundary of anti-de Sitter space [17].

Witten’s paper first demonstrates that the asymptotic behavior of the bulk AdS fields de-

termines the properties of the correlators at the boundary. To describe the ansatz mathe-

matically, we first describe the metric of the Euclidean version of the AdS space. Consider

coordinates of (d + 1) dimensional Euclidean space with coordinates xi, with i = 0, · · · , d.
Equation of an open ball in d + 1 dimension can then be written as

∑d
i=0 x

2
i < 1, and is

described by the metric

ds2 =
4
∑d

i=0 dx2
i

(1− |x|2) . (1.2)

Compactifying the open ball requires introduction of a non-unique function Ω on the bound-

ary of the closed ball B̄d+1 such that

ds2 = Ω2ds2. (1.3)

Any Ω can be chosen as long as it is positive on the open ball and has a first order zero on

the boundary of the closed ball. The choice is non-unique up to a conformal transformation

Ω→ Ωexp(ω), (1.4)
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where ω is any real function on the closed ball. It’s interesting to point out that any metric

on the open ball with a double pole structure on boundary like Eqn. 1.2, induces a conformal

structure on the boundary of the open ball in d-dimensional sphere Sd. On the other hand, a

theorem of Graham and Lee [18] also suggests that any conformal structure on Sd arises from

a unique metric upto diffeomorphism on the open ball Bd+1 that obeys Einstein’s equation

with negative cosmological constant and a double-pole structure at the boundary.

Let us consider a field ϕ(x, z) in d + 1 dimensional AdS space with x0 = z and x =

(x1, x2, · · · , xd). Restricted form of the bulk fields on boundary (ϕi
0(x)), couples to the

respective conformal fields Oi via coupling
∫
∂M=Sd

ϕi
0Oi. The ansatz precisely relates the

gravitational partition function ZG with a well-defined boundary condition to the generating

functional of the boundary conformal field theory

ZG
[
ϕi
0(x), hµν ; ∂M

]
=

〈
exp

(
−
∑

i

∫
ddxϕi

0(x)Oi(x)

)〉

CFT

. (1.5)

The left-hand side is thus the partition function in asymptotically AdS space. On the left-

hand side, ϕi
0 is considered as the asymptotic form of the bulk fields on the boundary, and

hµν is considered as the boundary condition for the bulk metric gµν which depends both on

the topology of the space and on the actual form of the metric. On the right-hand side,

they are considered sources or currents and relate to the conformal operators Oi. Thus the

asymptotic behavior of the gravity-action on the boundary of AdS space determines the

correlation functions of the conformal boundary theory. Identifying the right hand side as

ZCFT[ϕ0], n-point correlation function can be computed using the functional derivative

〈
O1 (x1) · · · On (xn)

〉
CFT ∼

δn

δϕ1
0 (x1) · · · δϕn

0 (xn)
ZCFT [ϕ0]

∣∣∣∣∣
ϕi
0=0

(1.6)

It is important to note that the dimensions (∆i) of the boundary operators (Oi) are a

function of the particle masses of the bulk gravity theory. A precise derivation for different

types of the bulk fields in the gravity side to the boundary operator in the CFT side is

beyond the scope of this thesis. However, we will state the results of the mapping of the AdS
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fields to the CFT operators. First of all, the CFT operators should possess the same Lorentz

structure to their corresponding bulk fields. The connection between the bulk mass and the

dimension of the corresponding conformal operator has been developed for different kinds

of fields — scalar fields [19–22], Dirac fields [23–25], massless vector fields [21, 26], massive

vector fields [23, 27, 28], gravitons [29, 30], Rarita-Schwinger fields [31, 32], anti-symmetric

p-form fields or anti-symmetric fields [33, 34], symmetric tensor fields [35]. We simply state

some of the results of this dictionary in this section:

1. massive scalar field or massive spin-2 fields: m2ℓ2 = ∆(∆− d)

2. massless scalar field: 0 = ∆− d

3. Dirac spinor or Rarita-Schwinger field: |m|ℓ = ∆− d
2

4. p-form field: m2ℓ2 = (∆− p)(∆ + p− d)

5. rank-s symmetric tensor field: m2ℓ2 = (∆ + s− 2)(∆− s+ 2− d).

In the description above, m-denotes the mass of the bulk field and ℓ is radius of curvature

of the d+ 1 dimensional AdS space, and ∆ is the conformal dimension of the corresponding

boundary operator. Since a massive scalar field plays a prominent role in our lattice studies,

in the next subsection, we will review the derivation of the scaling exponent of the boundary

field operator in terms of bare mass of the bulk field. Regularization and renormalization are

required for the computation of the CFT two point functions. Different regularization can

be used. However, physical results do not depend on the regularization scheme. We follow

the approach known as ϵ expansion [22] in this regard. For the asymptotic prescription, see

[17]. The counter-terms in two different regularization procedures would be different

1.4 Bulk scalar fields on AdS: continuum description

In this section, we consider an example of a massive free scalar field model in AdS space

and demonstrate that the two point boundary correlation function indeed obeys power law

as expected for a conformal field theory with a power equal to twice the scalar dimension

which is determined by the bulk scalar mass.
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1.4.1 Classical solution of bulk field

In this subsection, we outline the derivation of the classical solution of the free scalar field in

the AdS Space. We start by writing down the Upper-Half-Plane (UHP) metric for anti-de

Sitter space

ds2 =
ℓ2

z2
(
ηµνdx

µdxν + dz2
)
, (1.7)

where z is scaled with the AdS radius ℓ. The corresponding scalar action takes the form

S = −1

2

∫
dd+1X

√
g
(
gAB∂Aϕ∂Bϕ+m2ϕ2

)
(1.8)

This yields the classical equation of motion:

(
−∆+m2

)
ϕ = 0 (1.9)

where

∆ =
1√
g
∂A
(√

ggAB∂B
)

=
z2

ℓ2
(
∂2
z − (d− 1)z−1∂z + ∂2

x

)
(1.10)

Separation of variables can be applied to find the solution of the differential equation in

Eqn. 1.9.

ϕ(z, x) = f(z)Φ(x) (1.11)

we find
(
−∂2

E − k2
)
Φk = 0 (1.12)

and
[
−zd+1∂z

(
z−d+1∂z

)
+m2ℓ2 + k2z2

]
fk = 0 (1.13)

Thus

ϕ(z, x) =

∫
ddkfk(z)Φk(x) =

∫
ddk

(2π)d
fk(z)e

ikx (1.14)
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Defining fk = gkz
d
2 ,

(kz)2g′′k + (kz)g′k −
(
d2

4
+m2ℓ2 + k2z2

)
gk = 0 (1.15)

we find

gk(kz) = akKν(kz) + bkIν(kz) (1.16)

where, ν =
√

d2

4
+m2ℓ2 and

fk(z) = ak(kz)
d/2Kν(kz) + bk(kz)

d/2Iν(kz) (1.17)

This essentially demonstrates two different kinds of modes are present in the classical

solution. The significance of these modes are discussed in the next subsection. Which of the

modes survive depend on the choice of the boundary condition of the bulk fields.

1.4.2 Different quantizations

We asserted the significance of the different modes and associated the modes with different

quantization schemes in this subsection. Using the limiting forms of the Bessel function at

z = 0 and z = ∞, we find k-space solution assumes the following form near the boundary

(at z = 0),

fk(z) ≈ (ϕ0(k) +O(z2))z∆− + (ϕ1(k) +O(z2))z∆+ (1.18)

with,

ϕ0(k) = ak2
ν−1Γ(ν)k∆− (1.19)

and

ϕ1(k) = ak2
−(ν+1)Γ(−ν)k∆+ . (1.20)

Using Hamiltonian analysis it can be shown that ϕ0(k) and ϕ1(k) are related by a Legendre

transformation [20]. The exponent ∆± is given by

∆± =
d

2
± ν. (1.21)
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which is known as the scaling relation and will appear later when we discuss the boundary

correlators. To derive this scaling relation is the central goal of the lattice simulation in our

analysis of the free scalar field, which we present in the next chapter. From the expression of

ν, it is evident that a small negative mass is allowed in the AdS space as long as Breitenlohner-

Freedman bound m2ℓ2 > −d2

4
is satisfied. As long as the mass is above this limit, the

negativity in m2 does not imply the existence of tachyons since the energy associated is

still positive, which is a consequence of the intrinsic negative curvature in the anti-de Sitter

space. Boundary solution in the position space can be written using the Fourier transform

of the boundary solution in Eqn. 1.18

ϕ(z,x) =

∫
ddk

(2π)d
fk(z)e

ikx

=

(
ϕ0(x) +O(z2)

)
z∆− +

(
ϕ1(x) +O(z2)

)
z∆+ , (1.22)

where, ϕi(x) is the Fourier transform of ϕi(k). Eqn. 1.22 hints that there are two possible

quantization procedures which are associated with z∆+ and z∆− part of the classical solution

of the bulk field. Breitenlohner and Freedman first showed that the constraint for the

existence of the two independent quantizations is [36]

−d2

4
< m2ℓ2 < −d2

4
+ 1. (1.23)

Putting the asymptotic form in the action in Eqn. 1.8, we can find the bound of the

operator dimension ∆ > d/2. However, the bound can be relaxed, which is easily seen from

the alternative form of the action for the free scalar in the AdS space

S =
1

2

∫
dd+1x

√
gϕ
(
−∇2 +m2

)
ϕ. (1.24)

The less-restrictive bound ∆ = (d/2 − 1) keeps the action finite and allows both modes

for the mass-constraint described by Eqn. 1.23 due to Breitenlohner and Freedman. Thus

as described in [36], one Lagrangian in AdS space can describe two different quantum field

theories depending on the choice of the boundary condition.
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1.4.3 Boundary condition

It is somewhat puzzling how two different quantization schemes are related. Computation

of the two-point correlators of the free scalar model in the presence of different boundary

conditions is discussed explicitly by Minces et. el. [37]. We do not attempt to reproduce

their derivation. However, in this subsection, we will summarize some of their findings and

discuss how different quantization schemes appear for the same theory.

First, depending on the choice of the boundary condition, we require to introduce a

boundary term to the Eqn. 1.8 to ensure the action is stationary

S → S ′ = S + S∂. (1.25)

A cutoff is introduced at z = ϵ to capture the boundary effect at z = 0, and the computation

is first performed in this UV cutoff. In the end, ϵ → 0 limit is taken. Now, stationarity of

the action δS ′ = 0 puts a constraint on the variation of the boundary action,

δS∂ =

∫
ddxϵ−d+1∂zϕϵδϕϵ. (1.26)

ϕϵ is the value of the field at the cutoff boundary. Different choices of the boundary condition

will yield different boundary actions. For example, for the Dirichlet boundary condition S

is already stationary, whereas for the Neumann boundary condition, boundary action is

S∂ =

∫
ddxϵ−d+1ϕϵ∂zϕϵ. (1.27)

Despite the differences in the details like the scaling of the bulk field near boundary, both

Dirichilet and Neumann boundary conditions show similar exponent ∆+ in the boundary

correlators [37]. Similar techniques can be applied for different mixed boundary conditions.

Careful tuning of a boundary action term is required to recover the ∆− mode [37, 38].
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1.4.4 Green’s function

In the previous section, we reviewed why different boundary conditions require different

actions. In this section, we make the connection of the boundary condition to the two

quantization schemes that were briefly discussed in Sec. 1.4.2. In the process, we also review

the computation of boundary Green’s function using Witten’s trick [17]. There is at least

one other method of computing the Green’s function, known as ϵ expansion [22] which we

do not review in this manuscript.

Let us first compute the bulk to boundary correlator K(z,x;x′) and take the limit z → 0

to find the boundary to boundary correlator G(x;x′). The first step to computing the

correlation functions is to find the on-shell solution of the bulk field and find the asymptotic

behavior of the fields at the boundary. Asymptotic behavior of the field near the boundary

(at small z) is described by Eqn. 1.22 which is written in a slightly different form

ϕ(z,x) ∼ ϕ(x)zd−∆ + F(x)z∆, (1.28)

where ∆ can either of the roots in Eqn. 1.21, ϕ(x) is the source for a scalar operator O(x) of

the boundary conformal field theory. From
∫
ddxO(x)ϕ0(x) one sees that O(x) → O′(x) =

|x′|2∆O (x′) so that O(x) has scale dimension ∆. In the second term, F(x) denotes the

physical fluctuation in the presence of the source.

Green’s equation can be written in the upper half plane coordinates

[
−zd+1∂z

(
z−d+1∂z

)
+m2L2

]
K(z) = 0 (1.29)

We first consider ∆ = ∆+ mode, with the choice of an ansatz solution

K(z) = C∆+z
∆+ . (1.30)

Using isometries of the AdS space,

z −→ z

z2 + x2
, x −→ x− x′; (1.31)
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the solution can be written as

K (z, x;x′) = C∆+

(
z

z2 + (x− x′)2

)∆+

(1.32)

Using the bulk to boundary correlator, an expression for the bulk field ϕ(z,x) can be obtained

from the definition of Green’s function. For a point source, the F(x) can be derived

F(x) = π−d/2 Γ(∆)

Γ(∆− (d/2))
|x− x′|−2∆+ . (1.33)

It is shown in [39] that the two-point correlator of the boundary operators is

⟨O(x)O(x′)⟩ ∝ F(x). (1.34)

It is then easy to verify the action required to obtain ∆+ mode is

S =
1

2

∫
ddx dz zd+1−2∆

[
(∂zχ)

2 + (∂iχ)
2] , (1.35)

where χ is a scaled version of the original field. The action above is convergent for d/2 <

∆ < d/2 + 1. For ∆ > d/2 + 1, a more intricate procedure is required to subtract the

boundary divergences.

We will not review how to derive the action for the ∆− mode. However, we make a note

that the role of the ϕ(x) and F(x) is reversed. That is for ∆− mode, F(x) acts as a source

whereas ϕ(x) acts as fluctuation. Generator of the connected Green’s function of the ∆−

theory can be derived from the Legendre transformation of the generators of the ∆+ theory.

The role switches due to the specific choices of the boundary condition.

Eqn. 1.33 can be considered as the expression for the scalar propagator in the Wick-

rotated anti-de Sitter space (up to a normalization constant) in the continuum description.

As the first test for lattice investigation of holography, a discretized version of the massive

scalar field in hyperbolic space is investigated in chapter 2 where the central goal is to deduce
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an equivalent expression in 2D and 3D hyperbolic space. We investigated the modification

of this relation Eqn. 1.21 in the presence of curvature fluctuation in chapter 4. We will

show that the discrete setting provides a perfect platform to investigate duality beyond the

tree-level correspondence of the AdS space with boundary CFTs.

1.5 Construction of Hyperbolic Lattices

To develop numerical tools to investigate holography, we need to first construct a lattice

on anti-de Sitter space. For flat Euclidean space RD, usually hypercubic lattices are used.

Isometries of the flat space correspond to discrete translations along different axis and dis-

crete rotations around different axes. Representing manifolds with curvature is not so trivial.

In this thesis we will Wick rotate AdS space to obtain hyperbolic space. Hence in this section,

we will discuss the construction of hyperbolic lattices.

In two dimensions, hyperbolic space H2 can be represented by the Euclidean Upper Half

Plane (UHP). A length scale ℓ which is the radius of curvature of the hyperbolic space is

associated with the constant negative curvature K = −1
ℓ2

of the hyperbolic space. UHP can

represent hyperbolic space up to a Weyl factor

ds2UHP = ℓ2
dx2 + dy2

y2
. (1.36)

Using a Möbius transformation,

ω = x+ iy = −i(z + 1)/(z − 1), |z| < 1 (1.37)

the UHP plane can be converted into the Poincaré disk with metric

ds2 = 4ℓ2
dzdz̄

(1− |z|2)2
. (1.38)

We will use the Poincaré disk representation to construct our lattice where position is given

in complex polar coordinates z = reiθ. There are several other equivalent representations

of hyperbolic space and each of those has their own advantages and usage. For example,
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expressed in terms of radial geodesic coordinates ρ,

ds2 = dρ2 + sinh2(ρ)dθ (1.39)

For our lattice analysis, we exclusively used the Poincaré disk metric. The lattice points

are generated inside the disk of unit radius. Triangle group symmetry is used to generate

the lattice. A triangle group is a group that is realized through the reflection operation

along the edges of the triangle. The triangle group can be realized as a group of motions

for Euclidean plane, sphere, real projective plane and hyperbolic plane. For the hyperbolic

lattice generation, Möbius triangles defined by three numbers (m,n, r) are used. The triplet

determines the vertex angles and the sum of three vertex angles maintains the following

inequality
π

m
+

π

n
+

π

r
< π. (1.40)

The reflections along different edges are considered as operations a, b, c. Two subsequent

reflections along two adjacent edges with angle A are then equivalent to a rotation operation

by an angle A. Identifying these rotation operations as α, β, γ, we have the following

relations

a2 = b2 = c2 = 1, ab = γ, bc = α, ca = β (1.41)

For a lattice with triangle group ∆ = (m,n, r), and rotation operations around the vertices

α, β, γ denoted by angles π/m, π/n, π/r respectively, it’s straightforward to note that the

following rule also holds

α2m = β2n = γ2r = 1. (1.42)

We use these relations, Eqn. 1.41, 1.42, to generate the hyperbolic lattice. We worked on

generating uniform lattices. In particular we are interested in tessellating the Poincaré disk

with a {p, q} tessellation. The pair indicates that a building block of p-gon is used with

coordination number q for each vertex. For a {p, q} tessellated Poincaré disk, the associated

triangle group is (m,n, r) = (2, p, q). The first step in the construction is to find the triangle

called the fundamental triangle OA1M . For the {p, q} disk, we consider a p-gon A1A2 · · ·Ap

with equal edge length a positioned at the center of the Poincaré disk such that all points
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(a) (b)

Figure 1.1: Construction of fundamental triangle△OA1M for a {p, q} tessellated disk. p = 4
is considered in the diagram.

are at the same distance from the origin O. Each edge of the p-gon creates an angle 2π/p

at the center. Since the coordination number is q, any two adjacent edges create an angle

2π/q. Next a perpendicular line OM is drawn and a triangle △OA1M is created. 2p such

triangles construct the p-gon A1A2 · · ·Ap. The angles of △OA1M are π/2, π/p, and π/q.

Now calculating the length OA1 = m and OM = q will be sufficient to determine the

coordinates of Q & M . The lengths are computed using the following identities

sin

(
π

p

)
=

sinh(a/2)

sinh(m)
(1.43)

cos

(
π

p

)
=

tanh(q)

tanh(m)
(1.44)

It seems that, like the lattice in the Euclidean space, the lattice spacing a in the negatively

curved geometry can assume any value. However, an important distinction is that the edge

length a in the uniform tessellated Poincaré disk is proportional to the geometry’s intrinsic

length scale (ℓ) a ∝ ℓ. The length scale ℓ appears in the Poincaré disk metric of the

hyperbolic space in Eqn. 1.38 and thus the choice of the lattice spacing a in a uniform

tessellation uniquely determines the scalar curvature k = − 1
ℓ2

of the geometry. The area of

15



the fundamental triangle △OA1M is then A = |π − π
2
− π

p
− π

q
|ℓ2 = |(1/2− 1/p− 1/q)|πℓ2.

Once the fundamental triangle has been created the symmetries are used to generate all the

points in the lattice. Consider geometric operations S, T , U corresponding to the rotation

relations α, β, γ respectively in Eqn. 1.42. In the Poincaré disk coordinate, this is equivalent

to applying successively S and T operations on a point with complex coordinate z,

S : z → z −
√
2 cos(2π/q)− 1

z
√

(2 cos(2π/q)− 1)− 1
, (1.45)

whereas, T = SU with

U : z → e2πi/qz (1.46)

Starting with any vertex on the disk, application of S introduces a new vertex in the lattice

which corresponds to a point in a new layer. Then, the application of T generates all the

neighboring q points of the vertex. The process is repeated recursively and the hyperbolic

lattice can be generated.

1.6 Lattice simulation

In Monte Carlo simulation one constructs a stochastic approximation to the path integrals

that represent the Green’s functions or correlation functions for some quantum field theory.

For a model depending on a field ϕ(x) the expectation value of some observable or correlator

O(ϕ) can be computed from the expression:

< O >=
1

Z

∫
Dϕe−S(ϕ) (1.47)

Here S(ϕ) is called the action and Z =
∫
Dϕe−S is the partition function. As long as S

is real this resembles a probability distribution and hence can be sampled stochastically

according to that distribution. If the theory is discretized on a lattice the field ϕ(x) → ϕi

can be indexed by a simple integer i which runs over all the local degrees of freedom. In

some cases these degrees of freedom are simple spins which can take only a restricted set

of values eg for Ising spins ϕi → σi with σi = ±1. In this case the integrals at each lattice
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site
∫
dϕi are to be replaced by simple summations

∑
i over the values of the spin at that

site. It should be noted that even in this limit the number of terms that arise in computing

say the partition function is still enormous eg for a 10× 10 2d lattice there are 2100 different

configurations of the spins.

Fortunately, for the accurate estimation of the average value of observables, we do not

need to generate all possible configurations as most configurations contribute little to the

sum as they are damped off exponentially by the factor of e−S. Rather a representative

set of configurations that dominate Z – called an “ensemble" – can be generated using a

stochastic algorithm and the average quantities can be computed just using these sample

configurations. This is the basic idea of Monte Carlo simulation. In practice one starts from

some initial configuration and generates another via a series of local “moves" or changes to

the current configuration.

Only a few conditions need to be satisfied for a satisfactory Monte Carlo algorithm.

First the moves must be ergodic which is simply the requirement that repeated application

of these moves must be sufficient to move from any one point to any other point in the

configuration space. Second, the probability that a move is accepted or not (the stochastic

element) depends only on the change in the Boltzmann weight e−∆S. Another important

condition that is required is that the Boltzmann weights Wr = e−Sr are eigenvectors with

unit eigenvalue of the transition matrix Tr,s. That is

∑

s

Tr,sWs = Wr (1.48)

with Tr,s denoting the transition probability from state s to state r. T maintains the normal-

ization condition
∑

r Wr,s = 1. In practice, a stricter condition named “detailed balanced"

can be imposed which is

Tr,sWs = Ts,rWr (1.49)

Using the Boltzmann weight Wr = e−βSr with β a coupling constant the above equation

reduces to

Tr,s exp
−βSr = Ts,r exp

−βSs . (1.50)
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Here, Si denotes the action of the configuration i. In Euclidean space the action is often

thought of as an energy E. The transition probability defined above is a composite object,

and can be expressed as a product of the a priori probability Pr,s and the acceptance prob-

ability Ar,s. The a priori probability is the probability of choosing the move that takes an

state s to r in the configuration space. Hence, the above equation reads

Pr,sA
r,s exp−βEr = Ps,rAs,r exp

−βEs . (1.51)

This equation is known as the detailed balance equation in the physics literature. Notice

that Monte Carlo algorithms are quite generic and apply equally well in both flat space and

hyperbolic space.

1.6.1 Review of the Metropolis Algorithm

Perhaps the most well known Monte Carlo algorithm is the Metropolis algorithm [40, 41].

The Metropolis-Hastings algorithm works by generating a sequence of sample configu-

rations (ν) with probability density f(ν). One constructs the algorithm so that f(ν) is

proportional to the target distribution W (ν) = e−S(ν). The process is a Markov process [42]

and the configuration generated at a a certain Monte Carlo time t depends only the state

attained in the previous step t− 1 ∗. However, the new configuration can either be accepted

or rejected depending on the values of f(x) for the current configuration and proposed con-

figuration. In the proposed configuration is accepted, the new configuration is used as the

initial state for the next iteration. Otherwise, current state is used as the initial state.

The Metropolis algorithm provides a recipe to generate a Markov chain with a target

probability distribution function with the help of a random number generator (RNG). In

practice, pseudo-number generators are used for our simulation. We used the Mersenne

Twister pseudo RNG of the C++ library. We tested our results against results obtained

from ran3() of the text “Numerical Recipes” [43].

Given a configuration ν, the metropolis algorithm proposes a new configuration µ with
∗In the discretized state space the Markov process is called a Markov chain.
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a priori probabilities p(µ, ν). New configuration is accepted with a probability

Ar,s = min

(
1,

Wr

Ws

)
. (1.52)

Thus

Ar,s = Θ(Es − Er) + exp(−β(Er − Es))Θ(Er − Es) (1.53)

where, Θ is the step function. Note that at each iteration for newly generated configuration

ν, the total energy Eν for the configuration is not needed. Rather the algorithm only requires

knowledge of the energy difference between the two configurations which can be efficiently

computed via a local operation. For example, for the computation of the observables for an

Ising spin model, the Hamiltonian couples only nearest neigbor spins and so the change in

the energy under a single “spin flip" requires only the computation of q terms where q is the

local coordination number of the vertex in question. In practice we choose the spin to be

updated at random although sequential update of spins is also possible [42]. It’s important

to mention that for the Er > Es case in Eqn. 1.53, another random number x is generated

in between 0 to 1, and the move is accepted only if x < exp(−β(Er − Es))
†.

Straightforward implementation of the metropolis algorithm is its greatest advantage.

However, near criticality due to a long autocorrelation time, a phenomenon called “critical

slowing down" occurs and it is advantageous to use other algorithms which change the spin

configuration globally. Critical slowing down just means that successive configurations are

statistically correlated and one must apply the Metropolis algorithm many times to obtain a

decorrelated configuation to use in the Monte Carlo averaging. One algorithm that provides

a much better performance near criticality is the cluster Monte Carlo algorithm which we

discuss in the following section.

1.6.2 Review of the Cluster Algorithm

We used cluster Monte Carlo algorithm for the low temperature simulation of the Ising spin

model on hyperbolic lattices which is discussed in chapter 3. This algorithm was introduced
†In practice, we used at least two random number generators for each of our studies to ensure that the

pseudo-number generator works without any flaw
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by Wolff in the context of 2D O(N) σ model [44]. In the original paper, the algorithm was

implemented for Ising model (N = 1), x-y model (N = 2) and Heisenberg model (N = 3).

Due to much smaller autocorrelation times compared to the metropolis algorithm, the Wolff

cluster algorithm shows improved performance near criticality in many statistical models.

The model was inspired by percolation theory and the previously developed percolation

based theory Swendsen and Wang (SW) algorithm [45]. Even though SW algorithm im-

mensely improved correlation time in the Potts model, the model suffered negatively for x-y

model. This inspired researchers to look for improved cluster algorithms. Single cluster flip

algorithm is one such improved algorithm which has since then been applied to many models

including medium-range [46] and long-range spin models [47], anisotropic spin systems [48],

XY model [49] since it’s inception. We outline the steps to implement the algorithm below.

1. A lattice site i is randomly selected and the state of the spin is noted f .

2. Selected spin site is added to a cluster list C.

3. Next, a list of the neighboring sites n(i) of selected lattice site i is made.

4. Iteratively the state of the spin in the list n is checked, and if the neighboring lattice

site n(i) has the same state to that of site i, the spin is added to the cluster C with

probability p. Once the check is completed for n(i), that spin is deleted from the list

n. If the spin n(i) is added to the cluster, then we replace i with n(i): i← n(i).

5. Step 3 and 4 are repeated until the list n(i) is exhausted.

Now, we will deduce the acceptance probability in the cluster Monte Carlo for a simulation

with Nd spins. Assume that a cluster with nc spins with state f is formed using the steps

above. Also, assume that there are nf spins connected to this cluster with the same state

but due to the probabilistic nature of adding spins to the cluster, were not added to it. The

probability of nf spins not being added to cluster is (1− p)nf . Thus, the a priori probability

for a configuration to move from state ν to µ is

Pµ,ν =
1

Nd

pnc(1− p)nf . (1.54)

After flipping all the spins in the cluster in the ν configuration we will obtain the configuration
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µ. The same cluster of nc spins has now a different state g and if the number of spins with

state g that were not added to the cluster is ng, we can write an expression for the a priori

probability of transition from µ to ν.

Pν,µ =
1

Nd

pnc(1− p)ng . (1.55)

Now if the Ising Hamiltonian is

H = −β
∑

⟨ij⟩

sisj, (1.56)

then the ratio of Boltzmann factors can be written as

Wν

Wµ

=
exp(−β(nf − ng))

exp(−β(ng − nf ))
=

exp(−2βnf )

exp(−2βng)
(1.57)

Requiring detailed balnce Eqn. 1.51 the acceptance probability in is given by

P̃µ,ν = min

{
1,

[
e−2β

1− p

]nf
[
1− p

e−2β

]ng
}

(1.58)

It’s evident that the choice of p = p∗ = 1 − exp(−2β) yields a rejection free algorithm

and thus the whole cluster can be flipped at once. Unlike the metropolis algorithm, due

to the choice of p = p∗, once the cluster is created it is flipped with certainty. Notice this

procedure updates many spins at a time - it is global update. This is the reason it can beat

any local algorithm which tries to update a single spin.

1.6.3 Monte Carlo simulation of dynamical lattice geometry

In this thesis we are also interested in models in which the tessellation of hyperbolic space

is allowed to fluctuate. This represents the effects of quantum fluctuations in the (bulk)

geometry. It is a topic that is hard to treat with analytic calculations but crucial to a proof

that the AdS/CFT holds away from the limit of classical gravity. It hence forms an ideal

target for numerical work.

To do this we need to develop Monte Carlo algorithms that are capable of sampling a
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Figure 1.2: Ergodic moves in the class of two-dimensional triangulation. Node insertion and
deletion (top), and link flip (bottom).

sum over many different lattice geometries. Again we seek local geometry moves that can

be implemented in a manner that respects detailed balance and allows us to construct a

Markov chain in the space of tessellated (or here triangulated) geometries. Fortunately this

problem was solved many years ago in efforts to study discrete quantum gravity where the

approach is called Euclidean dynamical triangulation. [50, 51]. A variation which allows for a

well defined Wick rotation back to Minkowski space is called causal dynamical triangulation

[52, 53] ‡. Scalar fields on fluctuating geometries are discussed in chapter 4. To generate

an ensemble of simplicial manifolds, a set of local moves called “Pachner moves" are used.

Any two triangulations of fixed topology are related through a sequence of Pachner moves.

In two-dimensions, the Pachner moves involve inserting a node in the triangle, deleting a

three-fold coordinated node, and performing a link flip. The set of moves are ergodic. See

Fig. 1.2.

It is straightforward to use these moves to devise a simple Monte Carlo procedure which

samples the sum over lattice geometries according to the discrete action described above. In

two dimensions this sum over random lattices is known to reproduce the effects of integrating

over metrics modulo diffeomorphisms in the continuum limit.
‡The author of this thesis has also been involved in this work with a recent paper exploring the phase

diagram of the theory in four dimensions. However, this work is not included in this thesis to keep the latter
tightly focused on holographic aspects of gravity.
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The moves are identified as moves associated with the removal of a given subsimplex

and hence can be indexed with an integer i, depending on the sub-simplex type. Thus node

insertion is associated with a triangle (i = 2), node deletion is associated with a vertex

(i = 0) and link flip is associated with link (i = 1). Node deletion can be considered as the

inverse operation of the node insertion operation, and link flip operation is it’s own inverse.

The order of sub-simplex (O(i)) is identified as the coordination number of the subsimplex.

For example, any link belongs to two triangles in 2D and thus O(1) = 2 for any link in the

2D triangulation. This can all be generalized to d dimensions – there d + 1 possible moves

and each move of type i can be inverted through a dual d− i move.

Now we deduce a correct detailed balanced equation relating the local moves described

above. Rewriting the detailed balance equation in Eqn. 1.51 with slightly different notation

WνT
i
µ,ν = WµT

d−i
ν,µ . (1.59)

where T is labeled by the move type i.

Now the a priori probabilities P can be expressed as a product of probabilities of choosing

the initial state and final states. Implementation of any Pachner move yields a unique final

state from a given initial state. Detailed balance then dictates:

WµP
i
µ,νA

i
µ,ν = WνP

d−i
ν,µ Ad−i

ν,µ . (1.60)

Let us pick at random a simplex with probability 1
Nd

where Nd is the number of d-simplices.

For a type i move there are 1

(d+1
i+1)

choices of i-simplex within that simplex. Thus the proba-

bility of finding this particular subsimplex to delete is

1

d+ 1

O(i)

Nd(ν)

1(
d+1
i+1

) . (1.61)

where O(i) is the number of simplices containing the given i-simplex. Likewise the inverse

move has an a priori probability of

1

d+ 1

O(d− i)

Nd(µ)

1(
d+1

d−i+1

) . (1.62)
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This implies that the ratio of a priori probabilities for the move and its inverse is

Nd(µ)

Nd(ν)

O(i)

O(d− i)

(
d+1

d−i+1

)
(
d+1
i+1

) . (1.63)

However, due to the nature of the Pachnar moves and the need to stay within the allowed

set of combinatorial triangulations it’s easy to verify that

O(i)

O(d− i)

(
d+1

d−i+1

)
(
d+1
i+1

) = 1

Thus detailed balance for such moves then requires

e−S(µ) 1

Nd(ν)
Ai

µ,ν = e−S(ν) 1

Nd(µ)
Ad−i

ν,µ , (1.64)

which reduces to the following equation for the acceptance probability of move i to obtain a

state µ from an initial state ν

Ai
µ,ν =

1

1 +
(
1 + (2i−d)

Nd(µ)

)
eS(ν)−S(µ)

(1.65)

This is the required expression of the acceptance probability to generate simplicial manifolds

in our lattice simulation.

In principle, the simulation of a random triangulated disk can be obtained from the

simulation of a sphere. One merely imagines cutting one vertex and its neigbour triangles

out of the sphere. The length of the boundary of the resultant disk is then given by the

number of neighbors of this special vertex. Simulations of the disk can be obtained by

simulating a sphere containing one special “marked node” [54]. This node is never deleted

and the action of the model can be modified to contain a term which fixes the number

of its neighbors at whatever target disk boundary is needed. To generate disks that are

asymptotically hyperbolic one must fix the connectivity of not just the special node (so that

the number of vertices in the boundary is a fixed fraction of the total number of vertices in

the disk) but also the connectivity of the boundary points to its nearest neighbours remain
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fixed so that they resemble the known connectivity of a regular tessellation of hyperbolic

space. This ensures that even after fluctuations of the bulk geometry the latter approaches

a tessellation of hyperbolic space asymptotically. It turns out that this constraint is then

sufficient to fix the average curvature of the disk to a constant negative value.
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Chapter 2

Massive scalar fields on hyperbolic space

2.1 Introduction

In this chapter, we compute boundary correlation functions for massive scalar fields on

tessellations of two- and three-dimensional hyperbolic geometries. We present evidence that

the continuum relation between the scalar bulk mass and the scaling dimension associated

with boundary-to-boundary correlation functions survives the truncation of approximating

the continuum hyperbolic space with a lattice.

As discussed in the previous chapter in section 1.3, the posited duality can be expressed

as an equality between the generating functional for a conformal field theory, and a restricted

path integral over fields propagating in AdS:

ZCFTd
[J(x)] =

∫
Dϕ δ(ϕ0(x)− J(x))eiSAdSd+1 . (2.1)

The boundary values of the fields, ϕ0, do not fluctuate, as they are equivalent to classical

sources on the CFT side of the duality. The earliest checks establishing the dictionary for this

duality were performed by studying free, massive scalar fields, propagating on pure anti-de

Sitter space [17, 19]. These established that the boundary-boundary two-point correlation

function of such fields has a power law dependence on the boundary separation, where the
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magnitude of the scaling exponent, ∆, is related to the bulk scalar mass, m0, via the relation

∆± =
d

2
±
√

d2

4
+m2

0ℓ
2, (2.2)

where ℓ is the scalar curvature of the AdS space. The two choices for the scaling dimension

are related to different treatments of the boundary action [20]. The ∆− branch of solutions

(which can saturate the unitarity bound, ∆ = d/2 − 1) requires tuning to be accessible in

the absence of supersymmetry.

In this chapter, we put massive lattice scalar field theory on finite tessellations of negative-

curvature spaces as test bed to determine which aspects of the AdS/CFT correspondence

survive the latticization. Finite-volume and discreteness create both ultra-violet (UV) and

infrared (IR) cutoffs, potentially creating both a gap in the spectrum and a limited penetra-

tion depth from the boundary into the bulk spacetime. Finite lattice spacing regulates the

UV behavior of the correlators. Despite these artifacts, we show that such lattice theories

do exhibit a sizable regime of scaling behavior, with this “conformal window” increasing with

total lattice volume.

We specifically construct tessellations of both two- and three-dimensional hyperbolic

spaces, construct scalar lattice actions, and compute the lattice Green’s functions to study

the boundary-to-boundary correlators. We find general agreement with Eq. (2.2) in the large

volume extrapolation.

Prior work has focused on the bulk behavior of spin models on fixed hyperbolic lattices

and on using thermodynamic observables to map the phase diagram [55–58]. Here, the

focus is on the structure of the boundary theory and, since free scalar fields are employed,

the matter sector can be computed exactly including the boundary-boundary correlation

function. This setup allows for a direct test of the continuum holographic behavior.

Reference [59] performed a investigation of the bulk and boundary scalar field propagators

in two-dimensional hyperbolic space using lattice techniques. In this chapter, we extended

the discussion to other two dimensional tessellations and in three dimensional tessellation of

hyperbolic space. Even though we present some bulk results in our study, our primary focus

has been the computation of boundary correlators.
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The organization of this chapter is as follows. In Section 2.2 we describe the class of

tessellations we use in two dimensions and the construction of the discrete Laplacian operator

needed to study the boundary correlation functions. In Section 2.3, few other examples of

two dimensional hyperbolic lattices are presented. In Section 2.4 we extend these calculations

to three-dimensional hyperbolic geometry. Finally, we summarise our results in Section 2.5.

2.2 Two-dimensional hyperbolic geometry

Regular tessellations of the two-dimensional hyperbolic plane can be labeled by their Schläfli

symbol, {p, q}, which denotes a tessellation by p-gons with the connectivity, q, being the

number of p-gons meeting at a vertex. In order to generate a negative curvature space, the

tessellation must satisfy (p− 2)(q − 2) > 4.

We construct our tessellations by first defining the geometry of a fundamental domain

triangle from its three interior angles. For regular {p, q} tessellations, these angles are π/2,

π/p, and π/q. In the Poincaré disk model, geodesics are circular arcs (or lines) orthogonal

to the disk boundary. Circle inversions in the model equate to reflections in the hyperbolic

plane and using this property, we recursively reflect this triangle in its geodesic edges to fill

the plane with copies of the fundamental region. Each copy corresponds to a symmetry of

the tiling. Thus reflections generated by the sides of the triangles form a symmetry group,

which is a (2, p, q) triangle group for the {p, q} tessellation. The regular tessellation forms a

subset of edges of this group. For a discussion on the triangle group and the generation of

the points of the fundamental triangle see Section 1.5.

It is quite straightforward to build the Laplacian matrix using the connectivity informa-

tion of the vertices of the tessellated disk. In this way, the lattice is stored solely in terms

of its adjacency information. The lattice is then composed of flat equilateral triangles with

straight edges, all of which are the same length throughout the lattice.

A typical example of the lattice is shown in Fig. 2.1, where the tessellation is shown in

the Poincaré disk model and corresponds to the {p, q} combination {3, 7}. An image of the

boundary connectivity can be seen in Fig. 2.2. We see the boundary has all manner of vertex

connectivity, some even with seven-fold coordination.
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Figure 2.1: {3,7} tessellation in the Poincare Disk model of the hyperbolic plane.

Figure 2.2: A zoom-in of the boundary of the Poincaré disk shown in Fig. 2.1.

In the continuum, the action for a massive scalar field in two Euclidean spacetime di-

mensions is given by

Scon. =
1

2

∫
d2x
√
g(∂µϕ ∂

µϕ+m2
0ϕ

2), (2.3)

where m0 is the bare mass, and d2x
√
g is the amount of volume associated with each point

in spacetime. The corresponding discrete action on a lattice of p-gons is then

S =
1

2

∑

⟨xy⟩

pxyVe
(ϕx − ϕy)

2

a2
+

1

2

∑

x

nxm
2
0Vvϕ

2
x. (2.4)
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Ve

Vv

Figure 2.3: The volume, Ve, associated with an edge is shown in yellow, and the volume, Vv,
associated with a vertex is shown in blue. In two dimensions, since each p-gon has the same
number of vertices as edges, these volumes are always the same (in this case they are both
1/3 of the area of the total triangle).

Here Ve denotes the volume of the lattice associated with an edge, Vv denotes the volume

associated with a vertex, a denotes the lattice spacing, pxy denotes the number of p-gons

which share an edge (in the case of an infinite lattice this is always two), and nx is the

number of p-gons around a vertex. For two-dimensional p-gons,

Vv = Ve =
a2

4
cot

π

p
, (2.5)

and an illustration of the volumes associated with links and edges are shown in Fig. 2.3.

This definition of the mass and kinetic weights ensures that the sum of the weights gives

the total volume of the lattice, i.e.
∑

⟨xy⟩ pxyVe =
∑

x nxVv = ApNp, where Ap is the area

of a p-gon, and Np is the number of p-gons.
∑

⟨xy⟩ denotes a sum over all nearest-neighbor

vertices, and
∑

x is over all vertices. We can write the action from Eq. (2.4) as

S =
∑

x,y

ϕxLxyϕy (2.6)

with Lxy given by

Lxy = −
pxy
2
δx,y+1̂ +

1

2

(∑

z

pxzδz,x+1̂ +m2
0nx

)
δx,y. (2.7)
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Figure 2.4: Four different correlators corresponding to different squared bare masses are
plotted in log-log coordinates for the case of a 13-layer lattice, with the squared boundary
mass set to M2 = 1000. The masses here from top to bottom are m2

0 = −0.1, 0.2, 0.5, and
0.8.

In practice we can rescale the scalar field so that the kinetic term has unit weight.

We set the edge length, a, to one, throughout. In the bulk, for a two-dimensional lattice,

pxy = 2 and nx = q, but these values change for edges and points on the boundary. We

note that boundary terms must be added to appropriately approximate the infinite volume

AdS/CFT correspondence, in which fields at the AdS boundary are not permitted to fluc-

tuate. To simulate this, we include a large scalar mass, M , only on the boundary vertices

and extrapolate fits as M →∞. The average boundary correlation function (propagator) is

then computed from

C(r) =

∑
x,y L

−1
xy δr,d(x,y)∑

x,y δr,d(x,y)
, (2.8)

where d(x, y) is the distance measured between boundary sites x and y along the boundary.

Looking at this quantity, we observe a power law, C(r) ∼ r−2∆, as can be seen in Fig. 2.4,

which shows the correlator for four different masses on a {3, 7} tessellation with 13 layers

containing a total of N = 2244 vertices.
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To fit the data, we take into account the fact that at finite tessellation depth, the boundary

is of finite size which provides an IR cutoff effect. The modified form of the correlators on the

circular compact geometry is known [60], with the relation between flat space correlators and

those on the circle corresponding to a conformal mapping from the Poincaré disk to the half-

plane, and an additional overall factor associated with the finite size boundary metric [61].

The overall effect is a calculable deviation of the two-point correlation function from straight

power law at distances comparable to the perimeter of the circle:

C(r) ∝ 1∣∣∣1− cos
(
π r

rmax

)∣∣∣
∆
∝

r≪rmax

1

|r|2∆ (2.9)

where r is the distance along the boundary, and rmax is the distance along the boundary

between antipodal points.

We thus fit the correlator using the form,

logC(r) = −∆ log (1− cos (θ)) + k, (2.10)

with k and ∆ as fit parameters, and θ = πr/rmax. The error bars are found from using

the jackknife method over a subset of the boundary points. In addition to the average over

boundary points, we also find a non-negligible systematic error from deciding the fit range.

We calculate this error by repeating the analysis for all different possible reasonable fit ranges

and re-sample from these results. We add the errors found from this method in quadrature

to the jackknife error, and find that the systematic part is by far the largest contribution to

the error.

We check to see if the power, ∆, obeys a similar relation to Eq. (2.2), and fit ∆ to the

form,

∆ = A+
√
A2 +Bm2

0, (2.11)

where A and B are fit parameters. The solid curve in Fig. 2.5 indicates the best fit (least

squares minimum) to Eq. (2.11) for a fixed system size and boundary mass. We expect A
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Figure 2.5: The power law obtained from fitting the correlation function in Eq. (2.8) versus
the squared bare mass. Here we show the result for a 13-layer lattice with squared boundary
mass, M2 = 1000. We find good qualitative agreement with Eq. (2.2).

to correspond to half the effective boundary dimension, d/2, and B to an effective squared

radius of curvature. We extract the parameters A and B from fits across a range of boundary

masses and of system volumes.

Using the various system sizes and boundary masses, we extrapolate the parameters

A and B to their values at the infinite-boundary mass, and infinite-system size limit. In

practice, we first extrapolate in system size at fixed boundary mass, and then extrapolate

to infinite boundary mass at infinite volume.

In the infinite-volume extrapolation, we identify the regime in which the fit parameters, A

and B, scale approximately linearly with the inverse boundary size, Nbound. In other words,

A =
C

Nbound

+ A∞, B =
D

Nbound

+B∞, (2.12)

where C, D, A∞ and B∞ are fit parameters. An example of the large-volume data is shown

in Fig. 2.6.

Once we have A∞ and B∞ for each boundary mass, we extrapolate those values to infinite
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Figure 2.6: The large-volume extrapolation of the B parameter as a function of the inverse
volume of the boundary, for a boundary mass of M2 = 1000. We have re-scaled by 100
triangles to remove clutter on the x-axis. We fit a line to this data to extract the B parameter
at infinite volume, B∞. We have included the systematic error, due to the choice of the fit
range, in orange.

boundary mass. Again we look for a window of masses in which the parameters scale linearly

in the inverse squared boundary mass, such that

A∞ =
E

M2
+ A∞(M∞) (2.13)

B∞ =
F

M2
+B∞(M∞), (2.14)

where E, F , A∞(M∞), and B∞(M∞) are fit parameters. During our investigation we found

we can take the boundary mass sufficiently large such that the extrapolation in large bound-

ary mass is negligible. We find A∞ ≃ 0.505(7) and B∞ ≃ 1.65(3). In the next section we

repeat this analysis for the case of {4, 5} and {3, 8} tessellations and again find an effective

boundary dimension close to unity but a different value for B reflecting the differing local

curvature.
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Figure 2.7: The boundary two-point correlator is plotted in log-log coordinates for the lattice
{p, q} = {4, 5}. Here four bulk masses are shown for the values of m2

0 = −0.1, 0.2, 0.5, and
0.8, with a boundary mass of M2 = 500. The lattice is comprised of eight layers of squares.
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Figure 2.8: The power-law extracted from the correlator data for the {p, q} = {4, 5} lattice.
This data is for a eight layer lattice with a boundary mass of M2 = 500. The fit parameters
for this fit are quoted inside the figure.
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Figure 2.9: The finite-size scaling for the B fit parameter versus the inverse boundary size.
Here we re-scaled the x-axis by 100 squares to declutter the axis labels. This fit is for a
boundary mass of M2 = 500.
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Figure 2.10: Boundary mass (M2) dependence of the fit parameter ∆ in the two point
function for a 10 layer lattice in the {3, 8} geometry. Error bars are of the order 10−4 or
smaller and not visible in the figure.
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2.3 Other two-dimensional tessellations

To ensure the fit parameters obtained in the {3, 7} study were not trivial, we also considered

a {p, q} = {4, 5} and {p, q} = {3, 8} lattice, and repeated the analysis. This should give the

same result for A, since the boundary is still one-dimensional, however the curvature of the

lattice is different from the {3, 7} case, and so we would expect a different result for the B fit

parameter. In Fig. 2.7 we see an example of the boundary-to-boundary two-point correlator

for four different masses for the {4, 5} tessellation.

There is more noise than in the {3, 7} case, perhaps due to the more coarse nature

of the tessellation using squares instead of triangles; however, the power-law behavior is

still apparent. We used binning in distance r along boundary or equivalently in θ in the

radial coordinates to reduce the fluctuation in the correlator data before performing the

fits. This essentially reduces the fluctuation of the radial distance of the boundary points

in the Poincaré disk picture while keeping the average radius of curvature unchanged, thus

providing a better handle to predict the same continuum result.

Table 2.1: {3, 8} tessellation results

Layer rmax bin-
size

minimum
fit-width

maximum
fit-width

fit-range A B

10 523 10 50 180 0 ≤ θ ≤ 1.08 0.493(3) 0.76(2)
11 903 10 90 280 0 ≤ θ ≤ 0.97 0.500(1) 0.774(9)
12 1554 15 150 495 0 ≤ θ ≤ 1.00 0.498(2) 0.81(2)
· · · ∞ · · · · · · · · · · · · 0.502(3) 0.82(2)

From the linear fit of the boundary-boundary correlators we extracted ∆, which can be

seen in Fig. 2.8. Again we see the boundary dimension parameter, A, gives a value similar

to d/2 = 1/2. By studying multiple volumes at sufficiently large boundary mass, M2 = 500,

we extrapolate to the infinite volume limit. The result for the B parameter can be seen in

Fig. 2.9. We find for our fits A ≃ 0.506(2), and B ≃ 1.21(2).

We have performed a similar analysis for the {3, 8} case. In this case, the value of ∆

settles down for boundary masses M2 ≥ 1000 (Fig. 2.10). So M2 = 2000 is picked to perform

the analysis. Few correlator plots are shown in the Fig. 2.11 and bulk mass dependence of

the boundary operator is shown in Fig. 2.12 using simulation of twelve layered Poincaré disk.
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Figure 2.11: The boundary two-point correlator is plotted in log-log coordinates for the
lattice {p, q} = {3, 8}. Here four bulk masses are shown for the values of m2

0 = −0.1, 0.2,
0.5, and 0.8, with a boundary mass of M2 = 2000. The lattice is comprised of 12 layers of
triangles.

The results are summarized in the table 2.1.Notice that the fitted value for B = 0.82(2) is

once more close to theoretical expectations which predict L2 = B/2 = 0.43 provided the

kinetic term employs the dual lattice weight. A summary of the fit ranges, bin sizes, and

parameter values for the {3, 8} lattice can be found in table 2.1.

2.4 Three-dimensional hyperbolic geometry

We now transition to the case of three dimensions. First we describe the honeycomb used

in this investigation, as well as its construction. Honeycombs are tessellations of three-

dimensional space, packings of polyhedra that fill the entire space with no gaps.

Similar to the two-dimensional case, in three dimensions, one can succinctly describe
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Figure 2.12: The power-law extracted from the correlator data for the {p, q} = {3, 8} lattice.
This data is for a eight layer lattice with a boundary mass of M2 = 2000. The fit parameters
for this fit are quoted inside the figure.

regular honeycombs with a Schläfli symbol, a recursive notation for regular tessellations.

{p, q, r} denotes a honeycomb of {p, q} cells, which are polyhedra (or tessellations) of p-

gons, where q of these surround each vertex [62]. Here we focus on the {4, 3, 5}, also known

as the order-5 cubical honeycomb, because the {4, 3} cubical cells pack 5 polyhedra around

each edge. A projection of this lattice can be seen in Fig. 2.13. The excess of cubes around

an edge gives a local curvature around each edge differing from flat. Since each Euclidean

cube has a face-to-face angle of π/2, the deficit angle at an edge is θd = 2π − 5π/2 = −π/2.
For an infinite lattice, this corresponds to 20 cubes around each vertex, and each vertex has

12 neighboring vertices.

To calculate in hyperbolic space, our code operates natively in the Poincaré ball model.

In this model, geodesic lines are circular arcs (or lines) orthogonal to the ball boundary,

and geodesic surfaces are spheres (or planes) orthogonal to the boundary. Sphere inversions

(see [63, pp. 124-126]) in the model equate to reflections in the underlying hyperbolic space

and we use this property to build up our honeycomb.

A general, robust sphere inversion function is key– one that handles all special cases of
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Figure 2.13: An in-space view of the order-5 cubic honeycomb.

spheres or planes reflecting to spheres or planes (as well as the corresponding cases for lines

and arcs).

We begin constructing the honeycomb by defining the geometry of a fundamental tetra-

hedron from its six dihedral angles. For regular {p, q, r} honeycombs, three of these angles

(connected along a zig-zag chain of edges) are π/2, and the remaining angles are π/p, π/q,

and π/r. Using sphere inversion, we recursively reflect the elements of the tetrahedron in its

four faces to fill out the space with tetrahedra. Each tetrahedron represents a symmetry of

the honeycomb. A fundamental tetrahedron can generate any regular {p, q, r} honeycomb

with p, q, r ≥ 3 [64].

In our case, a set of 48 symmetry tetrahedra form each cube. Reflections in the six faces

of these cubes build up the cubical honeycomb in layers of cells, with each successive layer

containing all cells one step further in the cell adjacency graph of the honeycomb. The

number of cubes in each layer are 1, 6, 30, 126, 498, . . . , with the total number of cubes up

to each level the sum of the entries in this sequence. This can be seen in Fig. 2.14. We

store all the cubes, faces, edges, and vertices that we see during the reflections, taking care

to avoid duplicates. In the infinite-volume limit, we would fill the whole of hyperbolic space

with cubes.

So far we have described the geometrical construction. We use this information to derive

incidence information for all of the elements of the honeycomb, i.e. to determine which
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(a) Central cube. (b) Six more. (c) Thirty more. (d) 126 more.

Figure 2.14: Visualization of step-by-step construction of the lattice with layers of cubes in
the {4, 3, 5} honeycomb. The cube edge lengths appear to vary in length in the Poincaré
ball model; however, the lattice here has a fixed edge length, a.

vertices, edges, facets, and cubes connect to each other. This we encode as a list of flags.

A flag is a sequence of elements, each contained in the next, with exactly one element from

each dimension. All possible flags encode the full incidence information of our partially-built

honeycombs. The incidence encoding is agnostic to geometrical distances.

We generate lists of flags out to various distances in the cell adjacency graph. The further

one recurses, the less edge-effects appear in the incidence information. For example, after

adding six layers of cubes, we get enough cells to completely surround all eight vertices of

the central cube.

Using the lattice described above, we work with the same model as in two dimensions,

and take a naive discretization of the scalar field action (this time in three dimensions) given

by,

Slat =
1

2

∑

⟨xy⟩

pxyVe
(ϕx − ϕy)

2

a2
+

1

2

∑

x

nxVvm
2
0ϕ

2
x. (2.15)

Here
∑

⟨xy⟩ is over nearest neighbors and pxy is the number of cubes around an edge. In the

infinite lattice case, pxy is always five, but we leave it as a variable to allow for consideration

of the case when the lattice is finite and has a boundary. nx denotes the number of cubes

which share a vertex. Again, in the infinite case this is always 20, but we leave it as a

variable for the finite lattice case. Ve and Vv are the volumes associated with an edge and

a vertex of a cube, respectively. Since each cube has an edge length of a, Ve = a3/12 and
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(a) (b)

Figure 2.15: (a) The portion of volume associated with an edge of a cube highlighted, in the
text, Ve. (b) The portion of volume associated with a vertex of a cube highlighted, in the
text, Vv. For a lattice with uniform edge length a = 1, these correspond to 1/12 and 1/8
respectively.

Vv = a3/8. Illustrations of the two volumes, Ve and Vv are shown in Figs. 2.15(a) and 2.15(b),

respectively. The weights again are chosen such that
∑

⟨xy⟩ pxyVe =
∑

x nxVv = V2N2, with

V2 being the volume of a cube, and N2 the number of cubes. Above, a is reinserted for

clarity but we assume the lattice edge length is one, as before.

We rewrite the lattice action to clearly identify the inverse lattice propagator, even in

the presence of a boundary. To do this, we start by expanding and collecting terms to get

Slat =
1

2

∑

⟨xy⟩

pxyVe(ϕx − ϕy)
2 +

1

2

∑

x

nxVvm
2
0ϕ

2
x

= −1

2

∑

⟨xy⟩

pxyVe(ϕxϕy + ϕyϕx)

+
1

2

∑

x

(∑

y

pxyVe +m2
0nxVv

)
ϕ2
x, (2.16)

where
∑

y in the second term is over points neighboring vertex x. Using the fact that
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Ve = (2/3)Vv, we simplify further to get

Slat =−
∑

⟨xy⟩

pxy
3
(ϕxϕy + ϕyϕx)

+
∑

x

(∑

y

pxy
3

+
m2

0

2
nx

)
ϕ2
x. (2.17)

We express the action in terms of the inverse lattice propagator and get

Slat = Skinetic + Smass

=
∑

x,y

ϕxLxyϕy (2.18)

with

Skinetic = −
∑

x,y

ϕx
pxy
3
δx,y+1̂ϕy (2.19)

and

Smass =
∑

x,y

ϕx

((∑

z

pxz
3
δz,x+1̂

)
+

m2
0

2
nx

)
δx,y ϕy. (2.20)

In the case of an infinite lattice, this simplifies to

Lxy = −δx,y+1̂ + 12

(
1 +

m2
0

2

)
δx,y, (2.21)

which is expected for a lattice with 12-fold coordination. Using Eqs. (2.19) and (2.20), we

construct an inverse lattice propagator for the hyperbolic lattice considered here, and use it

in numerical computations.

Again, the boundary correlator is given by inverting the matrix corresponding to the

discrete scalar inverse propagator. A typical set of correlators are shown in Fig. 2.16, corre-

sponding to four bulk masses and squared boundary mass M2 = 10. We take multiple sources

on the boundary and compute the one-to-all correlator for those sources on the boundary.

In Fig. 2.16 we again plot the correlator as a function of 1 − cos (πr/rmax). The geodesic
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Figure 2.16: A log-log plot of the boundary-boundary correlator, C(r), as a function of
distance along the boundary, for a seven-layer lattice. Here the bulk masses from top to
bottom are m2

0 = −0.7,−0.3, 0.4, and 0.9, and the boundary mass is M2 = 10.

distance r is computed by starting at the source vertex, taking a step to all neighboring

boundary vertices, then taking a step from those vertices to their neighboring boundary

vertices, skipping vertices that have already been visited, and so on, until all vertices have

been visited. The error bars are produced using the jackknife method on the sources.

Clearly, a distance window exists in which the correlator follows a power law. This

power-law behavior is observed for all masses explored in this study, and seems to solely be a

consequence of the lattice geometry. We fit a power law to this window for a series of fixed,

squared bulk mass. By far the largest source of error in this analysis is the systematic error

in choosing a fit range. To improve this error, we bin the data in the regime of interest,

and vary the fit range in the binned data. By resampling from all the reasonable fit ranges

we acquire a systematic error. The jackknife error from the sources is added in quadrature

with this systematic error to produce the final errors on each power-law fit. From this fit,

we obtain the power versus the squared mass.

In the continuum, in the case of anti-de Sitter space, the boundary-boundary two-point
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Figure 2.17: A fit of ∆ versus the squared mass using Eq. (2.11) for a six-layer lattice. Here
the boundary mass is M2 = 10.

correlator is expected to show the behavior from Eq. (2.2) with boundary dimension d = 2.

We attempt a fit using Eq. (2.11). An example of the fits can be seen in Fig. 2.17. We note

that the power, ∆, is well-defined even in the regime of negative squared mass, indicating

the operator −∇2 + m2
0 is positive in this regime. Based on these numerical results, the

behavior of ∆ here matches well with the expected behavior of ∆+ expressed in Ref. [20].

By repeating this analysis with multiple volumes, we consider the extrapolation to infinite

volume. Here we consider three different volumes, corresponding to five, six and seven-layers

of cubes. These correspond to 2643, 10497, and 41511 cubes, respectively. Using the fit

parameters from multiple volumes allows us to extrapolate to infinite cubes. In Figs. 2.18

and 2.19 we see the finite-size scaling of the fit parameters, A and B, respectively, from

Eq. (2.11). The fit is of the form of Eq. (2.12), with Nbound being the size of the two-

dimensional boundary of the three-dimensional hyperbolic lattice. We find A∞ ≃ 1.11(2),

and B∞ ≃ 1.62(9) in the infinite volume limit, with the squared boundary mass M2 = 10.
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Figure 2.18: The finite-size scaling of the fit parameter, A, from Eq. (2.11). The volumes
have been rescaled by 1000 for readability. All three volumes use the same boundary mass
of M2 = 10.

2.5 Conclusions

In this chapter we have studied the behavior of boundary correlations of massive scalar fields

propagating on discrete tessellations of hyperbolic space. Both two and three dimensions are

examined and good quantitative agreement with the continuum formula relating the power of

the boundary two-point correlator to the bulk mass is obtained. Specifically, the functional

form for the dependence of the boundary scaling dimension on bulk mass is reproduced

accurately, including the inferred dimension of the boundary theory. A single parameter, B,

identifies the effective squared radius of curvature of the lattice. In fact, in two dimensions,

if one considers the continuum formula for the squared radius of curvature for a {p, q}-
tessellation of H2,

L2 =
1

4 arccosh2
(

cos(π/p)
sin(π/q)

) , (2.22)

one would predict values of 0.84, 0.43 and 0.64 for {3, 7}, {3, 8} and {4, 5} tessellations,

respectively. These numbers differ from our fitted values for B by a factor of approximately
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Figure 2.19: The finite-size scaling of the fit parameter, B, from Eq. (2.11). The volumes
have been rescaled by 1000 for readability. All three volumes use the same boundary mass
of M2 = 10.

two (see the appendix). This factor of two can be completely understood in terms of our

choice of weights. If one uses the dual weight prescription for the kinetic term as given in

[59] which sets pxyVe = ℓa where ℓ is the dual edge length, and a is the lattice spacing, this

factor of two arises naturally and gives the correct normalization for the squared radius of

curvature.

In this work we held the lattice spacing fixed at a = 1. This appears in the results of

the correlator at short distances as wiggles in the data, and at longer distances as a spread,

and noise, in the correlators. This is particularly apparent in the {4, 5} correlator data

in the appendix. One could refine the tessellation to approach the continuum manifold.

In Ref. [59] they did exactly this and considered a refinement of the {3, 7} tesselation by

continually inserting triangles inside of existing triangles at a fixed physical volume.

A very interesting next step would be to investigate the effects of allowing for dynam-

ical fluctuations in the discrete geometries in order to simulate the effect of gravitational

fluctuations-perturbative and non-perturbative. In such scenarios, the effects of the back re-

action of matter fields on the geometries can be explored. If the holographic behavior persists

in non-perturbative regime, it should allow us to develop holographic dictionary in regimes
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that are difficult to explore using analytical approaches. We will hold on to this endeavor

until chapter 4. In the next chapter, we will consider another model – Ising model – on

fixed background geometry. Fundamental difference is that the model has nearest neighbour

interaction whereas the model considered in this chapter is a free field theory.
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Chapter 3

Ising spins on hyperbolic space

3.1 Introduction

Motivated by the success of investigating AdS/CFT correspondence for a free scalar field

model in lattice setting, we now attempt to use Monte Carlo simulation to investigate the

Ising model formulated on tessellations of the two-dimensional hyperbolic disk. We focus

in particular on the behavior of boundary-boundary correlators, which exhibit power-law

scaling both below and above the bulk critical temperature indicating scale invariance of

the boundary theory at any temperature. This conclusion is strengthened by a finite-size

scaling analysis of the boundary susceptibility which yields a scaling exponent consistent with

the scaling dimension extracted from the boundary correlation function. This observation

provides evidence that the connection between continuum boundary conformal symmetry

and isometries of the bulk hyperbolic space survives for simple interacting field theories even

when the bulk is approximated by a discrete tessellation.

As discussed in the previous section, boundary correlators bear signature of the con-

formality of the boundary theory. Key to the holographic duality is the relation between

boundary and bulk distance. In a space with negative curvature, in this discussion pre-

sumed to be rigid, the length of a bulk geodesic between two boundary points is loga-

rithmic in the distance for a path restricted to the boundary hypersurface. Specifically,
√
−k dbulk ∼ log

(√
−k dboundary

)
, where k is the curvature of the hyperbolic space.

At generic points in coupling space, a bulk d+1 dimensional theory will be gapped at scale
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µ, and correlation functions will decay exponentially, falling off like e−µdbulk . If expressed in

terms of distance along the boundary, that same correlator will instead fall off as a power-

law: (dboundary)
−µ. Hence, the geometry of the bulk thus dictates that conformal behavior

on the boundary will be robust as physical parameters of the bulk theory are varied.

Surprisingly, the most remarkable feature of this duality—the robustness of critical be-

havior of the boundary theory—persists even when only crude features of the geometry and

field content are maintained. For example: in previous chapter, we studied a model of a

massive free scalar field propagating on tessellations of two and three-dimensional hyper-

bolic space. Despite strong lattice artifacts associated with finite lattice spacing and finite

volume, the boundary lattice theory displays the usual features of conformality, exhibiting

power-law fall-off of boundary-to-boundary correlators with boundary distance, where the

inferred scaling dimensions match precisely with continuum analysis.

Here we take the story further, exploring a simple but strongly interacting lattice quan-

tum field theory living on hyperbolic space. The Ising model on the discretized Poincaré

disk exhibits phase structure much like the flat space 2D Ising model: it possesses gapped

ferromagnetic and paramagnetic phases separated by a phase transition. However, we will

show that boundary-to-boundary correlators exhibit signals of criticality for a wide range of

temperatures, as predicted by properties of the geometry.

This study is novel in that it explores the impact of strongly coupled bulk physics on the

AdS/CFT correspondence. The correspondence is more typically understood in the regime

of large N CFTs with weakly coupled AdS duals, so this paper probes the correspondence

in a regime uniquely suited to the tools of lattice quantum field theory.

To form our conclusions, we have used Monte Carlo simulation and measured both bound-

ary and bulk observables—with emphasis on the boundary observables—for a range of tem-

peratures. We furthermore show that this behavior can be understood theoretically using a

combination of high-temperature expansion and duality arguments.

The organization of this chapter is described here for the reader. In section 3.2, we de-

scribe the model in detail and discuss the bulk phase structure. In section 3.3 we investigate

the behavior of boundary observables—the two-point correlation function and thermody-

namics. We summarise our main results and discuss the prospects of our work in section 3.4.
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(a) {3, 7} disk

(b) Boundary structure of the disk

Figure 3.1: (a) The full {3, 7} lattice, highlighting 10 layers and 591 nodes. The first 10
layers are drawn in one color and the subsequent 3 layers each colored uniquely. (b) A
close-up of the boundary of the lattice. Connectivity of the boundary vertices has no fixed
pattern as additional layers are added.

3.2 The model and bulk phase structure

We construct a {3, 7} tessellated disk as shown in Fig. 3.1 to obtain a lattice representation

of hyperbolic geometry. Details of the lattice construction can be found in the previous two

chapters in Section 1.5 & Section 2.2. We place Ising spins on each vertex of the tessellation

shown in the figure. The partition function of the nearest-neighbor Ising system is then given
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Figure 3.2: The bulk magnetic susceptibility computed from Nbulk = 591 spins on the 10
innermost layers of the tessellation as additional outer layers are added up to a maximum
of N0 = 3495.

by

Z =
∑

{s}

[∏

⟨ij⟩

exp(βsisj)

]
. (3.1)

where, β is the inverse of the temperature (T ), the product
∏

⟨ij⟩ is over all nearest-neighbor

pairs, and the sum
∑

{s} is over all possible spin configurations. We simulate the model

with Markov chain Monte Carlo using the Metropolis and Wolff cluster algorithms. The

algorithms are reviewed in the introductory chapter at Section 1.6.1 & Section 1.6.2.

We use open boundary conditions in our work. Since the fraction of vertices on the

boundary relative to the bulk is essentially constant as the volume increases for such a tes-

sellation, one must then be careful in defining the expectation value of bulk observables.

We have examined the dependence of such bulk expectation values on the distance from

the boundary by comparing expectation values over a fixed set of innermost layers of the

tessellation as additional outer layers are added. We first present result of the magnetic sus-

ceptibility χ which shows a clear peak when plotted against temperature. The susceptibility
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of the magnetization was computed using the following definition

χ =
β

Nbulk
(⟨M2⟩ − ⟨M⟩2). (3.2)

Figure 3.2 shows a plot of the bulk magnetic susceptibility versus temperature for a series

of lattices ranging up to N0 = 3495 vertices where the bulk quantity is only computed using

the n = 10 innermost layers corresponding to Nbulk = 591 spins. It is straightforward to

extrapolate such data to the case where the bulk lies an infinite distance from the bound-

ary. In practice, we observe that allowing for three outer layers leads to results that are

independent of these limiting values within statistical errors.

We also examine the finite-size scaling of susceptibilities considering bulk spins Nbulk

= 153, 240, 378 and 591. The scaling of the peak of the bulk susceptibility is shown in

Fig. 3.3a which plots the logarithm of the peak height versus the logarithm of the linear scale

ℓ = logNbulk that characterizes the geometry. On a hyperbolic disk, it is a natural choice for

ℓ since this characterizes maximum bulk lattice geodesics and the system is pseudocritical

once the correlation length approaches this scale. The slope of the linear fit yields an estimate

of the bulk critical exponent γB/νB = 4.27(6). We also showed data collapse of the rescaled

susceptibility data 3.3b and extracted best choice of the exponent νB = 0.55. Again, the

choice of characterisitic length scale is of the order of the diameter of the Poincaré disk and

so ℓ = logNbulk is chosen.

We present additional results of the bulk observables like magnetization, energy and heat

capacity to further justify the position of the critical point. The following definitions were

used to compute the absolute magnetization per spin

m =
M

Nbulk

=
1

N
∑

configs

(
1

Nbulk

∣∣∣
∑

j∈bulk

sj

∣∣∣
)
, (3.3)

the internal energy per spin

ϵ =
E

Nbulk

=
1

N
∑

configs

( 1

Nbulk

∑

⟨jk⟩∈bulk

sjsk

)
, (3.4)
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Figure 3.3: (a) The peak in the bulk susceptibility vs ℓ = log(Nbulk) in log-log coordinates.
The scaling exponent γB/νB corresponds to the slope of the fitted line. (b) Collapsing bulk
susceptibility data with rescaling allows to find the exponent νB.
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Figure 3.4: (a) Bulk magnetization, (b) internal energy and (c) heat capacity are computed
from Nbulk = 591 spins on 10 innermost layers of the tessellation as additional outer layers
are added up to a maximum of Ntotal = 3495.

.

and heat capacity per spin was computed with

C =
β2

Nbulk

(⟨E2⟩ − ⟨E⟩2). (3.5)

Here, N denotes the total number of thermalized configurations in the simulation which

is ∼ 107 sweeps for the Metropolis algorithm and ∼ 15000 sweeps for the cluster algorithm.

Each sweep in the metropolis algorithm attempts N0 spin flips while each sweep in the cluster

algorithm attempts ∼ 15000 cluster flips. N0 is the number of total vertices in the lattice;

that is, it includes both what we consider as bulk spins and what we consider as outer layer

spins.
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Figure 3.5: (a) Boundary magnetization and (b) boundary susceptibility are plotted against
bulk-temperature from 10 to 13 layered Poincaré disk with increasing number of boundary
spins N∂.

Plots for the magnetization, internal energy per spin and heat capacity are shown in

Fig. 3.4. Again we find that for a certain number of bulk spins Nbulk, adding more outer

layers gradually alleviate the boundary effects while computing bulk quantities. We find

that adding 3 additional layers is sufficient for the lattice bulk volumes we investigated.

Notice that the use of an open boundary condition means that our current work differs from

earlier studies. For example, Ref. [65] studies the bulk properties of the model having imposed

a periodic boundary condition on the boundary. This boundary condition corresponds to

using a hyperbolic manifold with genus g ≥ 1 [65, 66]. In contrast, Nishino et al. use a fixed

ferromagnetic boundary condition in their Corner Transfer Matrix renormalization group

approach [67]. Earlier works using Padé approximations from the low and high-temperature

expansion can be found in Ref. [68].

However, the open boundary condition we employ in the current work is the more natural

choice in a holographic context that closely resembles a Dirichlet condition. The scheme we

use for implementing the open boundary condition is similar in spirit to the work of Shima

et al. [69].
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Figure 3.6: Logarithm of the boundary susceptibility (χ∂) is plotted against logarithm of the
total number of boundary points (N∂) for T = (a) 2.7, (b) 3.0, (c) 3.4. Scaling exponents of
the boundary susceptibility (γ/ν) are computed from the linear fit of the data.

3.3 Boundary Thermodynamics

In this section, we will focus on the boundary observables. Fig. 3.5a and Fig. 3.5b show

the plot of (the absolute value of) the boundary magnetization and magnetic susceptibility

versus temperature for a range of lattice sizes. Notice that the latter exhibits a peak close

to that seen in the bulk susceptibility. However, this peak is broad and shows no sign of

narrowing with increasing lattice size. Indeed, if we attempt a finite-size scaling analysis

of the susceptibility we find evidence for a line of a continuously varying critical exponent

γ/ν—see Fig. 3.6.

Associated with this scaling, we can examine the boundary-boundary correlators over

the same range of temperatures. Correlation functions for three temperatures are shown in
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Fig. 3.7 with a choice of “best-fit” with the solid line. After binning the data, we proceed

using a single-elimination jackknife. Then, we perform correlated fits. We fit over several fit

ranges to estimate a systematic error associated with our “best” choice of fit range. Our fit

ansatz has the form,

⟨s(0)s(r)⟩ = a(T ) + b(T )r−2∆(T ), (3.6)

where the distance measured on the boundary r can be traded for an angle via the relation

r2 ∼ (1− cos θ). Notice that the conformal behavior is given by the connected correlator

which is insensitive to a(T ). The final error shown in the plots includes the systematic error

associated with the fit range added in quadrature with the statistical error obtained from

the best fit.

The boundary susceptibility is of course nothing more than the integral of this correlation

function, and hence we predict that the susceptibility exponent γ/ν = 1−2∆. A plot showing

the value of the scaling dimension extracted from the susceptibility together with the value

obtained by a power-law fit to the correlation function is shown in Fig. 3.8. The agreement is

excellent, furnishes a nice consistency test of our procedure, and provides strong evidence that

the boundary theory indeed exhibits power-law behavior both at high and low temperatures.

The minimal value of the boundary scaling dimension ∆ is obtained for T ∼ Tc corresponding

to the point where the bulk mass gap on hyperbolic space has been tuned to zero. Notice

that once 1− 2∆ < 0, the susceptibility no longer diverges with lattice size, which explains

the location of the edges of the broad peak shown in Fig. 3.5b.

In fact it is easy to see that the boundary correlation function should exhibit a power law

for high temperature. Expanding the Boltzmann factors for small β we find the correlator

is given by

⟨sksℓ⟩ ∝
∑

{s}

sksℓ

(∏

⟨ij⟩

(1 + sisj tanh β)
)
. (3.7)

The leading-order contribution in β corresponds to the minimal-length path in the lattice

between the two boundary spins. On a hyperbolic disk this path runs through the bulk and

yields

⟨sksℓ⟩ ∝ (tanh β)R (3.8)
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Figure 3.7: The boundary-boundary correlation function at T = (a) 2.7, (b) 3.0, (c) 3.4,
plotted against boundary distance squared r2 ∼ (1 − cos θ). Results shown here are from
the analysis of a 12 layered Poincaré disk with boundary length N∂ = 1062. χ2 per degree
of freedom and the p-value of the fits are noted in the figures.

where R is the length of the geodesic between k and ℓ. But R ∼ log r on the hyperbolic disk

with r the boundary distance between the spins. Thus we find

⟨sksℓ⟩ ∝ r−2∆ (3.9)

where ∆ ∼ 1
2
log coth β ∼ − log β for β → 0. Thus it is natural to expect a conformal bound-

ary phase for a range of high temperatures. To understand the low-temperature behavior

we can perform a duality transformation [70] on the model. This maps the original Ising

system with spins {si} on a {3, 7} tessellation at (inverse) temperature β into another Ising

model with spins {σj} living on the dual {7, 3} tessellation at temperature β̃ = 1
2
log coth β.
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Figure 3.8: The scaling exponent of the boundary spin operator computed from fits to the
boundary two-point correlator, denoted by ∆, and from the finite-size scaling of the boundary
susceptibility, denoted by (1− γ/ν)/2.
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Figure 3.9: Relation between dual inverse temperature and the dual temperature.

Notice that high temperatures in the original model are mapped to low temperatures in the

dual model, see the mapping of the dual inverse temperature to the inverse temperature in

Fig 3.9. Furthermore, the functional relationship between the boundary distance and the

length of the corresponding bulk geodesic is the same for both {3, 7} and {7, 3} tessellations.
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This implies that the power-law behavior of the {si} system at high temperature produces

a power law correlator for the dual {σi} system at low temperature. But the dual system is

just another discretization of hyperbolic space and so one concludes that the {si} boundary

correlator on the original lattice should also possess power-law behavior at low temperature

with ∆ ∼ log coth β̃ ∼ β for β → ∞. And indeed, this is precisely what is observed in our

simulations.
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Figure 3.10: The boundary-boundary correlation function of the dual spin variable (C =

⟨σ0σr⟩) at T̃ = (a) 1.1, (b) 1.2, (c) 1.3 plotted against boundary distance squared r2 ∼
(1 − cos θ). Results shown here are from the analysis of a six-layered {7, 3} Poincaré disk
with boundary length N∂ = 3647.

Next, we show the boundary correlator of the dual-spin variable σ placed on the vertices of

the {7, 3} tessellated disk. Spin-spin correlator (⟨σ0σr⟩) plots at three different temperatures
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Figure 3.11: Scaling exponent of the dual boundary spin operator (∆̃) computed from the
fits of the boundary correlator.
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Figure 3.12: (a) Scaling exponents at direct lattice ∆ vs. dual inverse temperature (β̃), and
(b) scaling exponent at dual lattice (β̃) vs. inverse temperature at direct lattice (β). Linear
fits at high temperature are shown with the extracted slope denoted in the figure.

are shown in Fig. 3.10. Using a similar fitting form described in the main text, scaling

dimension ∆̃ for the correlators of the disorder variables were extracted. We find similar

temperature (T̃ ) dependence of the scaling exponent ∆̃ where the lowest point of a dip

correlates to the bulk transition temperature, see Fig. 3.11.

The consistency of our measurements of ∆ and ∆̃ can be checked by noting that the

high temperature expansions for the spin-spin correlators on both the dual and direct lattice
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imply that the correlators take the form

Gdirect ∼ eR log tanhβ ∼ e−2Rβ̃ (3.10)

Gdual ∼ eR̃ log tanh β̃ ∼ e−2R̃β. (3.11)

where R is the geodesic distance between spins. If we assume the continuum relation R =

αL log r
L

with r measured at a finite—effective—boundary, α a constant, and L the AdS

radius of the space, these expressions imply the following relations for the scaling dimensions

extracted from the boundary correlators

∆ = αLβ̃ β̃ →∞ (3.12)

∆̃ = αL̃β β →∞. (3.13)

In Fig. 3.12 we show plots of ∆ v.s. β̃ and ∆̃ v.s. β including a linear fit to the large β̃, β

regions. The ratio of the slopes is equal to mdual/mdirect = 1.97. If the unit lattice spacing is

used for the construction of the Poincaré disk, the AdS radius L for a {p, q} tessellation is

given by the following formula [71]

1/L = 2 cosh−1

(
cos π

p

sin π
q

)
. (3.14)

This leads to the prediction L̃
L
= 1.93 which agrees remarkably well with the numerical result.

3.4 Summary and Prospects

We have simulated the Ising model on a tessellation of the hyperbolic disk, exploring the

AdS/CFT correspondence at strong coupling on the lattice. On a {3, 7} tesselation, we find

evidence for a bulk phase transition at Tc ∼ 3 separating a low temperature magnetized

phase from a disordered phase at high temperature. Since the number of boundary points

is always a constant significant fraction of the bulk points, special care was taken to define

bulk observables which are insensitive to the presence of this boundary.
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The primary focus of this paper was the correlation functions and thermodynamics of the

Ising spins located at the boundary. Our numerical results show that boundary-boundary

correlation functions exhibit power-law behavior over a wide range of temperatures start-

ing at high temperature, through the bulk phase transition, and persisting into the low-

temperature ordered phase. The high-temperature conformal phase is straightforward to

understand using high-temperature expansions and relies only on the geodesic structure in-

herited by tessellations of hyperbolic space. At low temperatures, arguments rooted in the

duality transformation of the Ising model suggest that boundary criticality will persist in

the ordered phase.

We conjecture that this low-temperature conformal boundary phase extends all the way

to T = 0 in the thermodynamic limit but that the rapid increase in the scaling dimension

as T → 0 makes it difficult to verify this on finite lattices.

The fact that the boundary theory is scale-invariant at long distances for any temperature

is consistent with the usual arguments for the AdS/CFT correspondence in the continuum

which ties the conformal symmetry of the boundary theory to the bulk isometries of anti-

de Sitter space. Since our tessellation approximates the latter and is fixed independent

of temperature we would not expect the approximate conformality of the lattice theory to

depend on couplings in the matter sector.

In this first study of its type, conformal invariance of the boundary theory was apparently

maintained through a regime of strongly coupled bulk physics. It will be fascinating to

continue exploring the AdS/CFT correspondence in regions where perturbative methods are

unavailable. The first step toward this direction is taken through studies of a scalar field on

a fluctuating hyperbolic disk in the following chapter.
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Chapter 4

Scalar fields on fluctuating hyperbolic

geometries

4.1 Introduction

In this chapter we present results on the behavior of the boundary-boundary correlation

function of scalar fields propagating on discrete two-dimensional random triangulations rep-

resenting manifolds with the topology of a disk. We use a gravitational action that includes

a curvature squared operator, which favors a regular tessellation of hyperbolic space for large

values of its coupling. We probe the resultant geometry by analyzing the propagator of a

massive scalar field and show that the conformal behavior seen in the uniform hyperbolic

space survives as the coupling approaches zero. The analysis of this boundary correlator

suggests that holographic predictions survive, at least, weak quantum gravity corrections.

We then show how such an R2 operator might be induced as a result of integrating out mas-

sive lattice fermions and show preliminary results for boundary correlation functions that

include the effects of this fermionic backreaction on the geometry.

Regular hyperbolic lattices furnish a representation of wick-rotated anti-de Sitter space-

time. In previous works, we have shown how the AdS-CFT correspondence can be seen

by studying the propagation of free massive scalar fields on such hyperbolic lattices [72].

This earlier work confirmed that the correlation function of the scalar fields in the boundary

fall-off algebraically with boundary separation. This agrees with what is expected in the
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continuum where the magnitude of the scaling exponent ∆ of the boundary field operator is

related to the bulk scalar mass, m, via the relation given by Klebanov & Witten [20]

∆± =
d

2
±
√

d2

4
+m2. (4.1)

Here, m is expressed in units of the AdS curvature, while d is the dimension of the boundary.

Depending on the choice of the boundary condition, either mode in the equation above can

be recovered [20]. The analysis we presented earlier uses a Dirichlet boundary condition

which targets the ∆+ mode.

In this work, we have taken the first steps towards investigating what aspects of hologra-

phy survive when fluctuations are allowed in the bulk geometry. Such fluctuations represent

the effects of quantum gravity, and since they change the continuum isometries of the bulk,

they can affect the conformal nature of the boundary theory. These effects are difficult to

study in the continuum but can be investigated in the lattice using Monte Carlo simulation.

In this work, we first study the effects of introducing a R2 operator which is designed to

favor regular hyperbolic lattices for strong coupling. We then decrease the coupling to probe

the structure of the boundary theory as increasingly large fluctuations are allowed in the

bulk geometry. We then argue that such an operator is naturally generated in the effective

gravitational action after integrating out massive Kähler-Dirac fermions.

The structure of the chapter is described here. In section 4.2, the methodology for

studying the fluctuating hyperbolic disk is presented. Next, we present numerical results for

the scaling exponents of the boundary field operators for different values of the R2 coupling in

4.3. In the following section 4.4, we formulate a model which includes dynamical fermions,

and in section 4.5, we present preliminary results for the propagator of fermions on such

geometries that include the backreaction effects. Finally, we summarize our findings and

discuss prospects in section 4.6.
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4.2 Introducing bulk curvature fluctuations

To simulate the effects of quantum gravity fluctuations in the bulk we have replaced the

regular tessellations studied in our earlier work with more general random triangulations.

These are restricted so that connectivity of the boundary nodes is held fixed throughout and

corresponds to the connectivity of a regular {3, 7} tessellation with some fixed boundary

length while the connectivity of the inner bulk nodes is allowed to fluctuate. This approxi-

mates the continuum notion that the metric has negative average curvature and approaches

AdS at the boundary. The amount of fluctuation in the bulk of the disk is controlled by a

discretization of the 2d gravity action supplemented with additional R2 terms. The partition

function can be written as,

Z =
∑

T

eS(kd,β) (4.2)

Here, the summation is carried out over all possible 2d triangulations with disk topology and

fixed boundary. The action is given by a sum over a cosmological constant and a curvature

squared term SQ:

S = k2N2 + βSQ (4.3)

The first term above is the contribution from the pure gravity action in the lattice∗. The

modified curvature-squared term SQ takes the form

SQ =
∑

i∈Pbulk

(qi − 7)2/qi (4.4)

For large β the coordination number of any bulk vertex is driven to seven corresponding to

the {3, 7} tessellation of the hyperbolic disk.

In practice, we also introduce a volume tuning term SV . If in a configuration the total

number of triangles in the disk is N2, then the volume tuning term is

SV = γ(N2 − V )2. (4.5)

The term is required to ensure generating a pseudo-canonical ensemble of geometries of the
∗The Einstein-Hilbert term in two dimensions is a topological invariant
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Figure 4.1: Number of bulk vertices N(qB) with coordination number q are plotted at dif-
ferent β: β = 0.0 (black), β = 0.01 (blue), β = 0.1 (purple), β = 0.5 (red), β = 1.0 (cyan),
and β = 3.0 (green).

topology of the disk with a target volume V . The coupling constant γ is periodically adjusted

to ensure the volume N2 of the generated configurations are close to V .

4.3 Results: curvature-squared operator

In this section, we will present our Markov Chain Monte Carlo (MCMC) simulation results

for the modified R2 action defined in eqn. 4.4. We have focused on the properties of the

boundary theory and hence have examined the boundary-boundary correlator for a massive

scalar field propagating on this geometry. To mock up the effects of a Dirichlet boundary

condition on this scalar field we have introduced a large boundary mass. We find that the

dependence of the correlators on the boundary mass vanishes as we increase the boundary

mass. The analysis was repeated for several bulk masses, and similar behavior was observed

for all the cases. For details of the analysis of choosing an appropriate boundary mass to

introduce Dirichilet boundary condition is discussed in the appendix of [72].

Once the boundary mass is chosen for the analysis, we investigated several collective ge-

ometry properties of the ensemble of dynamically triangulated disks. We performed a strong
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(a) β = 0.0 (b) β = 0.1

(c) β = 3.0

Figure 4.2: Sample thermalized configurations from time evolution of geometry during
MCMC simulation at different β.

coupling expansion and compared the numerical results with this strong coupling expansion,

giving confidence in our analysis. Fig. 4.1 shows the relative number of vertices (NqB) with

a bulk coordination number qB at different coupling strength β for a target lattice volume

V = 742. The peak in the number of vertices Nq is seen at seven at all nonzero coupling

we considered and corresponds to a negative curvature. A fixed boundary configuration

was deployed in our analysis that resembles the boundary of the {3, 7} Poincaré disk. The

choice of this initial configuration is sufficient to ensure that the average bulk curvature is
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Figure 4.4: Bulk mass dependence of the scaling exponent at (a) β = 3.0 and β = 1.0.
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equal to its value on the (3, 7) regular hyperbolic disk. Not surprisingly, the peak is sharp-

ened in the strong coupling limit, and we recover the geometry of the fixed tessellated disk

with a high probability in our MCMC simulation. The weak coupling limit, where the peak

is broad, represents stronger curvature fluctuation in the background hyperbolic manifold.

The non-uniform curvature in the geometry can be seen from the snapshots of the geometry

during MCMC simulation. Sample configurations at different couplings are shown in Fig. 4.2.

Next, we discuss the main results of our analysis – the boundary-boundary correlator

function. We compute the lattice propagators at different couplings β and different bulk

masses m. With geometry fluctuation in play, we still find conformal behavior for the

correlators for a wide range of couplings. Fig 4.3 shows the boundary correlators at two

different couplings for scalar mass m = 0. Note that even at a small value of β = 1.0, where

63% bulk vertices on average are 7-fold connected, we find a signature of conformal behavior.

At a stronger coupling of β = 3.0, where 99.6% vertices are 7-fold connected, we find that the

scaling exponent extracted from the linear fit of the correlator matches the Klebanov-Witten

relation at Eqn. 4.1. The predicted continuum result of the boundary exponent for the zero

bulk mass is ∆ = 1 for geometry with constant negative curvature, which matches closely

with our numerical result at β = 3.0.

Next, the scaling exponents for different bulk mass at a fixed β are plotted. Results are

shown for β = 3.0 in the Fig. 4.4a and for β = 1.0 in the Fig. 4.4b. We use two fit functions,

one corresponding to the Klebanov-Witten (KW) formula and corresponding to Eqn. 4.1,

written with three fit parameters A, B and L

∆ = A+
√
B +m2L2. (4.6)

The other fit function we use is a logarithmic function with three fit parameters A,B,C

expressed as

∆ = A log
(
m2 +B

)
+ C. (4.7)

We find that the KW relation fits well in the limit of small fluctuations, whereas the loga-

rithmic fit describes the data better for larger fluctuations.
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4.4 Curvature fluctuation from matter fields

In the previous section we presented results on the holographic behavior of a model in which

the behavior of a boundary theory is influenced by bulk quantum gravity corrections. The

magnitude of the quantum corrections were controlled by an R2 operator which was added

to the action by hand. It is interesting to construct models where such operators could be

induced via coupling the system to additional dynamical matter fields. We construct such a

model in this section.

We will see that to pick out uniform hyperbolic space we need to employ fermionic

matter. To avoid the complication of having to carry around additional structure like a

spin connection and frame we have used Kähler-Dirac fermions. The Kähler-Dirac operator

squares to the (curved) space Laplacian and allows us to express the effective action in

terms of powers of the determinant of the curved space Laplacian. Consider N degenerate

Kähler-Dirac (KD) fermions with mass m. The partition function is given by

Z =
∑

T

∫
Dϕe−k2N2

N∏

1

DϕDϕ̄e−ϕ̄a(K−m)ϕa

=
∑

T

det
N
2 (

∼
2)e−k2N2 . (4.8)

where,
∼
2(T ) = −2(T ) +m2. The effective gravitational action can then be written as

S =
N

2
ln
(
det

∼
2
)
− k2N2 (4.9)

It can be seen from the above expression that the Boltzmann factor is given by a non-local

term. A local form of the action can be deduced with some approximations. In order to do

that, the Laplacian operator is factorized into three matrices

∼
2 = DAD
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where D is a diagonal matrix with diagonal entries di =
√
qi; and A is a matrix that depends

on the connectivity of the vertices in a particular triangulation with diagonal and off-diagonal

components described by

Aii = 1 +m2,

Aij = −
1
√
qiqj

Cij.

In the large mass limit m→∞, A only contributes a constant factor. Hence,

det
∼
2 ∼ (detD)2 =

∏

i

qi. (4.10)

With this approximation, we arrive at a local form for the action in the large mass limit

SKD = −N

2

∑

i∈bulk

ln(qi). (4.11)

Thus the complete action with the Kähler Dirac fermion is

S = SKD − k2N2 + λ(⟨q⟩ − 7). (4.12)

The last term in the equation is introduced as a constraint – the average bulk coordination

number remains seven during the evolution of the geometry in the MCMC simulation. We

find from the numerical analysis that the fixed boundary geometry with identical connectivity

to the {3, 7} Poincaré disk is sufficient to ensure this constraint. The logarithmic term in

the effective action is then equivalent to the curvature-squared term in Eqn. 4.4 since

ln(qi) ∼ −
1

2π2
R2

i + . . . .

From the discussion above, it is evident that massive Kähler Dirac fermions dynamically

generate a curvature squared term. In the N → ∞ limit, the regular {3, 7} tessellation of

the Poincaré disk will be recovered with certainty. The number of fermions N plays the same

role as β in the previous construction. A transition from a holographic to a non-holographic
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regime may exist as N is varied. In this approach with dynamical fermionic matter fields,

smaller N amounts to a larger curvature-fluctuation region.

4.5 Kähler Dirac Operator Construction and Results

In this section, we outline the construction of lattice Kähler Dirac fermions. For the details of

the construction in the continuum and in the lattice, see this work by Banks et. el. [73, 74].

The use of the operator in the context of degenerate triangulation is discussed by Catterall

et. el. [75].

The Kähler Dirac operator (K) is a square root of the Laplacian operator and in flat

spacetime it is possible to show that each Kähler Dirac fermion (KD) is equivalent to two

Dirac fermions in two dimensions. The equation of motion of a KD field reads

(d− d† +m)Ω = 0. (4.13)

where, Ω = (ω0, ωµ, . . . , ωµ1···µD
) is a collection of forms. Construction of the operator K is

natural in curved spacetime too, but the equivalence with Dirac spinors disappears. It is

easy to see that Laplacian operator can be written as

−2 = K2 = (d− d†)2 = −dd† − d†d. (4.14)

The above expression follows from the fundamental relation in the exterior calculus d2 =

d†2 = 0.

One of the most important properties of the Kähler-Dirac equation is that it has a natural

discretization on simplicial manifolds. Coboundary d̄ and boundary δ̄ = d̄T operators are

introduced which are the lattice equivalent of d and d† respectively. The lattice operators

act on lattice analogs of the continuum p-forms which are associated with p-simplices in the

lattice. For example, the action of the δ̄ on a ordered list of vertices (v1, v2, v3) representing

a triangle and carrying a 2-form field will return an oriented linear combination of the

associated links (v1, v2), (v2, v3) and (v3, v1) carrying 1-form fields. The detailed construction

of the lattice Kähler Dirac operator can be found here [75] for the case of 4D dynamical
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Figure 4.5: Lattice propagator computed from the simulation with Nf = 10 Kähler Dirac
fermions is plotted against distance-squared r2 ∝ (1 − cos θ). The slope ∆ of the linear fit
denotes the scaling exponent of the boundary field operator.

triangulation. The resultant lattice Laplacian operator is a block diagonal matrix with three

non-zero blocks, each associated with different types of simplices in 2D. Thus in Eqn. 4.10,

there are contributions from three different matrices associated with vertices, links, and

triangles.

We constructed the lattice Kähler Dirac operator to simulate a fluctuating hyperbolic

disk equipped with ten Kähler Dirac fermions. Resultant action is described by Eqn. 4.9.

We found that the holographic nature of the boundary theory is reproduced in the correlator

plot computed from the Markov chain Monte Carlo simulation with KD fermions. The plot

is shown in Fig. 4.5.

4.6 Conclusions

In this chapter, we have described some preliminary results of the effects of bulk curvature

fluctuations on the holographic behavior of a two-dimensional model formulated on a space

whose average curvature is negative. We presented results from two different kinds of sim-
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ulations, and they both indicate that the holographic nature of the model survives at least

for weak bulk quantum gravity corrections. Further investigation is necessary to provide

concrete evidence of conformality in the strongly coupled bulk quantum gravity regime.

We also show how to couple lattice fermions to the system so that the gravity corrections

are suppressed for a large number of fields, with the effective action picking up a curvature-

squared term. It would be interesting to investigate whether a phase transition exists from

the holographic to the non-holographic regime as the number of fermions N is varied. Work

in these directions is ongoing, and the results will be published soon.
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Chapter 5

Conclusions

The main goal of the thesis was to explore holographic aspects of field theories using lat-

tice techniques. We successfully demonstrated that lattice models were capable of yielding

results in agreement with continuum holography. Our first attempt was the computation

of the scaling exponents for the boundary field operator of the free scalar field. The mass

dependency of the scaling exponent showed excellent matching with the continuum results

[17, 20] in both two and three dimensions. Our lattice analysis demonstrates that even with

a crude uniform tessellation of geometry, information is recoverable from boundary lattice

propagators. Global information of the bulk geometry – the radius of curvature – was also re-

covered from lattice analysis from the dual lattice prescription. It’s non-trivial to implement

boundary conditions while investigating holography since boundary field values are required

to compute boundary observables. Since naive implementation pushes all the boundary field

values to exactly zero, we devised a way to impose a pseudo-Dirichlet boundary condition

with the introduction of a large boundary mass. Our lattice analysis revealed the existence

of a conformal regime for a wide range of scalar mass, including negative mass-squared cases.

The next step that we took after the successful lattice implementation of a free theory

was to understand the conformal boundary behavior for an interacting bulk theory – the 2D

Ising model on the Poincaré disk. The main result of this analysis is that we could recover

holographic behavior for a range of temperatures from low to high, including the bulk critical

temperature. The temperature dependence of the scaling of the boundary operator is derived

in two different ways – from the boundary susceptibility and from the two-point function.
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The critical temperature is obtained from a bulk computation of the susceptibility, but we

showed that the minima of the boundary scaling dimension can also provide the position of

the bulk transition. Thus, the holographic nature of the system is evident: finding β for

which ∂β∆ = 0 gives the bulk transition temperature. At first glance, it is surprising to find

evidence of criticality for the 1D boundary theory for the Ising system since the 1D nearest-

neighbor Ising model does not possess any phase transition. However, the effective boundary

theory evades this constraint in the presence of long-range interactions which appear as a

result of the presence of the bulk. As in the free scalar field model, we have argued that

some geometry information, the ratio of intrinsic length scales, can also be recovered from

comparing the lattice and dual-lattice data.

In the penultimate chapter of the thesis, we have investigated the effects of allowing for

dynamical fluctuations in the geometry which simulates the effect of gravitational fluctu-

ations. Tuning a R2 term, both perturbative and non-perturbative geometry fluctuation

effects can be generated, and a new formula relating the boundary scaling exponent to the

bulk mass is proposed in the non-perturbative regime. This chapter also discusses the in-

troduction of Kähler-Dirac (KD) fermions in discrete hyperbolic space. It is shown that

with a suitable boundary condition, the matter backreaction of several KD matter fields can

strongly influence the nature of the bulk geometry yielding a constant curvature hyperbolic

space for large numbers of fields as revealed from the computation of the boundary corre-

lators. It should be stressed that these lattice simulations probe regimes with strong bulk

gravity which are inaccessible to analytic approaches.

In the future, we plan to investigate in more detail the effects of varying the number of

KD fermions. We also plan to extend the ideas to four spacetime dimensions. Another ob-

vious extension of our work is the introduction of other kinds of matter fields. Some efforts

in this direction are ongoing. We are currently investigating Ising gauge matter fields in

three spacetime dimensions. We will be attempting to recover the well-known Ryu-Takanagi

formula [76] from lattice simulation. Initial attempts have been made to compute the bound-

ary Wilson loop and boundary plaquette-plaquette correlator. The results of the pure Ising

gauge theory thus can be verified from the analysis of the Ising model in the dual lattice.

It would also be interesting to analyze the holographic aspects of Dirac fields on hyperbolic
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lattices adapting the ideas developed in [77] . We also would like to apply holographic ideas

to improve our understanding of quantum computation. Specifically, it would be interesting

to find a mapping of the tensor network representation of the bulk theory as some effec-

tive boundary theory. The mapping would allow the investigation of a gravitational theory

with quantum computers by developing quantum circuits and probing the phase space of

gravitational models that are not easily accessible with traditional approaches.

To conclude, the techniques developed in this thesis demonstrate that lattice realization

of holographic theories is possible. We have also demonstrated that the tools could be used

in developing an AdS/CFT dictionary in regimes not accessible with traditional continuum

analysis. The tools can be used in developing tensor network models on hyperbolic tes-

sellations and can be used in many applications in quantum information science, including

quantum error correction and quantum entanglement entropy computation.
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