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Abstract

In real-world complex networks, harmful spreads, commonly known as contagions,

are common and can potentially lead to catastrophic events if uncontrolled. Some ex-

amples include pandemics, network attacks on crucial infrastructure systems, and the

propagation of misinformation or radical ideas. Thus, it is critical to study the protec-

tive measures that inhibit or eliminate contagion in these networks. This is known as

the network protection problem.

The network protection problem investigates the most efficient graph manipulations

(e.g., node and/or edge removal or addition) to protect a certain set of nodes known

as critical nodes. There are two types of critical nodes: (1) predefined, based on their

importance to the functionality of the network; (2) unknown, whose importance de-

pends on their location in the network structure. For both of these groups and with no

assumption on the contagion dynamics, I address three major shortcomings in the cur-

rent network protection research: namely, scalability, imprecise evaluation metric, and

assumption on global graph knowledge.

First, to address the scalability issue, I show that local community information affects

contagion paths through characteristic path length. The relationship between the two

suggests that, instead of global network manipulations, we can disrupt the contagion

paths by manipulating the local community of critical nodes.

Next, I study network protection of predefined critical nodes against targeted contagion

attacks with access to partial network information only. I propose the CoVerD protection

algorithm that is fast and successfully increases the attacker’s effort for reaching the

target nodes by 3 to 10 times compared to the next best-performing benchmark.

Finally, I study the more sophisticated problem of protecting unknown critical nodes in

the context of biological contagions, with partial and no knowledge of network struc-

ture. In the presence of partial network information, I show that strategies based on

immediate neighborhood information give the best trade-off between performance and

cost. In the presence of no network information, I propose a dynamic algorithm, Com-

Mit, that works within a limited budget and enforces bursts of short-term restriction on

small communities instead of long-term isolation of unaffected individuals. In com-

parison to baselines, ComMit reduces the peak of infection by 73% and shortens the

duration of infection by 90%, even for persistent spreads.
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Chapter 1

Introduction

A social system, made of interacting components (also referred to as actors or agents),

relies on certain (often simple) set of rules [2]. To facilitate mathematical analysis, these

systems– whether in whole or in part– are modeled as networks. In networks, the ac-

tors are designated as nodes and the pairwise message passing relation between them as

edges (also referred to as links or ties). For instance, human interactions in a group, the

communication between computers in a network server, and the synaptic transmission

between neurons are all built upon message passing rules between two adjacent com-

ponents. The emergent collective behavior following such simple rules, however, are

often complex1 to model and predict [2]. The adoption of new ideologies, the evolution

of swarm intelligence, and the rise and fall of epidemics in human social systems are

some examples of complex collective behaviors that have been studied extensively for

the past decades.

Spreading phenomena are key factors in the development of complex collective behav-

ior and, as a result, the change in the dynamics and structure of a social system. A

spreading process can either reinforce or resist an impact on the system. For example, a

spread can characterize a viral infection or a prophylactic measure to prevent that infec-

tion. Depending on whether spreading processes reinforce a needed impact or propagate

a harmful influence, they can be divided into constructive and destructive spreads. In

literature, the destructive spreads are also referred to as contagions, a terminology that

I will use in this study as well.

1I use the word complex in opposition to trivial and expected. For example, complex features are
those contrary to trivial features of simple networks such as random, planar, and acyclic graphs.
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Contagions can have catastrophic impacts on societies and infrastructure that people’s

lives and vitality depend on. For example, the outbreak of the COVID-19 pandemic

affected billions of people worldwide and took the lives of millions.2 Similarly, targeted

attacks on critical infrastructure systems such as power grids and water treatments can

jeopardize the operation of many crucial sectors, such as hospitals and food suppliers.

For these reasons, it is important to study practical methods that can mitigate, reduce,

or eliminate contagions.

Inhibiting a contagion in a network is known as the network protection problem. This

problem investigates network modifications, in the form of adding or removing edges,

that protect a set of critical nodes. These nodes are either known a priori based on

their importance to the overall functionality of the network (predefined critical nodes),

or have to be identified based on their contribution to the final size of the contagion

(unknown critical nodes). The identification of the latter requires ranking methods that

are based on the location of nodes in the network structure or the interaction among

nodes in a group (community).

The focus of this work is on protection strategies that inhibit a contagion in real-world

settings. More specifically, I study the network protection problem for both predefined

and unknown critical nodes and offer algorithms that (1) are fast to compute and scal-

able; (2) perform within a limited budget; (3) use precise evaluation metric; and (4) do

not rely on full network information.

1.1 Research Objectives

The main goal of this dissertation is to address some of the major shortcomings of

the current network protection algorithms. Considering the importance of inhibiting

contagions in real-world scenarios, my goal is to focus on practicality of protection

algorithms in the face of a real emergency (e.g., propagation of unknown diseases and

threats).

One of the main drawbacks of the existing network protection algorithms is their large

computational cost, which leads to scalability issues. The reason is their reliance on

global network measures that not only are computationally demanding, but also require

the full network structure to be computed. I address this issue in in Chapter 3. More

2Source: https://covid19.who.int/.

https://covid19.who.int/
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specifically, I investigate the network properties and metrics that are known to impact

the contagion flow. Through theoretical and empirical analysis, I prove the relation-

ship between computationally inexpensive local network measures and the paths in the

network through which the flow persists.

The local measures only depend on the immediate neighborhood of a node in the net-

work. The result from Chapter 3 implies that for controlling the path of a contagion, we

do not need to rely on global properties of the network. Although the network global

properties contain more information about the contagion pathways, in practical settings,

they are hard or impossible to compute (as I will show in the subsequent chapters). For

example, in the face of a pandemic, the underlying network structure can only be known

locally and through sampling from the population. My analysis in this chapter offers an

answer to the challenging task of network protection against contagion in the presence

of limited network information.

Another common issues in the study of network protection are using imprecise evalua-

tion metrics and disregard for the implementation cost of the algorithm. I address this

problem next by introducing a limited protection budget. I show that the combination

of this budget and final contagion size gives a better evaluation metric than those used

in the state-of-the-art.

More concretely, in Chapter 4, I introduce network modifications that protect a set of

(predefined) target nodes (i.e., nodes whose security is of importance to the overall

network) by restricting the contagion flow. This protection scenario is especially of

interest for preserving privacy of some nodes in an infrastructure, such as World Wide

Web or peer-to-peer networks. In this chapter, I propose the CoVerD algorithm, which

relies only on local community (group) information of each target node, and aims to

make a trade-off between the protection budget and magnitude of contagion. Despite

relying on this limited information, CoVerD is shown to be more effective in protecting

the targets than the state-of-the-art models, some of which relying on global properties

of the network.

In Chapter 5, I address the problems of imprecise evaluation metric and reliance on

global network measures for a more sophisticated setting, in which the critical nodes

are not predefined. This type of protection is crucial in the face of biological contagions

that can lead to epidemics and pandemics. Through a comparative analysis among

different protection strategies, I show that the best trade-off between the efficacy and
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cost of protection is achieved by relying on the immediate neighborhood information of

each node. This reinforces the results obtained from Chapters 3 and 4.

Local information, however, are not always readily available. In fact, there are scenarios

in which there is no prior information about the network structure available. Many of

the studies on the network protection problem fail to consider this challenging scenario

and assume full knowledge of the network structure.

In Chapter 6, I introduce the problem of protection against contagion in the presence

of blindness towards network structure. In this setting, the protector does not have

any information about the connections between nodes in the network. Hence, even

using local information to influence the contagion is not possible. This is particularly

a hard problem when no information on the dynamic of the contagion is known (e.g.,

protecting a large population against an unknown viral spread). To tackle this problem,

I propose the ComMit algorithm. ComMit has two purpose: (1) obtaining information

about the underlying network structure, and (2) introducing network modifications that

inhibit the contagion flow. The dynamic nature of ComMit allows for partial information

collection at each step and enhancement of previous modifications based on the newly

acquired information. The blindness problem is tied with the problem of noisy data

collection. In the same chapter, I also study the impact of noisy data on protection and

the challenges it poses to ComMit algorithm.

1.2 Contributions

The major contributions of this work are as follows,

• I study the network measures that influence the paths through which contagion

flows and show the relationship between local network measures and these paths,

analytically and empirically.

• I formally define the privacy-preserving problem of protecting a set of nodes

against an intruding contagion and propose the CoVerD algorithm as a scalable

measure that surpasses the state-of-the-art methods.

• I introduce the problem of protecting the entirety of a network by inhibiting or

eliminating a contagion in its early stages. The results of my analysis show that
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the best trade-off between protection cost and efficacy is achieved through relying

on local network information.

• Finally, I formulate and address the problem of network protection with unknown

network structure. I propose the ComMit algorithm that dynamically and with a

limited budget samples from the network and updates the network perturbations

to inhibit the spread. I also touch on the problem of noisy data collection and

robustness of ComMit in this scenario.

1.3 Dissertation Road Map

The first part of Chapter 2 offers an overview of graphs and metrics used in graph

theory for describing different network properties. In the second part, I examine the

related work in spreading processes, contagions, and the network protection problem.

In the last section, I explain the shortcomings of these studies (which are addressed in

this research) and their implications in real-world applications.

Dependency on local network information (as opposed to global information) is the

foundation of my proposed protection algorithms in this study. In Chapter 3, I prove

theoretically and empirically that the path lengths in a small-world network are tied

to the local clustering coefficient. The latter is a local property of the network and a

measure of community-forming tendency among the nodes. The results of this chapter

justify why the protection algorithms proposed in the subsequent chapters work; they

use the local community information to find minimal network perturbations that influ-

ence the contagion paths.

In Chapter 4, I formally define the problem of vertex defense against crawling ad-

versaries (network attack contagion) in a network, and show the shortcomings of the

current protection strategies in the general setting. Next, I propose a defense algorithm,

CoVerD, that only uses local community structure of a node and surpasses both global

and local neighborhood perturbations.

Chapter 5 focuses on biological contagion of viral spread. The results of this chapter

reinforce the fact that the local information on immediate neighborhood is sufficient

and provides the best contagion inhibiting strategy with limited budget. Also, inspired

by superiority of the community-based strategy in 4, I show that community-based ap-

proaches can also be successfully applied for designing effective mitigation strategies.
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In Chapter 6, I introduce the problem of protection in a blind setting (i.e., no prior

knowledge on network structure) and propose a dynamic mitigation that relies on infor-

mation from geo-location network instead of the contact network, and uses an exploration-

exploitation scheme to design an optimal testing strategy.
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Chapter 2

Background

In this chapter, I lay out the theoretical foundation of my work and discuss the related

work. First, I go through fundamental concepts in graph theory that are used in this

research. More specifically, I introduce graphs as a mathematical structure, define the

graph metrics required for understanding the remainder of this dissertation, and touch

on the community structure in graphs and some of the related community finding al-

gorithms. Second, I discuss the relevant literature for three categories of research on

spreading processes: modeling, impact, detection, and protection/reinforcement. Third,

I elaborate further on similar research categories addressing specifically the protection

problem, which deals with contagion (i.e., destructive spreading phenomena). Finally,

I discuss the major shortcomings of the current literature on the network protection,

which built the motivation for and are addressed by the current study.

2.1 Graphs

Many real-world interaction-based systems can be conveniently described through a

set of points and lines joining certain pairs among these points. This representation

is a mathematical abstraction known as a graph. The friendship relationship between

individuals, the communication between systems in a peer-to-peer network, and a power

grid are some famous examples of systems that benefit from graph representation [3].

More formally, a graph G is an ordered pair (V(G), E(G)), in which V(G) and E(G) ⊆

V(G)2 are two disjoint sets and represent the set of points and the connection between

points, respectively. When context is clear, we can just use (V, E). Commonly used
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Figure 2.1: The graph on V = {1, ..., 11} with edge set E ={(1, 2), (1, 4), (1, 5), (2, 4),
(3, 4), (5, 6), (6, 7), (7, 8), (9, 10)}.

terms for points in V are nodes and vertices. The connections in E are also referred to

as edges or lines [4]. A graph with no edges is an empty graph, whereas a graph with

connection between all of its node pairs is a complete graph or a clique. An example

of a graph is shown in Figure 2.1. Note that in this graph the nature of the connection

between each pair of node does not matter and only the existence of a connection counts.

However, there are ways to include more information on the connections (edges). If

for all (vi, v j) = ei j ∈ E, we have (vi, v j) = (v j, vi), the graph is considered undirected.

Otherwise, it is a directed graph and the connection between vi and v j is shown with

an arrow: vi → v j. We can also consider the strength of a connection by attributing

weights to each edge. In this case, we have a weighted or an attributed graph, referred

to as G = (V, E,W), in which W = {wei j |ei j ∈ E} and wei j (also used as wi j) is the

weight of the connection between vi and v j. The graph in Figure 2.1 is an example of

an unweighted, undirected graph.

Two vertices vi and v j are adjacent or neighbors if (vi, v j) ∈ E. We can summarize all

adjacency relationships in the graph in a |V | × |V | matrix A, called adjacency matrix,

such that,

Ai j =

1, (vi, v j) ∈ E

0, otherwise.
(2.1)

The number of neighbors of a node vi (i.e., the sum of ith row inA) gives the degree of vi

and is referred to as d(vi). A node of degree 0 is an isolated node (e.g., node 11 in 2.1).

Note that a node can be adjacent to itself as well and form a loop. Since for spreading
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phenomena, spreading to oneself or to no one is not meaningful or interesting, loops

and isolated nodes are not considered in this study.

If we only consider a subset of nodes and/or edges of G, the resulting graph is a sub-

graph of G and is referred to as G′ ⊆ G. In this case, G is the supergraph of G′. For

example, V ′ = {1, 2, 3, 4} and E′ = {(1, 2), (3, 4)} forms a subset of the graph in Figure

2.1.

A path of length k is a graph P = (V(P), E(P)) of the form V(P) = {v1, ..., vk+1} and

E(P) = {(v1, v2), (v2, v3), ..., (vk, vk+1)}, in which P is non-empty and all vi are distinct.

The path of length 0 is a graph with one isolated node (singleton graph). In a graph

G = (V, E), there are one or more paths of varying lengths starting from each node.

Informally, a path in G is a sequence of edges that connect two nodes. For example in

Figure 2.1, {(1, 2, 4, 3), (1, 4, 3)} are two paths connecting node 1 to 3.

As I will discuss in Chapter 3, when studying spreading phenomena, the shortest paths

are the most informative. In fact, shortest paths are also referred to as information path-

ways [5] as it has been shown the flow of information travels through these paths. The

length of the shortest path among all paths between two nodes is the distance between

those nodes. For example, the shortest path between 1 and 3 in 2.1 is {(1, 4, 3)}, giving

a distance of 2. The k − hop neighborhood of a node vi is the set of all nodes whose

distance from vi is k. For example, the 3 − hop neighborhood of 1 in 2.1 is {7, 8}.

G = (V, E) is considered connected if it is non-empty and there is a path between any

two vertices in V . A maximal connected subgraph of G is a (connected) component

of G. The graph in 2.1 is a disconnected graph and has three connected components:

{1, 2, 3, 4, 5, 6, 7, 8}, {9, 10}, and {11}. An edge whose removal increases the number of

connected components in the graph is a bridge or cut edge. A vertex seperating two

other vertices that belong to the same component is a cut or bridge node. In 2.1, 5

is a cut and both (1, 5) and (5, 6) are bridges. As will be discussed in the subsequent

chapters, bridges and cuts act as super-spreaders in certain settings.

2.2 Community Structure

Nodes in a real network often show a tendency to group together. This feature of net-

works is known as community structure or clustering [6]. There are many definitions for

a community depending on the context in which they are being studied. On a high-level,
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a community structure is defined based on (1) the topology of the underlying graph (i.e.,

nodes in the same community are strongly connected), or (2) the attributes of the nodes

in the graph (i.e., sharing a community means sharing a similar feature or role) [7]. Note

that these two definitions are not exclusive and an attribute-based community can be a

topological community as well. For example, in a network of elementary school friend-

ship, in which nodes are students and edges are friendship among them, the attribute

of class and friendship topology give similar communities as students in the same class

have a higher tendency to befriend each other [8]. Since contagions (and in general, the

spreading phenomena) are modeled as a node traversal process, their flow is heavily in-

fluenced by the network topology [9–13]. As such, whenever the notion of community

structure is used in the current study, it is referring to topological community structure.

Communities can be overlapping, hierarchical, or non-overlapping. In most cases, how-

ever, they are defined as non-overlapping set of nodes that share more edges inside their

community than outside [7]. This dissertation also considers this type of community.

The field of community detection is vast and deserves its own separate study. In general,

these approaches are based on either of these three methods: modularity maximization

[14–17], statistical inference [18, 19], and random walks [20, 21]. Among these, the

most commonly used approaches are modularity maximization methods. Modularity,

first proposed by Girvan and Newman [22] as a measure of community strength, cal-

culates the difference between fraction of edges existing in a community and expected

fraction if edges were distributed randomly. One of the most popular modularity-based

community detection methods is Louvain algorithm [14], which, despite its shortcom-

ings (namely instability of results and possibility of yielding disconnected communities)

[23], remains one of the most effective and efficient methods available.

2.3 Graph Metrics

The three metrics used in analyzing the protection algorithms in this research are cen-

trality measures, characteristic path length, and local clustering coefficient. Here, I

briefly go through each.

Centrality Measures. In real world, a protection problem is often limited by a budget

and faced with the critical decision of how to prioritize nodes for protection. The node

importance ranking is usually obtained from a certain node centrality measure in the

network. A centrality measure is a function on the set of nodes V whose output assigns
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a number (ranking) to each node. Depending on how this function is defined, it is

possible for several nodes to have the same ranking. As the definition of importance is

subjective, different centrality measures have been used in the literature on spreading

phenomena; namely degree centrality, eigenvector centrality, betweenness centrality,

and closeness centrality.

Degree centrality for each node vi ∈ V is defined as its normalized degree with respect

to the maximum possible degree in the network, i.e., d(vi)
|V |−1 . This centrality assumes

important nodes have more connections. Although this assumption has led to some

powerful protection strategies [24] to combat the flow of a contagion, this is not always

the case. For example, it has been shown that in networks with high modularity, the

contagion flow is more efficiently suppressed through bridge nodes (which often have

low degree centrality) than those with highest degree centrality [25]. The most powerful

feature of degree centrality is that it is a local graph metric, meaning that it can be

computed without global knowledge of the graph structure.

Eigenvector centrality attributes the importance of a node to the number of connec-

tions to other important nodes. For node vi, it is defined as the ith element of x such

that A.x = λ.x. Eigenvector centrality is shown to improve some degree centrality-

based protection methods [26], however, its computation cost as a global measure is the

biggest bottleneck for iterative protection algorithms.

Betweenness centrality, defined as the accumulative fraction of pairwise shortest paths

in the network that pass through a node, considers the importance of bridge nodes as

suggested in [25]. Despite its popularity in the network protection literature [27, 28],

the reliance of betweenness centrality on computing all pairwise shortest paths in the

network makes it an impractical tool for real-world problems.

Closeness centrality also relies on computing shortest paths. Instead of considering all

the shortest paths that pass through the node vi, it computes the reciprocal of the average

shortest path length from vi to all other nodes. Considering its similarity to betweenness

centrality, it has also been popular in network protection studies [24, 27, 29], despite its

expensive computation cost.

Characteristic Path Length. Similar to eigenvector, betweenness, and closeness cen-

trality, characteristic path length is also a global graph measure. It is defined as the

average of all pairwise shortest paths in the graph. Larger characteristic path length

implies greater travel time for information flow [30]. The efficiency of a spread is also

shown to be dependent on the characteristic path length [31].
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Local Clustering Coefficient. First proposed by Watts and Strogatz [1], local cluster-

ing coefficient is the measure of a node’s tendency to form a cluster. It considers the

neighborhood of a node and how close they are to form a complete graph. The local

clustering coefficient of a node vi is defined as the ration between the number of existing

connections among vi’s neighbors and all possible such connections. Evident from the

name, this is a local graph measure which requires considerably less computational cost

compared to global measures. It is mainly defined for undirected graphs, however, there

are extensions to directed graphs as well [32].

2.4 Research Directions in Spreading Processes

A spreading phenomenon is defined as a process in which a node can influence its

neighboring nodes to change their status. For contagion, this influence is destructive

(e.g., diseases). Analysis of different spreading processes in a social network have been

addressed from four main directions: modeling, impact, detection, and protection/rein-

forcement. Here, I discuss each of them in the context of relevant literature.

2.4.1 Modeling

The first scientific endeavour in understanding spreading processes started with model-

ing the dynamics of a spread. The mathematical models for spreading were first pro-

posed by researchers in epidemiology [33] and sociology [34, 35], dating back to early

twentieth century. Later studies have expanded these models to account for novel types

of spread discovered in real world. The pivot of all these models is the spreading rule

by which an “information” is passed from one individual to another. This “information”

can be a disease, news, rumor, or anything that changes the state of the receiving end as

a result. The spreading rules fall into two categories: independent cascade models, and

threshold models.

Independent Cascade Models. The assumption behind these models is that each in-

teraction between two agents (nodes) results in contagion with independent probability.

More formally, if we consider an affected node vi and an unaffected node v j, the prob-

ability of vi turning v j into an affected node through their interaction is pviv j , or pi j for

short. Note that pi j only depends on the interaction between vi and v j and is independent
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from interaction with other nodes in the network. More frequent interaction between vi

and v j increases pi j.

Some of the well-known independent cascade models are susceptible-infected-recovered

(SIR) and susceptible-infected-susceptible (SIS) from epidemiology; and Bass model

from innovation diffusion literature. Here, I focus on SIR and SIS models, which are

the most commonly used in the network protection studies. Interested reader may refer

to [36] to find other proposed models in this category.

SIR and SIS model are emerged from epidemiology. Despite their simple spreading

rules, they have been effective in modeling various spreading processes, such as dis-

eases, idea propagation, and innovation diffusion. I explain their details in the context

of an infectious disease. They both consider certain number of possible states for each

node in the network at each point of time. For SIR model, these states are Susceptible,

Infectious, and Recovered. For SIS model, there is only the two susceptible and in-

fectious states. Susceptible individuals are healthy persons that may become infected

through interaction with infected population. Infected people are those who are already

carriers of the disease and can affect susceptible individuals.

In SIR model, the disease has a limited duration, after which the infected individual

is considered recovered and immune to being infected again. The probability pi j of

an infectious node infecting a susceptible person is controlled by the infection rate α.

The recovery of an infected node is controlled by a recovery probability β. In some

variations, the recovery rate is considered deterministic and all infected individuals are

recovered after a certain time. The SIS model does not assume the immunity after

recovery and a recovered person becomes susceptible again. The controlling parameters

of SIS is similar to SIR, except that β is 1 − α. Due to the immunity assumption, the

infection will eventually die out in SIR model. On the other hand, in SIS model, the

infection can reach an endemic state, where the fraction of infected population remains

non-zero.

Threshold Models. In some scenarios, the probability of a node being affected depends

on the frequency of interaction with more than one affected node. For example, in the

spread of a social behavior, an individual is more likely to adapt the new behavior if a

certain fraction of his/her connections have already done so [37, 38]. Intuitively, thresh-

old models are independent cascade models with memory, in which an accumulation of

the past and present interaction with affected nodes determines the probability of a node

becoming affected.
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The simplest threshold model is Linear Threshold Model (LTM). LTM is an information

diffusion model in which the activation of a node v depends on its threshold θv and

the sum of incoming edge weights from all activated neighbors of v. The node v gets

activated if and only if this sum surpasses θv. Other notable threshold models are the

voter model [39], the standard rumor model [40], and the strategic game model [41].

2.4.2 Impact

This field of study aims at finding the ways network topology impacts the dynamics of

a spread. The majority of work on modeling spreading phenomena lies in this category

Ganesh et al. [9] investigate the impact of network topology on the spread of epi-

demics. Their goal is to, theoretically, identity the topological properties of a graph that

determine the persistent of epidemics. This study is limited to certain synthetic graph

structures (hypercubes, complete graphs, random graphs, stars, and power-law graphs)

and does not involve real-world data. On these graphs, they find conditions that can

stop a contagion either quickly (logarithmically in the size of the network) or slowly

(exponentially in the size of the network).

Other works, which are centered around real-world networks, broach this problem

through finding nodes that contribute the most to the propagation of a spread (also

known as super-spreaders). These studies rely on various graph centrality measures

to detect these nodes [42–44]. However, Pei et al. [45] raise the concern that relying on

simulation-based spreading processes does not correctly identify such super-spreaders.

Instead, they rely on real information diffusion data in online blogging social networks

to infer the best centrality measure that correctly captures the super-spreaders. For these

datasets, they find the k-core based centrality, which is a global measure, to have the best

predictability. Most notably, they also propose the sum of the nearest neighbors’ degree

as a local proxy for measuring users’ influence instead of the global k-core centrality.

Serafino et al. [46] reach the same conclusion about k-core centrality by studying the

GPS mobility data during the COVID-19 outbreak in Latin America.

2.4.3 Detection

The presence of a spread is not always as straightforward to detect as in the case of,

for example, viral diseases. There are a number of controversies when it comes to
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determining the existence of spread based on real-world data. For instance in economic

studies, Lando et al. argue that the detection of contagion is only the result of poor

statistical techniques [47]. This claim, however, has been refuted by other studies. For

example, Favero et al. [48] comprehensively study the money markets of ERM member

countries and fail to reject the null hypothesis of no contagion.

On the other hand, there is the challenge of noisy data. In the case of social networks, for

example, the majority of detection techniques assume zero information loss in the data

[49]. A number of recent studies have tackled the more realistic problem of detecting

a spread in the presence of noisy data (e.g., incomplete, misleading, or misattributed

data).

Meirom et al. [50] propose an epidemic detection algorithm that only uses the local

neighborhood information. They show the success of their algorithm in different set-

tings, such as in the presence of high false positive and false negative rates, partial

network information, and more than a single “patient zero”.

Milling et al. [51] extend the algorithm proposed by Meirom et al. to weighted net-

works. A weighted contact network implies the infection does not simply travel at the

same speed between all connected nodes. They achieve a superior performance under

the same settings (i.e., noisy data, partial network, and multiple infectious seeds).

2.4.4 Protection/Reinforcement

This field of research distinguishes itself from the previous two by building on the pre-

supposition that (1) indeed, there exists one or multiple spreading phenomena in the

network; and (2) there is a general awareness of the vulnerabilities within the network.

The critical nodes in a network are either predefined or identified as those whose resis-

tance threshold against a spread is low and contribute the most to the propagation of the

spread.1

The main objective of the protection problem is to find the most efficient graph ma-

nipulation, as either introducing perturbations (i.e., removal or addition of edges and/or

nodes) or changing node status (e.g., vaccination), to protect the critical nodes, by either

blocking the spreading process or, in the case of persistent spread, minimizing the prob-

ability of spread reaching these nodes. The critical nodes are characterized either as

1critical nodes are also referred to as susceptible nodes in [52] and [53]. These terms will be used
interchangeably throughout this study.
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nodes of certain value (e.g., having high centrality [27, 45], containing sensitive infor-

mation [54], or acting as super-spreaders [24, 27]), or as a set of nodes whose collective

interaction marks their level of vulnerability (i.e., communities) [55, 56].

The dual problem to protection of critical nodes against a spread is the reinforcement
problem, in which the objective is to find the boosting nodes that maximize the cov-

erage of a spread (in contrast to the protection objective of minimizing this coverage).

Some examples of reinforcement problem include viral marketing [57], innovation dif-

fusion [58], engagement maximization [59], and reach maximization [60]. The dif-

ference between the two problems lies in their type of spread; while the protection
scenario considers contagion, the reinforcement scheme targets an underlying con-

structive spread.

Considering the duality between protection and reinforcement problem, the results of

this research can potentially be used in designing reinforcement strategies that maxi-

mize a constructive spread in the network. The importance of protection scenarios are

best demonstrated through previous studies in: protection against targeted attacks on

infrastructure [24, 29, 54], epidemic control and immunization [25, 61, 62], and pre-

vention of misinformation propagation in online social networks (OSNs) [63].

Heuristic Design. The general reinforcement problem is equivalent to influence max-

imization. Kempe et al. [64] have shown that influence maximization in both Inde-

pendent Cascade Model and Linear Threshold Model are NP-complete. Similarly, in

various adaptations of the general protection problem, it has been shown that the pro-

tection problem entails the minimization of a non-monotone non-submodular function

and is NP-complete [27, 54]. This suggests that the best achievable solution can be only

in the form of a heuristic.

2.5 General Classification of Contagions in the Network

Protection Problem

A contagion process can be simple or complex. In simple contagion, which is modeled

by independent cascade models, the activation (or infection) of a single node is sufficient

for the transmission via message passing. By contrast, in complex contagion, modeled

by threshold models, a successful transmission requires contact with more than one

activated node [65]. The contagion processes for the network protection problem can
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be categorized into three general groups based on the context in which the spread starts:

network attack contagions, biological contagions, and social contagions.

2.5.1 Network Attack Contagions

This group of spreading processes involve contagions that are artificially designed to

attack a network, or perform unauthorized data collection, for a given budget. These

are often simple contagions that follow a simple, yet efficient, algorithm to select the

targets of the attack within the network.

Two notable examples of this contagion type are (1) crawling-based attacks on social

and peer-to-peer networks for the purpose of user de-anonymization and/or unwarranted

information access [24, 54]; (2) the cascading failures in power grids due to intentional

or accidental2 disruption in the transmission system [66].

The main challenge in protecting node(s) against such attacks is the lack of knowledge

on the logistics of the attacker (i.e., the starting point of the attack, the crawling algo-

rithm used, and the available attacking budget). Moreover, for scaleable and efficient

defense against these attacks, the defense heuristic has to rely only on local neighbor-

hood information (in contrast to global network measures, such as shortest path length

or closeness centrality) [24, 29].

2.5.2 Biological Contagions

Possibly the most widely studied type of spreading phenomena, biological contagions

include the epidemic models used for predicting and mitigating the outcome of viral

spreads. Propagation of pathology through brain networks also fits in this category

[67].

Biological contagions are often modeled as simple contagions [65], however, the models

based on complex contagion are shown to have better generalizability [68]. Protection

against these spreads are particularly challenging due to the dynamic nature of diseases

[69], the co-infections or the coexistence of multiple contagions (of various types) in the

network (i.e., the so called ecology of complex contagions [65]), and the lack of global

knowledge of the underlying social (contact) network [25].

2The inadvertent cascading failure can be considered as an attack with a naı̈ve attacking strategy, such
as random node selection.
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2.5.3 Social Contagions

Popularized through studies in sociology and viral marketing, social contagions have

remained among the most complex processes to model and analyze. The propagation

of beliefs [70], emotions [71, 72], rumors [73], opinions [74], misinformation [75], ide-

ology [76], and behavior [77] shape the wide spectrum of the social contagion context.

The multifaceted nature of social contagions, and the different contagion dynamics from

one context to the next, amplifies the complexity of a general social contagion model.

To tackle the seemingly unattainable problem of modeling general social contagions,

the studies focus only on one type of social contagion (e.g., rumor propagation) and use

empirical characterization of human social interactions (e.g., the strength of weak ties

[78], the small-world property [79], and assortativity [80]) to model the spread [68].

Social contagions pose another, and more unique, challenge in finding an optimal pro-

tection heuristic: the lack of control over individual’s choice of forming social ties.

More specifically, if an optimal perturbation scheme deduces the existence of an edge

as harmful, there are no clear answers to how one can go about severing that connection

between two individuals. As such, the majority of current research focus on either the

analysis of the contagion process or the detection of the susceptible hubs.

In summary, contagions can be categorized based on either the context (i.e., attack on

network infrastructure, biological processes, or social phenomena), or the mechanism
of the spread (i.e., simple vs. complex contagion). This study covers network attacks

and biological contagions by, first, outlining the challenges and major drawbacks in the

state-of-the-art protection schemes, and, second, offering optimal heuristics that address

those existing shortcomings.

2.6 The Shortcomings of Current Trends in Network

Protection Research

From a general perspective, the majority, if not all, research addressing the three context-

based contagion types suffer from one or more of the following shortcomings.

Assumption of global graph knowledge. In the case of real-world biological and so-

cial contagion scenarios, the knowledge of the underlying social (contact) network is
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non-existent or severely limited. Combating a viral infection, the real-world problem

setting of biological contagion, relies on testing strategies (e.g., contact tracing) that

give noisy information about sporadic local neighborhood in the network, and this is

the best estimate of the network structure that protector can have [81, 82]. A simi-

lar problem arises in the study of social contagions. In the case of face-to-face social

networks, this problem is more pronounced as the existence of any sort of connection

between two individuals is not known a priori and theoretical models are used to assess

their presence. For example, Starnini et al. propose an agent-based modeling that repro-

duces quantitatively some features of face-to-face interaction networks through random

walks [83]. However, even in online social networks in which the existence of different

type of edges is known (e.g., follower-followee, retweet, and mention relationship in

Twitter, friendships in Facebook, reply and Karma in Reddit, etc.), we are not aware of

the importance of these connections.

This is the problem of defining socially relevant connections [84]; we might know, for

example, whom a person A follows in online social media, or gets in touch with through

Email or phone, but we cannot easily infer which of these connections are meaningful

enough to leave an impression on A’s social behavior and beliefs. Moreover, relying on

global network structure begets the scalability bottleneck of network protection heuris-

tics. For example, in the case of network attack contagions, the protection algorithms

that rely on global centrality measures lose their efficacy rapidly as the size of the net-

work (number of nodes and/or edges) increases [24, 27, 29].

Ignoring the dynamic nature of spread and/or network. Both the contagion process

and the underlying network can be dynamic with time-dependent parameters (charac-

teristics). For example, the infection rate of a viral spread is often time dependent [85],

and so are the interaction between individuals (e.g., they can depend on days of the

week and seasons, or be impacted by other contagion processes such as ideological

shifts [86]). As the co-evolution of multiple dynamic processes with unknown covari-

ates makes the protection problem intractable, many studies consider either the spread

process or the network to be static. As long as the time scale of change in one of these

two is slower than that of the other, the static assumption is adequate for real-world

applications [87]. However, when these scales become comparable, it is necessary to

consider the dynamic nature of both.

Imprecise evaluation metrics. More applicable to network attack contagions, there is

no consensus on the definition of “successful protection” among different studies. The

majority consider a certain centrality measure and propose methods for minimizing it.
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Closeness centrality, betweenness centrality, degree centrality, and eigenvector central-

ity are the most popular choices [24, 27, 29, 88]. However, I show in Chapter 4 that

minimizing these (often global) centralities do not necessarily decrease the probability

of discovery by an attacker. Indeed, by defining the evaluation metric as the budget

spent by an attacker, we can both reduce these centralities and the probability of discov-

ery by the attacker.

Scalability. Contagion processes propagate through contagion paths in the network

(see Chapter 3). The main goal of a protection algorithm is to introduce perturbations

to the network such that these paths are either cut or elongated. Previous studies have

shown the impact of global measures, in particular shortest path length, in determining

the efficiency of a spread [31, 54]. Network centrality measures used in detecting the

“super-spreaders” (in the form of bridge nodes) also depend on the shortest paths in the

network (e.g., closeness centrality, harmonic centrality, and betweenness centrality).

Hence, for influencing the contagion paths, the studies often focus on shortest paths and

related global measures in the network. However, this severely limits the applicability

of such methods in real-world scenarios as they do not scale well. The main question to

be answered is whether we can influence the contagion paths as a global property of a

network by focusing only on local information that are easy to acquire.
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Chapter 3

Contagion Paths & Local Community
Information

In real-world settings, mechanisms and dynamics of a contagion is often unknown.

Similarly, the information on the underlying network structure may only be partially

known. The current study is built on these two assumptions (see Chapters 4 and 6).

To devise a protection scheme that goes beyond the specification of the underlying

contagion model, we need to focus on network structural properties that impact the

general behavior of a spreading phenomenon. Recall that a spreading phenomenon is

defined as a process in which a node can influence its neighboring nodes to change their

status. This local behavior translates into the global phenomenon of contagion in the

network in which information (e.g., disease, news, beliefs, etc.) propagates through

certain paths that I will refer to as Contagion Paths.

Large real-world social networks (including those discussed in this study) often ex-

hibit small-world properties, i.e., a low average shortest path length (or characteristic

path length, as defined in Section 3.2.2) and a high clustering coefficient [1]. The effi-

ciency of contagion paths (i.e., magnitude of contagion) vary based on the underlying

network structure; e.g., random network, scale-free network, and small-world network

[31, 89, 90]. In particular, the small-world properties – characteristic path length and

clusterability of the network structure – are shown to be paramount in determining the

efficiency of the spread [31].

The characteristic path length is a global graph measure that requires full knowledge

on the network structure and computing it has a time complexity of O(mn), in which m

and n represent the number of edges and nodes respectively. The clusterability, on the
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other hand, can be expressed locally as local clustering coefficient (defined in 3.2.1) and

can be computed in O(n
√

n) for all nodes (or O(
√

n) for each node). Having scalability

at the heart of this study, my goal is to limit the proposed protection algorithms to

local information. In this section, I will show, theoretically and empirically, that the

global property of characteristic path length can be expressed in terms of local clustering

coefficient for small-world networks. Hence, the efficiency of the contagion, which has

been shown to depend on characteristic path length and clusterability, can be controlled

by perturbations that target the local clustering coefficient of the network.

The importance of clustering coefficient, as the measure of nodes’ tendency to group to-

gether, signifies the importance of community information in managing the magnitude

of the spread. The result of this chapter on the importance of local community informa-

tion, illustrated by the local clustering coefficient, pave the path for subsequent chapters

in which I propose scalable and efficient protection algorithms against different types of

contagion.

3.1 Related Work

Pinto et al. [90] studied the impact of network topology on the viral spread for several

complex network models, namely random, small-world, scale-free, modular, and hier-

archical network models. They model the viral spread as SIR model with and without

vaccination. Their results show that the propagation of disease is heavily impacted by

the underlying network structure. More specifically, the spread of disease slows down

as the network becomes more modular (i.e., increasing clusterability). I will refer to

studies that show the impact of modularity on the spread for a broader class of viral

spread models in Chapter 6.

In a similar study, Shirley and Rushton [89] show the importance of shorter charac-

teristic path length on increasing the magnitude of infection. They also emphasize the

impact of local and global heterogeneity of network topology on reducing or increasing

the efficiency of spread. More specifically, the local heterogeneity, represented by the

presence of clusters, reduces the magnitude of spread only in the intermediate levels

of clustering (i.e., where vertices clustering coefficient follows a non-uniform distribu-

tion). The global heterogeneity, characterized by the different contact pattern across all

vertices, can increase the magnitude of infection if close to uniform distribution and
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decrease it otherwise. The small-world networks introduce both local and global het-

erogeneity; the local heterogeneity through introducing non-uniform clustering while

retaining a short characteristic path length, and global heterogeneity through random

rewiring that leads to non-uniform local contacts.

Cowan and Jonard [31] go further and show the trade-off between the impact of path

lengths and clustering coefficient (referred to as “cliquishness” in the paper) on the

magnitude of contagion in the context of knowledge diffusion. Although the shorter

path length are associated with higher contagion size, shortening these paths more than

a certain level will destroy the clusters (and heterogeneity), which in turn reduces the

contagion size. In summary, the addition of links (reducing path lengths) can only help

the contagion size if the clustering structure is preserved. A region with sufficiently

short path length and high clustering structure is the small-world region and close to the

topology of real-world networks.

The studies that connect the network structure to spreading dynamics, as mentioned

above, are context-based (e.g., network attack contagions, viral spread, rumor propaga-

tion, etc.) and not comprehensive in terms of the network measures considered. How-

ever, a common conclusion in all these studies is the importance of characteristic path

length and clustering coefficient in controlling the size of a contagion in small worlds,

regardless of contagion context. I take these studies one step further and consider the

relationship between characteristic path length, as a global measure, and local network

measures (such as clustering coefficient). The goal is to find a local estimator of this

global measure that can help with realizing scalable protection strategies whose aim is

to reduce the contagion size.

I first start by a theoretical analysis of the well-known Watts-Strogatz small-world

model [1] in Section 3.2. Next, I will expand my analysis through a comprehensive

empirical study on 10 real small-world networks in Section 3.3. The result of both

analysis is summarized in 3.4 and paves the path for the next chapters.

3.2 Path Length & Clustering Coefficient in Small Worlds:

Theoretical Analysis

The small-world experiment, conducted by Milgram’s team in 1967 [79] (see Section

3.3 for more details), empirically demonstrated that the individuals in human societies,
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Figure 3.1: Watts-Strogatz small-world model is an intermediary between regular lat-
tice with large clustering coefficient and characteristic path length, and random graph
with small clustering coefficient and characteristic path length. The amount of ran-
domness introduced to the network is controlled by parameter p. Figure recreated

from [1].

on average, are connected via short paths of length six (six degrees of separation). In

1998, Watts and Strogatz introduced their small-world model that can successfully cre-

ate the features of a small-world network; short characteristic path length and high

clustering coefficient. Watts-Strogatz model starts from a regular lattice and introduces

randomness to the lattice through rewiring mechanism controlled by parameter p.

A regular graph is one in which all nodes have the same degree. A regular lattice,

as a special case of a regular graph, imposes an ordering on the nodes and limits the

connections of a node to its nearest neighbors based on this ordering. To build a regular

lattice of degree K (where K is even) on an ordered set of nodes {v1, v2, ..., vn}, each

node vi is connected to K
2 nodes before and after itself in the ordered set. In other words,

the edge (vi, v j) exists iff

0 < |i − j| ≤
K
2
. (3.1)

Figure 3.1 shows a regular lattice of degree 4.

The Watts-Strogatz algorithm rewires each existing edge in the regular lattice with prob-

ability p. The higher this probability, the closer is the final network to a random graph,

as shown in Figure 3.1. Since small-world model is the intermediary between regular
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lattice and random network, its network measures are also bounded by their correspond-

ing measure in the the lattice and random graph. Formally, if we use the subscript p for

small-world model, 0 for regular lattice, and 1 for random graph (since p = 0 and p = 1

yield regular lattice and random graph, respectively), we have

L0 ≤ Lp ≤ L1, (3.2)

C0 ≤ Cp ≤ C1, (3.3)

in which L and C represent characteristic path length (i.e., average shortest path length)

and clustering coefficient (i.e., average local clustering coefficient) of the network, ac-

cordingly.

In the following, I prove the relationship between the global measure of characteristic

path length and local clustering coefficient in Watts-Strogatz model. To do so, I leverage

the relationship between structural properties of small-world and regular lattice; i.e., Lp

L0

and Cp

C0
.

3.2.1 Clustering Coefficient

Consider an undirected1 graph G = (V, E) with V = {v1, ..., vn} and E = {(vi, v j)|vi, v j ∈

V} representing the set of vertices and edges respectively. Recall that the local clustering

coefficient of a node vi ∈ V is a measure of connectivity between its neighbors and is

defined as the fraction of existing connection among vi’s neighbors and all possible

such connections. Formally, if we define the neighborhood graph of vi as Gi = (Vi, Ei)

in which Vi = {v j|(vi, v j) ∈ E} and Ei = {(v j, vk)|v j, vk ∈ Vi, (v j, vk) ∈ E}. The number

of possible connections between neighbors of vi (i.e., nodes in Vi) is
(
|Vi |

2

)
. Hence, the

local clustering coefficient of vi is |Ei |

(|Vi |
2 ) . The clustering coefficient for G is defined as the

mean of all local clustering coefficients for its vertices; i.e.,

C(G) =
1
|V |

n∑
i=1

|Ei|(
|Vi |

2

) . (3.4)

1In this chapter I focus on undirected networks as justified in Section 3.3. However, all definitions
hold for directed graphs as well with minor adjustments.
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Figure 3.2: The number of edges within the neighborhood of node vi (shown in red)
for h hop away from vi is K − h for h ≤ K

2 . The first row shows vi in red and the span
of its neighborhood that includes K

2 nodes to the left and right (total length is K). The
figure shows h hops away within the K

2 neighborhood to the right of vi. The green area
shows the number of edges in each hop away that reside in the neighborhood of vi and

the values on the right depict the length of each green area.

This is equivalent to counting the number of triangles formed by Vi ∪ vi and compare it

to all possible triangles that could be formed by the same set of nodes.

Theorem 3.1. The clustering coefficient of regular lattice of degree K is 3(K−2)
4(K−1) .

Proof. To understand this, recall that in a regular lattice each vertex vi is connected to
K
2 nodes before and after itself. If we limit ourselves to the K

2 neighborhood to the right

of vi (Figure 3.2), we see that at h hops away from vi only K − h edges (i.e., K − h

fraction of the degree) reside in the neighborhood of vi. The same pattern hold for the K
2

neighborhood to the left of vi. If we consider both left and right of vi, we are counting

each edge twice. So, it suffices to only count the number of edges in the right side of vi’s

neighborhood that overlaps Ei. Substituting the corresponding values to 3.4, we have,

C0 =
1
|V |

|V |∑
i=1

(K − 1) + (K − 2) + ... + (K − K
2 )(

K
2

) =

1
|V |
× |V | ×

( K
2 × K) − (1 + 2 + ... + K

2 )
K(K−1)

2

=

( K
2 × K) − ( K

4 ( K
2 + 1))

K(K−1)
2

=
3(K − 2)
4(K − 1)

(3.5)

�

There is an analytical relationship between Cp and C0. Since this relationship is crucial

to the final theoretical result, I prove this relationship here.
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Theorem 3.2. The clustering coefficient of a regular lattice of degree K and that of

Watts-Strogatz small-world network resulting from such lattice are related as,

Cp ≈ (1 − p)3C0. (3.6)

Proof. A triangle formed by vi and two of its neighbors in the small-world network

implies that these three edges have survived the rewiring process. There are two possible

scenarios in which this can happen:

1. All three edges have not been rewired. This can happen with probability (1− p)3.

2. Only (3 − k) edges have not been rewired and k edges are the result of rewiring.

The probability of this happening is pk(1 − p)3−k.

Thus,

Cp = C0((1 − p)3 +

3∑
k=1

pk(1 − p)3−k). (3.7)

Since p is small for small-world networks (see Figure 3.3), the summation term is neg-

ligible in comparison and 3.6 is obtained. �

Figure 3.3 shows the accuracy of this approximation compared with values obtained

from multiple simulations.

3.2.2 Characteristic Path Length

The characteristic path length is the average of all pairwise shortest paths in graph G =

(V, E) and is referred to as L(G). Formally,

L(G) =
1

|V |(|V | − 1)

|V |∑
i=1

|V |∑
j=i+1

min dist(vi, v j). (3.8)

Theorem 3.3. The characteristic path length for a regular lattice of degree K ≥ 2 with

n nodes, where n � K, can be approximated as

L0 ≈
n

2K
. (3.9)
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Proof. Since a regular lattice is symmetric, all nodes have the same average shortest

path length to other nodes. Hence, the characteristic path length of the full lattice is

equal to the average shortest path length from one node to rest. Let’s consider that node

to be vi. Based on the definition of regular lattice in 3.1, h-hop away from vi includes
K
2 nodes; i.e., there are K

2 nodes whose shortest path length from vi is h. The largest

possible shortest path length in a regular lattice is d n
K e, so h ≤ d n

K e.

The sum of all shortest paths from vi to all nods in {v j|i < j ≤ d n
K e} is

K
2 (1+2+ ...+ d n

K e).

Using the symmetry of the lattice, the average shortest path length from vi to n−1 other

nodes in the lattice (i.e., the characteristic path length of lattice) becomes

L0 = 2 ×
K
2 (1 + 2 + ... + d n

K e)
n − 1

=
K

2(n − 1)
d

n
K
e(d

n
K
e + 1) =


n(n+K)

2K(n−1) , even n,
(n+1)(n+K+1)

2K(n−1) , odd n.

(3.10)

For sufficiently large n, the result is approximately n
2K . �

A useful conclusion from Theorems 3.1 and 3.3 that I will use in next section is that

L0

C0
≈

n
2K

3(K−2)
4(K−1)

≈
2n(K − 1)
3K(K − 2)

≈
2n
3K

. (3.11)

Although there is no analytical relationship between Lp and L0, we can estimate Lp

L0
for

different levels of small-worldness for different values of p. Figure 3.3 shows the values

for Lp

L0
and Cp

C0
for different p. The points are obtained by averaging through six networks

of size 500, 1000, 1500, 2000, 2500, and 3000 nodes and degree 4, 10, 14, 20, 24, and

30 respectively. For 0.01 < p ≤ 0.1, the resulting network has the high clustering of

a lattice with small path length of a random graph. This region is often referred to as

small-world region. For 0 < p ≤ 0.01, the network has more lattice-like behavior and

is referred to as lattice-like region. Similarly, we have a random region for 0.1 < p ≤ 1

in which the network has more similarity to a random graph with its low clustering and

small path length.

Considering each of these three regions separately, we can find an approximation of Lp

L0

in terms of p by finding the best fitted curve. I use non-linear least squares method
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Figure 3.3: The relative clustering coefficient, its approximation, and relative charac-
teristic path length of Watts-Strogatz model for different values of p. The data points
are obtained by averaging through six different networks with different sizes and de-
grees. The small-world region lies in 0.01 < p ≤ 0.1 in which the clustering is still

large but shortest path is sufficiently small.

to fitted curve. Figure 3.4 shows the best fit for each region. The quality of the fit is

assessed by residual sum of squares (RSS) which is defined as

RSS =

n∑
i

( f (xi) − yi)2, (3.12)

and is reported for each fitted curve in Figure 3.4. The best fitted curves give the fol-

lowing relative characteristic path length for each region,

Lp

L0
≈ f (p) =


−0.12(3.5 + ln(p)), 0 < p ≤ 0.01 (lattice-like)

0.07(1 − 8.22p)3 + 0.08, 0.01 < p ≤ 0.1 (small-world)

0.03(2 + e−5.6p), 0.1 < p ≤ 1 (random).

(3.13)

This result will be used in next section to infer the relationship between the characteris-

tic path length (as a global measure) and clustering coefficient (as a local measure).
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Figure 3.4: The best fitted curve for relative characteristic path length in three different
regions: lattice-like, small-world, and random. The exact function for each curve can

be found in 3.13.
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3.2.3 Path Length Described by Clustering Coefficient

Here I combine the results in the previous two sections to establish the relationship

between Lp and Cp as follows,

Lp

Cp

3.2
≈

Lp

(1 − p)3C0

3.11
≈

2n
3K(1 − p)3 ×

Lp

L0

3.13
≈

2n
3K(1 − p)3 × f (p) (3.14)

Hence, there is an approximate relationship between clustering coefficient and charac-

teristic path length in small-world networks that depends only on p. For small-world

networks, this relationship is a polynomial fraction of same degree. This shows that,

theoretically, the contagion paths in small worlds, which are shown to correlate with

small-world properties, can be influenced by focusing on the local clustering (i.e., struc-

tural community) information alone instead of incorporating global measures, such as

shortest path lengths.

The biggest drawback of the Watts-Strogatz model is its inability to imitate the scale-

free degree distribution of real-world networks. In the remaining of this chapter, I set up

an empirical study to show that in real-world scenarios there also exists a relationship

between the clustering coefficient and characteristic path length. Although this relation-

ship is not as straightforward as in 3.14, it demonstrates the possibility of influencing

shortest paths via local clustering information nonetheless.

3.3 Path Length & Clustering Coefficient in Small Worlds:

Empirical Analysis

Network connectivity and shortest paths have been widely used to study information

diffusion and rumor propagation [91]. Shortest paths provide the fastest and, usually,

the strongest interaction between actors (nodes) in a network [92]. Theoretical studies

on shortest paths in social networks often neglect one of the most well-known properties

of these networks: small-world phenomenon [93–95]. Small-world phenomenon, first

popularized by Milgram in the 60’s [79], indicates that individuals in a social network

are connected via short paths of friendships. Later studies found a similar pattern in

online social networks and further extended the theory behind this phenomenon [1, 96,
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97]. In this section, I analyze the relationship between shortest paths and local clustering

coefficient using 10 real-world social networks. To achieve this, I first introduce the

small-world representation of a social network and show the small-worldness of the

dataset using ω measure. I later proceed to show how local clustering coefficient can be

used to estimate the distribution of shortest paths in a network.

3.3.1 Small-World Representation of Data

The focus of this study is to investigate the real-world networks of entities, be it online

or physical. The fundamental concept behind small-world is reachability of the nodes.

Hence, a relationship between nodes that do not enable them to contact or reach each

other is not of interest. For example, the connections between individuals who are

recipients of the same email do not imply that these users can necessarily reach each

other. Reachability through edges in a network can be inferred via the network’s small-

world representation.

Definition 3.4. (Small-world representation). The small-world representation of net-

work G = (V, E) is the undirected network G′ = (V, E′) such that for all (vi, v j) ∈ E,

there exists exactly one edge (vi, v j) ∈ E′ that represents the flow of information from vi

to v j and vice versa.

The intuition behind this definition can be better understood from Milgram’s broker ex-

periment [79]. In his experiment, Milgram chose a set of individuals at random and

asked each of them to send a letter to a specific broker through their connections. Each

individual had to choose a person among their acquaintances to pass the letter on. In-

tuitively, the chosen candidate should have the highest possibility to reach the broker

through his/her connections. The flow of information from A to B (i.e. passing the let-

ter from A to B) was entirely dependent on the “acquaintanceship” of A and B. A way

to extend this experiment to virtual societies (e.g. social media platforms) is through

asking someone to pass a message, rumor, or news to a target individual using only their

acquaintances.

The acquaintanceship in online networks cannot be defined as straightforward as in

physical societies. For example, in an online network like Twitter, one might claim that

the Following relationship makes a one-sided flow of information from the followee

to the follower but not vice versa. I argue that, in terms of the information flow in

Milgram’s small-world experiment, the flow of information can go from the follower
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to followee as well. Consider A, the subject of our experiment, to follow B and B to

follow C. If A is asked to pass a message to C through his/her acquaintances, B will be

the optimal receiving end of the message despite the fact that B does not follow A. In

general, in networks like Twitter, posting content to be seen by one’s followers is not

the only way of transferring information. Another way is to receive content from the

people whom one is followed by in different ways such as tagging a person. As a result,

I find the small-world representation of a directed social network, such as Twitter, a

more reasonable graph model to study paths that deal with information flow. The small-

world representation of our example, Twitter network, is its undirected counterpart.

3.3.2 Datasets

Following this strategy, I have selected ten real-world networks with a type of connec-

tion among individuals that has a small-world representation. In the following, I intro-

duce each network’s type of connection and how they can be modeled as small-world

graphs.

• Zachary’s Karate Club [98]: an undirected network of ties among members of

a Karate club after the club splits into two groups.

• Train Bombing [99]: an undirected network of contacts among the suspected ter-

rorists in Madrid’s train bombing incident in 2004. The original network contains

edge weights to show the strength of the connections. However, these weights do

not change the reachability of the nodes; i.e. an edge between terrorists i and j

implies that i can contact j and vice versa regardless of the strength of their rela-

tionship (there are no edges with weight zero). So, the small-world representation

of the network is the unweighted counterpart of this graph.

• Residence Hall [100]: a directed network of friendships among residents of a

residence hall on Australian National University campus. A directed edge from i

to j shows that i considers j to be a friend. This also implies that i and j know each

other whether j considers i as a friend or not. So, the small-world representation

will be the undirected counterpart of this graph.

• Haggle [101]: an undirected network of contacts between individuals, obtained

through carried wireless devices.
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• Infectious [102]: a multi-edge undirected network of face-to-face contacts among

exhibition visitors at Dublin’s Science Gallery in 2009. The contacts have been

active for at least 20 seconds and multiple contacts could have occurred between

two individuals. The small-world representation of this network is the single-edge

undirected counterpart.

• Hamster [103]: an undirected network of friendships between users in Hamster

online social network.

• Adolescent Health [104]: a weighted directed network of friendships among

students created from a survey in 1994/1995. Each student was asked for the name

of his/her top five friends and the edge weights show the frequency of interaction

between them. The small-world representation of this network is the unweighted

undirected counterpart (same as residence hall dataset).

• Ego Facebook [105]: an undirected friendship network of Facebook users.

• Advogato [106]: a directed network of trust among developers in Advogato plat-

form. The edges have positive weights (the amount of trust between two users)

and the nodes can contain self-loops (one can trust himself). The trust between

user i and j can imply the prior acquaintanceship between i and j that makes the

flow of information possible in both directions. Hence, the small-world represen-

tation of this network is the undirected network with no weights or self-loops.

• Pretty Good Privacy [107]: the undirected interaction network between users

through Pretty Good Privacy (PGP) software.

In all networks, unless otherwise stated, the small-world representation is the same as

the original network.

I test the small-worldness of the datasets using the ω measure proposed by Telesford et

al. [108]. This measure is defined as

ω =
L1

Lp
−
Cp

C0
. (3.15)

The values ofω are in [−1, 1]. ω values close to 0 indicate small-worldness (near perfect

clustering coefficient and characteristic path length). Negative and positive values show
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Figure 3.5: Measure of small-worldness, ω, for different values of p in Watts-Strogatz
model. The small-world region corresponds to ω ∈ (−0.6, 0].

edge type |V | |E| avg. deg. C (%) L ω

Zachary Karate Club tie 34 78 4.59 57.06 2.41 -0.09
Train Bombing contact 64 243 7.59 62.23 2.69 -0.13
Residence Hall friendship 217 1,839 16.95 36.28 2.39 -0.09
Haggle contact 274 2,124 15.5 63.27 2.42 0
Infectious contact 410 2,765 13.49 45.58 3.63 -0.27
Hamster friendship 2,000 16,098 16.1 54.01 3.59 -0.18
Adolescent Health friendship 2,539 10,455 8.24 14.67 4.56 -0.14
Ego Facebook friendship 2,888 2,981 2.06 2.72 3.87 -0.26
Advogato trust 5,042 39,227 15.56 25.27 3.27 NA
Pretty Good Privacy interaction 10,680 24,316 4.55 26.59 7.49 NA

Table 3.1: The network characteristics of 10 real-world datasets. This information
belongs to the small-world representation of each network (avg. deg.: average degree).

more lattice-like and random characteristics, respectively. The corresponding ω for

different values of p in Watts-Strogatz model is shown in Figure 3.5. small-world region

(0.01 < p ≤ 0.1) corresponds to ω ∈ (−0.6, 0].

The detailed information of these small-world representations can be found in Table 3.1.

All datasets (except for Advogato and Pretty Good Privacy that were too large to com-

pute the ω for) have ω values within the small-world region in 3.13 and, hence, are

small worlds.
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degree centrality local clustering coefficient naı̈ve uniform uniform normal
Zachary Karate Club 0.32 0.29 0.14 0.04 0.03
Train Bombing 0.44 0.57 0.17 0.09 0.06
Residence Hall 0.13 0.09 0.21 0.08 0.04
Haggle 1.29 0.65 0.23 0.07 0.04
Infectious 0.28 0.19 0.24 0.1 0.02
Hamster 0.67 0.19 0.25 0.1 0.02
Adolescent Health 0.19 0.35 0.24 0.11 0.01
Ego Facebook 1.57 1.82 0.27 0.07 0.04
Advogato 1.06 0.32 0.25 0.09 0.03
Pretty Good Privacy 0.78 0.19 0.26 0.15 0.02

Table 3.2: KL divergence between SPN distribution and that of local information.

3.3.3 Shortest-Path Distribution and Local Information

In this section, I focus on distributions of local information, i.e. degree distribution,

degree centrality distribution, and local clustering coefficient distribution. To infer a

meaningful comparison between these distributions and that of shortest paths, I consider

the shortest-path distribution of each node. In this distribution, a Shortest-Path Number

(SPN) is assigned to each node which is defined in equation 3.18. The sum of SPN

index for all nodes in the graph is |V | times the average path length of the graph. For

each node i in graph G, the shortest-path number of i is defined as

SPN(i) =

∑
j,i dmin(i, j)
|V | − 1

. (3.16)

Note that I assume graph connectivity (bounded SPN). I also used the SPN defined as

the median of the shortest paths from i which gave the same results as the average.

The distribution of SPNs for all nodes in the graph (SPN distribution) is of our interest.

I use Kullback-Leibler (KL) divergence [109] to measure the distance between SPN

distribution and that of local distributions. The KL divergence between two probability

distributions P and Q is denoted as KL(P||Q) and means P’s divergence from Q. The

KL divergence is computed as follows,

KL(P||Q) =
∑

x

P(x) ln(
P(x)
Q(x)

). (3.17)

P and Q are identical if KL(P||Q) = 0. In our case, P is the distribution of local

distribution and Q is that of SPN.

I also test the SPN distribution against a modified version of three standard distributions:
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1. Naı̈ve Uniform: This distribution models the random guess for predicting the

SPN of a node. I use this model to test the significance of KL divergence. Any

KL divergence value above the corresponding value in naı̈ve uniform model is

insignificant. In this model, it is assumed the SPN of each node is drawn from

a uniform distribution between the minimum and maximum possible SPN in a

graph. Nodes with degree |V | − 1 give the minimum possible SPN and maximum

SPN occurs if the nodes form a chain such as in a → b → c. In this case, the

maximum SPN from equation 3.16 will be

SPNmax =
1 + 2 + ... + |V | − 1

|V | − 1
=
|V |
2
. (3.18)

So, the naı̈ve uniform will be defined as Uni f (1, |V |2 ).

2. Small-World Uniform: This model is an improvement of random guess. Naive

uniform models the true random guess for the SPN of each node with no prior

knowledge about the network. However, from small-world phenomenon, we

know that the average shortest path from each node is most probably a num-

ber less than 10. I use this prior knowledge to make more educated guesses with

uniform distribution. I estimate the SPNmax as

SPNmax ≈ SPN(nmcc), (3.19)

in which nmcc represents the node with the highest local clustering coefficient

(LCC) in the graph. This choice has been made due to (1) the fast calculation of

LCC, and (2) the relatively small KL divergence between LCC distribution and

SPN (see Table 3.2).

3. Estimated Normal: The intuition behind choosing this distribution is the bell

shape of the shortest-path length distribution appearing in all of my datasets (Fig-

ure 3.6). I use a standard normal distribution which is shifted by SPNmax as de-

fined in 3.19.

The KL divergence between all distributions and SPN can be found in Table 3.2. From

the table, it is evident that standard normal distribution shifted based on local clustering

coefficient measure (see 3.19) models the SPN distribution with the least information

loss. This result confirms the theoretical finding for small-world networks; there short-

est path length and local clustering information are connected and one can be influenced

by changing the other.
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3.4 Summary

In this chapter, I studied the relationship between shortest path length (characteristic

path length) and local clustering information in small worlds, both theoretically and

empirically. I found analytical relationship between the two for Watts-Strogatz model

in theory and empirical dependence in real-world small worlds. Considering the im-

portance of shortest paths in formation of contagion paths, these results suggest that

by tampering the local clustering information (or local structural community), we can

influence the contagion paths and control the magnitude of a spread.

More specifically, the results in the chapter suggest that the best local protection strategy

for a critical node is to increase its local clustering coefficient and average shortest path

length simultaneously. The former increases the importance of the node in affecting the

characteristic path length, and the latter shifts the shortest path distribution such that the

characteristic path length is increased.

I use this approach to design algorithms that protect a network against different types of

contagion in the next chapters. These algorithms rely on local community information

which makes them scalable to larger networks.
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Figure 3.6: The Shortest-path distribution follows a normal distribution.
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Chapter 4

Node Protection against Network
Crawling Attacks

With the increase in digitization of entities and their data, the problem of maintaining

the privacy of critical nodes in a network has become ever more relevant [110]. Many

versions of this problem have been considered. For example, Waniek et al. examine

how to protect individuals from detection in a crawling attack [24], and others have

addressed the susceptibility of easily accessible public profiles in de-anonymization

attempts [111–114]. Numerous studies have been dedicated to finding the optimal

crawling strategy for network adversarial attacks and methods for their timely detec-

tion [115–119]. This problem can be considered from a variety of angles, including

designing effective attack strategies, early detection of attacks, or network defense, in

which the goal is to minimally perturb the network so as to protect the target nodes from

detection.

In this chapter, I consider the problem of defense against network attack contagions. I

assume that the defender has a limited defense budget (i.e., number of allowable edge

perturbations) for protecting the target nodes, and has no knowledge of the attacker’s

logistics (i.e., starting point and the crawling algorithm). Note that in this problem, the

highest level of protection is achieved by isolating the target. However, this is not an

acceptable solution, as these targets are likely to be important to the network, and so re-

moving their connections harms the functionality of the system. The literature contains

few works dealing with network protection strategies from the defender’s perspective.

Previous work has shown that target node protection from the defender’s perspective
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results is NP-complete [27, 54]. Heuristic solutions use either global graph perturba-

tions [29, 120] or local graph perturbations [24, 26]. The time complexity of the former

is substantially greater, and often do not substantially outperform the local methods.

However, the search space for local-based methods is small and they rapidly reach their

performance plateau regardless of budget (see Section 6.3).

Here, I propose a new approach for vertex defense against crawling attacks: community-

based local graph perturbations, which find a middle ground between the fast compu-

tation of local perturbations and larger search space of global methods.1 The only infor-

mation required by CoVerD is the community labels of nodes and their 1-hop neighbor-

hood, which is the same information required by local network perturbation heuristics

[24]. Therefore, my proposed algorithm is fast and, due to its budget-aware decision

making, surpasses the performance of both local and global perturbation heuristics (see

Section 4.4). In fact, I show that CoVerD has the same impact on reducing the closeness

centrality of the target node without the need for expensive computation of centrality.

Figure 4.1 depicts the steps of the CoVerD algorithm on a toy example. The summary

of my contributions in this chapter are as follows,

• I formulate the problem of node protection in complex networks from a defender’s

perspective. I consider the general case in which the defender has no information

on the attacker’s starting point or its crawling algorithm.

• I propose a more general heuristic which considers both the local and community

information of the target node. My community-based defender, CoVerD, is fast

and benefits from the advantages of local network perturbations (namely, compu-

tational cost and defending budget) while bypassing its shortcomings (namely, the

rapid performance plateau). CoVerD can achieve close to optimal performance

(i.e., the attacker’s budget is maximized) and effectively reduces the closeness

centrality of the target node.

• On five real-world networks of varying sizes, I show the superiority of CoVerD in

terms of efficiency and performance against different crawling adversaries.

1“Community” here refers to a topological community.
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Figure 4.1: CoVerD algorithm on a toy graph. The target nodes and its community
members are shown in red and blue, respectively. The nodes outside of the community
that are connected to the members are shown in grey. The cohort loyalty scores are

included to the left of each member node.

4.1 Related Work

The problem of defending target nodes against crawling attacks has been studied in

four general domains: (1) optimization of crawling techniques for data acquisition

(attacker’s perspective) [111–114]; (2) detection of malicious crawling behavior (at-

tacker’s perspective) [121]; (3) increasing network robustness against crawling attack

through global network perturbations (defender’s perspective) [27, 29, 54]; (4) protect-

ing target nodes through local network perturbations (defender’s perspective) [24, 26].

As the focus is on defender’s perspective, here, I only discuss the latter two categories

in depth.

4.1.1 Defense via Local Network Perturbations

A simple, yet effective, method in locally manipulating graph structure is ROAM (Re-

move One, Add Many), the algorithm proposed by [24]. ROAM follows the intuition
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that the most important factor in the target node’s exposure is its immediate neighbor-

hood. ROAM decreases the degree centrality of the target node by iteratively removing

its highest-degree neighbors and connecting them to other immediate neighbors of the

target node, ensuring that the average path length and connectivity in the target’s neigh-

borhood are preserved.

Abrahamsson adopts the same algorithm but uses eigenvector centrality to pick the

neighbor candidate [26]. Their results are comparable to that of ROAM, but incur

greater computational costs. The main drawback of ROAM is the limit to its perfor-

mance. Once the target node’s degree reaches 1, ROAM stops and the algorithm reaches

its plateau even in the presence of more protection budget. My method matches or beats

ROAM’s performance for small budgets, but rapidly reaches close to optimal perfor-

mance with a slight increase in budget. To understand the reason, not that the goal of

ROAM is to assure the average path length and connectivity in target’s neighborhood

is preserved. From the results of Chapter 3, keeping the local average path length pre-

served while increasing the local clustering coefficient does no effectively change the

global characteristic path length. My proposed algorithm escapes this bottleneck by in-

creasing the target’s average path length locally via increasing its neighbors’ local path

lengths.

4.1.2 Defense via Global Network Perturbations

The majority of works in this category use various edge and/or node centralities to

greedily remove edges. The objective is to minimize/maximize a global network mea-

sure, such as network centrality or average path length. Crescenzi et al. address the

complementary problem to ours: maximizing the visibility of a node in the network

[27]. They achieve this goal by greedily adding outgoing edges from the target node

such that the closeness or betweenness centrality of the target node is maximized. Their

time complexity is O(k.n.g(n,m)), where n and m are the number of nodes and edges re-

spectively, and g(n,m) is the complexity of computing either closeness or betweenness

centrality for a node in the graph.

Numerous works have proposed methods to reduce the complexity of g(n,m) [122–

125], among which Ji et al. [29] specifically tailored their method for the vertex pro-

tection problem. The time complexity of their approach is O(k · m · τmn), in which τmn

represents the number of traverse nodes and edges that can be computed in O(m + n) in
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the worst case. Despite these efforts, the greedy approach using global network mea-

sures do not outperform local measures, such as ROAM [120]) and are infeasible on

large scale real-world networks. As such, a few studies have used greedy removal of

edges without re-computation of the centrality measures as well [29, 54]. I use three of

these methods as baselines that have substantially higher computational cost and worse

performance than local methods, including my algorithm, CoVerD.

4.2 Preliminaries and Problem Definition

Network Notation. Let G = (V, E) (|V | = n and |E| = m) be a connected, undirected,

unweighted graph with a mapping C(.) that projects |V | onto non-overlapping partitions.

For each node t ∈ V , we represent its 1-hop (immediate) neighborhood in G as NG(t) =

{ j| j ∈ V, (t, j) ∈ E} and its cohort as C(t) = { j| j ∈ V,C( j) = C(t)}. The subgraph of G

that contains the nodes in C(t) is denoted as Gt = (C(t),Et), in which Et = {(i, j)|i, j ∈

C(t), (i, j) ∈ E}. We will refer to this induced subgraph as the node’s cohort subgraph.

Also, the connectivity of the cohort subgraph is the only necessary condition for our

algorithm and we can generalize our approach to directed and/or weighted graphs as

well (see 4.3.3).

Problem Definition. The vertex defense problem (also referred to as node protection

and hiding node problem [24, 54]) involves a target node t and two actors: a crawling

adversary (attacker) and a defender. If we denote the crawling algorithm used by the

attacker asA and the probability ofA visiting a node u in G at the lth step as PA(u,G, l),

the adversary’s objective is to find an optimalA∗ within a limited attack budget ba such

that,

A∗ = max
l,A,ba

PA(t,G, l) (4.1)

s.t. l ≤ ba, ba ≤ n.

The defender has no knowledge of the attacker’s logistics (crawling algorithm, budget,

or starting point). It only has information on the target node and the community it

belongs to. Within a limited budget bd ≤ m, the defender has the ability to perturb any

set of edges in the community of t to obtain a new graph G
′

. Its objective is to find the

optimal perturbed graph G∗ such that,
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G∗ = min
G′ ,bd

PA(t,G
′

, l) (4.2)

s.t. bd ≤ m.

4.3 Method

The goal of CoVerD is to minimize the closeness centrality of the target node (which in-

creases the attacker’s required budget) as much as the available defense budget permits,

by using only the information of the cohort neighborhood of the target node. This strat-

egy is intuitive: focus on the immediate neighborhood of the target for small budgets

and expand attention to further neighborhoods within the cohort as the budget increases.

To this end, CoVerD uses a hierarchical modular structure to achieve the proper distri-

bution of the available budget.

There are two underlying assumptions behind CoVerD’s intuition: (1) for decreasing

the centrality of a node, its 1-hop neighborhood plays a more prominent role than its

larger k-hop neighborhood; (2) the existence of a protective community structure (i.e.,

with high average loyalty score) around the target node overpowers the global pathways

to the target node. The first assumption is already shown to be the case in real-world

social networks [24, 120]. In this study, I intend to show that the second assumption

holds for these networks.

4.3.1 Cohort Loyalty Score

While it is tempting to fully isolate a cohort containing a sensitive node, in practice,

outgoing connections from cohort are necessary to keep the functionality of the network,

even though they increase the cohort’s vulnerability. As such, I assign a loyalty score

to each node inside of the cohort to signify the impact that a node in the cohort has on

exposing the cohort to the rest of the network. Formally, for each node i inside of a

cohort C(t), its loyalty score with respect to C(t) is

S C(t)(i) =
|{(i, j)|(i, j) ∈ Et}|

|{(i, j)|(i, j) ∈ E}|
. (4.3)
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The lower a node’s loyalty score, the higher its reach outside of its cohort.

4.3.2 Why Community-based Defense?

The reachability of a node is first and foremost defined by its local community neighbor-

hood, as discussed in prior studies in contagion processes [114, 126, 127], which covers

the k-hop neighborhood of a target node t for k = 1, 2, ..., d(t, u) with d(t, u) representing

the eccentricity of t. For large k, the community’s average loyalty score decreases and

loses relevance to t. I argue that this is the case in the global target defense algorithms,

in which the target node’s community structure is ignored (i.e., consideration of global

neighborhoods instead of local neighborhood).

The local defense strategies, on the other hand, can be considered another special case

of community-based defense in which k = 1. However, social networks are shown to

have high clusterability in their 2 and 3-hop neighborhoods as well [6, 127], and this

is what a community-based method exploits. This gives a balance between capturing a

larger search space, without the explosion in computation costs.

4.3.3 CoVerD Algorithm

Figure 4.1 sketches out the CoVerD algorithm on a toy graph. CoVerD consists of four

separate blocks.

The first block (Algorithm 3) maximizes the loyalty score of the target node t by re-

moving its connection to neighbors outside of its cohort in the order of those neighbors’

degrees. This ordering assures that even for a very limited budget, the target node loses

its centrality effectively.

The second block (Algorithm 2) is the degree-biased ROAM method [24] that itera-

tively disconnects the target from its highly connected neighbors. To assure the connec-

tivity, as with the original ROAM algorithm, I make an edge between the disconnected

neighbor and one of the immediate neighbors of t. The combination of these two blocks

guarantees the high performance of the local perturbations in the absence of sufficient

defense budget.

As the budget increases, the third and fourth block boost the performance of the al-

gorithm and break the plateau of the local methods such as ROAM. The third block
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(Algorithm 4) increases the loyalty score of the 2− hop neighborhood of t by removing

the 2 − hop connections that leave C(t).

Increasing the loyalty score of this neighborhood promises to have a large impact on

decreasing the closeness centrality of the target node (as shown in Figure 4.3). Although

the third block achieves a considerable boost compared to using the first two blocks

alone, by building a loyalty chamber in the target’s cohort, I was able to boost the

performance of the algorithm for networks with densely connected communities (i.e., a

low average loyalty score per community).

CoVerD builds the loyalty chamber in the fourth block (Algorithm 5) by using the

remaining budget for disconnecting nodes within C(t) whose difference in loyalty score

is maximum. This last step divides the cohort into two distinctive partitions without

disconnecting the graph; the loyal nodes that are purely connected between themselves,

and the disloyal nodes that are loosely attached to the cohort. The overall algorithm is

shown in Algorithm 1.

4.3.4 Extension to Directed & Weighted Graphs

The connectivity of the target’s cohort, C(t), is the only necessary condition for running

CoVerD algorithm. The direction of the edges only impacts the definition of neighbor-

hoodNG(t) to include the incoming edges only. The edge weights change the definition

of loyalty score and budgeting scheme. For a weighted Graph G = (V, E,W), the cohort

loyalty score becomes

S C(t)(i) =

∑
j∈NGt (i)

wi j∑
j∈NG(i)

wi j
. (4.4)

The budget spent on an edge is equal to the weight of that edge.

4.3.5 Time Complexity

For a target node t, Algorithms 3 and 2 visit at most |NG(t)| nodes each. Algorithm 4

iterates over the 2-hop neighborhood of the target and computes the loyalty score for
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Algorithm 1: CoVerD
Input: G, t, C(t), bd

continue← True
while continue do

G, bd, continue← IncreaseTargetLoyalty(G, t, C(t), bd)

N ← NGt(t)
G, bd, continue← ROAM(G, t, bd)

G, bd, continue← Increase1HopLoyalty(G, N, t, C(t), bd)

G, bd, continue← BuildLoyaltyChamber(G, t, C(t), bd)
end
return G

each node in the cohort, visiting on average |NG(t)| · (|NG| + |Ct|), in which the |NG|

is the average degree in G. Algorithm 5 visits every node in the cohort once to re-

compute their loyalty score and visits exactly |Ct| nodes. For the average case in which

|NG(t)| ≈ |NG| = d, the overall time complexity of CoVerD is O((d + 1) · |Ct| + d
2 + 2d),

which for d � |Ct| curtails to O(d · |Ct|). So, the speed of CoVerD depends mainly on the

size of the target’s community. This is a significant improvement from the polynomial

time complexity of global methods (see Section 6.1) and is still comparable to local

methods with average time complexity of O(d).
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Algorithm 2: ROAM
Input: G, t, bd

f lag← False

spent ← 0

while spent ≤ bd do
NGt(t)← SortByDegree(NGt(t))

for p ∈ NGt(t) do
G′ ← G(V, E \ {(t, p)})

if IsConnected(G′) then
G ← G′

q←Random(NGt(t))

G ← G(V, E ∪ {(p, q)})

spent ← spent + 2
end

end

end
bd ← bd − spent

if bd ≤ 0 then
f lag← True

end
return G, bd, f lag
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Algorithm 3: IncreaseTargetLoyalty
Input: G, t, C(t), bd

f lag← True

spent ← 0

N′ ← SortByDegree(NG(t) \ NGt(t))

for p ∈ N′ do
G′ ← G(V, E \ {(t, p)})

if IsConnected(G′) then
G ← G′

spent ← spent + 1

if spent > bd then
break

end

end

end
bd ← bd − spent

if bd ≤ 0 then
f lag← False

end
return G, bd, f lag
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Algorithm 4: Increase1HopLoyalty
Input: G, N, t, C(t), bd

f lag← True; spent ← 0

for p ∈ N do
N′ ← SortByDegree(NG(p) \ NGt(p))

for q ∈ N′ do
G′ ← G(V, E \ {(p, q)})

if IsConnected(G′) then
G ← G′; spent ← spent + 1

if spent > bd then
break

end

end

end
if spent > bd then

break
end
for q ∈ C(t) do

Compute S C(t)(q)

end
for q ∈ NGt(p) do

if S C(t)(q) < 1 then
G′ ← G(V, E \ {(p, q)})

if IsConnected(G′) then
G ← G′; spent ← spent + 1

if spent > bd then
break

end

end

end

end
if spent > bd then

break
end

end
bd ← bd − spent

if bd ≤ 0 then
f lag← False

end
return G, bd, f lag
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Algorithm 5: BuildLoyaltyChamber
Input: G, t, C(t), bd

f lag← True; spent ← 0

for p ∈ C(t) do
compute S C(t)(p)

end
candid ← {(n1, n2)|(n1, n2) ∈ Et, S C(t)(n1) = 1, S C(t)(n2) < 1}

candid ←SortByScoreDiff(candid)

for q ∈ candid do
for p ∈ NGt(q) do

G′ ← G(V, E \ {(p, q)})

if IsConnected(G′) then
G ← G′ ; spent ← spent + 1

if spent > bd then
break

end

end

end

end
bd ← bd − spent

if bd ≤ 0 then
f lag← False

end
return G, bd, f lag
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4.4 Experiments

In this section, I analyze the performance of CoVerD algorithm against both local and

global perturbation algorithms on five real-world datasets.

4.4.1 Experimental Setup

In my experiments, I implement a defense strategy (edge perturbations) on a given net-

work G for a target node t to obtain defended network G∗. Then, I run a crawling algo-

rithm starting from a given source node and obtain ba, the number of nodes explored by

the adversary crawler, before reaching t. ba is at most |V |, so the defender performance

metric is ba
|V | . I select target nodes in three ways, and for each, select 5 nodes:

• Random Targets: The target nodes are chosen uniformly at random.

• Degree-based Targets: The targets are chosen with probability proportional to

degree. This strategy mirrors the attack on well-connected influential nodes.

• Community-based Targets: First, each community receives two scores, each

in [0, 1], based on (a) their size and (b) density of their intra-group edges. The

normalized sum of these two scores gives a final ranking of each community. The

targets are chosen from |V | with a probability that is biased towards the score of

their respective community. This strategy mirrors the attack on well-connected

influential communities.

I choose five different source nodes at random for the attacker’s starting point. I run the

simulation for all (target, source) combinations (i.e., 75 pairs) and report their average

performance. This procedure is repeated for values of bd ranging from 0.1% to 5% of

the edges in the graph.

Datasets. I use five real-world datasets whose names and basic statistics are shown in

Table 4.1. For the community assignment in each network, I use Louvain community

detection method [14].

Defender algorithms. I compare my algorithm against both local and global defend-

ers. ROAM is the most prominent local-perturbation method [24] (see 6.1). Among

the global perturbations, however, my choices are limited to those that have feasible
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computation time on the selected real-world networks. I build three global defenders by

following the proposed approximate global perturbation methods in [54, 116]. In my

four baselines: ROAM is implemented similarly to Algorithm 2, except that I do not

limit the neighborhood of the target to the cohort neighbors. Betweenness, PageRank,

and MaxDegree score each edge as the sum of it’s endpoints’ scores, where each node

is scored by its betweenness centrality, PageRank, or MaxDegree, respectively. The top

scoring bd edges are removed.

Attacker algorithms. According to [121], the hallmark of aggressive crawling is the

choice of an expansion-based method that allows for as far as possible from the starting

point, such as depth-first search (DFS). On the other hand, innocent crawlers tend to

remain in the local neighborhood of the starting node, and tend to resemble breadth-

first search (BFS). As such, I have chosen these two crawling techniques to show the

performance of my algorithm in the presence of both aggressive and innocent crawlers.

(Note, however, that CoVerD is agnostic to the crawling algorithm.)

4.4.2 Results

Table 4.1 shows the result2 of my experiments for bd = 0.006|V |. Against the BFS

crawler, CoVerD shows a pronounced superior performance and, in some instances, it

increases the crawler’s budget by 3 to 10 times compared to the next best-performing

benchmark (see the result for degree-based target node of deezer and github). In 60%

of simulations, it achieves close to perfect results (ba ≥ 0.96).

The hardest dataset for this task was twtich, for which the results of the best perform-

ing models, CoVerD and ROAM, are relatively low. However, compared to the unde-

fended graph and the three global methods, CoVerD still increases the attacker’s budget

by ≈ 50%. Against the more aggressive crawling scheme of DFS, all models perform

worse than their BFS counterpart, as expected. Nonetheless, CoVerD outperforms all

benchmarks in 80% of simulations and, in the remaining cases, it offers competitive

results.

Figure 4.2 shows the change in defenders’ performance with respect to their availbe

budget. In all cases, CoVerD reaches near optimal performance with budgets less than

0.01|V |. ROAM also offers decent results in the majority of the cases. However, its

2For the largest dataset, github, obtaining the results of the global measures was infeasible
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Networks Defender Random Target Degree-based Target Community-based Target
BFS DFS BFS DFS BFS DFS

lastfm-asia
|V | = 7, 624
|E| = 27, 806

Original 0.12 0.28 0.54 0.20 0.48 0.21
Betweenness 0.16 0.38 0.53 0.27 0.49 0.37

PageRank 0.23 0.23 0.55 0.19 0.5 0.34
MaxDegree 0.18 0.38 0.55 0.27 0.43 0.33

ROAM 0.44 0.55 0.90 0.58 0.84 0.40
CoVerD 0.99 0.68 1.00 0.56 0.96 0.50

musae-twitch
|V | = 7, 126
|E| = 35, 324

Original 0.19 0.86 0.35 0.18 0.53 0.43
Betweenness 0.20 0.88 0.31 0.17 0.55 0.69

PageRank 0.26 0.88 0.31 0.20 0.55 0.47
MaxDegree 0.31 0.69 0.30 0.18 0.54 0.37

ROAM 0.45 0.86 0.84 0.29 0.89 0.58
CoVerD 0.48 0.94 0.95 0.78 0.89 0.53

deezer-europe
|V | = 28, 281
|E| = 92, 752

Original 0.20 0.26 0.24 0.57 0.12 0.22
Betweenness 0.23 0.18 0.33 0.67 0.11 0.16

PageRank 0.19 0.18 0.23 0.54 0.11 0.23
MaxDegree 0.19 0.16 0.23 0.39 0.12 0.15

ROAM 0.56 0.52 0.23 0.39 0.42 0.52
CoVerD 0.82 0.56 0.92 0.93 0.99 0.79

musae-facebook
|V | = 22, 470
|E| = 171, 002

Original 0.32 0.38 0.49 0.39 0.8 0.69
Betweenness 0.33 0.36 0.49 0.37 0.76 0.68

PageRank 0.31 0.51 0.51 0.33 0.80 0.70
MaxDegree 0.33 0.17 0.56 0.40 0.79 0.59

ROAM 0.85 0.71 0.83 0.65 0.80 0.58
CoVerD 0.99 0.65 0.98 0.65 0.98 0.89

musae-github
|V | = 37, 700
|E| = 289, 003

Original 0.27 0.35 0.00 0.01 0.33 0.18
Betweenness NA NA NA NA NA NA

PageRank NA NA NA NA NA NA
MaxDegree NA NA NA NA NA NA

ROAM 0.93 0.52 0.46 0.05 0.90 0.49
CoVerD 0.98 0.64 0.86 0.59 0.97 0.53

Table 4.1: The performance of all defenders against BFS and DFS crawling attacks for
different types of target nodes. The values show the normalized attacker budget ( ba

|V | ) in
order to discover the target node. The values closer to 1 indicate superior performance
of the defender and are shown in bold. For BFS crawlers, CoVerD always surpasses the
benchmarks with considerable Margie. The same holds true for DFS crawlers in the
majority of cases. In general, all defenders perform worse against the DFS crawling

attack (aggressive crawling).

effectiveness rapidly reaches its plateau and never offers a near-optimal result. Its sur-

prisingly poor performance for deezer in Figure 4.2, in contrast to the near-optimal

performance of CoverD, suggests the importance of looking beyond the immediate

neighborhood of the target node. Recall that for small defense budgets, the only differ-

ence between CoVerD and ROAM is the maximization of target’s loyalty score, S C(t)(t).

Hence, the superior performance of CoVerD for small budgets versus that of ROAM in

Figure 4.2 shows the importance of community membership in determining a node’s

reachability.

In all previous studies, the indicator of a defender’s success was defined by its ability
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Figure 4.2: The defender budget vs. attacker budget for different defender algo-
rithms. The plots show the aggregated simulation results for degree-based target nodes
and BFS crawling attack. Similar results were obtained for DFS attack as well as
community-based and random target nodes. CoVerD outperforms all the baselines for
the same values of bd. It also reaches the optimal performance (ba ≈ 1) on the majority

of datasets.

to minimize the closeness (or betweenness) centrality of a target node (in contrast to

ours in which the increase in ba marks the performance). I also show the change in

the closeness centrality of the target nodes for different bd in figure 4.3. Even though

I did not use any global measures to decrease the closeness centrality directly, CoVerD

has achieved the fastest and deepest drop in the target’s centrality by focusing only on

its local community structure. This figure also shows that for achieving comparable
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Figure 4.3: Closeness centrality of the target node (y-axis) vs. the defense budget (x-
axis). The plots belong to lastfm data. For each plot, I have used the mean of the
closeness centrality among all the target nodes. It is evident that CoVerD substantially
surpasses both local and global measures in decreasing the closeness centrality of the

targets for all target types.

performance with [already computationally expensive] global defenders, such as the

Betweenness model, I need to invest in larger defense budgets (note the slow but steady

decrease of the centrality for Betweenness model in Figure 4.3).

4.5 Summary

In this chapter, I formalized the problem of vertex protection from a defender’s per-

spective. I proposed the CoVerD heuristic that leverages the community structure of

social networks. This algorithm retains the fast computation of local network pertur-

bations and shows superior performance compared to both local and global defenders.

Despite using only the local community information, my algorithm achieves a substan-

tially lower closeness centrality than both local and global perturbation models.
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Future Direction. This study is an important step forward in the field of network pro-

tection and privacy to focus on heuristics that are both practical and efficient in the real-

world settings. Two valuable extensions to CoVerD are (1) investigating the correlation

between different community structures and defender’s performance; (2) introducing

additional constraints to the defender’s decision making, such as maintaining certain

properties of the network or avoiding the formation of certain motif subgraphs.
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Chapter 5

Early Mitigation Strategies against
Viral Spread

In response to recent pandemics, such as the COVID-19, governments across the world

have attempted a variety of strategies to mitigate the spread of disease, including lock-

downs, contact tracing, and others. However, there has been little analysis on the relative

merits of such strategies; and because these strategies have negative effects on the econ-

omy and the morale of the people, it is critically important to understand their efficacy.

Although the topic of this chapter is inspired by the COVID-19 pandemic, my analysis

can apply to any contagious disease. Because the response to a pandemic depends on

whether it is in the early stages (no vaccination available) or later stages (vaccination

available), I focus on early pandemic mitigation strategies in correspondence with the

COVID-19 situation.

In this chapter, I analyze variants of the pandemic mitigation strategies practiced in the

real world – e.g. lockdown and test-trace-isolate – from a network perspective. Inspired

by the new psychology findings on the correlation between community membership

and pandemic response [128–130], I also show that the mitigation strategy becomes

even more powerful if we incorporate the community information, as expected from the

results in Chapter 4. The goal of this analysis is to capture the efficacy of the current

protection schemes against viral contagion and draw on their merit and shortcomings. I

will use these results in the next chapter where I address a more challenging protection

scenario for which no current algorithm exists.

To evaluate each protection (mitigation) strategy, unlike the majority of related work in

this field, I consider both the magnitude of spread and economic impact as cost factors.
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For example, a mitigation strategy such as a total lockdown might have the best perfor-

mance in terms of controlling the spread of disease if prolonged for long enough time

until the discovery of the vaccine. However, the devastating economic impacts of such

a decision makes this strategy inefficient in real world.

On the other hand, the “Do Nothing” strategy, which relies on herd immunity (see

Section 5.2), results in less economic impact (at least in the early stages), but does

nothing about the spread of the disease. An ideal mitigation strategy should offer a

trade-off between these two losses. I allocate a budget to each strategy to count for

the economic impact and report both the spread and budget spent for each strategy

simulation.

To ensure that the results are generalizable to other contagious diseases, I enforce only

general assumptions about the nature of the disease and cost of battling the spread (see

Section 6.2). I use the SIRD epidemic model for the simulations and only consider the

budget spent on isolation strategies. I validate each strategy on a set of 10 real-world

social networks (see Section 5.3.2). To have a close approximation of human-human

contact behavior, these networks are chosen based on the method of data collection and

the meaning of connections between two individuals. I also consider a set of online

social networks that are frequently used in the disease spread literature [131–133] and,

in some cases, have been shown to give a close-enough approximation of real-world

social networks [132].

My results show the superiority of the test-trace-isolation strategy if combined with

k-hop neighborhood ranking (specifically for k = 1). I also confirm the theoretical

results from psychology studies on the impact of community membership in reducing

the spread of the disease and show the further direction in adopting such strategies.

5.1 Problem Statement

I model the population as a simple undirected graph G(V, E), where individuals are rep-

resented by nodes (V) and connections between them (E) represent physical contact.

I use undirected edges due to the nature of physical contact, for which a directed re-

lationship does not bear any meaning. I also consider unweighted and un-attributed

graphs, as attribute information is not easy to gather in a real-world setting and in the

practical strategies discussed below. However, the simulations can easily be extended to

attributed or weighted graphs. For example, the strength of an edge can be considered
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as the frequency or length of the contact, where a higher value increases the probability

of infection spread. In the following discussion, I discuss different models of disease

spread and the reasons behind my choice of the SIRD model. I will also discuss my

method of extending the model to count for the economic impact.

5.1.1 Viral Spread Modeling

Previous work on mathematical modeling of viral spread can be grouped into two cat-

egories of (1) general spread models and (2) virus-specific spread models. The former

includes famous models such as SIR, SIRD, SIS, SIER, and SIRS [134–136]. The virus-

specific models have been proposed for viruses observed in real world and consider the

specific properties of a certain virus into the modeling of the spread [137–139].

The focus of this chapter is on the effectiveness of different mitigation strategies for

an unknown pandemic scenario (i.e., a pandemic whose specific behavior and poten-

tial remedies are unknown). It is known that battling a new pandemic heavily relies on

adopting a proper mitigation strategy in its early stages [140]. In these early stages, our

knowledge of the nature of the virus is very limited, and the virus-specific strategies

require prior knowledge gained from time-consuming clinical trials. Thus, the general

models with little to no conditions on virus-specific behavior are more practically ap-

plicable in the early stages of a pandemic. For my analysis in this section, I choose the

SIRD model due to its minimal assumptions on the nature of a fatal spread, which is

explained below.

5.1.2 SIRD Epidemic Model

Given a closed community in which the population is fixed (no birth, no migration, and

no death due to causes irrelevant to the disease under study), the SIRD model assumes

four possible states for each individual in the community at each timestamp: Suceptible

(never contaminated by the virus), Infectious (contaminated and can spread the virus),

Recovered (recovered from contamination and can no longer spread the virus), and

Dead (due to infection). The possible transition between states and their respective

probabilities are depicted in figure 5.1.

The three parameters of this model are α, β, and γ that indicate infection, recovery, and

mortality rate respectively. Their exact values used in the simulations are presented in
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Figure 5.1: SIRD state transitions. Parameters α, β, and γ indicate infection, recovery,
and mortality rate respectively.

Table 5.2 and discussed in Section 6.4. In Section 5.5, I discuss the choice of these

hyperparameters and validate the robustness of the results for different values of α, β,

and γ. I use a discrete-time SIRD model with discretization period of duration one day.

Having initial values S 0, I0,R0,D0 in a population of size N, the virus spread follows

these laws of motion:

S t+1 = S t − α
ItS t

S t + It
(5.1)

It+1 = It + α
ItS t

S t + It
− (β + γ)It (5.2)

Rt+1 = Rt + βIt (5.3)

Dt+1 = Dt + γIt (5.4)

I assume that no individual can stay in I state indefinitely. As such, every infectious

individual can only stay infected for a certain amount of time (disease duration in Table

5.2) and transitions to R if not deceased or recovered already. Note that I do not consider

any delay in the transitions.

5.1.3 Budget Allocation

The exact modeling of a pandemic’s economic impact is a complicated problem and

requires a comprehensive study on its own [141–143]. However, we still can introduce

a simplified measure of cost for comparison between different mitigation strategies.

As we try to minimize the number of isolated individuals while reducing the rate of

spread, we have to compensate for the portion of the population that is under quarantine

(either compulsorily or voluntarily) to make isolation practical and possible without

threatening the well-being of families and individuals.

I treat this compensation as a required budget for each isolation strategy. Ultimately, an

ideal isolation strategy should use a small compensation budget while minimizing the
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peak number of the infectious population over time. A smaller amount of budget spent

also indicates isolated individuals, implying less possibility of economic impact due to

work-force perturbation.

5.2 Mitigation Strategies

Two of the most important problems in the early stages of a pandemic are (1) the ca-

pacity of healthcare centers and (2) economic consequences [141–144]. An optimal

mitigation strategy seeks to reduce the occupancy of hospitals (lower the number of in-

fected) while maintaining the productivity of the society to eliminate economic impacts.

However, these two objectives often bear conflicting interests.

So far, the strategies for lowering the number of infected individuals practiced in real-

world setting have negatively affected the economic well-being of the society. A current

example is the Lockdown strategy adopted by many countries (such as the USA, Spain,

and Italy) in 2020 to mitigate the COVID-19 spread1. Interestingly, lockdown does not

offer an optimal solution to either of the objectives above. First, lockdown leads to a

second wave of spread and has to be implemented in several phases to be effective in

lowering the burden on the healthcare system [145]. Second, it is shown (both in theory

and practice) that lockdown strategy causes severe damages to the economy [144].

To trade-off between the need for isolation and economic prosperity, [144] suggests em-

ploying a Test-Trace-Isolate strategy (TTI). This method puts the focus on the neigh-

borhood of the individuals with positive test results (infected). According to [146],

the countries who employed the TTI strategy against COVID-19 were able to combat

the spread more successfully than those who followed herd immunity2 or full contain-

ment (lockdown) strategy. This, however, mainly considers the medical benefits of the

mitigation. The cost-effectiveness of TTI (economical aspect) heavily depends on its

implementation [147]. For example, how do we choose whose neighborhood to trace?

Is it the people who show symptoms or those who have tested positive? Furthermore,

how many people in the candidate’s neighborhood should we isolate and how big should

the size of this neighborhood be?

1https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdowns
2Herd Immunity is an epidemiological concept and is defined as “the percentage of people with pro-

tective immunity needed in a population to stop the propagation of an infectious agent” [146]. This
strategy, although seemingly giving an optimal solution to economic impact of the spread, results in a
devastating death toll in the population.

https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdowns


64

Tracing and isolating steps of TTI are costly and, if implemented in a naı̈ve way, it can

be less efficient than lockdown strategy. Here, I examine three different strategies for

TTI. These methods all use local neighborhood information. I consider random and

centrality-based TTI with tracing radius up to k-hops away from the infected node (for

k ∈ {1, 2}). The details of each method are discussed in Section 6.4. Note that due

to small-world property of social networks, for k values higher than two, we capture

almost all of whole network, which is counter-intuitive for TTI strategy.

In a pandemic, human behavior plays as important of a role as properties of the virus (if

not a more important role) [128]. Such behavior is directly connected to psychological

traits of individual’s personality [129]. An interesting relevant observation is that shared

community membership increases the speed of the spread [130]. Previous studies have

shown there is a correlation between community structure and spread behavior (e.g.,

under certain community structure, the spread is slowed down or sped up) [61, 148]. In

a recent study, [149] shows that community size and density play an important role in

the predictability and controllablity of epidemic.

These observations are used in immunization literature to leverage the community struc-

ture for optimizing the immunization plan. For example, in [25], authors propose a

heuristic for finding potential community bridges and immunize them. In [126], several

ranking methods based on the in/out degree of nodes in a community are proposed to

choose a community for immunization.

The immunization is mainly done when enough information is available about the virus

and it is possible to use time-consuming heuristics for finding the optimized set of nodes

to immunize. Moreover, the immunization is not as costly as isolation strategies due

to the prolonged nature of the latter.The target of current study is to act in the early-

stages and with limited to no knowledge on the nature of the disease. We tend to find a

balance between lowering the cost and the peak of infection by using isolation strategies

in the absence of vaccines/remedies. I argue that by considering the findings in the

aforementioned studies, we can improve isolation-based mitigation strategies.

As such, I propose a Community-based Isolation strategy (CI) and show its effec-

tiveness in comparison to lockdown and TTI strategies. The results of CI are presented

to show that using the community membership of individuals as an isolation strategy

indeed reduces the speed of spread. At first glance, this method might not be as practi-

cal as lockdown or TTI, owing to the fact that community membership is only partially

known and tracing the memberships can be even more costly that TTI (as shown in
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Section 6.4). However, the experiment results show that community-based isolation

surpasses all other methods in reducing the spread of the disease without the disadvan-

tage of a second wave.

5.3 Experimental Setup

In this section, I evaluate each of the baseline strategies against the proposed methods.

I focus only on real-world data to consider the complex dynamics of the human-human

interaction, which is not entirely captured in synthetic networks (e.g, stochastic block

model, small-world model, etc.).

5.3.1 Assumptions

As mentioned before, for lockdown and TTI, I do not enforce any disease-specific infor-

mation on the model. Additionally, I do not assume the presence of network structural

data that are hard or impossible to obtain in real-world setting. For example, I do not

assume that we have global information for nodes or edges (e.g. shortest path-based

centralities, diameter of the network, or spectral properties). We only have the informa-

tion on the neighborhood of each individual (as obtained through individual surveys in

real world).

For CI, I assume the community membership of individuals is known. In the real-

world, the communities can be considered at different levels; from a club membership

level up to county and state levels. Considering that not all of the datasets have ground-

truth communities, I obtain membership through Louvain partitioning of the graph that

maximizes the modularity.

5.3.2 Data

Recent studies show the importance of using real-world human-human interaction data

to account for the influence of human behavior in the simulation of a spread [128].

I chose seven real-world datasets that have been collected based on physical human

interaction/connections in real world. These datasets, although the best resource for

real-world interactions, are generally small due to the cost of data collection. As such,
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Data Type Edge Meaning |V | |E| Avg. Deg.
Infectious (INF) Human Interaction Contact 410 2,765 13.49
Hyptertext2009 (HX9) Human Interaction Contact 113 2,196 38.87
Haggle (HAG) Human Interaction Contact 315 2,899 18.41
Adolescent Health (AH) Human Social Friendship 2,539 10,455 8.23
Residence Hall (RH) Human Social Friendship 217 1,839 16.95
Physicians (PHY) Human Social Trust 241 923 7.66
Jazz Musicians (JAZ) Human Social Collaboration 198 2,741 27.69
Pretty Good Privacy (PGP) Online Contact Interaction 10,680 24,316 4.55
Facebook NIPS (FBN) Online Social Friendship 2,888 2,981 2.06
Hamster Full (HAM) Online Social Friendship 2,426 16,630 13.71

Table 5.1: Contact datasets for spread simulation

many studies tend to use online social networks as approximate behavior of the users

in physical world. [132] showed that online behavior approximation for some online

networks such as Facebook is close to physical behavior. To both confirm their results

for other online social networks and consider the simulation results on larger networks,

I also consider an additional three larger datasets from online social networks. All of

the 10 datasets are chosen based on the nature of their contact (edge meaning). These

datasets and their general statistics are shown in Table 6.2. All datasets are publicly

available in the Konect repository [150].

5.3.3 Implementation of Mitigation Strategies

In this section, I briefly go over the implementation of each mitigation strategy men-

tioned in Section 5.2. The hyperparameters are the same among all strategies (such as

quarantine compensation, duration of quarantine, duration of disease, and parameters

α, β, γ). These hyperparameters are presented in Table 5.2. In all simulations, I start

with only one infectious node chosen at random (i.e, I0 = 1, S 0 = |V | − 1, R0 = D0 = 0,

unless otherwise specified). For each model, I repeat the simulation for 100 different

starting node and report the average among the 100 trials. Each round of simulation

is run until there are no infected nodes left in the network. In each timestamp ti, the

number of infected, susceptible, and quarantined individuals are reported based on the

networks status in ti. The reported proportion of infected individuals is averaged over

the timestamps in the simulation. The number of deceased and recovered individuals

are reported cumulatively (from t0 to ti).

• Do Nothing (DN): Although not exactly a mitigation strategy, DN can be used as

the baseline to compare the performance of other methods against it. It is a simple
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Hyperparameter Value
Probability of infection (α) 0.2
Probability of recovery (β) 0.08
Probability of death (γ) 0.04
Simulation unit of time 1 day
Disease duration 7 days
Quarantine duration 14 days
Daily quarantine compensation (Compulsory Isolation) $100
Daily quarantine compensation (Volunteer isolation) $50
Volunteer quarantine probability 0.5

Table 5.2: Hyperparameters chosen for all mitigation strategies when applicable.

SIRD model (Equation 5.1 – 5.4) that reaches the peak of infection quickly and

fades away quickly as well (due to herd immunity).

• Lockdown: The duration of the lockdown is fixed at 14 days, and it starts after

the detection of the first infectious sample. The algorithm randomly choose 90%

of the population for lockdown and compensate all of them according to Daily

quarantine compensation (compulsory isolation) in Table 5.2. After the lockdown

is lifted, the disease spreads according to the SIRD model and we expect the same

peak as in DN but shifted over time. Note that this model adds a new state Q, for

Quarantined, to Figure 5.1 with Q0 = 0.9|V |, but does not change the equations.

• TTI:

– K-hop Ranking for k ∈ {1, 2}: Prior to the simulation, each node is ranked

according to the size of its k-hop neighborhood. For example, if the rank of

a node is 16, it means this node, if infectious, can potentially contaminate 16

other individuals. In the tracing stage of TTI, it is chosen to forcibly isolate

neighborhood of an infected node who have a ranking above 90 percentile of

all rankings in the graph. The algorithm also chooses the neighborhood with

ranking above 80 percentile (and less than 90 percentile) as candidates to

voluntarily quarantine themselves. Both of these groups (forced quarantine

and volunteer quarantine) are compensated but with different amounts (see

Daily quarantine compensation for compulsory and volunteer isolation in

Table 5.2). It is assumed the candidates for volunteer isolation accept the

offer 50% of the times. Note that both of these thresholds can be chosen via

trial and error and do not require global information on the graph.

– Random Ranking: In the tracing stage of TTI, this method randomly choose

candidates from the k-hop neighborhood (k ∈ {1, 2}) of an infected node to

isolate. The isolated nodes are compensated as in lockdown.
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• CI: This method obtains community memberships through Louvain partitioning

[14]. At each timestamp, CI isolates an entire community if the portion of infected

nodes within the community is greater than a threshold, i.e. Ic
|Vc |

> T where |Vc| is

the population within community c and T is a hyperparameter. I report the results

for T ∈ {0.1, 0.2, ..., 0.9}. The isolated members are compensated as in lockdown.

Note that the choice of parameters such as disease duration and quarantine duration

does not affect the comparison between Lockdown and TTI strategies as this parameter

is set equally for all of them. In Section 5.5, I show that my comparisons are also robust

against the choice of α, β, and γ.

5.4 Results & Discussion

The results of the DN, Lockdown, and TTI strategies are shown in Figure 5.2. In this

figure, the y axis depicts the average (and variance) of the infectious population normal-

ized by the overall population. In all datasets, the best performance is achieved through

the k-hop neighborhood strategy. In 7 out of 10 datasets, the 2-hop strategy achieves a

better performance and, in most cases, it is very close to that of 1-hop. However, looking

at the required budget in Figure 5.3, it is evident that the choice of 2-hop neighborhood

comes with a greater cost, especially for HX9 dataset.

To understand the reason behind enormous 2-hop budget for HX9, we need to look at

the number of triangles in the network normalized by the maximum possible triangle

count (|V |(|V | − 1)(|V | − 2)). Among all datasets, HX9 has the highest value for nor-

malized triangle count (10 times more than the next highest count). Due to this high

clusterability of HX9, the 2-hop neighborhood captures the entirety of the network and,

in practice, gives a less optimal result than lockdown or even DN strategy in terms of

budget. The special case with HX9 dataset shows the limitation of choosing 2-hop over

1-hop neighborhoods of the infectious nodes. Considering this trade-off between cost

and peak of infection, we can conclude that 1-hop TTI strategy is the best practical

strategy among the rest in real-world scenarios.

As the results for CI-based isolation are threshold-dependent, I have shown its results

separately in Figure 5.4 and 5.5 for various threshold values. CI, surprisingly, does a

much better job at reducing the infectious peak than any of the other methods (compare

Figure 5.4 with Figure 5.2). This confirms the suggestions from psychology literature
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Figure 5.2: The average proportion of infected individuals over 100 trials of simulation
and its variance for each mitigation strategy among the chosen datasets. DN, LCKD,
and TTI abbreviate Do Nothing, Lockdown, and Test-Trace-Isolate strategies. TTI
suffixes: 1H and 2H represent k-hop ranking, 1HR and 2HR represent random ranking

within k-hop neighborhood. Best viewed in color.
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Figure 5.3: The budget spent on isolation strategies. The budget is normalized by
lockdown budget as the baseline. Best viewed in color.

that mitigation strategies based on community membership can result in a better control

over the speed of the spread.

The thresholding is very important for CI. As seen in Figure 5.5, for higher thresholds,

CI generally comes with a much higher budget than TTI, and unlike the previous meth-

ods, surpasses the lockdown budget in many instances. However, keeping the threshold

below 0.4 offers a considerable reduction in speed with a reasonable budget.

Note that the proposed CI strategy here uses limited information and still performs better

than other strategies discussed in reducing the speed. CI strategy only requires the com-

munity assignment and the number of infected nodes within the community. This in-

formation is readily available through prior knowledge on the individual (e.g., the State

or County of residence) and the information on the contagion progress (the [estimate]

number of infected individuals). In practice, it is possible to gain more knowledge on
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Figure 5.4: The average proportion of infected individuals over 100 trials of simulation
and its variance for different thresholds in CI (community-based isolation strategy).
The lower thresholds give considerably better performance than strategies in Figure

5.2. Best viewed in color.
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Figure 5.5: The budget spent on CI for different thresholds. The budget is normalized
by lockdown budget as the baseline. Except for PGP, the budget for lower thresholds

among all datasets are comparable to those in Figure 5.3. Best viewed in color.

the neighborhood of the infected nodes in the community (e.g., through contact-tracing

and personal questionnaires upon testing) and use the neighborhood information for

targeted isolation.

The special case of PGP. In Figure 5.5, all datasets follow the same trend that lower

(higher) thresholds demand lower (higher) budget, except for PGP. A closer look at

PGP community structure reveals large communities with high density (i.e., commu-

nity structure that is considerably close to complete graph structure). In other words,

the average path length between nodes in these communities is small and the virus

spreads throughout the community much faster than in other datasets. As such, PGP

meets the isolation threshold in CI much sooner than the rest of the datasets and forces

communities of large size (i.e., containing many nodes) into quarantine. However, the

higher speed of spread means higher number of deceased as well. As the CI threshold in
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Figure 5.5 grows, it becomes harder for PGP to meet the isolation threshold as many of

its members are dead and the CI threshold is defined over the primary size of the com-

munity. Hence, less and less communities are put into isolation (the decreased budget

in Figure 5.5) and the peak of infection in Figure 5.4 matches that of DN in Figure 5.2.

This interesting example shows the limitation of CI in networks with communities that

are close to complete graphs. For these type of communities, the 1-hop TTI gives the

best trade-off between the peak of infection and budget. However, as is evident from

the physical-contact datasets, the real-world human-human contacts have low-density

communities and obtain better trade-off using CI strategy.

The choice of community. Throughout this study, I have defined community based on

the structural property of the network (e.g., Louvain method). This definition of com-

munity expands to real-world communities of people within certain geographical region

(e.g., state, county, city) that have more connection within the community than outside.

However, there are also attribute-based communities that do not necessarily yield the

same structural property. For example, a community defined based on gender, age, and

race is not guaranteed to form communities that are dense inside and sparsely connected

outwards. Just like communities in online social platforms such as Amazon that do not

represent human contact for the modeling purposes of a viral spread, the attribute-based

communities may not be a suitable candidate for my proposed community-based miti-

gation strategy, CI.

The superiority of CI in mitigating the spread shows that designing an optimal community-

based strategy for further alleviation of the economic impact is a promising research

direction. Moreover, community information can be local and noisy (through individ-

ual self-reported or publicly known memberships such as geographical proximity in a

region).

My effort is to encourage more research on community-based mitigation strategies

rather than brute-force methods such as lockdown or naı̈ve TTI. Although k-hop and

community-based methods seem to require extra effort for tracing the impact, they are

still practical in real-world. My results show that with local approximation of network’s

structure, we still can obtain solutions that reduce both the physical and economic im-

pact of the pandemic in a global scale.
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(b) 2-hop Test-Trace-Isolate

Figure 5.6: Sensitivity of the peak of infection against probability of infection (α). The
changes in the value of α affects the datasets in a mostly similar way and does not

change the experiment result in Section 5.4. Best viewed in color.
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Figure 5.7: Sensitivity of peak of infection against probability of recovery (β). The
changes in the value of β affects the datasets in a mostly similar way and does not

change the experiment result in Section 5.4. Best viewed in color.

5.5 Ablation Study

As mentioned in Section 5.3.3, my choice of hyperparameters in Table 5.2 does not

change the result of the comparative study among different mitigation strategies. Here,

I show the robustness of the results against the three degrees of freedom (α, β, and

γ) in SIRD model. I repeat the same experiment in Figure 5.2 for different values

of these parameters and report the results on peak of infection for 1-hop and 2-hop

Test-Trace-Isolate in Figures 5.6 to 5.8. The results for other models were similar and

are not included to avoid repetition. As evident from these three figures, the rate of

change in peak of infection is mostly similar across all datasets and does not change the

comparative observations in Section 5.4.
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Figure 5.8: Sensitivity of peak of infection against probability of death (γ). The
changes in the value of γ affects the datasets in a mostly similar way and does not

change the experiment result in Section 5.4. Best viewed in color.

5.6 Summary

In this chapter, I analyzed the current state-of-the-art mitigation strategies that deal

with early stages of a pandemic. The result of my analysis show that using the local

neighborhood of nodes is enough to maintain a balance between reducing the coverage

of the spread and minimizing the budget. I also showed that the mitigation strategy

becomes even more powerful if we incorporate the community information, as expected

from the results in Chapter 4. All these strategies, however, are in the ideal setting in

which we possess the full knowledge of the social (contact) network. I use the results

from the ideal setting in this chapter and, in next chapter, propose a dynamic mitigation

strategy that overcomes this shortcoming.
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Chapter 6

Blind Community-based Early
Mitigation Strategy against Viral
Spread

In response to a viral spread, multiple factors determine the efficacy of different mit-

igation strategies, namely the epidemiological knowledge of the spread dynamics, the

possibility of medical intervention (i.e., vaccination), and the existence of mobility and

interaction data [82, 151–153].

In the early stages of a pandemic, the disease dynamic is unknown, the contact network

is partially known at best, and no vaccination is available. These are the challenges

against an Early Mitigation Strategy. As we saw in the previous chapter, the objec-

tive of such a strategy is to minimize the magnitude of infection with the least possible

perturbations introduced to the social network (through, e.g., quarantine and isolation

approaches) [46, 127, 152]. In contrast, once a vaccination is available, the objective of

the Immunization problem is to minimize the amount of time it takes to halt the spread

effectively with the least amount of vaccine. Despite the similarity of approaches, im-

munization problem and early mitigation strategy optimize different objective functions

and the former does not introduce perturbations to the network; the candidate nodes cho-

sen in an early mitigation setting will be isolated for the duration of the disease (removal

of edges in the contact network), but in immunization problem they are vaccinated and

no network perturbation is introduced.

The majority of studies on the two mentioned strategies are based on detecting globally

influential nodes (e.g., degree centrality [154] and betweenness centrality [28]) that
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Figure 6.1: ComMit pipeline. Start. Contact network Gs is unknown and the known
graph to the algorithm, G∗, is empty. The dashed lines show the communities known
to the algorithm. The figure shows the first iteration of the algorithm. Test-Trace. The
coloring of the pivot indicates the result of the test (red is infectious). Tracing of the
pivots updates the edges of G∗. Divider. The block uses the updated information on
G∗t and identified infections from S ∗t to form sub-clusters (in purple), whose isolation
fragments the communities, reducing the magnitude of the spread. The network pertur-
bations by divider updates Gs on which the spread runs. The iteration continues until

the termination condition is met (see Section 6.3.3).

contribute the most to the spread (targeted strategies). Despite promising theoretical

results, these methods are generally difficult to implement due to their assumption of

full knowledge on the contact network [155]. Additionally, complex social networks

demonstrate high clustering and individuals tend to form groups (communities) [156],

which can both alleviate and aggravate viral expansion [148, 151]. The global centrality

measures do not consider the local influence of the node in their respective communities

[152]. I argue that for tackling these shortcomings, a practical mitigation strategy, unlike

the those in Chapter 5, should not assume a prior knowledge of the contact network

structure and the dynamics of the spread. It also should consider the cost of a certain

intervention scheme and avoid isolating healthy members of the population.

In this chapter, I study the problem of developing an early mitigation strategy from a

community perspective and propose a dynamic Community-based Mitigation strategy,

ComMit, that only utilizes geographical information to infer community membership

and data from test-trace to update its knowledge of the spread, without enforcing any

assumptions about the nature of the disease. Because ComMit relies on updated data

from test-trace reports, it is dynamic and the mitigation strategy can evolve over time.
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Unlike previous works, I have designed ComMit with two important assumptions in

mind: (1) there is no global information on the social network contacts; (2) the candi-

dates for isolation are small clusters instead of single healthy individuals. The second

condition aims to minimize the economic and psychological damage ([157], [158]).

Using the information from the test-trace step, ComMit introduces appropriate network

perturbations to combat the magnitude of the spread based on the current knowledge of

the underlying network and testing outcome. These perturbations are aimed to fragment

the network communities. ComMit achieves that through the divider block that forms

small clusters of nodes (sub-clusters) that are to be temporarily isolated as a community

from the rest of the network. After a certain time has passed these sub-clusters are

released back to the network and will not be isolated until some time has passed from

their last isolation. The pipeline for ComMit is shown in Figure 6.1.

My contributions in this chapter can be summarized as follows,

• I formulate the early mitigation problem based on real-world constraints.

• To the best of my knowledge, this is the first study proposing an early mitigation

strategy that (1) works with no knowledge of either the social network structure

and the spread dynamic; (2) considers the practical cost of the strategy and oper-

ates within a limited budget.

• I validate my mitigation strategy, ComMit, on five real-world datasets that are

obtained from national address database and Copenhagen project (see Section

6.4).

• The result of my experiments show that within its limited budget, ComMit is very

effective in reducing the peak and duration of infection, reducing them up to 73%

and 90%, respectively. In all of the case studies, ComMit successfully turns a

teady-state spread process1, such as SIS contagion model, into a dying process

with a relatively short absorption time.2

1A spread dynamic that reaches a steady state of maintaining a non-zero number of infectious nodes.
2The time that it takes for the number of infectious nodes to become zero.
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6.1 Related Work

This chapter involves three bodies of research; targeted intervention strategies against

viral spread, the impact of community structure on dynamics of such a spread, and

community-based intervention strategies.

6.1.1 Targeted Intervention Strategies

Early Mitigation Strategy

Gross and Havlin [62] perform the closest study to ours in modeling a contact network

based on geo-spatial data. Their contact network model is a modular 2D lattice in which

each module represents a city and each city can only connect to its immediate neigh-

boring module. Their proposed mitigation strategies are social distancing and reducing

degrees in and outside of the communities by isolating individuals. My approach dif-

fers in that ComMit (1) does not limit contact network to a 2D lattice; (2) considers a

mixture of sampling (testing) and isolation; (3) does not isolate any healthy individuals;

(4) does not assume complete knowledge of the contact data.

Immunization Strategy

Rosenblat et al. [82] challenge the popular target-based immunization strategies by

studying different immunization methods in the presence of partially observed network

data. They conclude that popular targeted methods, such as degree and betweenness

centralities, only perform well with little to no missing data, but self-reported local

information from sampled individuals compensates for a large volume of missing data.

Salathé and Jones [25] place a similar emphasis on partially observed networks and pro-

pose a heuristic method to find community bridge nodes (CBF that stands for Commu-

nity Bridge Finder). They show how targeting bridge nodes for immunization outper-

forms acquaintance immunization (the only other network structure agnostic method)

[159], in which the most frequently visited acquaintances of randomly selected nodes

are vaccinated first. CBF relies on random walks and constant path finding between

current and visited nodes. This limits its value in a practical dynamic setting where

these computations need to run iteratively. In my method, I show how we can avoid



78

such costly (and impractical) computations by leveraging the known geo-spatial com-

munities that are shown to be predictors of contact-based communities [160, 161].

6.1.2 Community Structure and Dynamics of Spread

Topı̂rceano [149] shows the importance of geo-spatial information in predicting the

dynamics of an outbreak. This paper offers a Geo-spatial Population Model (GPM) that

estimates the predictors of mobility between different regions in a country based on the

region’s population density. His results suggest that changing the number of regions

and their population density directly impacts the size and duration of the outbreak.

6.1.3 Community-based Intervention Strategies

The definition of community in these studies is diverse: from subgraphs with the high-

est number of subgraph intra edges
number of subgraph inter edges and k-cores to geo-spatial and ground truth communities. Ser-

afino et al. [46] showed that disconnecting bridge nodes that connect super-spreader k-

cores considerably reduces the radius of the spread. However, they rely on betweenness

centrality which is a global measure that requires full knowledge on contact network.

Yang et al. [162] propose a flow-based edge betweenness measure to minimize the p-

norm of the flow between communities in the network. They show that the bridge-based

methods are superior to degree-based intervention methods.

Block et al. [157] consider social behavior patterns within communities and propose to

(1) limit interaction to few repeated contacts; (2) choose those contacts based on some

similarity (e.g., homophily); (3) strengthen contact with those pairs that interact in more

than one community. I leverage their finding and that of Topı̂rceano [149] to design the

fragmentation step in ComMit (see 6.3.2). The main problem with their strategy is the

assumption of full network knowledge.

Yuan and Tang [152] emphasize the local importance of the nodes to their community

in contrast with their global centrality. They measure how important nodes are to their

communities and how important their communities are to the overall network. Their

scores are based on eigenvalue and eigenvector pairs obtained from the spectral clus-

tering of the neighborhood matrix. This method is susceptible to edge percolation and

loses its performance with partial network data.
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Symbol Definition
Input to blind network fragmentation problem

G∗t = (V, E∗t) Learned contact social network at time t
S ∗t (.) Partially known outcome of S t(.) at time t
I∗t Set of identified infected nodes at time t
b f Budget for forming sub-clusters (divider block)

Additional input to ComMit algorithm
Gg = (V, Eg,Wg) Geo-proximity network
Cg Geo communities inferred from Gg

bt Budget for testing (test-trace block)
at Accuracy of self-reports in contact tracing
εt Value of ε for testing at time t
dε Decaying factor for updating εt

tr Restriction period of isolating sub-clusters
Other notations

Ct Set of sub-clusters at time t
Gs = (V, Es) Contact social network
S t(.) = {sv

t |v ∈ V} Outcome of spread at time t
It = {v ∈ V |sv

t = I} Set of infected nodes at time t

Table 6.1: Notations.

6.2 Problem Statement

Inspired by the findings of Block et al. [157] and Topı̂rceano [149], I argue that frag-

menting network communities into small clusters (sub-clusters) and isolating these sub-

clusters, rather than isolating individuals is the best strategy during the early stages of a

contagion. I refer to the problem of finding such sub-clusters as the Network Fragmen-

tation Problem and it is the backbone of the ComMit algorithm.

Assume the beginning of an unknown viral infection within an unknown contact net-

work. with a known underlying geo-spatial structure (e.g., the geographic coordinates

of domiciles). Consider that we have the power of restraining individuals to limit their

interactions within a certain group in exchange for a compensation. This introduces

perturbations in the underlying unknown contact network that changes the dynamic of

the spread. The main question is how to choose groups of individuals such that isolating

them as a group from the rest of the network, while maintaining their inner-group inter-

action, most efficiently inhibits the spread. This is the network fragmentation problem

that I formally define in Section 6.2.4, but first, I discuss the population model, conta-

gion model, and assumptions on network perturbations , as follows. The notations used

in this and next section are summarized in Table 6.1.
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6.2.1 Population Model

Empirical studies on human contact have shown geo-spatial distance to be the most

important factor in forming connections [160]. More recent studies on online social

networks show the geo-spatial distance also influence the presence of online contacts

and they are inversely correlated by a power-law [161]. This observation can be used to

compensate for an absence of knowledge on contact network structure.

I model the population as a two-layer network consisting of the contact network Gs =

(V, Es) and its underlying geo-location graph Gg = (V, Eg,Wg). Both layers are undi-

rected and share the same set of nodes, V . Gg is a complete graph and a weighted edge

(i, j,wg
i j) ∈ Eg indicates a geo-distance of wg

i j between nodes i and j. Gs, however,

is sparse and an edge (i, j) ∈ Es implies the existence of contact between nodes i and

j. I assume the distance between individual domiciles and their contact patterns do not

change.

The community membership of each node is inferred from Gg, while the infection

spreads through the links in Gs. The key underlying assumption is the inverse rela-

tionship between Wg and Es, as demonstrated in [160, 161]. More specifically, the

empirical results in [161] suggest a Zipf’s law:3 i.e., the probability of an edge between

nodes (i, j) in Gs is

p((i, j) ∈ Es) ≈
b

wi j
g

, 0 < b ≤ 1, 1 ≤ wi j
g (6.1)

for a constant b. I use this rule in building the datasets in Section 6.4. From the per-

spective of a mitigation strategy, Es is partially known. I represent this partially known

network at time t by G∗t = (V, E∗t ). In each iteration G∗t is updated by the informa-

tion from test-trace (Figure 6.1). If nothing about Es is known (i.e., in the start of the

algorithm, or in the absence of test-trace block), E∗t is empty.

6.2.2 Contagion Model

Consider a viral spread with unknown dynamics, S t(Gs) = {sv
t |v ∈ V}, that impacts

the contact network Gs by changing the state of nodes in V at each timestamp. In this

definition, sv
t denotes the state of node v ∈ V at time t, and S t(.) is a graph function

3In [161], the exponent of the best power-law fit if sound to be −1.03 with a standard error of 0.03,
which can be approximated by a Zipf’s law.



81

whose domain and range are |V | and a pre-defined set of possible states, respectively.

The only known facts about S t(Gs) from the perspective of an early mitigation strategy

are (1) infectious (sv
t = I) is one of the possible states, and (2) the infection spreads

through direct contact.

6.2.3 Network Perturbations

The only network perturbations required for the network fragmentation problem are

edge deletion and edge addition. The edge addition is only limited to the edges that

have been previously deleted by the algorithm (isolation process) and are to be released.

Since one of the criteria for the early mitigation strategy is to minimize the isolation of

healthy individuals, the selection of edges for perturbation is performed through selec-

tion of sub-clusters of nodes. The healthy individuals are restricted through isolation of

these sub-cluster; i.e., the members of a sub-cluster can only contact others within the

sub-cluster and not outside of it. This means the inter-cluster edges of the sub-cluster

will be preserved while the intra-cluster edges are removed.

To limit the amount of network disturbance (e.g., due to economic cost), there is a

budget for the selection of sets of nodes to form sub-clusters. This budget, which I refer

to as b f , represents the cost of restricting the movement of individuals in a network

(e.g., daily monetary compensation). As such, it is logical to consider b f in terms of

the number of restricted nodes per timestamp rather than the number of edges that are

perturbed (e.g., we pay restricted individuals the same compensation regardless of their

number of contacts).

6.2.4 Network Fragmentation Problem Statement

Given the contact network Gs(V, Es), the outcome of a temporal spreading process S t(.),

and a fragmentation budget b f , the network fragmentation problem is to find a set of

sub-clusters Ct(Gs, b f ) at time t whose isolation minimizes the total number of infectious

nodes at time t + 1. In formation of these sub-clusters, only known infectious nodes are

allowed to form singleton sub-clusters. Formally,
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Ct(Gs, b f ) = min
Gs,S t(.)

|It+1| (6.2)

s.t
∑

C∈Ct(Gs,b f )

|C| ≤ b f

|C| > 1 ,∀C ∈ Ct(Gs, b f ) if sv
t , I ,∀v ∈ C

|C| = 1 ,∀C ∈ Ct(Gs, b f ) if sv
t = I ,∀v ∈ C.

With known Gs and S t(.), the answer to this problem is trivial: putting all infectious

nodes in It in singleton sub-clusters and isolating them gives the optimal solution.

The problem is non-trivial once we add the assumptions of the early mitigation strat-

egy: partially known Gs and S t(Gs) at time t, which are shown as G∗t and S ∗t in Table

6.1, respectively. This problem, which I will refer to as Blind Network Fragmentation

Problem, is then formulated as follows,

Ct(Gs, b f ) = min
G∗t ,S

∗
t (Gs)
|It+1| (6.3)

s.t
∑

C∈Ct(Gs,b f )

|C| ≤ b f

|C| > 1 ,∀C ∈ Ct(Gs, b f ) if s∗vt , I ,∀v ∈ C

|C| = 1 ,∀C ∈ Ct(Gs, b f ) if s∗vt = I ,∀v ∈ C,

in which s∗vt ∈ S ∗t . Note that the difference between 6.2 and 6.3 is that 6.3 uses the in-

formation from partial observations, G∗t and S ∗t , to minimize It+1. ComMit is a heuristic

algorithm that aims to minimize 6.3. The next section outlines its details.

6.3 Method

Here, I introduce the ComMit algorithm for dynamically perturbing a network to inhibit

the progress of a viral spread, as defined in 6.3. ComMit does not require a priori

knowledge of the contact network structure. Other methods with a similar assumption

(which mainly deal with immunizations) [25, 82, 159], overcome this limitation by

relying on extensive sampling from the contact network (in the form of random walks
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and/or random node sampling). In practice, assuming there is an unlimited budget for

sampling is unrealistic.

Another assumption of ComMit is blindness to the dynamic of the spread, which in

turn calls for an efficient testing strategy to identify as many infectious nodes as possi-

ble. Although the intuition behind sampling and testing is different (one tries to learn

about the network structure whereas the other aims to locate the infectious nodes), the

mechanism by which they operate is the same: they select candidates from the pool

of nodes in the network based on certain criteria and both within a limited budget in

real-world scenarios. Considering their similarity, I combine the sampling and testing

into one temporal algorithm. At each timestamp, the goal of this algorithm is to update

ComMit’s knowledge about the network structure and the infectious hubs simultane-

ously. I refer to this algorithm in the ComMit’s pipeline as test-trace block. Iteratively,

the output of this block is fed into the divider block in which the fragmentation-based

mitigation strategy of ComMit perturbs the network to inhibit the spread (Figure 6.1).

Below, I discus the details of these two blocks.

6.3.1 Test-Trace Block

As evident from the name, the test-trace block consists of two steps: Testing. The

selection of candidates (pivots) from the population to be tested. This step determines

whether these candidates are infectious or not. Tracing. Contact tracing of pivots in

order to update the known contact network, G∗. Note that the traced contacts will not

be tested.

Consider a temporal testing strategy, Tt(Gs, bt) = {sv
t |s

v
t ∈ S t(Gs)} with limited budget

bt, whose purpose is two-fold: (1) finding as many infectious nodes in It as possible;

(2) gathering information about unknown Gs network to update the known G∗t network.

More formally, an optimal testing strategy would minimize the following,

Tt(Gs, bt) = min
Gs,S t(Gs)

dist(Gs,G∗t ) + dist(S t(Gs), S ∗t (Gs))

s.t. |Tt(Gs)| ≤ bt, (6.4)

in which dist(a, b) denotes the distance between a and b. This problem is similar to the

exploration-exploitation scenario.
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A well-known algorithm to address the exploration-exploitation problem in machine

learning is ε-greedy. This algorithm selects an action from a set of possible actions

based on a given reward function; the action that maximizes the reward function is

selected with probability 1− ε and a random action is chosen with probability ε. I adapt

this idea to the graph-based exploration-exploitation problem and select the pivots as

follows,

pivott =

randomly choose from I∗t−1, p(1 − εt)

randomly choose from V, p(εt)
(6.5)

in which I∗t−1 is the set of infected nodes identified in the previous timestamp. At each

time, ComMit selects as many pivot nodes as allowed by bt. As time progresses, it has

more knowledge about the network and can rely on exploitation more than exploration.

To make that possible, the value of ε is updated through a decaying factor dε as,

εt = max (εt−1 −
εt−1

dε
, 0), dε > 0. (6.6)

Once the pivots are tested and I∗t is updated, the tracing strategy is straightforward:

the pivots are asked to provide the information about their immediate neighborhood.

This information may have less than 100% accuracy. I denote this accuracy by at and

study its impact in Section 6.5.2. The new edges obtained from tracing update G∗t which

will be used by the divider block.

6.3.2 Divider Block

The divider is the main building block of ComMit that handles the network perturbations

aimed at decreasing the magnitude of the spread. The intuition behind divider is to

fragment the bigger communities by reducing the density of its inter-connections. Using

the updated I∗t and G∗t from test-trace, the divider identifies a new set of sub-clusters,

Ct, to be temporarily isolated from the network. It does so by attributing a score to each

candidate node for forming a sub-cluster. The score is calculated for the community

C ∈ Cg of each node, where Cg is the geo-communities inferred from Gg.The scoring

function has three components:
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score =
1
3

(norm-size + inf-rate + density), (6.7)

norm-size =
|C|
|V |
, (6.8)

inf-rate =
|{v ∈ C|s∗vt = I}|

|C|
, (6.9)

density =
1
|E∗t |

(|{(v1, v2) ∈ E∗t |v1, v2 ∈ C}| − |{(v1, v2) ∈ E∗t |v1 ∈ C, v2 < C}|), (6.10)

which, in order, are: (1) normalized community size, (2) proportion of nodes within

community that are known to be infectious, and (3) community density as the proportion

of edges in the known contact network that are inside of the community (i.e., excluding

the outgoing edges). The nodes within a community all have the same score. The

divider randomly picks b f s candidates from the top 20th percentile of the scores as the

seed for the sub-cluster. It ensures the sub-cluster is not singleton by randomly adding

b f n neighbors of each seed that are available (e.g., not isolated with another sub-cluster)

to the sub-cluster. Hence, the overall budget of the divider is b f = b f s × b f n. The

isolation of a sub-cluster refers to cutting all the outgoing edges from a sub-cluster

while maintaining the edges inside.

The divider is also responsible for releasing the currently isolated sub-clusters that have

served their isolation time (tr). To assure these released sub-clusters do not get restricted

again and indefinitely, divider places the members of these sub-clusters in a banned list

that inhibits these nodes nodes from forming another isolated sub-cluster for at least tr

time. The steps for the divider algorithm at time t are,

1. Release sub-clusters isolated at time t − tr.

2. Add the members of the released sub-clusters in the banned list and remove those

who have been in the list for tr time.

3. Put recently identified infectious nodes (I∗t−1) into singleton sub-clusters.

4. Calculate the community score according to 6.7 for nodes that are neither in an

isolated sub-cluster nor in the banned list.
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5. Pick b f s seed nodes with the score in the top 20th percentile of scores and form

their sub-clusters by selecting b f n of their neighbors at random. If the neighboring

list is empty, remove the corresponding seed node from the candidates.

6. Remove outgoing edges of the new sub-clusters to isolate them.

6.3.3 ComMit Algorithm

Combining the test-trace and divider blocks into a pipeline that iteratively perturbs the

contact network yields the final ComMit algorithm (see Algorithm 6). An important

note is when ComMit terminates. Ideally, it would terminate when either there is no

more budget allocated from time t onward, or the spread has dies out (i.e., |It| = 0).

Since It is unknown, I set the latter termination condition such that if for T consec-

utive timestamps no new infectious node is found (i.e. |I∗ti | = 0, for ti ∈ {t − T, t −

T + 1, ..., t}), the spread is considered eradicated.

Algorithm 6: ComMit()
Input: V , Gg, tr, b f n, b f s, bt, ε, dε
Cg ← ExtractCommunities(Gg)

S ∗0 ← {s
∗v
0 = Ī|v ∈ V} // Ī = non-infectious

G∗0 ← (V, {}); I∗0 ← {}; t ← 1
/* iterate while termination condition not met */

while NotTerminated() do
/* TestTrace() operates on unknown network, Gs */

I∗t , S
∗
t ,G

∗
t ← TestTrace(I

∗
t−1, S

∗
t−1,G

∗
t−1, ε, dε , bt)

/* Divider() updates Gs on which spread runs */

Divider(I∗t , S
∗
t ,G

∗
t , tr, b f n, b f s)

t ← t + 1
end

6.3.4 Budget Analysis

ComMit has two budgets: the testing budget (bt as the number of nodes tested at time

t) and the fragmentation budget (b f as the number of non-infectious nodes that are

members of restricted sub-clusters t). The latter is divided into two separate budgets;

one for choosing the sub-cluster seed nodes (b f s) and the other for selecting a certain

number of known immediate neighbors of each seed node (b f n). Empirically, we have

witnessed that for b f n values greater than 2 no significant performance gain is achieved
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The other two budgets are expressed as a proportion of |V |: b f s = a|V | and bt = b|V |.

Thus, the total budget for ComMit becomes (b f n × a + b)|V |, which can be tuned by

setting a and b accordingly (see 6.5.2 and 6.5.3).

6.4 Experimental Setup

In this section, I elaborate on the simulation setup, demonstrate the performance of

ComMit on real-world datasets, and perform ablation studies to gain more insight about

the strengths and limitations of the algorithm.

6.4.1 Contagion Model for Simulation

The majority of previous studies use SIR model in their simulations as the permanent

immunity condition facilitates the analytical tractability [155]. To explore a less investi-

gated direction, I consider the SIS model as the underlying dynamic of the spread. The

SIS contagion model models viruses such as common cold, influenza, and COVID-19

[163]. In the SIS model, each node at time stamp t can either be susceptible (S ) or in-

fectious (I). The transition from S to I is controlled by the infection rate α. The infected

nodes transition back to S once they pass the disease duration td. The default values for

α and td in my experiments are 0.5 and 3, unless otherwise is specified. I initialize an

infection by selecting 0.01 × |V | nodes form the population uniformly at random. In

all of the simulations, I use 10 different sets of initial infectious nodes (referred to as

source nodes from here on).

I also report the performance of ComMit and other benchmarks on SIR model (similar

to the model discussed in 5.1.2) in Section 6.5.1 and see that the true benefit of my

proposed approach is in controlling the non-zero steady state contagions (i.e., large

contagion magnitude) such as SIS.

6.4.2 Dataset

The ideal real-world dataset for testing my geo-social network model should contain

the information on both the geo-locations and social interactions between the nodes.

To the best of my knowledge, due to privacy concerns, such datasets are not available.
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Albany Syracuse Rochester Copenhagen Ithaca
|V | 2, 858 2, 385 1, 312 512 127
|Es| 4, 641 1, 756 4, 742 1, 416 315
|Cg| 4 4 5 16 3

Table 6.2: Datasets general information (Gs).

To navigate this problem, I use equation 6.1 and consider two types of data: (A) data

with real-world geo-locations and their pairwise distance, and (B) the data with real-

world social interactions and their pairwise probability of contact. I use the following

strategies to process each category.

• Constructing social network from geo network: First map the pairwise dis-

tances to [1, inf) interval. Then, using the equation 6.1 with b = 1, obtain the

probability of contact between each pair. Keep the edges with non-zero proba-

bility values (rounded to one decimal). Community membership is obtained via

k-means clustering [164] with optimal k that minimizes the inertia.

• Constructing geo network from social network: First form the social network

from mobility data with edge weights (wi j
s ) in (0, 1]. 6.1 for b = 1 gives the

Geo network weights wi j
g . This is a partially constructed geo network as some

edges in the social network are non-existent. To complete the geo network, use

the Weighted Shortest-Path (WSP) length between two nodes in the partially con-

structed geo network. (i.e., WSPGg(.)). So,

Wg =


1

wi j
s
, (i, j) ∈ Es

WSPGg(i, j), otherwise
(6.11)

The community memberships are obtained using Louvain algorithm [14] on the

constructed geo-network.

NAD Dataset. For the first datatype, I use the U.S National Address Database (NAD)4

(see 6.2) and build four different geo-networks: Syracuse, Albany, Rochester, and

Ithaca. pairwise distance is computed using latitude and longitude.

Copenhagen Dataset. For the second datatype, I consider the Copenhagen Network

Study Interaction Data [165] (see 6.2). In this study, students were followed through

4https://www.transportation.gov/gis/national-address-database/

national-address-database-nad-disclaimer

https://www.transportation.gov/gis/national-address-database/national-address-database-nad-disclaimer
https://www.transportation.gov/gis/national-address-database/national-address-database-nad-disclaimer
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their Bluetooth devices across the campus for 28 days. Every five minutes, the Bluetooth

devices detected in their vicinity is recorded. Following the definition of close contact

by CDC5, I translate these recording as close contact if at least 15 minutes of contact is

observed within a 24-hour interval for each pair of students. The social network weights

are defined as average daily frequency of each close contact and are mapped into (0, 1]

interval to represent the pairwise probability of contact.

6.4.3 Evaluation Metric

Contagion Metric. A spread can be described by its (1) absorption time (the time

it takes until no infectious node exists in the population, i.e., |It| = 0); (2) the peak

of infection. In the absences of vaccination, SIS spreads often reach a steady state of

maintaining non-zero infection rather than absorption state. Hence, I limit the simu-

lation time to 200 steps. I will show that ComMit effectively absorb the steady-state

SIS infection in a short time for all datasets. In Section 6.5, I use these two metrics to

compare different mitigation strategies.

Test-Trace Metric. The test-trace block in ComMit is designed to simultaneously find

the most number of infectious nodes and edges of the social network through tracing.

Hence, for comparing testing strategies, I consider three metrics,

• Test Efficacy: Defined as the ratio between number of infectious nodes found

and total number of infectious nodes at each timestamp ( |I
∗
t |

|It |
)

• Test Efficiency: Defined as the ratio between number of infectious nodes found

and total number of tests taken at each timestamp ( |I
∗
t |

bt
). This is the same measure

as the Positive Detection Rate used in previous studies on efficient test strategies

[166].

• Kullback–Leibler Divergence: The KL divergence between the degree distri-

bution of unknown Gs and that of reconstructed G∗t at each timestamp. The KL

divergence between two probability distributions P and Q is defined in 3.17. In

our case, P is the probability mass function of G∗t ’s degree distribution and Q is

that of Gs.
5https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/

contact-tracing-plan/appendix.html

https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html
https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html
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In Section 6.5.2, I compare several test strategies based on these evaluation metrics.

Divider Metric. The main bottleneck of the divider block is the number of restricted

nodes it requires to effectively improve the contagion metrics. I define this number as

the divider metric (b f ) and evaluate the goodness of divider as the trade-off between this

budget and the resulting contagion metric after implementing ComMit. This metric is

used in Section 6.5 for benchmarking and ablation studies.

6.4.4 Benchmarks

To the best of my knowledge, there are no temporal mitigation strategies that consider

all the limitations of the early-stages in a viral spread (ignorance of the network structure

and dynamics of the spread, and limitation of the sampling and network perturbation

budgets). For a fair comparison, I build the benchmarks by using the same test-trace

method as in ComMit to give the advantage of efficiently probing the network within a

limited budget. My benchmarks for the divider block of ComMit are as follows,

• ComMit with CScore. The original ComMit pipeline discussed in Section 6.3.

• ComMit with DScore. Similar to ComMit with CScore, but uses the degree

centrality in G∗t to score and choose seed nodes.

• ComMit with IScore. Inspired by test-based strategies whose goal is to find the

most number of infectious nodes to isolate, the divider is changed such that it

selects the seed nodes from the known infectious by their degree centrality in G∗t .

• Acquaintance immunization Similar to acquaintance immunization method in

[159], seed nodes and their neighbors are selected at random to form sub-clusters.

Note that in this method there is no singleton sub-clusters and identified infectious

nodes may or may not be included in the sub-clusters.

• Community isolation. Considering the good performance of community-based

isolation (with known contact network) in the previous chapter, I use the infor-

mation from test-trace to decide whether to isolate the entirety of a community.

This method does not form sub-clusters. Once the ratio of the infectious nodes

within the community surpasses a certain threshold, the community is isolated for

the duration of tr (the same value across all baselines). My experiments showed

a threshold of 0.1 gives the best reasonable trade-off between the budget and per-

formance.
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• No intervention. The baseline without any mitigation strategy.

6.5 Results & Ablation Studies

In this section, I first report the comparative analysis of ComMit’s performance on in-

hibiting the infection in terms of the duration and magnitude of the spread. Next, I

perform ablation studies on test-trace and divider block, respectively, to back up my

hypotheses and methodology.

6.5.1 Inhibiting Contagion

SIS Contagion Model. The results of my simulations for SIS contagion model are

shown in Table 6.3. In addition to the evaluation metrics, I also report the maximum

divider budget for each strategy (the test budget is the same for all). The default values

for hyperparameters are: at = 1, bt = 0.1 × |V |, b f s = 0.01, b f n = 2, and tr = 3. The

results show that ComMit variants, ComMit with CScore and ComMit with DScore, yield

similar performance with the exception that the former has a shorter absorption time on

average. The other two strategies, ComMit with IScore and Community Isolation, do not

have guaranteed performance as in some cases they either do not terminate the spread

or use an unrealistically large budget. Acquaintance Immunization consistently yields a

poor performance across all datasets. At its best, ComMit reduces the peak of infection

by 73% and the absorption time by 80% (see the first row for Albany). At its worst, it

reduces the peak by 6% and the absorption time by 90% (see the first row for Rochester);

a trade-off that still beats the other baselines.

Figure 6.2 is an example of changing spread dynamic for each strategy for Copenhagen

dataset. Figure 6.5 shows the magnitude of restriction imposed by each strategy for the

same dataset. They show that the community-based and degree-based ComMit resulting

in the best trade-off between lowering the peak of infection, shortening the absorption

time, and limiting the restriction magnitude.

SIR Contagion Model. Similar results are shown in Table 6.4 and Figures 6.4 and 6.5

for SIR contagion model. In general, the SIR model reaches its absorption time quickly

in all datasets. I chose infection rate α to be 0.1 in order to prolong the duration of

infection (although the absorption time is still small). Other parameters are the same as

SIS model.
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Figure 6.2: The change in the dynamic of the spread due to mitigation strategies for
Copenhagen dataset for SIS contagion model. The community-based and degree-based
ComMit has the best performance in terms of lowering the peak of infection and short-

ening the absorption time.
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Figure 6.3: The number of restricted nodes at each timestamp for Copenhagen dataset
under SIS contagion model. The community isolation requires almost the full graph
to be restricted. Community-based and degree-based ComMit restrict much smaller
proportion of the population. Their magnitude of restriction is comparable to that of
acquaintance immunization and commit with IScore, whereas the latter two cannot

inhibit the SIS contagion as shown in Figure 6.2.
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Figure 6.4: The change in the dynamic of the spread due to mitigation strategies for
Copenhagen dataset for SIR contagion model. Community isolation worsens the sit-
uation compared to no intervention scenario. All variants of ComMit outperform the
benchmarks. Unlike the scenario with SIS model, community-based ComMit loses its
advantage in terms of lowering the duration of infection compared to ComMit wiht

DScore and IScore.
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Figure 6.5: The number of restricted nodes at each timestamp for Copenhagen dataset
under SIR contagion model. The zero restriction of community isolation shows that
the strategy has not been activated due to the small magnitude of contagion under SIR
regime. ComMit with CScore and IScore require a smaller restriction magnitude, but
ComMit with DScore and IScore yield the shortest absorption time. Under short-lived
contagions such as those modeled by SIR, ComMit with CScore has a less pronounced

advantage compared to the other two variants.
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commit-cscore commit-dscore commit-iscore acq-imm com-iso no-int

Albany
budget 0.056 (0.006) 0.064 (0.003) 0.043 (0.007) 0.086 (0.0) 0.83 (0.162) NA

duration 43 (9.8) 36.2 (8.4) 46.2 (7.3) 200.0 (0.0) 200.0 (0.0) 200.0 (0.0)
inf peak 0.051 (0.007) 0.045 (0.007) 0.047 (0.009) 0.136 (0.028) 0.18 (0.028) 0.186 (0.032)

Syracuse
budget 0.029 (0.003) 0.053 (0.004) 0.018 (0.005) 0.066 (0.001) 0.018 (0.053) NA

duration 19 (6.4) 12.9 (4.2) 24.3 (6.3) 194.0 (18.0) 200.0 (0.0) 200.0 (0.0)
inf peak 0.022 (0.003) 0.02 (0.002) 0.024 (0.004) 0.025 (0.004) 0.025 (0.005) 0.025 (0.004)

Rochester
budget 0.12 (0.024) 0.112 (0.016) 0.085 (0.004) 0.087 (0.001) 0.785 (0.087) NA

duration 61.7 (12.0) 69.0 (14.7) 88.4 (40.1) 200.0 (0.0) 200.0 (0.0) 200.0 (0.0)
inf peak 0.167 (0.062) 0.152 (0.042) 0.274 (0.117) 0.347 (0.079) 0.374 (0.092) 0.373 (0.091)

Copenhagen
budget 0.209 (0.011) 0.204 (0.013) 0.088 (0.0) 0.088 (0.001) 0.952 (0.024) NA

duration 49.2 (7.0) 58.4 (9.6) 200.0 (0.0) 200.0 (0.0) 200.0 (0.0) 200.0 (0.0)
inf peak 0.51 (0.032) 0.487 (0.042) 0.753 (0.017) 0.786 (0.012) 0.727 (0.044) 0.856 (0.004)

Ithaca
budget 0.117 (0.023) 0.098 (0.018) 0.057 (0.02) 0.068 (0.009) 0.476 (0.303) NA

duration 16.9 (9.1) 21.6 (7.1) 30.5 (23.1) 146.6 (82.2) 146.4 (82.2) 146.0 (82.7)
inf peak 0.121 (0.064) 0.113 (0.065) 0.138 (0.095) 0.202 (0.122) 0.211 (0.119) 0.209 (0.122)

Table 6.3: Performance of various mitigation strategies for SIS model. Community-
based and degree-based ComMit consistently reduce the peak of infection and the ab-
sorption time with limited budget, whereas the other methods do not give consistent
performance gain across all datasets. The results are averaged among 10 runs of the

simulation and the value in parenthesis shows the standard deviation.

commit cscore commit dscore commit iscore acq imm com iso no mit

Albany
budget 0.03 (0.003) 0.057 (0.003) 0.012 (0.002) 0.076 (0.004) 0.0 (0.0) NA

duration 8.3 (1.1) 7.5 (1.7) 8.4 (1.9) 9.1 (1.3) 8.4 (1.20 8.8 (1.4)
inf peak 0.016 (0.001) 0.015 (0.002) 0.017 (0.001) 0.017 (0.002) 0.016 (0.002) 0.017 (0.002)

Syracuse
budget 0.017 (0.003) 0.05 (0.005) 0.007 (0.002) 0.045 (0.006) 0.0 (0.0) NA

duration 6.8 (1.7) 5.7 (1.2) 5.9 (1.5) 6.5 (1.8) 6.7 (1.4) 7.3 (1.005)
inf peak 0.013 (0.001) 0.013 (0.001) 0.012 (0.001) 0.014 (0.002) 0.013 (0.001) 0.013 (0.001)

Rochester
budget 0.054 (0.005) 0.063 (0.004) 0.027 (0.01) 0.084 (0.003) 0.0 (0.0) NA

duration 18.8 (5.9) 18.0 (5.6) 21.1 (7.4) 19.4 (7.4) 28.7 (8.5) 34.0 (7.0)
inf peak 0.029 (0.009) 0.026 (0.007) 0.031 (0.012) 0.034 (0.014) 0.039 (0.016) 0.045 (0.016)

Copenhagen
budget 0.062 (0.012) 0.074 (0.005) 0.034 (0.008) 0.081 (0.003) 0.088 (0.074) NA

duration 9.6 (4.2) 9.0 (2.4) 10.9 (3.8) 14.0 (5.4) 16.4 (6.6) 21.7 (7.0)
inf peak 0.028 (0.014) 0.027 (0.011) 0.039 (0.014) 0.037 (0.018) 0.042 (0.02) 0.052 (0.016)

Ithaca
budget 0.061 (0.014) 0.065 (0.008) 0.028 (0.027) 0.051 (0.023) 0.087 (0.173) NA

duration 5.8 (3.4) 5.5 (3.8) 5.0 (2.1) 6.9 (2.9) 6.3 (3.0) 6.2 (2.6)
inf peak 0.035 (0.022) 0.027 (0.014) 0.044 (0.038) 0.051 (0.037) 0.058 (0.046) 0.06 (0.048)

Table 6.4: Performance of various mitigation strategies for SIR model. All variants of
ComMit consistently reduce the peak of infection and the absorption time with limited
budget, whereas the other methods do not give consistent performance gain across all
datasets. The small magnitude of contagion under SIR regime makes the advantage of
ComMit with CScore less pronounced compared to the other two variants. The results
are averaged among 10 runs of the simulation and the value in parenthesis shows the

standard deviation.

The results show that all variants of ComMit outperform Acquaintance Immunization,

Community Isolation, and No Mitigation. However, due to the short duration of in-

fection with SIR model, we see that the advantages of ComMit with CScore are less

pronounced compared to ComMit with DScore and ComMit with IScore. ComMit with

DScore consistently yields the shortest absorption time out of the three, while overall

ComMit with CScore does a better job at limiting the budget spent on the divider block.

Although ComMit with IScore results in lower number of restricted nodes for some
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datasets (see Figure 6.4), the result is not consistent across all datasets, as in the case

with SIS model. Due to the small magnitude of the contagion under SIR model, the

Community Isolation strategy is not activated for majority of datasets (see its zero bud-

get for Albany, Syracuse, and Rochester in Table 6.4) as it does not meet the required

threshold of infection.

6.5.2 Ablation Study on Test-Trace Block

Effectiveness of ε-greedy. ComMit uses ε-greedy algorithm for its test-trace block.

Here, I justify this selection by comparing against alternative testing methods. My

testing benchmarks include,

• Random: At each timestamp, select the pivot nodes randomly. Despite its sim-

plicity, this method has been used extensively in practice (e.g., in the face of the

COVID-19 pandemic).

• Random with memory: The same as Random testing, but the nodes tested in the

previous timestamp are excluded. This strategy avoids the redundant testing of

the recently visited nodes.

• Degree with memory: Select pivot nodes according to their degree centrality in

the known graph, G∗t . Exclude the nodes that have been tested in the previous

timestamp.

• ε-greedy: As described in Section 6.3.1.

• ε-memory: Same as ε-greedy but excluding the nodes tested in the previous

timestamp.

• ε-degree: Similar to ε-greedy but the policy for selection with p(εt) in Equation

6.5 changes to selection based on the degree centrality in the known graph, G∗t .

Note that the tracing mechanism is the same across all testing strategies for fair compar-

ison (see Section 6.3.1). I report the simulation result for the Copenhagen dataset under

SIS contagion model below.

Figures 6.6 and 6.7 show how these testing methods compare in terms of efficiency and

efficacy. The efficiency achieved by ε-greedy and ε-memory is comparable to that in
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Figure 6.6: The testing efficiency
average and standard deviation for
10 simulation runs. ε-greedy and
ε-memory yield the best efficiency,
whereas degree-based methods give

the worst.
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Figure 6.7: The testing efficacy av-
erage and standard deviation for
10 simulation runs. ε-greedy and
ε-memory yield the best efficacy,
whereas degree-based methods give

the worst.

[166] whose testing data-driven testing method based on logistic regression and prior-

ity ranking on COVID-19 Lahore dataset produced 28.18 percent efficiency. The main

difference between this work and theirs is that my testing strategy, in addition to find-

ing infectious nodes, also reconstruct the contact network. The efficacy of the testing

methods are lower than their efficiency, as expected. However, ε-greedy and ε-memory

give a considerably higher performance and degree-based methods consistently perform

poorly.

The graph-reconstruction power of each testing method, measured by the KL divergence

between the degree distributions as explained in Section 6.4.3, is shown in Figure 6.8.

The degree-based methods struggle to reconstruct the entirety of the graph within the

duration of the spread. Other methods, reconstruct the full network within one forth of

the total duration.

Combining the results of the efficiency, efficacy, and KL divergence measures, it is

evident that the ε-greedy and ε-memory methods give the best performance for the

exploration-exploitation task. The reason I chose the former for ComMit pipeline is

the difference in their computation time. Since ε-memory has to remember the result

from the previous timestamp, it is slower and does not yield a considerable boost in

performance compare to the faster alternative, ε-greedy.

I also compare the final result of ComMit pipeline by using different testing methods
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Figure 6.8: Graph construction comparison. The KL divergence between degree dis-
tribution of the known (G∗t ) and unknown graphs (Gs). Degree-based methods fail to
capture the entirely of the graph, whereas the other methods reconstruct the full graph

within a short amount of time.
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Figure 6.9: The change in the dynamic of the spread due to testing strategies for Copen-
hagen dataset under SIS contagion model. ε-greedy and ε-memory give the best per-

formance.

and report them in Figures 6.9 and 6.10. Excluding the degree-based testing, all meth-

ods have comparable divider budget (6.10), whereas the lowest peak and duration of

infection is obtained by ε-greedy and ε-memory (6.9).

Hyperparameters. The impact of self-reports accuracy, at, is tested in Figure 6.11 on

the left. Higher accuracy results in discovering more edges quickly, but does not change

the performance of ComMit drastically. This result suggests that ComMit does not rely

on full knowledge of the graph to reach its best performance. In Figure 6.11 on the
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Figure 6.10: The number of restricted nodes at each timestamp for Copenhagen dataset
under SIS contagion mode. Excluding the degree-based testing, all methods have com-

parable divider budget.
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Figure 6.11: Ablation study on trace accuracy (at) and test budget (bt). The inf peak,
norm duration, max bud, and num edges signify the peak of infection, the duration
of infection normalized by the duration of simulation, the maximum divider budget
in terms of number of restricted nodes normalized by |V |, and the number of edges
discovered by the test strategy normalized by the number of edges in Gs, respectively.

right, we see that increasing the test budget bt, for at = 1, can drastically shorten the

absorption time. However, small values of bt still do a well at probing the full graph.

6.5.3 Ablation Study on Divider Block

The two top figures in 6.12 show that by increasing the divider’s budget, b f s and b f n,

no significant performance boost is observed. In the bottom figure of 6.12, I keep the

duration of infection, td as 3 and change the divider’s restriction time, tr. The result

shows that choosing a value closer to the actual infection time yields a shorter absorption

time.
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Figure 6.12: Ablation study on divider seed budget (b f s), divider seed neighbor budget
(b f n), and divider restriction time (tr) in comparison with the disease duration (3). The
inf peak, norm duration, and max bud signify the peak of infection, the duration of
infection normalized by the duration of simulation, and the maximum divider budget in

terms of number of restricted nodes normalized by |V |, respectively.

6.5.4 Blind vs. Non-Blind Performance

What distinguishes ComMit from similar mitigation strategies is its blindness assump-

tion on the contact network structure. I empirically demonstrated the effectiveness of

ComMit in Section 6.5.1. Here, my goal is to obtain the same results but under the

non-blind assumption; i.e., the algorithm knows the graph structure Gs a priori. This

removes the necessity for test-trace block in Figure 6.1 and reduces the algorithm to an

iterative divider block.

Figures 6.13 and 6.14 show the performance and budget of different mitigation strate-

gies under non-blind assumption for SIS contagion model and Copenhagen dataset.

Comparing these two figures with those in 6.2 and 6.3, we see that the results are ex-

actly the same in terms of how different strategies compare. If we consider ComMit

with CScore and DScore, however, we notice that the DScore has lost its advantage

over CScore by having and increased peak of infection. CScore, on the other hand,

has a lower peak compared to blind scenario. As expected, both reach absorption time

faster under non-blind assumption. However, their performance is still comparable un-

der blind and non-blind assumptions, which shows the success of ComMit’s testing

strategy in alleviating the blindness limitation.
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Figure 6.13: The change in the dynamic of the spread for Copenhagen dataset under
non-blind assumption and SIS contagion model. Both ComMit with CScore and Dscore
reach the absorption time faster than that under the blindness assumption (Figure 6.2).

CScore gives a lower peak of infection than DScore in this scenario.
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Figure 6.14: The number of restricted nodes at each timestamp for Copenhagen dataset
under non-blind assumption and SIS contagion model. The results are similar to those
in Figure 6.3, which shows the blindness limitation does not increase the required

budget for ComMit.

6.5.5 Performance under High Infection Rate

Blindness to the dynamics of the contagion is one of the requirements for a practical

early mitigation strategy. An ideal strategy should not lose its capability in inhibiting

the contagion as the contagion rate (i.e., infection rate) goes up. For such a model, we

expect the model’s performance to reach its stable performance in a relatively small

infection rate and becomes agnostic to higher rates. Using the contagion metrics –

absorption time and peak of infection – I compare the performance of ComMit with the

benchmarks under increasing infection rates for SIS contagion model. The results for

Albany dataset is shown in Figure 6.15.
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Figure 6.15: Performance comparison for different infection rates in SIS contagion
model. The inf peak, norm duration, and max bud signify the peak of infection,
the duration of infection normalized by the duration of simulation, and the maximum
divider budget in terms of number of restricted nodes normalized by |V |, respectively.
ComMit with CScore and DScore are the only strategies whose performance is not
disturbed by the higher values of the infection rate. These two models give the best

trade-off between budget and performance as well.

ComMit with CScore and Dscore are the only strategies whose performance is not dis-

turbed by higher infection rates. ComMit with IScore, despite maintaining a low peak

of infection, steadily loses its ability in controlling the duration of the spread for higher

rates. Both acquaintance immunization and community isolation lose their performance

in smaller values of infection rate and reach the state of the spread with no intervention

for higher values. I also have shown the divider budget for each strategy (as the testing

budget is the same across all) in the same figure. It shows that lower budgets are not

always the indication of a better mitigation strategy (e.g., ComMit with IScore) and the

best trade-off between the budget and performance is achieved by ComMit with CScore

and DScore.
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6.6 Summary

In this chapter, I formally defined the problem of early mitigation strategy and offered a

dynamic algorithm, ComMit, that incorporates the realistic assumptions of blindness to-

wards network and spread dynamics. More specifically, ComMit addresses the problem

of early mitigation strategy from a community perspective, and has two main features

distinguishing it from prior work: (1) It is agnostic to the dynamics of the spread; (2)

does not require prior knowledge on contact network; (3) it works within a limited bud-

get; and (4) it enforces bursts of short-term restriction on small communities instead of

long-term isolation of healthy individuals.

ComMit only utilizes geographical information to infer community membership and

data from testing and contact tracing to update its knowledge on the spread without

enforcing any assumptions about the nature of the disease. Because ComMit relies on

updated data from test-trace reports, it is dynamic and its proposed mitigation strategy

can evolve over time. Using the updated information, it introduces network perturba-

tions that control the magnitude of the spread by following a community fragmentation

strategy.

I tested ComMit on several real-world social networks. The results of the experiments in

this chapter show that, within a small budget, ComMit can reduce the peak of infection

by 73% and shorten the duration of infection by 90%, even for spreads that would reach

a steady state of non-zero infections otherwise (e.g., SIS contagion model).

It is worth noting that ComMit relies on geo-network only for estimating the community

structure in the contact network. If these communities are known through other means

(e.g., government survey data), no geo information is required.

Limitations & Future Direction. In this chapter, I have not considered the scenario of

multiple pandemics co-occurring in the network (e.g., different mutations of COVID-

19). I hypothesize that under such circumstances, ComMit still approaches to the ab-

sorption state but in a longer time frame. Another assumption that is not covered here

is the non-ideal testing kit with less than 100% accuracy in determining if the tested

candidate is infectious or not. In the case of more sophisticated contagion models, such

as those with varying infection parameters [167], it is expected that ComMit maintains

its performance as it does not rely on a priori information on contagion dynamics. How-

ever, this hypothesis has not been tested.
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Throughout this chapter, I assumed the speed of time varying graph compared to the

dynamics of a disease is much slower. In majority of viral infection, this is indeed the

case. However, there is an alternative scenario in which the two speeds are comparable

(e.g., as studied by Nadini et al. [168]). In this case, the updated observation of contact

layer in ComMit needs to be readjusted with respect to the varying dynamics of the

network. In general, the absence of contact data for the dynamic contact networks is a

more complex problem that deserves its own separate study.

Ethical Issues. Owing to the exploration component, it is possible to test a candidate

with low infection probability. There are ethical issues involved with violating one’s

privacy by requiring their social information when they are not likely to put others in

danger.
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Chapter 7

Conclusion

In real-world complex networks, destructive spreads, commonly known as contagions,

are common and can potentially lead to catastrophic events if uncontrolled. Some exam-

ples are biological contagions such as pandemics that disturb societies and potentially

lead to death of many; or network attack contagions on crucial infrastructure systems,

such as power grids and water treatments, that disrupt societies as a whole; or social

contagions such as the propagation of misinformation or radical ideas, ensuing chaos

and polarization within and across societies. For these reasons, it is critical to study the

protective measures against contagions in complex networks.

In this dissertation, I studied the network protection problem in the context of network

attacks and biological contagions. The outcome of this effort makes several important

contributions to the network protection field, as summarized below.

I first started by reviewing fundamental graph theoretic concepts and related work in

network spreading processes, network protection research, and contagions (Chapter 2).

By organizing the bulk of research in contagions into three categories – network attacks,

biological, and social contagions – I highlighted the common major shortcomings in

the current network protection trends; namely, using global graph knowledge, ignoring

dynamic nature of spread and network, imprecise evaluation metrics, and scalability.

In Chapter 3 and to address the problem of scalability, I proved, theoretically and em-

pirically, the existence of a relationship between characteristic path length and local

clustering coefficient. The characteristic path length (i.e., the average of all pairwise

shortest paths) is a global network measure that directly impacts the contagion paths

(i.e, the paths through which the spread propagates). The expensive computation cost
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of this measure makes it an impractical tool in designing protection algorithms for real-

world settings. On the other hand, the local clustering coefficient is relatively fast to

compute. This local measure indicates the strength of a cluster (community) formed

by the neighbors of a node. The relationship between the two suggests that, instead of

global network manipulations, we can disrupt the contagion pathways by manipulating

the local community of “certain nodes”.

Depending on the problem setting, these “certain nodes” are identified in two different

ways: (1) predefined critical nodes based on the sensitive information they carry, or

their overall importance to the functionality of the network (Chapter 4); (2) unknown

critical nodes whose importance depends on their location in the network structure and

interaction with other nodes (e.g., in a community), and have to be detected based on

the current network structure at each time (Chapter 6).

In Chapter 4, I focused on network attack contagions and defined the problem of pro-

tecting a set of (predefined) target nodes against an unknown intruding contagion. I

proposed the CoVerD algorithm in this chapter which only uses the local community

information of the target nodes. Tested on real networks and compared with existing

methods, CoVerD achieved the lowest closeness centrality for target nodes without us-

ing any global measures. While maintaining the fast computation of local network per-

turbations, it improved the best performing benchmarks (some of which were based on

global measures, such as betweenness centrality) by increasing the attacker’s required

budget (i.e., the effort required for contagion to reach the target nodes) by 3 to 10 times.

This chapter emphasized the importance of choosing a proper evaluation metric (the

attack budget vs. global centrality measures) and using local community information to

enhance scalability.

In Chapter 5, I turned to biological contagions and studied the network protection prob-

lem in early stages of an unknown viral spread. In this problem setting, the set of nodes

that need to be protected are not predefined and the protection algorithm needs a ranking

method for identifying the most critical ones. It was revealed that, when considering

both the magnitude of the spread and cost of the protection strategy, the node ranking

based on the 1 − hop information is enough to obtain the best trade-off. The results are

compatible with those obtained in the prior chapter on importance of the local informa-

tion and proper evaluation metric. The analysis in this chapter, however, was based on

the ideal assumption that we have access to the contact information of all nodes in the

graph.
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In Chapter 6, I removed the ideal assumption of full knowledge on the contact informa-

tion and introduced the problem of blind network protection. This problem is specifi-

cally of importance for real-world scenarios in which policy makers have to make ur-

gent decisions in the early stages of a dangerous spread. I formalized this problem

and designed a dynamic mitigation algorithm, ComMit, that successfully terminates the

persistent contagions fast and within a limited budget. The dynamic nature of ComMit

allows for simultaneous information gathering through test-trace procedure and intro-

ducing the network modifications that, to the best of the algorithm’s knowledge at each

time, efficiently inhibits the unknown contagion. The effectiveness of ComMit was

shown on real-world data where it reduced the peak of infection by 73% and shortened

the duration of spread by 90%.

ComMit is the first attempt in addressing the blindness to both the network structure

and contagion dynamics, and the outstanding performance of ComMit shows a promis-

ing path forward. The major implication of these results is the possibility of devising

practical mitigation policies in the face of viral emergencies that do not drastically dis-

rupt the societies (in contrast with, for example, lockdown and herd-immunity-based

policies).

The attempt in this dissertation has been to encourage further research in the area of

network protection against contagions that consider real-world limitations. To this end,

I argue that there needs to be a shift from using global network measures to local ones

(such as local community information) to improve the scalability of the protection meth-

ods. I showed that the accessibility of a node or group of nodes is best controlled by

considering their local neighborhood information rather than full graph structure, which

is often not available. Even under the strict limitations of real-world scenarios, such as

dealing with unknown graph structure and unknown contagion dynamics, it is possible

to design mitigation strategies that are fast, effective, and relatively easy to implement

by resourceful policy makers.

There are several interesting directions to continue this work. To name a few, one is to

consider the multi-contagion scenario in which several spreading processes navigate the

network simultaneously. This is a common scenario in real networks; e.g., the existence

of different variants of a disease in a population, or parallel attacks on an infrastructure

to increase the potential of damage. It might also be of interest, at least theoretically,

to consider contagions with changing dynamics. For instance, diseases with varying

infection rate, or smart crawling attackers that update the crawling policy based on

the information they gather. Possibly the most compelling direction is to analyze the
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results of this research from a public policy perspective to find possible bottlenecks and

improvements in the proposed protection algorithms, which can save the lives of many.
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