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ABSTRACT 

 

 Genotype-to-phenotype mapping can typically involve disrupting the function of a gene 

and observing the impact of mutation on phenotype. While this can be a powerful tool for 

uncovering gene function, complicating factors such as influences between genes and the 

environment, epistatic interactions with other genes, and genetic redundancy could all potentially 

mask the phenotype of a mutation such that functional inferences cannot be made. On the level 

of the single gene, this may not be particularly informative, but it is possible that studying 

phenotype in this way at a genome scale might allow for the observation of patterns between 

genes and their associated mutant phenotypes that can inform the genotype-to-phenotype space. 

Phenotypic profiling, involving high-throughput phenotyping across different genetic 

backgrounds and environments, has the potential to inform our understanding of how different 

genes interact with the environment and each other.  

Myxococcus xanthus is a soil bacterium with a relatively large genome that lives a 

remarkably multicellular lifestyle for a prokaryote. Under starvation, cells of M. xanthus 

aggregate into clusters that eventually mature into spore-filled fruiting bodies. This is a complex 

phenotype for which we can observe and quantify multiple features, providing a landscape of 

features that can be used to measure the effect of mutation on phenotype. In this thesis, I first 

explore how high-throughput phenotypic observations reveal a pattern of widespread genetic 

redundancy by demonstrating that mutant strains within the same gene family are more 

phenotypically similar to one another than they are to those outside of their gene family. I further 

show that genotypic similarity and phenotypic similarity do not correlate well on a finer scale, 

indicating that genotype alone is not a good predictor of genetic redundancy.  



  

Next, I characterize a wave phenomenon that is observed during time-lapse movies of M. 

xanthus fruiting body formation. The oscillatory behavior seen within the swarm, which we here 

call pulsing, was striking and was initially thought to be a rare mutant phenotype until it was 

observed frequently within a database of thousands of time-lapse movies of different mutant 

strains. It was then quantified through image analysis and found to exist in wild-type strains as 

well, at the same frequency that we observed pulsing in genetic mutants. We found that pulses 

are waves that originate at early fruiting bodies and propagate through the starving swarm, 

causing individual cells to suppress reversals and travel more persistently for a longer duration. 

This serves as a potential mechanism to aid in the rate of aggregation and represents possible 

inter-aggregate communication.  

Finally, I explore cell behaviors related to the coarsening phase of M. xanthus 

aggregation wherein larger aggregates remain stable and mature into fruiting bodies and smaller 

aggregates disperse back into the swarm. I collected cell tracking data that will inform a data-

driven model to improve understanding of the individual cell behaviors that lead to small 

aggregate dispersal during the coarsening phase. These experiments culminated in an 

approximately 85% loss of fluorescent cells used for tracking that did not occur in samples 

without fruiting bodies. This cell loss co-occurs with an increase in propidium iodide staining of 

fruiting bodies, indicating an increase in extracellular DNA that could be associated with cell 

lysis.  

Notably, the phenomena described in all three chapters were observed from the same set 

of high-throughput phenotype data. Characterizing the phenome by collecting this type of data 

can improve our understanding of biological patterns.  
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PHENOMICS AND THE GENOTYPE TO PHENOTYPE PROBLEM 

 

The Genotype-to-Phenotype Problem 

 

Genome sequencing is a powerful tool for improving our understanding of the way that 

genes contribute to phenotype. Continually improving technologies and decreasing costs have 

made sequencing data more accessible than ever. The promise of the unexplored within in 

sequenced genomes is enticing, but the amount of sequencing data we can collect is greatly 

outpacing our ability to attribute phenotype to specific genes. The prevalence and availability of 

sequence data is an invaluable tool for manipulating genomes, searching for homology among 

better-studied orthologs, and finding associations between alleles and human diseases in 

populations (1). However, functional annotation of every gene in the genome, one intended goal 

of pioneering genome sequencing studies (2), seems a far-off goal given the difficulties in 

mapping genotype to phenotype.  

  In model systems, we predominantly ascribe function to a gene through mutation, 

deleting or modulating its expression and recording the impact on phenotype in reference to a 

wild-type strain. Any deviation in phenotype has the potential to inform the function of that 

gene. While this is a powerful approach when an obvious phenotype results, there are 

complicating factors such as redundancy, epistasis, pleiotropy, and environmental effects that 

can obscure the effect of mutation.  

Frequently, mutant phenotypes are indistinguishable from wild-type and therefore 

uninformative for functional annotation. This is particularly evident when measuring fitness 

effects of mutations. For example, a yeast deletion study measuring growth showed that only 

20% of genes were required for viability (3). Similar and increasingly complex studies that use 

double and triple mutants to map the functional genome have found extensive digenic and 
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trigenic interactions that can reduce the likelihood that a single mutation would cause a 

discernible phenotype, and increase the complexity of any inferences about one specific gene 

made based on an observable phenotype (4, 5). This pattern of extensive genetic interaction is 

also applicable to prokaryotes, though they are often thought to be less complex (6, 7). Further, 

epistatic interactions complicate our understanding of the role of mutations in phenotypes 

ranging from human disease (8) to laboratory bacterial strains (9).  

Genetic redundancy is also likely a major factor in the ubiquity of mutational robustness 

that is widely distributed through most characterized genomes. Many proteins are part of larger 

families with multiple paralogs that could potentially contribute to functional redundancy at the 

molecular level. Though gene duplication is one of the mechanisms by which organisms obtain 

redundant genes, horizontal gene transfer is also common among microbial systems (10). 

Redundant genes can increase fitness by providing “backup” mechanisms for essential processes 

or virulence factors. For example, the fepA, ihaA, and iroN outer membrane iron receptors of E. 

coli, which are virulence factors that allow for the colonization of the urinary tract, form an array 

on the outer membrane and work in tandem such that a deleterious deletion in one does not 

impact fitness in the urinary tract environment (11). Since gene duplication and horizontal gene 

transfer are so common in bacteria (12–15), they are a good model system for studying 

redundancy, especially since they lack the complications of tissue-specific expression, for 

example the potential for differential spatiotemporal expression of redundant genes in different 

cell types, found in higher organisms.  

Influences of environmental factors and developmental contexts also play a significant 

role in the manifestation of phenotype. Particularly for bacteria, the expression of some genes is 

context-dependent, for example the presence of lactose in the environment triggers induction of 
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the genes required for lactose digestion (16). Therefore, a phenotype would only be observed if 

cells were relying on lactose as a primary nutrient source. This kind of phenotyping requires a 

prior hypothesis for the function of the gene, which is not always obvious. Bacteria are 

constantly sensing and responding to their environments, so they have a bounty of genes that are 

expressed only in explicit environmental conditions, necessitating that the phenotype of 

mutations is observed across a number of environments (17, 18). Characterizing all genes in all 

relevant conditions presents obvious challenges to the parameters of experimental design.  

Toward Characterizing the Phenome 

 The above-mentioned issues with mapping genotype to phenotype shed light on a need to 

supplement single-gene mutation studies with more data, setting observed phenotypes into the 

context of the phenome, or the collective set of phenotypes expressed by an organism in different 

environments and genetic backgrounds (19). Studies attempting to attribute function to a single 

gene or pathway would be greatly improved by observing the resulting phenotypes within the 

broader context of the phenome (or at least a growing collection of phenotype data that is 

working toward that goal). For example, in Chapter 2 of this thesis, I present a phenotype that 

occurs in over half of the mutants assayed, which could have been falsely attributed to a 

particular genetic pathway without the sufficiently large library of mutant phenotype data that we 

have collected and quantified.  

At its heart, phenomics requires amassing large quantities of data, finding effective ways 

to quantify it, and creating public databases for sharing of phenome data. Almost immediately 

after the Human Genome Project was published in 2003, the idea of the Human Phenome Project 

was generated to map similarities in phenotype and genotype across populations (19). PhenGenI, 

the Phenotype-Genotype Integrator, is a phenotype-based tool for both researchers and clinicians 
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to explore variants detected in genome-wide association studies with their corresponding 

phenotypes (20) Similarly, the Mouse Phenome Database, Flybase, and the Saccharomyces 

Genome Database link genotype to phenotype (21–23). Predominantly the goal of these projects, 

aside from genotype-to-phenotype mapping, is to identify associations between mutations and 

disease, or developmental phenotypes. In bacteria, phenomics studies are starting to be employed 

more frequently. Synthetic genetic array methods developed using the yeast model system S. 

cerevisiae have now been adapted to E. coli to study gene interactions and begin to construct 

functional network maps (6, 24). Phenotype microarrays can detect metabolic usage of nutrient 

sources and can detect sensitivities to particular drugs or chemicals in a high-throughput fashion 

(25), and phenotypic profiling of strains, particularly in differing environmental contexts, is 

becoming more common (17, 18, 26–28).  

 An additional benefit to large phenotypic datasets is the ability to use them to observe 

broader biological patterns and answer larger questions. For example, observing cell behavior 

across a wide range of conditions can reveal patterns in the distribution of phenotypes. In the soil 

bacterium M. xanthus, several studies that quantified phenotypes of mutant libraries revealed that 

the lab wild-type strain falls consistently within the middle of the phenotype distribution for most 

assays (17, 28), which brings up interesting questions about the costs associated with increased 

motility rate or sporulation efficiency, for example. Though we might expect that wild-type 

strains have evolved optimal fitness, phenomics studies reveal that this is often not the case, and 

very recent work has shown that wild-type alleles are often less fit but more mutationally robust 

(29). In this way, phenotype can be a powerful tool not only for functional annotation, but also 

for observing and uncovering broader biological patterns.  
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M. XANTHUS AS A MODEL ORGANISM 

 

Though bacteria are unicellular and were long thought to exist predominantly as 

individuals, research in recent decades has shown that a significant fraction of terrestrial, aquatic, 

and pathogenic organisms exist in multicellular communities called biofilms (30, 31). The 

canonical definition of a biofilm as a surface-attached community of bacteria was coined by J. 

William Costerton in the late 1970s, spurring an influx of research into bacterial biofilms. Within 

these communities, there are localized microenvironments that trigger different cellular 

responses (32), specialized cell types that take on various roles (33), and spatial and structural 

organization mediated by polysaccharide matrices that facilitate interconnectivity between cells 

(34). In 1988, Shapiro published a foundational paper drawing parallels between developing 

multicellular organisms and these properties of biofilms, which has since shifted the perspective 

in the field of microbiology toward thinking of communities of bacteria as multicellular 

organisms (35). Though it had been known for quite some time that microbes such as 

Myxobacteria, Proteus, and Streptomyces, existed in multicellular communities, they were 

thought to be rare exceptions to the rule of bacterial individuality (36). Studies of bacterial social 

interactions now dominate the field, with an understanding that anywhere from 50-80% of 

known bacterial species exist as biofilms at some point in their life cycle or under certain 

environmental stressors (32).  

Myxococcus xanthus has emerged as a popular model system for studying bacterial social 

interactions and self-organization into multicellular structures, as it almost exclusively exists as a 

multicellular community (37). M. xanthus is a δ-Proteobacterium that thrives in nutrient-rich soil 

environments by saprophytically feeding on decaying plant material and other nitrogenous waste 

products across temperate and tropical environments, but has also been isolated from the harsher 
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environments of wet rocky surfaces and sand (38).  In vegetative conditions where nutrients are 

abundant, M. xanthus exists as a swarm where cells are tethered together by pili and the 

polysaccharide fibrils that comprise their extracellular matrix (ECM), facilitating group motility 

(39, 40). These swarms are also predatory, and upon encountering prey bacterial colonies such as 

E. coli and other soil microbes, they secrete enzymes that lyse prey cells and scavenge their 

nutrients (41).  

Life in the soil can be harsh due to frequent fluctuations in moisture, temperature, local 

chemical concentrations, and most significantly, nutrient availability.  M. xanthus cells undergo a 

developmental program upon sensing nutrient stress. Cells transition away from behaviors that 

lead to swarm expansion and begin to aggregate into mounds of approximately 105 cells (42). As 

development continues, the initial mounds of cells mature into fruiting bodies wherein cells meet 

one of two fates: programmed cell death, where cells lyse to release nutrients into the aggregate, 

supporting the transition of the remaining cells into the other cell fate, environmentally-resistant 

spores (43, 44).  The majority of cells in a fruiting body are thought to undergo lysis, while only 

an estimated 10% differentiate into spores (45). Though only a small fraction, this represents 

hundreds to thousands of spores that are bundled together in fruiting bodies, protected from 

harsh environmental conditions until local nutrient conditions become more favorable, or until 

the adhesive fruiting body is transported by an insect, animal, or streams of water to a nutrient-

rich location, where germination into vegetative cells can occur. Notably, due to the inherent 

multicellular nature of M. xanthus, fruiting bodies present a mechanism by which groups of 

spores can germinate together to form a vegetative swarm, increasing chances of survival once 

nutrients are plentiful (46). An additional cell fate, peripheral rods, never join fruiting bodies, 

show low expression levels of developmental regulatory genes, and never differentiate into 
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spores (47). The cells are often compared to persister cells, subpopulations that employ a strategy 

of dormancy to survive antibiotic treatment (48), though the mechanistic basis is different. A 

proposed role of these persister-like peripheral rods is to sense and quickly respond to incoming 

nutrients, potentially signaling the remainder of the swarm to halt development or initiate 

germination (49).  

Because of the extent of multicellularity in its lifecycle, M. xanthus serves as a model 

system for self-organization, helping to uncover both the physical and biological mechanisms 

that drive cells into ordered multicellular patterns. The following sections will summarize what is 

currently known about the biology of M. xanthus that brings about these emergent behaviors, 

with a particular emphasis on the genetic networks that lead to the development of fruiting 

bodies in response to nutrient stress.  

THE M. XANTHUS GENOME 

 

 The complexity of molecular interactions that leads to the multicellular nature of M. 

xanthus is likely encoded into the genome. The myxobacterial lineage has roughly double the 

genome size relative to other δ-Proteobacteria (50), and much of this expansion is thought to 

have arisen from lineage specific duplications (51). The distribution of duplicated genes 

throughout the genome is asymmetric with respect to functional roles, as duplication of genes 

with roles in signal transduction and transcriptional regulation were found to be significantly 

greater than expected (51). The selective pressure to maintain duplications leading to these 

expanded gene families in M. xanthus implies their potential roles in the increased complexity of 

its multicellular lifestyle compared to less complex δ-Proteobacterial ancestors.  

 Specifically, the M. xanthus genome encodes more two-component signal transduction 

systems and fewer one-component signal transduction systems than expected for the size of its 
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genome (51). Bacteria overwhelmingly encode a greater number of one-component systems for 

signal transduction (52), but the multi-component signal transduction networks that seem to 

dominate in M. xanthus are more reminiscent of eukaryotic signal transduction and 

transcriptional networks that regulate multicellular organisms (53). These multi-component 

networks often form parallel pathways and are capable of integrating signals and directing 

transcription in response to a combination of inputs. Transcriptional regulation in M. xanthus 

also occurs through extracytoplasmic function (ECF) sigma factor systems, which canonically 

respond to extracellular signals and direct RNA polymerase to transcribe specific genes (54). 

Large gene families such as these, and the ATP-binding cassette (ABC) transporter family which 

translocate substrates across the periplasmic space, demonstrate the ability of M. xanthus to 

sense and respond to conditions in both its internal and external environment. I review each of 

these gene families below given their relevance to the research presented in Chapter 2.   
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One-Component Signal Transduction Systems  

Primarily, one-component signal transduction systems (OCSTSs) involve directing 

transcription in response to small molecule sensing. Structurally, they tend to be composed of an 

input sensor domain that is ligand-binding and a DNA-binding output response domain, encoded 

on the same protein (Fig. 1B) (52). These proteins are often referred to as transcriptional 

activators rather than signal transduction systems given that they a single component “system”. 

Well-studied examples of OCSTSs are AraC in E. coli, which activates transcription of the 

araBAD operon in the presence of arabinose (55, 56), and TraR in A. tumefaciens, which 

Figure 1: Gene families in M. xanthus relevant to the work presented in Chapter 2. A) ATP-binding 

cassette (ABC) transporters are positioned in the inner membrane of Gram-negative bacteria and serve as 

ATP-dependent transporters of substrates across membranes. These can be importers or exporters. These 

transporters are also sometimes associated with substrate-binding proteins that shuttle substrates to the 

transporter. B) One Component signal transduction proteins (green) are typically ligand binding and will 

act as transcription factors to initiate expression of genes in response to binding ligands. C) NtrC-like 

activators (teal) are activated via phosphorylation by a kinase partner in response to an intracellular cue. 

They form a looping structure in the DNA upstream of σ54 promoters to form an open promoter complex, 

allowing RNA polymerase to initiate transcription at these promoters. D) Extracytoplasmic function 

(ECF) sigma factors (orange) are typically sequestered at the membrane via anti-sigma factors (blue) and 

are released upon reception of an extracellular signal. These free sigma factors can then direct 

transcription of genes with the corresponding promoters.  
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activates expression of its tumor-inducing plasmid in response to sensing a population density-

dependent inducer (57). Relatively little is known about the role of this family of proteins in M. 

xanthus, aside from associations based on orthologs in other systems. Though it encodes around 

300 of these genes, that is approximately half the number expected based on its genome size 

(51).  

Two-Component Signal Transduction Systems 

 Traditional two-component signal transduction systems (TCSTSs) consist of a sensor 

histidine kinase (HK) and a cognate response regulator (RR) partner. Upon sensing a particular 

signal via its ligand-binding (or other sensory) domain, autophosphorylation of the HK occurs 

(58). Following this activation, phosphotransfer to the receiver domain of the RR, activating a 

downstream effector. The EnvZ/OmpR system is a well-studied example of a TCSTS. The EnvZ 

HK is situated in the membrane and autophosphorylates due to high osmolality or pH in the 

surrounded medium. It phosphorylates its RR partner OmpR, which initiates transcription of 

ompC, a porin that helps to regulate flux (59). Another classic example is the CheA/CheY 

system involved in chemotaxis in E. coli and many other bacteria. The binding of a repellent to 

the methyl-accepting chemotaxis protein in the membrane triggers autophosphorylation of the 

HK CheA, which initiates phosphotransfer to the RR CheY, triggering a reversal in direction of 

the flagellar motor (60).  

 This type of signaling system, particularly the NtrC-like activator family, has been the 

subject of investigation in M. xanthus (61–63). NtrC-like activators are a class of RR that are 

responsible for activating gene regulation at σ54 promoters (Fig. 1C). NtrC-like activators, also 

known as enhancer binding proteins (EBPs), bind to enhancer elements upstream of σ54 

promoters after activation by their HK partner, and form a looping mechanism with σ54-RNAP 
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bound at the promoter site (64, 65). ATP hydrolysis by the ATPase domain of the NtrC-like 

activators completes the transition from a closed to open promoter construct, allowing the 

transcription of σ54-dependent genes (65). Mutational analysis of these genes in M. xanthus 

revealed many with a role in development (61), and suggests that these genes act in regulatory 

cascades (63). Nla4 and Nla18 regulate the transition into starvation (62, 66), including by 

initiating transcription of Nla6 and Nla28, the next genes in the cascade. These genes seem to 

regulate one another, autoregulate, and initiate transcription of ActB and MXAN_4899, both of 

which are NtrC-like activators that have roles in aggregation (63).   

Extracytoplasmic Function Sigma (ECF) Factors 

 Sigma factors are responsible for directing transcription in bacteria by forming a 

holoenzyme with the core RNAP for proper promoter recognition (67). The most predominant 

sigma factors in M. xanthus are σ70 and σ54, which are in this system both necessary for growth 

(68). This is in contrast to many other bacterial systems where σ70 is considered the regulator of 

“housekeeping” genes and σ54 exclusively directs accessory and/or stress response genes.  

M. xanthus also contains 38 ECF sigma factors, a class of alternative sigma factors that 

direct transcription in response to extracellular cues (69). ECF sigma factors are often 

sequestered by a membrane-bound anti-sigma when inactive, and upon activation by an external 

signal, the ECF sigma factor is released into the cellular environment, where it can initiate its 

transcriptional response (Fig. 1D) (70). Though this is the most common regulatory paradigm for 

controlling the activation of ECF sigma factors, there are others that follow a different 

mechanism. Some ECF sigma factors respond to cytoplasmic signals, necessitating a 

cytoplasmic anti-sigma that releases the sigma factor through a conformational change, and 

others are not associated with anti-sigmas and are likely regulated through mechanisms that have 
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yet to be characterized  (54). Well-studied ECF sigma factors in M. xanthus include the CarQ 

system, which responds to light induction, the CorE and CorE2 which are activated in the 

presence of metal ions (71, 72).  

ATP-Binding Cassette (ABC) Transporters  

 The cell membrane is relatively impermeable to many molecules that are crucial for 

cellular processes. Yet others need to be actively transported across concentration gradients. 

ABC Transporters are often responsible for moving these substrates across membranes, acting as 

either importers or exporters, and have been shown to transport substrates of varying sizes and 

biochemical properties (Fig. 1A) (73). For example, in E. coli, FecBDCE transports ferric ions 

(74), BtuCDE imports vitamin B12 (75), and HlyB exports virulent hemolysin (76), 

demonstrating that substrates range from ions to small molecules to proteins.  However, ABC 

Transporters are not limited to bacteria, though ABC importers do appear to be prokaryote-

specific, and are in fact one of the largest and most widespread gene superfamilies (77). They are 

present in organisms from all orders of life, from bacteria to yeast to higher organisms such as 

worms, Drosophila, and humans (78–81).  

 Studies into the molecular organization of these proteins reveals that they are primarily 

made up of four subunits: 2 transmembrane domains, and 2 cytoplasmic nucleotide-binding 

domains that bind and hydrolyze ATP to provide energy necessary for active transport (82). 

Some prokaryotic transporters also have substrate-binding domains that are thought to play roles 

in substrate specificity. M. xanthus encodes 192 ABC Transporter ORFs, comprising a total of 

57 complete transporters. Generally each subunit is encoded on its own gene, but some 

transmembrane/nucleotide-binding and transmembrane/substrate binding hybrids exist (28). The 

remaining ABC Transporter ORFs are part of incomplete operons or orphans. Though this might 
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indicate reduced selective pressure eliminating these genes, orphan ABC Transporter genes have 

been shown to interact as a component of transporters in different operons or have other 

functional roles (83, 84).  

 The specific roles of ABC Transporters in M. xanthus are largely unknown. AbcA, a 

transmembrane/nucleotide-binding hybrid protein, was shown to interact with FrzZ in a yeast-

two-hybrid assay and was confirmed to produce a phenotype consistent with mutants of the Frz 

system that controls reversals (85). A homolog to a macrolide antibiotic transporter, Mac-1, was 

shown to be deficient in sporulation (86). It was originally suspected PilH formed a complex that 

is important for Type IV pilus assembly, as mutants were deficient in social motility and pilus 

production (87), and though this is now not known to be a major component of translocation of 

pilin during pilus assembly (88), its phenotype suggests that it does play an accessory role in 

social motility. Notably, a study by Yan et. al generated a mutant library of all ABC Transporter 

ORFs and characterized the phenotypes associated with these mutations (28). Rather than 

attributing the phenotypes to specific genetic pathways, this was presented an exploration of the 

correlation between metrics that we use for phenotyping strains. In all, though the ABC 

Transporter ORFs make up nearly 3% of the genome, we presently have relatively poor 

understanding of the specific roles of each transporter.  

 A genome such as M. xanthus that has undergone lineage-specific expansion due to 

duplication and divergence has families of dozens of genes that are sequence similar and thus 

have potential functional overlap. This source of functionally redundant genes could provide M. 

xanthus with the redundancy needed to insulate a crucial process such as sporulation from the 

potential dangers of mutation. We attempt to understand the extent of functional redundancy that 

occurs within these gene families in M. xanthus.  
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MOTILITY SYSTEMS 

 

 M. xanthus has two distinct motility systems for translocating across surfaces: Type IV 

Pilus-driven Social motility (S-motility), and Adventurous gliding motility (A-motility). These 

motility systems work in tandem to move cells along their long axis via motility engines located 

at the cell poles. S-motility is so named because the pili and exopolysaccharide (EPS) facilitate 

group movement whereby cells extend their Type IV Pili (TFP), attach to either the substrate or 

other cells, and retract the pili to pull themselves forward. Thus, the S-motility engine is 

localized to the leading pole of the cell. TFP-mediated motility is sometimes known as twitching 

motility, referring to the extension, tethering, and retraction of pili in contrast to flagellated 

movement in swimming bacteria (90). The A-motility engine propels the cell forward via a 

combination of focal-adhesion complexes distributed throughout the  length of the cell and 

polysaccharide “slime” that mediates temporary adhesion to the substrate (91). It is referred to as 

adventurous motility because it does not require other the presence of other cells and is the 

mechanism by which individual cells leave the swarm edge. These motility systems are 

genetically distinct in that they are only connected by the polarity switching mechanism, and 

because cells with only one system are still motile, they can be studied independently. Because 

M. xanthus multicellularity is driven by motility, these systems are crucial for predation and 

fruiting body formation. 

Social Motility 

 Cryo-electron tomography has solved the structure of the TFP in M. xanthus (92), 

depicting every component and its functional organization. Thus, the mechanistic understanding 

of the TFP-driven motility is very clear. The entire complex spans both the inner and outer 

membrane, with the PilQ secretin forming the outer pore that is anchored to the membrane via 
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the inner membrane ring structure comprised of other protein complexes. PilA monomers that 

will polymerize to form the pilus structure reside in the periplasmic space. PilB and PilT 

ATPases reside at the base of the pilus machinery and rotate in an ATP-dependent manner to 

polymerize or disassemble the PilA subunits, extending or retracting the pilus, respectively (92).   

 S-motility requires that cells are in close contact, as evidenced by mutants with only S-

motility entering a nonmotile state when the distance between cells was greater than one cell 

length (39, 93). S-motility also requires secretion of exopolysaccharide (EPS) which coats the 

surfaces of cells, providing a point of attachment for the pili of neighboring cells (40, 94–96).  

Adventurous Motility 

 Whereas S-motility coordinates movements of groups of cells, A-motility regulates the 

behavior of groups of cells at the edge of swarms. As these cells move away from the swarm 

edge they deposit a “slime trail” which other cells can follow (97, 98). The “slime” extrusion 

from the lagging pole of the cell was historically thought to propel the cell forward, but this has 

been experimentally disproven, and slime is now proposed to be an adhesion mechanism by 

which A-motile cells anchor themselves temporarily to their substrate via the more recently 

discovered mechanism discussed below (99–101).  

 The A-motility machinery involves focal adhesions which form between the cell and the 

substrate. Interestingly, these focal adhesions were regularly spaced and remained fixed in 

position with respect to the substrate as cells translocated (101). Focal adhesions are made up of 

clusters of Agl-Glt protein complexes which are directed around the helical cytoskeletal track of 

MreB, guiding the regular spacing and location of the focal adhesion clusters (102). The 

molecular motors that drive this rotation are the Glt proteins; they are distributed through the 

outer membrane, periplasm, inner membrane, and cytoplasm (99, 103–109). The periplasmic 
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components of the motor (GltD, GltE, and GltF) are thought to mediate connection between the 

outer membrane components of the motor (GltK, GltB, GltA, GltC, and GltH) and the inner 

membrane components (GltG and GltJ), creating a complex that spans the entire membrane. In 

the cytoplasm, GltI coordinates the association of the cytoskeletal MreB with the membrane-

spanning complex (103, 106) via cytoplasmic proteins AglZ and MglA, which localize to the 

cytoplasmic side of this motor complex. The final component of the motor complex is the 

molecular motor itself, the AglRQS channel in the inner membrane that mediates the proton 

motive force (PMF) required for A-motility (99, 109). Several of these complexes are located 

along the length of the cell, along the MreB helical track, where they anchor to the slime on the 

substrate.  

 Together, the proposed mechanism is that  MglA first localizes to the leading pole of the 

cell which is followed by MglA-AglZ localization at the focal adhesion-motor complexes along 

the length of the cell. The adhesive properties of the slime are thought to temporarily anchor the 

complex to the substrate while the PMF drives the cell forward with respect to these complexes, 

rotating around MreB (99, 100). Once the lagging pole of the cell catches up with a focal 

adhesion complex, it disassembles at the lagging pole, allowing for reassembly toward the 

leading pole and continued forward motion.  

Maintaining Cell Polarity 

 Though these motility mechanisms are genetically distinct, a mutation in MglA disrupts 

both A- and S- motility (102). Its direct role in S-motility has not been elicudated, but its 

localization first to the leading pole in A-motility suggests it is important for maintaining cellular 

polarity, which could indirectly affect S-motility as well. MglA is suspected to play a role in the 

proper sorting of the pilus machinery to the correct poles(110)  MglA localization to the leading 
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pole of the cell seems to be driven by the competitive binding and localization of MglB to the 

lagging pole, excluding the binding of MglA at that location and thus establishing polarity (111, 

112). At the lagging pole, MglB disassembles the focal adhesion complex (103). RomR helps to 

localize MglA to the leading pole and MglB to the lagging pole through an unknown mechanism, 

contributing to establishment of cell polarity (113, 114).  

Switching the Polarity Axis Through the Frz Chemosensory System 

 M. xanthus uses a Che-like Frz chemosensory system to reverse the polarity of the 

motility machinery, inducing reversals in the direction of motility (115). This is the primary 

mechanism by which cells can control directional motility; any turning seems to be a biproduct 

of collisions and interactions with other cells as well as the substrate. In E. coli, the outcome of 

the Che system is direct interaction with the flagellar motor to switch between clockwise and 

counterclockwise rotation in response to chemoattractants or repellants, the Frz system of M. 

xanthus does not interact directly with either motility mechanism. Rather, it appears to switch the 

polar localization of the MglA/RomR and MglB/RomR complexes, thus inducing a reversal 

(114, 116, 117). 

 The Frz system is best understood through its homology to the Che system in E. coli, 

reviewed by Sourjik and Wingreen (118). A methyl-accepting chemotaxis protein (MCP) in 

cytoplasmic membrane associates with the CheA-CheY HK-RR two-component system that 

directs flagellar motility. When not in the presence of a chemoattractant, CheA associates with 

the MCP, autophosphorylates, and signals CheY~P to bind to the FliM flagellar motor protein. 

This stimulates clockwise rotation of the flagellar motors, leaving the cell in a tumbling state. 

When the MCP binds a chemoattractant (or repellent), it inhibits its association with CheA, 

which reduces CheY phosphorylation, which is enhanced through the phosphatase CheZ, 
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reversing direction of the flagellar motor to counterclockwise, establishing the run mechanism. 

Together these comprise the “run and tumble” classical behaviors observed in E. coli 

chemotaxis.  

 Adaptation is a required mechanism for chemotaxis that allows cells to continually sense 

an increasing chemical gradient (119). This is achieved through the methylation state of the 

MCP. CheR is a constitutively active methyltransferase that methylates the MCP, which in turn 

influencing the action of CheA (120). Increasing the methylation state of the MCP stimulates its 

interaction with CheA, leading to its autophosphorylation, activation of CheY, and subsequent 

reversal of the flagellar motor to the tumbling state. This resets the baseline level of response so 

that cells can sense an even higher gradient. CheB, the methylesterase required for demethylation 

of the MCP is a second RR of CheA and is phosphorylated in response to activated CheA. Its 

requirement of activation before demethylation creates a lag in response time, allowing CheY to 

switch direction of the flagellar motor before demethylation of the MCP occurs. This mechanism 

provides cells a “memory” for chemical gradients over time, allowing continual taxis toward 

even higher chemical gradients. If one does not exist, then tumbling persists, keeping the cell in 

the area of highest chemoattractant concentration.  
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E. coli protein M. xanthus homolog Function 

Tar (MCP) FrzCD Senses attractants 

CheA FrzE Histidine Kinase  

CheY (FrzZ), ? Response Regulator 

CheB FrzG Methylesterase 

CheR FrzF Methyltransferase 

 

In M. xanthus, there are some differences compared to the canonical system. Most 

notably, M. xanthus does not have flagella, activation of FrzE leads to switching of the polarity 

systems through an unknown mechanism. Another major difference is that FrzCD, the MCP for 

the Frz system, is cytoplasmic rather than anchored in the inner membrane (121), implying its 

role in sensing signals internal to the cell and not environmental chemoattractants. Interestingly, 

though FrzZ was originally suspected to be the main target of FrzE for stimulating reversal 

(122), the picture is not clear. FrzZ does get phosphorylated by FrzE, but it seems that FrzZ is 

mainly responsible for regulating the autophosphorylation of FrzE, as FrzZ is not required for 

reversals in FrzE mutants that lack the domain for autophosphorylation (123). It is proposed that 

RomR, which has a receiver domain for phosphorylation, may be an additional target of the FrzE 

kinase that acts to stimulate reversal (114), but as this direct interaction has not yet been 

demonstrated, it seems more likely that FrzE phosphorylates another downstream RR which then 

interacts with the RomR RR to stimulate reversal.  

 Relatively little is known about the signals that lead to polarity switching as well. 

Changes in reversal frequency in response to the level of C-signaling (see below) indicates that 

Frz is responding to C-signal through an unknown mechanism (124, 125). Levels of C-signaling 

Table 1. Che system proteins and homologs in M. xanthus 
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have been proposed to influence FrzCD methylation via its activity on FruA, but again, a direct 

mechanism remains to be seen.  

 M. xanthus additionally encodes seven other chemosensory systems that have been far 

less-studied. The Dif chemosensory system is proposed to have a role in EPS production as well 

as lipid chemotaxis (126). The Che3 chemosensory system, which has homologs for other Che 

proteins but not CheY, was not found to direct motility but did have an effect on the timing of 

entry into development (127). The Che4 system, which has a hybrid CheA-CheY protein, seems 

to affect the TFP, as mutations in the che4 operon showed S-motility phenotypes in an A-S+ 

background (128). The chemosensory systems of M. xanthus are an interesting area for future 

exploration, as much of the functions and mechanistic basis, even within the Frz system which 

has been studied for decades, remains to be elucidated.  

SIGNALING ALONG THE DEVELOPMENTAL TIMELINE 

 

Sensing Starvation 

 Nutrient limitation triggers the onset of the M. xanthus developmental program, which 

ultimately culminates in spore-filled fruiting bodies. Development initially follows the paradigm 

of the stringent response in E. coli. Specifically, a dwindling supply of amino acids leads to 

ribosome stalling during translation due to uncharged tRNAs (129). Ribosome-associated protein 

RelA then catalyzes the transfer of phosphate from ATP to GTP to generate (p)ppGpp, an 

alarmone that is key to downstream signaling in the stringent response (130). This alarmone has 

several effects in M. xanthus, the first of which is to signal transcription factor DksA to 

downregulate genes for vegetative growth and upregulate developmental genes (131). (p)ppGpp 

also initiates a phosphorelay at the Asg locus, which ultimately culminates in the expression of 

A-signal proteases which M. xanthus cells respond to in a density-dependent manner (49, 132, 
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133). Specifically, trypsin is thought to be secreted into the extracellular environment, where it 

degrades surface proteins, releasing amino acids; both trypsin and six amino acids were shown to 

collectively comprise A-signal (134, 135).  

 Sensing of A-signal is mediated by the SasS/SasR two-component system, wherein SasS 

has two N-terminal transmembrane domains and a C-terminal HK domain that ostensibly 

autophosphorylates upon sensing A-signal and activating its = cognate RR, SasR (49, 136, 137). 

SasR is an NtrC-like σ54 activator (Nla) protein, and though direct targets of phosphorylated 

SasR have not been identified, A-signal leads to expression of developmental genes including 

Nla28, an important two-component system that is part of the EBP cascade discussed below 

(138, 139). The production of A-signal occurs about 2 hours into development, and its levels are 

directly proportional to cell density, so it serves as a quorum-sensing mechanism that transmits 

starvation on the individual cell level to a population-level signal which can be sensed by other 

cells to initiate developmental decisions.  

The MrpC Module 

 Starvation also induces activation of the major developmental transcription factor MrpC. 

In vegetative cells, MrpC is inactivated via phosphorylation by a protein kinase cascade (140). 

Upon starvation, this protein kinase cascade is inhibited, and proteolytic cleavage of the by the 

LonD protease prevents future phosphorylation of MrpC and increases the affinity of the 

processed protein, MrpC2, for its binding sites (141). Though MrpC has been shown to bind to 

hundreds of genes that are developmentally regulated (142), its induction of FruA transcription 

has the most documented effect on development. The FruA module will be discussed below.  

 MrpC is necessary for aggregation and sporulation, and dysregulated activation of MrpC 

causes premature initiation of sporulation prior to complete fruiting body formation (143). In 
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addition, the levels of MrpC in cells may help to control cell fate, as its expression is greater 

within aggregates and lesser in peripheral rods that do not aggregate or sporulate (47). MrpC is 

suspected to regulate the dev locus which is necessary for the transition of rod-shaped cells to 

spores within fruiting bodies (144). It has also been shown to block activity of the MazF toxin 

that is predicted to lead to the programmed cell death of cells within fruiting bodies that are not 

destined to become spores (145). Taken together, the history of work in MrpC has shown that it 

is a master regulator of developmental genes and aids in the transition of cells into one of three 

fates: sporulation, lysis, or peripheral rod formation.  

C-signal 

 Perhaps the most controversial signaling system in M. xanthus, C-signal is initiated in 

response to starvation in parallel with reception of A-signal by starving cells. The major player in 

this pathway is CsgA, a short-chain alcohol dehydrogenase family protein (146). Most of what is 

known about the mechanism of action of this protein is that its deletion can be complemented by 

co-culture with wild-type to rescue its severe developmental phenotype, suggesting that its 

function is driven by interactions with other cells (147). CsgA appears to be regulated via a 

positive feedback loop such that its expression gets continually amplified throughout 

development, and the level of CsgA appears to correlate with cell behaviors such there are lower 

levels during rippling, moderate during aggragation, and levels are highest during sporulation 

(125, 148).  

 In one model developed by Kaiser, Søgaard-Andersen, and colleagues, CsgA is translated 

as a 25kDa protein (p25) that gets processed to a p17 form shortly after starvation by protease 

PopC, and it then gets translocated to the outer membrane (149). It is proposed that this p17 form 

of CsgA is the C-signal, and that cells have membrane-associated receptors for this, which have 
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currently not been identified, that interact with the signal and initiate responses, one of which is 

to amplify the signal through positive feedback. This model relies on the mechanism of contact-

dependent signaling, and specifically end-to-end contacts (150). The other model, primarily 

proposed by Shimkets and colleagues, is associated with CsgA’s function as a short-chain 

alcohol dehydrogenase, which converts cardiolipin and phosphatidylglycerol from the inner 

membrane into diacylglycerols that serve as the C-signal (146). This model is supported by the 

fact that upregulating SocA, another short-chain alcohol dehydrogenase, can rescue the 

phenotype of the CsgA mutant (151). Notably, both of these mechanisms require cells to be in 

close proximity, either to make end-to-end contacts or perceive short-range diffusion, which is 

consistent with data about local cell density increasing C-signaling (152, 153). Whichever of 

these mechanisms is functionally responsible for C-signaling, the outcomes are relatively clear. 

CsgA causes activation (by an unknown mechanism) of FruA , an important transcription factor 

whose expression is initiated by MrpC, thus connecting these two pathways. They are thought to 

co-regulate certain developmental genes (see below).  

FruA Module 

 Little is known about how FruA is activated in response to C-signaling. It was originally 

proposed to be phosphorylated (154), however recent sequence analysis reveals that it lacks 

residues required for phosphorylation, and was not activated upon interactions with 

phosphodonors (155). It is likely activated through another post-translational modification. 

Through an unknown mechanism, FruA also interacts with the Frz chemosensory system that 

directs cellular reversals. It is thought that the positive feedback of C-signaling leads to a 

consistent increase in FruA activation such that the levels of activated FruA control the 

frequency of reversals. Low levels of FruA activation lead to increased reversal frequency and 
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rippling, and higher levels lead to suppression of reversals necessary to trigger aggregation 

(124). FruA also activates the dev operon governing entry to sporulation and formation of the 

spore coat (156).  

 Notably, FruA transcription is partially reliant on the A-signaling pathway and FruA 

activation requires C-signaling (157). The convergence of these pathways in co-regulating the 

activity of FruA suggests a mechanism to ensure that there are a sufficient number of cells that 

have individually sensed starvation combined with a sufficient local cell density before directing 

motility in such a way that leads to aggregation and activating sporulation genes. Additionally, 

MrpC, which is C-signal independent, and FruA cooperatively bind upstream of many 

developmentally regulated genes (155, 158, 159), likely ensuring active C-signaling before these 

genes are expressed.   

Enhancer Binding Protein Cascade 

 Giglio et. al laid the groundwork for our understanding that each major step in the 

developmental process is also co-regulated by enhancer binding proteins (EBPs), also known as 

NtrC-like regulators (63). While little is known about exactly which genes these transcription 

factors are regulating, mutational studies provide clues to the processes that they are involved in. 

Most EBPs activate the next in the cascade, as well as positively autoregulating their own 

expression. For example, nla4 and nla18 mutants do not appropriately accumulate (p)ppGpp in 

response to starvation (62, 66). These two EBPs then activate Nla6, which positively 

autoregulates itself as well as the A-signal pathway in early starvation (63). Activation of the A-

signal pathway initiates Nla28, which contributes to the positive amplification at this step. Both 

Nla6 and Nla28 in combination activate the EBP ActB. ActB responds to C-signal by positively 

regulating the expression of CsgA, contributing to its amplification (148). Finally, MXAN4899 
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is activated by ActB and seems to contribute to the activation of FruA by C-signaling (160). 

Though there is not currently evidence that Nla24 acts as part of this cascade, it has been recently 

shown to be required for accumulation of EPS which is necessary for aggregation and 

sporulation (161). Each point in the EBP cascade seems to act as an additional checkpoint for 

each regulatory module, ensuring proper signal integration.  

Sporulation 

 The transition from vegetative cells to spores requires both a rewiring of gene regulatory 

networks as well as a physical mechanism to change from a rod-shaped cell to a spherical spore 

covered in a protective spore coat. First, several gene regulatory modules including C-signal, 

FruA, and MrpC, act together to ensure the initiation of sporulation only within fruiting bodies 

and is enacted at the appropriate time. The dev operon is activated by FruA, and though it also 

has a site for cooperative binding of MrpC, it seems that extensive activation by FruA drives 

transcription of the dev operon such that it commits the cell to sporulation (162).  

Cells within fruiting bodies (including those destined to undergo autolysis) develop lipid 

bodies that are thought to originate from cell membrane lipids (163). Lipid bodies appear to be 

the source of energy that sporulating cells utilize from the cells that undergo lysis, and the 

exogenous addition of the fatty acids in the lipid bodies triggers cell shortening and the transition 

to sporulation (164, 165) Actin-like MreB cytoskeletal proteins are suspected to aid in the 

rearrangement of the rod-shaped cell into a spherical spore by directing the breakdown of the 

dense network of crosslinked peptidoglycan that normally protects the cell shape (166, 167). The 

Exo protein, part of the polysaccharide export system, aids in secretion of the thick 

polysaccharide spore coat, and Nfs proteins use the Agl motor proteins to deposit Exo-secreted 

polysaccharide around the outside of the spore (107, 168). Finally, the chromosome is replicated 
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prior to sporulation such that each spore has two copies, presumably to increase chances of 

survival upon germination (169). Linfong et. al propose that this may be mediated by DnaA, 

which is downregulated during the E. coli stringent response but is upregulated during 

development in M. xanthus. Together, the sporulation process involves the induction of the dev 

operon, utilization of lipid bodies of lysed cells for energy, restructuring of cell shape mediated 

by MreB, deposition of the spore coat by Exo and Nfs proteins, and replication of the 

chromosome.  

M. XANTHUS AS A SYSTEM FOR STUDYING REDUNDANCY AND 

DEVELOPMENTAL COORDINATION 

 

The introductory chapter to this thesis provided the context to understand the aspects of 

the genome and lifestyle of M. xanthus that make it a suitable model organism to study my 

primary research questions. First, in a genome rich with large homologous gene families what is 

the extent of functional redundancy? We attempt to address this question by quantifying 

phenotype in four homologous families and assessing phenotypic similarity as an indirect 

measure of functional redundancy. A complex, multifaceted behavior that is directly tied to 

biological fitness, such as the formation of fruiting bodies, provides a robust phenotype with 

which we can begin to address this question on a larger scale than has been previously 

investigated using double and triple mutants of paralogs. 

Though many of the mechanisms that lead to the perception of starvation, aggregation, 

and sporulation have been elucidated, there remains much more to be discovered about the way 

M. xanthus cells communicate, coordinate their behavior, and direct motility to achieve 

aggregation and sporulation. My second research question stemmed entirely from observing 

time-lapse movies from the dataset used to answer my first question, highlighting the importance 

of large phenotypic collections. What is the functional role of the oscillations in swarm activity 
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that we observe so frequently during development? We attempt to quantify the behavior, explore 

the distribution of this phenotype within gene families, and determine the effect of pulses on 

individual cells.  We propose a mechanism by which cells are synchronizing their behavior after 

nascent aggregates have formed during development, potentially directing cells into fruiting 

bodies more efficiently.  

Finally, it has long been noted through observing M. xanthus development movies that 

more aggregates are initially formed than persist to become mature fruiting bodies. Several 

studies have come to the same macro-scale conclusion, which is that small aggregates disperse, 

and larger aggregates remain stable to become mature fruiting bodies. However, it is unknown 

whether this is driven exclusively by the physical principles of coarsening/Ostwald ripening, or if 

there is a genetic basis for coarsening. What are the behaviors on scale of the individual cell that 

lead to aggregate dispersal versus stability, and can these be tracked to any known genetic 

mechanism? I supplied coarsening-phase cell tracking data to collaborators who extracted key 

metrics from these experimental cell behaviors, such as bias toward aggregates over time, and 

will apply these behaviors to data-driven models to simulate the coarsening phase of aggregation.  

In all, the three chapters presented in this thesis would not be possible without 

observations made from extensive collections of phenotype data. Profiling the phenome of an 

organism in this way is important for observing biological patterns that might normally be 

missed or misattributed to a single gene or pathway.  
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ABSTRACT 

 

Robustness to the phenotypic impact of mutation is encoded into the genome through 

duplication and divergence, producing gene families with varying degrees of functional overlap. 

To better understand the extent to which homologous gene families buffer the impact of 

mutation, we explored phenotypic similarity as an indicator of functional redundancy. We 

hypothesize that, since redundancy is more likely to exist among homologs, knock-out strains 

with mutations in members of the same gene family will be more likely to display similar 

phenotypes. To test this, we created 265 mutant strains of the bacterium Myxococcus xanthus, 

each with a disruption in a gene belonging to one of four families of homologs. We used time-

lapse microscopy to generate movies of multicellular development for each mutant strain and 

developed an image analysis pipeline to compare phenotypic features among different strains. 

We demonstrate that mutant strains cluster according to gene family in phenotypic feature space 

using principal component analysis, and we argue that this supports our hypothesis that the 

impact of mutation can be distributed broadly across large redundancy networks. 

Keywords: functional redundancy; robustness; homologous gene families; genotype-to-

phenotype, Myxococcus xanthus; 

 

INTRODUCTION 

 

A reverse genetics approach to characterizing a gene often begins by disrupting or 

deleting the gene and observing the resulting phenotype. Differences between the mutant and 

wild-type phenotypes can provide invaluable insights regarding gene function(s), but in practice 

many single-gene knockouts, even those in genes predicted to be important based on previously 

studied homologs, yield phenotypes that are relatively minor or indistinguishable from the wild-

type organism (Diss et al, 2014; Giaever et al, 2002). This robustness to the phenotypic impact 
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of genetic mutation is an important part of an organism’s phenotype and has implications for 

fitness.  

Robustness is commonly attributed, at least in part, to functional redundancy, or the 

tendency for functionally similar genes to compensate for the role of a disrupted gene (Ohno, 

1970). Functional redundancy can arise through many mechanisms including duplication and 

divergence, where reduced selective pressure can cause paralogs to accumulate mutations and 

take on new, slightly different functions over time (Vandersluis et al, 2010; Krakauer & Plotkin, 

2002). Paralogs that are maintained over long timescales often retain some of their ancestral 

function in addition to their diverged function (Kuzmin et al, 2022; Dean et al, 2008), thus 

building in redundancy. Repeated gene duplication events can give rise to large gene families 

wherein genes have a range of biochemically similar but specialized functions. Though many 

homologs in a gene family may be capable of performing a similar function, due to divergence it 

is difficult to predict which genes might be able to compensate for the function of others. The 

most recent duplicates within a gene family are not always capable of being functionally 

redundant while some older and more diverged paralogs are (Baker et al, 2021). Sequence 

similarity alone is not enough to predict functional redundancy, and the extent to which 

duplicates contribute to robustness varies across organisms (Hannay et al, 2008).  For these 

reasons, it is unclear to what extent families of homologs are contributing to the functional 

redundancy that gives rise to robustness in biological systems.   

Many studies attempting to elucidate functional redundancy in the genome involve the 

creation of single and double knockouts of paralogs to probe for synthetic lethality (Thomaides 

et al, 2007; diCenzo & Finan, 2015; Butland et al, 2008). While this method is effective in 

assessing functional redundancy in pairs of closely related genes, it is limited in its power to 
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explore larger networks of redundancy, as may exist in expanded gene families. A double mutant 

that does not show a more significant phenotype than each of the corresponding single mutants 

could imply either that the genes are non-redundant, or that they are part of a larger redundancy 

network that has a strong buffering capacity and therefore has decreased fragility in the face of 

genetic perturbation (Lehár et al, 2008). In this way, phenotype is often the readout for assessing 

redundancy and robustness within biological systems. The phenotypic impact of mutation reveals 

information about robustness, and we can investigate the mechanisms that lead to robustness by 

considering gene sequence, so understanding how redundancy affects robustness is a crucial 

genotype-to-phenotype question.  

Any given gene product processes the flow of information from precursors, producing 

outputs that feed into other networks or cellular functions. In a simple case of non-redundancy, a 

gene produces one protein with a primary function, and when this gene is intact, expresses a 

wild-type phenotype (Fig. 1A). A mutation in this gene would severely impact the fitness of the 

organism. However, if a given gene is part of a network of structurally similar genes which each 

have their own primary function but also retain some ancestral function, as in gene families that 

arise from duplication, the impact of a mutation can be diffused through the other members of its 

network, producing a relatively minor deviation in phenotype. Redundancy networks (Fig. 1B), 

which we here define as the group of two or more genes whose products can compensate for the 

loss of function of one another, allow for the rerouting of information through alternative 

pathways so that the end result has a minimal impact on fitness. As shown in Figure 1C, an 

additional byproduct of this buffering effect is that knocking out one member of a redundancy 

network should produce a similar phenotype as knocking out any other member of that group, 

because the entire set of genes is affected no matter which component of the network is disrupted 
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by mutation. In this way, phenotypic similarity may be an important indicator of functional 

redundancy within homologous gene families and may provide insights into the level of 

robustness in a genome. Further, because a gene’s redundancy network likely overlaps 

significantly with its family of homologs due to the relationship between protein structure and 

function (Fig. 1D), we predict that mutations in genes from within the same gene family will be 

more phenotypically similar.  

To test this, we phenotypically characterized over 250 single-gene mutations in 

Myxococcus xanthus, a soil bacterium with a large genome containing multiple homologous gene 

families (Goldman et al, 2006) and examined the relationship between gene family and 

phenotype. Under nutrient stress, swarming cells of M. xanthus undergo development, 

aggregating into multicellular fruiting bodies wherein populations of cells will differentiate into 

spores (Bretl & Kirby, 2016) (Fig. 2A). Since the ability of M. xanthus to form fruiting bodies 

and sporulate is directly tied to its fitness, it is likely a robust biological process that involves 

many functionally redundant genes. We generated a library of microscopic time-lapse movies 

(time series) showing the development of 265 knockout strains of M. xanthus belonging to four 

different gene families (102 ABC transporter genes, 45 NtrC-like activators, 80 One component 

signal transduction genes, and 38 ECF sigma factors; see references Yan et al, 2014, Caberoy et 

al, 2003, and Abellón-Ruiz et al, 2014 for previous work on some of these genes in M. xanthus). 

We made qualitative observations of the ways in which resulting phenotypes differed from wild-

type and used these observations to inform a novel image processing and phenotypic analysis 

pipeline that automates quantitative measurements of phenotype that are explicitly defined. 

Although previous studies have used image processing to extract phenotypic features of 

aggregate formation (Xie et al, 2011), this work has applied these tools to the largest library of 



 47 

time series of which we are aware, necessitating a new pipeline and analysis methods. Finally, 

we compared the similarity of phenotypes across gene families using principal component 

analysis (PCA). We found that, just as mutant strains within a gene family cluster by sequence 

similarity through multidimensional scaling (Fig. 1E), they also cluster by gene family in the 

phenotypic feature space with a statistically significant sharpness (i.e. small cluster size) and 

separation of clusters, indicating large networks of redundancy within these gene families.   
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RESULTS 

 

Manual Characterization of Development Phenotypes 

 

Under starvation, a swarm of M. xanthus cells will execute a developmental program 

during which millions of rod-shaped cells coordinate their movements and self-organize into 

dome-shaped multicellular aggregates. Some nascent aggregates destabilize and disperse, but 

Figure 1. Functional redundancy resulting in phenotypic similarity. (A) In a pathway 

with no redundancy, Gene A contributes to Function A. Any mutation that renders Gene A 

nonfunctional would produce a severe phenotype or lethality if Function A is essential. (B) 

Genes A, B, and C belong to the same redundancy network, meaning each gene can 

compensate for the loss of function of one member of its network. In the scenario where all 

three genes are functional and operating optimally, each gene contributes to its primary 

function (for example, Gene A is responsible for most of the contribution to Function A), 

producing the wild-type phenotype. (C) When a mutation occurs that renders Gene A 

nonfunctional (top), the input to Gene A gets rerouted through Genes B and C such that 

Function A can still occur, but in a slightly reduced capacity (indicated by thickness of 

arrows compared to panel B). Since Genes B and C are processing more input from A, 

Functions B and C are also affected and operate at a reduced capacity. The slight reduction in 

function of all three network components produces a phenotype that is relatively minor and 

may be indistinguishable from wild-type. A mutation in Gene C (bottom) would result in a 

similar phenomenon, where the input that normally feeds into Gene C is processed by Genes 

A and B, resulting in overall decreased output from each. In this model, a mutation in one 

member of a redundancy network affects the output from all components regardless of which 

gene contains the mutation (indicated by the similar output arrow size of top and bottom of 

panel C), and we predict that mutations in members of the same redundancy network will 

produce similar phenotypes. (D) Though not every member of a gene family is functionally 

redundant, and there may be redundant genes that do not belong to the same gene family, the 

relationship between structure and function of proteins dictates that genes in the same 

redundancy network are likely to come from the same gene family. If redundancy networks 

come primarily from the same gene family, and components of redundancy networks show 

similar mutant phenotypes, then members of the same gene family would be more likely to 

produce the same mutant phenotype. (E) Similarity of the protein sequences used in this 

study by multidimensional scaling. Each point represents one gene, with a Gaussian kernel 

density estimate to guide the eye. Proteins that are more similar in sequence, belonging to the 

same gene family, cluster together. Each gene family forms a single cluster with the 

exception of the ABC Transporters, which form two major clusters due to the different 

subunits. The highly conserved ATP-binding domains (Rees et al, 2009) separate very 

distinctly from the periplasmic and substrate-binding domains. We predict that mutations in 

genes that belong to the same gene family will be more phenotypically similar than they will 

be to mutant phenotypes in other paralogous gene families. Thus, we expect phenotype to 

cluster by gene family.  
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most persist and continue to grow; when the persisting aggregates become large enough, cells in 

the middle of each differentiate to form a cluster of spores, at which point they are considered 

mature fruiting bodies (Fig. 2A). Capturing this process with time-lapse brightfield microscopy 

results in a time series of grayscale images where initial aggregates appear roughly circular with 

irregular boundaries, somewhat darker than the background swarm.  Later in the time series, 

dispersing aggregates shrink and disappear, and the persisting ones grow and darken, with 

boundaries that become stable and clearly defined (Fig. 2B). Image features such as these can be 

leveraged to compare development phenotypes between wild-type and mutant M. xanthus 

strains.   

For this study we recorded 24-hour time series for wild-type and a set of 265 single gene 

knockout mutant strains (Appendix 2, Table 1), with an average of three replicates per strain. 

Due to their important roles in signal transduction, transport, and transcriptional regulation, we 

predict that genes within these families will be part of redundancy networks. We compared the 

mutant phenotypes to our wild-type strain with an emphasis on aggregate composition and 

dynamics. Wild-type aggregation initiated at 9.2±1.6 hours and formed uniformly dark circular 

aggregates with stable and clearly delineated boundaries within 24 hours (Fig. 2B). Mutant 

strains that consistently initiated aggregation either before or after wild-type were designated 

“early” or “late”, respectively. Mutant strains that consistently initiated aggregation at the same 

time as wild-type but had aggregates that failed to darken and/or form clearly delineated 

boundaries were designated “immature” (Fig. 2C). Mutant strains that initiated aggregation at the 

same time as wild-type but then all the aggregates dispersed within 24 hours were designated 

“fall apart” (Fig. 2D). Mutant strains that initiated aggregation at the same time as wild-type but 

then all the aggregates dispersed and then re-aggregated within 24 hours were designated 
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“aggregate-reaggregate” (Fig. 2D). Mutant strains that consistently matched all aggregation 

criteria and were indistinguishable from wild-type were designated “Like Wild-Type” (LWT). 

Finally, Mutant strains where the replicates displayed different developmental classifications 

were designated “variable”. 

Distribution of Manual Development Phenotypes within each Gene Family 

Of the mutant strains characterized in this study, less than 10% failed to initiate 

aggregation at all, and 62% consistently produced fruiting bodies that were qualitatively 

comparable to wild-type by the end of the 24-hour window. An additional 20% of mutants were 

able to initiate aggregation, but aggregates remained immature; some of these strains may have 

formed mature aggregates if the time series extended longer than 24 hours.  

We hypothesize that the relatively high success rate of aggregation in these mutants is 

due, at least in part, to M. xanthus development being a robust phenotype. If redundancy 

networks are contributing to functional redundancy to produce this robustness, then, according to 

the hypothesis portrayed in Fig. 1, mutants within the same gene family will be more 

phenotypically similar. As an initial test of our hypotheses, we sorted the mutant strains into their 

gene families and visualized the proportional representation of our developmental phenotype 

classifications (Fig. 2E).  The distribution of some phenotypes did seem to favor specific gene 

families. For example, LWT strains made up over half of the ABC Transporter family, the early 

aggregating strains compose nearly half of the ECF sigma factor family, and about one third of 

the One component family produce variable phenotypes in different replicates.  

The manual categorization of development phenotypes presented here serves two 

purposes. First, it provides support for our hypothesis that M. xanthus development is as robust a 

phenotype as we expected, making it a suitable phenotype for observing the extent of functional 
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redundancy networks in gene families. Second, though we do not claim these data alone provide 

sufficient evidence for the existence of redundancy networks, as the data show only the most 

obvious associations between gene family and phenotype, these qualitative observations do 

provide information about the various ways in which phenotype can differ during development. 

This was used to inform a more systematic, quantitative, and multidimensional characterization 

pipeline to test our remaining hypothesis about phenotypic similarity among families of paralogs: 

if redundancy networks contribute to robustness, and if those networks are comprised primarily 

of genes within the same family, then a grouping of mutant strains based on phenotypic features 

should also group the strains according to gene family.  
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Figure 2: Manual categorization of M. xanthus development. (A) Upon sensing nutrient stress, 

vegetative M. xanthus cells undergo a developmental process that culminates in spore-filled fruiting 

bodies.  (B) Wild-type M. xanthus cells on TPM agar begin to cluster into early aggregates after 9 hrs 

of starvation (blue arrow), and as more cells join the premature aggregates over the course of 24 hours, 

the aggregates mature into fruiting bodies that appear round and dark with conventional brightfield 

microscopy. Mutant strains that show initial aggregation either before or after the average time for 

wild-type are assigned the early aggregation (orange arrow) and late aggregation (yellow arrow) 

phenotypes, respectively. Scale bar 500 µm. (C) Like wild-type (LWT) mutants that produced dark, 

circular fruiting bodies on a timeline similar to wild-type (left), non-aggregating mutants (center), and 

mutants that produced immature aggregates (right). Scale bar 500 µm. (D) Some mutants formed initial 

aggregates that eventually shrank and fell apart (top). Other mutants formed initial aggregates that fell 

apart before re-aggregating into mature fruiting bodies (bottom). Scale bar 100 µm. (E) Distribution of 

development classifications within each gene family. 
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Automated Characterization of Phenotypes 

We developed and implemented an automated image processing pipeline in Python (see 

Methods, SI). Using it, we were able to identify and track every aggregate in all the time series, 

recording changes in aggregate number, position, size, shape, and gray value. In total, our 

pipeline captured the developmental dynamics of more than 150,000 aggregates, both dispersing 

and persisting. These data were analyzed to determine the timing and position of significant 

changes in swarm dynamics, such as the initial onset of aggregation, the average aggregate 

growth rate, and the rate of change in aggregate gray value; these quantitative features serve as 

an unbiased and more accurate replacement for the manual phenotypes “early”, “late”, 

“immature”, “LWT”, and “variable”. 

We identified 18 quantitative features (Fig. 3) to represent and measure the variation 

observed in the wild-type and mutant strains. For each time series, we calculated a list of these 

18 numbers, mapping it to a single point in an 18-dimensional feature space. Distance between 

points in this feature space is a measure of phenotypic dissimilarity. To reduce the complexity of 

these data and improve visualization, we used principal component analysis (PCA), a 

deterministic method with no additional input parameters, to reduce the feature space to two 

dimensions, PC1 and PC2. The distribution of points on a two-dimensional map of PC1 versus 

PC2 captures the phenotypic features that vary the most across the dataset, while discarding 

those combinations of features that vary less. 
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Figure 3: Automated quantification of fruiting body formation phenotypes. (A-C) Features 

related to global fruiting body development (D-F) Features related to fruiting body fate (A) A 

representative curve showing total fruiting body area over time in a 7.2 mm² field size. Images 

are shown of aggregation at start time, peak time, and final time (24 hours), all measured as time 

elapsed since inoculation (t=0). The slope of the dotted line in (A) gives the average growth rate, 

a key phenotypic feature. (B) Representative histograms from the same time series of average 

fruiting body area at peak time and (C) final time. The mean and standard deviation of these 

distributions are key phenotypic features. (D) Five representative time lapse images show 

fruiting body fate, either to persist (green) or disappear after 24 hours of development. (E) Area 
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versus time curves for each identifiable fruiting body in the same time series. For non-persistent 

fruiting bodies, the point of peak area is marked with a cyan circle. Two key features are the 

fraction of total identifiable fruiting bodies that persist (in this case, 32%, or 42 of 132), and (F) 

the standard deviation of the time at which non-persistent fruiting bodies peak in size (temporal 

coherence). Developmental dynamics can distinguish between time series of different 

homologous groups, as illustrated in (G) the curves for median total fruiting body area over time 

(quartiles bound the shaded regions, and outliers are bounded by the dotted lines). These 

variations are captured by 18 phenotypic features, with quantitative definitions given in 

Appendix 3, supplementary methods. 

 

The most significant phenotypic features are revealed by the makeup of the first two 

principal components, PC1 and PC2 (Table 1). These two components together account for 43% 

of the total variance. The constituent parts of both principal components represent a broad array 

of many different features, with no single outstanding feature. However, there are significant 

differences between PC1 and PC2. PC1 primarily represents growth rate, mean and standard 

deviation in fruiting body area at peak time, and mean and standard deviation in fruiting body 

area at final time. PC2, while sharing mean and standard deviation in area at peak time with PC1, 

also represents features involved with timing, including growth time, peak time, and temporal 

coherence. These developmental features with definitions are illustrated in Fig. 3. Although PC2 

shares some key features with PC1, its correlations are different. For example, a high value in 

PC2 indicates high standard deviation in aggregate area and low growth rate, whereas a high 

value in PC1 indicates high standard deviation in fruiting body area and high growth rate. 
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Each of the four homologous gene families used in this study has a different number of 

genes, and therefore each family is not represented by an equal number of mutant strains. This 

presents a potential bias towards over-represented gene families if PCA were to be performed on 

the entire dataset. To address this, we performed the PCA multiple times on random samplings 

of the time series such that each gene family is always equally represented (see Methods). We 

found that across all such samplings of the full dataset of over 1000 time series, the gene families 

always form clusters in distinct regions of two-dimensional phenotype space (Fig. 4C). Points 

within each cluster represent a set of values for the phenotypic features in the PCA; these values 

represent the “average” or “typical” phenotype for each cluster. There is overlap between the 

                     

                        

                       

                    

                       

                      

                        

                   

                            

                       

                                

                     

              

                     

                               

                    

                            

                        

                       

                     

                

                      

                    

                       

                           

                       

                       

                     

                   

                     

                     

                         

                       

                             

                                 

                      

                               

               

Table 1: Makeup of PC1 and PC2 by phenotypic feature. Each primary component is a 

direction or vector in the 18-dimensional phenotype space, with its makeup shared to varying 

degree by each feature, with either a positive (blue) or negative (red) correlation. PC1 captures 

the direction of greatest variance in the overall dataset, and PC2 is the direction perpendicular 

to PC1 that captures the next greatest amount of variance. The features most strongly 

represented in each primary component are those that have the greatest potential to distinguish 

time series phenotypically across the dataset. Each feature is numbered according to its 

prevalence in PC1. 
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clusters, so that the differences between clusters only become apparent when using a sufficiently 

large sample size to visualize an estimate of the probability density. The PCA analysis therefore 

agrees with the manually derived developmental classifications presented in Fig. 2, in that 

mutant strains from each gene family display a full spectrum of phenotypes, but there are 

specific phenotypes that each family exhibits with higher frequency. 

There are two important measures of the way in which phenotype clusters form for each 

gene family. First, the separation between clusters indicates that mutations in each homologous 

group affect phenotype in a distinct way. Second, the size of each cluster’s individual peak 

points to how often each similar phenotype is expressed within the homologous group. Clusters 

in the PCA output were shown to be statistically significantly separated and small compared to 

randomized control grouping rather than grouping by gene family (with p-values of 10-5 and 

0.0083 respectively) (Fig. S1). 

Two of the phenotypic clusters, the ABC transporter mutants and ECF sigma factor 

mutants, are both centered in a region of PCA space with feature values that denote mature 

aggregates, but they occupy different parts of that region. This means that, although the “typical” 

ABC transporter mutant and the “typical” ECF sigma factor mutant do not produce a severe 

phenotype, the subtle differences in their phenotypes are discernable. The difference in features 

associated with these two gene families may explain the trends observed in the manual 

classifications for each homologous family (Fig. 2), such as the tendency for the ECF sigma 

factor mutants to be classified as “early aggregation” mutants.  

The One component cluster is centered in a region that indicates immature aggregates, 

and the One component mutants also have a disproportionately high number that were manually 

classified as “variable”. In fact, the classification “variable” can be more accurately redefined in 
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PCA feature space. Instead of being manually classified as a separate phenotype, the variability 

between replicates can be measured in the PCA as the distance between replicates for the same 

strain. Representative visualizations and a basic measure of the spread of strain replicates are 

presented in Fig. S2 

The NtrC-like mutants are centered in a region that indicates a severe phenotype with few 

to no aggregates. The boundaries of this region are outlined in red in Fig. 4B. The initial decision 

to focus exclusively on features of aggregates when selecting phenotypic features for the PCA 

may have some negative impact on its resolving power within this non-aggregating region. 

However, the separation of the NtrC-like activator mutants from the One component mutants 

supports the idea that the PCA is still capable of distinguishing between subtle differences in 

mutant strains’ phenotypes, even if those strains ultimately do not form aggregates. Details on 

each typical phenotype and the metric values that distinguish them are available in the SI. 

These data support our hypothesis that phenotypic similarity and protein sequence 

similarity are positively correlated within the M. xanthus genome, but the correlation is not 

strong enough to make specific pairwise predictions of functional redundancy with any kind of 

accuracy. Pairwise sequence similarity correlates only weakly with phenotypic similarity (Fig. 

S3), which is consistent with previous findings (Hannay et al, 2008). The phenotype clusters for 

each gene family are populated by replicates of many mutant strains in that family, both the 

genetically similar and dissimilar. For the ABC transporters, 56% of strains (20 of 36) have 

replicates within the phenotypic cluster. This is also true for 24% (8 of 34) of NtrC-like activator 

strains, 39% (15 of 38) of ECF sigma factor strains, and 64% (16 of 25) of One component 

strains. Fine-grained genetic similarity is not necessary for redundancy to exist, and redundant 

gene networks may be quite large. 
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Figure 4: PCA reveals typical phenotypic features for each homologous family. (A) Each 

point represents a single time series, placed by phenotype according to values of PC1 and PC2. 

Units for PC1 and PC2 are arbitrary, but (0,0) represents average behavior. Behind points is 

displayed an estimation of the probability distribution function, using Gaussian kernel density 

estimation. Higher probability is plotted with higher opacity, revealing phenotypic clusters in 

each gene family. Outlined in red is a phenotypic zone containing only time series that exhibit 

little to no aggregation, a severe phenotype. Outside the red zone are successful fruiting body 

formation time series. An arrow points to a time series typical of the cluster, shown in: (B) The 

typical phenotype in each gene family cluster, illustrated with three frames from a representative 

time series, taken at 4 hours, 8 hours, and 16 hours after inoculation. Scale bars 100 μm. (C) 

Only the probability distribution estimates for each gene family are shown, illustrating both 

separation and overlap in phenotypic behavior. The directions of seven key phenotypic features 

are shown to indicate the coupled meaning of PC1 and PC2. Values of each feature increase in 

the direction of each respective arrow, with the length of the arrow indicating how much motion 

in feature space is caused by a fixed increase in the value of that feature, i.e. how significantly 

the feature is expressed by the two principal components. 

 

DISCUSSION 

 

Goldman et al proposed that the expansion of the M. xanthus genome can be attributed 

primarily to duplication and divergence, which has led to an enrichment of some gene families, 
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especially those involved in signaling and transcriptional regulation, over others (Goldman et al, 

2006). This asymmetry of enrichment is notable because it suggests that the expansion of 

specific gene families holds some evolutionary advantage. We propose at least part of that 

advantage is to create functional redundancy networks that act as buffers to stabilize M. xanthus 

development (i.e. creating robustness). In this study we confirm that M. xanthus development 

meets the criteria of a robust phenotype: among 265 mutant strains with disruptions in genes that 

are part of four large homologous families, severe developmental phenotypes are very rare. We 

then provide support for the existence of large redundancy networks by quantifying the 

phenotypes of these mutant strains and using PCA to map the phenotypic feature space, which 

clusters the mutant strains according to the four homologous gene families. 

Prior large-scale studies of genetic interactions and redundancies have examined their 

impact on phenotypic robustness and fitness (Kuzmin et al, 2021; Gagarinova et al, 2012). Other 

studies have sought to disentangle the relationship between subsets of multigene families and 

their roles in redundancy (Johnstun et al, 2021). We seek to define the scale and distributive 

nature of redundancy networks that overlap with large gene families and demonstrate that 

redundancy networks are not necessarily limited to a few of the closest paralogs but may include 

dozens of genes. Rather than trying to quantify the direct effect of mutations on fitness by 

measuring a single variable such as growth, we chose to measure multiple aspects of a complex 

development process. While our method requires the collection and analysis of time-lapse 

movies rather than just a few static timepoints, it has the ability to detect more subtle phenotypes 

that may not have a detectable fitness cost but can still inform studies of redundancy. Since many 

single gene disruptions have such subtle phenotypes, and since we propose that extensive 

redundancy networks protect an organism from the fitness costs of mutation, we chose 
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phenotypic similarity, rather than overall effect on fitness, to assess the extent of functional 

redundancy within gene families. 

Proteins produced by paralogs within a gene family may share similar molecular 

mechanisms, but they are expected to have different biological functions. For example, the ABC 

transporters in M. xanthus all perform active transport across membranes, but they are expected 

to transport different substrates. This would mean that a disruption of any one ABC transporter 

would cause a change in developmental phenotype specific to its substrate. There is no obvious 

reason why mutant strains of the ABC transporters would display similar changes in phenotype 

unless there is significant functional redundancy between transporters. There is also no obvious 

reason why the phenotypic similarities would include a plurality of a large homologous gene 

family unless the functional redundancy is widely distributed. 

When a group of functionally redundant genes mitigates the effect of one member’s 

disruption with low overall stress on the system, the impact on phenotype can be subtle. The 

ABC Transporter and ECF sigma factor gene families exemplify this, as there are very few 

single gene knockouts that result in severe phenotypes (Fig. 2E). The phenotypes of these mutant 

strains cluster by homologous family in the PCA feature space (Fig. 4A), meaning that both gene 

families display a “typical” phenotype that is different from the other. There are several plausible 

molecular explanations for this redundancy. Many ABC Transporters, due to varying homology 

in periplasmic and substrate-binding domains across the gene family, may be able to transport 

similar and/or overlapping substrates (Orelle et al, 2019; Durmort & Brown, 2015), mitigating 

the effect of many of the mutations in this gene family and most often producing phenotypes 

close to wild-type. Similarly, robustness has been shown to be encoded in transcriptional 

regulatory networks by alternative pathways (Wagner & Wright, 2007), and though some studies 
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suggest that alternative sigma factors display minimal crosstalk (Rhodius et al, 2013), it is not 

unprecedented for there to be overlap in the regulation of genes by multiple ECF sigma factors, 

creating networks of integrated regulation (Mascher et al, 2007; Luo & Helmann, 2009; Paget, 

2015). Our data indicate that M. xanthus may use such networks of crosstalk among ECF sigma 

factors to coordinate transcription in response to extracellular signals, and that this may involve 

integration from many redundant or parallel pathways, ultimately leading to earlier aggregation 

initiation time and faster fruiting body growth rate than we see in wild-type for the majority of 

ECF sigma factor mutants. 

In contrast, NtrC-like activator mutants show more severe phenotypes and cluster in a 

region where strains do not form fruiting bodies (Fig. 4). Though it could be argued that a non-

aggregating strain indicates a lack of redundancy for the mutated gene, this seems unlikely given 

that the NtrC-like activators fail to produce aggregates in a way that is distinct from non-

aggregating mutants in other gene families (Fig. 4A—region outlined in red). This again points 

to the idea of networks of redundancy, but highlights that there can be a cost to redundancy in 

some situations. Extensive research has shown that kinase-response regulator pairs tend to be 

very insulated with limited crosstalk, and that this feature rapidly evolves in newly-duplicated 

two-component systems (Capra et al, 2012; Laub & Goulian, 2007). NtrC-like activators and 

other bacterial DNA-binding response regulators have high affinity interactions with their 

cognate kinases, and crosstalk generally increases noise and decreases the overall response of the 

system to the incoming signal (Rowland & Deeds, 2014). The specificity of response regulators 

for phosphorylation by their cognate kinases is governed primarily by molecular recognition, 

though these proteins can be very sequence similar, and by maintaining a relatively high 

abundance of response regulator relative to its cognate kinase within a cell to prevent unwanted 
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phosphorylation (Skerker et al, 2008; Capra et al, 2012; Podgornaia & Laub, 2013). Taken 

together, this indicates that mutations to response regulators, like those that we have introduced 

in the NtrC-like proteins in this study, might lead to a situation where there is a high 

concentration of phosphorylated kinase in the absence of its highest affinity interaction partner, 

allowing the cognate kinase to phosphorylate structurally similar non-target response regulators 

and inappropriately initiate those signaling cascades. This model would explain why so many of 

the NtrC-like activator mutations produced severe phenotypes that fail to form fruiting bodies in 

the same way and highlights that redundancy due to gene duplication can have negative 

consequences without proper insulation. 

We do not propose that phenotypic similarity always serves as a strong indicator of 

functional redundancy. There are almost certainly insignificant associations in the PCA feature 

space. For example, there are a small number of ABC transporter mutants positioned within the 

NtrC-like activator cluster. We do not propose that these genes act in similar developmental 

processes, but we might suggest that they are less likely to be functionally redundant with those 

in the ABC transporter cluster. It is also possible that any group of completely unrelated genes 

could have some degree of functional redundancy, but this represents a background level or 

lower threshold of observable redundancy. We have shown that the redundancy we observe is 

significantly above that background by measuring the phenotypic clustering of random 

groupings of genes from the various homologous groups. We are sure there are many forms and 

many degrees of functional redundancy that are not represented by this PCA, but it does reveal a 

widely distributed functional redundancy above a background threshold. 

The relatively high number of mutant strains with “variable” phenotypes is particularly 

interesting. Many of these strains manifest a phenotype indistinguishable from wild-type in one 
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replicate, and then form immature aggregates or fail to aggregate entirely in the next. Though 

this could be explained by slight variation in experimental conditions across replicates, our 

observation that this variability occurs more often in the One component family suggests some 

kind of genetic underpinning (Fig. S2). Given that development occurs in noisy environments, 

the ability to maintain phenotypic stability in the face of noise contributes to robust development. 

Networks of redundant genes may be one way that organisms ensure this robustness and 

contribute to fitness. Perhaps the impact of mutation on some redundancy networks increases an 

organism’s sensitivity to stochastic fluctuations that can influence phenotype toward one 

developmental fate or another, thus decreasing stability and leading to the “variable” phenotype. 

If true, redundancy and robustness may be inseparable components of any genotype-to-

phenotype problem, and quantifying subtle phenotypic changes in response to mutations may be 

an effective way to assess their extent within large gene families.  

Our results highlight the importance of considering the nature and extent of redundancy 

when making claims regarding the relationship between genotype and phenotype. Gene families 

can have high degrees of functional entanglement that may mitigate the impact of mutation, so 

that quantifying even minor deviations in phenotype may allow for the recognition of patterns; if 

mutations within a redundancy network produce similar phenotypes, then subtle changes in 

phenotype have the potential to inform annotation. For example, a gene of unknown function 

displaying a subtle phenotype similar to that of genes of known function could provide evidence 

that the unknown gene is part of a redundancy network. Our image analysis pipeline can be 

extended to future studies of M. xanthus, even under differing experimental conditions, for 

automated extraction of phenotypic features. Further, our dataset can be used to probe whether 

there are patterns in amino acid sequence homology that lead to functional redundancy by 
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comparing the sequences of genes that are located within the family cluster on the PCA to those 

that are located outside the cluster and are presumably non-redundant. Underscoring all these 

results is the observation that without a sufficiently large collection of mutants and replicates, 

functional redundancy does not present itself clearly enough to be recognized.  

CONCLUSIONS 

 

This work provides evidence for the existence of large networks of redundant genes as a 

means by which an organism such as Myxococcus xanthus can execute complex multicellular 

social behaviors robust to perturbations to gene function. We observe subtle deviations in 

phenotype, a distinct set for each homologous gene family, that present when knocking out any 

one gene within these redundancy groups. These subtle deviations are measurable due to the 

large number of time series included in our full dataset and the quantitative detail of the extracted 

phenotypic information, which in combination necessitate the automated analysis pipeline we 

have developed.  

MATERIALS AND METHODS 

 

Strains and Culture Conditions 

 

Myxococcus xanthus strain DK1622 was used as the wild-type for this study. All 265 

mutant strains in the ABC Transporter, ECF sigma factor, NtrC-like activator, and One 

Component Signal Transduction System families (Appendix 2, Table 1) were created using 

plasmid insertion via homologous recombination as previously described (Caberoy et al, 2003; 

Plamann et al, 1995) and modified by Yan et al, 2014. Briefly, 400-600bp internal fragments of 

each gene were PCR amplified and ligated into pCR®2.1-TOPO [Invitrogen]. The plasmids were 

amplified in E. coli before isolation and electroporation into M. xanthus DK1622, where the 
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plasmid incorporates into the M. xanthus genome via the homologous region on the plasmid. 

PCR verification was used to confirm the location of each insertion.  

Cells were grown overnight in CTTYE (1% Casein Peptone (Remel, San Diego, CA, 

USA), 0.5% Bacto Yeast Extract (BD Biosciences, Franklin Lakes, NJ, USA), 10 mM Tris (pH 

8.0), 1 mM KH(H2)PO4 (pH 7.6), 8 mM MgSO4) with vigorous shaking at 32°C. Cultures of 

mutant strains were supplemented with 40µg/mL kanamycin. Cells were centrifuged to remove 

the nutrient broth, washed in TPM buffer (10 mM Tris (pH 7.6), 1 mM KH(H2)PO4, 8 mM 

MgSO4), and resuspended to a final concentration of 5x109 cells/mL. For development assays, 

approximately 2.5x107 cells were spotted onto TPM agar slide complexes, as previously 

described (Taylor & Welch, 2010).  

Imaging 

Development assays for wild-type and mutant strains were carried out on TPM starvation 

agar slide complexes for 24 hours, with approximately three replicates per strain. Though it can 

take multiple days for cells within fruiting bodies to fully differentiate into spores, we generated 

time series of only the first 24 hours of development because wild-type cells show little to no 

observable change in fruiting body morphology, count, or behavior following this period at the 

magnification used. Time-lapse grayscale images were captured every 60 seconds under 4x 

magnification with a Nikon Eclipse E-400 microscope [Nikon Instruments] and SPOT Insight 

camera. ImageJ was used for processing the .TIFF images into time series for analysis.  

Multidimensional scaling of gene sequence dissimilarity 

Amino acid sequences for the four homologous families were retrieved from NCBI and 

imported into the Multiple Sequence Alignment tool in Clustal Omega (Madeira et al, 2022), 

generating a percent identity matrix for all 265 proteins. This was then converted to a percent 



 67 

dissimilarity matrix and used as the input for the Classical Multidimensional Scaling package in 

R to generate plotting coordinates in two dimensions. Then Gaussian kernel density estimation 

was used to plot an estimate of the probability distribution function (plotted with increased 

opacity to represent higher probability) to guide the eye in identifying sub-clusters of similar 

genes within each paralogous group. 

Manual phenotyping 

Manual preliminary phenotyping of the mutant strains in this study was performed using 

the time series described above. We will refer to mature aggregates as fruiting bodies for 

simplicity, though we did not test sporulation efficiency in this study. First, strains that failed to 

produce fruiting bodies at all within 24 hours across all replicates were labeled “no aggregation” 

mutants. Strains that formed initial aggregates that disassociated completely before the 24-hour 

mark were labeled as “fall apart”. Some strains, labeled “aggregate-reaggregate”, formed 

aggregates that initially fell apart, but new aggregates were formed that persisted and looked 

similar to wild-type by the endpoint of the time series.  

To qualitatively determine the start time of aggregation, the time series were observed in 

sliding windows of 25 minutes to identify the window where initial aggregates were first formed. 

The average start time of 22 wild-type replicates was used for comparison, and mutant strains 

that had start times outside of one standard deviation of the mean of wild-type were considered 

either “early” or “late” aggregation mutants.  

Wild-type fruiting bodies at 24 hours appear almost black in color and are roughly 

circular in brightfield images. Any strains that appeared to have these characteristics and initiated 

aggregation within the same window as wild-type were classified like-wild-type (LWT). Strains 

that initiated aggregation at a normal time but didn’t develop aggregates that were as dark in gray 
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value as wild-type were labeled as “immature aggregation” mutants. Finally, mutants that did not 

display consistent phenotypes across replicates were classified as “variable”. A table of all 

mutant strains used in the study, as well as their manually assigned phenotype, can be found in 

Appendix 2, Table 1.  

Automated phenotyping 

Phenotype was automatically quantified for the mutant strains in this study by running 

144 individual .TIFF images (ten minutes between each frame over 24 hours of total 

development) from each time series through a custom Python image processing and analysis 

pipeline to identify in each frame which pixels could belong to a fruiting body, based on their 

gray value. The information for the position and geometry of each aggregate was filtered to 

remove noise and spurious aggregates. This information was then collected for the entire time 

series to track individual fruiting bodies over time, revealing their fate and dynamics. This 

detailed data summary for each time series then had a list of eighteen specific numbers extracted 

from it, each of which captures one overall feature, such as average growth rate or the average 

size of final fruiting bodies. The values of these eighteen metrics together (a phenotypic vector) 

constitute the phenotype profile for that time series. The full details of the image processing 

pipeline and all phenotypic metrics are available in the SI. 

A selection of 133 mutant time series were chosen at random from each paralogous group 

so as not to weigh any paralogous group more than the other. The phenotypic vector for each 

time series was calculated, and the values of each metric were shifted by a constant amount and 

scaled by a constant factor so that across the dataset, each metric had a mean of zero and a 

variance of one. This ensured that one metric would not supersede the others simply due to the 



 69 

magnitude of its units. PCA was performed on this normalized dataset to extract the two 

combinations of metrics, PC1 and PC2, that captured the most variation across the dataset. 

The phenotypic clusters were revealed by plotting each time series as a point in the PC1 

vs. PC2 phenotype space and then estimating the probability density for each homologous group 

via Gaussian kernel density estimation. Essentially, a Gaussian blur was applied to the points, 

and areas of greater overlap were colored with higher opacity, as shown in Fig. 4. The width of 

the smoothing kernel was chosen to be the smallest value that could preserve the shape of the 

probability density for different equally sized subsamples from each homologous group. 

The statistical test used to generate the p-values for average cluster separation and 

average cluster size was a form of bootstrapping which started with the PC1 and PC2 coordinates 

of each point shown in the data sample of Fig. 4. Each point was randomly reassigned one of 

four arbitrary families in such a way that replicates of the same strain were all assigned the same 

family. A new Gaussian kernel density estimation was performed to approximate the probability 

density of each family in PCA phenotype space. The contour representing 75% of the maximum 

value of the estimated probability distribution function was then extracted, with cluster 

separation being the average across all pairings of families of the centroid-to-centroid distance 

between contours, and cluster size quantified by the average across families of the radius of 

gyration of each contour, i.e. the root mean square distance of each contour’s points from its 

centroid. Each p-value was calculated as the fraction of the random groupings that had a greater 

average separation or smaller average size than that of the original data grouped by the actual 

gene families. 
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SUPPLEMENTARY INFORMATION 

 

Figure S1: Phenotypic clusters arise robustly from homologous gene families as compared to 

random groupings of mutant strains. (A) Reproduced from Figure 4, each of the four gene 

families produces a distinct phenotypic cluster when plotting the estimated probability 

distribution function for that family (using Gaussian kernel density estimation) in phenotype 

space. (B) A contour is shown for each gene family where the estimated probability 

distribution function is at 75% of its maximum value, and the geometry of that contour is used 

to quantify the width of the cluster and its separation from other clusters. (C) The same data 

used in Figure 4 was regrouped into four random groupings, and the PCA and probability 

density function estimates were repeated, showing much more incoherent phenotype clusters. 

(D) The corresponding contours for the four random groupings show less separation and less 

sharpness than phenotypic clusters based on homologous gene groups. Both (C) and (D) come 

from one representative random grouping, many of which were made to calculate the p-values 

for cluster separation and sharpness reported in Results. 
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Figure S2: Replicates of the same strain can vary in phenotype. Reproduced for context from Figure 4 are 

the phenotypic scatterplot resulting from the PCA (where each point is a time series, plotted nearby other 

time series that are phenotypically similar) and the superimposed probability distribution functions for 

each of the homologous gene families: ABC transporters in blue, NtrC-like activators in orange, ECF 

sigma factors in green, and One component in pink. Each subplot includes all replicates of a few 

representative strains, where the replicates of each strain are represented in a single color and drawn with 

a bounding polygon to aid the eye. Replicate-to-replicate variation is larger or smaller depending on strain 

and to which homologous family the strain belongs. 
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A metric for replicate-to-replicate phenotypic spread of a specific strain is the sample standard 

deviation 𝑠 generalized to two dimensions 

𝑠 = √
1

𝑛 − 1
∑((𝑥𝑖 − 𝑥̅)2 + (𝑦𝑖 − 𝑦̅)2)

𝑛

𝑖=1

 

where 𝑛 is the number of replicate points, 𝑥𝑖 and 𝑦𝑖 are the coordinates of the 𝑖 th replicate point, 

and 𝑥̅ and 𝑦̅ are the means of each coordinate across the replicate points, i.e. the centroid 

coordinates. In this case, the 𝑥 and 𝑦 coordinates are the value of PC1 and PC2 respectively. 

Table S1 summarizes the mean replicate-to-replicate phenotype spread averaged over strain for 

each gene family using the metric 𝑠, with errors given by the standard error of the means. 

 

 

 

Gene family Mean replicate-to-replicate spread 𝒔 

ABC Transporters 1.42 ± 0.12 

NtrC-like Activators 1.57 ± 0.14 

ECF Sigma Factors 1.31 ± 0.09 

One Component 1.94 ± 0.18 

 

This indicates a statistically significant difference for replicate-to-replicate phenotype spread 

between One Component strains and ABC Transporter strains (p = 0.024), and between One 

Component strains and ECF Sigma Factor strains (p = 0.004) according to a two-sided Welch’s 

t-test. 

 

 

Table S1: A summary of the average replicate-to-replicate spread 

for each homologous gene family, with errors given by the standard 

error of the means. This spread is illustrated for some representative 

strains in Fig. S2 
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Figure S3: Protein similarity is not an effective predictor of phenotypic 

similarity within a homologous gene family. For each of the four gene 

families analyzed, each point represents a unique pairing of two strains. 

Phenotypic dissimilarity is quantified by Euclidean distance in 18-

dimensional feature space, where feature values are represented by 

averages over all replicates for that strain. Protein dissimilarity is 

quantified by comparison of base pairs using Clustal Omega Multiple 

Sequence Alignment. Within each of the four gene families, phenotypic 

dissimilarity and protein sequence dissimilarity do not correlate. 

Protein Dissimilarity  
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ABSTRACT 

 

 Waves play many varying yet critical roles in the development of organisms. Early 

mitotic divisions, nerve impulses, cardiac contractions, would healing, and chemotactic 

mechanisms are a small fraction of the numerous biological processes that rely on traveling 

chemical waves. Though the study of biological waves has traditionally been focused on higher 

organisms, bacteria also exhibit numerous types of waves that play roles in long-range 

communication, chemotaxis, and spatial patterning. In this work, we provide evidence for a 

previously uncharacterized wave phenomenon in the soil bacterium Myxococcus xanthus, which 

self-organizes into spore-containing fruiting bodies under starvation as a component of its 

stringent response. These waves, which we call pulses, occur in both wild-type and genetic 

mutant strains and are distinct from rippling waves, a well-characterized emergent behavior 

expressed by M. xanthus swarms during predation. Pulses originate from early aggregates in a 

developing swarm and cause cells to move more persistently by suppressing reversals that results 

in synchronized motility across the swarm. This increase in persistence in the presence of slime 

trails could be sufficient to move more cells into aggregates, which would drive aggregation 

forward. Pulses represent a new emergent behavior pattern discovered through observing a 

collection of over 1,000 time-lapse movies of development which highlights the importance of 

high-throughput phenotypic quantification. 

INTRODUCTION 

 

Across all orders of life, key biological processes must be coordinated to ensure proper 

multicellular development. At the molecular level, this means that signals must be able to travel 

great distances, such as the length of a developing organism, over short periods of time to 

synchronize biological functions and cellular organization. Diffusion alone is not sufficient to 
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coordinate over such distances, requiring many developing organisms to make use of more 

expedient methods for transduction of signals and messages. Chemical waves are one such 

mechanism that developing organisms use for spatiotemporal coordination.  

Examples of chemical waves acting to coordinate multicellular development and self-

organization are widespread in biology. Upon fertilization, the timing of early embryonic cell 

divisions are governed by waves of Cdk1 activity (1, 2). Calcium waves also play a role in 

mitosis (3), oocyte activation (4), and synchronized contractions of cardiac tissue (5). Chemical 

waves can also act to direct cell motility and migration. Traveling waves of actin are responsible 

for locomotion in fibroblasts, neutrophils, keratocytes, and many other cell types (6). 

Propagating waves of cAMP help direct the slime mold Dictyostelium discoidem into aggregates 

via chemotaxis during its starvation response (7). In bacteria, waves can also help establish 

spatial patterning, as in the Min-protein waves that help E. coli determine the cell center prior to 

cell division (8), and contribute to long-range communication and multicellular organization into 

biofilms (9–11). Given the prevalence of self-organization and patterning in biological systems, 

phenomena which are often governed by waves, it is likely that waves play many undiscovered 

roles in different systems.  

The soil bacterium Myxococcus xanthus exhibits an almost entirely multicellular lifestyle 

(12). It lives in soil environments and can saprophytically feed on decaying organic matter to 

obtain nutrients (13). Upon contact with prey bacteria such as E. coli or other soil microbes (14), 

M. xanthus acts as a predatory swarm, secreting enzymes to lyse prey cells and scavenge their 

nutrients (15). The M. xanthus predation strategy involves characteristic rippling waves caused 

by crests of high cell density and troughs of low cell density that reflect off one another and 

reverse direction upon collision (16, 17). Nutrient stress (in particular nitrogen starvation) 
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triggers a second multicellular behavior called development, where cells in a swarm transition 

away from swarming and begin to cluster into mounds. These nascent aggregates continue to 

grow as starvation persists, accumulating more cells, some of which will differentiate and form a 

mass of spores at the center of the aggregate as it matures into a fruiting body (18). Such self-

organization requires individual cells to sense starvation and then to communicate this 

information at a population level, promoting massive changes in gene expression, motility, and 

initiating signaling cascades (19) across relatively large spatial scales in their environment.  

We observed M. xanthus development with time-lapse microcinematography (20), 

capturing the process of fruiting body formation under different genetic and environmental 

conditions, using image analysis to better understand developmental dynamics. In grayscale 

brightfield images, swarm activity is perceived as changes in the gray value of the individual 

pixels in each frame, as cell movement causes fluctuations in the level of light coming through to 

the camera. In essence, movement is captured through changes in pixel gray value. Changes in 

pixel value were measured from subsequent frames in our time-lapse image series as a proxy for 

swarm activity, generating plots of swarm activity that showcase a previously uncharacterized 

oscillatory phenomenon during M. xanthus development that we call pulsing. We define the 

characteristics of a pulse and document its effects on fruiting bodies within a developing swarm. 

We provide evidence that pulses are traveling chemical waves emitted by nascent fruiting bodies, 

and these pulses help to synchronize cell motility during development.  

 

RESULTS 

 

Observing common developmental patterns with time-lapse microcinematography. 

M. xanthus cells on starvation agar sense nutrient limitation and initiate a developmental process 
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where the once vegetatively swarming cells aggregate into mounds which eventually mature to 

become spore-filled fruiting bodies (Figure 1A). As part of an ongoing effort to understand the 

full phenotypic range of M. xanthus development, we generated time-lapse movies of 265 mutant 

strains containing insertion-disruption mutations in genes with putative roles in important 

biological processes (signal transduction, gene regulation, and transport of ions and small 

molecules) (Appendix 2, Table 1) (strain generation: (20, 21)). We specifically recorded the first 

24 hours of development on starvation agar to observe patterns that resulted from the mutations. 

This large-scale analysis revealed a recurring pattern seen in many different mutant strains 

involving a periodic disturbance in the stability of early aggregates, causing temporary changes 

in average aggregate area, gray value, and circularity, before the aggregate eventually stabilizes. 

Cells appear to move in pulses, spreading temporarily outward in groups from the aggregate 

centers (Figure 1B), causing the aggregate to increase in area and become more irregularly 

shaped and less dense, before coalescing into a more dense and circular aggregate again (Figure 

1C).  
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Activity plots improve visualization of swarm dynamics. Brightfield images rely on 

light passing through a sample, with less translucent objects appearing darker. Within an M. 

xanthus swarm this means that regions of higher cell density appear darker. For example, 

Figure 1. Periodic disturbances affect the stability of early aggregates. A) 

Myxococcus xanthus development on TPM starvation agar at 6hr timepoints 

following the onset of starvation (0hr). Initial aggregates in wild-type movies 

appear between 8-10hrs and cells accumulate into the aggregates and eventually 

mature into fruiting bodies.  Scale bar 500µm. B) After initial formation of 

aggregates, there is often a disturbance in the swarm that causes a periodic and 

temporary instability in early aggregates of cells where stable, growing aggregates 

(left) transition to unstable, branched aggregates (middle), before coalescing back 

into rounded aggregates again (right). These images were each taken 45 minutes 

apart. Scale bar 100µm. C) Percent change in area, circularity, and mean gray value 

of early aggregates that occurs during the observed periodic instability. Values 

were averaged from multiple manually segmented fruiting bodies (n=7) at 20-

minute intervals from 12-24hrs post-starvation. Periodic increases in fruiting body 

area are accompanied by decreases in circularity and slight increases in pixel gray 

value as aggregates get larger, more irregular in shape, and brighter.  
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developing aggregates become darker as they accumulate more cells and mature into fruiting 

bodies. For this study, M. xanthus development was recorded as stacks of 1,440 images taken at 

one-minute intervals, with each image a 1600x1200 pixel array, and each pixel assigned a gray 

value from 0 to 255 (black to white). The dynamics of development were therefore recorded in 

the changing pixel values between sequential images, which represent local regions of cell 

density shifting as cells move. To quantify and reduce the complexity of these dynamics, we 

generated a Difference Stack Image Sequence for each brightfield time-lapse movie that reflects 

only what is changing from frame to frame. If a pixel remains the same from frame n to frame 

n+1, it has a difference of zero and is black. If a pixel changes from frame n to frame n+1, it will 

vary on a scale of 1 (gray) to 255 (white) depending on the magnitude of the difference. Thus, 

we viewed only what is changing from one frame to the next, or the activity of the swarm.  We 

then plotted the average difference in pixel gray value for each frame over time to show a plot of 

swarm dynamics, or the Activity Plot. 

The Activity Plot for a swarm undergoing development is seen in Figure 2. In phase 1, 

cells experience a short initial lag time with no movement while motility machinery is 

assembled, followed by a sharp increase in activity as cells perceive starvation and initiate their 

response. In phase 2, marked by the highest swarm activity, cells organize themselves into initial 

aggregates. Finally, phase 3 contains three key features: a) maturation of initial aggregates, 

defined by an increase in gray value and often a slight decrease in area as fruiting bodies grow 

taller, b) disappearance of some aggregates as previously described in the literature (20, 28), and 

c) previously undescribed and uncharacterized pulses of swarm activity that are consistent with 

the nature of the pulses observed by eye in brightfield movies. Because of differences in wave 

period and timing of the onset of pulsing, we have chosen to display the activity plot of one 
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representative time-lapse movie rather than reporting an average, and others can be seen in 

Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Activity plots represent swarm dynamics during development. A) 

Average pixel gray value differences represent swarm activity in each frame, 

with a greater value representing more swarm activity. In phase 1, the pre-

aggregation phase, there is a steady increase in swarm activity. Phase 2 

represents the peak of activity, during or after which fruiting bodies begin to 

form. Finally, maturing of fruiting bodies occurs in phase 3, where synchronized 

oscillations of high and low swarm activity occur, corresponding to the timing of 

pulses observed in the brightfield image series. This plot represents one mutant 

movie that shows pulses. For additional plots of other strains, see Figure 4. B) 

Representative wild-type activity plots both with and without synchronized 

pulses across the swarm.  
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Pulsing is common and is a component of wild-type development. Generating activity 

plots for time-lapse movies of each mutant strain in triplicate revealed that 56.6% of mutants 

exhibited pulsing under standard development assay conditions in at least one replicate. More 

strains, particularly those that aggregate late compared to wild-type, are likely capable of pulsing 

if the assay were carried out longer than 24 hours. The distribution of pulsing mutants within 

each gene family from Ch. 2 was relatively equal; however, the distribution of pulsing strains 

within each phenotypic category was unequal as determined by a chi-square test (p=2.2e-16, 

df=7). Pulsing is significantly overrepresented in both early aggregating and like wild-type 

phenotypic categories as determined by Fisher’s exact tests (p=2.9e-5 and 2.1e-10, respectively). 

Over 80% of mutant strains within these categories demonstrate pulsing. Pulsing also occurs in 

about 50% of the mutants that produce variable phenotypes in different replicates. Significantly 

fewer of the late and immaturely aggregating strains showed pulsing, and no pulsing was 

detected in any mutants that did not at least initiate aggregation.  

Interestingly, activity plots of wild-type movies also revealed that pulsing happens during 

wild-type development as well, only more subtly and with less obvious instability of the 

aggregates (Figure 3). An activity plot analysis of 22 replicates of wild-type movies showed that 

low-level pulsing occurs in 59% of wild-type replicates, suggesting that pulsing is a normal 

component of wild-type development that is exaggerated for the genetic mutants in which we 

first observed the behavior. Additionally, pulses seem to be provoked by certain environmental 

conditions. In wild-type, we have observed pulsing that destabilizes aggregates in a similar 

fashion as the mutants (Figure 4) when manipulating the concentration of potassium phosphate 

in the buffer, but not by altering other buffer components.  
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The representative activity plots for pulsing samples shown in Figure 3 display some of 

the variation that we observed from sample to sample. Most notably, there were differences in 

the onset of pulses, the earliest being three hours after starvation, and some beginning just before 

the end of the 24-hour time series. The only commonality was that pulses always occur after 

initial aggregation. Even when pulses happen very early in a movie, as in MXAN_1189 (Figure 

4), aggregation precedes their onset. There were also differences in the number of pulses as well 

as in the period of the oscillations. Importantly, these differences were not driven by genetic 

differences between strains, as replicates of the same mutant strain varied widely in terms of 

these features. The period of pulses in both high and low potassium phosphate environments are 

much longer than what is observed in wild-type or the mutants (Figure 4), but fruiting bodies 

seem to destabilize in a similar fashion to those in genetic mutant pulsing samples. The way that 

the pulse affects the fruiting bodies also varied in different pulsing samples. For example, as in 

wild-type, some mutants such as MXAN_4316 (Figure 4) show pulsing without any obvious 

destabilizing of the aggregate, while others, such as MXAN_2407 or MXAN_4523, pulses cause 

a much more discernable disturbance within the early fruiting bodies. Again, this cannot be 

attributed to genetics alone, as there is within-strain variation in the extent of destabilization, 

albeit determined qualitatively. Note that we did not attempt to quantify and compare pulse 

amplitude in different replicates, as this metric would be more indicative of the initial contrast 

present in the brightfield time-lapse, which varies with each movie and holds no biological 

significance.  
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Figure 3. Distribution of pulsing mutants. A distribution of pulsing mutants within 

the gene families and phenotypic categories presented in Chapter 2. Strains were 

considered pulsing if at least one of three replicates showed pulsing on the activity plot. 

Note that strains considered non-pulsing may demonstrate pulsing with a lower 

frequency and may be able to pulse if additional replicates were collected.  LWT, like 

wild-type. Broken down by gene family, 70 of 102 (69%) of ABC Transporters, 20 of 

38 (53%) of ECF sigma factors, 19 of 45 (42%) of NtrC-like activators, and 41 of 80 

(51%) of One Component signaling genes show pulsing. The distribution of pulsing 

mutants within each phenotypic category is more unequal. 39 of 47 (83%) of early 

aggregating strains, 79 of 97 (81%) of LWT strains, 5 of 24 (21%) of late aggregating 

strains, 5 of 25 (20%) of immature aggregating strains, 21 of 39 (54%) of variable 

phenotype strains, and 1 of 8 (12.5%) of fall apart strains show pulsing. Pulsing was not 

seen in any replicates of 0 of 6 aggregate-reaggregate strains and 0 of 19 non-

aggregating strains.  
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Figure 4. Representative activity plots for a subset of strains and conditions that provoke pulsing.  

All plots show the characteristic activity oscillations associated with pulsing, but the onset of pulsing as 

well as the pulse period appear to be different across samples. Curves for wild-type, four different 

mutants, as well as low and high potassium samples are shown. Inset images represent fruiting bodies 

before, at the peak, and after the pulse, corresponding to the colored points indicated on the curve. Gray 

arrows indicate the onset of aggregation. Insets each represent a 322x548 µm fraction of a larger field of 

view.  
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Pulses are waves that are distinct from 

rippling.  To test whether the pulses happen 

simultaneously in the population of early fruiting 

bodies or whether they travel across the swarm, we 

measured the timing of the oscillations in activity 

in different regions of the field of view and found 

that there is a lag between the pulses from one 

region of the field of view to the other, indicating a 

directional wave (Figure 4). The waves traveled 

through the swarm with an average speed of 

54.5±15µm/min (from n=30 measurements from 

different movies). For comparison, individual M. 

xanthus cells were reported to move an average of 

approximately 5 µm/min (29). These findings 

suggest that the waves that we see in the stack 

difference time-lapse movies are not the result of 

cells moving across the swarm with the same speed 

as the pulse, but rather a signal 

moving through the swarm 

causing a temporary increase in 

cell activity as it passes. This 

evidence suggests that pulses are 

a type of wave entirely distinct 

Figure 5. Calculation of wave speed. The pulse is a wave 

that travels across the field of view. This developing 

population of M. xanthus shows the periodic pulses beginning 

at 10 hours post-starvation. There appear to be five clear 

pulses that cause aggregate instability. Boxes indicate two 

regions of interest for activity plots shown below, and the 

arrow indicates the direction of the wave seen in the 

Difference Stack movie, sweeping from the lower left to the 

upper right of the field of view. Using cross-correlation, we 

detect a lag of 15 min across a distance of 891 µm, indicating 

a wave speed of 59.4 µm/min. The histogram shows 

distribution of wave speeds (n=30, bins=16). 
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from rippling, the other type of wave behavior exhibited by starving M. xanthus populations. We 

have also observed swarms where both rippling and pulsing co-occur, both wave types 

seemingly unaffected by the other, and very different in terms of scale and speed.  

 

Pulses originate at aggregates. We have never observed pulsing in movies where no 

aggregates have formed. Additionally, the onset of pulses seems to be dictated, at least in part, by 

the timing of aggregation initiation, since pulsing can happen earlier than it does on average in 

Figure 6. Pulses originate at aggregates. A) Representative brightfield images and 

Difference Stack Image Sequence showing the origin of a pulse. Over the course of 48 

minutes, the burst of activity originates at the aggregate and propagates radially outward. 

Corresponding aggregate instability can be seen in the brightfield image. Scale bar 100 µm. 

B) Kymograph taken from the Difference Stack Image Sequence in A, over a distance of 295 

µm from the aggregate, as indicated by white bar. The bracket indicated by the star highlights 

the three distinct pulses that occur in this time series, with three repeated pulses emanating 

from the aggregate. Kymograph is smoothed using a Gaussian blur with a radius of 2 pixels to 

eliminate noise and improve visualization.  
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mutant strains that aggregate much earlier than wild-type (Figure 4). We therefore hypothesized 

that pulses originate from aggregates. We searched the collection of time-lapse development 

movies for instances where the pulse seemed to originate within the field of view rather than 

traveling into the field of view from elsewhere in the swarm. In all instances where we saw the 

origin of the pulse, the oscillations in swarm activity indicative of the pulse began at one 

aggregate and radiated outward repeatedly (Figure 5). We have also observed instances where 

pulses initiate from multiple aggregates in the field of view, which adds a layer of complexity to 

the swarm dynamics. The fact that multiple fruiting bodies can initiate a pulse seems to suggest 

that a condition within the local environment of the fruiting body triggers a pulse, and this can 

happen in multiple regions within the swarm.  

  

Cells become more persistent and increase in alignment during pulses. Though the 

pulses travel too quickly to be exclusively due to cells traveling the same distance and speed as 

the wave front, it is clear that the pulses have some detectable effect on cell behavior. We used 

fluorescently labeled cells, diluted 1:800 into the swarm, to track the behavior of individual cells 

and show that in a swarm undergoing multiple distinct pulses, cells oscillate between long runs 

where cells move persistently without reversing, and periods of high reversal with little net 

movement. As the pulse occurs, cells suppress reversals, traveling greater distances without 

changing direction. Corresponding peaks in run duration and distance traveled without reversal 

can be seen in Figure 6. Following this, reversal frequency increases and the oscillations cause a 

corresponding increase in alignment of neighboring cells (Figure 6). Taken together, these data 

indicate that the pulses are waves, likely of a chemical signal, that cause cells to suppress 

reversal in a synchronized manner. This synchronized increase in distances traveled by cells is 

followed by periods of high reversal which increase alignment of neighboring cells, providing a 
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mechanism by which a greater number of cells will move persistently in the same direction 

during the next pulse.  

 

 

 

 

 

 

 

 

 

DISCUSSION 

 

The data presented here demonstrate the prevalence and characteristics of pulses during 

M. xanthus development. There are several lines of evidence to suggest that pulses are a 

component of wild-type development, not an exclusively mutant phenotype, and that an 

Figure 7. The effect of pulses on cell behavior. Data extracted from automated 

tracking of tdTomato-labeled cell trajectories. Figures show: distance traveled before 

reversal, run duration (the length of time cells move persistently without reversing), 

alignment of cells with its neighbors, and number of reversals. Plots (except for 

number of reversals) reflect trajectory means for each time frame, with grey bars 

showing standard error. All means are smoothed over a window of ±5 minutes. Gold 

arrows indicate the same timepoint on each of the four plots, showing that distance 

traveled and run duration are inversely related to alignment and number of reversals.   
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environmental condition during development triggers pulses to be more exaggerated. Given the 

number of mutant strains that show pulsing, we do not think that the genes included in the study 

are part of the genetic pathway that allows pulsing to occur. Rather, we suggest that the large 

number of mutations that lead to strong pulsing might be producing a similar overall effect on 

development such that pulsing is provoked.  

First, over half of the wild-type replicates show pulsing. This highlights the importance 

of visualizing and quantifying pulses, as these pulses in wild-type do not affect the fruiting 

bodies as strongly as they do in mutants and therefore the pulses are not easily observed in the 

brightfield movies without the aid of the activity plots. Second, we found that genotype is a poor 

predictor of a strain’s ability to pulse. As shown in Figure 3, there is roughly equal representation 

of pulsing within each homologous gene family. There is slight overrepresentation in the ABC 

Transporters and underrepresentation in the NtrC-like activators, but this is more likely driven by 

the distribution of phenotypes within these gene families. As discussed in Chapter 2, the ABC 

Transporters are primarily made up of like-wild-type strains, and many of the NtrC-like 

activators mutants fail to aggregate. We have shown here that the vast majority of like wild-type 

strains pulse, whereas no pulsing is seen in non-aggregating mutants (Figure 4). Together, these 

associations are likely responsible for the lower representation of pulsing mutants within the 

NtrC family and the higher representation within the ABC Transporters.  

The average speed of the pulses points to a mechanistically distinct type of wave as 

compared to rippling, a well-studied wave behavior in M. xanthus. Ripples are caused by waves 

of cells that reverse direction upon collision (17), and the speed of rippling is therefore 

constrained by the maximum speed at which cells can move. Prior work has shown that during 

predation, rippling encourages swarm expansion and reduces the mean square displacement of 
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individual cells, which both promote prolonged contact with prey cells (30, 31). The cellular 

reversals that allow for ripple formation are mediated by the Che-like Frz chemosensory system, 

where contact between two countermoving waves of cells stimulates collective reversal (32, 33).  

In contrast, pulses move through the swarm with an average speed of 55 µm/min, or 0.9 µm/s, 

about 10-fold higher than the average speed of an M. xanthus cell. The full range of observed 

pulse speeds in this study is 0.5-1.6 µm/min. The speed of pulses is in much better agreement 

with the speed of traveling chemical waves (34). Waves of Cdc42 activation, for example, travel 

through Dictyostelium cells at an average speed of 1.1 µm/s to direct motility during chemotaxis 

(35). Apoptotic signals in Xenopus eggs (36), thrombin localization to wound sites (37), and 

Min-protein waves in E. coli  (38) all travel with a velocity within the range we observed in this 

study.  

We have also observed both M. xanthus wave behaviors occurring simultaneously; when 

a pulse passed through an area of the swarm that was also rippling, each wave type was 

seemingly unaffected by the other, and rippling continued as the pulse passed over it. 

Additionally, the two waves are distinct in scale, with the rippling wavelength being much 

shorter. While both rippling and pulsing involve cellular reversal, the simultaneous occurrence of 

both wave types indicates either that the two waves are mechanistically different in the genes 

that they target to trigger reversal, or that all cells within a swarm are not responsive to the pulse 

at the same time. Subpopulations of cells with varying gene expression profiles are well 

documented within the M. xanthus developmental scheme. Persister-like peripheral rods remain 

outside of fruiting bodies even during late stages of aggregation and they express very low levels 

of key developmental genes (39, 40), so perhaps this subpopulation does not have the means to 

respond to pulses based on its transcriptome during development. 
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These data presented here suggest that pulses are chemical waves that originate from 

early aggregates and synchronize cell motility at the population level during development. We 

propose a model where pulses serve as a mechanism to increase the cell density within 

aggregates, which would likely lead to greater sporulation efficiency and therefore greater 

fitness. Once initial aggregates reach sufficient density, cells within the aggregate release a 

chemical signal to which other cells respond by triggering the release of that chemical signal, 

thus creating a propagating wave. Additionally, the signal causes a shift in the motility patterns 

of the cells, temporarily increasing run distance and duration and suppressing reversal (Figure 7). 

We make no claims about this signal causing a bias in cell direction toward the fruiting bodies, 

only that the signal transiently suppresses cell reversal frequency and therefore might increase 

the likelihood of a cell to get to an aggregate. The ability for M. xanthus to chemotax up a 

chemical gradient is a subject of controversy. It has been theorized that, because M. xanthus 

moves so slowly relative to diffusion over short distances, chemotaxis would not be possible. 

This is further supported by early work that failed to detect a bias in cell direction toward 

common chemoattractants, including major nutrient sources casein and yeast extract (41). 

However, other work has shown attraction of M. xanthus cells to certain lipids (42), and there is 

additional evidence that chemotaxis may be an emergent property of a swarm rather than a 

behavior of individual cells (43).  

A more likely scenario at play in our study is slime-trail following as a mechanism for 

directed cell movement toward aggregates. As M. xanthus moves through its environment, its 

gliding motility machinery extrudes an extracellular matrix “slime trail” from the lagging pole of 

the cell (44, 45). Gliding bacteria are known to follow slime trails laid by other cells (46), and 

slime trail following in M. xanthus has been experimentally observed (47) as well as 
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theoretically modeled to show that it facilitates cell movement into groups (48). Further data-

driven modeling indicates the existence of biased random walks toward aggregate centers, 

indicative of a chemosensory mechanism; however the authors note that increased run duration 

in cells outside of aggregates can compensate for the absence of the observed biased movement 

(25). Taken together, these data suggest that even in the absence of a chemotactic signal, if a 

pulse causes cells to increase run duration and distance traveled before reversal, as we have 

observed through cell tracking, cells may be more likely to move into aggregates via slime trails. 

Every cell that has joined an aggregate leaves a slime trail in its wake, essentially creating a 

roadmap to aggregates that other cells can follow during their persistent state.  

Notably, during wild-type development the pulse does not seem to impact the cells within 

the fruiting bodies, at least not to the extent that we see in mutants. Whereas mutant aggregates 

often destabilize during a pulse, wild-type aggregates for the most part remain stable. This 

suggests that wild-type pulsing primarily affects cells outside of aggregates, in support of our 

model, but also indicates that cells within developing wild-type fruiting bodies may not be 

responding to the pulse in the same way. We can speculate about what might cause this. Perhaps 

cells within aggregates are hindered by local cell density and/or the ECM that provides 

scaffolding and structural support to fruiting bodies, and mutants that show exaggerated pulsing 

form lower density fruiting bodies or have reduced ECM complexity. Perhaps there is a genetic 

mechanism that prevents wild-type cells within fruiting bodies from responding to the pulse, for 

example downregulation of a particular receptor, and exaggerated pulsing represents a 

dysregulation in the genetic coordination of that mechanism such that pulses occur before cells in 

the fruiting body are stabilized. 



 98 

The prevalence of pulsing in wild-type and mutants brings up a key question: why does 

pulsing fail to happen about 40% of the time? Perhaps the strength of the pulse is related to the 

proportion of cells that remain outside of the fruiting body when pulses initiate. If most cells are 

within fruiting bodies, then the signal cannot be propagated, and pulsing would not be detected. 

However, if many cells still remain outside of fruiting bodies when initial aggregates form, the 

signal can be amplified by more cells. Or, perhaps pulses do occur during every instance of 

development, but are sometimes less synchronized and therefore less easily detected when 

calculating the mean over the entire swarm at a given time.  

Our model proposes a new emergent behavioral pattern that was discovered through 

collecting and observing a large dataset of approximately 1,500 time-lapse movies. Without 

sufficient data collection, pulsing could be ascribed to one mutant or a small group of mutants, 

rather than observing its prevalence in wild-type development. The pulsing phenotype would 

also likely be overlooked entirely if we had taken images at 4-to-6-hour timepoints, as is 

traditional for observing M. xanthus mutant development. This study highlights the importance 

of collecting large, comprehensive datasets to build and characterize an organism’s phenome. It 

also indicates a potential mechanism of inter-aggregate communication and warrants future study 

into chemical signals that may be causing the pulse.  

METHODS 

 

Strain Generation and Culture Conditions 

Myxococcus xanthus DK1622 was used as the wild-type. Mutant strains used in this study 

were generated previously (21–23) and are listed in Table 1 of Appendix 2. Cells were grown 

overnight in CTTYE (1% Casein Peptone (Remel, San Diego, CA, USA), 0.5% Bacto Yeast 

Extract (BD Biosciences, Franklin Lakes, NJ, USA), 10 mM Tris (pH 8.0), 1 mM KH(H2)PO4, 8 
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mM MgSO4) with vigorous shaking at 32°C. Cultures were supplemented with 40µg/mL 

kanamycin for mutant strains.  Cells were centrifuged to remove the nutrient broth, washed in 

TPM starvation buffer (10 mM Tris (pH 7.6), 1 mM KH(H2)PO4, 8 mM MgSO4), and 

resuspended in TPM buffer to a final concentration of 5x109 cells/mL. For development assays, a 

droplet of approximately 2.5x107 cells was transferred onto TPM starvation agar slide 

complexes, as previously described (24). For low and high potassium development assays, TPM 

was prepared without the addition of KH(H2)PO4, or with 2mM KH(H2)PO4,  respectively.  

TdTomato-expressing strain LS3908 (25) was used for cell tracking experiments. This 

strain was supplemented with 10 μg/mL oxytetracycline for selection and 1mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) for induction of tdTomato expression. These cells were diluted 

1:800 into DK10547 GFP-expressing wild-type cells (26) and prepared for development assays 

as described above. LS3908 cells were used for tracking and DK10547 cells were used for 

aggregate segmentation and assessment of local cell densities.  

 Time-lapse Image Capture 

Slide complexes prepared as above were incubated at 32°C during imaging with the use 

of a heated stage. Microscopic images were captured every 60 seconds for 24 hours on a Nikon 

Eclipse E400 microscope using a SPOT Insight Camera and SPOT Imaging Software (SPOT 

ImagingTM). The .TIFF images were then compiled into time-lapse movies and further analyzed 

in FIJI (27). For cell tracking experiments using fluorescence, imaging was performed on the 

same Nikon Eclipse E400 microscope with a pco.panda 4.2 sCMOS camera and NIS-Elements 

software. LS3908 samples were imaged with 400 ms exposure with a Sola LED light source at 

75% intensity, and DK10547 samples were imaged with 200 ms exposure at 35% intensity. 
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Control of the fluorescent filter wheel and autofocus mechanism was managed with a MAC6000 

system filter wheel controller and focus control module (Ludl Electronic Products, Ltd.).  

Image Analysis and Calculations 

Initial calculations of changes in circularity, gray value, and area were performed in Fiji. 

Seven fruiting bodies were randomly selected from the same movie and manually traced every 

20th frame from 12-24 hours to obtain circularity, area, and mean gray value data for each 

fruiting body over time. Values for each of the seven fruiting bodies were averaged and percent 

change over time was plotted for a representative movie in Figure 1C.  

The Difference Stack Image Sequences were created using the Stack Difference tool in 

Fiji. This results in a sequence of images that are a 1600x1200 array of pixels with an assigned 

gray value based on the difference pixel values from one frame to the next, or |(pixels in frame 

n+1) – (pixels in frame n)|, where any pixel that did not change is 0 and therefore black, and any 

pixel that did change will be a range from 1 to 255 (gray to white), where a higher value 

represents a greater magnitude change and therefore greater swarm activity. Any images of 

Difference Stacks presented in this work contain false coloring through cyan or magenta LUTs to 

provide additional contrast for better visualization. Activity plots represent the average pixel 

value difference for each frame in the Difference Stack Image Sequence over time, with a greater 

average pixel value difference indicating greater swarm activity. Any images of Difference 

Stacks presented in this work contain false coloring through cyan or magenta LUTs. Wave speed 

was calculated for 30 different movies where one clear directional wave could be seen. Two 

ROIs were selected that were perpendicular to the traveling front of the wave, and activity plots 

were generated for each ROI. We divided the distance between the two ROIs by the time shifts 
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in the peak of oscillations for the activity plots corresponding to each ROI to approximate wave 

speed.  

For cell tracking image stacks, we constructed cell trajectories according to procedures 

laid out by Cotter et. al (25) and performed by Patrick Murphy at Rice University. We used their 

model to segment cell trajectories into different motility states, either persistent or non-persistent. 

For each persistent cell, a trajectory records the distance covered and duration of time before a 

reversal (state change), when a new trajectory begins. In this way, any trajectory ends at a 

reversal, so we can also calculate the number of reversals happening at each timepoint. For each 

trajectory, alignment to neighboring cells was also calculated by averaging cosines of the angles 

of nearby cells. Specifically, neighbor alignment was calculated for a window of ±5 min and a 

radius of 15 µm around the start coordinate of a run using the equation: 

< 𝛺𝑛 > =  
1

𝑁
 ∑ cos(2(𝜒𝑛 − 𝜒𝑖))

𝑖∈𝑤𝑖𝑛𝑑𝑜𝑤 

 

where nematic alignment (neighbor alignment) 𝛺𝑛 is influenced by N, the number of runs within 

a window, and 𝜒, the angle between a run and the x axis. We report the absolute value of this 

neighbor alignment metric so that a 0 indicates complete misalignment at a 1 indicates perfect 

alignment. Means over a moving window of 10 minutes were calculated for these datasets (with 

the exception of number of reversals) for plotting.  
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CHAPTER 4: UNCOVERING CELL BEHAVIORS ASSOCIATED WITH 

COARSENING DURING DEVELOPMENT 

 

 

(All experimental data presented in this chapter were collected by me, and I was responsible for 

much of the experimental design and conceptualization. Cell tracking experiments will 

contribute to data-driven simulations designed by Patrick Murphy and Oleg Igoshin at Rice 

University. Conceptualization and experimental work for PI staining data presented herein is my 

own.) 
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ABSTRACT 

 The biological patterns formed by the soil bacterium Myxococcus xanthus make it an 

interesting system for modeling the cellular behaviors that lead to self-organization and 

multicellularity. Many previous models, even those that reproduce the initiation of aggregation in 

a very similar manner to experimental data, fail to capture aggregate dynamics during the 

coarsening phase of aggregation, namely the dispersal of smaller aggregates. Very little is known 

about the mechanistic basis for aggregate dispersal. Data-driven modeling is advantageous in this 

scenario, as experimental cell behavior data can be applied to simulated cells without needing to 

understand the mechanisms directing that behavior, and can improve our understanding of which 

cellular behaviors are necessary for a population of aggregates to coarsen. This chapter lays out 

the initial data extracted from cell tracking experiments demonstrating that cell bias toward 

aggregates temporally depends on aggregate size, data which will inform coarsening simulations. 

We also investigate cell loss that occurs during coarsening, demonstrating that up to 80% of cells 

are lost during the coarsening phase. This cell loss within fruiting bodies correlates with an 

increase in extracellular DNA, suggestive of cell lysis, and aggregates that persist through 

coarsening have a greater eDNA density, a mechanism that may be used to provide stability and 

increase stress resistance.  

INTRODUCTION 

 Myxococcus xanthus has long been of interest to those looking to model the behaviors 

that lead to self-organization of multicellular communities and organismal development. M. 

xanthus exhibits two interesting biological patterns under distinct environmental conditions. In 

the presence of prey cells, it forms ripples that are crests of high cell density that reverse upon 

collision, and models contributed to the understanding of ripples both mechanistically and 
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physiologically (1–5). Under starvation, cells coordinate to form multicellular fruiting bodies in a 

dynamic process known as development. Modeling of aggregation has also contributed to our 

understanding of the features required for fruiting body formation, as well as the behaviors of 

individual cells that lead to this emergent behavior (5–12).  

 M. xanthus development into fruiting bodies is a very dynamic process that involves 

coordinated timing, aggregates of finite size ranges and spatial organizations, and behaviors at 

the level of the aggregates such as growing, shrinking, merging, splitting, and dispersing. 

Previous models of myxobacterial multicellularity have reproduced many of the features of 

aggregation, but most fail to capture the aggregate dispersal that we see so often in experimental 

data. For example, though the traffic jam model (wherein colliding streams of cells nucleate to 

form aggregates driven by a reduction in cell motility in high-density areas (4, 13)) reproduces 

aggregates with a similar quantity and spatial distribution as is observed in experimental data, the 

model does not fully capture the dynamics, including dispersal, that occur during development. 

Previous studies have estimated that only 30-50% of nascent aggregates mature into fruiting 

bodies (6, 14). Because the aggregation phase resembles the behavior of droplets on a surface, 

we refer to the later stage dynamics of aggregates as coarsening, where some aggregates get 

larger at the expense of others.  

Coarsening follows the initial developmental phases of aggregation and growth, and 

represents the period of time where aggregates either remain stable and mature into fruiting 

bodies or shrink and disperse, and coarsening ends with aggregates reaching a stable state. 

Though we can predict, based only on size, which aggregates will disperse (14, 15), we know 

very little about the mechanisms and biological significance of  aggregate dispersal. Data-driven 

models, where simulated cell behavior is based on data from experimental cell tracking, have the 
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potential to inform the mechanistic basis of coarsening. In this chapter, I lay out the initial data 

extracted from the fluorescent images that I contributed to this project and show that the bias 

toward aggregates during coarsening is dependent on the size of the aggregate, which confirms 

what we believe to be true about the dynamics of coarsening based on aggregate size. These 

behaviors, in addition to run time, run duration, and cell alignment, will be applied to simulated 

cells in the data-driven model currently being developed by our collaborators Patrick Murphy 

and Oleg Igoshin to understand the minimum set of cell behaviors that are required for 

coarsening.   

During coarsening in the tracking datasets, we observed a notable decrease in the number 

of trackable cells from initial aggregation through the end of coarsening. This loss of cells was 

reproducible throughout many datasets with fluorescently labeled cells. We sought to understand 

whether this phenomenon was a technical problem with imaging high cell density fruiting bodies 

with extensive polysaccharide extracellular matrices (16), phototoxicity due to repeated 

fluorescent imaging (17), or a biological phenomenon related to the reported lysis of cells before 

sporulation (18). Though this was not an initial intended goal of this study, the co-occurrence of 

coarsening with the loss of fluorescent cells makes it an intriguing area of additional exploration. 

I sought to determine the cause of the observed cell loss and to investigate whether there was any 

connection between cell loss in fruiting bodies and aggregate fate. We determined through 

Propidium Iodide (PI) staining that the most likely cause of cell loss was autolysis during the M. 

xanthus developmental program, and that unstable aggregates that eventually disperse have a 

lower PI signal density that is likely the result of decreased autolysis in those fruiting bodies.  

METHODS 

 

Strains and Culture Conditions 
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Myxococcus xanthus DK1622 was used as the wild-type. For fluorescent image series, 

LS3908 cells (8) used for tracking were diluted 1:800 into a background of DK10547 cells (19), 

used for aggregate segmentation and assessment of local cell densities. DK11316 (20) was the 

nonmotile control. Cells were grown overnight in CTTYE (1% Casein Peptone (Remel, San 

Diego, CA, USA), 0.5% Bacto Yeast Extract (BD Biosciences, Franklin Lakes, NJ, USA), 10 

mM Tris (pH 8.0), 1 mM KH(H2)PO4, 8 mM MgSO4) with vigorous shaking at 32°C. Cultures 

were supplemented with 10 μg/mL oxytetracycline for selection and 1mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) for induction of tdTomato expression..  Cells were centrifuged to 

remove the nutrient broth, washed in TPM buffer (10 mM Tris (pH 7.6), 1 mM KH(H2)PO4, 8 

mM MgSO4), and resuspended in TPM buffer to a final concentration of 5x109 cells/mL. For 

development assays, a droplet of approximately 2.5x107 cells was transferred onto TPM agar 

slide complexes, as previously described (21).  

For live/dead staining assays, DK1622 cells were grown overnight and prepared for 

development assays as above. Five microliter droplets containing 2.5x107 cells were spotted onto 

1.5% TPM agar plates, with one plate having four droplets for each sample. Once dry, the plates 

were placed in a 32°C incubator until the corresponding timepoint. Using the LIVE/DEAD® 

BacLightTM Bacterial Viability Kit [Invitrogen], Components A and B were each mixed to a 

concentration of 0.5% into TPM buffer. Once each timepoint was ready for imaging, 20 µl of the 

dye solution was pipetted gently over the top of the developing spot of cells on the TPM agar 

plate. The dye was left to incubate in the dark at room temperature for 10 minutes before 

imaging. Each plate was carefully marked before imaging so that the same field of view would 

be imaged at 12 hours and again at 24 hours.  
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Imaging  

Imaging was performed on a Nikon Eclipse E400 microscope with a pco.panda 4.2 

sCMOS camera and NIS-Elements software.  For cell tracking experiments, LS3908 samples 

were imaged with 400ms exposure with a Sola LED light source at 75% intensity, and DK10547 

samples were imaged with 200ms exposure at 35% intensity. Control of the fluorescent filter 

wheel and autofocus mechanism was managed with a MAC6000 system filter wheel controller 

and focus control module (Ludl Electronic Products, Ltd.). Images in the phase contrast and 

tdTomato channels were captured every 60 seconds over 24 hours, and GFP every 15 minutes to 

track the position of aggregates and changes in local cell densities.  

For live/dead staining assays, both channels were imaged with 100ms exposure and at 

50% intensity. The data in Fig. 4B came from images captured at either 0hr or at a 2hr increment 

from 12 to 24 hr.  For Fig. 4C, samples were imaged at 12 hours (pre-coarsening) with GFP and 

Texas Red to assess live and dead signal. A phase contrast image was captured as well for 

manually tracking aggregate position and fate. The plates were then placed back in the incubator 

for another 12 hours for development to continue and the same field of view was imaged at 24 

hours with only phase contrast to determine aggregate fate.  Images of cells stained with only 

one dye were captured with the opposite channel to assess the level of bleedthrough of each dye 

to the other channel. These values were averaged for three plates and subtracted from the 

corresponding channel during image processing 

Image Analysis 

 Cell tracking was automated following Cotter et. al (8) and performed by Patrick Murphy 

at Rice University. Cells trajectories were divided into categories representing their different 

motile states, persistent and nonpersistent. A new trajectory began when a cell either changed 
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state from persistent to nonpersistent, or vice versa, or when it reversed. Thus, there can be 

hundreds of trajectories for each cell, depending on how many times it changes state. Metrics 

could then be extracted from the trajectories, such as run duration (the length of time before 

persistent cells reverse), alignment toward or away from the aggregate, local cell alignment, and 

cell velocity. Equations for how these metrics were calculated for each trajectory can be found in 

the original paper (8). The data presented in this chapter relied on calculating the bias toward the 

aggregate, which involved run duration and angle toward the nearest aggregate. The cosine of the 

angle to the nearest aggregate centroid was taken, given a range of values from -1 to 1, where 0 

is perfectly antiparallel, 1 is perfectly aligned toward the aggregate, and -1 is perfectly aligned 

away from the aggregate. Bias is then equivalent to: 

(T𝑡𝑜𝑤𝑎𝑟𝑑𝑠 −  T𝑎𝑤𝑎𝑦)

T𝑎𝑙𝑙
 

where T𝑡𝑜𝑤𝑎𝑟𝑑𝑠  is equivalent to time spent moving toward the aggregate (cosine of angle to the 

aggregate is positive), T𝑎𝑤𝑎𝑦 is the time spent moving away from the aggregate (cosine of angle 

to the aggregate is negative), and T𝑎𝑙𝑙 is the total run duration for that trajectory. Additionally, 

the position and number of aggregates at each timeframe were also automatically tracked using a 

code similar to that for cell tracking. Aggregate size categories for Fig. 1C were determined by 

size relative to the sample mean for each replicate, where any aggregate where the area was 

greater than the mean was considered large and any with an area less than the mean was 

considered small. However, bias data in Fig. 2 reflect three bins of aggregate sizes, where over 

14,000 µm2 was considered large, less than 5,918 µm2 was considered small, and medium fell in 

between that range.  

 For live/dead staining data, the fluorescence intensity of the propidium iodine dead stain 

was measured at each timepoint for twelve fruiting bodies that were manually traced using FIJI. 
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Mean bleedthrough of the SYTO 9 stain into the PI channel was subtracted before quantifying 

fluorescence. The PI signal density metric reflects the corrected total cell fluorescence (ctcf) for 

each fruiting body by area. Specifically, we used: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐹𝐵  − (𝐴𝑟𝑒𝑎𝐹𝐵 ×  𝑀𝑒𝑎𝑛𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)  

𝐴𝑟𝑒𝑎𝐹𝐵
 

Since ctcf is a summed intensity, we divided by area to get the signal density per µm2.  

 

RESULTS 

 

M. xanthus development is a dynamic multicellular process; early aggregates of cells 

grow, shrink, merge, split, and disappear, necessitating visualization with time-lapse movies to 

gain a better understanding of the dynamics. Consistent with prior experimental observations 

(14, 15), in our time-lapse movies of DK1622 development, a significant fraction of early 

aggregates disperse during the coarsening phase of aggregation  (14, 22) (Fig. 1A &B). 

Approximately 35% of initial aggregates remain stable throughout aggregation. Aggregate size is 

a good predictor of aggregate fate, as 75% of large aggregates remain stable compared to about 

15% of smaller aggregates, and unstable aggregates on average are significantly smaller (Fig. 
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1C). Given that there are differences in aggregate fate based on size, we sought to understand 

what behaviors at the scale of the individual cell drive these distinct outcomes.   

Figure 1. Aggregates disperse during the coarsening phase. A) Brightfield images showing the dispersal of 

aggregates. Initial aggregation takes place over the first 12 hours, followed by the coarsening phase (12-24 

hours) where some aggregates disperse. Scale bar 500 µm. B) Fluorescent images showing the same 

phenomenon at higher magnification, with the pre-coarsening image taken just before coarsening (left) having 

more fruiting bodies. Scale bar 100 µm. C) (left) Fraction of each aggregate category that remains stable 

throughout the movie (n=3 movies, error bars show standard error). Large and small aggregate designation is 

with respect to mean aggregate size. (right) Aggregate fate by aggregate area, showing that stable aggregates 

are larger, (p=6.9e-15 in student’s t-test for n=94 fruiting bodies). 
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To attempt to elucidate the individual cell behaviors that lead to the emergent patterns of 

aggregate fate, we tracked fluorescently labeled cells during development through the coarsening 

phase. We automated the extraction of three key metrics from cell trajectories: run duration (or 

the period of time over which a cell moves without reversing), run distance (the total distance a 

cell travels before reversing), and alignment to the nearest aggregate. Using the alignment 

metric, we were able to parse cell trajectories into two categories: run duration moving towards 

the nearest aggregate (Ttowards), and run duration moving away from the nearest aggregate (Taway). 

We then calculated bias using the equation: 

(T𝑡𝑜𝑤𝑎𝑟𝑑𝑠 −  T𝑎𝑤𝑎𝑦)

T𝑎𝑙𝑙
 

A positive bias metric indicates that a cell was moving toward the nearest aggregate for longer 

than it was moving away during that run, and conversely, a negative bias metric indicates that a 

cell was moving away from the nearest aggregate for longer than it was moving toward it.  

The data presented in Fig. 2 represent thousands of cell trajectories from a wild-type 

movie where initial aggregates can be seen at approximately 7.5 hours, and the first aggregate 

disappearances during coarsening occur at 11.5 hours. We found that cells showed an average 

and consistent bias toward aggregates that remained stable throughout the duration of the movie. 

Cells were initially positively biased toward unstable aggregates, but shift to a negative bias 

during coarsening (about 1 hour before the first aggregates begin to disappear), consistent with 

cells leaving unstable aggregates (Fig. 2A). When we binned aggregates into three explicit size 

categories, with aggregates greater than 14,000 µm2 considered large, aggregates less than 5,918 

µm2 considered small, and aggregates between that range considered medium, we observed 

differences in bias based on the size of the nearest aggregate. Cells were consistently biased 

toward large aggregates (Fig. 2B), in agreement with our observation that the majority of large 
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aggregates remain stable throughout aggregation. Cells have an initial weak bias toward small 

aggregates, but an overall negative bias following initial aggregation, again consistent with our 

observations in Fig. 1. Midsize aggregates represent a category wherein some aggregates 

disperse and some remain stable. Before coarsening, cells are biased towards midsize aggregates, 

but during coarsening, unstable midsize aggregates shrink such that they fall into the small 

aggregate category, and the remaining midsize aggregates are stable, so the bias becomes 

positive again. Throughout coarsening, this can happen numerous times, giving rise to the 

oscillations in bias that is seen later in the medium aggregate curve (Figure 2B). This indicates 

that coarsening does not occur as one simultaneous event but rather that there are different waves 

of coarsening throughout the duration of the coarsening phase.  

The cell trajectory data will be used to inform a data-driven model that simulates the 

coarsening phase of development. Similar data-driven models have been employed to simulate 

the initiation of aggregation in response to starvation, and have shown that cell bias toward 

aggregate centers, decreased run duration for cells inside aggregates, and alignment of cells 

toward aggregate centers all contribute to successful wild-type aggregation (8). However, no 

data-driven models have been used to examine behaviors on the cellular level might lead to 

coarsening of aggregates. Data-driven models extract probabilities of cell behavior based on the 

experimental cell’s local environment from tracking data, creating a database of behaviors from 

which models can sample based on a simulated cell’s local environment. By employing data-

driven models, we hope to recapitulate the dynamics of coarsening, determining if the 

parameters that we are measuring from experimental data (run time, run duration, neighbor 

alignment, bias, and alignment toward the nearest aggregate) are sufficient to cause the same 
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fraction of aggregate dispersal and distribution of aggregate sizes that we see in experimental 

data.  

 

  

Figure 1. Aggregate properties affect cell 

bias. Bias was calculated as (Ttoward – Taway) / 

Tall, where Ttoward is the duration of time 

during a trajectory that a cell spent moving 

toward the nearest aggregate, Taway is the 

duration of time that a cell spent moving 

away from the nearest aggregate, and Tall is 

the total run duration for that trajectory. 

Dashed lines represent the bootstrapped 95% 

confidence interval of the means plotted in 

solid lines. Positive bias values indicate bias 

toward the nearest aggregate, and negative 

values indicate a bias away from the nearest 

aggregate. A) Cell bias for aggregates that are 

categorized as either stable (those that persist 

for the full length of the movie) and unstable 

(those that disperse during coarsening). There 

is a persistent positive bias for cells moving 

toward stable aggregates, and the bias for 

cells moving toward unstable aggregates 

becomes negative as coarsening proceeds and 

unstable aggregates disperse. Values were 

smoothed over a running window of 10 

minutes. B) Bias of cells moving toward large 

(pink), medium (gold), and small (blue) 

aggregates. The bias for cells moving towards 

large aggregates remains positive. Coarsening 

has much more of an effect on the bias of 

cells toward medium and small aggregates. 

There is only a weak initial bias toward small 

aggregates that becomes negative early in 

coarsening. C) Midsize aggregates are made 

up of both stable and unstable aggregates, so 

the bias is a bit more dynamic. After an initial 

bias of cells toward these aggregates, 

coarsening causes oscillations in the strength 

of the bias toward these aggregates. See text 

for an explanation of these oscillations.  



 117 

 The collection of cell tracking data also allowed us to visualize other observable patterns 

that occur along the developmental timeline. In the majority of time-lapse fluorescent movies we 

generated, there was a significant decrease in the fraction of fluorescently labeled cells from the 

beginning of the movies to the end (Fig. 3). Notably, this loss of fluorescent cells was not 

observed when we diluted the same tdTomato-expressing cells into a background of DK11316, a 

nonmotile M. xanthus strain that does not make fruiting bodies, and imaged the cells under the 

same conditions. This indicated that the loss of trackable cells was not due to photobleaching or 

any negative effects of imaging. This also served as a control for the tdTomato-expressing strain 

that we use for cell tracking, showing that the loss of cells is context dependent and not related to 

the specific strain. It appears either that the developing three-dimensionality of growing fruiting 

bodies was affecting our ability to visualize the cells after a certain period, or that cells were 

dying within fruiting bodies.  

We first tested the idea that cells were simply moving out of the focal plane as the 

fruiting body was growing taller. Imaging along a ±40 µm z-axis about the focal plane did not 

capture any additional cells that may have moved vertically in space, indicating that the depth of 

the focal plane was sufficient to capture labeled cells within the entirety of the fruiting body (Fig. 

S1). Another possibility is that dense nature of the fruiting bodies, or possibly even the 

extracellular matrix (ECM) secreted by cells therein, was obscuring the signal as cells formed 

new layers on top of one another. We tested this theory by observing cells leaving unstable 

aggregates during coarsening. Cells that disappeared during the early stages of coarsening in 

unstable aggregates did not reemerge as they lost three-dimensionality and dispersed. If the 

density of the fruiting bodies was obscuring the fluorescent signal, we should have recovered at 

least a fraction of the lost cells during the dispersal of unstable aggregates.  
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 To test whether trackable cell loss was due to cell death, we stained with SYTO9, a 

nucleic acid stain that can cross cell membranes to stain intact cells, and Propidium Iodide (PI), a 

cell impermeable nucleic acid stain only binds DNA of cells with disrupted membranes, like 

Figure 3: The population of trackable cells decreases throughout development. A) In the pre-

coarsening image (left), cells labeled with tdTomato are numerous and clearly visible, but look more 

diffuse and much fewer in number post-coarsening (right). Scale bar 100 µm. B) Number of fluorescent 

cells, reported as a fraction of fluorescent cells at 12 hours, for three replicates of wild-type (blue), where 

only 20-40% of trackable cells remained. Pink dashed line represents tdTomato cells in a background of 

nonmotile DK11316 as a control that does not make fruiting bodies, and approximately 90% of cells 

remain in that sample. Loess smoothing was applied to these values to eliminate noise due to flickering of 

the camera and temporary lost cells due to slipping of the focal plane.   
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those that have undergone programmed cell death or lysis. Due to nonspecific staining of PI in 

intact cells over longer periods of time, we did not generate time-lapse movies of live-dead 

stained samples. We first collected timepoint images of live-dead staining during development in 

6hr timepoints (Fig. 4A). The dead signal due to PI staining increased steadily increased as 

fruiting bodies persisted and was predominantly present inside fruiting bodies compared to the 

background. Within individual fruiting bodies, the density of PI staining increases from 12 to 16 

hours, and then the rate of increase slows from 16 to 24 hours (Fig. 4B). This suggests that cell 

death might be the reason for the loss of tracked cells during fluorescence, and that this presents 

a biologically meaningful area of exploration rather than a technical issue with imaging three-

dimensional structures.  

  Because the increase in signal from PI staining was highest during coarsening, we 

wanted to test the relationship between cell death and aggregate fate. To that end, we allowed 

cells to develop for 12 hours, stained with PI and imaged to get a picture of cell death mid-

aggregation before unstable aggregates began disappearing, then allowed them to incubate for 

another 12 hours. We then imaged the same field of view to capture which fruiting bodies had 

dispersed during coarsening and which had remained so that we could look for an association 

between PI staining and aggregate fate. Stable aggregates showed nearly 3-fold grater PI staining 

density than unstable aggregates (Fig. 4C). Taken together, these data indicate that cell death 

may be a contributing factor to aggregate stability during coarsening.  
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Figure 4: Extracellular DNA accumulates during coarsening.  A) SYTO 9 and Propidium Iodide 

staining of fruiting bodies on agar at timepoints during development. Cell permeable SYTO 9 stains the 

nucleic acids of all cells, and PI is cell impermeable and stains only extracellular nucleic acids. B) 

Quantification of PI signal density in fruiting bodies at 4 hr timepoints beginning at 12 hours where fruiting 

bodies have clearly defined boundaries. 0hr timepoints reflect signal density over randomly chosen areas 

that fall into the size range for fruiting bodies, for comparison when cells are evenly distributed throughout 

the agar. (n=12 fruiting bodies per timepoint, signal density calculated as ctcf for each fruiting body, 

corrected by fruiting body area). C) PI signal density at 12 hours for aggregates that are either stable or 

unstable at 24 hours. (n=20 stable fruiting bodies and n=17 unstable fruiting bodies originating from 3 

separate replicate plates; p=6.5e-10 in student’s t-test).   
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DISCUSSION 

 Overall, the data presented in this chapter serve two major purposes. First, trajectory data 

from cell tracking experiments will be applied to data-driven models to simulate the coarsening 

phase of aggregation, with the goal of determining which individual cell behaviors are sufficient 

to drive the stability of some aggregates and the dispersal of others. Second, we have shown a 

link between PI signal density and aggregate fate that would explain both the trackable cell 

fraction lost during our fluorescent imaging time-lapse experiments and suggest a mechanism by 

which aggregates may stabilize before coarsening begins.  

  In the field, there are conflicting theories about the mechanistic basis of coarsening. It 

has been proposed that aggregates behave as droplets of liquid on a surface, in a similar manner 

to Ostwald ripening, with the mass of a shrinking droplet transferred to the mass of a nearby 

growing droplet, driving the system toward equilibrium (15, 23). Notably, this model implies 

that nearby aggregates exert influence over one another. Another model proposed by Holmes et. 

al contends that as aggregation proceeds, all early aggregates are competing for a limited 

population of cells, and that one aggregate in too close proximity to another may destabilize 

because the local cell density is not sufficient to support the growth of both (7). This model again 

relies on the influence of nearby aggregates. Contrasting this, Xie et. al have shown through 

experimental data and statistical image analysis that the size of an aggregate is the only reliable 

predictor of its dispersal, and that characteristics of neighboring aggregates, such as size and 

proximity, do not affect the probability of dispersal (14).   

Thus, it is an open question whether aggregate dispersal is driven mainly by physical 

principles (which are of course still governed by the genetics of motility machinery in living 

systems), or if it is genetically controlled. For example, cells may be able to use short-range 
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diffusible signals to determine the density of an aggregate and change their behavior accordingly 

(14). Importantly, whether aggregate dispersal operates by a physical mechanism such as 

Ostwald ripening or through a signal-mediated change in cellular behavior that reflects an 

underlying biological mechanism, data about cell trajectory bias alone is not sufficient to provide 

evidence for one mechanism over the other. If live cells are leaving shrinking aggregates by any 

mechanism, the bias toward the aggregate will eventually be negative, and we can only 

concretely say that aggregates disperse because cells are moving out of it and not due to cell 

death or another mechanism. Therefore, it will be imperative that our simulations are based on 

the probabilities of cell behavior from experimental data, including metrics such as frequency of 

reversals, run duration, and velocity which are genetically controlled in addition to metrics like 

alignment of neighboring cells or bias toward or away from aggregates, which could be governed 

by physical principles. There are also genetic mutants from the collection in Chapter 2 that show 

altered coarsening phenotypes, where either a greater or lesser fraction of fruiting bodies disperse 

during development (Fig. S2). Observing individual cell behaviors that might differ between 

wild-type and the strains that have coarsening phenotypes may provide an additional source of 

information. Using this method, we hope to parse the physical and genetic effects underlying 

coarsening and provide a working model for why some aggregates remain stable and some 

disperse.  

We explored an additional phenomenon during the coarsening phase and observed a 

reproducible loss of fluorescently labeled cells during tracking experiments that co-occurred with 

coarsening. We associate this cell loss with a corresponding increase in PI signal within fruiting 

bodies as development proceeds, indicating there is more extracellular DNA (eDNA) near later-

stage fruiting bodies. It is important to note that, while this increase in eDNA may be the result 
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of cell lysis, we are not attempting to directly correlate the level of PI signal to a number of dead 

cells, as there are documented issues with using PI staining for cell density estimations. 

Particularly in environments like biofilms that are rich with eDNA, using a standard curve to 

approximate dead cell count often overestimates cell nonviability (24), as live cells can be coated 

in eDNA while their membranes and chromosomes are intact. This scenario seems unlikely in 

controlled laboratory settings where the sources of eDNA would not be nearly as rich as its soil 

environment might be, but should still be considered. An increase in PI signal density could 

mean that cells are lysing, and the resulting DNA is being released to the environment, or that M. 

xanthus cells are transporting extracellular DNA to their environment without undergoing lysis. 

We will consider these possibilities within the context of what is known about M. xanthus 

biology during development.  

Wild-type cells under starvation differentiate into numerous different cell types based on 

expression of key developmental regulatory genes (25). Of the cell types that are present in 

fruiting bodies, some are programmed to differentiate into spores while an estimated 80-90% of 

cells undergo programmed cell death, purportedly via the MazF toxin-antitoxin system (26, 27). 

MazF is an endoribonuclease that cleaves single-stranded RNA sequences, halting protein 

synthesis and indirectly inducing lysis (28). The role of MazF as the primary driver of cell lysis 

may be strain specific, as its deletion in some wild-type backgrounds, including DK1622 used in 

this study, has only a minor effect on levels of lysis (25); however lysis appears to occur across 

all wild-type backgrounds to varying extents and is thought to be required for sporulation (18).  

 Autolysis is proposed to support cells in biofilms undergoing energetically costly 

differentiation into spores by providing essential nutrients in an otherwise nutrient-limited 

environment, an idea that has been proposed in several species (29). In M. xanthus, the 
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remaining 10-20% of cells within fruiting bodies will differentiate into spores, presumably 

making use of the contents released by lysed cells. The extent of cell loss that we observed 

within late-stage fruiting bodies roughly matches these estimates, with a range of about 20-35% 

(Fig. 3B). Further, autolysis has been shown to be developmentally regulated and not exclusively 

a consequence of prolonged starvation (25, 30). We similarly show that the same strain that loses 

80-90% of tracked cells in a wild-type background shows less than 10% reduction in cell count 

when diluted into a nonmotile mutant that cannot form aggregates. Our data in the context of M. 

xanthus biology suggest that autolysis is responsible for the increased eDNA presence that leads 

to greater PI signal density.  

We observe that aggregates with decreased PI signal density when stained pre-coarsening 

have a greater probability of dispersing during coarsening (Fig. 4C). eDNA is not as extensively 

studied in M. xanthus as it is in other biofilm species, but one study speculated that autolysis is 

the source of the eDNA observed during development, likely because lysis has long been a 

documented component of M. xanthus development (31). More recently, however, eDNAs have 

been observed in vegetative swarms of M. xanthus that are not developing and therefore not 

presumed to be undergoing autolysis (32), so it is not entirely clear whether autolysis is the only 

mechanism by which eDNAs enter the extracellular environment. Whatever the mechanism, two 

studies have shown that a role of eDNA in M. xanthus biofilms is to provide structure and 

support to the extracellular matrix, which ultimately improve stress resistance (32, 33). eDNA 

co-localizes with exopolysaccharide (EPS) within the ECM, decreasing sensitivity to mechanical 

forces. eDNA is proposed to have roles in stability and cell adhesion within the biofilm matrix in 

several other species (34–36).   
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It is unclear at this point whether coarsening and autolysis are genetically linked, or if 

coarsening aggregates are a byproduct of asymmetric autolysis in different fruiting bodies. 

Considering that small aggregates are both more likely to be unstable and are surrounded by less 

eDNA, it is tempting to think that the mechanism for lysis is induced by a quorum signal, and 

that small aggregates do not achieve sufficient density to trigger autolysis and therefore do not 

release as much eDNA into the ECM, reducing stability. In contrast, a quorum may be reached in 

larger aggregates such that autolysis is triggered, releasing eDNA which provides a more 

protective scaffolding for the aggregates, preventing the loss of cells during coarsening. It is also 

possible that these are two unrelated behaviors, and whether an aggregate disperses during 

coarsening is a matter of timing. MrpC, the antitoxin for the MazF protein, is a transcription 

factor that will not initiate transcription of MazF, and therefore not induce lysis, until it is 

activated by a signaling cascade induced by fruiting body formation (37). Perhaps, if coarsening 

begins before autolysis on the developmental timeline, smaller aggregates would be more 

affected because they have fewer cells and would disperse before autolysis could provide 

stability.  

Additional experiments would help to clarify the relationship between coarsening and 

autolysis. Examining PI signal density in genetic mutants that display very little coarsening may 

indicate whether eDNA is playing a role in stabilizing cells during coarsening. The data-driven 

modeling of coarsening may also aid in determining which genetic pathways, if any, might be 

influencing coarsening, and in turn could inform studies of autolysis as well. Cell loss could also 

potentially be incorporated into simulations to determine whether it is necessary to reproduce the 

coarsening patterns that we see in experimental data. While time-lapse movies of PI staining are 

a poor indicator of cell death due to nonspecific staining over longer periods, examining PI 
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signal density over more frequent timepoints than we did in this study might help to disentangle 

where autolysis falls on the developmental timeline relative to the onset of coarsening.  
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SUPPLEMENTARY INFORMATION 

 

 

 

Figure S1: Capturing cells in a fruiting body through a Z-stack. Imaging ±40 µm from the primary 

focal plane of the movie did not reveal additional cells that had moved vertically in space. Additionally, 

all cells appear to lose focus equally throughout the Z-stack, indicating that the depth of the focal plane 

is sufficient to capture visible cells within the entirety of the fruiting body.  
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INTRODUCTION 

 In the post-genomic era, we often make sense of genomic, transcriptomic, and proteomic 

data by observing an organism’s phenome. We initially characterize organisms by observing 

what they can do and how they interact with their environments. We make inferences about 

individual gene function by measuring the impact of genetic mutation on phenotype. We identify 

candidate genes to study through gene homology, where mutations in orthologs provoked 

phenotypes of interests in other model systems. Random mutagenesis screens for phenotypes of 

interest have long served as another impactful method to identify candidate genes. In short, 

phenotype is the readout for the interaction between genes and the environment, and studying an 

organism’s phenome under a variety of genetic and environmental backgrounds is essential for 

building a robust genotype-to-phenotype map.  

 The work presented in this thesis highlights the importance of observing and quantifying 

phenotype across a wide range of conditions. Associations between single gene mutations and 

phenotype are important and have assigned function to many genes; however, this paradigm can 

limit our understanding of genotype-phenotype relationships. In Chapter 2, I discuss 265 single 

gene mutations, the vast majority of which have minor phenotypes, and show that redundancy 

among genes in large homologous families is very widespread, limiting our understanding of 

gene function by introducing mutations. In Chapter 3, I demonstrate that pulsing, a phenotype 

that was initially believed to be rare and therefore only associated with a small group of genes, is 

actually very widespread among genetic mutants and occurs in wild-type as well. Without a 

sufficient collection of mutant and wild-type time-lapse data, this phenotype may have been 

falsely attributed to a single genetic pathway. In Chapter 4, I explore coarsening, a late-stage 

aggregation phase where some fruiting bodies persist and some disperse, which was discovered 
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through decades of observations and recordings of M. xanthus behavior in movies. Tracking the 

behaviors associated with this aggregation phase led to another observation, cell loss during 

coarsening, that prompted further study. In all, the work in this thesis emphasizes that studying 

the phenome holds both answers to current questions as well as the potential to introduce new 

and exciting questions.  

ESTABLISHING THE EXTENT OF FUNCTIONAL REDUNDANCY WITHIN A GENOME 

  

 Assigning function to genes through knockout studies is complicated by the fact that the 

majority of mutations fail to yield an observable phenotype that differs from wild-type. Though 

there are multiple mechanisms by which this could happen, functional redundancy is expected to 

be one of the most common. Particularly in organisms with large families of paralogs that arose 

through duplication, there is increased potential for functional redundancy. In Chapter 2, I 

presented a large-scale mutant analysis of paralogs belonging to four different gene families in 

M. xanthus and demonstrate that mutants within the same gene family are more phenotypically 

similar, providing evidence to support the notion that redundancy networks are large and 

contribute to mutational robustness.  

 This idea can help to shape our view of the relationship between genotype and 

phenotype. Gene networks, particularly those involving components of homologous gene 

families, are highly complex, and though each gene is predicted to have one specific function 

through sequence homology, there is likely functional overlap of varying extents with other 

components in the same family. When we make mutations in one gene, we are not just affecting 

that gene pathway, but all the pathways through which the flow of information from the mutated 

gets rerouted. Mutations are created within the landscape of an entire cell, and we should 
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consider the potential for redundancy and the impact on other networks when we make 

inferences about gene function based on phenotype.  

 We developed an image analysis pipeline that automated the extraction of phenotypic 

metrics that quantify small-scale phenotypic detail. Rather than observing the direct effects of 

mutation on fitness by measuring growth and sporulation, we sought to provide meaning to the 

minor phenotypic deviations that occur more commonly. We propose that quantifying these 

minor phenotypes may not impact fitness was a more suitable method for detecting the higher 

order redundancies that we expected within the homologous families in our study. This presents 

the largest collection of bacterial mutant phenotype data of which we are aware that measures 

multiple aspects of a complex phenotype rather than using growth as a phenotypic readout. Our 

image analysis pipeline can be further extended to other studies of M. xanthus phenotype in other 

genetic backgrounds and environments to continue building the phenome.  

It would be informative to supplement these phenotypic studies with transcriptomic 

studies to help determine the mechanism of the redundancy that we observe. For example it has 

been documented that some genes negatively regulate the expression of a redundant counterpart, 

and that deleting one paralog leads to upregulation of the other (1). Other redundant proteins may 

differ in their temporal regulation (2). Overall, transcriptomics could support the idea that there 

are large networks of functional redundancy by determining whether or not different mutants that 

express the same phenotype have similar transcriptional profiles.  

We demonstrated that, while genotypic similarity on the order of gene family seems to 

drive phenotypic similarity, homology on a finer scale is not sufficient to predict redundancy. 

This suggests that the position or biochemistry of amino acid sequence changes is more 

important than the overall extent of sequence similarity. Our dataset could be used to compare 
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the amino acid sequences of genes that fall within the phenotypic cluster for their gene family 

and those that fall outside of the phenotype cluster to look for patterns associated with functional 

redundancy. If such patterns exist, for example conservation of certain residues within domains 

in a particular gene family, this type of data may be able to aid in prediction of functional 

redundancy bioinformatically. Additional genotype and phenotype data for other homologous 

groups would improve this kind of study.  

CHARACTERIZING TRAVELING WAVES THAT SYNCHRONIZE MOTILITY DURING 

DEVELOPMENT 

 

 Understanding the signals that govern collective cell migration will inform the principles 

of multicellularity. Though they are inherently single-celled organisms, bacterial species that 

form biofilms often serve as important model systems for studying the cell-cell communication 

that leads to self-organization. The data presented in Chapter 3 present a characterization of a 

wave-like phenomenon that coordinates a shift to a persistent motility state within a developing 

M. xanthus swarm. We propose that a signal travels through the swarm via a reaction-diffusion 

mechanism, whereby cells within a developing fruiting body release a signal which is perceived 

by nearby cells, triggering those cells to release a signal, and the wave propagates through the 

swarm. The signal appears to cause cells to repress reversal, and slime trail following in 

combination with persistent motion could increase the probability that a cell makes it into an 

aggregate to either contribute to autolysis or differentiate into a spore.  

 The widespread distribution of this phenotype within mutant strains and wild-type 

suggests that it is a fundamental aspect of development that may aid in the collective migration 

of cells toward aggregates. If this is true, it has important implications for the fitness of the 

swarm and thus should be further investigated. The most interesting and obvious area for further 

exploration is determining the signal to which the cells are responding. Early studies of M. 
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xanthus tested whether cells could direct their motility up concentration gradients of common 

chemoattractants, such as cAMP that drives aggregation in Dictyostelium, and found that M. 

xanthus exhibited no chemotactic response toward any of the tested chemicals (3). Notably, this 

study specifically searched for directed motility up a concentration gradient in vegetative 

swarms. It is likely that their experimental methods would not detect a general increase in 

persistent movement due to reversal suppression.  Further, I conducted a preliminary study 

where I deposited a newly starving population next to an already developing population that was 

exhibiting pulsing, and pulses did not extend into the swarm that was just exposed to starvation. 

Though this experiment was by no means comprehensive, it may suggest that the response to the 

signal might be developmentally regulated such that vegetative cells are not capable of 

responding to it.  

 In light of this, starving M. xanthus populations should be retested for their ability to 

respond to chemical signals. Fluorescence microscopy could be used to identify changes in 

persistence and reversal frequency when exposed to potential signals at differing concentrations. 

Identifying the signal would be particularly informative given that it could then help to identify a 

genetic mechanism by which the signal is sensed and propagated. Knocking out genes involved 

in pulsing would allow for visualization of development in the absence of this signaling, 

providing insight into what pulses might be doing to aid in development. Additionally, the tools 

that we developed in Chapter 2 of this thesis can be used to quantify differences in 

developmental scenarios that lead to pulsing and those that do not, potentially helping us 

understand what conditions are triggering pulsing in some situations but not others.  

 Kearns and Shimkets have shown that M. xanthus did exhibit directed motility toward 

phosphatidylethanolamine gradients, which suggests that under some circumstances it can 
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exhibit chemotactic responses (4). They further show that the suppression of reversals during this 

response is independent of the frz chemosensory system which is thought to govern the majority 

of reversals in M. xanthus. However, there are seven other chemosensory pathways and multiple 

other orphan chemoreceptors that may be involved in directing motility and other cell behaviors 

in response to specific signals (5). These present good targets for disrupting the mechanism that 

is responding to the pulse and would be interesting candidates for further study.  

WORKING TOWARD DEFINING CELL BEHAVIORS NECESSARY FOR COARSENING 

 

 Computational modeling of M. xanthus multicellular behaviors is beneficial because 

simulations can test which behaviors are necessary and sufficient to drive a particular behavior in 

the absence of knowledge of the underlying causal mechanisms. These simulations indicate the 

physical mechanism by which cells self-organize, for example by slowing down cell velocity 

inside aggregates (6), which can then help to formulate testable hypotheses about what genetic 

systems may be involved.  The data in Chapter 4 present an initial depiction of the types of data 

that we can extract from cell tracking experiments and apply to simulated cells to recapitulate 

coarsening during late aggregation. Data-driven models have already improved our 

understanding of the requirements for initial aggregation (7, 8), and the hope is that by applying 

the same methods to later-stage aggregation, we can achieve a better understanding of the 

principles that govern coarsening. Currently, models are being fine-tuned such that the behavior 

of simulated cells is based on the run duration, run distance, local alignment, and angle toward 

the nearest aggregate, with respect to local density, extracted from experimental data that I have 

contributed to the collaboration.  

 Collecting multiple replicates of fluorescent cell tracking movies required for the data-

driven models revealed that the majority of trackable cells were lost during the coarsening phase. 
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I was interested in exploring this phenomenon, and found that the loss of cells was associated 

with an increase of eDNA in the immediate area of the fruiting bodies, and given what is known 

about cell fates in M. xanthus development, it is likely that the loss of cells and increase in eDNA 

density are both the result of autolysis, a programmed cell death mechanism where the majority 

of cells lyse, releasing nutrients that the remaining cells can use to differentiate into spores. 

Given that eDNA has been found to stabilize the ECM of biofilms across different species, 

including M. xanthus, I attempted to look for a relationship between eDNA concentration and 

aggregate stability and found that when stained in the pre-coarsening phase, unstable aggregates 

had lesser eDNA signal density when compared to stable aggregates that persisted and matured 

into fruiting bodies.  

 Future work focusing on the relationship between aggregate fate and autolysis during 

coarsening should attempt to disentangle where each falls on the developmental timeline. If 

coarsening consistently begins before autolysis, then the fact that smaller aggregates disperse 

more during coarsening may just be a matter of timing; too great a fraction of the cells in small 

aggregates may have left the aggregate before autolysis could stabilize it. However, if autolysis 

occurs consistently before coarsening begins, it may be a density-dependent mechanism for 

larger aggregates to remain stable and smaller aggregates, which may not meet the density 

requirements to sporulate efficiently, to disperse.  

 The role of MazF in aggregate stabilization should also be investigated. Though it is 

controversial whether this ribonuclease toxin is the primary driver of autolysis in all wild-type 

strains (9), it would be interesting to observe whether a mazF deletion has a different coarsening 

phenotype than is seen in wild-type, and if there are differences in eDNA content in these 

mutants. The mazF mutant created in DK1622, the wild-type background used in this study, 
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showed no significant difference in the amount of cell lysis compared to the parent strain in prior 

work (9), which indicates that other mechanisms of autolysis should be investigated. Though 

mazF does not appear to have any closely-related homologs in M. xanthus, one could search for 

homologs of the numerous other toxin-antitoxin systems that exist in bacteria (10). 

Developmental autolysis is still occurring in these strains, just perhaps via other mechanisms, 

and is potentially playing a role in the stability of aggregates.  

EXPLORING THE INTERPLAY BETWEEN PULSING, COARSENING, AND AUTOLYSIS 

  

 Pulsing in many genetic mutants causes an instability of aggregates, allowing cells to 

temporarily extend outward from the aggregates in branching groups. However, in wild-type, 

cells within aggregates seem to be relatively unaffected by pulses and aggregates rarely 

destabilize during a pulse. Every instance of pulsing observed in our study has occurred after 

initial aggregation and seems to co-occur with the timing of coarsening. Further, fluorescent 

samples that show synchronized pulses seem to have less extensive cell loss than similar samples 

that do not pulse. Given this and the data presented in Chapter 4, it is tempting to speculate about 

a relationship between pulsing, coarsening, and autolysis.  

 Perhaps aggregates are stabilized during pulses in wild-type samples by autolysis such 

that the eDNA bound to the ECM mechanically prevents cells from responding to the pulse. If 

developmental autolysis is dysregulated in pulsing samples, cells within fruiting bodies might 

lack the stability of wild-type aggregates, and when the pulse passes over the aggregate, cells 

within the fruiting bodies would also become more persistent, causing the dramatic pulsing 

phenotype that we see in the mutants. The proposed autolysis pathway in M. xanthus involves 

the interaction and convergence of many signaling pathways, which could potentially explain the 

prevalence of pulsing (11, 12). PI staining of pulsing samples may be able to answer some of 
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these initial questions. If pulsing aggregates have an overall lesser PI signal density, that may 

indicate that autolysis is happening to a lesser extent. It would also be interesting to test whether 

pulses that destabilized aggregates occurred more frequently in mazF mutants (or other toxin-

antitoxin system mutants) which might inherently have decreased stability.  

CONCLUSIONS 

 In this thesis, I present three major contributions to the field. First, the quantification of 

minor deviations in phenotype among homologous gene families depicts a cellular environment 

with extensive networks of redundant genes that provide robustness to mutation. This study has 

implications for future studies that ascribe function to genes based on the effects of mutation and 

suggests that the potential for redundancy be considered. Second, we contribute to the 

knowledge of self-organization in M. xanthus fruiting bodies by identifying and characterizing a 

wave that synchronizes cell behavior. Future studies into the mechanisms that drive pulsing can 

contribute to our understanding of cell-cell interactions and multicellularity in bacteria. Finally, I 

contribute experimental cell tracking data to build computational models of the coarsening phase 

of aggregation, which will help to determine whether genetic mechanisms are involved in 

coarsening or if it is driven exclusively by physical principles. I also identify a connection 

between coarsening, autolysis, and also potentially pulsing, that provide an area of future 

exploration.  

 Overall, these data highlight the importance of collecting thorough phenotype data that 

capture the dynamics of living systems. Phenomics can help pave the way to a better 

understanding of genotype-to-phenotype relationships. Properly collecting, quantifying, and 

analyzing phenotype data on this scale requires interdisciplinary approaches. This work 

emphasizes the importance of collaboration amongst biologists, physicists, computer scientists, 
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and engineers to come up with the best approaches for measuring and interpreting phenotypes 

within the context of the entire genome.  
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ABSTRACT 

 

 Myxococcus xanthus bacteria are a model system for understanding pattern formation and 

collective cell behaviors. When starving, cells aggregate into fruiting bodies to form 

metabolically inert spores. During predation, cells self-organize into traveling cell-density waves 

termed ripples. Both phase-contrast and fluorescence microscopy are used to observe these 

patterns but each has its limitations. Phase-contrast images have higher contrast, but the resulting 

image intensities lose their correlation with cell density. The intensities of fluorescence 

microscopy images, on the other hand, are well-correlated with cell density, enabling better 

segmentation of aggregates and better visualization of streaming patterns in between aggregates; 

however, fluorescence microscopy requires the engineering of cells to express fluorescent 

proteins and can be phototoxic to cells. To combine the advantages of both imaging 

methodologies, we develop a generative adversarial network that converts phase-contrast into 

synthesized fluorescent images. By including an additional histogram equalized output to the 

state-of-the-art pix2pixHD algorithm, our model generates accurate images of aggregates and 

streams, enabling the estimation of aggregate positions and sizes, but with small shifts of their 

boundaries. Further training on ripple patterns enables accurate estimation of the rippling 

wavelength. Our methods are thus applicable for many other phenotypic behaviors and pattern 

formation studies. 
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RESULTS AND DISCUSSION 

 

 I created 14 microscopic time-lapse movies of M. xanthus development using tdTomato-

expressing cells, taking concurrent images in the phase contrast and fluorescent channels every 

minute for 24 hours. Using these data, my collaborators demonstrated that the pixel value of 

phase contrast images does not correlate with cell density the way it does in the fluorescent 

channel (Fig. 1). This discrepancy is caused by the artefacts introduced by phase contrast 

imaging, which is optimized for enhancing the contrast of transparent cells on a transparent agar 

substrate, but introduces artefacts such as shade-off and halos around large objects (1, 2). This 

makes it difficult to estimate cell density, and thus to segment and quantify the properties of 

aggregates, based on these images. Pixel value in fluorescent images does correlate with cell 

density, but engineering fluorescent strains is time consuming, and extensive exposure to the 

high-intensity light needed to excite fluorophores can be phototoxic (3). Fluorescent images also 

capture the important interaggregate streaming behaviors more accurately (Fig. 2); these 

behaviors are thought to be significant for aggregate formation (4, 5).  

 In light of this, my collaborators developed a machine learning algorithm to transform 

phase contrast images into synthetic fluorescent images, such that the quantitative properties of 

real fluorescent images can be extracted from phase contrast images without the drawbacks of 

fluorescent microscopy. After appropriate training, the pix2pixHD-HE model that our 

collaborators built can construct synthetic fluorescent images from phase contrast images, where 

aggregates are very similar in size and morphology when compared to real fluorescent images. 

Without additional training, our model was capable of generating accurate synthetic fluorescent 

images at higher cell densities, where there are differences in aggregate size and morphology. 

Additionally, by using this pretrained model and limited additional training through transfer 
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learning, the model was able to generate accurate synthetic fluorescent images of rippling from 

phase contrast time-lapse movies that I created, generating a distinctly different biological 

pattern while maintaining its ability to reproduce fruiting bodies. This shows the generalizability 

of the model under different experimental conditions with only minimal training.  

 

 

 

Figure 1: Aggregate segmentation from phase contrast and fluorescent 

images. A) Normalized phase contrast image, B) Normalized tdTomato 

fluorescent image, C) Aggregates segregated from phase contrast image, D) 

Aggregates segregated from fluorescent image. Note that aggregate segmentation 

from the phase contrast channel leaves large holes and/or irregularly shaped 

fruiting bodies compared to the fluorescent channel.  
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MATERIALS & METHODS 

 

Strains and Culture Conditions 

 

M. xanthus tdTomato-expressing strain LS3908 (6) and GFP-expressing strain DK10547 

(7), and E. coli K12 were used in this study. M. xanthus strains were grown overnight at 32°C 

with vigorous shaking in CTTYE broth (1% Casein Peptone (Remel, San Diego, CA, USA), 

0.5% Bacto Yeast Extract (BD Biosciences, Franklin Lakes, NJ, USA), 10 mM Tris (pH 8.0), 1 

mM KH(H2)PO4, 8 mM MgSO4) supplemented with 10 µg/mL oxytetracycline and 1 mM 

isopropyl β-D-1-thiogalactopyrano-side (IPTG) for LS3908 or with 40 µg/mL kanamycin for 

DK10547. For development assays, mid-log phase cells were harvested, resuspended in TPM 

starvation buffer (10 mM Tris (pH 7.6), 1 mM KH(H2)PO4, 8 mM MgSO4) to a concentration of 

5 × 109 cells/mL (or 1 × 1010 cells/mL for high-density and 2.5 × 109 cells/mL for low-density 

samples) and plated on a microscope slide chamber prepared, as previously described (8), 

A B 

Figure 2: Fluorescent images better represent the location of interaggregate streams. Cell 

trajectories over 15 minutes of tdTomato-labeled tracked cells in a background of GFP-labeled 

cells.  Cell trajectories are superimposed over the A) GFP fluorescent image, and B) phase 

contrast image.  
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containing 1% agarose TPM media with 1 mM IPTG added. To track cells in streams during 

development, LS3908 cells were diluted 1:800 into DK10547 and plated on a microscope slide 

chamber as above. To induce rippling, E. coli K12 cells were grown overnight in LB broth 

(Sigma, St. Louis, MO, USA) in a 37 ◦C incubator with vigorous shaking, harvested and washed 

in TPM buffer, and plated on 1% or 0.6% agarose microscope slide chambers containing TPM 

supplemented with 1 mM IPTG. Once cell spots of E. coli were dry, LS3908 cells from an 

overnight culture were prepared in TPM as above, 3 µL were plated in the center of the E. coli 

spot, and the slide was incubated in the dark at 32 ◦C for 8–10 h before imaging to provide time 

for rippling to initiate.  

Time-Lapse Imaging  

Microscope slide chambers were placed on a stage warmer (20/20 Technologies, 

Wilmington, NC, USA) set to 32 ◦C on a Nikon Eclipse E-400 microscope (Nikon Instruments, 

Melville, NY, USA). A pco.panda 4.2 sCMOS camera and NIS-Elements software were used for 

automated time-lapse imaging, capturing a phase contrast and fluorescent image every 60 s for a 

total of 24 h for development movies and 8 h for rippling movies. Phase-contrast images were 

taken with 70 ms exposure, and transmitted light was manually shuttered with a Uniblitz VMM-

D1 shutter (Uniblitz Electronics, Rochester, NY, USA) when not actively imaging. Fluorescent 

tdTomato-expressing samples were imaged with 400 ms exposure with a Sola LED light source 

(Lumencore) at 75% intensity, and GFP-expressing samples were imaged with 200 ms exposure 

at 35% intensity. A MAC6000 system filter wheel controller and focus control module (Ludl 

Electronic Products, Ltd., Hawthorne, NY, USA) were used for control of the fluorescent filter 

wheel and the autofocus feature. 
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APPENDIX 2: LIST OF GENES USED IN CHAPTERS 2 & 3 

 

Table 1: List of strains used in studies in Ch. 2&3, listed by MXAN number, followed by the 

manual phenotype classification associated with Ch. 2, gene family, citation for creation of the 

specific strain used. The final column indicates whether pulsing was observed in at least one 

replicate (Ch. 3).  

Strain 

Phenotypic 

Classification Gene Family Strain Creation 

Pulsing 

Observed 

DK1622 Wild-type N/A   yes 

MXAN_0035 No aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_0036 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0037 Late aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_0069 Early aggregation One Component This study yes 

MXAN_0079 Variable One Component (Ritchie et al, 2021) no 

MXAN_0090 Late aggregation One Component This study no 

MXAN_0107 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_0108 LWT ABC Transporter (Yan et al, 2014) no 

MXAN_0116 No aggregation NtrC-Like Activators This study no 

MXAN_0172 Fall apart NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_0180 LWT NtrC-Like Activators This study yes 

MXAN_0203 Early aggregation ECF Sigma Factors This study yes 

MXAN_0213 Variable One Component (Ritchie et al, 2021) no 

MXAN_0214 Variable One Component This study yes 

MXAN_0233 Immature aggregates ECF Sigma Factors This study no 

MXAN_0250 Early aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_0251 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0353 Early aggregation NtrC-Like Activators This study yes 

MXAN_0387 Late aggregation One Component This study no 

MXAN_0445 Early aggregation One Component This study yes 

MXAN_0502 Variable One Component (Ritchie et al, 2021) yes 

MXAN_0553 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0554 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0556 LWT One Component This study yes 

MXAN_0559 Variable ABC Transporter (Yan et al, 2014) no 

MXAN_0596 Immature aggregates ABC Transporter (Yan et al, 2014) yes 

MXAN_0597 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0603 Late aggregation NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_0622 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0627 Early aggregation One Component This study yes 

MXAN_0629 Immature aggregates ABC Transporter (Yan et al, 2014) no 

MXAN_0654 LWT One Component This study no 

MXAN_0665 Variable One Component (Ritchie et al, 2021) yes 
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MXAN_0681 Aggregate-reaggregate ECF Sigma Factors (Ritchie et al, 2021) no 

MXAN_0684 Late aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_0685 No aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_0686 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0687 Late aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_0696 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_0707 Variable One Component This study yes 

MXAN_0721 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0722 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0748 LWT One Component This study yes 

MXAN_0751 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0770 LWT ABC Transporter (Yan et al, 2014) no 

MXAN_0771 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0772 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0832 Variable One Component This study no 

MXAN_0887 Immature aggregates One Component This study no 

MXAN_0907 Early aggregation NtrC-Like Activators This study yes 

MXAN_0937 LWT NtrC-Like Activators This study yes 

MXAN_0943 Variable One Component This study yes 

MXAN_0947 LWT ECF Sigma Factors This study yes 

MXAN_0966 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_0967 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_0968 Late aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_0995 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1078 Immature aggregates NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_1097 LWT ABC Transporter (Yan et al, 2014) no 

MXAN_1124 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1128 Variable NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_1137 Variable One Component This study yes 

MXAN_1151 Variable  ABC Transporter (Yan et al, 2014) yes 

MXAN_1153 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1154 LWT ABC Transporter (Yan et al, 2014) no 

MXAN_1155 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1167 Late aggregation NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_1189 Early aggregation NtrC-Like Activators This study yes 

MXAN_1210 Late aggregation ECF Sigma Factors This study no 

MXAN_1245 Immature aggregates NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_1262 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1286 Aggregate-reaggregate ABC Transporter (Yan et al, 2014) no 

MXAN_1319 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1320 Early aggregation ABC Transporter (Yan et al, 2014) yes 
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MXAN_1321 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_1345 LWT NtrC-Like Activators This study yes 

MXAN_1376 Late aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_1377 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1402 Variable One Component This study yes 

MXAN_1510 LWT ECF Sigma Factors This study yes 

MXAN_1514 Immature aggregates ECF Sigma Factors This study no 

MXAN_1547 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1548 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1565 Variable NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_1575 Variable One Component This study yes 

MXAN_1597 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_1598 Variable ABC Transporter (Yan et al, 2014) yes 

MXAN_1604 Variable ABC Transporter (Yan et al, 2014) yes 

MXAN_1605 Early aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_1654 LWT One Component This study yes 

MXAN_1661 Early aggregation ECF Sigma Factors This study yes 

MXAN_1667 LWT One Component This study yes 

MXAN_1677 Variable One Component This study yes 

MXAN_1683 LWT One Component This study yes 

MXAN_1695 Immature aggregates ABC Transporter (Yan et al, 2014) no 

MXAN_1711 No aggregation One Component This study no 

MXAN_1719 LWT One Component This study yes 

MXAN_1726 Variable One Component This study yes 

MXAN_1746 Variable One Component This study yes 

MXAN_1757 Variable One Component This study yes 

MXAN_2018 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2019 No aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_2020 Immature aggregates ABC Transporter (Yan et al, 2014) yes 

MXAN_2030 Early aggregation ECF Sigma Factors (Ritchie et al, 2021) yes 

MXAN_2078 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2128 Immature aggregates One Component This study no 

MXAN_2145 Late aggregation One Component This study no 

MXAN_2159 Early aggregation NtrC-Like Activators This study yes 

MXAN_2184 Aggregate-reaggregate ECF Sigma Factors This study no 

MXAN_2204 Immature aggregates ECF Sigma Factors This study no 

MXAN_2230 Late aggregation One Component This study no 

MXAN_2234 Immature aggregates One Component This study no 

MXAN_2249 Late aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_2250 LWT ABC Transporter (Yan et al, 2014) no 

MXAN_2251 Early aggregation ABC Transporter (Yan et al, 2014) yes 
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MXAN_2268 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2395 Early aggregation ECF Sigma Factors This study no 

MXAN_2407 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2428 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2429 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2430 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2437 LWT ECF Sigma Factors This study no 

MXAN_2500 Early aggregation ECF Sigma Factors This study no 

MXAN_2501 Aggregate-reaggregate NtrC-Like Activators This study no 

MXAN_2516 Immature aggregates NtrC-Like Activators This study no 

MXAN_2654 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_2711 Variable One Component (Ritchie et al, 2021) no 

MXAN_2783 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_2794 Immature aggregates One Component This study no 

MXAN_2795 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2831 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2832 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2833 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_2853 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_2896 LWT One Component This study no 

MXAN_2929 LWT ECF Sigma Factors This study no 

MXAN_2949 Aggregate-reaggregate ABC Transporter (Yan et al, 2014) no 

MXAN_2951 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_3095 Early aggregation NtrC-Like Activators This study yes 

MXAN_3142 Immature aggregates One Component This study no 

MXAN_3151 Immature aggregates One Component This study no 

MXAN_3208 Immature aggregates ABC Transporter (Yan et al, 2014) no 

MXAN_3209 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_3214 Fall apart NtrC-Like Activators (Ritchie et al, 2021) yes 

MXAN_3240 LWT One Component This study yes 

MXAN_3256 No aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_3257 No aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_3258 No aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_3333 Variable NtrC-Like Activators This study no 

MXAN_3339 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_3381 Aggregate-reaggregate NtrC-Like Activators This study no 

MXAN_3418 LWT NtrC-Like Activators This study yes 

MXAN_3426 Early aggregation ECF Sigma Factors This study yes 

MXAN_3429 Early aggregation One Component This study yes 

MXAN_3443 Immature aggregates One Component This study yes 

MXAN_3648 Variable ABC Transporter (Yan et al, 2014) no 
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MXAN_3650 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_3686 Early aggregation ECF Sigma Factors This study yes 

MXAN_3692 No aggregation NtrC-Like Activators This study no 

MXAN_3702 No aggregation One Component (Ritchie et al, 2021) no 

MXAN_3711 Immature aggregates One Component This study no 

MXAN_3717 No aggregation ABC Transporter (Yan et al, 2014) no 

MXAN_3718 Fall apart ABC Transporter (Yan et al, 2014) no 

MXAN_3773 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_3811 LWT NtrC-Like Activators This study yes 

MXAN_3908 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_3909 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_3959 Early aggregation ECF Sigma Factors This study yes 

MXAN_3986 LWT ABC Transporter (Yan et al, 2014) no 

MXAN_4042 Immature aggregates NtrC-Like Activators This study yes 

MXAN_4060 LWT One Component This study yes 

MXAN_4072 Late aggregation One Component This study no 

MXAN_4110 Late aggregation One Component This study no 

MXAN_4173 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_4196 No aggregation NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_4199 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_4240 LWT NtrC-Like Activators This study yes 

MXAN_4247 Late aggregation One Component This study yes 

MXAN_4252 Late aggregation NtrC-Like Activators This study no 

MXAN_4261 LWT NtrC-Like Activators This study yes 

MXAN_4263 LWT One Component This study yes 

MXAN_4309 Early aggregation ECF Sigma Factors This study no 

MXAN_4316 Early aggregation ECF Sigma Factors This study yes 

MXAN_4339 LWT NtrC-Like Activators This study no 

MXAN_4356 LWT One Component This study yes 

MXAN_4471 LWT One Component This study no 

MXAN_4523 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_4580 Early aggregation NtrC-Like Activators This study yes 

MXAN_4622 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_4662 Immature aggregates ECF Sigma Factors This study no 

MXAN_4665 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_4716 Fall apart ABC Transporter (Yan et al, 2014) no 

MXAN_4733 Early aggregation ECF Sigma Factors This study yes 

MXAN_4749 LWT ABC Transporter (Yan et al, 2014) no 

MXAN_4750 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_4785 Late aggregation NtrC-Like Activators This study yes 

MXAN_4790 Variable ABC Transporter (Yan et al, 2014) no 
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MXAN_4899 Fall apart NtrC-Like Activators This study no 

MXAN_4949 Early aggregation ECF Sigma Factors This study yes 

MXAN_4977 Early aggregation NtrC-Like Activators This study yes 

MXAN_4983 Variable NtrC-Like Activators This study no 

MXAN_4987 LWT ECF Sigma Factors This study yes 

MXAN_5029 No aggregation One Component This study no 

MXAN_5041 Immature aggregates NtrC-Like Activators This study no 

MXAN_5048 Late aggregation NtrC-Like Activators This study yes 

MXAN_5101 Early aggregation ECF Sigma Factors (Ritchie et al, 2021) yes 

MXAN_5124 Fall apart NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_5128 LWT One Component This study yes 

MXAN_5153 Early aggregation NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_5245 Late aggregation ECF Sigma Factors This study no 

MXAN_5263 No aggregation ECF Sigma Factors (Ritchie et al, 2021) no 

MXAN_5271 No aggregation One Component This study no 

MXAN_5276 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_5305 LWT One Component This study yes 

MXAN_5356 Early aggregation One Component This study no 

MXAN_5379 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_5410 Early aggregation ECF Sigma Factors (Ritchie et al, 2021) no 

MXAN_5480 Early aggregation One Component This study yes 

MXAN_5492 LWT One Component This study yes 

MXAN_5503 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_5506 Early aggregation ECF Sigma Factors This study yes 

MXAN_5545 Variable One Component This study yes 

MXAN_5547 LWT One Component This study yes 

MXAN_5584 LWT ABC Transporter (Yan et al, 2014) no 

MXAN_5680 Variable NtrC-Like Activators (Ritchie et al, 2021) yes 

MXAN_5731 Immature aggregates ECF Sigma Factors This study no 

MXAN_5777 Variable NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_5853 Variable NtrC-Like Activators This study no 

MXAN_5879 Fall apart NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_5894 Variable One Component (Ritchie et al, 2021) no 

MXAN_6000 Late aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_6058 Variable ECF Sigma Factors This study yes 

MXAN_6149 LWT One Component This study yes 

MXAN_6157 LWT One Component This study no 

MXAN_6161 LWT One Component This study no 

MXAN_6167 Variable One Component This study yes 

MXAN_6173 Early aggregation ECF Sigma Factors (Ritchie et al, 2021) yes 

MXAN_6206 Variable One Component This study no 
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MXAN_6251 Variable One Component This study no 

MXAN_6402 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_6426 No aggregation NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_6461 Fall apart  ECF Sigma Factors This study no 

MXAN_6468 Variable One Component This study no 

MXAN_6475 Early aggregation ABC Transporter (Yan et al, 2014) yes 

MXAN_6479 LWT One Component This study no 

MXAN_6486 LWT One Component This study yes 

MXAN_6518 Variable ABC Transporter (Yan et al, 2014) yes 

MXAN_6549 Late aggregation One Component This study no 

MXAN_6551 LWT ABC Transporter (Yan et al, 2014) yes 

MXAN_6646 LWT One Component This study yes 

MXAN_6653 No aggregation One Component This study no 

MXAN_6759 Immature aggregates ECF Sigma Factors This study no 

MXAN_6833 Variable One Component This study no 

MXAN_6889 No aggregation One Component (Ritchie et al, 2021) no 

MXAN_6967 Late aggregation One Component This study no 

MXAN_7072 Variable One Component This study yes 

MXAN_7078 LWT One Component This study no 

MXAN_7214 Early aggregation ECF Sigma Factors This study yes 

MXAN_7289 Immature aggregates ECF Sigma Factors This study yes 

MXAN_7312 LWT One Component This study yes 

MXAN_7316 LWT One Component This study yes 

MXAN_7322 Late aggregation One Component This study no 

MXAN_7326 LWT ECF Sigma Factors This study yes 

MXAN_7440 No aggregation NtrC-Like Activators (Ritchie et al, 2021) no 

MXAN_7454 Early aggregation ECF Sigma Factors This study yes 
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APPENDIX 3: SUPPLEMENTARY METHODS FOR CHAPTER 2 

 

Supplementary Methods 

 

Image processing 

Custom Python code was written for this analysis, available on Github 

(https://github.com/masp01/SU-myxo-aggregate-tracking). Using the Python implementation of 

OpenCV (Bradski, 2000), each raw frame is put through the following image processing steps to 

identify the size, shape, and position of each fruiting body: 

1. Non-local means denoising (cv2.fastNlMeansDenoising) 

 To remove background noise, a 7 pixel wide template window is moved over the image to find 

regions that visually match (typically uniform, noisy regions). This search is done within a 21 

pixel distance of each patch of the image. The gray value of each pixel is replaced with the 

average gray value of pixels in matching regions, smoothing over noise while keeping boundaries 

distinct. The smoothing strength was chosen at a constant value of 70 after manually testing 

parameter values for many images. Template window and search sizes are standard and were not 

tuned. 

2. Adaptive thresholding (cv2.adaptiveThreshold) 

 To identify locally dark regions that should belong to fruiting bodies, the gray value of each pixel 

is compared to the average gray value of its neighbors within a block 101 pixels (145 µm) wide. 

8-bit pixels (gray value from 0 – 255) that have a gray value at least 20 below this local average 

are marked white. All other pixels are marked black, creating a binary image. Parameters were 

chosen after manually testing with many images and are robust enough to be used across the 

entire dataset. 

3. Morphological opening (cv2.morphologyEx) 

 A circular kernel 5 pixels (7.2 µm) wide is moved over the binary image. Any feature covered 

entirely by the kernel is removed. This reduces single-pixel noise. 

4. Contour identification (cv2.findContours) 

 Contiguous regions of white pixels are automatically identified in the binary image. A list is 

compiled of the x,y coordinates of the pixels on the boundary of each such region. This gives 

both a count of total candidate fruiting bodies and the geometry of their boundary. 

At this point, a list of features has been identified, some of which are genuine fruiting bodies, 

and some of which are noise or spurious aggregates. The contour of each feature is measured for 

the x,y coordinates of its center, its area A, perimeter P, and average gray value. The circularity 

4πA/P², is also calculated. It captures the elongation of the fruiting bodies and ranges from 0 

(completely flat) to 1 (perfectly circular). 

Tracking fruiting bodies and filtering 

 Once all the frames of a time series have been processed, the Python package Trackpy (Allan, 

D. B., Caswell, T., Keim, N. C. & van der Wel, C. M. trackpy: Trackpy v0.4.2 

doi:10.5281/zenodo.4682814). is used to assign an ID to each feature that tracks it over time. It is 

at this point that filtering is done to remove spurious features: 

1. Minimum area filter 

 Features that are smaller than 576 µm² are ignored. This is the smallest fruiting body size that is 

distinguishable from noise at 4X magnification 
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2. Maximum gray value filter 

 Features with an average gray value above 200 (max 255) are considered too bright to be fruiting 

bodies and are ignored. 

3. Formation time filter 

 Features that appear before 100 minutes have elapsed are incidental initial aggregates, and not 

genuine fruiting bodies that have assembled over time. In no time series did a new aggregate form 

in less than 100 minutes. These incidental aggregates are tracked over time and ignored in all 

frames in which they appear. 

4. Category filter 

 The area dynamics of each remaining fruiting body are considered to see if the fruiting body 

persists to the end of the time series (persistors) or if it vanishes smoothly (evaporators). 

Persistors with an average circularity below 0.5 are typically noise and are ignored. Smoothly 

vanishing is defined as starting with an area less than max area and then decreasing from 

maximum area by at least 25% by the final frame of the time series. Evaporators with centers 

within (14.4 µm of the edge of the frame or with an average circularity below 0.5 are considered 

noise and ignored. Any feature that cannot be categorized as a persistor or evaporator is assumed 

to be spurious or contain dynamics errors and is ignored. 

Feature extraction 

 The data for each time series is then analyzed to measure the following quantitative features, 

each a single number summarizing one aspect of the time series. Measurements are taken over a 

7.2 mm² field size. 
Table S2: Enumeration of all quantitative features used in the automated phenotype analysis 

  Feature name Description Formula 

1 

  

Start time Elapsed time from inoculation to the 

beginning of visible aggregation 

When at least 10 

fruiting bodies grow 

larger than 1000 µm² in 

area 

2 Peak time Elapsed time from inoculation to the peak 

of visible aggregation 

When total fruiting 

body area reaches a 

maximum 

3 Stability time Elapsed time from inoculation to overall 

aggregate stability 

When the number of 

fruiting bodies changes 

by less than three per 

hour (24 hours 

maximum) 

4 Growth time Duration of initial growth phase Peak time minus start 

time 

5 Growth rate Average rate of total area increase during 

growth phase 

Change in total area 

divided by change in 

time between start time 

and peak time 

6 Peak average 

area 

The average fruiting body area at peak 

time 
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7 Peak area std The standard deviation of fruiting body 

area at peak time 

  

8 Final average 

area 

The average fruiting body area at the 

moment 24 hours after inoculation 

  

9 Final area std The standard deviation of fruiting body 

area 24 hours  post-inoculation 

  

10 Gray value % 

change 

Percent difference between minimum and 

maximum average gray value (only for 

persistent fruiting bodies) 

  

11 Maturation rate Maximum slope of gray value vs. time 

curve for persistent fruiting bodies 

  

12 Temporal 

coherence 

How closely in time each evaporating 

fruiting body reaches its maximum area 

before starting to shrink 

The standard deviation 

of the distribution of the 

time of maximum area 

for evaporators 

13 Fraction of 

evaporators 

Total number of evaporators divided by 

total number of evaporators plus persistors 

  

14 Maximum 

number 

Total number of fruiting bodies at peak 

time 

  

15 Average lifetime The elapsed time between an evaporator’s 

first and final moment above the minimum 

area threshold, averaged over all 

evaporators 

  

16 Std lifetime Standard deviation of the elapsed times 

between each evaporator’s first and final 

moment above the minimum area 

threshold 

  

17 Maximum 

average area 

falloff 

  Most negative slope of 

average area vs. time 

curve 

18 Maximum 

number falloff 

  Most negative slope of 

number vs. time curve 
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