
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

Dissertations - ALL SURFACE at Syracuse University

8-26-2022

Mechanologic: Designing Mechanical Devices that Compute Mechanologic: Designing Mechanical Devices that Compute

Michelle Berry
Syracuse University, msberry02@gmail.com

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Physics Commons

Recommended Citation Recommended Citation
Berry, Michelle, "Mechanologic: Designing Mechanical Devices that Compute" (2022). Dissertations - ALL.
1630.
https://surface.syr.edu/etd/1630

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of
SURFACE at Syracuse University. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fetd%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1630?utm_source=surface.syr.edu%2Fetd%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

Despite their initial success and impact on the development of the modern computer, me-

chanical computers were quickly replaced once electronic computers became viable. Recently,

there has been increased interest in designing devices that compute using modern and uncon-

ventional materials. In this dissertation, we investigate multiple ways to realize a mechanical

device that can compute, with a main focus on designing mechanical equivalents for wires

and transistors. For our first approach at designing mechanical wires, we present results on

the propagation of signals in a soft mechanical wire composed of bistable elements. When

we send a signal along bistable wires that do not support infinite signal propagation, we

find that signals can propagate for a finite distance controlled by a penetration length for

perturbations. We map out various parameters for this to occur, and present results from

experiments on wires made of soft elastomers. Our second approach for designing mechan-

ical devices that compute focuses on designing the topology of the configuration space of

a linkage. By programming the configuration space through small perturbations of the bar

lengths in the linkage, we are able to design a linkage that gates the propagation of a soliton

in a Kane-Lubensky chain. This dissertation also includes other results related to the study

of small length changes in linkages and an analysis of a version of a mechanical transistor

compatible with the soft bistable wires.

MECHANOLOGIC: DESIGNING
MECHANICAL DEVICES THAT

COMPUTE

by

Michelle Senick Berry

B.A., Goucher College, 2017

M.S., University of Massachusetts, Amherst, 2020

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

Syracuse University

August 2022

Copyright © Michelle Senick Berry, August 2022

All Rights Reserved

Acknowledgements

There are so many people from both UMass Amherst and Syracuse that have encouraged

and supported me along the way, and I wouldn’t have gotten to this point without help from

every single one of them. However, the person I owe the biggest thanks to is my advisor

Chris Santangelo.

I can’t thank Chris enough for supporting me over the past five years. Right after I

passed my qualifying exams and was about to start working on research full time, I learned

that he was moving from UMass to Syracuse. Throughout that whole process, and with the

additional problems that 2020 introduced, he was always in my corner supporting me and

making sure I didn’t fall through the cracks. He has taught me so much over the years, and

I’m glad I chose to stick with him.

iv

To JP, Papa, and Dad

Contents

List of Figures x

List of Tables xix

List of Publications xx

1 Introduction and Background 1

1.1 Linkages . 3

1.1.1 Rigidity Matrix . 5

1.1.2 Types of Rigidity . 6

1.1.3 Self Stresses . 7

1.1.4 Configuration Space . 10

1.1.5 Bar Length Perturbations . 11

1.1.5.1 Length Constraints . 12

1.1.5.2 Self-Stresses . 13

1.1.5.3 Example: Three-Bar Colinear Linkage 13

1.1.6 Summary . 15

1.2 Computation . 16

1.2.1 Definitions of “Compute” . 16

1.2.1.1 Finite State Machines . 16

vi

1.2.1.2 Turing Machines . 17

1.2.1.3 Boolean Logic . 19

1.2.1.4 Turing Complete vs. Functionally Complete 20

1.2.2 Computation in Mechanical Systems 20

1.2.2.1 Transistors and Logic Gate Circuits 20

1.2.2.2 Finite State Machines . 21

1.3 Dissertation Outline . 22

2 Topological transitions in the configuration space of non-Euclidean origami 23

2.1 Introduction . 24

2.2 Mathematical Formulation . 25

2.3 Single vertices . 30

2.4 Conclusions . 35

2.5 Acknowledgements . 36

2.6 Appendix A. Generalizing the formalism to nonzero Gaussian curvature . . . 37

2.6.1 Relation to linear analysis . 39

2.7 Appendix B. Single vertices . 40

3 Mechanical signaling cascades 42

3.1 Introduction . 42

3.2 Mechanical Signalling Cascades . 44

3.2.1 Bistable elements . 44

3.2.2 Equations of Motion . 46

3.2.3 Solutions . 48

3.3 Results . 50

3.3.1 Simulations . 50

3.3.2 Experiments . 52

vii

3.4 Conclusion/Discussion . 57

3.5 Acknowledgements . 58

3.6 Appendix A: Fit for Simulation Parameters 58

3.6.1 Interaction Springs . 58

3.6.2 Symmetric Bistable Beams . 58

3.6.3 Asymmetric Bistable Beams . 59

4 The Flip-Flop Linkage 61

4.1 Description . 61

4.2 Rigidity Theory Analysis . 65

4.2.1 Self Stresses . 65

4.2.2 Length Constraint Perturbations . 65

4.2.2.1 First Order Equation . 66

4.2.2.2 Second Order Equation . 67

4.3 Flip-Flop as a Transistor . 68

4.3.1 Simulation Design and Testing . 69

4.3.2 Flip-Flop Logic Gates . 72

4.3.3 Experimental Design and Testing . 74

4.3.3.1 Troubleshooting: Energy Landscape 77

4.4 Summary . 79

5 Configuration space engineering for the topological gating of mechanical

devices 80

5.1 Introduction . 81

5.2 Critical points in mechanisms . 82

5.2.1 Mathematical rigidity . 82

5.2.2 Shape of the configuration space at critical points 84

viii

5.2.3 Shape of the configuration space near critical points 87

5.3 Controlling configuration space topology . 89

5.3.1 The geometry of the critical configuration set 90

5.3.2 The geometry of the critical value set 92

5.3.3 Three rotor system . 94

5.4 The gated Kane-Lubensky chain . 98

5.5 Conclusions . 102

5.6 Appendix A: Quadratic critical point decompositions 104

5.7 Appendix B: Properties of the tangent form 107

6 Conclusion 112

Appendices 116

A Documentation of Chapter 5 Code 116

A.1 Creating and Working With Linkages . 117

A.1.1 Defining a Linkage . 117

A.1.2 Motions of a Linkage . 117

A.2 Visualization of 2D Configuration Spaces . 118

A.3 Visualization of 3D Configuration Spaces . 120

Bibliography 128

Vita 141

ix

List of Figures

1.1 (a) The Difference Engine No. 1 built by Babbage [37]. (b) The Analytical

Engine built by Babbage [36]. (c) The Analytical Engine No. 2 built by the

London Science Museum based on Babbage’s designs [38]. 1

1.2 A square linkage with vertex positions (0, 0), (0, a), (a, a), and (a, 0). 4

1.3 Vertices 2 and 3 can both move horizontally in the same direction. This results

in the top half of the linkage moving to the left or right. 6

1.4 An almost flattened four bar linkage. In the fully flattened position, the

bars would all be colinear. The vertex positions in the flattened position are:

p1 = (0, 0), p2 = (a, 0), p3 = (2a, 0), p4 = (a, 0). 8

1.5 The flattened four bar linkage with stress values labeled on each bar. Dotted

lines indicate vertices that are connected. Bars have been drawn on two levels

for visualization purposes. 9

1.6 The motion of a four bar linkage can be parameterized by two angles θ1 and

θ2. The configuration space consists of straight branches and has three branch

points, each with two intersecting branches. 10

1.7 A linkage with three connected bars that can be thought of as a flattened

triangle. Dotted lines indicate vertices that are connected. Bars have been

drawn on two levels for visualization purposes. 13

x

1.8 The state chart of a coin operated turnstile. Each transition is given a label,

and the details of each transition are shown in Table 1.2.1.1. The black

circle represents the “entrance” to the system. For this specific diagram,

it represents a person walking up to a locked turnstile. 16

2.1 (a) A generic non-Euclidean origami structure. The vertex Gaussian curvature

is defined by K = 2π −
∑

i αi (b,c) Degree four vertices with positive and

negative Gaussian curvatures respectively necessarily buckle out of the plane. 24

2.2 A nearly flat origami structure can be projected to a fold pattern in the

xy−plane. In-plane and out-of-plane displacements are unambiguously de-

composable. 27

2.3 Notation for the vicinity of a single vertex. 29

2.4 The configuration space of a symmetric five-fold vertex (a) near the flat state

with zero (b), positive (c), and negative (d) Gaussian curvature projected

onto the fold angles (θ02, θ03, θ04). The fraction of red and blue, [r, b], in the

coloring is determined by [(θ01 − π)/(2π), (θ05 + π)/(2π)]. 31

2.5 The intersection of a sphere with a vertex at its center is a spherical polygon,

which we decompose into triangular slices as shown. (a) The dihedral angle

of the ith fold is θ+i + θ−i . (b) The side lengths are the planar angles αi,i+1 and

the angle the folds make with respect to the xy−plane, ψi. 40

xi

3.1 (a) The general shape of a bistable potential. The black line represents a

symmetric potential with barrier height E. The blue line represents an asym-

metric potential biased to the left where ∆ is the potential difference between

the two states. We measure the barrier height E with respect to the higher

minimum. (b) An elastic bistable unit at equilibrium. The linear springs

each have stiffness k. The torsional spring located at the point mass m (filled

black circle) has torsional modulus s and equilibrium angle θ0. The potential

minima for the bistable unit are located at x = ±d. The potential barrier is

located at x = 0. 44

3.2 A finite length wire in the “left” (no signal) state. Each bistable element is

at the x = −d potential minimum. When the left-most point mass is pushed

over the energy barrier and into the x = +d energy minimum, the interaction

spring connecting adjacent point masses allow that transition to propagate

along the wire. If the right-most mass moves to the right, the entire wire is in

the “right” (signal) state, and we say that the signal fully propagated along

the wire. If only a portion of the bistable elements transition to the x = +d

energy minimum, we say that the signal only propagated a finite distance. . 46

xii

3.3 For all three plots, the wire length parameters are h = 1, a = 1, and

d = 1/4.(a) Scaling relationship between the potential barrier height E and

the length of the wire when varying the beam stiffness. The beam stiffness

b ranges from 0 to 5. The interaction spring stiffness k is set to 1, and the

torsional modulus s is set to 0. Each boundary point corresponds to a sim-

ulated wire with a specific choice of length L and characteristic energy E.

(b) Scaling relationship between the potential difference between minima ∆

and the length of the wire when varying the torsional modulus. The torsional

spring stiffness s ranges from 0 to 0.3. The interaction spring stiffness k and

beam stiffness b are both set to 1. Each boundary point corresponds to a

simulated wire with a specific choice of length L and torsional modulus s. (c)

Scaling relationship between the interaction spring stiffness and the length of

the wire. The interaction spring stiffness k ranges from 0 to 5. The beam

stiffness b is set to 1, and the torsional modulus sis set to 0. Each boundary

point corresponds to a simulated wire with a specific choice of length L and

interaction spring stiffness k. 51

3.4 3D models of wire components. (a) The initial state of a wire with symmetric

bistable beam elements. (b) Wire slotted into a holding device (frame) that

compresses all bistable beam elements to buckle them uniformly. (c) Inter-

action springs of varying thickness. Different spring stiffnesses are achieved

through changing the thickness of the spring. Individual interaction springs

are printed specifically for measuring their stiffness. 53

xiii

3.5 A wire before (a), during (b), and after (c) a signal is fully propagated through

manual displacement of the first bistable beam in the wire. Comparison be-

tween a wire with symmetric (d) and asymmetric (e) bistable beam elements

when mounted in the frame. (f)-(h) Recording the force-displacement data

for a single bistable beam. (i) The interaction spring mounted and ready for

force-displacement measurements. All beams shown have an end-to-end dis-

tance of 24mm. All interaction springs have a rest length of 11.2mm. The

length of the full wires shown in (a-e) is approximately 10cm. 55

3.6 Comparison between signal propagation experiments and numerical simula-

tions. (a) Qualitative comparison between simulations and experiments for

varying interaction spring stiffness. The wire parameter values used for sim-

ulations are h = 0.012m, d = 0.0055m, a = 0.0112m, b = 120N/m, and

s = 0N/m. (b) Direct comparison between simulations and experiments for

varying minima difference ∆ of the bistable beam potential. In simulations,

this was done by varying the torsional stiffness on each bistable element. In

experiments, this was done by changing the angle of the beam at its fixed

endpoints (see Fig. 3.5(e) for example). The wire parameter values used for

simulations are h = 0.012m, d = 0.0043m, a = 0.0112m, b = 230N/m, and

k = 30N/m. 56

4.1 The flip-flop linkage. The triangle on vertices 4 and 5 represents a pinned joint.

Vertex coordinates are as follows: p1 = (0, 0),p2 = (b, 0),p3 = (b
2
, a
2
),p4 =

(0, a),p5 = (b, a),p6 = (b
2
, 3a

2
),p7 = (0, 2a),p8 = (b, 2a) 62

xiv

4.2 The 0 state of the four bar linkage will be the configuration where both rotors

are vertical (left-most diagram). The 1 state of the rotor will be the configu-

ration where the whole linkage is shifted to one side or the other (center and

right-most diagram). The direction (left or right) that the linkage shifts is not

important at this point, just that it has shifted away from the 0 state. 63

4.3 The linkage on the left is allowed to shift from side to side because each rotor

is the same length and all bars are vertical in the 0 state. The linkages in

the center and on the right are rigid because the middle rotor is not the same

length as the outer two rotors. These are only two of the ways to create a

linkage with this arrangement of bars and fixed vertices that is rigid. 63

4.4 This linkage is still allowed to shift side to side. 64

4.5 The top and bottom half of the flip flop can shift side to side. On the far

left, both the top and bottom half are in the 0 state. Once one half is shifted

to the 1 state, the remaining half is locked in the 0 state because the three

vertical bars are not all at the same angle. 64

4.6 Self Stresses for the flip flop in the 0 state. Each value on the bars represents

the magnitude of the self stress. The values shown represent one of the two

possible self stresses. 66

4.7 The wire consists of bistable beams with dimensions h = 1 and d = 1/4 (see

Chapter 3 for details on the design of the wire). The flip-flop has bar lengths

a = 1, b = 1, and c = 1√
2
. The two bars connecting the flip-flop to the wires

both have length 1
2
. 70

4.8 Left: the flip-flop in the un-gated state. Right: the flip-flop in the gated state. 70

4.9 Top Row: the full device in the un-gated state before (left) and after (right)

a signal is sent along the top wire. Bottom Row: the full device in the gated

state before (left) and after (right) a signal is sent along the top wire. 71

xv

4.10 Comparison between (a) a flip-flop transistor and (b) an electronic transistor. 72

4.11 With this modification to the base wire and bottom half of the flip-flop, the

device now behaves exactly like a transistor. 73

4.12 Comparison between (a) a NOR gate with flip-flops and (b) the circuit dia-

gram for a NOR gate. 74

4.13 Comparison between (a) an AND gate with flip-flops and (b) the circuit dia-

gram for an AND gate. 74

4.14 Experimental design of the flip-flop as a transistor in our mechanical wires.

(a) Fusion 360 CAD design for a flip-flop that can be 3D printed with elastic

resin. (b) A printed device assembled in the rigid frame with beams in the

uncompressed state. (c) The device in the compressed state. (d) The device

in the un-gated state after a signal has been sent along the top wire. (e) The

device in the gated state. (f) The device failing to properly block a signal. . 75

4.15 The total potential energy of the flip-flop when the top and bottom halves are

shifted to the right. 78

5.1 Schematic of how a configuration space with a branch point split into one of

two types of smooth, disconnected configuration spaces. The choice of sign is

arbitrary. 87

5.2 (a) Schematic of the planar, four-bar linkage with variables defined. (b) Pro-

jection of the configuration space of the two rotor mechanism with L1 = L2 =

L3 = a projected into (θ1, θ2) plane (black). This choice of lengths has three

branch-like critical points. Deforming the length of L2 results in a smooth con-

figuration space with either one (red) or two (blue) components. The arrows

indicate the direction of the tangent form ti(u) from Eq. (5.10). 89

xvi

5.3 The critical value set for the four bar linkage, plotted in terms of (L1, L2, L3)

in units of a. There is one critical point in the configuration space along any

smooth portion of the set. Self intersecting lines indicate choices with two

critical points and the triply self intersection point at (L1, L2, L3) = (a, a, a)

is the unique choice with three critical points. (b) shows a different view of

the surface with a cutout on the L1 = 0 plane showing the shape of one of the

enclosed volumes. 93

5.4 (a) Schematic of the planar, three rotor linkage with variables defined. (b)

A cross-section of the critical value set for r1 = r2 = r3 = a. (c) The 3D

configuration space of the three rotor linkage with r1 = r2 = r3 = L13 =

L23 = a, corresponding to the red point in (b), contains twelve individual

critical points. Arrows indicate the orientation of each configuration space

segment. 97

5.5 A schematic of programming the three rotor system. (a) A map showing

how changing the length of r1, L1, and L2 leads to different ways to split

the branch points from Fig. 5.4. The red dot, corresponding to a change

in length r1 = 1.05a, leads to the red curve in (b). In order to change the

topology of the configuration space by changing how branch points 4 and 6

split, an addition change to L1 = 0.9a can be effected (blue dot). The new

configuration space is shown in (b) as a blue curve. 98

xvii

5.6 (a) A gated and ungated Kane-Lubensky chain controlled by the length D.

(b) A cross-section of the critical set with r = ℓ = L1 = 3a and L2 = 4a.

There is a critical point at L2 = 4a and L4 = 5a. (c) Changing the position of

the third rotor or the lengths of two beams can control whether the chain is

gated or ungated. (d) The configuration space at and near the critical point as

a function of the three rotor angles, and the projection of that configuration

space onto the θ1-θ2 plane. 101

5.7 Top row (red): Ungated device made from LEGOs with the corresponding

simulation. This device can continue rotating and return back to its initial

position, as indicated by the arrow. Bottom row (blue): Gated device made

from LEGOs with the corresponding simulation. This device gets stuck in

the configuration shown in the last frame and is forced to reverse direction in

order to continue moving. 103

A.1 Mathematica code for the ConfigSpacePlot2D[] function. This function is

written specifically for a four bar linkage. 119

A.2 Mathematica code for the criticalPoints[] function. 122

A.3 Mathematica code for the pathDirections[] function. 123

A.4 Mathematica code for the pathSegment[] function. 123

A.5 Mathematica code for the startPath[] function. 124

A.6 Mathematica code for the integratePath[] function. 124

A.7 Mathematica code for the pathOrientation[] function. 125

A.8 Mathematica code for the rotorAngle[] function. 126

A.9 Mathematica code for the plotConfigurationSpace[] function. 127

A.10 Mathematica code for the plotConfigurationSpace3D[] function. 127

A.11 Mathematica code for the orientedCurve[] function. 127

xviii

List of Tables

1.1 Coin-operated turnstile transitions. 17

1.2 Turing Machine Example. 18

1.3 The basic Boolean logic operations acting on all possible input combinations.

The three symbols ¬, ∧, and ∨ represent the three operations. 19

1.4 The secondary Boolean logic operation acting on all possible input combina-

tions. The ⊕ symbol represents the XOR operation. 20

3.1 Interaction spring stiffness for various beam thicknesses. 58

3.2 Dimensions for symmetric bistable beams . 59

3.3 Beam stiffness for symmetric bistable beams. 59

3.4 Beam stiffness and torsional modulus for asymmetric bistable beams. First

row: the beam transitions from a lower minimum to a higher minimum (uphill

push). Second row: the beam transitions from a higher minimum to a lower

minimum (downhill push). 60

4.1 Truth tables for the NOR and AND gates. 73

xix

List of Publications

Chapters 2, 3, and 5 of the dissertation are comprised of the work carried out in the following

papers:

• M Berry, ME Lee-Trimble, and CD Santangelo. Topological transitions in the config-

uration space of non-Euclidean origami. Physical Review E, 101(4):043003, 2020.

• M Berry, YJ Kim, D Limberg, RC Hayward, and CD Santangelo. Mechanical signaling

cascades. Under Review, 2022

• M Berry, ME Lee-Trimble, D Limberg, RC Hayward, and CD Santangelo. Configura-

tion space engineering for the topological gating of mechanical devices. Under Review,

2022

xx

Chapter 1

Introduction and Background

With the current state of high-power computing and the ever increasing viability of quantum

computing, it’s reasonable to question why anyone would want to build a computer out of

unconventional materials knowing that the processing power would be nothing compared

to modern electronics. Mechanical devices that compute played an integral part in the

development of the modern computer, but as technology advanced, they fell to the wayside

in favor of new systems that were more compact, powerful, and reliable.

(a) (b) (c)

Figure 1.1: (a) The Difference Engine No. 1 built by Babbage [37]. (b) The Analytical
Engine built by Babbage [36]. (c) The Analytical Engine No. 2 built by the London Science
Museum based on Babbage’s designs [38].

1

The argument in favor of looking into designing mechanical devices that compute fo-

cuses not on the computational power of the device but in the specifics of the system doing

the computation. One could imagine certain situations where you might not want to use

traditional semiconductor electronics to perform a calculation.

What if you’re trying to put a computer in an environment that is so extreme that

your electronics don’t work well? NASA looked into this with the Automaton Rover for

Extreme Environments (AREE) project which focused on designing a rover that can survive

the environment on Venus [48]. If we can construct computers out of materials that are

better suited to an extreme environment, more opportunities open up to explore and take

data in places previously unaccessible.

A completely mechanical computer would require no external power supply. Again, this

would be advantageous in extreme environments. It would also be useful for large scale

sensing applications. If we could construct a tiny mechanical computer that requires no

power source to sense a change in environmental conditions, we could freely distribute these

over a large area, and depending on the material they are constructed with, not worry about

the impact they would have if left there indefinitely.

When we say mechanical, we don’t necessarily mean hard, rigid components like previous

versions of mechanical computers. In the most general sense, mechanical means a physical

component moving to perform a calculation. That movement could be a continuous motion

of a rigid system, or it could be stretching/compression of a soft system. With these soft

systems, we have the opportunity to also utilize swelling/shrinking materials that respond

to environmental changes.

As shown in Fig. 1.1, previously constructed mechanical computers are very obviously

not the right device for these motivating applications, so we need to re-design them from the

ground up. We specifically focused on studying mechanical computers made out of linkages.

The novelty in a computer built with linkages lies not in what it can do, but in the fact

2

that it is built with linkages. Using a linkage as the base for a computational system opens

up new opportunities for practical application of mechanical computers. Because of their

simplicity, it is conceivable for them to be constructed at the molecular scale. They could

also be created with flexures instead of rotary joints, which opens up a wide variety of options

for how to manufacture them and what material to use.

In this first chapter, we dive deeper into what it means for a device to compute. If we

want to make the statement that our system or device can compute, we need a well-defined,

working definition of what exactly that means. We start off in Sec. 1.1 with a mathematical

description of linkages which will allow us to analyze the behavior and motion of devices

in future sections. We then transition to presenting definitions from computation theory

related to a systems ability to perform a computation (Sec. 1.2) and outline possible ways

to demonstrate that a device can compute. Finally, we connect the two previous sections

and explore possible avenues for designing linkages that compute.

1.1 Linkages

A linkage is a system of fixed-length bars connected at their endpoints by freely rotating

joints [24]. Linkages can be flexible and perform some non-trivial motion or be rigid and

unable to move. These terms will be well-defined further in this section. The bars and

joints can also be referred to as rods or links and vertices respectively. Any linkage can be

represented as a graph with bars (rods, links) corresponding to edges and joints (vertices)

corresponding to nodes.

We define the position of vertex i as pi ∈ Rd and the length of the bar joining vertices i

and j as L(i,j). We can write a constraint for each bar that keeps its length constant.

|pi − pj|2 = L2
(i,j) (1.1)

3

Differentiating the length constraint equation gives

(pi − pj) · (p′
i − p′

j) = 0 (1.2)

where p′
i ∈ Rd is the velocity of vertex i. Any set of vectors p′ that satisfies Eq. 1.1 for

all bars in the linkage is called an infinitesimal flex. In simple terms, p′ tells us the

non-trivial ways a linkage with fixed-length bars can move. Translation and rotation are

considered trivial motions.

2 3
(0, a) (a, a)

(0, 0) (a, 0)
1 4

Figure 1.2: A square linkage with vertex positions (0, 0), (0, a), (a, a), and (a, 0).

Throughout this section, we will look at a simple linkage sometimes called the four-bar

linkage. We first consider a version of it with four rigid bars of equal length with vertex

positions shown in Fig. 1.2. The length constraints for this linkage are

|p1 − p2|2 = a2

|p2 − p3|2 = a2

|p3 − p4|2 = a2

|p4 − p1|2 = a2,

(1.3)

4

and differentiating them gives

(p1 − p2) · (p′
1 − p′

2) = [(0, 0)− (0, a)] · [(x′1, y′1)− (x′2, y
′
2)] = −ay′1 + ay′2 = 0

(p2 − p3) · (p′
2 − p′

3) = [(0, a)− (a, a)] · [(x′2, y′2)− (x′3, y
′
3)] = −ax′2 + ax′3 = 0

(p3 − p4) · (p′
3 − p′

4) = [(a, a)− (a, 0)] · [(x′3, y′3)− (x′4, y
′
4)] = ay′3 − ay′4 = 0

(p4 − p1) · (p′
4 − p′

1) = [(a, 0)− (0, 0)] · [(x′4, y′4)− (x′1, y
′
1)] = ax′4 − ax′1 = 0.

(1.4)

1.1.1 Rigidity Matrix

To solve for the infinitesimal flexes, we rewrite Eq. 1.2 as a matrix equation as

Rp′ = 0 (1.5)

to construct the rigidity matrix R ∈ Rm×dn where n is the number of vertices and m is

the number of bars. The infinitesimal flexes live in the null-space of R, which is referred

to as the configuration space of the linkage. For the four-bar linkage, the rigidity matrix

equation is



0 −a 0 a 0 0 0 0

0 0 −a 0 a 0 0 0

0 0 0 0 0 a 0 −a

−a 0 0 0 0 0 a 0





x′1

y′1

x′2

y′2

x′3

y′3

x′4

y′4



= 0. (1.6)

5

This initially has a solution of

y′2 = y′1

x′3 = x′2

y′3 = y′4

x′4 = x′1.

(1.7)

If we pin p1 and p4 by setting x′1 = y′1 = x′4 = y′4 = 0, we remove the translation and rotation

motions of the linkage, and this solution reduces down to

y′2 = y′3 = 0 , x′2 = x′3 (1.8)

which corresponds to the top half of the linkage shifting to the side as shown in Fig. 1.3.

2 3
2 3

1 4

x′ 2 x′ 3
2 3

2 3

1 4

x′ 2 x′ 3

Figure 1.3: Vertices 2 and 3 can both move horizontally in the same direction. This results
in the top half of the linkage moving to the left or right.

1.1.2 Types of Rigidity

Although we think have good intuition for identifying if a linkage is rigid or not, that intuition

only applies to a specific kind of rigidity/flexibility. There are multiple definitions of rigid,

each with a corresponding definition of a possible flex or motion.

The infinitesimal flexes described above are also called first order flexes due to them

being a first derivative of the length constraints. A linkage is first order rigid if every

6

possible first order flex is trivial [3, 4]. If we take a second derivative of the length constraints,

we get

(p′
i − p′

j) · (p′
i − p′

j) + (pi − pj) · (p′′
i − p′′

j) = 0 (1.9)

where p′′
i ∈ Rd. A second order flex is a set of vectors (p′,p′′), where p′ is a first order

flex, that satisfies Eq. 1.1 for all bars in the linkage. A second order flex (p′,p′′) is trivial

if p′ is a trivial first order flex. A linkage is second order rigid if every possible second

order flex is trivial [109].

Continuously differentiating Eq. 1.1 k times give the equation

k∑
a=0

(
k

a

)
(p

(a)
i − p

(a)
j) · (p(k−a)

i − p
(k−a)
j) = 0. (1.10)

An nth order flex is a set of vectors (p′,p′′, . . . ,p(n)), where p′,p′′, . . . ,p(n−1) are flexes of

their respective order, that satisfy Eq. 1.10 for all k = 1, 2, . . . , n and for all bars in the

linkage. An nth order flex (p′,p′′, . . . ,p(n)) is trivial if p′ is a trivial first order flex. A

linkage is nth order rigid if every possible nth order flex is trivial [19, 22, 20].

Within the context of this dissertation, we won’t discuss the definitions and implications

of higher order rigidity. Going forward, the definition of an infinitesimal/first order flex will

be the most important and most used.

1.1.3 Self Stresses

A self stress is a row redundancy in the rigidity/compatibility matrix. Physically, it’s the

amount of stress that each bar can hold that keeps each vertex at equilibrium. A positive

stress can be thought of as the bar “pulling” on the vertices it is attached to, and a negative

stress can be thought of as “pushing” on its vertices. If we apply a stress σ(i,j) to the bar

7

connecting vertices i and j, we can write the constraint that vertex i is at equilibrium as

∑
j

σi,j(pi − pj) = 0. (1.11)

We represent self stresses with the stress vector σ which has one component per bar in the

linkage. It follows that

σTR = 0 (1.12)

where R is the rigidity matrix for the linkage [109]. When determining if a linkage has a

self stress, the position of the vertices in the linkage is important. The rigidity matrix for

a linkage will be different depending on the starting positions of the linkage. For example,

in the position shown in Fig. 1.2, there are no row redundancies in our rigidity matrix from

Eq. 1.6, so that configuration of the linkage does not support a self stress.

2 3

1 4

Figure 1.4: An almost flattened four bar linkage. In the fully flattened position, the bars
would all be colinear. The vertex positions in the flattened position are: p1 = (0, 0), p2 =
(a, 0), p3 = (2a, 0), p4 = (a, 0).

If we instead look at the linkage when it is in the configuration shown in Fig 1.4, we

calculate the following rigidity matrix:

(p1 − p2) · (p′
1 − p′

2) = [(0, 0)− (a, 0)] · [(x′1, y′1)− (x′2, y
′
2)] = −ax′1 + ax′2 = 0

(p2 − p3) · (p′
2 − p′

3) = [(a, 0)− (2a, 0)] · [(x′2, y′2)− (x′3, y
′
3)] = −ax′2 + ax′3 = 0

(p3 − p4) · (p′
3 − p′

4) = [(2a, 0)− (a, 0)] · [(x′3, y′3)− (x′4, y
′
4)] = ax′3 − ax′4 = 0

(p4 − p1) · (p′
4 − p′

1) = [(a, 0)− (0, 0)] · [(x′4, y′4)− (x′1, y
′
1)] = ax′4 − ax′1 = 0.

(1.13)

8



−a 0 a 0 0 0 0 0

0 0 −a 0 a 0 0 0

0 0 0 0 a 0 −a 0

−a 0 0 0 0 0 a 0


=



1 0 0 0 0 0 −1 0

0 0 1 0 0 0 −1 0

0 0 0 0 1 0 −1 0

0 0 0 0 0 0 0 0


(1.14)

The rows of this rigidity matrix are not independent, therefore the linkage has a self stress

in this configuration. Now let’s calculate the self stresses of the four bar linkage. Expanding

out Eq. 1.11 for each vertex gives

σ(1,2)(p1 − p2) + σ(1,4)(p1 − p4) = 0

σ(2,1)(p2 − p1) + σ(2,3)(p2 − p3) = 0

σ(3,2)(p3 − p2) + σ(3,4)(p3 − p4) = 0

σ(4,3)(p4 − p3) + σ(4,1)(p4 − p1) = 0

. (1.15)

By plugging in the vertex positions and simplifying, we see that the self stress is defined by

σ(1,2) = −σ(2,3) = −σ(3,4) = σ(4,1) (1.16)

where all stress values are the same magnitude, σ(1,2) and σ(4,1) have opposite signs as σ(2,3)

and σ(3,4).

3

1 3

41

2

-c -c

c c

c c

-c -c

Figure 1.5: The flattened four bar linkage with stress values labeled on each bar. Dotted lines
indicate vertices that are connected. Bars have been drawn on two levels for visualization
purposes.

9

1.1.4 Configuration Space

As mentioned earlier, the configuration space of a linkage is the space that contains the set of

vectors p′ that satisfies Eq. 1.1 for each bar in the linkage. Instead of tracking the positions

of each vertex in a linkage to determine how its moving, we can usually parameterize the

motion using a much smaller number of variables.

The dimension of the configuration space is the number of degrees of freedom of the

linkage. The configuration space lives in a space with dimension equal to the number of

variables that parameterize its motion. For a one degree of freedom linkage, the configuration

space will be a line/curve in space. It is possible that this line intersects with itself and has

locations where you see multiple paths extending out from a single point. This point is

called a critical point or branch point. Each path extending out from the branch point

represents a unique infinitesimal motion. It turns out that these branch points correspond

to configurations of the linkage that support self stresses.

- �
2 0 �

2 � 3 �
2

- �
2

0

�
2

�

3 �
2

�1

� 2

2 3

1 4
θ1 θ2

x2 = a cos θ1
y2 = a sin θ1

x3 = a cos θ2
y3 = a sin θ2

Figure 1.6: The motion of a four bar linkage can be parameterized by two angles θ1 and θ2.
The configuration space consists of straight branches and has three branch points, each with
two intersecting branches.

10

The four bar linkage is parameterized by two angles θ1 and θ2. Without loss of generality,

we can pin vertices 1 and 4 so that the bar connecting them doesn’t move. This will

remove any trivial flexes. Using the variable change (x2, y2) = (a cos θ1, a sin θ1), (x3, y3) =

(a cos θ2 + a, a sin θ2), we can rewrite the length constraint equations as follows.

|p1 − p2|2 = |(0, 0)− (a cos θ1, a sin θ1)|2 = a2(cos θ1
2 + sin θ1

2) = a2(1) = a2

|p2 − p3|2 = |(a cos θ1, a sin θ1)− (a cos θ2 + a, a sin θ2)|2

= a2(cos θ1 − cos θ2 − 1)2 + a2(sin θ2 − sin θ2)
2

|p3 − p4|2 = |(a cos θ2, a sin θ2)− (a, 0)|2 = a2(cos θ1
2 + sin θ1

2) = a2(1) = a2

|p4 − p1|2 = |(a, 0)− (0, 0)|2 = a2

(1.17)

All length constraints quickly simplify to equal a2 except for the one on the length of the

bar connecting vertices 2 and 3. This equation can be plotted parametrically to generate

the configuration space shown in Fig. 1.6.

This was a very simple example of generating a configuration space, but as the linkage

gets more complex, it gets more unwieldy to do this by hand. The mechanisms package

developed for Mathematica has many built in functions that define linkage objects using

vertex positions and information about how they are connected and calculate things like

the length constraint equations automatically. For one degree of freedom linkages with a

configuration space that lives in three dimensions, things get even more difficult. Methods

for plotting those configuration spaces are discussed in Chapter 5 and Appendix A.

1.1.5 Bar Length Perturbations

A general approach to investigating the behavior of linkages was to allow the bar lengths to

vary slightly. To describe how small length changes in the rigid bars of the linkage affect the

possible infinitesimal motions of the linkage, we apply a small displacement to each vertex

11

that does not preserve the length of the bars.

pn = p(0)
n + p(1)

n + p(2)
n , L2

(i,j) = L
2(0)
(i,j) − δℓ

(1)
(i,j) + δℓ

(2)
(i,j) (1.18)

1.1.5.1 Length Constraints

With these new definitions for the vertex position and bar length, we can rewrite the length

constraint equations.

|pi − pj|2 =|(p(0)
i + p

(1)
i + p

(2)
i)− (p

(0)
j + p

(1)
j + p

(2)
j)|2

=|(p(0)
i − p

(0)
j) + (p

(1)
i − p

(1)
j) + (p

(2)
i − p

(2)
j)|2 = L

2(0)
(i,j) + δℓ

(1)
(i,j) + δℓ

(2)
(i,j)

(1.19)

If we expand out the above equation and keep only first and second order terms, the new

length constraints simplify down to

|p(1)
i −p

(1)
j |2+2(p

(0)
i −p

(0)
j) ·(p(1)

i −p
(1)
j)+2(p

(0)
i −p

(0)
j) ·(p(2)

i −p
(2)
j) = δℓ

(1)
(i,j)+δℓ

(2)
(i,j). (1.20)

From the definition of the rigidity matrix (pi − pj) · (p′
i − p′

j) = Rp′, we can make the

substitution

2(p
(0)
i − p

(0)
j) · (p(1)

i − p
(1)
j) = 2[Rp(1)](i,j)

2(p
(0)
i − p

(0)
j) · (p(2)

i − p
(2)
j) = 2[Rp(2)](i,j)

(1.21)

so that the length constraint equation becomes

2[Rp(1)](i,j) + 2[Rp(2)](i,j) + |p(1)
i − p

(1)
j |2 = δℓ

(1)
(i,j) + δℓ

(2)
(i,j). (1.22)

where R is the rigidity matrix.

12

1.1.5.2 Self-Stresses

Next, we use our perturbed length constraints with the self-stress equations. Multiplying

Eq. 1.18 by a self stress vector σT gives

σT |p(1)
i − p

(1)
j |2 = σT δℓ

(1)
(i,j) + σT δℓ

(2)
(i,j) (1.23)

since σTR = 0. This separates into the first and second order equations

σT δℓ
(1)
(i,j) = 0 →

∑
(i,j)

σ(i,j)δℓ
(1)
(i,j) = 0 (1.24)

σT |p(1)
i − p

(1)
j |2 = σT δℓ

(2)
(i,j) →

∑
(i,j)

σ(i,j)|p(1)
i − p

(1)
j |2 =

∑
(i,j)

σ(i,j)δℓ
(2)
(i,j) (1.25)

This simplification relies on the assumption that there is a self-stress for the rigidity matrix

and that it works at both first and second order.

1.1.5.3 Example: Three-Bar Colinear Linkage

We will apply these deformations to a simple example linkage to demonstrate the information

we can learn about the motion of the linkage. Start with a linkage of three vertices on a

line, labeled 1, 2, and 3, with vertex positions p1 = (0, 0), p2 = (1, 0), and p3 = (2, 0). Each

vertex is connected to the other two, forming a flattened triangle.

Figure 1.7: A linkage with three connected bars that can be thought of as a flattened triangle.
Dotted lines indicate vertices that are connected. Bars have been drawn on two levels for
visualization purposes.

13

Calculating Stresses Using Eq. 1.11, we can write out the system of equations needed

to calculate the self stresses for this linkage.

σ(1,2)(p1 − p2) + σ(1,3)(p1 − p3) = σ(1,2)(−1, 0) + σ(1,3)(−2, 0) = 0

σ(2,1)(p2 − p1) + σ(2,3)(p2 − p3) = σ(2,1)(1, 0) + σ(2,3)(−1, 0) = 0

σ(3,1)(p3 − p1) + σ(3,2)(p3 − p2) = σ(3,1)(2, 0) + σ(3,2)(1, 0) = 0

(1.26)

This system of equations simplifies to σ(1,2) = σ(2,3) = −2σ(1,3). We now have two solutions,

one with σ(1,2) = σ(2,3) > 0 and one with σ(1,2) = σ(2,3) < 0. For simplicity, we will pick

σ(1,2) = 2, σ(2,3) = 2, and σ(1,3) = −1.

Applying Stresses Expanding Eq. 1.24 and substituting in our self stress values gives

σ(1,2)δℓ
(1)
(1,2) + σ(2,3)δℓ

(1)
(2,3) + σ(1,3)δℓ

(1)
(1,3) = 2δℓ

(1)
(1,2) + 2δℓ

(1)
(2,3) − δℓ

(1)
(1,3)

= 2
(
δℓ

(1)
(1,2) + δℓ

(1)
(2,3)

)
− δℓ

(1)
(1,3) = 0.

(1.27)

This equation tells us that if we want to preserve the self stresses, the net change in square

of the length of the ‘top half’ of the linkage (the two shorter bars) will be twice as large as

the change of the ‘bottom half’ (the one longer bar), and that both changes can be either

increases or decreases in length. Including just the first order length changes, the length

squared of each bar is written as

L2
(1,2) = 1 + δℓ

(1)
(1,2), L2

(2,3) = 1 + δℓ
(1)
(2,3), L2

(1,3) = 4 + δℓ
(1)
(1,3). (1.28)

Taking the square root and expanding up to first order gives us new lengths of each bar.

L(1,2) ≈ 1 +
δℓ

(1)
(1,2)

2
, L(2,3) ≈ 1 +

δℓ
(1)
(2,3)

2
, L(1,3) ≈ 2 +

δℓ
(1)
(1,2) + δℓ

(1)
(2,3)

2
(1.29)

14

Each new length must still satisfy L(1,2) + L(2,3) = L(1,3). This tells us that for first order

changes in the length of the bars, the vertices will stay on the same line, but the middle

vertex may shift away from the midpoint.

For the second order equation, we need to think of how the linkage could move/change

as bars stretch or shrink. Any changes that keep the vertices on the same line are covered

by the first order equation. Because of that, we can focus on p
(1)
n ’s that only add a vertical

change in position.

Any combination of moving one or two of the three vertices vertically will turn the linkage

into a very flat triangle, with the possibility of a rotation away from the horizontal axis. The

most general vertical shift we can consider is p
(1)
1 = 0, p

(1)
2 = yŷ, and p

(1)
3 = 0. Any other

change in the location of the vertices can be absorbed into a translational/rotational motion.

Using these values, the second order equation simplifies to

4y2 = 2
(
δℓ

(2)
(1,2) + δℓ

(2)
(2,3)

)
− δℓ

(2)
(1,3) (1.30)

The second order changes in length will cause the middle vertex to pop up or down in addition

to any translational/rotational motions or shifts in the location of the middle vertex. If y = 0,

then this equation looks exactly like the first order equation and will reproduce the first order

results.

1.1.6 Summary

This section provided a brief summary of linkages, focusing on the topics related to the work

presented in this dissertation. The goal was to provide the background necessary to follow

the analysis presented in Chapters 4 and 5. We also presented a new method for analyzing

the behavior of linkages when their bar lengths change slightly that is utilized in Chapter 2.

15

1.2 Computation

We will now transition to a discussion on computation. If we want to design mechanical

devices that compute, we need to fully define what we mean by the term “compute”. First,

we outline multiple possible definitions. Once we have a list of options, we discuss which

ones we intend to use based on their compatibility with mechanical systems. The section

starts off by using the vocabulary of computation theory [95] before transitioning to talking

more generally about how we can integrate those definitions into the language of linkages.

1.2.1 Definitions of “Compute”

1.2.1.1 Finite State Machines

A finite state machine or finite automaton is the simplest model of a system that can

compute. Some examples of systems that are finite state machines are vending machines,

elevators, traffic lights, combination locks, and coin-operated turnstiles. The finite state

machine is defined by a set of states the system can be in, a list of possible transitions

between states, and the rules for how each transition is triggered. We also should define an

initial state that the system will start in.

Locked Un-
locked

1 2

3

4

Figure 1.8: The state chart of a coin operated turnstile. Each transition is given a label,
and the details of each transition are shown in Table 1.2.1.1. The black circle represents the
“entrance” to the system. For this specific diagram, it represents a person walking up to a
locked turnstile.

16

Label Current State Input Next State
1 Locked push turnstile Locked
2 Un-locked insert coin Un-locked
3 Locked insert coin Unlocked
4 Un-locked push turnstile Locked

Table 1.1: Coin-operated turnstile transitions.

The coin-operated turnstile example shown in Fig. 1.8 is a very simple example of

a finite state machine. As the device or system gets more complex, the state diagram

and corresponding transition rules get more complicated and detailed. For example, if we

wanted to describe a preheating oven as a finite state machine, that would involve using state

diagrams nested within states of a larger diagram, defining transitions based on multiple

variables, and utilizing parallel state diagrams that send information to each other.

1.2.1.2 Turing Machines

In the most general sense, a Turing Machine is a system that can simulate any computer

algorithm. Anything that a ‘computer’ can do a Turing machine can do. Therefore, relating

any system constructed to a Turing machine gives us information about how much computing

ability that system has.

The most basic example of a Turing machine is a machine that reads symbols on a

strip of tape and edits them, changes state, and move along the tape according to a set of

instructions. Mathematically, a Turing machine is defined by some function δ(q, a) where q

is the state the machine is in and a is what the tape says at the machine’s current location.

δ(q, a) = (r, b, L) (1.31)

When δ takes the input q and a, it tells the machine to change the tape to b at the current

location, switch to state r, and then move to the left (right if there is a R). All of the

17

information about how the Turing machine works is contained in the transition function

δ. The set of the current state, tape contents, and machine location corresponds to a

configuration of the machine.

The input is a string of 1’s and 0’s. The machine has some set of instruction for what

to do if it is in a specific state and sees a specific number at its current location on the

string. The machine will continue to ‘follow instructions’ and do whatever the algorithm tell

it to do with that string of numbers until it stops for whatever reason and accepts or rejects

the output. After the machine has followed all instructions and stopped doing things, the

string will be a new set of 1’s and 0’s. This new string is considered the output. The unique

properties of a Turing machine are as follows:

• A Turing machine can read and write on the tape.

• The machine can move in both directions along the tape.

• The tape is infinite.

• The condition for accepting/rejecting the tape happen instantaneously.

A basic example of a Turing machine is presented below.

Current State Symbol Read Write Instruction Move Instruction Next State
0 blank write blank L 1

b write a R 1
a write b R 0

1 blank write blank R stop
b write a L 1
a write b L 1

Table 1.2: Turing Machine Example.

The machine will start at a spot, move around and change symbols based on the table

above, and eventually enter the ‘stop’ state when it is done. This is considered to be the

machine completing a calculation.

18

A system is Turing complete if it can simulate any Turing machine. A common method

for proving a system is turing complete is to map a basic Turing machine example to the

target system. With this method, it has been shown that a wide variety of system are

considered Turing complete including unconventional ones such as Magic: The Gathering

and Minesweeper [18, 56].

1.2.1.3 Boolean Logic

Boolean Logic is built around two Boolean values TRUE and FALSE. These values are

commonly represented as 1 and 0, high and low, or yes and no. Boolean operation are

operations that act on and manipulate the two Boolean values. Boolean operations take in

some number of input values, and output a single value. NOT is defined as replacing the

current value with the other value. AND will output TRUE when both input values are

TRUE. OR will output TRUE when at least one input is TRUE.

NOT AND OR
¬0 = 1 0 ∧ 0 = 0 0 ∨ 0 = 0
¬1 = 0 0 ∧ 1 = 0 0 ∨ 1 = 1

1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

Table 1.3: The basic Boolean logic operations acting on all possible input combinations. The
three symbols ¬, ∧, and ∨ represent the three operations.

The set of secondary Boolean operations can be constructed as combinations of the

basic operations. XOR, called “exclusive or” will output TRUE when only one of the inputs

are TRUE. The NAND, NOR, and XNOR operations are the direct negation of the AND,

OR, and XOR operations.

A system is Functionally complete if it can create all possible truth tables for all six

logic operations AND, OR, NAND, NOR, XOR, XNOR. It turns out that we can generate

the 6 necessary truth tables using only {AND, NOT}, {NAND}, or {NOR}. Creating any

19

NAND NOR XOR XNOR
¬(0 ∧ 0) = 1 ¬(0 ∨ 0) = 1 0⊕ 0 = 0 ¬(0⊕ 0) = 1
¬(0 ∧ 1) = 1 ¬(0 ∨ 1) = 0 0⊕ 1 = 1 ¬(0⊕ 1) = 0
¬(1 ∧ 0) = 1 ¬(1 ∨ 0) = 0 1⊕ 0 = 1 ¬(1⊕ 0) = 0
¬(1 ∧ 1) = 0 ¬(1 ∨ 1) = 0 1⊕ 1 = 0 ¬(1⊕ 1) = 1

Table 1.4: The secondary Boolean logic operation acting on all possible input combinations.
The ⊕ symbol represents the XOR operation.

one of those sets with a given system is enough to show functional completeness of that

system.

1.2.1.4 Turing Complete vs. Functionally Complete

It turns out that a Turing machine can be created using the full set of logic gates, so we can

say that the set of all logic gates is Turing complete. Because all logic gates can be created

with just a NAND gate, and the set of all logic gates is Turing complete, the ability for a

system to create a NAND gates shows that it is Turing complete. Showing that your system

can create a NAND gate is a common method for supporting the statement that your system

can compute because it implies that the system is Turing complete.

1.2.2 Computation in Mechanical Systems

1.2.2.1 Transistors and Logic Gate Circuits

In electronic devices, logic gates are constructed as a circuit of wires and transistors. In-

stead of TRUE and FALSE, we measure a high or low voltage at a location in the circuit.

Transistors used in logic gate circuits are essentially electronic switches with an ON or OFF

state. Without any voltage applied to the input wire, the voltage measured at the output is

low and the transistor is in the OFF state. When a voltage is applied to the input wire, the

output voltage is measured as high and the transistor is in the ON state.

We can demonstrate that a system can compute by using it to create logic gates. One

20

method is to directly design the logic gates necessary to prove functional completeness. This

could involve extensive testing and revision of the design to get the behavior just right.

However, we could also create logic gates by directly replicating the transistor circuits used

for electronic logic gates. To do so, we would need a mechanical analog for a wire and

transistor.

A mechanical transistor is a device that has two states: one where a mechanical signal

can pass over it,and one where the mechanical signal is blocked. Ideally, we would be able

to switch between those two states by sending a mechanical signal to some section of the

transistor that initiates the transition. The mechanical wires used would need to allow some

sort of signal to travel along then, and they would need to behave like electronics wires at

intersections.

1.2.2.2 Finite State Machines

A more abstract way to show that a system computes is to show that it can be mapped to

a finite state machine. For the chosen system, we need to define a list of distinct states and

ways to transition between those states. We then need to define a map between the states

and transition of our system to the states and transitions of the target finite state machine.

For a linkage whose configuration space has many interconnected critical points, the states

of our finite state machine would be the configurations at each critical point. Our list of

which states we can transition to or from is determined by which critical points have branches

connecting them. The input that triggers a transition could be a force or displacement that

moves the linkage along a branch.

21

1.3 Dissertation Outline

In Chapter 2, we extend the work shown in Sec. 1.1 related to small length perturbations of

linkages to origami systems and use those results to analyze non-Euclidean origami systems.

This chapter does not relate directly to the goal of designing mechanical devices that com-

pute, but is included in this dissertation because of its use of the linkage analysis techniques

introduced in Sec. 1.1 which are then used in Chapter 4 as well.

In Chapter 3, we discuss the viability of a specific mechanical wire design and present

results on situation where these wires will function reliably in devices. By fully characterizing

the regimes where these wires can be used in devices, we open up the opportunity to use

them to design devices that can compute. Then in Chapter 4, we presents our work analyzing

a specific linkage called the flip-flop and investigating how to use it as a transistor that is

compatible with the mechanical wires discussed in Chapter 3. While simulations showed

that the flip-flop was a promising candidate for a transistor, experiments with soft materials

showed unwanted behavior in certain states. The combination of Chapters 3 and 4 represent

our approach to designing mechanical devices that compute by creating mechanical wires,

transistors, and logic gates.

In Chapter 5, we focus in on how to control the behavior of linkages by exploring methods

for engineering the configuration space of a general linkage. Using these methods, we design

a linkage that acts as a gate (transistor) for the Kane-Lubensky chain. This work contributes

to both the wire and transistor path to computation as well as the more ambiguous finite

state machine definition.

22

Chapter 2

Topological transitions in the

configuration space of non-Euclidean

origami

Abstract

Origami structures have been proposed as a means of creating three-dimensional structures

from the micro- to the macroscale, and as a means of fabricating mechanical metamaterials.

The design of such structures requires a deep understanding of the kinematics of origami fold

patterns. Here, we study the configurations of non-Euclidean origami, folding structures with

Gaussian curvature concentrated on the vertices, for arbitrary origami fold patterns. The

kinematics of such structures depends crucially on the sign of the Gaussian curvature. As an

application of our general results, we show that the configuration space of non-intersecting,

oriented vertices with positive Gaussian curvature decomposes into disconnected subspaces;

there is no pathway between them without tearing the origami. In contrast, the configura-

tion space of negative Gaussian curvature vertices remain connected. This provides a new,

23

and only partially explored, mechanism by which the mechanics and folding of an origami

structure could be controlled.

2.1 Introduction

Origami and kirigami have been proposed as a framework to engineer new materials with

complex mechanical responses [33, 90, 108, 93, 12]. To this end, new fabrication methods

have been developed to enable the folding of three dimensional structures from thin films

[82, 11, 87]. Though most examples of origami structures are foldable from an initially flat

sheet, two threads of research suggest a need to understand the motions of a broader class

of “curved” origami. First, kirigami structures, initially flat structures with holes which

can be glued together along their free edges to create intrinsically buckled structures [12].

Second, newer origami fabrication methods have enabled vertices with Gaussian curvature

and curved faces [87, 35, 2, 6, 29].

(a) (b) (c)

α1

α2
α3

α4
α5

Figure 2.1: (a) A generic non-Euclidean origami structure. The vertex Gaussian curvature
is defined by K = 2π−

∑
i αi (b,c) Degree four vertices with positive and negative Gaussian

curvatures respectively necessarily buckle out of the plane.

This paper analyzes the kinematics of non-Euclidean origami in the limit that it is almost

flat. By “non-Euclidean origami,” we mean that faces are flat, but that the vertices have

Gaussian curvature (Fig. 2.1 a–c). This Gaussian curvature manifests as either a deficit or

24

excess angle when summing the sector angles around the internal vertices (Fig. 2.1a). By

“almost flat,” we mean that both the sum of sector angles around internal vertices is near 2π

and that the dihedral angles of the folds are nearly π. In this limit, we will develop a general

framework for studying origami motions, and make contact with both the kinematics of flat

origami structures [14] and continuum equations governing the small deformations of elastic

sheets [92].

Understanding whether an origami fold pattern can be folded without tearing is NP-

hard [1]. More generally, when mapping out the space of possible configurations of a given

origami fold pattern, the configuration space can be geometrically complex. Additionally,

these spaces can undergo topological changes as the fold pattern changes that lead to changes

in the mechanical properties of origami [65].

Here, we show that vertex Gaussian curvature can induce a topological change in the

configuration space of general origami structures. We will show that origami with positive

Gaussian curvature vertices have configuration spaces that become disconnected, and that

such disconnection need not (and likely does not) occur for negative Gaussian curvature. We

apply our general approach to elaborate on the kinematics and energetics of single vertex

origami.

2.2 Mathematical Formulation

We model origami by a collection of polygonal faces meeting at point-like vertices and joined

along line-like, rigid edges, as shown in Fig. 2.1 for triangular faces. We find it useful

to distinguish internal vertices, whose number we will denote Vi, from boundary vertices,

whose number is Vb. Note that in traditional origami nomenclature a “vertex” denotes only

the internal vertices. Similarly, we denote the internal and boundary edges by Ei and Eb,

respectively. The internal edges are the folds in the origami literature.

25

We are primarily interested in determining the isometries of a given origami fold pattern,

i.e. the motions that preserve the length of all edges and the angles between any two adjacent

edges on the same face. In the case of triangular faces, the angle constraint is redundant –

once the length of all the edges are known, the angles between edges are already uniquely

determined. Thus, we will focus mainly on origami with triangular faces. This is not very

restrictive; we will see that the configuration space of an origami structure with polygonal

faces can be obtained by taking a lower dimensional slice through the configuration space

of a suitable triangulated origami fold pattern. To define the discrete Gaussian curvature of

an internal vertex, we measure the sector angles, αi, between adjacent folds with one end on

a given vertex (Fig. 2.1a). The Gaussian curvature of that vertex is then Kn = 2π −
∑

i αi

[77].

One of the primary features of triangulated origami is that the number of infinitesimal

isometries is almost precisely balanced by the number of constraints. This is true for any

Gaussian curvature though it manifests in different ways when Kn = 0 on each internal

vertex. Understanding this distinction turns out to be important to developing a fuller

picture of the origami configuration space so we review it here. If Xn denotes the three

dimensional position of the nth vertex, then any pair of vertices joined by an edge induces a

geometrical constraint,

(Xn −Xm)
2 = L2

nm, (2.1)

where Lnm is the length of the edge between n and m. We then write un (Fig. 2.2b) as the

displacement of the nth vertex, and find that, to first order, motions are governed by the

linear equations

(Xn −Xm) · (un − um) = 0. (2.2)

There is one equation of this type for each edge (n,m) joining vertex n to m.

To understand the generic behavior of Eq. (2.2), we note that there are Ei + Eb con-

26

un

um

Lnm

Xn

Xm

̂z

x̂

ŷ

Figure 2.2: A nearly flat origami structure can be projected to a fold pattern in the
xy−plane. In-plane and out-of-plane displacements are unambiguously decomposable.

straints, one for each edge and 3Vi + 3Vb naive degrees of freedom associated with the

three-dimensional displacements of the vertices. A triangulated origami fold pattern also

satisfies both Euler’s theorem, F −Ei−Eb+Vi+Vb = 1, where F is the number of faces, and

satisfies the 2Ei+Eb = 3F to account for the fact that each face is associated to three edges

but each internal edge joins two faces. Similarly, we have Eb = Vb because the boundary

of the fold pattern is a polygon. Taken together, these equations imply Ei = Vb + 3Vi − 3

and so naive counting suggests that the dimension of the configuration space of origami is

D = Vb + 3. Six of these degrees of freedom are Euclidean motions.

Though this generic counting should be valid for most configurations, it fails when the

origami is flat because the constraints at first order are not all independent. In that case, only

the in-plane deformations are fixed by the length constraints: any vertex can be displaced

vertically without causing a first-order change in the edge lengths. Though this suggests

that D = Vi + Vb + 3, it turns out that there are additional constraints at quadratic order

27

in the lengths, If we define h = (h1, h2, · · ·) as a vector specifying the vertical displacement

of each of the vertices above the xy−plane, then a necessary and sufficient condition for a

motion to be an isometry to second order is

hTQnh = 0, (2.3)

for each internal vertex, n, where the matrix Qn depends on the sector angles of internal

vertex n [14]. The left-hand side of Eq. (2.3) is the Gaussian curvature of internal vertex n

induced by the height changes [14] so Eq. (2.3) is simply the statement that no infinitesimal

deformation can change the Gaussian curvature of the internal vertices. There are precisely

enough quadratic constraints, one for each internal vertex, to recover the generic result,

D = Vb + 3.

We now wish to modify Eq. (2.3) to allow for internal vertices to have a small but nonzero

Gaussian curvature. In this regime, the vertices continue to remain almost planar and, in

Appendix A (Sec. 2.6), we show that the geometrical constraints at each vertex should be

modified to

hTQnh = Kn, (2.4)

where Kn is the Gaussian curvature of vertex n and Qn is the same matrix that appears in

Eq. (2.3) for flat origami. This is our main result and is accurate to quadratic order in the

displacements. Despite the plausible form of Eq. (2.4), the proof that Eq. (2.4) correctly

determines the isometries to quadratic order is somewhat involved.

Eq. (2.4) can be contrasted to the equations governing the small isometries of a continuum

elastic sheet, which are governed by the approximate equations [92]

K = −1

2

2∑
ijkl=1

ϵikϵjl∂i∂jh∂k∂lh, (2.5)

28

where ϵij is the antisymmetric Levi-Civita symbol with ϵ12 = 1, h(x, y) is the vertical height

of the elastic sheet above the xy−plane, and K(x, y) is the Gaussian curvature. Eq. (2.5)

is accurate in the limit of small slopes |∂ih| ≪ 1, which is precisely the same limit of our

discrete formulation. In that sense, Eq. (2.4) is a discrete analogue to the better known

continuum result of Eq. (2.5).

σ1,1

1

σ1,2

σ1,3

σ1,4

σ1,5

α(1)
2,3

Figure 2.3: Notation for the vicinity of a single vertex.

In Appendix B (Sec. 2.7), we also show that we can rewrite the Gaussian curvature

around any internal vertex n in closed form. To do this consistently requires some additional

notation (Fig. 2.3). Let σ(n, 1) through σ(n,N(n)) be the vertices connected to an internal

vertex n in counterclockwise order, where N(n) is the number of edges with n at one end.

We also denote Lnm as the length of the edge joining vertex n to m. Then,

Kn = −1

2

N(n)∑
i

N(n)∑
j

(
hσ(n,i) − hn
Lσ(n,i)n

)
M

(n)
ij

(
hσ(n,j) − hn
Lσ(n,j)n

)
. (2.6)

The matrix M
(n)
ij is an N(n) × N(n) square matrix depending on the sector angles around

each internal vertex. To define M
(n)
ij , let α

(n)
i,i+1 be the sector angle between vertex σ(n, i)

29

and σ(n, i+ 1) around the vertex n. Then

M
(n)
ij = − cscα

(n)
i,i+1δi,j+1 − cscα

(n)
i−1,iδi,j−1 (2.7)

+(cotα
(n)
i,i+1 + cotαi−1,i)

(n)δij.

For sector angles smaller than π, the matrices M(n) have two zero eigenvalues, one negative

eigenvalue, and the remaining eigenvalues are positive (see Ref. [52] or Appendix C of Ref.

[14] for a detailed proof).

2.3 Single vertices

To better understand Eq. (2.6), consider an origami structure with one internal vertex from

which N folds emerge (Fig. 2.4a). This case has been analyzed in some depth due to the

correspondence between origami vertices of degree N and spherical linkages with N segments

[52, 100]. We denote the height of the central vertex h0 and the heights of the surrounding

vertices h1 through hN , and we explicitly eliminate rigid body motions by fixing the heights

of vertices (h0, h1, h2) = (0, 0, 0). One quadratic constraint remains on the remaining heights,

h3 to hN , leaving N − 3 distinct degrees of freedom.

So what does the configuration space of a single non-Euclidean vertex look like? We

suppose e−,i are the components of the normalized eigenvector corresponding to the negative

eigenvalue, −λ−, of M(0). We then suppose en,i are the components of the nth normalized

eigenvector with positive eigenvalues, λn. We can then attempt to solve Eq. (2.6) with the

ansatz

hi − h0
Li0

=
1√
2λ−

c−e−,i +
∑
n

1√
2λn

cnen,i. (2.8)

We find that c2− −
∑

n c
2
n = K0, where K0 is the Gaussian curvature of vertex 0.

When K0 = 0, we recover the results of Ref. [14]: the solution forms a cone described

30

0

1

2

3
4

5

θ02

θ03

θ04

θ02

θ04

θ04

θ02

θ03
θ03

(a) (b)

(c) (d)

Figure 2.4: The configuration space of a symmetric five-fold vertex (a) near the flat state
with zero (b), positive (c), and negative (d) Gaussian curvature projected onto the fold
angles (θ02, θ03, θ04). The fraction of red and blue, [r, b], in the coloring is determined by
[(θ01 − π)/(2π), (θ05 + π)/(2π)].

by the equation c− = ±
√
c2n with a singularity at c− = cn = 0. Each nappe of the solution

space is characterized by the sign of c− (called branch signs in [14]). When K0 > 0, we must

instead solve,

c2− = K0 +
∑
n

c2n, (2.9)

showing that |c−| ≥ K0. This would seem to imply that the two nappes have split into two

disconnected components characterized by the sign of c−. Finally, we turn to K0 < 0, for

which

c2− + |K| =
∑
n

c2n. (2.10)

31

Here, it is clear that there is no obstruction to c− = 0. Instead,
∑

n c
2
n ≥ |K|. We conclude

that the conical configuration space is one in which both nappes remain connected near the

flat state but are connected by a neck (Fig. 2.4d). This is quite different than what happens

for degree four vertices [107].

In Fig. 2.4, we numerically plot the configuration space of a symmetric degree-5 vertex.

To do this, we compute radial trajectories from a known configuration of the origami vertex.

Each point of the radial trajectory is found in a sequence of steps. For each step, we solve

Eq. (2.2) to identify the infinitesimal isometries from any configuration that is not flat and

project the previous tangent direction onto the new tangent space. After finding a new

configuration using the linear isometry, we numerically minimize the energy functional,

E =
1

2

∑
nm

[
(Xn −Xm)

2 − L2
nm

]2
, (2.11)

where the sum is over edges joining vertex n to m, using the BFGS (“QuasiNewton”) al-

gorithm in Mathematica 11. This prevents numerical errors in the linear isometries from

building up as the integration proceeds. This process proceeds until one of the fold angles

exceeds π or −π, indicating that a face has come into contact with an adjacent face. Finally,

the trajectories are assembled into a mesh to produce a surface.

Generically, we find that the configuration space near the flat state follows the analytical

results we obtained. Specifically, it appears that the configuration space decomposes into

two nappes with the topology of a disk which are either touching at one point (K = 0),

disconnected (K > 0), or connected by a narrow neck (K < 0). At first glance, this appears

to contradict Streinu and Whitely [100], who showed that the configuration space of single

vertices with K0 > 0 is always connected. However, in their analysis, faces can pass through

each other; whereas in Fig. 2.4, fold angles must remain strictly between −π and π. It does

appear that when faces are allowed to pass through each other, isometric trajectories can

32

pass from one nappe to the other for any K. In this case, however, the surfaces become

difficult to plot, even more difficult to understand, and, in any case, are unphysical.

Though our results, so far, apply only to origami with triangular faces, they can be

adapted to understand the mechanics of non-Euclidean structures more generally. To start,

consider a single degree-four vertex, one with only four folds emerging from a central vertex,

a special case that has been recently explored in Ref. [106]. The configuration space of a

degree-four vertex can be obtained from Fig. 2.4 by considering a particular planar slice.

For example, if we create a degree-four vertex by removing fold θ02 from Fig. 2.4a, the

configuration space of the degree-four vertex is the intersection of the surfaces in Fig. 2.4

with the plane θ02 = 0. This configuration space is, therefore, one dimensional and the two

nappes become disconnected for both positive and negative Gaussian curvature.

This kind of reasoning can also be used to explore the configuration spaces of non-

triangulated origami. If we are given an arbitrary origami fold pattern, any non-triangular

faces can be triangulated, introducing new fold angles, (ϕ1, · · · , ϕM). The proper isometries

of the non-triangulated origami are then the intersection of the triangulated configuration

space with the hyperplane defined by (ϕ1, · · · , ϕM) = 0. Therefore, the dimension of the

configuration space becomes D = Vb − 3 −M , where M is the number of diagonals added

to triangulate the fold pattern. Because these hyperplanes pass through the origin (where

the origami is unfolded), they do not change the connectedness of the configuration spaces

of triangulated origami shown in Fig. 2.4.

The configuration spaces in Fig. 2.4b – d give us a first picture of the interplay between

origami energetics and kinematics. If we imagine that a torsional spring of stiffness κ has

been placed on each fold of Fig. 2.4a, the energy functional would be E = (κ/2)
∑N

i=1 θ
2
nN .

The equi-energy surfaces are given by spheres centered on the state with θ0i = 0 and so

the ground state is the configuration (or configurations) that are closest to the flat state.

Appendix B (Sec. 2.7) provides some mathematical machinery to expand this discussion

33

to general origami fold patterns. In addition to determining the kinematics of an origami

structure near the flat state, the matrix M
(n)
ij also determines the fold angles as a function

of the vertex heights through

θσ(n,i)n =
∑
j

N(n)
M

(n)
ij

(
hσ(n,j) − hn
Lσ(n,j)n

)
, (2.12)

where θσ(n,i)n is the fold angle connecting vertex σ(n, i) to vertex n. Note that the quadratic

terms in Eq. (2.12) actually vanish so this equation is accurate to quadratic order as well.

Using Eq. (2.12) we can write an energy functional for a nearly-flat origami structure as

E =
1

2

∑
n

N(n)∑
ijk

κnσ(n,i)M
(n)
ij M

(n)
ik (2.13)

×
(
hσ(n,j) − hn
Lσ(n,j)n

)(
hσ(n,k) − hn
Lσ(n,k)n

)

where the sum over n is over internal vertices only. Any fold that joins an internal vertex n

to a boundary vertex k has torsional stiffness κnk whereas a fold connecting internal vertex n

to internal vertex m has stiffness 2κnm because such folds are double counted in Eq. (2.13).

Thus, for a single vertex with equal fold stiffness κ and zero equilibrium fold angles, the

decomposition of deformations in terms of collective variables c− and cn yields an energy

E =
1

2
κ

[
λ−(c−)

2 +
∑
n

λn(cn)
2

]
. (2.14)

In order to minimize Eq. (2.14), we found it convenient to introduce hyperbolic coordinates, ξ

and a unit vector N̂ in the space of deformations, represented by the coordinates (c−, c1, · · ·).

How we do this will depend on the sign of the Gaussian curvature. For K0 > 0, we introduce

collective variable ξ such that c− = ±K0 cosh ξ and cn = K0Nn sinh ξ, where Nn are the

components of N̂. When K0 < 0, we instead use c− = |K| sinh ξ and cn = ±|K|Nn cosh ξ.

34

Therefore,

E =
κK2

2

 λ− cosh2 ξ + sinh2 ξ
∑

n λn(Nn)
2, K0 > 0,

λ− sinh2 ξ + cosh2 ξ
∑

n λn(Nn)
2, K0 < 0.

(2.15)

There is an obvious generalization of Eq. (2.15) to the case when the fold stiffnesses are not

all equal.

For both signs ofK0, Eq. (2.15) has a minimum at ξ = 0. WhenK0 > 0, this implies E =

κK2λ−c
2
−/2 and is independent of the choice of Nn or the values of λn. There are two energy

minima corresponding to the two points closest to the flat state in Fig. 2.4c, independent of

any other details of the shape. This reflects the fact that, at least when all folds have the

same torsional stiffness, a single vertex will buckle up or down symmetrically. When K0 < 0,

on the other hand, the component of Nn corresponding to the smallest eigenvalue λn will be

1 and the remaining components will be 0. Hence, E = κK2λnmin
c2nmin

/2, where nmin is the

index of the smallest eigenvalue.

2.4 Conclusions

To conclude, we have derived the form of the configuration space of non-Euclidean origami

for small amounts of Gaussian curvature near the flat state. For single positive Gaussian

curvature vertices, the configuration is characterized by nappes that are separated near

the flat state, whereas for negative Gaussian curvature, the configuration space remains

connected. Though we have analyzed the case of a single degree-N vertex in detail, the

procedure we have used can be applied to explore the kinematics and energetics of more

complex, nearly flat origami structures with or without Gaussian curvature. We first consider

the case of multiple vertices with Kn > 0. Around each vertex, Eq. (2.6) establishes a single

equation for hn as a function of the heights of the vertices surrounding it. We further assume

that this equation has two distinct real solutions for hn. Then the analysis in the previous

35

section establishes that no matter how we deform the boundary vertices, there is no way

for the configuration of this vertex to pass from one configuration space nappe to the other.

The conclusion is that distinct branches of the configuration space of a complex, origami fold

pattern that are distinguished by a K > 0 vertex being on different nappes are topologically

disconnected – if they were not, there would be also be a way of passing from one nappe to

the other on a single vertex. Unfortunately, it is difficult to determine whether or not every

combination of nappes can be realized when K > 0. The case for K < 0 is murkier because,

while a single vertex remains connected, there is no reason that global constraints might not

lead to disconnected components of the configuration space. Indeed, this must be possible in

principle, as triangulated fold patterns with disconnected configuration spaces, albeit rare,

have been found [94].

Finally, we note that this work provides a new mechanism by which the mechanical

response of an origami metamaterial sheet can be molded. In principle, an initially flat

structure could be stiffened by imposing a small amount of positive Gaussian curvature.

Moreover, Gaussian curvature provides a new means of controlling how a responsive origami

structure self-folds by separating the individual nappes so that misfolding is significantly less

likely. This suggestion will be followed up in a future work.

2.5 Acknowledgements

We acknowledge funding from the National Science Foundation under grant NSF DMR-

1822638 and useful conversations with D.W Atkinson, Z. Rocklin and B. Chen. This work

was done in part at the Aspen Center for Physics under grant NSF PHY-1607611.

36

2.6 Appendix A. Generalizing the formalism to nonzero

Gaussian curvature

The problem we seek to solve in this paper lies in reconciling the linear and quadratic length-

preserving motions. When vertices have Gaussian curvature, the vertices will not typically lie

flat. Hence, we would expect them to be well-described by the linear equation Eq. (2.2). As

the Gaussian curvature goes to zero, however, quadratic constraints must somehow emerge.

As before, we will approach the analysis of the possible motions by expanding around

the flat state. We expect this expansion to be valid so long as the Gaussian curvature of

the vertices is sufficiently small. Denoting the planar angles around any vertex with αn,

the discrete Gaussian curvature is K = 2π −
∑

n αn. We imagine that the deformation of a

structure is governed by an expansion of the form

Xn = X(0)
n + u(1)

n + u(2)
n (2.16)

where X
(0)
n is the position of a flattened origami structure and the superscript of u represents

the order in a formal expansion of the displacement.

Because we are expanding the deformations around an otherwise flat structure, the equi-

librium lengths of the edge connecting vertex n and m will not be represented by the dis-

tances between the planar vertex positions, X
(0)
n . Instead, we let ∆nm = L2

nm−(X
(0)
n −X

(0)
m)2

measure the deviation of the equilibrium edge lengths from the lengths of the edges when

projected to the xy−plane. We denote ∆ the vector formed by concatenating the compo-

nents ∆nm for each edge. We similarly write u(1) and u(2) as the concatenation of the vertex

displacements at first and second order. Finally, introduce a quadratic function, f(u) with

37

components (un − um)
2 for each edge, (n,m). Then we have

∆ = Ru(1) +Ru(2) + f(u(1)), (2.17)

where R is the compatibility matrix mapping vertex displacements to linear changes in the

edge lengths [19, 69].

To linear order, one should solve ∆ = Ru(1). However, this linear equation can only

have a solution if the left-hand side of the equation lies in the image of R. We denote the

projection of a vector into the image of R with a subscript ||, and a projection into the

orthogonal complement ⊥. Therefore, Eq. (2.17) decomposes into the pair

∆|| = Ru(1) +Ru(2) + f||(u
(1)) (2.18)

∆⊥ = f⊥(u
(1)) (2.19)

Eq. (2.18) can now be solved order by order. To first order, u(1) = u|| + h, where u||

is any solution of Ru|| = ∆||, and h is in the right null space of R. At the next order, we

obtain a correction Ru(2) = −f||(u|| + h).

Since we are expanding around a flat origami structure, we can further restrict the struc-

ture of u|| and h. Particularly, it must be that h can only involve the three in-plane Euclidean

motions and the vertical displacements of all of the vertices. Consequently, u|| can be chosen

so that the vertex displacements lie in the xy−plane and h can then contain only vertex

displacements along the ẑ.

Eq. (2.19) is not dispensed with so easily. It remains a quadratic constraint on h of the

form

∆⊥ = f⊥(u|| + h) = f⊥(u||) + f⊥(h). (2.20)

The last equality follows from the fact that u|| is perpendicular to h and f is quadratic.

38

Finally, we neglect f⊥(u||) since it is quadratic in |∆|||. This is valid when |∆⊥| ∼ |∆|||.

To interpret Eq. (2.20), we let {σ1,σ2, · · · } be the basis of wheel stresses of ker RT

described in Ref. [14]. In this basis,

σn · f(h) ≈ σn ·∆, (2.21)

where the left-hand side can be interpreted as the discrete Gaussian curvature at vertex n,

or alternatively as a quadratic form, hTQnh [14]. Finally,

hTQnh = σn ·∆ ≡ Kn. (2.22)

We note that, when Kn = 0, Eq. (2.22) reproduces the results of Chen et al. [14] for flat

origami. Notice that the right-hand side of Eq. (2.22) involves only lengths of the bonds,

encoded through ∆. This is then a discrete version of Gauss’ theorema egregium, which

relates the Ricci curvature on a surface – a completely intrinsic quantity – to the Gaussian

curvature – an extrinsic quantity.

2.6.1 Relation to linear analysis

Rather than expanding the deformations around a nearly flat state. We could have solved

Eq. (2.2) directly from a slightly deformed state. Here, we demonstrate that our approach

yields the same results to linear order. Let Xn = X
(0)
n +hnẑ, where X

(0)
n has no ẑ component.

Similarly, write un = wn + h
(1)
n ẑ, where wn has no ẑ component. Eq. (2.2) then reads

2
(
X(0

n −X(0)
m

)
· (wn −wm) + 2(h(0)n − h(0)m)(h(1)n − h(1)m) = 0. (2.23)

39

Let σnm
i be a wheel stress around vertex i. Then we have

∑
nm

σnm
i 2(h(0)n − h(0)m)(h(1)n − h(1)m) = 0, (2.24)

where the sum is over all edges. Rewriting this in terms of the concatenated vectors h, we

obtain (
h(0)
)T

Qih
(1) = 0. (2.25)

Alternatively, if we expand Eq. (2.22) around h(0) which satisfies h(0)TQih
(0) = Ki, we

also obtain Eq. (2.25).

2.7 Appendix B. Single vertices

αi−1,i
αi,i+1

ψi−1 ψi
ψi+1

(a) (b)

βi−1,i βi,i+1

θ+
iθ−

i

Figure 2.5: The intersection of a sphere with a vertex at its center is a spherical polygon,
which we decompose into triangular slices as shown. (a) The dihedral angle of the ith fold is
θ+i + θ−i . (b) The side lengths are the planar angles αi,i+1 and the angle the folds make with
respect to the xy−plane, ψi.

We denote the central vertex with 0 and number the boundary vertices from n = 1 to N .

Denote αn,n+1 as the angle between fold n and n + 1, interpreted assuming αN,N+1 = αN,1,

and assume that αn,n+1 is always between 0 and π. Since we are interested in single vertices

near the flat state, it is useful to change variables from the vertex heights to the angles

40

made by the folds with respect to the ẑ axis, oriented with respect to the reference z−axis:

ψn = π/2 + (h0 − hn)/Ln0 where Ln0 is the length of fold n.

It is well known that a single vertex can be interpreted as a spherical polygon in which

the side lengths are given by the planar angles αn,n+1 and the dihedral angles by the interior

angles of the polygon [100] (Fig. 2.5); this connection has been used to explore the full

configuration space of single origami vertices in general [52, 100]. Fig. 2.5 shows that such

a polygon can be decomposed into triangular slices. Spherical trigonometry then allows one

to write the dihedral angles entirely in terms of the ψn. For small deformations, these N

angles ψn = π/2 + δψn where δψn = (hn − h0)/Ln0. Finally, we define θn as the dihedral

angle made by the nth fold; the diagram in Fig. 2.2 shows that θn = θ+n + θ−n . Finally, we

let θn = π − δθn and assume δθn is small.

Expanding to quadratic order, we obtain the linear relationship

δθn =
∑
m

Mnmδψm (2.26)

whereMnm = − cscαn,n+1δn,m+1−cscαn−1,nδn,m−1+(cotαn,n+1+cotαn−1,n)δnm. Expanding

the angles βn,n+1 around αn,n+1 and using
∑

n βn,n+1 = 2π, we also find an expression for

the Gaussian curvature of the vertex, K = 2π −
∑

n αn,n+1,

K = −1

2

∑
nm

δψnδψmMnm. (2.27)

Comparing Eq. (2.27) to Eq. (2.4) provides a connection between the matrix Q governing

the configuration space in terms of the vertex heights to the matrix M, having components

Mnm, governing the configuration space in terms of angles δψn. In particular, while Q should

have an additional zero eigenvalue from global translations of the vertex in the ẑ direction,

it shares the same number of positive and negative eigenvalues as M [14].

41

Chapter 3

Mechanical signaling cascades

Abstract

Mechanical computing has seen resurgent interest recently owing to the potential to embed

sensing and computation into new classes of programmable metamaterials. To realize this,

however, one must push signals from one part of a device to another, and do so in a way

that can be reset robustly. We investigate the propagation of signals in a bistable mechanical

cascade uphill in energy. By identifying a penetration length for perturbations, we show that

signals can propagate uphill for finite distances and map out parameters for this to occur.

Experiments on soft elastomers corroborate our results.

3.1 Introduction

Mechanical devices that compute have apparently existed for thousands of years [13], yet

have fallen out of favor since the advent of the modern electronic computer. However,

the recent interest in mechanical metamaterials has led to a resurgence of interest in new

forms of mechanical computing using modern – and predominantly soft – materials [8, 112],

42

resulting in demonstrations of stable memory [17], boolean logic [45, 47, 74, 75, 99, 105, 76],

and pattern recognition [30] among other computational and logical tasks. The dream is

to create materials that change their behavior based on simple logic in response to external

stimuli. To achieve that, in addition to logical elements, one requires convenient methods

to transmit signals from one part of a material to another and a way to reset the state of a

device or signal.

Recent work has demonstrated devices that can propagate mechanical signals by taking

advantage of a series of interacting bistable elements of varying design [25, 111, 42, 44, 54,

55, 85, 84]. Previous work has shown that for asymmetric bistable units, transitioning from

a higher to lower energy state allows for propagation over arbitrarily long distances [27, 26,

83, 88]. When utilizing symmetric bistable units, a decreasing grading of the interaction

energy between bistable elements [43] or the energy barrier of the element itself [63] allows

for stable propagation. Specifically designed bistable elements [63] or active components [9]

can produce reversible signal propagation.

In this paper, we focus on a horizontal chain of bistable units (Fig. 3.1(b)) which act as

relays that can each be in either a “left” (no signal) or “right” (signal) state [88, 85]. In order

to perform multiple computations using chains with these bistable elements, we will need the

ability to reset our system by sending a signal in both directions along the chain, indicating

that it is important to also understand whether signals can propagate along uniform chains

with no bias or a bias infavor of the “left” state.

To further explore this signaling cascade and gain insight into how many mechanical

computations can really be performed using coupled, bistable elements, we consider this

problem for finite chains of bistable elements as a function of both the difference in minimum

energies, ∆, and barrier height E (Fig. 3.1(b)). Specifically, we look at the cases where the

potential is symmetric and favors neither state, and cases where the potential favors the “left”

state. Since we imagine working primarily with soft materials, we focus on the overdamped

43

V(x)
x = − d

+x

x
Δ

E

hθ
2

(a) (b)

x = 0

Figure 3.1: (a) The general shape of a bistable potential. The black line represents a
symmetric potential with barrier height E. The blue line represents an asymmetric potential
biased to the left where ∆ is the potential difference between the two states. We measure
the barrier height E with respect to the higher minimum. (b) An elastic bistable unit at
equilibrium. The linear springs each have stiffness k. The torsional spring located at the
point mass m (filled black circle) has torsional modulus s and equilibrium angle θ0. The
potential minima for the bistable unit are located at x = ±d. The potential barrier is
located at x = 0.

limit. This provides us with a set of simple scaling laws governing when signals propagate in

terms of the number of elements and the energy of the bistable elements and provides limits

on the number of computations that could be conceivably performed and reset.

3.2 Mechanical Signalling Cascades

3.2.1 Bistable elements

We consider a series of mechanical relays whose state is represented by a scalar variable x

subject to a bistable potential, V (x) (Fig. 3.1(a)). The potential is characterized by two

minima having a difference in energy, ∆. The energy barrier between them is given by E

and measures the barrier height with respect to the higher energy minimum. Though we will

pursue a theoretical approach that is agnostic on the detailed form of the bistable elements,

it is helpful to have a particular mechanical model in mind that can be implemented both

44

experimentally and in simulations. We will model bistable elements as two linear springs

(Fig. 3.1(b)) with ends attached to fixed points [85].

The potential energy of this two-spring bistable element is

V (x) = b
(√

x2 + h2 −
√
h2 + d2

)2
(3.1)

where x is the horizontal displacement of the point mass, 2h is the distance between fixed

vertices, and
√
h2 + d2 is the equilibrium length of the two springs. The two minima are at

x = ±d, and the energy barrier height is E = b[
√
h2 + d2−h]2. To bias the bistable element

towards one of the two stable states, we can add a torsional spring at the mass. This adds

an additional term of the form

Vtor(θ) =
1

2
s (θ − θ0)

2 (3.2)

to the potential energy of the bistable element, where s is the torsional modulus, θ0 is the

equilibrium angle of that modulus, and tan(θ/2) = h/x.

Since we are interested primarily in signals driven up a potential barrier, we will choose

the equilibrium angle to yield zero torsional energy when the bistable element is in the

left-most state. This leads to an approximate barrier height,

E = b
(
h−

√
h2 + d2

)2
+
s

2
(π − θ0)

2 +O(s2), (3.3)

and asymmetry,

∆ =
s

2

(
2π − 4 tan−1 h

d

)2

+O(s2). (3.4)

Thus, b predominantly controls the barrier height E while s controls the energy difference

between minima, ∆ (Fig. 3.1(a)).

45

……

Figure 3.2: A finite length wire in the “left” (no signal) state. Each bistable element is at
the x = −d potential minimum. When the left-most point mass is pushed over the energy
barrier and into the x = +d energy minimum, the interaction spring connecting adjacent
point masses allow that transition to propagate along the wire. If the right-most mass moves
to the right, the entire wire is in the “right” (signal) state, and we say that the signal fully
propagated along the wire. If only a portion of the bistable elements transition to the x = +d
energy minimum, we say that the signal only propagated a finite distance.

3.2.2 Equations of Motion

To form the one dimensional chain of bistable elements, we connect neighboring elements

together at the point masses with linear springs of rest length a and spring constant k (Fig.

3.2) [85]. The position of the n-th point mass with respect to the fixed end points of the

beam is given by xn. Writing out Newton’s second law for the ith mass gives

m
d2xi
dt2

− k[xi+1 − 2xi + xi−1] + γ
dxi
dt

+
dV (xi)

dxi
= 0 (3.5)

where γ is a friction coefficient. To obtain the continuum limit, we make the variable change

xi±n = u(y ± na, t). The function u(y, t) now represents the displacement of the beam at

location y along the wire. Taking the limit where a→ 0, the equation of motion for the ith

mass becomes

m
∂2u

∂t2
− ka2

∂2u

∂y2
+ γ

∂u

∂t
+
dV

du
= 0. (3.6)

46

Before we analyze the equation of motion, we replace y, t, and u with dimensionless

variables. First, we rescale u → aũ, y → aỹ, and t → τ t̃ where a is the length of the

interaction springs and τ is some characteristic time.

ma

τ 2
∂2ũ

∂t̃2
− ka

∂2ũ

∂ỹ2
+
γa

τ

∂ũ

∂t̃
+

1

a

dV

dũ
= 0 (3.7)

Rescaling V → EV ′ by the barrier height of the potential, E, as defined in Fig. (3.1), we

obtain

ma

τ 2
∂2ũ

∂t̃2
− ka

∂2ũ

∂ỹ2
+
γa

τ

∂ũ

∂t̃
+
E

a

dV ′

dũ
= 0 (3.8)

Finally, we multiply the entire equation by the ratio a/E.

ma2

Eτ 2
∂2ũ

∂t̃2
− ka2

E

∂2ũ

∂ỹ2
+
γa2

Eτ

∂ũ

∂t̃
+
dV ′

dũ
= 0 (3.9)

All terms in the equation of motion for the nth mass are now dimensionless. When

ma2/Eτ 2 ≪ 1, the system is overdamped and the first term of Eq. (3.9) can be neglected.

To reduce the number of coefficients in Eq. (3.9), we rescale ỹ and t̃ again in the following

way:

y′ =

√
E

ka2
ỹ t′ =

Eτ

γa2
t̃ (3.10)

The equation of motion in the overdamped limit is now

− ∂2ũ

∂y′2
+
∂ũ

∂t′
+
∂V ′

∂ũ
= 0 (3.11)

with all dimensionless terms and variables. We have the following relationships between our

47

physical variables and the new dimensionless variables:

y′ =

√
E

ka2
ỹ =

√
E

ka2
1

a
y =

1

a2

√
E

k
y

t′ =
Eτ

γa2
t̃ =

Eτ

γa2
1

τ
t =

E

γa2
t

(3.12)

Thus, given a solution to Eq. (3.11), ũ(y′, t′), we have

u(y, t) = aũ

(√
E

k

y

a2
,
E

γa2
t

)
. (3.13)

Finally, if the last element of the chain is free, this requires ∂u/∂y|y=L = 0 on the

rightmost boundary at y = L. Therefore, ∂ũ/∂y′ = 0 when y′ = L′ =
√
E/kL/a2. On the

left-most boundary at y = y′ = 0, we fix the initial displacement, ũ(0).

3.2.3 Solutions

If we look for stationary solutions, we can find a first-integral for Eq. (3.11) resulting in

−1

2

(
∂ũ

∂y′

)2

+ V ′(ũ(y′)) = C, (3.14)

for some constant C. Applying the boundary condition on the right, we see that C =

V ′(ũ(L′)). Thus, we obtain a general solution

∂ũ

∂y′
=

√
2
√
V ′[ũ(y′)]− V ′[ũ(L′)], (3.15)

where the choice of positive sign outside the square root is consistent with our boundary

conditions.

When ũ(0) = d/a, one solution to Eq. (3.15) is ũ(y′) = d/a: the signal will propagate

completely from one side to the other. The difference in elastic energy from the ground state

48

solution (with ũ(y′) = −d/a) will scale with L and, thus, we expect it to be prohibitive for

particularly long cascades. However, we also expect solutions with ũ(0) = d/a but ũ(L′) < 0,

with a characteristic, dimensionless length η governing the penetration of a signal into the

chain. Thus we expect solutions, u(y), will transition over a length scale ℓ = ηa2
√
k/

√
E.

The elastic energy cost, in this case, will scale with ℓ rather than L. We thus expect two

regimes of behavior: when ℓ < L, an initial perturbation initiated on the “left” of the

signaling cascade will penetrate only a finite distance ℓ; when ℓ > L, we expect all elements

to be on the “right” – the signal will propagate through the entire network. Therefore the

equation

L = ηa2
√
k

E
(3.16)

represents the boundary between an initial perturbation propagating a finite distance and

propagating through the entire network. This equation tells us the scaling relationship

between various wire parameters and can be used to predict the general location and shape

of the ℓ < L and ℓ > L regions for a given set of wire parameters.

It is instructive to consider a specific example, for which V ′(ũ) = (ũ2 − d2/a2)2/2, and

Eq. (3.11) takes the form of the generalized Fisher equation [32, 49]

∂u′(y′, t)

∂t
−D

∂2u′(y′, t)

∂y′2
+ u′

(
u′

n − 1
)
= 0 (3.17)

with n = 2. Based on solutions presented in [70], we construct the stationary solution

u′(y′) = −1 + 2
1

1 + ae
√
2(y′)

(3.18)

valid for a half infinite line starting at y′ = 0, where a = (1−u0)/(1+u0), ũ(0) = u0. Putting

49

this back into the elastic energy yields

E =
(u0 − 2)(1 + u0)

3

3
√
2

, (3.19)

for −1 < u0 ≤ 1. This expression is minimized when u0 = −1, implying that a signal never

propagates in a symmetric, infinitely long chain. Despite this, finite sized chains are likely to

behave differently. Indeed, these results hint that chains with length L < a2
√
k/E – shorter

than the intrinsic scale of Eq. (3.18) – may still propagate signals.

3.3 Results

3.3.1 Simulations

To corroborate our scaling analysis, we performed simulations of the dynamical system in

Fig. 3.2 directly by integrating Eq. (3.5). To obtain the overdamped limit, we set m = 0.

Consider a wire of length L consisting of bistable elements with equilibrium positions at

x + i = ±d. The wire is initially in the ground state with all beams in the xi = −d “left”

position. To initiate a signaling cascade, we applied a displacement of 2d to the first beam

to move it into the x1 = +d “right” position. After a sufficient length of time that the

motion has stopped, we recorded the position xL of the last beam in the wire. If xL < 0, the

signal only propagated a finite distance. If xL > 0, the signal propagated through the entire

network.

We show the relationship between the barrier height E and the length of the wire L

in Fig. 3.3(a). To verify the scaling relationship between L and E in Eq.(3.16), we fit

the boundary between the finite and full propagation regions to an expression of the form

50

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

Length (number of units)

E

Length L

B
ar

rie
r H

ei
gh

t E

Po
te

nt
ia

l D
iff

er
en

ce
 Δ

Length L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Length (number of units)

�

In
te

ra
ct

io
n

Sp
rin

g
St

iff
ne

ss
 k

Length L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.

0.5

1.

1.5

2.

2.5

3.

3.5

4.

4.5

5.

Length (number of units)

In
te
ra
ct
io
n
Sp
rin
g
St
iff
ne
ss

0.577572
L2

0.00580113 L2

Boundary Points

Finite Propagation

Full Propagation

(a) (b)

(c)

−0.001793 + 0.51692
L2

Figure 3.3: For all three plots, the wire length parameters are h = 1, a = 1, and d =
1/4.(a) Scaling relationship between the potential barrier height E and the length of the wire
when varying the beam stiffness. The beam stiffness b ranges from 0 to 5. The interaction
spring stiffness k is set to 1, and the torsional modulus s is set to 0. Each boundary point
corresponds to a simulated wire with a specific choice of length L and characteristic energy E.
(b) Scaling relationship between the potential difference between minima ∆ and the length
of the wire when varying the torsional modulus. The torsional spring stiffness s ranges
from 0 to 0.3. The interaction spring stiffness k and beam stiffness b are both set to 1.
Each boundary point corresponds to a simulated wire with a specific choice of length L and
torsional modulus s. (c) Scaling relationship between the interaction spring stiffness and the
length of the wire. The interaction spring stiffness k ranges from 0 to 5. The beam stiffness
b is set to 1, and the torsional modulus sis set to 0. Each boundary point corresponds to a
simulated wire with a specific choice of length L and interaction spring stiffness k.

51

E = C1L
−2 + C2, with C2 ≈ −2× 10−3 and C1 ≈ 0.51. This suggests a scaling relationship

E − E0 =
η2a4

L2
k (3.20)

with E0 ≈ −2× 10−3. Turning this around,

k =
E − E0

η2a4
L2. (3.21)

We also show the relationship between the potential difference between minima ∆ and

the length of the wire in Fig. 3.3(b). We find ∆ ≈ C1L
−2 +C2, with C2 = 0 and C1 ≈ 0.58.

The relationship between k and wire length is depicted in Fig. 3.3(c) for E ≈ 10−3. An

expression of the form k ≈ C1L
2 with C1 ≈ 6 × 10−3 fits the boundary between the finite

and full propagation regions well. Using the previous results for η2a4, E and E0, we see that

C1 is consistent with (E − E0)/(η
2a4) ≈ 6× 10−3.

3.3.2 Experiments

To validate our results experimentally, bistable elements were designed using Fusion 360

CAD software and fabricated using a Formlabs Form2 SLA 3D printer with the Formlabs

Elastic 50A resin, which has flexible and stretchable properties after curing. The design for

the wires is shown in Fig. 3.4. The bistable elements were elastic beams that buckle under

compression, and the nearest neighbor interactions were facilitated by linear springs. The

wire was printed in an unstressed state, and compressed using a rigid frame, printed using

Formlabs Grey resin. (Fig. 3.4).

To bias the beams to buckle either to the left or right, pre-curvature was added to the

elastic beams by changing the angle of the beam at the fixed end points and midpoint as

shown in Fig. 3.5(e). For wires with biased beams, there was no need to compress the wire

52

(a)

(b)

(c)

Figure 3.4: 3D models of wire components. (a) The initial state of a wire with symmetric
bistable beam elements. (b) Wire slotted into a holding device (frame) that compresses
all bistable beam elements to buckle them uniformly. (c) Interaction springs of varying
thickness. Different spring stiffnesses are achieved through changing the thickness of the
spring. Individual interaction springs are printed specifically for measuring their stiffness.

before sending a signal.

The wire model used for simulations had seven parameters, L, h, d, a, k, b, and s where

values were selected for each. When verifying the scaling relationship found with Eq. (3.16)

with simulations, we picked default values for each parameter that simplified our analysis as

much as possible. We measured each of these parameters directly from the printed beams in

order to run simulations that approximated the behavior of the printed wires. The height of

the beam h and the distance between beams a were found through direct meaurement of the

wire. We determined values for the location of the two potential minima d, the beam stiffness

b, the interaction spring stiffness k, and the torsional modulus s using force-displacement

measurements of the bistable beams and interaction springs.

Force-displacement measurements were performed using a custom setup composed of a

linear displacement stage (Zaber Technologies Inc., T-LSM 100) and a load cell (Loadstar

Sensors Inc., RPG-10). The wire was placed in the rigid frame and compressed to buckle

the beams and set the wire into one of two stable states. The frame was mounted vertically

and a signal passed from top to bottom during the test with a mechanical push. Using

53

the linear displacement stage, we slowly pushed on the bistable wire with the load cell and

recorded the force exerted on the wire as a function of displacement as the beams transitioned

between stable configurations (Fig. 3.5(f-h)). To apply the force to the beam, we used a

rigid component printed out of the same material as the frame and attached it directly to the

midpoint of the beam. The rigid component was fixed to the wire so that the snap-through

transition did not cause the device to lose contact with the load cell.

We conducted force-displacement measurements for the linear interaction springs using

a TA.XTplus texture analyzer (Stable Micro Systems). Each end of the spring was mounted

directly in the texture analyzer, as shown in Fig. 3.5(i), and the spring was slowly compressed

and stretched.

To determine the stiffness k of the linear interaction springs, we fit a straight line to the

force-displacement data and recorded the slope. To determine an approximate value of b

for symmetric beams, we fit the derivative of Eq. 3.1 to the force-displacement data. For

pre-curved beams, we added the torsional spring term Eq. 3.2 to Eq. 3.1 before taking

the derivative and fitting it to the force-displacement data. Details of the methods used to

determine b and s for both symmetric and biased beams are discussed in Appendix A (Sec.

3.6).

To gather data on what wire parameter combinations allow for finite or full signal propa-

gation, we sent a signal down the wire by hand by pushing on the first beam until it reached

the right-buckled position. The beam was held in that position using tweezers for a few

seconds to allow the wire to settle into a final position. If the initial displacement caused all

subsequent beams to snap through to the right-buckled position, then the signal was con-

sidered to have fully propagated along the wire. If the initial displacement moved some of

the beams but not all of them, then the signal only propagated a finite distance. By chang-

ing the length of the wire and the stiffness of the beams and springs, we then plotted our

experimental data the same way we plotted the simulation data in Fig. 3.3 and compared

54

(a)

(b)

(c)

(d) (e)

(f) (g) (h) (i)

Figure 3.5: A wire before (a), during (b), and after (c) a signal is fully propagated through
manual displacement of the first bistable beam in the wire. Comparison between a wire
with symmetric (d) and asymmetric (e) bistable beam elements when mounted in the frame.
(f)-(h) Recording the force-displacement data for a single bistable beam. (i) The interaction
spring mounted and ready for force-displacement measurements. All beams shown have an
end-to-end distance of 24mm. All interaction springs have a rest length of 11.2mm. The
length of the full wires shown in (a-e) is approximately 10cm.

the results.

Fig. 3.6 compares the finite and full propagation regions from experiments and simula-

tions for different values of the interaction spring stiffness and torsional modulus. Compar-

ing the regions produced by varying the interaction spring stiffness shows only a qualitative

match between simulations and experiments. When measuring the stiffness of the printed

springs, they were only compressed a small amount and were not allowed to buckle side to

side. When sending a signal along the printed wires, however, there was substantial buckling

of the interaction springs, as shown in Fig. 3.5(b). Thus, the additional buckling lowered the

effective barrier height from what was measured. Indeed, we found quantitative agreement

55

0

50

100

150

200

0

200

400

600

800

1000

1200

 In
te

ra
ct

io
n

Sp
rin

g
St

iff
ne

ss
 k

 (s
im

ul
at

io
n)

Interaction Spring Stiffness k (experim
ent)

Length L

-0.00013

-0.0001

-0.00005

0

0.00005

0.0001

0.00013

To
rs

io
na

l M
od

ul
us

 t

Length L

(a) (b)

X Finite Propagation

Full Propagation

Experiments Simulations
Finite Propagation

Full Propagation

Figure 3.6: Comparison between signal propagation experiments and numerical simulations.
(a) Qualitative comparison between simulations and experiments for varying interaction
spring stiffness. The wire parameter values used for simulations are h = 0.012m, d =
0.0055m, a = 0.0112m, b = 120N/m, and s = 0N/m. (b) Direct comparison between
simulations and experiments for varying minima difference ∆ of the bistable beam potential.
In simulations, this was done by varying the torsional stiffness on each bistable element. In
experiments, this was done by changing the angle of the beam at its fixed endpoints (see
Fig. 3.5(e) for example). The wire parameter values used for simulations are h = 0.012m,
d = 0.0043m, a = 0.0112m, b = 230N/m, and k = 30N/m.

56

between simulation and experimental results if we reduced the simulation interaction spring

stiffness by a factor of 6 from what was initially estimated from deformations that do not

buckle.

Using this result, we used a rescaled value for the interaction spring stiffness for the

simulations in Fig. 3.6(b). When the torsional modulus was negative, so that propagating a

signal causes the beams to transition from a higher energy state to a lower energy state, we

confirmed that signals always propagate fully for any number of elements. For positive values

of the torional modulus, however, signal propagation depended on the number of elements

and was consistent with predictions from simulations.

3.4 Conclusion/Discussion

In this paper we analyze signaling cascades of bi-stable mechanical elements coupled by

springs triggered by the imposition of a fixed displacement on one of the elements. While

signals can propagate at any distance when the bistable elements switch from a higher energy

to lower energy state, here we find that signals can only propagate a finite distance when the

elements transition to either a higher energy state or a state with the same energy. Numerical

analysis of simulation data in the overdamped limit shows that signals can propagate when

L < ηa2
√

k

E − E0

, (3.22)

even for a completely symmetric signalling cascade.

Though our analysis was for a simple signalling cascade, one expects even more complex

digital mechanical logic elements to also present energy barriers that must be overcome by

a propagating signal. For true reversible logic, this finite propagation length might present

a true limitation to the size and complexity of a device when realizing repeatable, complex

57

logic in a soft mechanical system.

3.5 Acknowledgements

The authors gratefully acknowledge support for this work provided by the US Army Research

Office through grant W911NF-21-1-0068.

3.6 Appendix A: Fit for Simulation Parameters

3.6.1 Interaction Springs

We fit a straight line that crosses the origin to the force-displacement data for springs of

varying thickness. The slope of the line is the linear spring stiffness of the printed springs.

Thickness (mm) Stiffness (N/m)
0.6 30.77
0.8 187.12
1.0 715.47
1.2 1123.95

Table 3.1: Interaction spring stiffness for various beam thicknesses.

3.6.2 Symmetric Bistable Beams

We recorded force-displacement data for a single bistable beam and integrated it numerically

using a custom MATLAB program to get the potential-displacement data for our printed

beams. We measured h directly from the wire. We calculated d by taking half the distance

between the two minima in the potential-displacement data.

We then took the beam potential V (x) from Eq. (3.1) and fit it to our force- and

potential-displacement data in one of five ways: fit −dV/dx to the maximum of the force

58

data, fit −dV/dx to the minimum of the force data, fit V (x) to the energy barrier of the

potential data, or by using the built-in Mathematica function FindFit with both the force

and potential data. The first three values of b are averaged together to give an approximate

beam stiffness, and the last two are left as-is.

End-to-End Distance (mm) h (m) d (m)
22 0.011 0.0066
24 0.012 0.0055
26 0.013 0.0043

Table 3.2: Dimensions for symmetric bistable beams

FindFit Stiffness (N/m)
End-to-End Distance (mm) Average Stiffness (N/m) Force Data Potential Data

22 80 83 83
24 119 135 123
26 187 211 178

Table 3.3: Beam stiffness for symmetric bistable beams.

3.6.3 Asymmetric Bistable Beams

For the bistable beams printed with pre-curvature, we need to determine the torsional mod-

ulus s and the beam stiffness b. Just as with the symmetric beams, we measured h directly

from the wire and calculated d by taking half the distance between the two minima in the

potential-displacement data. We took the beam potential V (x) that included the terms in

both Eq. (3.1) and (3.2) and used the built-in Mathematica function FindFit to solve for

both b and s at the same time.

59

h (m) d (m) b (N/m) s (J)
Uphill Push 0.012 0.0043 233 0.00013

Downhill Push 0.012 0.0047 162 0.00013

Table 3.4: Beam stiffness and torsional modulus for asymmetric bistable beams. First row:
the beam transitions from a lower minimum to a higher minimum (uphill push). Second
row: the beam transitions from a higher minimum to a lower minimum (downhill push).

60

Chapter 4

The Flip-Flop Linkage

In this chapter, we discuss the flip-flop, the first candidate for a mechanical transistor that

we investigated, and outline the theoretical and experimental work done trying to integrate

the flip-flop into the mechanical wires from Chapter 3. The devices discussed in this chapter

didn’t end up working as intended, but the time spent investigating the flip-flop’s behavior

provided useful information that guided future work.

4.1 Description

The flip-flop is a linkage designed specifically to be used as a mechanical bit that can be in

a 0 or 1 state [76]. There are two distinct motions of the flip-flop: one where the top half

(vertices 6, 7, and 8) moves side to side, and one where the bottom half (vertices 1, 2, and

3) moves side to side (Fig. 4.1). Once either the top or bottom half shifts to one side, the

linkage is ‘locked’ into that motion and only that half is allowed to move.

The flip-flop can be thought of as a modified version of the four-bar linkage presented

in Chapter 1. In this chapter, we will use a version of the four-bar linkage where the bar

connecting vertices 1 and 4 in Fig. 1.2 is removed and two pinned vertices are added. The

61

7 8

1 2

6

3

54

a

b

c

Figure 4.1: The flip-flop linkage. The triangle on vertices 4 and 5 represents a pinned joint.
Vertex coordinates are as follows: p1 = (0, 0),p2 = (b, 0),p3 = (b

2
, a
2
),p4 = (0, a),p5 =

(b, a),p6 = (b
2
, 3a

2
),p7 = (0, 2a),p8 = (b, 2a)

bars connected at one end to the pinned vertices will be called rotors because they can rotate

around that fixed point. To fully explain and develop some intuition for why the flip-flop

has this locking behavior, we will slowly modify the four-bar linkage until it becomes the

flip-flop linkage.

To start off, we assign two positions of the four-bar linkage to represent the 0 and 1

states (Fig. 4.2). In the 0 state, both rotors will be vertical. Any shift to either the left or

right will be considered the 1 state. The four-bar linkage is allowed to transition between all

three configurations shown in Fig. 4.2 in a smooth motion. All bars in Fig. 4.2 are shown as

having the same length, but the linkage will behave in the same way as long as the two rotors

are the same length and the middle beam and pinned vertices are the same length/distance

apart.

If we add an extra rotor to the four bar linkage as shown in Fig. 4.3, we can create both

rigid and flexible linkages. When the additional rotor is the same length as the other two

and is vertical at the 0 state, then the linkage is still able to shift side to side. If one of those

conditions is not met, then the linkage is rigid and locked in place.

62

Figure 4.2: The 0 state of the four bar linkage will be the configuration where both rotors
are vertical (left-most diagram). The 1 state of the rotor will be the configuration where
the whole linkage is shifted to one side or the other (center and right-most diagram). The
direction (left or right) that the linkage shifts is not important at this point, just that it has
shifted away from the 0 state.

Figure 4.3: The linkage on the left is allowed to shift from side to side because each rotor is
the same length and all bars are vertical in the 0 state. The linkages in the center and on
the right are rigid because the middle rotor is not the same length as the outer two rotors.
These are only two of the ways to create a linkage with this arrangement of bars and fixed
vertices that is rigid.

The next modification to the linkage in Fig. 4.3 that we need to make is to replace the bar

connecting the three rotors with a rigid triangle (Fig. 4.4). This linkage may look different

from the one shown in Fig. 4.3, but when writing out the length constraint equations and

calculating the allowed motions of the linkage, the two linkages move in the same way near

the 0 state.

The flip-flop can be thought of as two overlapping copies of the linkage in Fig. 4.4. When

both the top and bottom half are both in the 0 state, we can shift one half to the side without

a problem. Each half can move just like the linkage in Fig. 4.4. Once one half is shifted, the

other is locked because the three rotors for that half are not all vertical.

63

Figure 4.4: This linkage is still allowed to shift side to side.

Figure 4.5: The top and bottom half of the flip flop can shift side to side. On the far left,
both the top and bottom half are in the 0 state. Once one half is shifted to the 1 state, the
remaining half is locked in the 0 state because the three vertical bars are not all at the same
angle.

It turns out that multiple flip-flops can be combined with other base components to

create multiple logic gates, including a NAND gate [76]. Therefore, the flip-flop can be used

to create a functionally complete system, which is one of the many conditions for saying a

system can compute. From here, we consider two questions:

1. What property of the flip-flop linkage makes it behave like a logical bit? If we can

identify that property, can we design other linkages that are also have bit-like behavior?

2. Does the locking behavior of the flip-flop allow us to use it directly as a transistor?

How could it be integrated into a mechanical wire to gate a signal?

64

4.2 Rigidity Theory Analysis

In this section, we will use the linkage analysis techniques from Chapter 1 to investigate

properties of the flip-flop and search for information related to its locking behavior. The

exact version of the flip-flop that we will look at is shown in Fig. 4.1.

4.2.1 Self Stresses

The first thing we will do is solve for any self stresses of the flip flop. By substituting our

vertex positions for the 0 state (shown in Fig. 4.1) into Eq. 1.11, we can write out the

system of equations needed to calculate the self stresses for the flip-flop. If we label bars

(1,2), (1,4), (2,5), (4,7), (5,8), and (7,8) as the “outer” bars and (1,3), (2,3), (3,6), (6,7), and

(6,8) as the “inner” bars, this block of equations simplifies down to the following self stress:

σinner = −2σouter (4.1)

For the self stress we found for the flip-flop at the 0 state, we can have one of two

situations:

• All of the outer bars have a positive stress and are under tension, and all of the inner

bars have a negative stress and are under compression.

• All of the outer bars have a negative stress and are under compression, and all of the

inner bars have a positive stress and are under tension.

4.2.2 Length Constraint Perturbations

Next, we will perform the length constraint perturbation analysis introduced in Chapter 1

and used in Chapter 2 on the flip-flop.

65

1

1 1

1

-2

1

-2 -2

-2-2

1

Figure 4.6: Self Stresses for the flip flop in the 0 state. Each value on the bars represents the
magnitude of the self stress. The values shown represent one of the two possible self stresses.

4.2.2.1 First Order Equation

We start off by looking at the first order length perturbations from Eq. 1.24. Substituting

in the self stress found in the previous section and rearranging the equation gives us

2
(
δℓ

(1)
(1,3) + δℓ

(1)
(2,3) + δℓ

(1)
(3,6) + δℓ

(1)
(6,7) + δℓ

(1)
(6,8)

)
= δℓ

(1)
(1,2) + δℓ

(1)
(1,4) + δℓ

(1)
(2,5) + δℓ

(1)
(4,7) + δℓ

(1)
(5,8) + δℓ

(1)
(7,8).

(4.2)

66

Now we look directly at the length of each bar. Including the first order length changes, the

length squared of each bar is written as

L2
(1,2) = b2 + δℓ

(1)
(1,2), L2

(1,3) = c2 + δℓ
(1)
(1,3), L2

(1,4) = a2 + δℓ
(1)
(1,4)

L2
(2,3) = c2 + δℓ

(1)
(2,3), L2

(2,5) = a2 + δℓ
(1)
(2,5), L2

(3,6) = a2 + δℓ
(1)
(3,6)

L2
(4,5) = b2 + δℓ

(1)
(4,5), L2

(4,7) = a2 + δℓ
(1)
(4,7), L2

(5,8) = a2 + δℓ
(1)
(5,8)

L2
(6,7) = c2 + δℓ

(1)
(6,7), L2

(6,8) = c2 + δℓ
(1)
(6,8), L2

(7,8) = b2 + δℓ
(1)
(7,8).

(4.3)

Taking the square root of all the lengths and expanding up to first order gives

L(1,2) ≈ b+
δℓ

(1)
(1,2)

2b
, L(1,3) ≈ c+

δℓ
(1)
(1,3)

2c
, L(1,4) ≈ a+

δℓ
(1)
(1,4)

2a

L(2,3) ≈ c+
δℓ

(1)
(2,3)

2c
, L(2,5) ≈ a+

δℓ
(1)
(2,5)

2a
, L(3,6) ≈ a+

δℓ
(1)
(3,6)

2a

L(4,5) ≈ b+
δℓ

(1)
(4,5)

2b
, L(4,7) ≈ a+

δℓ
(1)
(4,7)

2a
, L(5,8) ≈ a+

δℓ
(1)
(5,8)

2a

L(6,7) ≈ c+
δℓ

(1)
(6,7)

2c
, L(6,8) ≈ c+

δℓ
(1)
(6,8)

2c
, L(7,8) ≈ b+

δℓ
(1)
(7,8)

2b
.

(4.4)

Because there are so many ways to deform the original shape, the same kind of result that

was found for the example linkage in Fig. 1.7 doesn’t show up here.

4.2.2.2 Second Order Equation

Next, we will go up to second order and expand and rearrange Eq. 1.25. If we substitute in

the flex that moves the top half of the flip-flop (vertices 6, 7, and 8), the only terms on the

67

left hand side of Eq. 1.25 that are nonzero correspond to bars (4, 7), (3, 6), and (5, 8).

|p(1)
3 − p

(1)
6 |2 = |0− xp̂|2 = |xp̂|2 = x2

|p(1)
4 − p

(1)
7 |2 = |0− xp̂|2 = |xp̂|2 = x2

|p(1)
5 − p

(1)
8 |2 = |0− xp̂|2 = |xp̂|2 = x2

(4.5)

Eq. 1.25 then becomes

∑
(i,j)

σ(i,j)δℓ
(2)
(i,j) = σ(4,7)|p(1)

4 − p
(1)
7 |2 + σ(3,6)|p(1)

3 − p
(1)
6 |2 + σ(5,8)|p(1)

5 − p
(1)
8 |2

= (1)x2 + (−2)x2 + (1)x2

= 0

(4.6)

This tells us that for the motion of the flip-flop that we are interested in, any change to

that motion caused by small length changes to the bars is either all at first order or at some

higher order. Because translation in the x or y direction would also make the left hand

sides simplify to zero, the only possible motion that could have second order effects would

be rotation. However, because we pinned two of the vertices in the linkage, we have already

removed any rotational motions. Therefore, any useful information is either in the first order

equation, or happens at higher orders.

4.3 Flip-Flop as a Transistor

In this section, we explore ways to integrate the flip-flop into the mechanical wire studied

in Chapter 3 so that it can act as a transistor. The side-to-side motion of the flip flop

combined with its locking behavior make it a good candidate to use with our mechanical

wires – the side-to-side motion is similar to the horizontal motion of the bistable beams when

they transition from one minima to the other.

68

When a signal is sent down the wire, each beam shifts horizontally. If we connected a

beam to each side of the top half of a flip-flop, it would also shift horizontally when the

signal travels across it. By controlling the position of the bottom half of the flip-flop, we

could control if a signal fully propagated along the wire.

The flip-flop would start off in a fully neutral position (both the top and bottom halves

at state 0) with the beams in the wire all buckled to the left. If we sent a signal along the

wire, the top half of the flip-flop would shift to the right, and the signal would propagate

across the flip-flop. If we instead shifted the bottom half of the flip-flop to the side before

sending the signal down the wire, the top half of the flip-flop won’t be able to move, and the

signal should be blocked.

First, we explore the behavior of the wire and flip-flop system through simulations in

Mathematica. Using the mechanisms package, we construct the system out of fixed vertices,

linear springs, and rigid bars. Then, just as we did in Chapter 3, we initiate a signal by

first displacing a beam somewhere in the system. With this initial condition, we then let

Mathematica numerically solve the equations of motion for the system for a time period long

enough that the system has stopped moving. Because we consider a single example at one

time, the length of that time period is manually adjusted for each new example.

4.3.1 Simulation Design and Testing

To connect the flip-flop to the wire, we first added a horizontal linear spring to vertices 7

and 8 the flip flop. These extra springs were then connected directly to the midpoint of the

bistable beams in a wire. Fig. 4.7 shows a schematic of what that type of connection looks

like. Because we need to avoid overlapping bars due to future experimental constraints,

there is a limit to how short those connecting beams can be. However, there isn’t a similar

limit to how long we make them. To introduce some consistency in our design that makes

combining multiple wires and flip-flops simpler, we chose to “remove” a single bistable beam

69

and “replace” it with the flip-flop. The location we removed and replaced a bistable beam

is outlined by a blue box in Fig. 4.7.

Figure 4.7: The wire consists of bistable beams with dimensions h = 1 and d = 1/4 (see
Chapter 3 for details on the design of the wire). The flip-flop has bar lengths a = 1, b = 1,
and c = 1√

2
. The two bars connecting the flip-flop to the wires both have length 1

2
.

For this system containing a wire and transistor, the transistor can be in two states.

In the un-gated state where the bottom half of the flip-flop is neutral, a signal can fully

propagate across the whole wire. In the gated state where the bottom half is shifted to the

side, a signal will be blocked by the gate and only propagate a finite distance along the wire.

Just like in Chapter 3, we initiate a signal by pushing on the left most beam of the wire to

move it into the right-buckled state.

Figure 4.8: Left: the flip-flop in the un-gated state. Right: the flip-flop in the gated state.

Fig. 4.8 shows the flip-flop in both the un-gated and gated states. To actually switch

between these two states, there needs to be some sort of input going to the bottom half of the

flip-flop that causes this switch. It could be an external push from some other component,

70

but because of how we chose to combine the flip-flop and wires, it’s very easy to attach

another wire to the bottom half. With this full design, all inputs to, and outputs from, the

flip-flop are provided by mechanical wires (Fig. 4.9). To change the state of the flip-flop

transistor from un-gated to gated, we send a signal along the bottom left wire.

Figure 4.9: Top Row: the full device in the un-gated state before (left) and after (right) a
signal is sent along the top wire. Bottom Row: the full device in the gated state before (left)
and after (right) a signal is sent along the top wire.

Fig. 4.9 shows the results of sending a signal along the top wire when the flip-flop is

gated and un-gated. In these simulations, we set all linear spring stiffnesses in the wires

equal to 1 (including the springs connecting the wire to the flip-flop) and set the torsional

modulus equal to 0, essentially removing the torsional spring at the midpoint of the bistable

beams. For the first round of simulations, the flip-flop was made of rigid bars. With these

combinations of stiffnesses, the flip-flop transistor behaved exactly as expected.

71

4.3.2 Flip-Flop Logic Gates

The device shown in Fig. 4.9 with three wires attached to it can be directly compared to

the transistors used in electronic circuits. Fig. 4.10 shows both the flip-flop device and the

circuit diagram symbol for a transistor with the corresponding inputs and outputs labeled.

The input labeled base is where we send a signal to the transistor. When the base input

reads a value of 1/high/+V, a value of 1/high/+V sent to the collector is transmitted across

the transistor and read at the emitter location. The device shown in Fig. 4.10 has similar

but opposite behavior. With a reading of 0/low at the base input, a value of 1/high/+V

sent to the collector is transmitted across the transistor and read at the emitter location.

While our device still has the gating property that a transistor has, the output behavior for

a given input behavior is flipped around.

collector

base

emitter

(a) (b)

base

emittercollector

Figure 4.10: Comparison between (a) a flip-flop transistor and (b) an electronic transistor.

To remedy this, we can slightly modify the initial state of our wire and flip-flop transistor,

as shown in Fig. 4.11. This new version of our device now behaves exactly like a transistor.

When a signal is sent along the base wire (from right to left), it switches the flip-flop from

the gated to un-gated state, allowing a signal to propagate from the collector endpoint to

the emitter endpoint.

Unlike electronic transistors, our mechanical transistor has a bit of flexibility (figuratively

72

collector

base

emitter

Figure 4.11: With this modification to the base wire and bottom half of the flip-flop, the
device now behaves exactly like a transistor.

speaking) in how it behaves depending on the orientation of the base wire. That flexibility

allows us to construct both a NOR and an AND gate. The truth tables for both gates are

shown in Table 4.3.2

NOR

A B OUT
0 0 1
0 1 0
1 0 0
1 1 0

AND

A B OUT
0 0 0
0 1 0
1 0 0
1 1 1

Table 4.1: Truth tables for the NOR and AND gates.

An input of 0 corresponds to us not sending a signal to that input. An input of 1

corresponds to us displacing the beam at that input and allowing a signal to propagate.

Once we provide the proper signal to inputs A and B, we read the output by initiating a

signal at the left end of the top wire.

Our version of a NOR gate uses the flip-flop transistor shown in Fig. 4.10. If a signal is

initiated at either input A or at input B, the flip-flop is shifted into the gated state. When

a signal is sent along the top wire, the flip-flop blocks that signal from propagating all the

way to the OUT output.

Our version of an AND gate uses the flip-flop transistor shown in Fig. 4.11. If a signal

73

A B

OUT

(a) (b)
A B

OUT

+V

Figure 4.12: Comparison between (a) a NOR gate with flip-flops and (b) the circuit diagram
for a NOR gate.

A B

OUT

(a) (b)

A B

OUT

+V

Figure 4.13: Comparison between (a) an AND gate with flip-flops and (b) the circuit diagram
for an AND gate.

is initiated at either input A or at input B, the flip-flop is shifted from the gated state to

the un-gated state. Both flip-flops need to be switched to the un-gated state in order for a

signal on the top wire to propagate all the way to the OUT output.

4.3.3 Experimental Design and Testing

With a simulation demonstration of the flip-flop being used to create logic gates, we tran-

sitioned to designing an experimental version of the flip-flop that is compatible with our

experimental mechanical wires shown in Chapter 3. We wanted to verify that our designs

would work as 3D printed devices before investigating how to construct more complicated

logic gates. The designing, printing, and testing of these devices was done by YongJae Kim

and David Limberg. YongJae was responsible the design and testing of the mechanical wires

74

themselves, and David focused on creating the flip-flop component and integrating it into

YongJae’s wires.

(a) (b) (c)

(d) (e) (f)

Figure 4.14: Experimental design of the flip-flop as a transistor in our mechanical wires.
(a) Fusion 360 CAD design for a flip-flop that can be 3D printed with elastic resin. (b) A
printed device assembled in the rigid frame with beams in the uncompressed state. (c) The
device in the compressed state. (d) The device in the un-gated state after a signal has been
sent along the top wire. (e) The device in the gated state. (f) The device failing to properly
block a signal.

After multiple rounds of designing, printing, testing, and editing, we settled on a final

flip-flop design shown in Fig. 4.14(a). The biggest difference between the simulation design

and this design is that there is a large gap in-between the beams on each side of the flip-flop

(in Fig. 4.1, these are the beams connecting vertices 7 and 4, 4 and 1, 8 and 5, and 5 and 2).

The gap is there to accommodate the frame needed to hold and compress the mechanical

wires. This gap was present in the original design for the flip-flop in [76], and we initially

75

removed it to simplify the linkage analysis of the flip-flop. The gap does not affect the

motions of the flip-flop because we can still keep all five vertical beams the same length.

The first design choice we made was to print the triangles in the flip-flop as solid pieces

to keep them as rigid as possible. Because the flip-flop needs to be printed as one continuous

piece of material to be compatible with our specific wire design, the rotary joints at each

vertex needed to be replaced by flexures. Each beam has a uniform thickness everywhere

except for the very ends where they taper to a point that is as small as allowed given the

resolution limits on the 3D printer used.

Because we need the flip-flop to be in the neutral position when the beams are buckled,

we needed to assemble the device in the frame with the flip-flop in a state where both halves

are buckled to the right as shown in Fig. 4.14(b) (a position that is not allowed for a totally

rigid device). Because our flip-flop is made of an elastic material, we can assemble the device

this way without issue, but the flip-flop will be in a stressed state, with possible out of plane

buckling, when the beams are un-compressed. Once we compress the beams, they will all

shift to the left, which in turn will move the flip-flop to its neutral position as shown in Fig.

4.14(c).

Fig. 4.14(c) shows the flip-flop in the un-gated state. When a signal is initiated on the

top wire from the left, the top half of the flip-flop shifts to the side and allows the signal

to fully propagate (Fig. 4.14(d)). In this un-gated state, our device behaves as expected

even with the multiple differences between the ideal, rigid flip-flop and our soft, 3D printed

version.

When testing the gated state, we notice a lot of undesirable behavior. Fig. 4.14(e) shows

the flip-flop in the gated state. When we initiate a signal on the top wire from the left,

the flip-flop does not block the signal at all. The top half of the flip-flop shifts to the right,

the signal fully propagates, and then the bottom half of the flip-flop shifts back to the left

and returns to the un-gated position. A frame from a video of this motion is shown in Fig.

76

4.14(f). Just as the signal on the top wire finishes propagating, we see the bottom half of

the flip-flop begin to return to the neutral position as shown by the position of the beams in

the bottom wire. We refer to this behavior as a “backflow” problem. We intended to only

send a signal from the left to the right along the top wire, but because of the breakdown in

the flip-flop’s behavior, we saw signals going in the backwards direction (from right to left)

along the bottom wire.

Our first attempt at investigating the backflow problem was to test the gated state while

holding the bottom half of the flip flop in place. Unfortunately, this did not improve the

behavior of the device. The elastic material that the flip-flop is made of is too compliant – the

locking property of the flip-flop we wanted to use to get transistor-like behavior essentially

disappeared completely. Instead of seeing the backflow problem, we saw out of plane buckling

of the flip-flop.

4.3.3.1 Troubleshooting: Energy Landscape

In the previous simulations of the combined flip-flop and wire devices, we made the flip-flop

completely rigid. Based on experiments, our assumption that the fip-flop would be rigid (or

at least much stiffer than the wires) when constructed with a soft material was not correct.

To investigate why the flip-flop did not behave correctly in the gated state and if there was

a design change we could make to fix this behavior, we analyzed the energy landscape for a

flip-flop made out of linear springs.

Fig. 4.15 shows the potential energy of the flip-flop when all 11 rigid bars are replaced

with linear springs with a stiffness of 1 and rest length equal to the length of the original rigid

bars. To collect our data, we displaced vertices 1 and 7 (Fig. 4.1) by some amount Dtop and

Dbottom, pinned vertices 1 and 7 in place, then let the system relax into the minimum energy

position for that amount of displacement. We repeated this process for all combinations of

displacements and visualized the results using ContourPlot[]. Because all of our units have

77

0 0.25 0.5
0

0.25

0.5

Displacement of Bottom

D
isp
la
ce
m
en
to
fT
op

Energy of Flip Flop

0 10 20 30 40 50
0

10

20

30

40

50

Displacement of Bottom

D
isp
la
ce
m
en
to
fT
op

Energy of Flip Flop

0.0002
0.0005
0.0008
0.0011
0.0014
0.0017
0.0020
0.0023
0.0026
0.0029

Figure 4.15: The total potential energy of the flip-flop when the top and bottom halves are
shifted to the right.

been arbitrary, the values on the legend are just meant to indicate which contours correspond

to higher and lower energies.

Because all of the bars in the linkage can now stretch and compress slightly, the flip flop

can jump between the branches of its rigid configuration space more easily. For a completely

rigid flip-flop, the configuration space lies along the x- and y-axis in Fig. 4.15. Ideally, we

would keep this behavior with experimental versions and only the top OR the bottom of the

flip flop could move. However, the energy cost of jumping directly from the bottom right

corner to top left corner is low enough that the flip flop can perform this motion outside

of the ideal configuration space. This transition is what we saw when the flip-flop behavior

broke down in our transistor examples.

78

4.4 Summary

There were multiple roadblocks to creating functional flip-flop transistors for our mechanical

wire design. While the method for integrating the flip-flop with our mechanical wires seemed

promising in simulations, the system did not work well enough to use in devices made of soft,

elastic materials. If the flip-flop is to be used as a transistor in a mechanical computation

device, we need to either 1. change how we realize the flip-flop so that it works with the

soft 3D printed wires, 2. change how we realize the mechanical wires so that it works with a

rigid flip-flop that has rotary joints, or 3. find a new way to realize both the wires and the

flip-flop.

79

Chapter 5

Configuration space engineering for

the topological gating of mechanical

devices

Abstract

Linkages are mechanical devices constructed from rigid bars and freely rotating joints studied

both for their utility in engineering and as mathematical idealizations in a number of physical

systems. Recently, there has been a resurgence of interest in designing linkages to perform

certain tasks from the physics community. We describe a method to design the topology

of the configuration space of a linkage by first identifying the manifold of critical points,

then perturbing around such critical configurations. We then demonstrate our procedure by

designing a mechanism to gate the propagation of a soliton in a Kane-Lubensky chain of

interconnected rotors.

80

5.1 Introduction

Linkages serve as prototypical mechanical models for many different physical systems, in-

cluding animal limbs and joints [10, 89, 66], polymer physics [72], protein allostery [97, 98,

40, 46, 104], DNA rigidity [71, 61] origami [65, 101, 67] and jamming [96, 21, 23]. At a basic

level, a linkage is a graph whose edges have a fixed length but whose vertices are otherwise

freely rotating joints. Yet this superficial simplicity belies behavior that can be surprisingly

complex. One of the first important mathematical results was Kempe’s universality theorem,

which showed that a linkage can be designed such that a given vertex traces out a portion

of any rational algebraic curve. [57, 62].

The results of following the proof’s design procedures can be unwieldy for even simple

curves, yet there are many applications where the precise motion of the vertices of a link-

age is less important than the motion’s qualitative features. An example is the celebrated

Kane-Lubensky (KL) chain [50], a series of rotors joined by springs, which supports the

propagation of a soliton called a “spinner” in which each rotor, in turn, rotates a full 360◦

degrees [16]. The existence and behavior of this soliton is robust under length changes to

the rotors, depending on the topology of the configuration space rather than its particu-

lar shape [68]. Additionally, many linkages have branched configuration spaces, meaning

that many different qualitative motions are accessible. For example, generic origami and

kiragami mechanisms have highly branched configuration spaces, leading to pluripotency

[39, 15]. Similar branched configuration spaces have been used to design mechanical logic

devices [76] and kinematotropic mechanisms that can change how many degrees of freedom

they can access [110, 34]. For flexible or imperfectly fabricated mechanisms, in which the

fine structure of the motion cannot be controlled anyway, understanding how the topology

of their configuration spaces relate to qualitative motions is crucial.

In this paper, we introduce an approach to linkage design that explores this relationship

81

by focusing on the critical points of a configuration space [60, 31]. At a critical point, a mech-

anism has an anomalously large class of potential linear motions available to it, but higher

order corrections from the mechanical constraints restrict the motion to a subset of these mo-

tions [80, 20, 22, 78]. Critical points are delicate; even small perturbations of the mechanism

geometry will destroy them. However, by carefully controlling those perturbations, we show

that we can construct a mechanism that allows some control over the configuration space’s

topology. Our design approach can be summarized in two steps: (1) design a mechanism

with a branched configuration space, then (2) perturb the mechanism geometry away from

the branched configuration space to a smooth one with controlled topology. To illustrate

this approach, we will apply our design methodology to the KL chain. By replacing one

of the unit cells with a designed mechanism, we show that the propagation of the spinner

soliton can be controllably gated.

In Sec. 5.2, we review relevant parts of rigidity theory and mechanisms. In Sec. 5.3, we

describe mathematical tools that provide a geometrical interpretation to critical points. This

interpretation will provide the basis of our design methodology, which we will illustrate with

an example containing five bars. Finally, in Sec. 5.4, we will use our formalism to explicitly

design a mechanism to gate the KL chain. Importantly, the operation of the resulting gate

is robust with respect to small perturbations. Finally, we conclude with a brief discussion

highlighting new directions enabled by this work.

5.2 Critical points in mechanisms

5.2.1 Mathematical rigidity

In this section, we review the basic mathematical description of mechanisms. Though we

focus on linkages, which are constructed entirely from free-rotating joints and inextensible

bars, the formalism can be generalized to mechanisms with other holonomic constraints. We

82

define a linkage as a collection of V vertices in d dimensions joined by E rigid bars. The

configuration of a linkage can then always be represented by a point, u, in the space of vertex

positions, which we will denote as M, and has dimension M = V d. We assume there are E

bars in the linkage and denote the length of the αth bar, ℓα(u). The configuration space of

the linkage can then be represented by the family of equations,

ℓ2α(u) = L2
α (5.1)

where Lα is the target length of the αth bar. Note that Eq. (5.1) is written using the square

of ℓα(u) so that it is can be an analytic function everywhere. By replacing ℓα(u) with a more

general class of functions in Eq. (5.1), we can also describe mechanisms with more complex

components beyond rigid bars.

Rather than analyzing the configuration space for specific values of Lα, we will instead

analyze the entire family of configuration spaces that can occur with a fixed network topology

by changing the Lα. Between Kempe’s universality theorem and the potential arbitrariness

of ℓα(u), however, it is indeed difficult to say a great deal more about the configuration space

with any kind of generality. Therefore, we assume that ℓ2(u) is an analytic function of u

and that E ≤ V d. With these assumptions, the Jacobian matrix, whose components are

Jαi(u) =
∂ℓ2α(u)

∂ui
, (5.2)

provides critical information about the mechanism. Naively, one would expect the configu-

ration space of the mechanism to be D =M −E (for M > E). Indeed, the inverse function

theorem implies that the configuration space is a smooth D dimensional manifold in any

open set of M in which the Jacobian matrix is full rank. At such a configuration u, the

83

tangent space coincides with the right null space of Jαi(u),

∑
i

Jαi(u)δui = 0. (5.3)

The solutions δui of Eq. (5.3) are called zero modes.

Any point uC at which the Jacobian fails to be full rank, on the other hand, we call a

critical point, and the corresponding edge lengths ℓ2α(uC) we call a critical value. Critical

points are characterized by self stresses, σα, which are elements of the left null space of

Jαi(uC), ∑
α

σαJαi(uC) = 0. (5.4)

Because of their relation to critical points, we will see that self stresses play an important

role in the topology of the configuration space.

Sard’s theorem ensures that critical values (but not necessarily critical points) are a set

of measure zero. In that sense, most choices of edge lengths lead to a configuration space

that is a smooth D dimensional manifold. Consequently, any change in the configuration

space’s topology that occurs as the Lα change must happen at a critical point. Thus, these

critical points also govern the overall topology of the configuration space of a mechanism.

In the next section, we proceed to analyze the geometry of the configuration space at

and near such critical points.

5.2.2 Shape of the configuration space at critical points

To understand the shape of the configuration space, we expand ℓ2α(u + δu) for small defor-

mations, δu having components δui, around the critical point, obtaining

0 =
∑
i

Jαiδui +
1

2

∑
ij

∂2ℓ2α(uC)

∂ui∂uj
δuiδuj +O(δu3). (5.5)

84

It is common at this stage to write a formal series expansion, δu = δu(1) + δu(2) + · · · , and

substitute it into Eq. (5.5). One finds δu(1) is a zero mode of the Jacobian satisfying [22]

1

2

∑
α

∑
ij

σ(n)
α

∂2ℓ2α(uC)

∂ui∂uj
δu

(1)
i δu

(1)
j = 0, (5.6)

where {σ(1)
α , σ

(2)
α , · · · } is a basis for the space of self stresses at uC .

To proceed, we make further assumptions. The most important of these is that Eq. (5.6)

completely characterizes the local geometry of the critical point. It is well-known that if no

solution to Eq. (5.6) exists then the linkage is rigid, but the converse does not necessarily

hold. There are mechanisms whose rigidity is only visible at higher order, as well as mecha-

nisms that are rigid at order larger than two but, nevertheless, are mobile [20]. Experience

suggests that these examples are rarer than the better behaved examples we consider here,

but we are unaware of any results quantifying their rarity or even a simple means to deter-

mine when Eq. (5.6) is sufficient to describe the geometry of the critical point accurately.

For the scope of this paper, it will prove sufficient to assume we can safely truncate our

expansion of δu at second order and check, post hoc, that the results produced by our design

procedure satisfy our assumptions.

We will make three other assumptions as well:

1 All critical points, uC, lying on a configuration space of constant Lα are isolated. There

are linkages for which this fails and for which the entire configuration space lies along

a sequence of critical points (see, for example, [91]). Note, however, that there are also

mechanisms with large D which do satisfy this assumption [15, 51, 53]. In this paper,

we will ultimately focus on example mechanisms with only a single degree of freedom,

so this will not prove a particularly strong assumption, but in this section we allow D

to be general and only specialize to D = 1 subsequently.

85

2 All critical points have exactly one self stress. This assumption is certainly not always

true. It fails, for example, in flat origami mechanisms [15]. Generally, however, we

will see that, qualitatively, critical points with several self stresses appear to require

more fine-tuning. This assumption implies that there will be D+1 zero modes at each

critical point by the rank-nullity theorem applied to the Jacobian matrix at uC .

3 The matrix

∑
α

σα
∂2ℓ2α(uC)

∂ui∂uj

has nonzero eigenvalues when restricted to the zero modes at uC . This assumption

allows us to simplify the characterization of the critical points. Notice that without

assumption 2, this characterization would be more difficult because the Eq. (5.6) would

yield a system of quadratic equations rather than a single equation.

While all of these assumptions will play a role in our analysis, one could relax some of

them at the expense of complicating the design procedure. Our examples will satisfy them,

however, and we leave it for future work to understand which are truly required and which

are conveniences.

Suppose we choose a basis for the zero modes at uC , {ζ1, · · · , ζD+1}, writing δu(1)i =∑
n cnζn,i. Then Eq. (5.6) becomes

∑
nm

Qnmcncm = 0 (5.7)

where Qnm is a symmetric matrix given by

Qnm =
∑
ij

∑
α

ζn,iζm,jσ
(1)
α ∂2ℓ2α(uC)/∂ui∂uj. (5.8)

86

Type +

Type -

Branch Point

Figure 5.1: Schematic of how a configuration space with a branch point split into one of two
types of smooth, disconnected configuration spaces. The choice of sign is arbitrary.

Under our assumptions, there are just two possibilities. If Qnm is either positive- or negative-

definite, the linkage is rigid: there is no solution to Eq. (5.7) other than cn = 0. If Qnm has a

combination of positive and negative eigenvalues, however, the geometry of the configuration

space at uC is that of a cone. This is precisely what happens in single-vertex flat origami

[15, 7] (Fig. 5.1). We call such a point uC a branch point, though this space of possible zero

modes is sometimes called a kinematic tangent cone [79].

5.2.3 Shape of the configuration space near critical points

We next ask what happens to the configuration space of a mechanism when the lengths

are deformed from their critical values, Lα = L
(c)
α + δLα. A lengthy calculation shows (see

Appendix 5.6) ∑
nm

Qnm(cn − δcn)(cm − δcm) = ∆ (5.9)

87

where the deformation is along the zero modes at uC ,
∑

n cnζn,i as before, and δcn and ∆

are quantities whose value depends linearly on the length changes, δLα, to lowest order.

We first consider what happens when ∆ = 0. In that case, when δcn = 0, Eq. (5.9)

recovers the results from the previous section: there is either a rigid point or a branch point

at cn = 0 corresponding to the critical point uC . When δcn ̸= 0, however, the critical point

itself moves by ≈
∑

n δcnζn,i.

When ∆ ̸= 0 and Q has only positive eigenvalues (the critical point is second order rigid),

we have two possibilities: (1) ∆ > 0 implies the solution to Eq. (5.9) is an ellipsoid in D+1

dimensions (it is almost rigid [41]), and (2) ∆ < 0 implies there is no solution to Eq. (5.9).

The opposite occurs if Qnm has only negative eigenvalues.

Finally, we consider the case of a branch point, for which Qnm has eigenvalues of opposite

sign. To develop intuition, it is useful to consider the special case of a branch point when

D = 1. Then Qnm is a 2 × 2 matrix with two eigenvalues of opposite sign. The solutions

to Eq. (5.9) take the form of two hyperbolas in the plane spanned by the zero modes at uC

whose precise configuration depends on the sign of ∆ (Fig. 5.1 for characteristic examples

for both signs of ∆). For D > 1, branch points also break up into smooth surfaces but do

so, presumably, in a more complex way that depends on the signature of Qnm (see Ref. [7]

for an example in origami).

As an illustrative example, we turn to the well-studied four-bar linkage shown in Fig. 5.2a.

The four-bar linkage is constructed from two rotors of length L1 and L3 pinned at one end

and joined at the other by a bar of length L2. The system configuration can be parameterized

as a point in four dimensions with coordinates (x1, y1, x2, y2), and the configuration space

is one dimensional. When L1 = L2 = L3 = a, there are three branch points each having

a single self stress and two zero modes. The configuration space is shown in Fig. 5.2b in

terms of the two rotor angles θ1 and θ2. By slightly increasing the length of L2 > a, the

branch points all split into a pair of hyperbolas oriented opposite each other in the quadrants

88

-�/2 0 �/2 � 3�/2-�/2

0

�/2

�

3�/2

�1

� 2

θ1 θ2

a

L1

L2

L3

(x1, y1) (x2, y2) 1

2

3

(a) (b)

L2 > a

L2 < a

Figure 5.2: (a) Schematic of the planar, four-bar linkage with variables defined. (b) Projec-
tion of the configuration space of the two rotor mechanism with L1 = L2 = L3 = a projected
into (θ1, θ2) plane (black). This choice of lengths has three branch-like critical points. De-
forming the length of L2 results in a smooth configuration space with either one (red) or two
(blue) components. The arrows indicate the direction of the tangent form ti(u) from Eq.
(5.10).

spanned by the configuration space when L2 = a. On the other hand, L2 < a results in the

branch point splitting into a pair of hyperbolas in the other pair of quadrants. As a result

of switching the orientation of the hyperbolas, the configuration space goes from having a

single component for L2 > a to two disconnected components when L2 < a.

5.3 Controlling configuration space topology

We noted earlier that the topology of the configuration space cannot change without passing

through an intermediate critical point. If it could, this would contradict the notion that the

configuration space is smooth when the Jacobian Jαi is full rank. This fact and the analysis

of Sec. 5.2 suggests a method for controlling the topology of the configuration space: (1) find

a set of lengths Lα for which the configuration space has many branch points, and (2) perturb

89

the lengths, Lα → Lα+δLα, such that the branch points split into smooth hyperbolas in the

desired configuration. For the four bar linkage in Fig. 5.2b, for example, if we could control

how each of the three branch points split independently, we would have complete control

over how the configuration space winds around the torus defined by the angles (θ1, θ2) as

well as the number of components in the configuration space.

5.3.1 The geometry of the critical configuration set

Since we are interested in understanding how to choose edge lengths, Lα, to control the

topology of the configuration space of a linkage, we will consider all possible mechanisms that

have the same connectivity but arbitrary values of Lα. To do so, we define an antisymmetric

tensor

ti1···iD(u) =
∑
j1···jE

ϵi1···iDj1···jE
∂ℓ21(u)

∂uj1
· · · ∂ℓ

2
E(u)

∂ujE
(5.10)

where ϵi1···iDj1···jE is the antisymmetric Levi-Civita tensor. Importantly, ti1···iD(u) = 0 if

and only if u is a critical point. This is because the components of ti1···iD are the E × E

minors of the Jacobian matrix. When these all vanish the Jacobian matrix has lower rank

(see Appendix 5.7 for a more detailed discussion). Thus, Eq. (5.10) identifies all possible

critical points in mechanisms sharing the same connectivity. Versions of Eq. (5.10) have

been studied to identify singularities in robot manipulators [102, 103, 64, 113, 28].

The tangent form allows us to define the critical configuration set as the locus of points

for which

ti1···iD(u) = 0. (5.11)

In many practical cases, and all of the cases we consider in this paper, it is possible to solve

Eq. (5.11) analytically. Note however, that the solutions to Eq. (5.11) only provide the

configurations where the Jacobian of the mechanism is not full rank. Therefore, some of the

solutions may not satisfy all of our assumptions from Sec. 5.2.2. We conjecture that our

90

assumptions are valid on all but a set of measure zero of the critical configuration set but

are not aware of or able to produce a proof of this.

To help understand the geometry of the critical configuration set, we return to our previ-

ous example, the planar, four-bar linkage from Fig. 5.2a. In this example, D = 1 butM = 4

since the mechanism configurations are specified by points (x1, y1, x2, y2). If the two pinned

vertices are located at (0, 0) and (a, 0) and we restrict Lα > 0 (so no bars have zero length),

this critical set is described by the two-dimensional manifold of configurations in which all

vertices are co-linear, y2 = y3 = 0.

For one degree of freedom mechanisms (D = 1), Eq. (5.10) provides another way of

understanding how the configuration space topology changes with changing lengths near a

critical point uC . In that case, ti(u) is a vector field everywhere tangent to the zero modes

of the mechanism, which follows from the simple fact that it is always orthogonal to the

constraints (Appendix 5.7). Thus ti(u) can be thought of as a local vector field whose

integral curves trace out curves of constant Lα. That is, when ti(u) ̸= 0, curves of constant

Lα can be parameterized by the solutions

dui(s)

ds
= ti[u(s)]. (5.12)

We show this in Fig. 5.2b using arrows pointing along ti projected onto the rotor angles.

Because ti(u) is divergence-free (Appendix 5.7), each branch point has two arrows pointing in

and two arrows pointing out. Note that ti(u) provides a way to think about the mechanism

configuration space as a dynamical system. This dynamical system should not be confused

with the motions of the physical mechanism, however, which can move either parallel or

antiparallel to ti(u) equally well. This is also distinct from the dynamical system approach

obtained for a periodic (or nearly periodic) mechanism as an iterated map [58, 59].

Eq. (5.12) also provides an intuitive way to understand the hyperbolas formed by the

91

configuration space near branch points that arise from Eq (5.9). We project ti(u) near uC

onto the plane spanned by the two zero modes, ζ1 and ζ2. Since ti(u) is tangent to the

configuration spaces, we expect the trajectories approach this plane as they approach uC .

After projection, we obtain a 2D vector field whose components are,

Tn(c1, c2) =
∑
i

ζn,iti(uC + c1ζ1 + c2ζ2). (5.13)

The integral curves of Tn then trace the projection of the configuration space onto the plane

spanned by the zero modes near the branch point.

In this projection, the constant Lα trajectories are quite limited in how they can appear.

We know that Tn(0, 0) = 0, but because we assume branch points are isolated, the projected

tangent vector Tn(c1, c2) ̸= 0 elsewhere. Now suppose that the critical point is a branch

point. The projection of the configuration space on the plane of zero modes will have the

form of a hyperbolic fixed point, with a stable and unstable manifold associated with the

configuration space branches that solve Eq. (5.7) (Fig. 5.1). Thus, we would generically

expect the trajectories near the branch point to appear hyperbolic when projected onto the

plane of zero modes. Though we do not work with second order rigid points here, these

considerations also limit what the trajectories do near such rigid points [41].

5.3.2 The geometry of the critical value set

For any point uC in the critical configuration set, ℓ2α(uC) gives its corresponding critical value:

the set of squared bar lengths that would be required for the system to be in configuration

uC . We will call the image of the critical configuration set in the space of squared lengths

the critical value set. We again illustrate with the four-bar linkage: the set of critical values

is a self-intersecting surface (L2
1, L

2
2, L

2
3) = (x21, (x2 − x1)

2, (a − x2)
2). In Fig. 5.3, we show

the critical value set in terms of (L1, L2, L3) rather than the squared lengths to make the

92

L1
L2

L3

L1

L2

L3(a) (b)

Figure 5.3: The critical value set for the four bar linkage, plotted in terms of (L1, L2, L3) in
units of a. There is one critical point in the configuration space along any smooth portion
of the set. Self intersecting lines indicate choices with two critical points and the triply self
intersection point at (L1, L2, L3) = (a, a, a) is the unique choice with three critical points.
(b) shows a different view of the surface with a cutout on the L1 = 0 plane showing the
shape of one of the enclosed volumes.

surface slightly more compact and easier to understand visually. Note that we have included

additional leaves on either the L1 = 0, L2 = 0, or L3 = 0 plane which happen to contain

only rigid critical points; this is a natural consequence of the fact that any mechanism with

two pinned vertices and one edge having zero length must always be rigid.

Were we to choose the Lα to lie anywhere along the portion of the critical value set in Fig.

5.3, the resulting linkage would have one or more critical points. It is also apparent that Fig.

5.3 self intersects. At such a self-intersection, there will be multiple critical configurations,

uC , corresponding to the same choices of edge lengths, Lα. Thus, if we choose the Lα along a

line of self-intersection, there are two branch points. If we choose Lα along a smooth portion

of the critical value set, there is only one critical point. Interestingly, Fig. 5.3 shows that at

(L1, L2, L3) = (a, a, a) three individual sheets self intersect. Therefore we expect that that

choice of Lα is the unique place where three branch points coincide (as seen in Fig. 5.2b).

The critical value set contains more information than just the location of critical values. If

93

the critical value set is locally a smooth manifold, the self-stresses at such a critical point are

always normal to the critical values (see Sec. 5.7). Though the converse is not generally true

– normals need not also be self stresses – if the critical value set is a manifold of codimension

one it must necessarily coincide with the single self stress at that point and there can be

no other self stresses. We also see that splitting a branch point amounts to choosing δLα

transverse to the critical value set. On one side of the surface in Fig. 5.3, a branch point

splits into one pair of smooth branches; on the other side it splits into the opposite pair. This

endows the calculation of how branch points split under small perturbations of the lengths

with a concise geometrical meaning.

With this understanding of the critical value set, we can classify the distinct configuration

spaces of the four-bar linkage in terms of the 23 = 8 individual volumes enclosed by the

surface in Fig. 5.3. For completeness, we note that these volumes correspond to standard

results for the four-bar linkage found in the engineering literature, which can be classified

by the sign of three functions [73]

τ1 = a− L1 + L2 − L3

τ2 = a− L1 − L2 + L3

τ3 = L2 + L3 − a− L1

(5.14)

derived from limits on the angles θ1 and θ2. When one of the τi are equal to zero, the

configuration space contains the corresponding critical point from Fig. 5.2b. Thus,the

critical value set in Fig. 5.3 agrees with the surfaces computed in Ref. [5, 81].

5.3.3 Three rotor system

Finally, in this section we will use these considerations to describe a design procedure for

configuration space topology. To be concrete, it is helpful to consider a specific example, the

94

three-rotor linkage in Fig. 5.4a. The three rotor linkage has three pinned joints attached

to three bars of length r1, r2, and r3 (the rotors) and whose opposite ends are joined by

bars of length L1 and L2. Therefore, u is a six component vector and the five bars provide

constraints, ℓ2α(u) = L2
α, that limit the configuration space to a single degree of freedom

generically.

Since the mechanism has five bars, it is difficult to visualize the critical set and critical

value set. Nevertheless, we can still gain insight by restricting ourselves to the cross-section

of M for which r1 = r2 = r3 = a. We plot the cross section of the critical value set with the

(L1, L2) plane in Fig. 5.4b. While this is a cross-section, the open regions in Fig. 5.4b still

correspond to structures with different configuration space topologies, with the transitions

from one distinct region to another through the critical value set occurring through a branch

point. However, it is still a cross section of a higher dimensional space and care must be

taken when interpreting the intersections of the critical value set. Choosing L1 = L2 = a

leads to a configuration space with twelve interconnected branch points, though it appears

that only two lines meet at L1 = L2 = a in Fig. 5.4b. The proliferation of branch points in

this example can be understood from the fact that this linkage contains two pairs of four-bar

linkages. Choosing all bars to have length a, therefore, maximizes the branch points of each

individual sub-mechanism.

To identify these branch points, we solve ti(u) = 0 subject to the length constraints

ℓ2α(u) = L2
α using Mathematica (Wolfram). At each critical point, we then solve Eq. (5.7) to

obtain the tangents to the configuration space. The trajectories in Fig. 5.4c are obtained by

first stepping along one of the obtained tangent vectors, then stepping along the configuration

space in the direction indicated by ti(u) with a step size proportional to its magnitude. The

step size is adjusted to maintain the edge lengths to less than one percent strain. Finally, the

integration for each segment is terminated when the magnitude of ti(u) falls below a critical

threshold, indicating that the integration has reached a point close to the next critical point.

95

Once terminated, we minimize
∑

i t
2
i with respect to the configuration to verify that the

integration has found the next branch point. The directions of integration inherited from

ti(u) are indicated by the arrows in Fig. 5.4c.

Note, however, that the branch points shown in Fig. 5.4c are not all independent. Pro-

jecting the configuration space onto the θ1-θ2 plane must give the configuration space of the

equivalent four-bar linkage found by ignoring the third rotor. In contrast, removing the first

rotor is equivalent to the projection onto the θ3-θ2 plane. Consequently, any branch points

that overlap in one of these two projections must, after a deformation, still be identical in

projection and such overlapping branches appear or disappear together. From Fig. 5.4, this

implies that branch points are paired {(1, 2), (3, 5), (4, 6), (7, 8), (9, 11), (10, 12)}.

We finally consider how to “program” the configuration space by adjusting the lengths

of r1, L1 and L2 away from their critical values. For each critical point, we plot the domain

over which ∆ > 0 in Fig 5.5 as a table for each branch point. We next choose lengths

according to the red dot in Fig. 5.5a, which increases r1 at constant L1 and L2. The

resulting configuration space is shown as the red curve in Fig. 5.5b. Note that the red point

was chosen so that the configuration space is smooth but passes near the branch points. If

the red curve has the topology we want already, we can stop now. If we instead wanted

to switch the sign of the branch point pair (4, 6) to obtain a particular configuration space

topology. From Fig. 5.5a we see that the three lengths (r1, L1, L2) distinguish this pair of

branch points from the rest. Inspection of Fig. 5.5a suggests an additional change in L1

would switch the way only those two branch points split. The result of this perturbation is

the blue curve in Fig. 5.5b. Note that Fig. 5.5b shows that, since each branch point has one

self stress, the hyperbolas approach the plane spanned by the two zero modes as expected.

If we limit ourselves to perturbing only the bar lengths (r1, L1, L2), Fig. 5.5a shows even

more redundancy in how the branch points split than expected from our previous analysis

that branch points split in pairs. That is, just three control lengths are not sufficient to obtain

96

θ1 θ2

θ3

a

L1

L2

r1 r2

r3

a

0 1 2 3
0

1

2

3

L1

L 2

8

1
2

3

4

5

6

7

9
10

11
12

(b)(a)

(c)

Figure 5.4: (a) Schematic of the planar, three rotor linkage with variables defined. (b) A
cross-section of the critical value set for r1 = r2 = r3 = a. (c) The 3D configuration space
of the three rotor linkage with r1 = r2 = r3 = L13 = L23 = a, corresponding to the red
point in (b), contains twelve individual critical points. Arrows indicate the orientation of
each configuration space segment.

97

8

1
2

3

4

5

6

7

9
10

11
12

1

δL21

δr21

δL22
5

δL21

δr21

δL22
9

δL21

δr21

δL22

2

δL21

δr21

δL22
6

δL21

δr21

δL22

10

δL21

δr21

δL22

3

δL21

δr21

δL22

7

δL21

δr21

δL22
11

δL21

δr21

δL22

4

δL21

δr21

δL22
8

δL21

δr21

δL22
12

δL21

δr21

δL22

(b)(a)

Figure 5.5: A schematic of programming the three rotor system. (a) A map showing how
changing the length of r1, L1, and L2 leads to different ways to split the branch points from
Fig. 5.4. The red dot, corresponding to a change in length r1 = 1.05a, leads to the red curve
in (b). In order to change the topology of the configuration space by changing how branch
points 4 and 6 split, an addition change to L1 = 0.9a can be effected (blue dot). The new
configuration space is shown in (b) as a blue curve.

full control over the way the configuration space splits at the branch points. While it would be

difficult to plot Fig. 5.5 using all five bar lengths, there seems to be no mathematical obstacle

to generalizing the analysis to distinguish all six pairs of branch points independently.

5.4 The gated Kane-Lubensky chain

We finally apply our design methodology to design a mechanism that gates the propagation

of a soliton in the Kane-Lubensky (KL) chain [50]. The KL chain is a topologically polarized

lattice of rotors that has a zero mode on either the left edge or the right edge, depending on

the choice of bar lengths. It was later discovered that the KL chain actually supported two

distinct families of propagating solitons, the “flipper” and the “spinner” [16], that allowed a

98

continuous pathway between the left and right edge modes. The spinner soliton, however, is

topologically protected by the shape of the configuration space [16, 68]. In this section, we

modify a single unit cell of a spinner-supporting KL chain with rotor length r = 3a/2 and

ℓ = 3a/2 by adding an additional two bars and one pinned vertex (Fig. 5.6a).

In the spinner phase of the KL chain, a full cycle consists of the soliton traveling back

and forth across the chain once, and the KL chain returning to its initial configuration. After

one full cycle, each rotor in the KL chain has rotated by 2π, with each rotor rotating by π

each time the soliton passes. Here, we will show that these additional components can act as

a gate by opening a gap in the full 2π rotation of the KL chain rotors, thereby obstructing

the passage of the soliton.

In addition to the length of the two additional bars, L1 and L2, we also allow the location

of the pinned vertex to be set an arbitrary distance D from the KL chain. In order to allow

for different positions of the third pinned vertex, we augment u to include the y coordinate

of the 3rd vertex but also augment the constraint functions to pin that vertex’s y position.

Thus, we use a constraint map

fα(u) =



ℓ21(u)

...

ℓ2E(u)

D2(u)


, (5.15)

where D(u) is the function that determines the distance between pinned vertex 3 and 2.

Thus, the generalized constraints fα(u) is a smooth function whose solution allows us to pin

vertex 3 by setting the length D in Fig. 5.6a to an arbitrary value.

Using this generalized formulation, we can compute a cross section of the critical value

set with r = ℓ = 3a/2 and L1 = 2a (Fig. 5.6b). Fig. 5.6b shows that there are six distinct

regions separated by critical points. The labels on each region correspond to the sign of

99

τ1, τ2, and τ3 from Eq. 5.14 with respect to the four-bar linkage between vertices two and

three. For concreteness, we choose L2 = 2a and D = 5a/2, on the boundary between the

blue and red regions, as the initial lengths for our gate, resulting in a configuration space

with two critical points (Fig. 5.6d). When D < 5a/2, the system is in the “red” regime and

when D > 5a/2 it is in the “blue” regime. This choice determines whether the KL chain

rotors wind around fully or not. Note that the projection of the configuration space in the

θ1-θ2 plane never changes shape, but that the change in how the branch points split into

hyperbolas determines whether the full range of angles is accessible to the system or not. To

verify that the red and blue regimes correspond to ungated and gated behavior of the KL

chain device, we use the mechanisms package 1 in Mathematica (Wolfram) to calculate the

infinitesimal motions of the linkage and animate the those motions. As shown in Fig. 5.7,

changing D controls whether or not the soliton can complete a full cycle along the KL chain.

To test our design, we constructed the gated KL chain in Fig. 5.6a numerically and

constructed a single unit cell and gate from LEGO™ pieces. The design of the LEGO gate

was chosen to be compatible with the LEGO realization of a KL chain shown in [16]. When

testing different examples, we pushed on the various bars and rotors in the device to move it

through all possible configurations. We tracked how the rotors 1 and 2 moved to determine

if the gate was preventing a soliton from propagating. Fig. 5.7 shows a comparison between

the simulated and LEGO chains with both D larger and smaller than 5a/2. Movies of both

chains in the gated and ungated states are provided in the Supplementary Material. In the

case of an ungated chain, the soliton propagates from one end of the chain to the other (and

back); for a gated chain the soliton propagates up to the location of the gate but is reflected.

Interestingly, the size of the gap in Fig. 5.6d is important for determining how the

soliton is reflected from the gate. For very small gaps, which occurs when D is close to its

critical value, the soliton can, temporarily, pass the gate but is, ultimately, prevented from

1Availabe on https://github.com/cdsantan/mechanisms

100

(a) (b)

(c) (d)

-
δD

δL1

δL2

+

-

+

+

-

2

1

2 4 6 8 100

2

4

6

8

10

L2

D

(+, -, -) (+, +
, +

)

(+, -,
 +)

(+, +, -)

(-, -, +)

(-, +, +)

r
�

r

L1
L2

θ1 θ2

θ3

θ3

D

1 2

3

Figure 5.6: (a) A gated and ungated Kane-Lubensky chain controlled by the length D. (b)
A cross-section of the critical set with r = ℓ = L1 = 3a and L2 = 4a. There is a critical
point at L2 = 4a and L4 = 5a. (c) Changing the position of the third rotor or the lengths of
two beams can control whether the chain is gated or ungated. (d) The configuration space
at and near the critical point as a function of the three rotor angles, and the projection of
that configuration space onto the θ1-θ2 plane.

101

completing an entire cycle. For larger gaps, when D is farther from its critical value, the

soliton appears to reflect from the gate. From Fig. 5.6c, the same effect can be achieved

by changing the size of L2 instead of D, since the plane divided the gray region from the

transparent region is slightly angled in that direction. Movies of both simulated and LEGO

chains that switch between the gated and ungated states by changing L2 are also provided

in the Supplementary Material.

Our analysis shows that the presence of a gap in the (θ1, θ2) plane blocks soliton propa-

gation. In the example of Fig. 5.6a, changing the length D moves the device from from the

gated (blue) region to the ungated (red) region of Fig. 5.6b. However, this is not the only

pair of regions that produces a functioning gate. Indeed, the regions indicated in Fig. 5.6b as

(+,+,+) and (−,−,+) are ungated with respect to propagation of the soliton, whereas the

remaining regions are gated. Numerical experiments further show that if we had chosen L1

to change length as well, we would have found even more regions of both gated and ungated

behavior as we extended Fig. 5.6b. It becomes clear that there is a great deal of flexibility

when choosing D, L1, and L2 to produce the desired dynamics of the final KL chain and

gate system.

5.5 Conclusions

In this paper, we have described a procedure to design the topology of the configuration

space of mechanical linkage. The idea rests on the ability to identify critical points and,

especially, branch points – singular configurations of a linkage in which several pathways

meet. By analyzing the shape of the configuration space near these branch points, we are

able to design perturbations to the lengths and positions of a fixed set of vertices that

change the shape of the topology of the configuration space in well-defined ways. As a

demonstration, we used our techniques to design a gate for the propagation of the spinner

102

Figure 5.7: Top row (red): Ungated device made from LEGOs with the corresponding
simulation. This device can continue rotating and return back to its initial position, as
indicated by the arrow. Bottom row (blue): Gated device made from LEGOs with the
corresponding simulation. This device gets stuck in the configuration shown in the last
frame and is forced to reverse direction in order to continue moving.

soliton in a Kane-Lubensky chain. While we applied our approach to linkages with fixed

edge length, there is no reason they would not also apply more generally to other systems

with holonomic constraints.

Because the design procedure works by controlling configuration space topology, the

resulting mechanisms should be quite robust to fabrication errors and the tolerance of the

joints, so long as one chooses lengths Lα sufficiently far from the critical value set.

It would be interesting to extend this work in a few further directions. First, when

bars are no longer rigid but elastic, there arises the possibility of a snap through transition

between the different hyperbolas on either side of a branch point. Indeed, tuning various

branches close to or farther from a branch point could be used to tune the ease of initiating a

snap through transition. This could potentially lead to mechanical structures and mechanical

metamaterials whose mechanical response can be reprogrammed in situ.

A second interesting extension would be to consider mechanisms built from responsive

103

materials that are sensitive to external stimuli. In that case, the dynamic increase or decrease

in the lengths of bars could be used to drive the pathway of a mechanism in an environ-

mentally dependent manner. This could also be affected if the positions of certain pinned

vertices could be made to depend on the external environment or the state of a second input

mechanism. This would enable the realization of simple mechanical logic that is robust to

some damage because it relies only on the topology of a configuration space [99, 75].

Finally, we note that our design principle exploits the fact that the configuration space

topology can only change at critical points – configurations where the Jacobian of the con-

straints fails to be full rank. Our approach is somewhat reminiscent of Morse theory, in

which the extrema of a scalar function can be related to the topology of the space on which

that function is defined [86]. Morse theory has been used to study the configuration spaces of

spherical (and other) linkages [51, 53], but we leave it to future work to make this connection

more precise.

5.6 Appendix A: Quadratic critical point decomposi-

tions

In this appendix, we will show that Eq. (5.9) does, indeed, describe the configuration space

near a critical point when the lengths of a linkage are perturbed from their critical values.

We assume we have a mechanism with E edges and V vertices in d dimensions with dV > E.

We further suppose that the configuration of the mechanism is at a critical point, uC , with

corresponding critical values (L
(c)
α)2. Let u = uC + δu and correspondingly Lα = L

(c)
α + δLα,

and expand the squared lengths to quadratic order, using Eq. (5.1,

2L(c)
α δLα + δL2

α =
∑
i

∂ℓ2α(uC)

∂ui
δui +

∑
ij

1

2

∂2ℓ2α(uC)

∂ui∂uj
δuiδuj (5.16)

104

Finally, as in the main text, we assume that Eq. (5.16) completely characterizes the critical

point, and that there is one self stress at uC , with components σα, and two zero modes, with

components ζ1,i and ζ2,i.

It will prove convenient to express Eq. (5.16) using an orthonormal basis in the space

of square lengths, {σα, e(1)α , · · · e(E−1)
α }. We similarly write δui in an orthonormal basis

{ζ1,i, ζ2,i, η1,i, · · · , ηE−1,i},

δui = c1ζ1,i + c2ζ2,i +
E−1∑
I=1

aIηI,i. (5.17)

We first contract Eq. (5.16) with σα, we obtain an equation that can be expressed as

(
cT aT

) Q B

BT M


 c

a

 = ∆̃, (5.18)

where the components of the matrices are given by

∆̃ =
∑
α

σα
(
2L(c)

α δLα + δL2
α

)
, (5.19)

Qnm =
1

2

∑
αij

ζn,iζm,jσα
∂2ℓ2α
∂ui∂uj

, (5.20)

Mnm =
1

2

∑
αij

ηn,iηm,jσα
∂2ℓ2α
∂ui∂uj

, (5.21)

and

Bnm =
1

2

∑
αij

ζn,iηm,jσα
∂2ℓ2α
∂ui∂uj

. (5.22)

We also assume that aI are the components of the vector a and that c1 and c2 are the

components of a two-dimensional vector c. Finally, we complete the square in Eq. (5.18) to

obtain (
c+Q−1Ba

)T Q
(
c+Q−1Ba

)
= ∆̃− aTBTQ−1Ba. (5.23)

105

Note that Q−1 exists because all of the eigenvalues of Q are nonzero by assumption.

Already, Eq. (5.18) is in the form of a conic section whose form depends on the eigenvalues

of Q. What remains is to show that a depends only on the length changes (and not c) to

lowest order and, ultimately, to find an expression to determine it.

To do this, we project Eq. (5.16) onto the remaining basis vectors, e
(n)
α , in the space of

square lengths. We obtain

∑
m

∑
i

∑
α

e(n)α

∂ℓ2α(uC)

∂ui
ηm,iam +

1

2

∑
ijα

e(n)α

∂2ℓ2α(uC)

∂ui∂uj
δuiδuj

=
∑
α

e(n)α

(
2L(c)

α δLα + δL2
α

) (5.24)

There are E − 1 equations in Eq. (5.24) and dV − E + 1 zero modes at the critical point,

the space spanned by δu⊥i is dV − (dV −E+1) = E− 1 dimensional. The matrix appearing

in Eq. (5.24) is, consequently, square. Since we have already removed zero modes and self

stresses, it is also invertible. We define a new matrix M such that its inverse M−1 is given

by the components,

M−1
nm =

∑
i

∑
α

e(n)α

∂ℓ2α(uC)

∂ui
ηm,i. (5.25)

This then allows us to solve Eq. (5.24) in powers of both δLα and c. To first order in both,

we obtain

an ≈
∑
m

Mnm

∑
α

2e(m)
α L(c)

α δLα +O(cδL, c2, δL2). (5.26)

We can now put together the results by defining

δc = −Q−1Ba (5.27)

and

∆ = ∆̃− δcQδc (5.28)

106

to obtain

(δc− δc)T Q (δc− δc) = ∆ (5.29)

where ∆ and δc depend linearly on the changes in lengths to lowest order. Therefore, small

perturbations of the length are seen to produce trajectories that lie on a 2D conic section

with a perturbed center.

While this is a rather intricate derivation, we could have obtained the correct answer up

to order δu ∼ δL1/2 more simply by assuming O(a) ∼ O(c). We have found the full form of

Eq. (5.29) to be more useful in perturbing larger linkages, however, as it better captures the

case that changes in the bar lengths perturb but do not completely eliminate critical points

in the configuration space of a linkage.

5.7 Appendix B: Properties of the tangent form

The tangent form is defined as

ti1···iD(u) =
∑
j1···jN

ϵi1···iDj1···jN ∂f1(u)

∂uj1
· · · ∂fN(u)

∂ujN
, (5.30)

where ϵi1···iDj1···jN is the antisymmetric Levi-Civita tensor. Next we compute some simple

properties of the tangent form.

The tangent form is divergence free. This can be seen from the following calculation,

∂ti1···iD(u)

∂ui1
=

∑
j1···jN

ϵi1···iDj1···jN ∂2f1(u)

∂ui1∂uj1
· · · ∂fN(u)

∂ujN
(5.31)

· · · +
∑
j1···jN

ϵi1···iDj1···jN ∂f1(u)

∂uj1
· · · ∂

∂ui1

∂fN(u)

∂ujN

= 0

107

where each term is zero due to the antisymmetry of the Levi-Civita tensor and the symmetry

of partial derivatives.

For one degree of freedom mechanisms, the tangent form is a vector tangent to

the configuration space away from critical points. First, we note that

∑
i1

∂fα
∂ui1

ti1···iD(u(s)) = 0 (5.32)

which implies that ∂fα
∂ui
ti(u(s)) = 0. Now suppose that u(s) traces the configuration space in

a region where ti1···iD(u(s)) is nonzero. Then

∑
i

∂fα(u(s))

∂ui

∂ui(s)

∂s
= 0. (5.33)

Hence the configuration space is perpendicular to all of the ∂fα(u)/∂ui but ti(u) is also

perpendicular to all of them. Hence, they must be parallel. The more general case for mech-

anisms with more than one degree of freedom is more subtle but can also be computed.

The tangent form is zero at u if and only if u is a critical point. Ultimately, this

is a consequence of the fact that the components of ti1···iD(u) are the E × E minors of the

Jacobian of ℓ2(u). Nevertheless, we demonstrate it here for completeness. There are E

functions {
∂f1(u)

∂ui
, · · · , ∂fE(u)

∂ui

}
. (5.34)

Since the zero modes are defined by the nonzero solutions, δui of

∑
i

∂fα(u)

∂ui
δui = 0 (5.35)

108

the zero modes are in the orthogonal complement of the span of the vectors ∂fα(u)/∂ui. At

a critical point, there must be additional zero modes and so the ∂fα(u)/∂ui span a lower

dimensional space and can no longer be linearly independent. Without loss of generality, we

can take it to be α = 1 so

∂f1(u)

∂ui
=
∑
β>1

cα
∂fβ(u)

∂ui
. (5.36)

Substituting this into the definition of ti1···iD(u) and using Eq. (5.32), we immediately obtain

ti1···iD(u) = 0.

Similarly, if ti1···iD(u) = 0 then the ∂fα(u)/∂ui cannot all be linearly independent. One

way to do see this is to choose D vectors vn orthogonal to the ∂fα(u)/∂ui for all α as well

as to each other. Then

v1,i1 · · · vD,iDti1···iD(u) = det



vT
1

...

vT
D

∇f1(u)T
...

∇fE(u)T


= 0, (5.37)

where ∇ is the gradient in u and T denotes the transpose. Since the vn are orthogonal to

the other vectors one of the ∇fα(u) must be linearly dependent on the rest of them. We

immediately obtain that there is at least one additional linear independent zero mode.

Self stresses are orthogonal to the critical value set. The critical set is defined as

the set of points uC such that ti1···iD(uC) = 0. The critical value set is the image of the

critical set under the map fα(uC). Suppose that uC(s) is a one-parameter path of points in

109

a smooth portion of the critical set. Then consider its image Fα(s),

fα(uC(s)) = Fα(s). (5.38)

If the derivative ∂Fα(s)/∂s is nonzero then it is tangent to the critical value set. Therefore,

∂Fα(s)

∂s
=
∑
i

∂fα(uC(s))

∂ui

∂uC,i(s)

∂s
. (5.39)

If σα is a self stress then
∑

α σα∂fα/∂uI = 0. Therefore we obtain

∑
α

σα
∂Fα(s)

∂s
= 0. (5.40)

Since this is true for any path in the critical value set, it follows that all self stresses are

orthogonal to the critical value set.

Though the converse of this is not true – some vectors normal to the critical value set

may not be self stresses – if the critical value set has codimension one then there can be only

one self stress and the normal vector of the critical value set necessarily corresponds to that

self stress.

Orientation The tangent form ti1···iD(u) carries additional useful geometrical information

about the mechanism at regular (non-critical) configurations. When D = 0, t(u) is a scalar

whose sign was used to compute a topological index in periodic mechanisms [68]. Beyond

this, it endows the configuration space with a natural orientation in any dimension. At

a regular point on the configuration space of a mechanism, x, ti1···iD(x)dx
i1 ∧ · · · ∧ dxiD

is a differential form which provides a local orientation: for any basis of tangent vectors

110

{ζ1,j, · · · , ζD,j},

sgn
∑
i1···iD

ζ1,i1 · · · ζD,iDti1···iD(u) = ±1 (5.41)

However, note that this local orientation is only defined up to an overall sign, since we can

always take one of the constraint functions to have the opposite sign.

Though we do not make a great deal of use of it in this paper, it is worth noting that

if one is able to find two regions in which ti1···iD(u) has opposite signs, there must be a

boundary between those regions for which ti1···iD(u) vanishes. That is, in principle we can

use the tangent form to verify the existence of critical configurations.

111

Chapter 6

Conclusion

In this dissertation, we investigated how to design mechanical devices that compute. After

discussing multiple ways to define a system that computes, we focused in on designing

mechanical versions of wires and transistors. Using these components, we could in the

future combine them to create logic gates, which can then be combined to create devices

that compute through boolean logic operations. Designing mechanical wires and transistors

with robust, predictable behavior is a first step towards eventually making mechanical devices

that compute.

In Chapter 3, we investigated one design for a mechanical wire. This system consisted

of a 1D chain of connected bistable elements made out of a soft material. The signal being

sent along this wire was a transition wave where each element snaps from one minima in

its bistable potential to the other. Previous work on these systems focused on wires that

supported stable propagation over arbitrarily long distances, which was possible because each

bistable element transitioned from a high to a low energy state as the signal propagated.

Our work investigated the behavior of wires that do not support stable propagation – each

element either transitions between two states of equal energy or from a low to a high energy

state. We found that in these wires, signals can propagate a finite distance controlled by a

112

penetration depth that depends on the wire parameters.

In Chapters 4 and 5, we focused on how to design mechanical transistors. After analyzing

the general behavior of a linkage called the flip-flop, we mapped its behavior to that of a

transistor and identified how to integrate it into the wire design discussed in Chapter 3. In

simulations, we were able to use these designs for wires and transistors to construct functional

AND and NOR gates. However, the transistor-like behavior of the flip-flop disappeared when

it was constructed out of the same soft material used to make our wires in Chapter 3.

The flip-flop got its transistor-like behavior from critical points in its configuration space.

This observation lead us to switch from the question of how do we design mechanical transis-

tors to a more general question: how can we design the configuration space of a linkage? If we

can control all aspects of a linkage’s configuration space, including the presence and location

of critical points, we can design other linkages that also behave like transistors. Chapter 5

introduces a method for programming the topology of a configuration space through small

perturbations of the lengths of each bar in the linkage. Using this method, we designed a

linkage that gates the propagation of a soliton in a Kane-Lubensky chain, where the Kane-

Lubensky chain is a mechanical wire and the gate linkage is a transistor.

Our work presented two candidates each for a mechanical wire and mechanical transistor.

To construct a device that computes, we need to combine these wires and transistor into logic

gates. Using the soft wires from Chapter 3 along with the flip-flop presented in Chapter 4, we

were able to create designs for logic gates, but these devices did not behave as predicted in

experiments. The gated Kane-Lubensky chain presented in Chapter 5 behaves as expected in

both simulations and experiments, but more work is needed to design logic gates using that

version of a wire and transistor. In order to design fully-functional devices that can perform

basic logic operations, we need to investigate more candidates for wires and transistors and

identify designs that 1. have the same behavior in both simulations and experiments, and

2. can be combined to form logic gates. Because we have the ability to control the topology

113

of the configuration space of a linkage, the ideal system to construct these new wires and

transistors with would be linkages of rigid bars.

A final idea that was not covered in-depth was using the finite state machine definition

of computation to create our mechanical devices that compute. As discussed in Chapter 1,

a finite state machine can be represented by a directed graph called a state diagram. In the

state diagram, the nodes correspond to the states of the system and the edges correspond

to the transitions between states. It turns out that we can also represent the configuration

space of a linkage as a directed graph, where the critical points are the nodes or vertices

and the branches are the edges. This representation of a configuration space has multiple

benefits. First, it allows us to visualize the configuration space of a 1 degree of freedom

linkage that lives in more than 3 dimensions, a problem that will occur when investigating

more complicated linkages. Second, it allows us to view the linkage as a finite state machine

directly. With this graph representation of a linkage, we can then investigate the connections

between computation ability and graph structure. After identifying a specific computation

we want our finite state machine to perform and the corresponding graph, we can use our

method for programming the configuration space of linkages to design a linkage with that

target behavior.

114

Appendices

115

Appendix A

Documentation of Chapter 5 Code

Much of the visualization shown in Chapter 5 was done by solving for the relevant equations

analytically using Mathematica’s built-in capabilities and then plotting them using built-in

functions as well. The surface shown in Fig. 5.3, the plot shown in Fig 5.4b, and the region

plots in Fig. 5.5a and Fig. 5.6c were all generated in this way.

Plotting configuration spaces that live in 3D (such as the one shown in Fig. 5.5a) proved

to be a non-trivial task. While we had many functions from the mechanisms package that

made working with linkages easier, we were unable to find a way to solve for these 3D con-

figuration spaces analytically and use Mathematica’s built-in plotting functions to visualize

them. In this appendix we will detail how we solved this problem numerically by tracing out

the configuration space using the tangent field from Eq. 5.10.

To differentiate functions from Mathematica, functions from the mechanisms package,

and functions we wrote specifically for Chapter 5, we will use the following notation:

• Functions in plain text are built-in Mathematica functions.

• Functions in italics are from the mechanisms package.

• Functions in bold are ones written specifically for the calculations and figures in Chap-

116

ter 5.

A.1 Creating and Working With Linkages

The mechanisms package gives us a wide variety of functions that let us define, manipulate,

and analyze linkages made of rigid bars, springs, and a variety of other components. There

are a handful of functions from that package that we will briefly describe here because of

their use in our analysis of the configuration space of linkages.

A.1.1 Defining a Linkage

We can define a linkage using Linkage[] by specifying the location of vertices in xy-coordinates,

any bars/springs in the linkage and which vertices they’re connected to, and if any of the

vertices are pinned in place. This creates a mechanism type object that we can manipulate

using the functions in the package.

If specifying the exact vertex locations is difficult due to a non-symmetric configurations

because of multiple different bar lengths, we can define a linkage that has the same connec-

tivity using “simple” vertex locations, then use the ChangeCellData[] function to re-define

the bars to have the correct length. Both methods can produce identical objects.

A.1.2 Motions of a Linkage

As discussed in Chapter 1, we know how to identify the possible motions of a linkage from

a given position analytically using the rigidity matrix. The function MechanismInfinitesi-

malMotions [Mechanism(,positions)] does this for us (and it does it analytically using both

package functions and built-in Mathematica functions). We give the function a mechanism

with specific vertex positions, and it returns a list of two elements: an infinitesimal lin-

ear motion and, if necessary, a list of quadratic constraints that motion must satisfy. If the

117

mechanism happens to be at a critical point and there is more than one infinitesimal motion,

the function returns a two element list for each unique motion.

Now that we can identify the possible motions of a mechanism, we want the ability to

visualize the mechanism moving with that motion. A trajectory of a mechanism will be a

list of positions of the vertices that trace out how the mechanism moves. This trajectory

corresponds to a portion of the configuration space of the linkage.

The function MechanismIsometricTrajectory [Mechanism, {{∆x1,∆y1, . . .}, . . .}, n] cre-

ates a trajectory using n steps through the configuration space of a mechanism starting in

the displacement direction {{∆x1,∆y1, . . .}, . . .}. We give the function a mechanism and an

initial direction, and it returns a list of n mechanism positions (x and y coordinates for all

vertices in the mechanism) that can, for example, be used to plot a configuration space or

create an animation of the mechanisms moving along the trajectory.

The displacement direction can be the output of MechanismInfinitesimalMotions [], or it

can be a guess at the way a mechanism should move. BecauseMechanismIsometricTrajectory

minimizes the energy of the mechanism as it takes each step, regardless of what direction

we try to move our mechanism in, it will step to a position on the closest branch of the

configuration space. Therefore, using a best guess for the direction of a branch can work for

preliminary examples.

A.2 Visualization of 2D Configuration Spaces

To plot the configuration space of a 1 degree-of-freedom linkage with a configuration space

that lives in 2D, we can utilize built-in Mathematica functions and directly plot the length

constraint equations defined in Chapter 1.

To obtain these equations, we can use the MechanismConstraintEquations[] function.

This set of equations uses the x and y positions of each vertex as variables, and it can be

118

Figure A.1: Mathematica code for the ConfigSpacePlot2D[] function. This function is written
specifically for a four bar linkage.

simplified in three ways:

1. Directly plug in the locations of all pinned vertices.

2. For any vertex connected directly to a pinned vertex by a rigid bar, convert its position

to polar coordinates using x = r cos θ, y = r sin θ where r is the length of the rigid bar.

3. Use the Mathematica function FullSimplify[] to simplify the entire system.

119

If you have substituted in all known constraints, all expressions except for one should simply

to 0. The remaining equation should be only a function of your θ values.

Plotting this 2D function directly with Plot3D[] will produce a 2D surface in 3D. The

configuration space of the linkage is where our expression equals 0, we can plot that equation

using ContourPlot3D[] to visualize the configuration space.

A.3 Visualization of 3D Configuration Spaces

We were unable to find a way to plot the configuration space for a 1 degree-of-freedom

linkage that lives in 3D space using Mathematica’s built-in functions. If we try to plot the

configuration space using the same method detailed above, the simplified length constraint

equation has three unique variables, which makes it incompatible with the various 3D plot

functions in Mathematica.

There are a couple things we can calculate related to a linkage and its configuration

space.

• We can identify the vertex positions for all critical points of a linkage with specified

lengths and 1 degree-of-freedom using criticalPoints[]

• Given a specific configuration of a linkage, we can identify the infinitesimal motions

for the linkage (the ways a linkage can move from that position) using MechanismIn-

finitesimalMotions []

• We can “follow” the motion of the linkage along its configuration space without knowing

ahead of time what that motion will look like using MechanismIsometricTrajectory [].

• We can calculate the magnitude of the tangent field from Eq. 5.10 for a specific

configuration of a linkage.

120

• We know that along a section of the configuration space between two critical points,

the magnitude of the tangent field starts at zero at the critical point, increases as you

follow the branch away from the critical point, then decreases back to zero as you reach

the other critical point.

We were able to combine all of these smaller pieces to plot a 1 degree-of-freedom configuration

space with arrows indicating the direction of the tangent field in both 2D and 3D. This

method was used to generate the configuration space plots in Fig. 5.2b, Fig. 5.4c, and Fig.

5.6d.

Step 1: Identify the critical points

To identify the critical/branch points of a mechanism, we wrote the criticalPoints[] func-

tion. This function solves ti(u) = 0 subject to the length constraints ℓ2α(u) = L2
α. A critical

point is stored as a set of positions for each vertex in the linkage. The function returns a

list of possible critical points.

The critical points returned by criticalPoints[] will be a function of some subset of

vertex position variables, not an exact location for each vertex. To get exact locations, we

need to add in the exact lengths for each bar.

The final list of critical points has an exact location for each vertex, which allows us to

visualize the mechanism at the critical point and plot the exact location of the critical point

in the 2D or 3D space that the configuration space lives in.

Step 2: Identify the segments that connect critical points

The configuration space is made of segments/branches that start and end at critical points.

These segments represent the infinitesimal motions that the linkage has. At a given criti-

cal point, there are some number of segments branching off from that point. We use the

121

Figure A.2: Mathematica code for the criticalPoints[] function.

pathDirections[] function to identify the direction that each segment points in by solving

Eq. (5.7) to obtain the tangents to the configuration space.

The directions returned by pathDirections[] are a list of initial velocities for each vertex

122

Figure A.3: Mathematica code for the pathDirections[] function.

in the mechanism. We get one unique set of velocities per infinitesimal motion. For all the

critical points of the mechanism, we get a new set of directions.

Figure A.4: Mathematica code for the pathSegment[] function.

Next, we need to follow each of these directions and trace out the segment they point

along. To do this, we use the pathSegment[] function which utilizes the MechanismIso-

metricTrajectory [] function. We give pathSegment[] a mechanism, a critical point to start

at, and a list of directions to travel away from that critical point. First, we step along one

of the tangent vectors from our list of directions using startPath[].

The function integratePath[] then uses MechanismIsometricTrajectory [] to step along

the configuration space in the direction indicated by ti(u) with a step size proportional to its

magnitude. The step size is adjusted to maintain the edge lengths to less than one percent

123

Figure A.5: Mathematica code for the startPath[] function.

strain. Finally, the integration for each segment is terminated by a stopping function that

checks if the magnitude of ti(u) is below a critical threshold, indicating that the integration

has reached the neighborhood of the next critical point.

Figure A.6: Mathematica code for the integratePath[] function.

The final thing we can do is add a “direction” to the segments using the pathOrienta-

tion[] function. Depending on if we traveled along the path with or against the direction of

124

ti(u), this function will output a positive or negative value that we can use when plotting

the final configuration space.

Figure A.7: Mathematica code for the pathOrientation[] function.

This process of picking a critical point, finding all possible directions, tracing out the

segment for each direction, and identifying the start and end critical points is repeated for

all critical points in our list. This initially will give us a list with twice as many segments as

we need. We use pathOrientation[] to filter and select only the paths that we integrated

in the same direction as the tangent vector. After all of these steps, we have a list of

125

critical points and all segments that connect them. Using these, we can construct the full

configuration space.

Step 3: Plot all critical points and segments

At this point, all of our segments and critical points are stored as specific positions for each

vertex in the linkage. For the linkages we looked at in Chapter 5, our configuration space

lives in the space of rotor angles. We use the rotorAngle[] function to convert our list of

x and y vertex positions (for both the critical points and the segments) to a set of two or

three angles. The final configuration space will be plotted in this angle space.

Figure A.8: Mathematica code for the rotorAngle[] function.

We use the plotConfigurationSpace[] and plotConfigurationSpace3D[] functions

to plot each segment in 2D or 3D. Both functions take in the list of critical points and the

list of segments after they have been transformed with rotorAngle[]. The critical points are

plotted with ListPlot[] or ListPointPlot3d[] and labeled with numbers based on their order

in the list.

The segments could be plotted with ListPlot[] or ListPointPlot3d[] as well, but to add the

arrows to our plots, we needed to write the orientedCurve[] function. We use the points

along the segment to draw very small line segments that will, eventually, form a smooth

curve tracing out the segment. We then take a user defined number of these small segments

and use the Arrow graphics object instead of a Line object. The result is a smooth curve

126

Figure A.9: Mathematica code for the plotConfigurationSpace[] function.

Figure A.10: Mathematica code for the plotConfigurationSpace3D[] function.

through 2D or 3D space that has a couple arrowheads along it. These arrowheads point in

the direction of the tangent vector for that branch.

Figure A.11: Mathematica code for the orientedCurve[] function.

127

Bibliography

[1] Hugo Akitaya, Erik D Demaine, Takashi Horiyama, Thomas C Hull, Jason S Ku, and

Tomohiro Tachi. Rigid foldability is np-hard. arXiv preprint arXiv:1812.01160, 2018.

[2] Roger C Alperin, Barry Hayes, and Robert J Lang. Folding the hyperbolic crane. The

Mathematical Intelligencer, 34(2):38–49, 2012.

[3] L. Asimow and B. Roth. The rigidity of graphs. Transactions of the American Math-

ematical Society, pages 279–289, 1978.

[4] L. Asimow and B. Roth. The rigidity of graphs, ii. Journal of Mathematical Analysis

and Applications, 1979.

[5] Clark R Barker. A complete classification of planar four-bar linkages. Mechanism and

Machine Theory, 20(6):535–554, 1985.

[6] Nakul Prabhakar Bende, Arthur A Evans, Sarah Innes-Gold, Luis A Marin, Itai Cohen,

Ryan C Hayward, and Christian D Santangelo. Geometrically controlled snapping

transitions in shells with curved creases. Proceedings of the National Academy of

Sciences, 112(36):11175–11180, 2015.

[7] M Berry, ME Lee-Trimble, and CD Santangelo. Topological transitions in the config-

uration space of non-euclidean origami. Physical Review E, 101(4):043003, 2020.

128

[8] Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin Van Hecke. Flexible

mechanical metamaterials. Nature Reviews Materials, 2, 2017.

[9] Alexander P. Browning, Francis G. Woodhouse, and Matthew J. Simpson. Reversible

signal transmission in an active mechanical metamaterial. Proceedings of the Royal So-

ciety A: Mathematical, Physical and Engineering Sciences, 475(2227):20190146, 2019.

[10] Stuart C Burgess. A review of linkage mechanisms in animal joints and related bio-

inspired designs. Bioinspiration & Biomimetics, 2021.

[11] Sebastien JP Callens and Amir A Zadpoor. From flat sheets to curved geometries:

Origami and kirigami approaches. Materials Today, 21(3):241–264, 2018.

[12] Toen Castle, Yigil Cho, Xingting Gong, Euiyeon Jung, Daniel M Sussman, Shu Yang,

and Randall D Kamien. Making the cut: Lattice kirigami rules. Physical review letters,

113(24):245502, 2014.

[13] George C Chase. History of mechanical computing machinery. IEEE Annals of the

History of Computing, 2(03):198–226, 1980.

[14] Bryan Gin-ge Chen and Christian D Santangelo. Branches of triangulated origami

near the unfolded state. Physical Review X, 8(1):011034, 2018.

[15] Bryan Gin-ge Chen and Christian D Santangelo. Branches of triangulated origami

near the unfolded state. Physical Review X, 8(1):011034, 2018.

[16] Bryan Gin-ge Chen, Nitin Upadhyaya, and Vincenzo Vitelli. Nonlinear conduction via

solitons in a topological mechanical insulator. Proceedings of the National Academy of

Sciences, 111(36):13004–13009, 2014.

[17] Tian Chen, Mark Pauly, and Pedro M. Reis. A reprogrammable mechanical metama-

terial with stable memory. Nature, 589(7842):386–390, 2021.

129

[18] Alex Churchill, Stella Biderman, and Austin Herrick. Magic: The gathering is turing

complete. https://arxiv.org/abs/1904.09828, 2019.

[19] Robert Connelly. The rigidity of certain cabled frameworks and the second-order

rigidity of arbitrarily triangulated convex surfaces. Advances in Mathematics, 37:272–

299, 1980.

[20] Robert Connelly and Herman Servatius. Higher-order rigidity—what is the proper

definition? Discrete & Computational Geometry, 11(2):193–200, 1994.

[21] Robert Connelly, Jeffrey D Shen, and Alexander D Smith. Ball packings with periodic

constraints. Discrete & Computational Geometry, 52(4):754–779, 2014.

[22] Robert Connelly and Walter Whiteley. Second-order rigidity and prestress stability for

tensegrity frameworks. SIAM Journal on Discrete Mathematics, 9(3):453–491, 1996.

[23] Ojan Khatib Damavandi, Varda F Hagh, Christian D Santangelo, and M Lisa Manning.

Energetic rigidity. i. a unifying theory of mechanical stability. Physical Review E,

105(2):025003, 2022.

[24] Erik D. Demaine and Joseph ORourke. Geometric Folding Algorithms. Cambridge

University Press, 2007.

[25] B. Deng, J. R. Raney, K. Bertoldi, and V. Tournat. Nonlinear waves in flexible me-

chanical metamaterials. Journal of Applied Physics, 130(4):040901, 2021.

[26] Bolei Deng, Pai Wang, Vincent Tournat, and Katia Bertoldi. Nonlinear transition

waves in free-standing bistable chains. Journal of the Mechanics and Physics of Solids,

136:103661, 2020.

130

https://arxiv.org/abs/1904.09828

[27] Bolei Deng, Yuning Zhang, Qi He, Vincent Tournat, Pai Wang, and Katia Bertoldi.

Propagation of elastic solitons in chains of pre-deformed beams. New Journal of

Physics, 21(7):073008, 2019.

[28] Peter S Donelan. Singularity-theoretic methods in robot kinematics. Robotica,

25(6):641–659, 2007.

[29] Jakob A. Faber, Andres F. Arrieta, and André R. Studart. Bioinspired spring origami.

Science, 359(6382):1386–1391, 2018.

[30] Yan Fang, Victor V. Yashin, Steven P. Levitan, and Anna C. Balazs. Pattern recogni-

tion with “materials that compute”. Science Advances, 2(9):1–11, 2016.

[31] Igor Fernández de Bustos, Josu Aguirrebeitia, Rafael Avilés, and Rubén Ansola.

Second order mobility analysis of mechanisms using closure equations. Meccanica,

47(7):1695–1704, 2012.

[32] R. A. Fisher. The wave of advance of advantageous genes. Annals of Eugenics,

7(4):355–369, 1937.

[33] Kazuko Fuchi, Alejandro R Diaz, Edward J Rothwell, Raoul O Ouedraogo, and Junyan

Tang. An origami tunable metamaterial. Journal of Applied Physics, 111(8):084905,

2012.

[34] Carlo Galletti and Pietro Fanghella. Single-loop kinematotropic mechanisms. Mecha-

nism and Machine Theory, 36(6):743–761, 2001.

[35] Milton R Garza, Edwin A Peraza-Hernandez, and Darren J Hartl. Self-folding origami

surfaces of non-zero gaussian curvature. In Behavior and Mechanics of Multifunctional

Materials XIII, volume 10968, page 109680R. International Society for Optics and

Photonics, 2019.

131

[36] Science Museum Group. Babbage’s analytical engine. https://collection.

sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-

difference-engine. Last Accessed May 26, 2022.

[37] Science Museum Group. Difference engine no. 1. https://collection.

sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-

difference-engine. Last Accessed May 26, 2022.

[38] Science Museum Group. Difference engine no. 2, designed by charles babbage, built

by science museum. https://collection.sciencemuseumgroup.org.uk/objects/

co526657/difference-engine-no-2-designed-by-charles-babbage-built-by-

science-museum-difference-engine. Last Accessed May 26, 2022.

[39] Elliot Hawkes, B An, Nadia M Benbernou, H Tanaka, Sangbae Kim, Erik D Demaine,

D Rus, and Robert J Wood. Programmable matter by folding. Proceedings of the

National Academy of Sciences, 107(28):12441–12445, 2010.

[40] BM Hespenheide, DJ Jacobs, and MF Thorpe. Structural rigidity in the capsid

assembly of cowpea chlorotic mottle virus. Journal of Physics: Condensed Matter,

16(44):S5055, 2004.

[41] Miranda Holmes-Cerfon, Louis Theran, and Steven J Gortler. Almost-rigidity of frame-

works. Communications on Pure and Applied Mathematics, 74(10):2185–2247, 2021.

[42] Myungwon Hwang and Andres F. Arrieta. Input-independent energy harvesting in

bistable lattices from transition waves. Scientific Reports, 8(1):1–9, 2018.

[43] Myungwon Hwang and Andres F. Arrieta. Solitary waves in bistable lattices with

stiffness grading: Augmenting propagation control. Physical Review E, 98:042205,

2018.

132

https://collection.sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-difference-engine
https://collection.sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-difference-engine
https://collection.sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-difference-engine
https://collection.sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-difference-engine
https://collection.sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-difference-engine
https://collection.sciencemuseumgroup.org.uk/objects/co62243/difference-engine-no-1-difference-engine
https://collection.sciencemuseumgroup.org.uk/objects/co526657/difference-engine-no-2-designed-by-charles-babbage-built-by-science-museum-difference-engine
https://collection.sciencemuseumgroup.org.uk/objects/co526657/difference-engine-no-2-designed-by-charles-babbage-built-by-science-museum-difference-engine
https://collection.sciencemuseumgroup.org.uk/objects/co526657/difference-engine-no-2-designed-by-charles-babbage-built-by-science-museum-difference-engine

[44] Myungwon Hwang and Andres F Arrieta. Topological wave energy harvesting in

bistable lattices. Smart Materials and Structures, 31(1):015021, 2021.

[45] Alexandra Ion, Ludwig Wall, Robert Kovacs, and Patrick Baudisch. Digital mechanical

metamaterials. In Proceedings of the 2017 CHI Conference on Human Factors in

Computing Systems, pages 977–988, 2017.

[46] Donald J Jacobs, Andrew J Rader, Leslie A Kuhn, and Michael F Thorpe. Protein

flexibility predictions using graph theory. Proteins: Structure, Function, and Bioin-

formatics, 44(2):150–165, 2001.

[47] Yijie Jiang, Lucia M. Korpas, and Jordan R. Raney. Bifurcation-based embodied logic

and autonomous actuation. Nature Communications, 10(1), 2019.

[48] NASA Jet Propulsion Laboratory Jonathan Sauder. Automaton rover for extreme en-

vironments (aree). https://www.nasa.gov/directorates/spacetech/niac/2017_

Phase_I_Phase_II/Automaton_Rover_Extreme_Environments/. Last Accessed May

26, 2022.

[49] P. Kaliappan. An exact solution for travelling waves of ut = duxx + u - uk. Physica

D: Nonlinear Phenomena, 11(3):368–374, 1984.

[50] CL Kane and TC Lubensky. Topological boundary modes in isostatic lattices. Nature

Physics, 10(1):39–45, 2014.

[51] Michael Kapovich and John Millson. On the moduli space of polygons in the euclidean

plane. Journal of Differential Geometry, 42(1):133–164, 1995.

[52] Michael Kapovich and John J Millson. Hodge theory and the art of paper folding.

Publications of the Research Institute for Mathematical Sciences, 33(1):1–31, 1997.

133

https://www.nasa.gov/directorates/spacetech/niac/2017_Phase_I_Phase_II/Automaton_Rover_Extreme_Environments/
https://www.nasa.gov/directorates/spacetech/niac/2017_Phase_I_Phase_II/Automaton_Rover_Extreme_Environments/

[53] Michael Kapovich and John J Millson. On the moduli space of a spherical polygonal

linkage. Canadian Mathematical Bulletin, 42(3):307–320, 1999.

[54] Shmuel Katz and Sefi Givli. Solitary waves in a bistable lattice. Extreme Mechanics

Letters, 22:106–111, 2018.

[55] Shmuel Katz and Sefi Givli. Solitary waves in a nonintegrable chain with double-well

potentials. Physical Review E, 100(3):32209, 2019.

[56] Richard Kaye. Infinite versions of minesweeper are turing complete. https://web.

mat.bham.ac.uk/R.W.Kaye/minesw/infmsw.pdf, 2007.

[57] Alfred B Kempe. On a general method of describing plane curves of the nth degree by

linkwork. Proceedings of the London Mathematical Society, 1(1):213–216, 1875.

[58] Jason Z Kim, Zhixin Lu, Ann S Blevins, and Dani S Bassett. Nonlinear dynamics

and chaos in conformational changes of mechanical metamaterials. Physical Review X,

12(1):011042, 2022.

[59] Jason Z Kim, Zhixin Lu, Steven H Strogatz, and Danielle S Bassett. Conformational

control of mechanical networks. Nature Physics, 15(7):714–720, 2019.

[60] P Kumar and S Pellegrino. Computation of kinematic paths and bifurcation points.

International Journal of Solids and Structures, 37(46-47):7003–7027, 2000.

[61] Dongsheng Lei, Alexander E Marras, Jianfang Liu, Chao-Min Huang, Lifeng Zhou,

Carlos E Castro, Hai-Jun Su, and Gang Ren. Three-dimensional structural dynamics

of dna origami bennett linkages using individual-particle electron tomography. Nature

communications, 9(1):1–8, 2018.

134

https://web.mat.bham.ac.uk/R.W.Kaye/minesw/infmsw.pdf
https://web.mat.bham.ac.uk/R.W.Kaye/minesw/infmsw.pdf

[62] Zijia Li, Josef Schicho, and Hans-Peter Schröcker. Kempe’s universality theorem for

rational space curves. Foundations of Computational Mathematics, 18(2):509–536,

2018.

[63] Gabriele Librandi, Eleonora Tubaldi, and Katia Bertoldi. Programming nonreciprocity

and reversibility in multistable mechanical metamaterials. Nature Communications,

12(1):3454, 2021.

[64] H. Lipkin and E. Pohl. Enumeration of singular configurations for robotic manipula-

tors. Journal of Mechanical Design, 113(3):272–279, 1991.

[65] Bin Liu, Jesse L Silverberg, Arthur A Evans, Christian D Santangelo, Robert J Lang,

Thomas C Hull, and Itai Cohen. Topological kinematics of origami metamaterials.

Nature Physics, 14(8):811, 2018.

[66] Bo Liu, Wenjie Ge, Dianbiao Dong, Lei Zheng, and Guoxiong Zhang. Kinematic

analysis and optimization of a kangaroo geared five-bar knee joint mechanism. In

2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages

1557–1563. IEEE, 2017.

[67] K Liu and GH Paulino. Nonlinear mechanics of non-rigid origami: an efficient com-

putational approach. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 473(2206):20170348, 2017.

[68] Po-Wei Lo, Christian D Santangelo, Bryan Gin-ge Chen, Chao-Ming Jian, Krishanu

Roychowdhury, and Michael J Lawler. Topology in nonlinear mechanical systems.

Physical Review Letters, 127(7):076802, 2021.

[69] TC Lubensky, CL Kane, Xiaoming Mao, Anton Souslov, and Kai Sun. Phonons

and elasticity in critically coordinated lattices. Reports on Progress in Physics,

78(7):073901, 2015.

135

[70] W.X. Ma and B. Fuchssteiner. Explicit and exact solutions to a kolmogorov-petrovskii-

piskunov equation. International Journal of Non-Linear Mechanics, 31(3):329–338,

1996.

[71] Alexander E Marras, Lifeng Zhou, Hai-Jun Su, and Carlos E Castro. Programmable

motion of dna origami mechanisms. Proceedings of the National Academy of Sciences,

112(3):713–718, 2015.

[72] Martial Mazars. Statistical physics of the freely jointed chain. Physical Review E,

53(6):6297, 1996.

[73] J. Michael McCarthy and Gim Song Soh. Geometric Design of Linkages. Interdisci-

plinary Applied Mathematics. Springer New York, 2010.

[74] Tie Mei, Zhiqiang Meng, Kejie Zhao, and Chang Qing Chen. A mechanical meta-

material with reprogrammable logical functions. Nature Communications, 12(1):1–11,

2021.

[75] Zhiqiang Meng, Weitong Chen, Tie Mei, Yuchen Lai, Yixiao Li, and C. Q. Chen.

Bistability-based foldable origami mechanical logic gates. Extreme Mechanics Letters,

43:101180, 2021.

[76] Ralph C. Merkle, Robert A. Freitas, Tad Hogg, Thomas E. Moore, Matthew S. Moses,

and James Ryley. Mechanical computing systems using only links and rotary joints.

Journal of Mechanisms and Robotics, 10(6), 2018.

[77] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. Discrete differential-

geometry operators for triangulated 2-manifolds. In Visualization and mathematics III,

pages 35–57. Springer, 2003.

136

[78] Andreas Müller. Higher-order analysis of kinematic singularities of lower pair linkages

and serial manipulators. Journal of Mechanisms and Robotics, 10(1), 2018.

[79] Andreas Müller. Kinematic tangent cone–a useful concept for the local mobility and

singularity analysis. In IFToMM World Congress on Mechanism and Machine Science,

pages 337–346. Springer, 2019.

[80] Andreas Müller and Dimiter Zlatanov. Singular Configurations of Mechanisms and

Manipulators. Springer, 2019.

[81] Mees Muller. A novel classification of planar four-bar linkages and its application to

the mechanical analysis of animal systems. Philosophical transactions of the Royal

Society of London. Series B, Biological sciences, 351 1340:689–720, 1996.

[82] Jun-Hee Na, Arthur A Evans, Jinhye Bae, Maria C Chiappelli, Christian D Santangelo,

Robert J Lang, Thomas C Hull, and Ryan C Hayward. Programming reversibly self-

folding origami with micropatterned photo-crosslinkable polymer trilayers. Advanced

Materials, 27(1):79–85, 2015.

[83] Neel Nadkarni, Andres F. Arrieta, Christopher Chong, Dennis M. Kochmann, and

Chiara Daraio. Unidirectional transition waves in bistable lattices. Physical Review

Letters, 116:244501, 2016.

[84] Neel Nadkarni, Chiara Daraio, Rohan Abeyaratne, and Dennis M. Kochmann. Uni-

versal energy transport law for dissipative and diffusive phase transitions. Physical

Review B, 93:104109, 2016.

[85] Neel Nadkarni, Chiara Daraio, and Dennis M. Kochmann. Dynamics of periodic me-

chanical structures containing bistable elastic elements: From elastic to solitary wave

propagation. Physical Review E, 90(2):023204, 2014.

137

[86] Liviu I Nicolaescu et al. An invitation to Morse theory. Springer, 2007.

[87] Paul Plucinsky, Benjamin A Kowalski, Timothy J White, and Kaushik Bhattacharya.

Patterning nonisometric origami in nematic elastomer sheets. Soft matter, 14(16):3127–

3134, 2018.

[88] Jordan R Raney, Neel Nadkarni, Chiara Daraio, Dennis M Kochmann, Jennifer A

Lewis, and Katia Bertoldi. Stable propagation of mechanical signals in soft media using

stored elastic energy. Proceedings of the National Academy of Sciences, 113(35):9722–

9727, 2016.

[89] Gert Roos, Heleen Leysen, Sam Van Wassenbergh, Anthony Herrel, Patric Jacobs,

Manuel Dierick, Peter Aerts, and Dominique Adriaens. Linking morphology and mo-

tion: a test of a four-bar mechanism in seahorses. Physiological and Biochemical

Zoology, 82(1):7–19, 2009.

[90] Mark Schenk and Simon D Guest. Geometry of miura-folded metamaterials. Proceed-

ings of the National Academy of Sciences, 110(9):3276–3281, 2013.

[91] Josef Schicho. And yet it moves: Paradoxically moving linkages in kinematics. Bulletin

of the American Mathematical Society, 59(1):59–95, 2022.

[92] HS Seung and David R Nelson. Defects in flexible membranes with crystalline order.

Physical Review A, 38(2):1005, 1988.

[93] Jesse L Silverberg, Arthur A Evans, Lauren McLeod, Ryan C Hayward, Thomas Hull,

Christian D Santangelo, and Itai Cohen. Using origami design principles to fold repro-

grammable mechanical metamaterials. Science, 345(6197):647–650, 2014.

[94] Jesse L Silverberg, Jun-Hee Na, Arthur A Evans, Bin Liu, Thomas C Hull, Christian D

Santangelo, Robert J Lang, Ryan C Hayward, and Itai Cohen. Origami structures

138

with a critical transition to bistability arising from hidden degrees of freedom. Nature

materials, 14(4):389, 2015.

[95] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2006.

[96] S Sirono. Dilatancy of two-dimensional disk packing. EPL (Europhysics Letters),

96(3):30003, 2011.

[97] Adnan Sljoka. Algorithms in rigidity theory with applications to protein flexibility and

mechanical linkages. York University Toronto, Ontario, Canada, 2012.

[98] Adnan Sljoka and Alexandr Bezginov. Predicting protein hinge motions and allostery

using rigidity theory. In AIP Conference Proceedings, volume 1368, pages 167–170.

American Institute of Physics, 2011.

[99] Yuanping Song, Robert M. Panas, Samira Chizari, Lucas A. Shaw, Julie A. Jack-

son, Jonathan B. Hopkins, and Andrew J. Pascall. Additively manufacturable micro-

mechanical logic gates. Nature Communications, 10(1):822, 2019.

[100] Ileana Streinu and Walter Whiteley. Single-vertex origami and spherical expansive

motions. In Japanese Conference on Discrete and Computational Geometry, pages

161–173. Springer, 2004.

[101] Tomohiro Tachi. Simulation of rigid origami. Origami, 4(08):175–187, 2009.

[102] Krzysztof Tchoń. Singularity avoidance in robotic manipulators: A differential form

approach. Robotica, 13(6):599–606, 1995.

[103] Krzysztof Tchoń. Singularity avoidance in robotic manipulators: A differential form

approach. Systems & control letters, 30(4):165–176, 1997.

139

[104] Shawna Thomas, Xinyu Tang, Lydia Tapia, and Nancy M Amato. Simulating protein

motions with rigidity analysis. Journal of Computational Biology, 14(6):839–855, 2007.

[105] U. Waheed, C. W. Myant, and S. N. Dobson. Boolean and/or mechanical logic using

multi-plane mechanical metamaterials. Extreme Mechanics Letters, 40:100865, 2020.

[106] Scott Waitukaitis, Peter Dieleman, and Martin van Hecke. Non-Euclidean Origami.

pages 1–8, 2019.

[107] Scott Waitukaitis and Martin van Hecke. Origami building blocks: Generic and special

four-vertices. Physical Review E, 93(2):023003, 2016.

[108] Zhiyan Y Wei, Zengcai V Guo, Levi Dudte, Haiyi Y Liang, and L Mahadevan. Geo-

metric mechanics of periodic pleated origami. Physical review letters, 110(21):215501,

2013.

[109] Walter Whiteley. Rigidity and scene analysis. Handbook of Discrete and Computational

Geometry, pages 1327–1354, 2004.

[110] Karl Wohlhart. Kinematotropic linkages. In Recent advances in robot kinematics, pages

359–368. Springer, 1996.

[111] H. Yasuda, L. M. Korpas, and J. R. Raney. Transition waves and formation of domain

walls in multistable mechanical metamaterials. Phys. Rev. Applied, 13:054067, 2020.

[112] Hiromi Yasuda, Philip R Buskohl, Andrew Gillman, Todd D Murphey, Susan Stepney,

Richard A Vaia, and Jordan R Raney. Mechanical computing. Nature, 598(7879):39–

48, 2021.

[113] D ZLATANOV, RG FENTON, and B BENHABIB. A unifying framework for classi-

fication and interpretation of mechanism singularities. Journal of mechanical design,

117(4):566–572, 1995.

140

VITA

AUTHOR: Michelle Berry

DEGREES AWARDED:

• M.S. (Physics), University of Massachusetts, Amherst, 2020

• B.A. (Mathematics, Physics), Goucher College, 2017

RESEARCH EXPERIENCE:

• Graduate Research Assistant, Department of Physics, Syracuse University (September

2020-May 2022).

• Graduate Research Assistant, Department of Physics, University of Massachusetts,

Amherst (June 2019-August 2020).

• Summer Research Student, CERN (ATLAS Collaboration), (June 2016-August 2016)

• Summer Research Student, Department of Mathematics and Statistics, Sam Houston

State University (June 2015-July 2015)

TEACHING EXPERIENCE:

• Teaching Assistant, Department of Physics, University of Massachusetts, Amherst

(September 2017-May 2019)

• Supplemental Instruction Leader, Academic Center for Excellence, Goucher College

(September 2014-May 2017)

ADDITIONAL EXPERIENCE:

• Prospective Student Coordinator, Physics Community Organization, University of

Massachusetts, Amherst (January 2019-April 2020)

• Local Organizing Committee (member), UMass Conference for Undergraduate Women

in Physics (May 2018-January 2019)

PUBLICATIONS:

• M Berry, ME Lee-Trimble, D Limberg, RC Hayward, and CD Santangelo. Configura-

tion space engineering for the topological gating of mechanical devices. Under Review,

2022

• M Berry, YJ Kim, D Limberg, RC Hayward, and CD Santangelo. Mechanical signaling

cascades. Under Review, 2022

• M Berry, ME Lee-Trimble, and CD Santangelo. Topological transitions in the config-

uration space of non-Euclidean origami. Physical Review E, 101(4):043003, 2020.

• M Berry, V Diaz, B Doleshal, T Martin, E Winn, and M Zhou. The component number

of a twisted torus link. Minnesota Journal of Undergraduate Mathematics, 2(1), 2017

PRESENTATIONS:

Workshops:

• D Atkinson, M Berry, M. E. Lee-Trimble, “Bits, Knits, and Knots: Using Knitting as

a Tool for Teaching STEM Concepts”. Workshop at the STEM Education Institute,

University of Massachusetts Amherst, May 2020

Contributed Talks:

• M Berry, D Limberg, M. E. Lee-Trimble, R Hayward, C Santangelo, “Configuration

space engineering: gating mechanisms by controlling configuration space topology”

(virtual talk). Presented at the APS March Meeting 2022

142

• M Berry, D Limberg, YJ Kim, R Hayward, C Santangelo, “Branching out into com-

putation: using singularities to design mechanical logic” (virtual talk). Presented at

the APS March Meeting 2021

• M Berry, R Hayward, C Santangelo, “Sending Signals Through Mechanical Wiring”

(virtual talk). Presented at the APS March Meeting 2020

Posters:

• M Berry, R Hayward, C Santangelo, “Designing Mechanical Logic Systems” (poster).

Presented at the Multifunctional Materials and Structures Gordon Research Confer-

ence, January 2020

• MBerry, R Hayward, C Santangelo, “Signal Propagation in Mechanical Logic Systems”

(poster). Presented at the NEW.Mech Workshop, October 2019

143

	Mechanologic: Designing Mechanical Devices that Compute
	Recommended Citation

	List of Figures
	List of Tables
	List of Publications
	Introduction and Background
	Linkages
	Rigidity Matrix
	Types of Rigidity
	Self Stresses
	Configuration Space
	Bar Length Perturbations
	Length Constraints
	Self-Stresses
	Example: Three-Bar Colinear Linkage

	Summary

	Computation
	Definitions of ``Compute''
	Finite State Machines
	Turing Machines
	Boolean Logic
	Turing Complete vs. Functionally Complete

	Computation in Mechanical Systems
	Transistors and Logic Gate Circuits
	Finite State Machines

	Dissertation Outline

	Topological transitions in the configuration space of non-Euclidean origami
	Introduction
	Mathematical Formulation
	Single vertices
	Conclusions
	Acknowledgements
	Appendix A. Generalizing the formalism to nonzero Gaussian curvature
	Relation to linear analysis

	Appendix B. Single vertices

	Mechanical signaling cascades
	Introduction
	Mechanical Signalling Cascades
	Bistable elements
	Equations of Motion
	Solutions

	Results
	Simulations
	Experiments

	Conclusion/Discussion
	Acknowledgements
	Appendix A: Fit for Simulation Parameters
	Interaction Springs
	Symmetric Bistable Beams
	Asymmetric Bistable Beams

	The Flip-Flop Linkage
	Description
	Rigidity Theory Analysis
	Self Stresses
	Length Constraint Perturbations
	First Order Equation
	Second Order Equation

	Flip-Flop as a Transistor
	Simulation Design and Testing
	Flip-Flop Logic Gates
	Experimental Design and Testing
	Troubleshooting: Energy Landscape

	Summary

	Configuration space engineering for the topological gating of mechanical devices
	Introduction
	Critical points in mechanisms
	Mathematical rigidity
	Shape of the configuration space at critical points
	Shape of the configuration space near critical points

	Controlling configuration space topology
	The geometry of the critical configuration set
	The geometry of the critical value set
	Three rotor system

	The gated Kane-Lubensky chain
	Conclusions
	Appendix A: Quadratic critical point decompositions
	Appendix B: Properties of the tangent form

	Conclusion
	Appendices
	Documentation of Chapter 5 Code
	Creating and Working With Linkages
	Defining a Linkage
	Motions of a Linkage

	Visualization of 2D Configuration Spaces
	Visualization of 3D Configuration Spaces

	Bibliography
	Vita

