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Abstract

Despite their numerous successes both from the theoretical and experimental point of view,

conceptual and observational evidence suggests the Standard Models of Particle Physics and

Cosmology should be considered incomplete theories, reliable only within their well-defined

regime of validity. This dissertation covers various possible extensions of those models from

the theoretical, phenomenological and model-building perspective. The topics analyzed range

from extra-dimensional approaches to the hierarchy problem, to the AdS/CFT description

of perturbative anomaly inflow, and new probes of vacuum energy in neutron stars and

gravitational waves.
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GW sector when the breaking scale is set to f = 10 TeV (left figure) and

f = 50 TeV (right figure). Different points which have the same α0 value are

obtained by varying ν which is decreasing as one goes up on the vertical axis.

We can observe that the tuning increases as we go the the top-right region

of the α0 − α1 plane. Also increasing the breaking scale increases the tuning,

which is expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 In these plots, we show the values of the radion mass rescaled with the breaking

scale f and backreaction parameter κ. In both plots, we fix v1 = 1 and vary

v0. On the left figure, we fix the breaking scale to f = 10 TeV and plot for

various values of ε. On the right figure, we fix ε = 1/10 and plot for various

values of the breaking scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xvi



3.7 On the left figure, we show the ratio between v2(y1) obtained by solving (3.2.7)

numerically with nonzero backreaction, and the analytical result (3.3.20)

obtained by neglecting the backreaction. The green dots show the results

for the model of this Subsection, where both GW and the Higgs are in the

bulk, while the blue dots are the results for the model of the next Subsection,

where only the Higgs is in the bulk. The green and blue dashed vertical lines

show the upper bound estimates for κ calculated via (3.3.75) and (3.3.76)

respectively. The gray line corresponds to a ratio of 0.9 which we have assumed

in our estimates. On the right figure, we plot the Radion-Higgs mass ratio for

κ = 4× 10−3. The parameters for these plots are v0 = 1/50, v1 = 1, ε = 1/10,

f = 10 TeV, m2
0 = 43/10, ν = 1/10 unless otherwise specified. The remaining

free parameters are fixed such that vEW = 246 GeV and mh = 126 GeV. . . . 92

3.8 In this figure, the circles denotes possible {α0, α1} pairs characterized by

vEW = 246 GeV and mh = 126 GeV. The hierarchy between the electroweak

and the conformal breaking scales is f/vEW = 10 and f/vEW = 100 for the

left and right plot respectively. The gray shaded area denotes the region in

parameter space where there is no “critical” value of y1. The color shaded areas

are the regions where the condition for global minimum (3.3.81) is violated.

To improve clarity, we are showing the {α0, α1} pairs corresponding to these

regions with semi-transparent circles. . . . . . . . . . . . . . . . . . . . . . 95

xvii



3.9 In this figure, we are plotting the ratio between the radion mass and the Higgs

mass as a function of α0 by assuming κ = 6 × 10−2. The breaking scale is

f = 10 TeV and f = 50 TeV on the left and right figure respectively. The Higgs

parameters are fixed such that vEW = 246 GeV and mh = 126 GeV. . . . . . 96

5.1 Mass versus radius curves corresponding to the stiff parametrization of Hebeler et

al. [155] with α = 3. Dotted curves in the plot on the left correspond to unstable

configurations violating Eq. (5.4.2). Positive values of Λ are shown in the plot on

the left, and negative ones on the right. . . . . . . . . . . . . . . . . . . . . . . 180

5.2 M(R) curves for the SLy and AP4 equations of state for various Λ values on the

seventh layer. For all the curves, the proportionality constant α in the jump equation

(5.2.14) is chosen to be α = 3. The gray region shows the allowed mass range of the

heaviest neutron star, with mass (2.01± 0.04)M�. . . . . . . . . . . . . . . . . . 181

5.3 Tidal deformabilities for the Hebeler et al. parametrization with α = 3. Each plot

corresponds to a different chirp mass. Dotted parts of the curves with Λ = (165 MeV)4

correspond to unstable configurations. In all cases, the deviation from the Λ = 0

curve is significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.4 Plots on the right show the relative deviation of the combined dimensionless tidal

deformability, Λ̃, as a function of the heaviest star mass for the Hebeler et al.

parametrization with α = 3 for various values of the chirp mass. Plots on the left

show Λ̃ for vanishing VE for the same chirp masses. Dotted parts of the curves

correspond to unstable configurations. The disconnected branches associated with

two stable NS configurations allow for the largest deviations. . . . . . . . . . . . 187

xviii



5.5 Tidal deformability curves for a neutron star binary with SLy and AP4 EoS’s. The

chirp mass is taken to beM = 1.188M�, which is the same value as in GW170817.

λ̄1 and λ̄2 correspond to the dimensionless tidal deformability parameters for the

heavy and light stars, respectively. Each curve is obtained by varying the heavy star

mass while holding the chirp mass fixed. The α-parameter of (5.2.14) is chosen to

be α = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.6 Plot of the deviation of the combined dimensionless tidal deformability as a function

of the heavy star mass for the SLy EoS with different values for the chirp mass.

M = 1.188M� is the same as the one of GW170817, whileM = 1.65M� corresponds

to a chirp mass where if the two NS masses are equal they have a mass of 1.9M�.

For the smaller chirp mass the effect is rather small, however for a higher chirp mass

the effect can be as large as 38%. The α-parameter of (5.2.14) is again chosen to be

α = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.7 Plot of the deviation of the combined dimensionless tidal deformability as a function

of the heavy star mass for the AP4 EoS with different values for the chirp mass.

Plots on the left show the value of Λ̃, while plots on the right show the fractional

deviation, δ. The chirp massM = 1.188M� is the same as the one of GW170817,

while M = 1.65M� corresponds to a chirp mass where if the two NS masses are

equal they have a mass of 1.9M�. For the smaller chirp mass the effect is rather

small, however for a higher chirp mass the effect can be as large as 25%. Again the

α-parameter of (5.2.14) is chosen to be α = 3. . . . . . . . . . . . . . . . . . . . 190

xix



5.8 Dependence on the chirp mass in the Hebeler et al. parametrization, keeping

the heaviest star mass fixed at M1 = 2.27M� (the maximum value for the Λ =

(150 MeV)4 curve). The left plot shows the corresponding value of the combined tidal

deformability for the Λ = 0 curve. The right plot represents the relative deviation

of the combined tidal deformability by turning on Λ = (150 MeV)4 and is a measure

of how the effect of VE potentially increases with the chirp mass. . . . . . . . . . 191

5.9 Dependence on the chirp mass in the AP4 and SLy parametrizations, keeping

the heaviest star mass fixed at M1 = 1.98M� (the maximum value for the Λ =

(120 MeV)4 curve). The chirp mass range is fromM = 1.188M� toM≈ 1.72M�,

where the latter corresponds to the case when both stars have massesM1,2 = 1.98M�.

The left plot shows the corresponding value of the combined tidal deformability for

the Λ = 0 curves. The right plot represents the relative deviation of the combined

tidal deformability and is a measure of how the effect of VE potentially increases

with the chirp mass. The vertical gray line denotes the chirp mass at which the

light star mass reaches the critical mass for the phase transition. . . . . . . . . . 191

5.10 Combined tidal deformability Λ̃ as a function of the heavy star mass M1 for the

Hebeler et al. parametrization with α = 3. The chirp mass is the same as in the event

GW170817. The figure shows the upper bounds set by the LIGO/Virgo analysis

and demonstrates how a nonzero value of Λ can affect the allowed mass range. . . 192

xx



List of Tables

1.1 Matter and gauge content of the Standard Model. Here 1, � and Ad represent

the trivial, fundamental and adjoint representations for the non-Abelian gauge

group, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.1 The parameters used for each EoS. The exponents γi are dimensionless, the

various pressures have units of MeV4, and K1 is in units of MeV4−4γ1 . The

Hebeler et al. parametrization [155] uses a semi-analytic expression which is

not piecewise polytropic in the outer region of the star, and thus cannot be

displayed in the table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xxi



List of Publications

Chapters 2–5 of this dissertation consist of work originally described in the following papers:

[1] C. Eröncel, J. Hubisz, G. Rigo, “Self-Organized Higgs Criticality”, JHEP 03, 046

(2019) [arXiv:1804.00004 [hep-ph]].

[2] C. Eröncel, J. Hubisz, G. Rigo, “Radion-Activated Higgs Mechanism”, Phys. Rev. D

101, 055041 (2020) [arXiv:1912.11053 [hep-ph]].

[3] S. Hong, G. Rigo, “Anomaly Inflow and Holography” [arXiv:2012.03964 [hep-th]].

[4] C. Csáki, C. Eröncel, J. Hubisz, G. Rigo, J. Terning, “Neutron Star Mergers Chirp

About Vacuum Energy”, JHEP 09, 087 (2018) [arXiv:1802.04813 [astro-ph.HE]].

xxii

https://doi.org/10.1007/JHEP03(2019)046
https://doi.org/10.1007/JHEP03(2019)046
http://arxiv.org/abs/1804.00004
https://doi.org/10.1103/PhysRevD.101.055041
https://doi.org/10.1103/PhysRevD.101.055041
http://arxiv.org/abs/1912.11053
http://arxiv.org/abs/2012.03964
https://doi.org/10.1007/JHEP09(2018)087
http://arxiv.org/abs/1802.04813


Chapter 1

Introduction

The Standard Model of Particle Physics (SM) can be regarded as one of the most successful

theories in the history of modern physics, arguably thanks to the following reasons: it

provides a unified and minimal framework that encapsulates a century of development in

quantum field theory (QFT), and it generates countless predictions that have been tested to

exceptional precision by a multitude of experimental probes. In the present Introduction we

will review the elements, as well as the downsides and limitations, of the SM, and anticipate

how various possible extensions of the SM itself can lead to a more complete understanding

of the phenomena at the core of particle physics and cosmology.

1.1 Review of the Standard Model

Quantum field theory is the unified description of quantum mechanics and special relativity in

terms of the fundamental building blocks known as quantum fields. Those fields are typically

defined at every point of spacetime, and are characterized by their transformation properties
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under the Lorentz symmetry of flat spacetime. Through experiments performed under various

conditions, physicists are able to probe the characteristics and behavior of the particles that

arise from the excitations of quantum fields. This well-established procedure allows to relate

the experimental data to the details of the underlying theory, and viceversa to accurately

predict the outcome of a wide range of experiments in terms of a given theoretical model.

Such a continuous feedback mechanism has enabled particle physics to thrive and improve

for almost a century both from the theoretical and from the experimental side.

Gauge theories are an example of a class of theories that have proven to be especially

useful in the context of QFT. A gauge symmetry is not a fundamental symmetry of Nature,

or of any physical theory. Rather, it should be interpreted as the redundancy that arises from

choosing a particular description of the interactions between degrees of freedom, in which

Lorentz invariance is manifest. However, the advantage of resorting to such a description

is that the theory is completely determined once only a few key ingredients are specified,

namely:

• the symmetries of the Lagrangian and the symmetry breaking pattern;

• the matter content and its transformation properties under the symmetries.

Through years of historical development, physicists have realized that three of the four

fundamental interactions and their phenomenological consequences are very well accounted

for by writing down a gauge theory with the appropriate symmetries and matter content.

In the case of the Standard Model, the gauge (local) symmetry is postulated to be GSM =

SU(3)C × SU(2)L × U(1)Y , spontaneously broken as GSM → SU(3)C × U(1)EM, where the

generator of U(1)EM is QEM ≡ T3 + Y . Specifically, the various factors correspond to the
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quantum chromodynamics (QCD), weak and hypercharge gauge groups. The last two elements

are also collectively referred to as the electroweak (EW) group. At low energies, the EW

symmetry is broken down to the gauge group responsible for the electromagnetic interactions

that we observe.

Having determined what the symmetries of the SM are, we now turn to the matter content.

There are three generations of fermions that differ in their masses and flavor quantum numbers,

but are otherwise completely analogous. Those are labelled QLi , URi , DRi , LLi , ERi , with

i ∈ {1, 2, 3} the generation index. There is famously a single scalar field, namely the Higgs

field, which has been for many years the last missing piece of the SM, until the experimental

discovery of the Higgs boson at CERN in 2012 [1, 2]. All these elements are listed in Table 1.1,

together with their transformation properties under the gauge group.

Notice that so far we have not listed any gauge bosons. This is because their existence

is guaranteed, and in fact required, by the properties of the gauge symmetry, and as such

they don’t need to be separately added to the theory. Moreover, their interactions with the

matter fields take a very specific form. The gauge group of the SM implies the presence of

8 + 3 + 1 = 12 gauge bosons, one for each generator, and those are also included in Table 1.1.

1.1.1 The Standard Model Lagrangian and Spectrum

Now that we have introduced all the elements we need, we can write down the most general

renormalizable Lagrangian that is consistent with the symmetries:

LSM = Lkin + LYuk + LH . (1.1.1)
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Table 1.1: Matter and gauge content of the Standard Model. Here 1, � and Ad represent the
trivial, fundamental and adjoint representations for the non-Abelian gauge group, respectively.

SU(3)C SU(2)L U(1)Y

Left-handed quarks QLi � � +1/6

Right-handed up-type quarks URi � 1 +2/3

Right-handed down-type quarks DRi � 1 −1/3

Left-handed leptons LLi 1 � −1/2

Right-handed leptons ERi 1 1 −1

Higgs scalar H 1 � +1/2

Gluons Ga
µ Ad 1 0

Weak gauge bosons W a
µ 1 Ad 0

Hypercharge gauge boson Bµ 1 1 0

Let us just quote what each individual term looks like. Lkin contains the kinetic terms for

gauge bosons, fermions and Higgs field:

Lkin = −1
4G

a
µνG

aµν − 1
4W

b
µνW

bµν − 1
4BµνB

µν

+ iQLi
/DQLi + iURi

/DURi + iDRi
/DDRi + iLLi /DLLi + iERi

/DERi

+ (DµH)†(DµH).

(1.1.2)

Here D denotes the appropriate covariant derivative.

LYuk describes the Yukawa interactions between the Higgs and the fermions, and is

responsible also for the flavor structure and CP-violating phenomena:

LYuk = Y d
ijQLiHDRj + Y u

ijQLiH̃URj + Y e
ijLLiHERj + h.c. , (1.1.3)

where H̃ ≡ iσ2H
†.
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LH is the scalar potential for the Higgs field:

LH = −m2
H |H|

2 − λ|H|4. (1.1.4)

Notice the absence of explicit mass terms for the fermions, since the symmetries of the

theory forbid them. However, fermion and (some) gauge boson masses are generated through

the Higgs mechanism [3–5]. For m2
H < 0, and below the scale of electroweak symmetry

breaking (EWSB), the Higgs condenses to a new minimum in its potential and acquires a

vacuum expectation value (VEV). Specifically, the Higgs field can be parametrized as

H(x) = 1√
2

exp
(

2iπ
a(x)τa
v

) 0

v + h(x)

, (1.1.5)

where v2 = −m2
H/λ. This VEV is responsible for the symmetry breaking pattern, and fermion

and gauge boson masses are generated through the Yukawa and covariant derivative terms,

respectively. The massive excitation h(x) of the field H(x) around the new vacuum is what

is conventionally referred to as the Higgs boson. After EWSB, the spectrum of the SM can

then be expressed in terms of the low energy degrees of freedom.

1.2 Beyond the Standard Model

Despite its impressive success and broad range of applications, we have a considerable amount

of evidence suggesting that the Standard Model is not the ultimate theory of Nature. Some

of the most notable examples are:
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• Neutrino masses: the SM does not account for neutrino masses. However, neutrino

oscillation experiments have proven that they indeed have a small, nonzero mass.

• Dark matter: a plethora of cosmological observations point to the existence of a

different type of matter than what is described by the SM, which by itself makes up for

27% of the energy density in the Universe. Its microscopic nature and interactions with

the SM are not yet entirely understood.

• Dark energy: observation of supernova explosions provide evidence that our Universe

is currently expanding at an accelerated rate. This translates into an amount of so-called

dark energy that accounts for 68% of the total energy density, leaving only 5% to

conventional SM matter. Dark matter and dark energy are essential elements of the

Standard Model of Cosmology, also referred to as ΛCDM.

• Baryon asymmetry: the SM lacks a mechanism that is able to quantitatively explain

the observed overabundance of matter over antimatter in the Universe.

• Gravity: of the four fundamental forces, gravity is the only one that is not accounted

for in the SM. Moreover, we have strong evidence suggesting that quantum gravitational

effects become dominant at the scale MPl ∼ 1018 GeV.

On top of those observational challenges, the Standard Models of Particle Physics and

Cosmology also suffer from a few conceptual and theoretical issues. These problem don’t

necessarily render the SMs inconsistent with phenomenological data, but rather beg for a

deeper understanding of the underlying phenomena, possibly in terms of a more fundamental

and complete theory. Two examples that will play a significant role in the rest of this
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dissertation are the hierarchy problem and the cosmological constant problem. Overall, this

suggests that we should regard the SM not as the fundamental theory of Nature, but rather as

an effective field theory (EFT) that works very well in explaining a wide range of phenomena

at (relatively) low energies. A large amount of research in theoretical high energy physics

is devoted to finding extensions of the SM that allow to explain some of the discrepancies

between the SM itself and the aforementioned experimental and theoretical considerations.

1.2.1 The Hierarchy Problem

The hierarchy problem can be thought of as the issue with the UV sensitivity of the Higgs

mass, or more in general of any elementary scalar. Unlike with fermions and gauge bosons,

whose masses are protected against radiative corrections by symmetry, the mass of an

elementary scalar is quadratically sensitive to the physical scales of the quantum theory.

Another equivalent interpretation is that there is no obstacle to continuously deforming a

massless scalar QFT to a massive one, since in both cases the scalar is associated with a

single degree of freedom. Computing one-loop radiative corrections up to the scale Λ results

in

δm2
H = Λ2

16π2

(
6λ+ 9

4g
2
2 + 3

4g
2
Y − 6y2

t + . . .
)
. (1.2.1)

In any extension of the SM that contains physical UV scales (like MPl to account for quantum

gravity) this is a disaster: it means that the parameters have to be fine-tuned to an absurd

degree in order to obtain the required cancellation and reproduce the physical Higgs mass

measured from experiment. Historically physicists have invoked many possibilities in order to

explain the mechanism at the core of the hierarchy problem, each of them with an associated
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set of new states and experimental signals. Some of those rely on the existence of new

kinds of symmetries, like supersymmetry [6] and composite Higgs models/warped extra

dimensions [7–12]. Others rely on anthropics arguments [13], or on dynamical relaxation

mechanisms [14]. However, so far none of these models have found experimental verification,

and resorting to less conventional ideas has progressively become more and more popular in

recent years.

1.2.2 The Cosmological Constant Problem

From the point of view of the SM, a constant term in the Lagrangian doesn’t play any

significant role in terms of physics. However, as soon as the theory is coupled to gravity, such

a term has important cosmological consequences, and in fact it contributes as a cosmological

constant (CC) term to the Einstein equations of general relativity:

Gµν + Λgµν = κTµν . (1.2.2)

Such a cosmological constant term can drive the accelerated expansion of the Universe,

and in fact its contribution to the energy density does not dilute in time like matter and

radiation do. For those reasons, it is considered a candidate for explaining the accelerated

expansion originally measured from supernovae, and more recently thanks to the Planck

space observatory [15]. However, this is also problematic as the operator associated with the

CC is a relevant one, and similarly to the Higgs mass it is sensitive to the UV physical scales

of the theory. Assuming the presence of physical states at the Planck scale famously results
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in a theoretical prediction that is massively inconsistent with the experimental value:

Λ
M4

Pl
∼
(

10−3 eV
1018 GeV

)4

= 10−120. (1.2.3)

There are not very many compelling proposals for how to solve the CC problem. Possibly

the most convincing one is based on anthropics and the existence of a multitude of vacua [16]

(the so-called multiverse), some of which have a CC that is as small as the one observed in

our Universe.

1.2.3 Anomalies in the Standard Model and Its Extensions

Even in the context of the SM, gauge and gravitational anomaly cancellation serves as an

important consistency check on the particle content of the theory. In fact, gauge anomalies

lead to unitarity violation, in the sense that the Ward identity associated with the symmetry

is violated and unphysical modes can be produced. On the other hand, global anomalies do

not render a theory inconsistent, rather they are often source of interesting physics. The most

famous example in the SM consists of the decay π0 → γγ. It follows that, also in theories

beyond the Standard Model, anomalies can lead to inconsistencies of the description or to

interesting new phenomena [17].

From the theoretical point of view, the fact that anomalies depend on robust and

nonperturbative features constitutes a powerful tool in probing the details of the theory itself,

even in cases in which a perturbative description is not available.
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1.3 Outline of the Dissertation

The aim of this dissertation is to describe a number of different ways to tackle the problems

in the SM and study its possible extensions. The rest of this work is organized as follows:

• Chapter 2 presents an approach to the hierarchy problem in which masslessness of the

Higgs is linked to the minimum of an effective potential for a modulus field. In this

way Higgs criticality can become an attractor as a special point of the theory not in

terms of symmetry, but rather in terms of dynamics.

• Motivated partly by the analysis of Chapter 2, Chapter 3 studies the dynamics of

various extra-dimensional models with multiple scalar fields in the bulk, and derives

general results about radius stabilization mechanisms for the size of the extra dimension.

• Still in the context of the AdS/CFT correspondence, Chapter 4 describes a system-

atic approach to the perturbative anomaly inflow of a bulk Chern-Simons theory in

five-dimensional AdS space. In particular, we carefully construct the holographic dual

interpretation and show how many interesting phenomena like ’t Hooft anomaly match-

ing and Wess-Zumino-Witten terms naturally emerge from a unified description in the

5D theory.

• Finally, Chapter 5 suggests a fascinating new strategy to test the physics of vacuum

energy, thanks to the possible role played by high-density QCD in the cores of the most

massive neutron stars. It then focuses on how to extract related information from the

gravitational waves emitted during neutron star merger events.
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Chapter 2

Self-Organized Higgs Criticality

2.1 Introduction

The Higgs instability in the electroweak sector of the Standard Model (SM) appears thus far

to be of the simplest variety, with the Higgs sector residing “unnaturally” close to a critical

point seemingly unprotected by symmetry and well described by mean field theory. The Higgs

sector is associated with a Landau-Ginzburg theory of a symmetry breaking phase transition.

The Higgs field of the Standard Model develops a vacuum expectation value (VEV) due to

a relevant operator (the Higgs mass term) having the “wrong sign” in the infrared which

destabilizes the origin in field space. The naturalness issue, or the hierarchy problem, is

the statement that in units of the much larger fundamental scales in the problem, i.e. the

Planck or GUT scales, the bare mass must be tuned to an absurd degree to accommodate the

observed value for the VEV and the mass of the Higgs particle, and that quantum corrections

spread this sensitivity among fundamental parameters. That is, quantum effects make the

Higgs mass similarly sensitive to, for example, the value of the top quark Yukawa coupling.
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As a consequence it is expected that low energy effective theories with Higgs sectors like that

of the SM are extraordinarily rare when there are other large physical scales present.

Most proposed resolutions of this problem invoke new symmetries requiring new particles

with fixed interactions that ameliorate the sensitivity of the Higgs mass to larger mass scales.

The paucity of new particles at the TeV scale has sown growing doubt that this is the way

nature has created a low electroweak scale.

In this work, we begin an investigation of the possibility that the critical point for Higgs

sectors like that of the SM can arise naturally not due to symmetry, but rather because of a

self-organization principle, as suggested in [18]. This is inspired by critical behavior that has

been observed in a wide variety of seemingly unrelated physical systems in nature [19, 20],

with the canonical example being the sandpile. In this example, a pile of sand is created and

sustained by slowly pouring sand from a funnel onto a fixed point. The sand self-organizes into

a cone with opening angle fixed by microscopic interactions between grains. Perturbations,

even if only involving a single grain of sand, result in avalanches at all scales, following a

power law distribution. After the avalanche, when the system has removed the perturbation,

the cone of sand is in a new configuration, but still critical so long as sand continues to

be slowly added. Such “self-tuning” is also thought to arise at earthquake fault lines, river

bifurcations, and temporally near financial market crashes [21]. It has been key to describing

some astrophysical phenomena as well [22]. It has been hypothesized that these phenomena of

criticality at the threshold of “catastrophic failure” can be related to an instability arising from

critical exponents becoming complex, corresponding to discrete scale invariance [23]. This

possibly suggests an approach to the Higgs fine-tuning problem in extra-dimensional models in

AdS space, where similar features appear when the Breitenlohner-Freedman (BF) bound [24]
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is violated, leading to complex scaling dimensions and a complete loss of conformality in a

hypothetical 4D dual [25].

Typically, in the examples we have in statistical physics, criticality is “self-organized”

by temporal loading of the system: the slow addition of sand grains at a pile’s apex,

gradual stress building at faults due to tectonic drift, etc. In relativistic theories, this slow

temporal loading can be exchanged with mild spatial gradients, and in 5D, through the

AdS/CFT duality [26], spatial translation and gradients can be, in turn, related to scale

transformations and renormalization group evolution. This further suggests an approach

where the instability associated with complex scaling dimensions is reached dynamically

through slow renormalization group evolution, or, in a 5D dual, via growth of a deformation

of AdS space that leads to eventual violation of the BF bound. This has a parallel in

some perturbative 4-dimensional theories where dimensional transmutation directs the Higgs

potential [27]. In models such as the MSSM, the instability of the electroweak sector can

be arrived at through quantum corrections [28–30]: RG flow from some microscopic theory

seemingly devoid of instabilities evolves to an IR theory where a Higgs picks a non-vanishing

condensate.

Stepping away from the background motivation, we can state generally that the eventual

goal of this line of research is to have a zero for the Higgs mass term coinciding (or nearly

coinciding) with a minimum in the potential for an extra-dimensional modulus field over a

wide range of extra-dimensional input parameters. In this case Higgs criticality would be a

dynamical attractor for the theory without extreme sensitivity to fundamental constants. In

other words, such a 5D system self-tunes to the critical point of its 4D low energy effective

Higgs theory. This is similar to the way in which the strong CP problem is resolved by the
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Figure 2.1: This figure exhibits a cartoon of a potential for a modulus field, φ, where the singular
minimum matches on to a critical point at which the mass of a physical light Higgs field fluctuation
passes through zero. On either side of the singular point, the Higgs boson mass is finite and positive,
but on one side the mass squared for the field is negative, with the instability driving spontaneous
symmetry breaking.

axion hypothesis where the axion field promotes the CP phase to a dynamical field whose

potential minimum resides at the point where CP is conserved in QCD, and also to models

which solve the hierarchy problem using cosmological dynamics and slightly broken shift

symmetries [14].

To be properly identified as self-organization, in the most conservative application of this

label, criticality near the minimum of the potential must be robust under reasonable variation

of model input parameters: we are looking for a theory with a near-critical Higgs region.

From the perspective of the low energy theory, at energy scales below the modulus VEV,

the lightness of the Higgs would be in apparent violation of effective field theory principles

and power counting, that is, a violation of the principle of locality of scales.1 This could be

reconciled by the fact that in a microscopic 5D theory, quantum corrections might renormalize
1Such violation has been observed before in a toy model with discrete scale invariance [31], another

suggestive connection to self-organized critical systems.
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the potential for the Higgs and modulus field simultaneously, shifting the location of the

minimum, but not the property that the physical Higgs boson is light at that minimum.

A cartoon is shown in Figure 2.1. We emphasize that this has not yet been realized in a

dynamical model in this work, but rather is a longer term goal in which this paper could be

a crucial first step.

To realize such a scenario, there first must be a feedback mechanism, such that when the

Higgs field develops a VEV, the potential for the modulus responds, as shown in Figure 2.1.

This is somewhat akin to the way thresholds can play an important role in Casimir energies,

as in, for example [32]. If this feedback is itself the origin of the minimum of the potential,

with the minimum being at or near the critical value at which the Higgs VEV turns on, the

modulus field will be attracted to the minimum, where the mass of the Higgs fluctuation is

small or vanishing.

In one “toy” and one fully dynamical construction, we investigate the mutual potential of

a modulus field (in our case, the radion of a Randall-Sundrum (RS) 2-brane model [33]) and

a 5D Higgs field. The models are constructed so that the value of the modulus field vacuum

expectation value influences the Higgs stability criterion. Specifically, we consider scenarios

where the Higgs instability is linked to dynamical violation of the BF bound far from the UV

boundary of the RS geometry through interactions with the modulus field.

The CFT dual of this picture corresponds to the theory described above: one which

is conformal in the deep UV, without instabilities, and which contains a near marginal

deformation that drives a slow running of the scaling dimension of an operator in this

approximate CFT [34, 35]. There is an interplay between two operators, Oε, a near marginal

operator, and OH . Similar to the way dynamical symmetry breaking for the Higgs can
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occur via radiative corrections, here an analogous instability is reached in the RG flow for

the dual picture, with the scaling dimension for the operator OH becoming complex, and

causing an “unhealthy” [36] limit cycle-like behavior in the RG flow that is terminated by

condensation of operators in the approximate CFT, breaking the approximate conformal

invariance spontaneously.

Curiously, in the models studied here, a nontrivial cosmology may be a common feature

of the classical ground state. In the 5D picture, the metric and scalar fields must include

a cosmology for the low energy 4D effective theory in order to satisfy the metric junction

conditions for the two brane model, unless UV and IR brane tensions are tuned. We

suspect this is due to a frustration mechanism similar to that which causes striped and other

inhomogeneous phases to appear in some high Tc superconductors [37], and may lead in this

case to a time-dependent vacuum state [38, 39]. Studies of holographic superconductivity have

identified such phases when the BF bound is violated deep in the interior of asymptotically

AdS geometries due to non-trivial gauge and gravitational field backgrounds [40]. In other

words, the resolution of the RG limit cycle instability may have its imprint in the low

energy theory as a limit cycle in time evolution. We have left a full exploration of the time

dependence for future work, however we do speculate on the possible relevance of this feature

for cosmology [41, 42].

The article is organized as follows: In Section 2.2, we set the stage with a discussion of a

possible effective theory for a dilaton vacuum expectation value that has features that we

find in our holographic model, and which points towards a new way to set the confinement

scale in an approximately conformal theory. In Section 2.3, we describe a 5D toy holographic

implementation of these ideas that leaves out certain backreaction terms, with a bulk Higgs
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mass that is given explicit dependence on the extra-dimensional coordinate. In Section 2.4,

we show how to promote this simplest model to a dynamical one, where the effective Higgs

mass evolves due to a coupling to a “driving” scalar which picks a coordinate-dependent

VEV. In Section 2.5 we discuss in more detail a possible approximate CFT interpretation

of the 5D model, and make some connections to generalized BKT scaling discussed in [25].

In Section 2.6, we briefly discuss connections to self-organized critical models in statistical

physics, to catastrophic failure modes of these systems, and future implementation of these

ideas into an extension of the SM. Finally, we discuss aspects of the cosmology of the model,

part of which involve speculation that can be more fully resolved with future work, in

Section 2.7.

2.2 Preliminaries: The Frustrated Dilaton

We begin by considering an effective theory of a dilaton that has aspects of the behavior of

the more detailed holographic models we consider. In an approximately scale-invariant theory

that undergoes spontaneous breaking, the potential that sets the scale of that breaking is a

(nearly) scale-invariant quartic: Vdil = α(f)f 4, where α has some weak dependence on f that

encodes the amount of explicit breaking. This potential can have a nontrivial minimum at

small values of f if α obeys some basic properties.

It is important to note that in this effective theory, f is a summed total scale of conformal

breaking, and relations between individual VEVs are hidden in this potential. In other

words, many operators could be simultaneously condensing which all contribute to conformal

breaking. In addition, if there is some small breaking of conformal invariance, there can be
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nontrivial relations between these operator VEVs that are not encoded in the total dilaton

potential.

Now we note that it could be the case that there is simply no solution that satisfies

the relation between VEVs in the approximate CFT for a total f below some critical value,

f < fcrit. How does the theory exit the CFT in this case? The dilaton is frustrated –

internally, it seeks to satisfy the relations between operator VEVs, providing a lower limit to

the total breaking scale. On the other hand, in the low energy theory, a smaller or vanishing

f is preferred.

As a very simple example of this, we could consider two VEVs fφ and fhiggs where at

some critical value of decreasing fφ, fhiggs begins to turn on:

f 2
higgs =


−λfφ−µ2

λH
λfφ − µ2 < 0

0 otherwise
.

Such behavior occurs in the “relaxion” models of electroweak symmetry breaking. Note

however, that we are not specifying a global potential for this behavior, but instead are

merely providing an ad hoc relationship between operator VEVs that might arise inside of

the approximate CFT. In the holographic models we consider, fφ corresponds to the VEV of

a marginally relevant operator, and fhiggs to the VEV of an operator whose scaling dimension

is driven into the complex plane.

If these VEVs contribute to an effective dilaton potential as Vdil ≈ α(f 4
φ + f 4

higgs) (as

though they are both from operators with scaling dimension near 4), the potential will be

globally minimized when f 2
φ = λ

2λHfφ
f 2
higgs if the relationship between VEVs is maintained. A
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large hierarchy between fhiggs and fφ can be created by having a small value of λH , and the

dilaton potential appears to be minimized at some fcrit while enforcing the relation.

We note that the dilaton potential itself does not enforce the relation between the VEVs,

which is instead specified by some dynamics that is part of the UV completion of the dilaton

effective theory. This can create a puzzle from the perspective of the low energy theorist,

which sees only the total breaking scale f , not the interrelations between the individual

f ’s that contribute. The low energy observer would think that f = 0 should minimize the

pure quartic potential, but instead the theory gets “trapped” at a larger f . Of course these

relations between VEVs would require some breaking of scale invariance, and the potential

would not be precisely quartics.

There may be a connection here to the concept of frustrated phase separation in condensed

matter physics, a phenomenon where (for example) high Tc superconductivity is blocked

due to long range Coulomb interactions, and the theory resolves the tension by creating an

intermediate phase which spontaneously breaks translation invariance, creating “stripes” [37].

Here, Higgs condensation may be blocked by quasi-long range dilaton interactions, and there

may be some analog of these striped phases that resolves the frustration that is important

for cosmology.

With this hypothetical scenario as context and motivation, we begin our holographic

studies.
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2.3 Toy Model: Explicitly Varying Higgs Mass

To illustrate a basic model with the features we seek, we work in 5D asymptotically anti-de

Sitter space without a UV brane, and give the Higgs a bulk mass term that varies explicitly

with the extra-dimensional coordinate. We strongly emphasize that this is a toy model

that easily illustrates some curious features that help motivate the more realistic model in

Section 2.4. Specifically, this model leaves out backreaction between the Higgs and the (here

unspecified) dynamics that give rise to the varying mass term, while in Section 2.4, this

backreaction is taken fully into account.

The metric can be written as (setting the AdS curvature near the AdS boundary, k, to

1) [43]:

ds2 = 1
z2

[
dx2

4 −
dz2

G(z)

]
. (2.3.1)

The coordinate z ranges from 0 at the AdS boundary to an IR brane at z = z1, and for z → 0,

the function G has the asymptotic behavior G(z)→ 1 and G′(z)→ 0. Away from z = 0, the

function G encodes the effects of gravitational backreaction due to nontrivial bulk physics

such as condensates. We are restricting our ansatz for the background to solutions obeying

4D Lorentz invariance.

The action is given by

S =
∫
d4xdz

√
g
[
|∂MH|2 + 6

κ2 −m
2(z)|H|2 − 1

2κ2R
]

−
∫
d4xz−4m2

0|H|2
∣∣∣∣∣
z→0
−
∫
d4xz−4V1(|H|)

∣∣∣∣∣
z→z1

,

(2.3.2)

with κ2 = 1/(2M3
Pl). The bulk mass function is chosen to a have fixed value in the limit
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z → 0, and decreases monotonically and slowly as z increases:2

m2(z) = −4 + δm2 − λzε. (2.3.3)

Note that m2 = −4 corresponds to the Breitenlohner-Freedman bound, and δm2 is taken to be

a positive quantity so that the z → 0 limit is well-defined.3 We note that past work explored

constant Higgs bulk mass at or near the BF bound [44, 45] with interesting implications

for radius stabilization. A possible relationship between the BF bound and scalars with

suppressed mass in lattice studies of theories at the boundary of the conformal window was

discussed in [46]. For the IR brane potential, we take

V1(|H|) = T1 + λH |H|2
(
|H|2 − v2

H

)
, (2.3.4)

where T1 is the tension of the brane. The Higgs may, for some regions of parameter space,

pick a nonvanishing vacuum expectation value, 〈H〉 = φ(z)/
√

2, where the Higgs VEV has a

nontrivial profile along the z-coordinate.

Restricting to solutions that obey 4D Lorentz invariance, the 5-5 component of the

Einstein equations relate the metric function G to the behavior of the Higgs VEV in the bulk:

G =
−κ

2

6 V (φ)

1− κ2

12(zφ′)2
, (2.3.5)

2It is not difficult to arrange for this type of z-dependent mass term to arise dynamically, rather than
through this forced explicit breaking of the isometries of AdS. We give examples in Section 2.4.

3If the mass is taken below the BF bound as z → 0, perturbations solving the scalar equation of motion
oscillate rapidly in the UV, indicating the need for an ultraviolet cutoff, such as a brane that cuts off the
small z region of the spacetime [25].

21



and they can be further employed to reduce the effective potential for the classical background

configuration to a pure IR boundary term [47]:

Vrad = 1
z4

1

[
V1(φ) + 6

κ2

√
G
]
. (2.3.6)

There is generally a UV contribution from the brane at z0 as well, but it vanishes as z2
√
δm2

0

in the z0 → 0 limit, with the exception of a constant term which is tuned to give vanishing

effective cosmological constant. We also note that the remaining components of Einstein’s

equations in the bulk do not give additional information on G, being equivalent to the

scalar field equation of motion for the z-dependent background, and that for the purposes

of calculation of the effective potential for the size of the extra dimension, we fix the 4D

portion of the metric to be flat. This amounts to satisfying vanishing variation of the action

with respect to those metric components in a trivial manner, requiring that the variations

themselves vanish: δgµν = 0.

For small values of the Higgs VEV, or alternatively weak 5D gravity, this effective radion

potential reduces to

Vrad = 1
z4

1

[
V1(φ) + 6

κ2 −
1
4m

2(z1)φ2(z1) + 1
4z

2
1φ
′2(z1)

]
. (2.3.7)

The scalar field equation of motion in the limit of small κ2 is

φ′′ − 3
z
φ′ − 1

z2
∂V

∂φ
= 0, (2.3.8)

with energetic favorability of a nontrivial solution depending on the boundary conditions,
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which are (again in the small κ2 limit):

zφ′|z=z0,1 = ±1
2
∂V0,1(φ)
∂φ

. (2.3.9)

Near the AdS boundary z → 0, the solutions are power law in z, with the expected behavior

φ ∝ z2±
√
δm2 , where the two different scaling laws correspond to two different boundary

conditions or definitions of the action [48]. The scaling law z∆+ is more generic, with fine-

tuning of BCs (or supersymmetry) required to obtain the scaling with power law ∆−. The

full solution for all z, including the effects of the changing bulk mass, is

φ ∼ φ±z
2J±ν

(
2
√
λ

ε
zε/2

)
, (2.3.10)

where ν ≡ 2
√
δm2/ε. For m2

0 6= 2 −
√
δm2, only the + solution is relevant, while for the

special case m2
0 = 2 −

√
δm2, the field behavior is given by the − solution. Choosing the

special case corresponds in the holographic picture to fine-tuning the coefficient of an operator

O†HOH to force the RG flow to go “backwards” compared to the more generic + scaling

solution [25, 49], or in other words, tuning so that the theory sits at a UV fixed point.

Choice of the UV boundary condition does not much affect the discussion, and we choose

to display the effects of the first of these two solutions, taking m2
0 = 0.

For large values of z, and small ε, the asymptotics of the Bessel function exhibit log-

periodicity on top of scaling when z is past the point where the BF bound is surpassed by

the evolving bulk mass:

φ ∝ z2−ε/4 cos
(√

λ log z + γ
)
. (2.3.11)

23



This log-periodic power law behavior may be a common feature in systems where criticality

is self-organized [23].

The condition for formation of a condensate is met when the IR brane boundary condition

favors a nontrivial value for the coefficients of the bulk solution:

1
ε

(
λHv

2
H − 4

)
≥ xJ ′ν(x)

Jν(x) , (2.3.12)

where ν ≡ 2
√
δm2/ε and x ≡ 2

√
λz

ε/2
1 /ε. Equality is associated with the presence of the exact

critical point. Note that equality is satisfied at many values of z1 due to quasi-periodicity

of the right-hand side at large z1. We label the i-th critical point as zic. The emergence of

a massless degree of freedom at these critical points can be seen in the small momentum

behavior of the bulk correlator for the Higgs fluctuations. Working in the unbroken phase,

the Green’s equation for scalar fluctuations is given by

[
∂2
z + p2 − 3

z
∂z −

m2(z)
z2

]
G
(
z, z′; p2

)
= izδ(z − z′). (2.3.13)

At the point of criticality, for small p2, the Green’s function in terms of an eigenfunction

decomposition takes the form

G
(
z, z′; p2

)
≈ ψ0(z)ψ∗0(z′)

p2 −
∞∑
i=1

ψi(z)ψ∗i (z′)
m2
n

, (2.3.14)

where ψ0(z) solves the 5D equation of motion for p2 = 0, and thus takes the same functional

form as the VEV, φ(z). The mn are the usual KK-mode masses. As we discuss in further

detail below, the m2
n are not guaranteed to be positive at all of the critical points, and in fact
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only one, the smallest zc critical point, z1
c has a positive spectrum.

As the Higgs VEV turns on, the character of the radion potential also changes dramatically.

Of primary interest is the behavior of the radion potential near the region of z1 where the

Higgs VEV is just turning on. A linearized approximation of the Higgs contribution to the

potential gives the leading contribution in the immediate neighborhood of criticality. The

function for φ(z1)2 is analytic, and near its zeros, say one at z1 = z1
c , we have

φ(z1)2 ≈ σ2
(
z1

z1
c
− 1

)
, (2.3.15)

where σ2 is a positive function of the parameters of the theory:

σ2 = −4m2(z1
c ) + λHv

2
H(λHv2

H − 8)
2λH

. (2.3.16)

The radion potential in the regime just after the VEV turns on is given by

Vrad ≈
1
z4

1

[
δT1 + λHσ

4

8

(
z1

z1
c
− 1

)]
. (2.3.17)

The radion potential is thus piecewise, and if we look in the vicinity of the critical point, it

takes the form

Vrad ≈


1
z4

1
δT1 z1 < z1

c

1
z4

1

[
δT1 + λHσ

4

8

(
z1

z1
c
− 1

)]
z1 > z1

c

, (2.3.18)

where δT1 is the mistune between the IR brane tension and the bulk cosmological constant.

We note that quantum corrections will spread z-dependence from the scalar mass to the

cosmological constant term, and the background will no longer be pure AdS. These small
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corrections will modify the background potential away from a pure quartic - this is not,

however, important for the features we draw attention to in this model. In the next section,

the background potential is modified away from a pure quartic by a Golderberger-Wise type

potential.

At the critical point, there is a kink discontinuity in the radion potential.4 The contribution

of the Higgs condensate to the radion potential is also positive definite. In order for the

derivative of the radion potential to change sign, creating a kink minimum, an additional

condition for the radion quartic (the IR brane mistune) must hold:

0 < δT1 <
1

128λH

[
4m2

(
z1
c

)
− λHv2

H

(
λHv

2
H − 8

)]2
. (2.3.19)

These requirements are satisfied relatively robustly under variation of the input parameters.

In Figure 2.2, we show an example of the radion potential, where we have taken δT1 = 1,

δm2 = 1, λ = ε = 0.1, v2
H = 0, and λH = 1/8.

There are two plots in the figure: in the first, on the left, we show a close-up that focuses

on the critical value of the radion VEV. On the right, we zoom out. Unsurprisingly, it appears

that there are multiple such minima, and that the first one is metastable. This is due to

the quasi-periodicity of the Higgs VEV solution at large values of z. Closer examination of

the theory in these regions shows that there are unresolved tachyon instabilities associated

with Higgs fluctuations. In these regions, no VEVs are formed, but there are solutions to the

scalar equation of motion with negative mass squared, as we show in the next subsection.
4We note that this kink feature is due to the fact that we are deliberately ignoring backreaction between

the Higgs and the dynamics that creates the varying mass term. The properties of the critical point differ in
complete models, and we begin a study of an explicit example in Section 2.4.
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Figure 2.2: Here we display the radion potential, Vrad(z1). In the white region, the Higgs VEV
is vanishing, and the radion potential is a pure quartic. In the gray region, φ(z1) 6= 0, and the
contribution of the Higgs to the radion potential causes a kink-like minimum to appear at the
critical points. In the first plot, we have zoomed in on the first minimum, corresponding to the
smallest z1 for which the criticality conditions are met. In the second plot, we zoom out, showing
other potential minima. These are unhealthy, in that the theory at this point contains unresolved
tachyons. The dashed vertical line in the second plot corresponds to the value of z at which the
evolving bulk Higgs mass passes the BF bound.

Before studying the instabilities, it is worthwhile to explore the behavior of the effective

potential under variations of the fundamental parameters. Crucial to the success of the model

as one of self-organized Higgs criticality is the existence of a broad critical region, over which

the Higgs remains light. In Figure 2.3, we examine the behavior of the radion potential under

variations of the IR brane Higgs mass squared, encoded in v2
H . We see that with changing

v2
H , the location of the minimum is relatively constant, however there is a crucial value of v2

H

past which the location of the minimum moves away from the kink in the potential. The

region of parameter space where the minimum resides at the kink is a critical region, as there

is a zero mode Higgs for all values of v2
H < v2

H(crit).

In the next subsection, we comment on properties of this kink minimum in the effective

radion potential, in particular those related to the metric ansatz that we have enforced.
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Figure 2.3: Here we show, on the left, the dependence of the potential on the IR brane parameter v2
H

in the vicinity of the first critical point. The curves correspond to v2
H = −1 (solid), v2

H = v2
H(crit)

(dashed), v2
H = 1 (dotted), and v2

H = 2 (dot-dashed). The dots indicate the minimum of the
potential. The minimum moves into the region where the Higgs VEV is nonzero after some critical
point v2

H(crit). On the right, we show the value of the Higgs field on the IR brane in units of
the scale f = z−1

min, where zmin is the location of the minimum of the radion potential. The VEV
(and Higgs mass/inverse of the correlation length), which is proportional to φIR, is vanishing below
v2
H(crit), and grows quickly after the critical point is exceeded.

2.3.1 Metric Boundary Conditions

In calculating the radion potential in Eq. (2.3.7), we have imposed the boundary conditions

for the scalar fields, but we have neglected the metric junction conditions on the branes,

which enforce √
G(z0) = κ2

6 V0,
√
G(z1) = −κ

2

6 V1. (2.3.20)

This is equivalent to having the UV brane and IR brane contributions to the effective potential

separately vanish [50, 51]:

ṼUV = V0 −
6
κ2

√
G0 = 0,

ṼIR = V1 + 6
κ2

√
G1 = 0,

(2.3.21)

where we have defined Vrad = 1
z4
0
ṼUV + 1

z4
1
ṼIR. In fact, these conditions are not satisfied for

any values of z in the above potential. These conditions should be interpreted as consistency

conditions for our metric ansatz, in which we have forced the metric to exhibit 4D Lorentz
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invariance so that we can interpret the result as a Lorentz-invariant 4D effective potential for

the modulus field. In terms of variation of the scalar-Einstein-Hilbert action, we have satisfied

vanishing variation of the action by keeping the variations of the 4D metric components δgµν

themselves to be zero, and in so doing, Eq. (2.3.20) is no longer a constraint on the solution.

In the usual Goldberger-Wise scenario, the second of the two conditions in Eq. (2.3.20) is

met automatically at the minimum of the potential, with the value of the size of the extra

dimension being set by its solution. The first is then arranged for by tuning (equivalent

to the usual tuning of the bare cosmological constant to small values). From this, we can

roughly interpret the time dependence away from the minimum of the usual Goldberger-Wise

potential as a combination of cosmological acceleration and oscillations of the stabilized

radion. The situation is quite different in the case of the potential described above. At the

kink minimum generated by the Higgs contribution, these junction conditions cannot both be

met unless two tunings are performed – both the bare cosmological constant and the mistune

in the IR brane tension.

This doesn’t necessarily mean that the region where the kink is a minimum is forbidden,

but rather tells us that once inside this region, a dynamical geometry is unavoidable, and

must be included in a fully consistent calculation of the spectrum of the low energy theory.

In other words, in a theory with fully dynamical gravity, the ansatz for the background must

be relaxed to include a nontrivial 4D cosmology. In Section 2.7, we discuss this issue of a

dynamic cosmology further, and speculate on its resolution and interpretation.

We further note that the same behavior occurs in the case of the dynamical scalar model

considered in Section 2.4, although the kink feature is absent.
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2.3.2 Instabilities

Here we briefly examine the stability of fluctuations for different values of the position of

the IR brane. Summarizing the results first: the minimum for smallest zc and neighboring

values of the radion VEV is always a “healthy” minimum where there are no unresolved

tachyonic states. However, past the first region where the Higgs VEV resolves the tachyon,

there are apparently instabilities without condensates to rectify them, or the condensates are

insufficient to prevent all of them. In this case, the approximation of a static 5D description is

not a good one, and the theory must resolve the tachyon with some more dramatic dynamics.

We comment briefly on this in Section 2.6, and a more complete analysis of this region is

part of future work.

We can inspect the tachyon instabilities through examination of the spectrum of Higgs

fluctuations. The equation of motion for these, presuming a vanishing Higgs VEV, is given by

h′′(z)− 3
z
h′(z)− 1

z2

(
−4 + δm2 − λzε

)
h(z) = −m2h(z), (2.3.22)

with IR boundary condition given by

h′(z1) = 1
2z1

λHv
2
Hh(z1). (2.3.23)

The UV boundary condition we impose is that the solution must asymptote to the behavior

given in Eq. (2.3.10), on the + branch. Equivalently, one could impose z0h
′(z0) = m2

0h(z0)/2

for some non-tuned value of m2
0, and subsequently take the limit as z0 → 0. The result is

similar.
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Figure 2.4: Here we show the lowest eigenvalue associated with the Higgs fluctuations, the solutions
to Eq. (2.3.22) with the boundary conditions associated with the IR brane-localized Higgs potential.
The region where the Higgs VEV resolves a single tachyon is shaded, and the physical Higgs
fluctuation here is in fact massive. This is the first critical region, where there is only one tachyon to
be resolved. An unresolved tachyon emerges for larger z1, when the Higgs VEV turns off, indicating
a fundamental instability.

Solving the boundary value problem gives the spectrum of states. In Figure 2.4, we display

the lowest eigenvalue, expressed as the ratio (mh/f)2, where f−1 = z1. The region where

the Higgs VEV resolves the tachyon is shaded, and there Higgs fluctuations are massive. At

larger z1, outside the gray region where there is no Higgs condensate, there is a tachyon that

persists. It appears that the condensate can rectify the tachyon so long as the mode is not

too tachyonic. For larger z1, the problem grows still worse: in the neighborhood of the n-th

critical value of z1, there are n− 1 unresolved tachyons.

Due to the presence of unresolvable tachyons for larger z1, we focus our main attention

on values of z1 where there is either no tachyon, at z1 < z1
c , or there is a single tachyon that

is resolved by the vacuum expectation value for the Higgs field, z1 & z1
c .

It is interesting that the first minimum appears metastable, with other minima at larger
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values of z1, but lower effective potential energy, as seen in Figure 2.2. We comment further

on this in Section 2.6. However, we must not take this region of large z1 too seriously. For

one, the vacuum expectation value for the Higgs diverges at the end of the first condensate

region, and the theory cannot be trusted there, where gravitational backreaction will be very

large. It is not obvious that the geometry can be considered at all past this point.

Additionally, as discussed in the previous subsection, we have not taken into account the

required time dependence in the solution. It is not obvious that the same instabilities will be

present once the ansatz for the background is relaxed to allow for a dynamical background.

Finally, we have enforced a rigid dependence of the mass on the z-coordinate, which is not

likely to be possible in a self-contained fully dynamical model. It is likely that this rigidity of

the mass profile is responsible for the kinked behavior of the potential at the critical point.

Backreaction between the dynamics that drives the mass and the Higgs VEV may smooth

out the potential. This is confirmed in a fully dynamical model explored in the next section.5

2.4 Dynamical Model

In the previous section, the varying bulk mass for the Higgs was taken as an input, breaking

the isometries of AdS explicitly, and we took the UV brane to the AdS boundary. In this

section we show how similar physics can be derived in a dynamical and more realistic model

with a UV brane where the interplay of a Goldberger-Wise-like scalar field and a bulk Higgs

on an AdS background generates a similar physics result. This model has the benefit of

being fully dynamical, of having a possible CFT dual that is easier to interpret, and having a
5We thank Prashant Saraswat and Michael Geller for useful comments on the first version of this pre-print

that led us to more fully explore the details of the dynamical model.
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modulus potential that does not exhibit the kink of the previous toy model. The 5D Higgs

profile can no longer be solved for analytically, and so we perform a numerical study.

This model has two bulk scalar fields, a real scalar, φd, the “driving scalar”, in addition

to a Higgs scalar. The fields are coupled in such a way that a varying VEV of the scalar φd

drives the effective bulk mass of the Higgs, making it a function of the extra-dimensional

coordinate. The 5D action is given by

S =
∫
d4xdz

√
g
[
|∂MH|2 + 1

2(∂Mφd)2 + 6
κ2 −

(
m2
H − λφd

)
|H|2 − 1

2m
2
φd
φ2
d −

1
2κ2R

]

−
∫
d4xz−4V0(φd, |H|)

∣∣∣∣∣
z→z0

−
∫
d4xz−4V1(φd, |H|)

∣∣∣∣∣
z→z1

.

(2.4.1)

The brane potentials are assumed to take the form V0,1 = δT0,1 + V φd
0,1 + V H

0,1. For the brane

Higgs potentials, we take

V H
0 = m2

0|H|2, V H
1 = λH |H|2

(
|H|2 − v2

H

)
. (2.4.2)

The potential here is quite similar to that in [14], however in this model, there are no very

small parameters, and this is a 5D bulk potential – the effective bulk potential in the 4D

theory is of course related, but not in one-to-one correspondence. There is a mild approximate

shift symmetry in the bulk for the φd scalar – a slightly suppressed bulk mass parameter

as utilized in the Goldberger-Wise stabilization mechanism [52], and a perturbative bulk

interaction with the 5D H field.
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The equation of motion for φd is given by

φ′′d −
3
z
φ′d −

1
z2

(
m2
φd
φd −

λ

2φ
2
h

)
= 0, (2.4.3)

which is a simple linear non-homogeneous equation for a given Higgs background, φh, and

the solution is given by

φd = zε
(
φε + λ

4(2− ε)

∫ z

z0
φ2
h(z̃)z̃−1−εdz̃

)
+ z4−ε

(
φ4 −

λ

4(2− ε)

∫ z

z0
φ2
h(z̃)z̃−5+εdz̃

)
, (2.4.4)

where ε = 2−
√

4 +m2
φd
. We take ε to be small and positive, but not tiny, e.g. ε = O(0.1),

corresponding to a small tachyonic bulk mass for φd. There are two contributions to the

solution – the solution to the homogeneous part of Eq. (2.4.3), and the integrals that solve

the nonhomogeneous part from a non-vanishing Higgs VEV.

The Higgs equation of motion is given by

φ′′h −
3
z
φ′h −

1
z2

(
m2
H − λφd

)
φh = 0, (2.4.5)

which can, in principle, be expressed as a single nonlinear integro-differential equation by

inserting the solution to the φd boundary value problem.

The radion potential, again assuming small gravitational backreaction, now takes contri-
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butions from both fields, and is given in general by

Vrad = 1
z4

0

[
V0 −

6
κ2

√
G0

]
+ 1
z4

1

[
V1 + 6

κ2

√
G1

]

≈ 1
z4

0

[
δT0 + V

φd,0
0 + V H

0 + 1
4m

2
H(z0)φ2

h,0 −
1
4z

2
0φ
′2
h,0 + 1

4m
2
φd
φ2
d,0 −

1
4z

2
0φ
′2
d,0

]

+ 1
z4

1

[
δT1 + V

φd,1
1 + V H

1 −
1
4m

2
H(z1)φ2

h,1 + 1
4z

2
1φ
′2
h,1 −

1
4m

2
φd
φ2
d,1 + 1

4z
2
1φ
′2
d,1

]
.

(2.4.6)

Using the analytic solution for φd in terms of the function φh from Eq. (2.4.4), supplemented

by the boundary conditions for φd, one can express the entire radion potential purely in

terms of the solution to the φh equation of motion.

We first specify to a model where much can be done analytically to show some basic

results in this model. We take the IR brane potential for the φd scalar to be a localized

mass term, V φd
1 = −εφ2

d. If we assume this value for the mass, and if the Higgs VEV is

taken to be zero, the solution is φd = v0(z/z0)ε. Without the Higgs contribution, the radion

potential is just a scale-invariant quartic. We then assume a UV brane potential that fixes

v0 to some value (a stiff-wall-type boundary condition). In this background, ignoring the

nonhomogeneous part of φd in the Higgs equation of motion, the solution for the Higgs VEV

is the same as described in the previous section.

Also, in the case of the model under consideration, there are considerable simplifications

of the radion potential. Specifically, all of the φd terms in the IR brane contribution cancel

after imposing the boundary condition zφ′d = εφd, which arises from the boundary potential

we have chosen for φd.

The radion potential, expressed purely in terms of the boundary values of and integrals
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over the solution to the Higgs equation of motion, is

Vrad = 1
z4

0

[
δT̃0 + m2

0
2 φ2

h,0 + 1
4
(
m2
H − λv0

)
φ2
h,0 −

1
4
(
z0φ

′
h,0

)2
− 1

2εv0z
4−ε
0 I4 −

1
4
(
z4−ε

0 I4
)2
]

+ 1
z4

1

[
δT̃1 −

1
4

{
m2
H − λ

(
z1

z0

)ε(
v0 + zε0

2(2− ε)Iε −
z4−ε

0
2(2− ε)I4

)}
φ2
h,1

+ 1
4λHφ

2
h,1

(
φ2
h,1 − 2v2

H

)
+ 1

4
(
zφ′h,1

)2
]
,

(2.4.7)

where Iε and I4 are the following integrals:

Iε =λ2

∫ z1

z0
φ2
h(z̃)z̃−1−εdz̃,

I4 =λ2

∫ z1

z0
φ2
h(z̃)z̃−5+εdz̃.

(2.4.8)

This expression is exact up to contributions from gravitational backreaction, which we are

here neglecting.

We note that one can show analytically by expanding the solution near the critical point

that the kink of the previous section is removed by the backreaction of the Higgs VEV onto

the driving scalar.

In the limit of tiny Higgs VEV, the Higgs background is well approximated by the solution

that assumes φd = v0(z/z0)ε, which was explored in the previous section:

φh = z2
(
φ+Jν

(
zε/2

2
√
λv0

ε

)
+ φ−J−ν

(
zε/2

2
√
λv0

ε

))
, (2.4.9)

where ν = 2
√
δm2/ε, with δm2 = m2

H + 4. This is sufficient for determining the critical point,

however, for the purposes of evaluating the effective potential, a full numerical solution is

necessary. That is, past the critical point, the Higgs background looks similar to this profile,
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but the differences due to the nonlinearities need to be incorporated in order to correctly

determine the radion potential.

In the next subsection, we embark on a full numerical analysis of the coupled equations,

working with a more common setup for the φd scalar, where its boundary values are set to

v0,1 on the UV/IR branes.

2.4.1 Stiff Wall Model

In the stiff wall limit, the boundary conditions for φd are φd(z0,1) = v0,1. Thus, the value of

the bulk Higgs mass varies from m2
H(z0) = m2

H −λv0 on the UV brane to m2
H(z1) = m2

H −λv1

in the IR. It is not difficult to arrange for the effective Higgs mass to vary such that it

crosses the BF bound somewhere in the bulk, and evolves from power law behavior in the

UV to a log-periodic power law in the IR. For small values of z1, the AdS tachyon is not

reached, however, for larger values, the tachyon eventually must emerge and be resolved

by condensation of some sort. In order to understand this process fully, we embark on a

numerical exploration of solutions to the scalar equations of motion.

We note that the bulk equations governing the behavior of φd and φh are nonlinear, and

that one must take care in seeking out solutions to the scalar equations of motion. Existence

and uniqueness are not guaranteed in the case of the general nonlinear boundary value

problem. Due to this complication, we do not search for solutions with fixed z1, but rather

search for solutions with varying values of the Higgs VEV. We note that there is always a

solution with φh = 0 – the solution to the linear Goldberger-Wise problem with just the φd

scalar.
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To numerically investigate the solutions, we generalize the bulk equations to accommodate

a sort of shooting method. That is, we search for solutions to the boundary value problem at

hand by scanning over a range of initial value problems until we find a global solution. To

do so, we write the solution to the Higgs as φh = h0fh(z) with fh(z0) set to some arbitrary

value. The coefficient h0 does not appear explicitly in the Higgs equation of motion, as for

fixed φd, that equation is linear. It does, however, appear in the φd equation:

f ′′h −
3
z
f ′h − (m2

H − λφd)fh = 0,

φ′′d −
3
z
φ′d − (ε2 − 4ε)φd + λ

2h
2
0fh(z)2 = 0.

(2.4.10)

We shoot from the UV brane, enforcing the UV brane boundary conditions for fh and φd,

which in our cases of study are f ′h(z0) = m2
0fh(z0)/(2z0) and φd(z0) = v0. We then use a

prechosen value of h0 to define each solution. The magnitude of h0 closely tracks the low

energy effective Higgs VEV as a fraction of the KK scale. As fh(z0) is fixed arbitrarily, the

only remaining condition is on φ′d, the correct value for which will be determined by shooting.

The value of z1 for a φ′d guess is chosen by finding the point in the bulk at which the IR brane

boundary condition for the Higgs is met: h2
0 = 1/fh(z)2

(
v2
H −

2f ′h(z)
λHzfh(z)

)
. Of course at that z1,

it will not usually be the case that the IR boundary condition for φd is met, so we repeat

the process by shooting with different values of φ′d until both the Higgs and φd boundary

conditions are solved at the same value of z1. In summary, for a given input Higgs VEV, we

obtain a value for z1 and the associated bulk profiles for φh and φd.

It is useful to characterize each solution in terms of some parameter with physical meaning

to a low energy observer, and we choose the effective Higgs VEV, evaluated by integrating
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the Higgs solution squared over a hypothetical flat zero-mode gauge boson wave function

with appropriate metric factors:

(
veff
f

)2

= z2
1h

2
0

∫ z1

z0

1
z3f

2
h(z)dz. (2.4.11)

We find that the types of solutions one obtains can be divided into two classes based on the

value of the IR brane-localized Higgs mass, determined by taking different values for v2
H . If

v2
H is taken to be very negative, corresponding to a non-tachyonic brane-localized Higgs mass

squared, there is no solution for nonzero Higgs VEV with z1 > zc. Instead, with increasing

Higgs VEV (roughly h0 in our numerical analysis), the solution requires smaller values of

z1. This then means that for a given value of z1 < zc, there may be two solutions, one with

positive effective 4D Higgs mass squared/vanishing VEV, and the other with nonvanishing

Higgs VEV. For more positive values of v2
H , a different behavior is possible, e.g. where the

value of z1 at first increases as the Higgs VEV is turned on, and then turns around, so that

at some particular z1 value, there are two possible values of the effective Higgs VEV.

None of this should be too surprising from the perspective of the 4D CFT dual. The

value of z1 represents some total scale of conformal breaking through the relation z1 ∼ 1/f

where f should be some additive combination of all vacuum expectation values in the system

that break approximate conformal invariance spontaneously. The bulk φd|H|2 interaction has

enforced a relationship between the multiple f ’s (in this case, dual to the φd and φh scalar

solutions), and lifted the constraint of uniqueness present in theories without bulk scalar

interactions. In other words, the nonlinearity of the boundary value problem has allowed for

multiple solutions for a given z1, and thus different ways for the bulk theory to produce a
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Figure 2.5: In this plot, we show the effective VEV as a function of z1. On the left, we show it for a
value of v2

H that is very close to “critical,” but with v2
H > v2

H(crit). In this case, for small Higgs
VEV z1 > zc. On the right, we display it for v2

H more negative than the critical value, and in this
case, for all values of the Higgs VEV, we find z1 < zc. We also sketch the “bifurcation” diagrams
for each of these scenarios as a function of z1, where the solid lines represent the stable scalar
configurations and the dashed line represents the background solution with unresolved tachyon(s).
The branching point corresponds to z1 = zc.

given total f ∼ 1/z1. In Figure 2.5, we show for two different values of v2
H that are close to a

critical value (but on either side) the relationship between z1 and the effective VEV. We note

that the Higgs VEV grows extremely fast near the critical point.

This matches onto the first part of our preliminary discussion of the dilaton effective

theory in Section 2.2. Extremization of the scalar part of the action corresponds in the dual

picture to sorting out the correct relationship between the vacuum expectation values of

operators in the approximate CFT. This relationship must now be fed into the total radion

effective potential.

Now we consider the radion potential for this model. Plugging in the results from the
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Figure 2.6: In this plot, we show the radion potential for two different values of v2
H near v2

H(crit).
In the column on the left, v2

H > v2
H(crit). We have taken ε = v0 = 1/10, m2

H = −3.9, v0 = 1,
δT1 = −1/10, λ = 1/3, m2

0 = 4.1, and λH = 1/8. The critical point is between v2
H = −16.5830 and

v2
H = −16.5831, and the two columns correspond respectively to these two values of v2

H that straddle
v2
H(crit). In descending order, the plots display: the difference between the radion potentials with
and without a Higgs VEV as a function of log z1/z1(crit), the same potential with Vcrit being its
value at the critical z1, but instead as a function of veff/f , and finally the value of ṼIR, defined in
Eq. (2.3.21), indicating the degree of mismatch of the metric junction condition on the IR brane.
There is no discernible difference in these two plots on either side of the critical value of v2

H , and
there is certainly no zero.
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numerical solutions, we find that for v2
H > v2

H(crit), there are solutions to the scalar equations

of motion and boundary conditions with z1 > zc. For all v2
H < v2

H(crit), there is a minimum

in the effective radion potential at z1 = zc, the value of z1 where the Higgs fluctuation is

massless. We note that this is under the constraint that values of z1 where there is an

unresolved tachyon are disallowed.6

In Figure 2.6, we display the results of the radion potential for two values of v2
H near the

critical value. We show the potential both as a function of z1 and as a function of veff/f . In

this plot, VGW denotes the GW contribution to the radion potential, while Vcrit is the radion

potential at the critical z1. For the subcritical case, the location of the potential minimum is

at an energy which is lower than if the Higgs VEV is turned off – symmetry breaking is the

preferred configuration for that value of z1.

One can now make contact with the dilaton effective potential discussed in Section 2.2.

The value of 1/z1 for a given solution corresponds to the total scale of symmetry breaking,

with the KK-mode masses of the extra-dimensional theory corresponding to its value. Larger

values of z1 have scalar instabilities. Ignoring this region, the radion potential is minimized

at the largest value of z1 that accommodates a solution to the scalar equations of motion.

In Figure 2.7, we display the behavior of the model with subcritical v2
H , focusing on

the value of the Higgs VEV in the approach to Higgs criticality. The Higgs VEV, roughly

the inverse correlation length in the low energy theory, appears to depend linearly on√
v2
H − v2

H(crit) in the approach.

In Figure 2.8, we display the behavior of the model with supercritical values of v2
H , focusing

6Dynamics of the system will move the IR brane into this region - the true vacuum is not simply one
in which the brane rests at zc. Going past the critical value of v2

H , there is likely a phase transition of the
system that cannot be encapsulated under the static ansatz that was the starting point for this analysis. We
speculate on its nature in Section 2.7, leaving a full analysis of the v2

H < v2
H(crit) region for future work.
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Figure 2.7: In this plot, we display the behavior of veff/f at the minimum of the radion potential
for subcritical v2

H > v2
H(crit) as it approaches the critical region. The dashed line is a linear fit to

the numerical data forced to pass through the origin by adjusting v2
H(crit). The critical value is

determined in this manner to be v2
H(crit) = −16.58305605

on the value of the second derivative of the radion potential at the minimum. The second

derivative remains positive for all v2
H values less than the critical one, and so the minimum of

the potential along the line where the Higgs boundary conditions are met coincides with the

Higgs critical point.

While the radion potential has a smooth minimum (as a function of the effective Higgs

VEV) in this dynamical model on either side of the critical value of v2
H , we again find that it

does not generally satisfy the µν components of Einstein’s equations, specifically the metric

junction conditions
√
G0,1 = ±κ2

6 V0,1.

Of course one could fine-tune both tensions to meet both metric junction conditions, as

is done in the original unstabilized Randall-Sundrum model, however one should first ask

what physical phenomena occur when such tuning is not performed. In the RS model, the

mistunes lead to either collapse or runaway of the branes, however in this case, it seems
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Figure 2.8: In this Figure, we display the curvature of the radion potential as a function of the
effective Higgs VEV for v2

H < v2
H(crit). In the plot on the left, we focus on v2

H close to the critical
value, while on the right, we display the curvature for a wider range of v2

H < v2
H(crit). Near the

critical v2
H , the behavior is well described by a line intersecting with the origin, with the critical value

here determined to be v2
H(crit) = −16.58305645, apparently consistent with the value determined

on the sub-critical side in Figure 2.7 up to numerical errors in the solving routine.

unlikely that the same behavior occurs, as the potential does not exhibit obvious runaway

directions. What seems more likely is that the background solution obtained after relaxing

the metric ansatz to include bent branes (e.g. nontrivial time dynamics). This is discussed

further in Section 2.7.

2.5 CFT Interpretation

Here we comment on the 4-dimensional CFT interpretation of this model. The dual of this

picture has a parallel in weakly coupled models where electroweak symmetry breaking is

driven radiatively, as is the case in the MSSM [28]. In such cases, the electroweak scale arises

via dimensional transmutation, with renormalization group effects creating the instability

that is rectified by the vacuum expectation value of the Higgs in spite of the microscopic

theory having no explicit scales.

In the picture under consideration, a similar instability is reached when the scaling
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dimensions of operators in a quasi-conformal theory are pushed towards and potentially into

the complex plane through renormalization group flow. Such complex scaling dimensions

are a usual part of the description of theories with a discrete scale invariance, thus we have

a picture where a theory evolves off of a standard nontrivial UV fixed point and begins

to exhibit discrete scale invariance in the IR. Discrete scale invariance is found in the IR

behavior of the Higgs profile, where the Higgs behaves approximately as

φ ∝ z2−ε/4 cos
(√

λ log z + γ
)
. (2.5.1)

The solution is simple scaling under the discrete transformation z → z exp
(
2π/
√
λ
)
, cor-

responding to a discrete scale transformation µ → µ exp
(
−2π/

√
λ
)
. While at first glance

interesting, discrete scaling behavior is forbidden in the deep IR [36], and is expected to be

terminated in some way – likely by the formation of condensates and a transition scale past

which RG flow resumes more standard behavior. Indeed, the study of the scalar fluctuations

in Section 2.3 shows that if one tries to continue the bulk too far into the regime of log-periodic

behavior, additional tachyons emerge that are, at least in the toy 5D theory of Section 2.3,

unresolved.

In the dynamical model of Section 2.4, the driving scalar field φd plays the role dual to

an operator whose coupling runs slowly, slightly deforming the CFT, with the deformation

growing in the infrared. This running backreacts, in general, on the theory, and can generate

a running for scaling dimensions of other operators in the theory. The bulk trilinear coupling

between the Higgs and the scalar φd is the pathway for this backreaction.

The running scaling dimension of the operator associated with the bulk Higgs is dual to
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the 5D z-dependence of the effective 5D mass of the Higgs in the background of the scalar, φd,

and the instability associated with complex scaling dimensions and discrete scale invariance is

dual to supersaturation of the Breitenlohner-Freedman bound. Since the effective mass begins

above the BF bound, the far UV behavior is that of a normal CFT without instabilities,

where the operators have normal real scaling dimensions. It is only in the IR behavior, where

scaling dimensions become complex, that an instability emerges.

This class of instability, without the dynamical aspect we explore, was investigated in

work by Kaplan, Lee, Son, and Stephanov [25] along with a proposed AdS dual. In this

work, it was conjectured that the loss of conformality as a function of some descriptor of

the theory, such as the number of massless QCD flavors, can be thought of as due to the

annihilation of two fixed points (UV and IR) under variations of that parameter. They posit

that such a theory could contain some operator O that has different scaling dimensions at

the two fixed points, ∆UV, IR, and these scaling dimensions smoothly merge and become

complex when the external descriptor is moved past some critical value. It was pointed out

in this work that the behavior of the theory under this transition is closely similar to scaling

behavior associated with finite temperature topological phase transitions of the sort studied

by Berezinskii, Kosterlitz, and Thouless (BKT) [53, 54]. In these models, there is a critical

line, with the theory being conformal for a finite range of descriptor, and with a gap turning

on smoothly past the point where conformality is lost. These two scaling dimensions, ∆UV, IR,

correspond in the 5D AdS dual to the two solutions to the scalar equations of motion in

the z → 0 region, each of which has different scaling properties given by ∆UV and ∆IR. In

5D, the loss of conformality corresponds to the merging of these two scaling solutions at

the Breitenlohner-Freedman bound as the bulk mass is taken through m2 = −4. Below the
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BF bound, the theory requires a UV cutoff, and also predicts an IR scale associated with

rectification of a tachyon instability through condensation of bulk fields, corresponding in the

holographic picture to a VEV for the operator O.

The 5D model we have described has given dynamics to this picture, where what was an

external parameter has been promoted to a coupling in the theory which has nontrivial RG

evolution. In Figure 2.9, we give a cartoon of what the model we explore achieves. In [25],

in the case that parameters are chosen to put the theory in a conformal window, there

are explicit UV and IR fixed points, both nontrivial. Moving in and out of the conformal

window is achieved by varying those external parameters, with the fixed points merging at

its threshold. In the case of our model, the idea is that the theory begins at or flows quickly

to an IR fixed point which has been demoted by a slightly relevant deformation of the theory

to a quasi-fixed point. The theory tracks this IR quasi-fixed point until it disappears after

annihilating its associated UV quasi-fixed point. Under further RG flow, scaling dimensions

become complex with a corresponding discrete scaling law, the theory becomes unstable, and

the instability is potentially resolved by condensates. The theory can also begin and remain

near the UV quasi-fixed point, in principle, corresponding to taking the tuned boundary

condition for the bulk scalar that picks out the other slower-growing solution.

When the instability is rectified by condensates, the approximate conformal invariance is

broken spontaneously. There are different options for this breaking. The Higgs itself can form

a vacuum expectation value, likely along with condensates of the operator that is driving

the theory towards the instability. This option gives a Higgs mass and 4D effective VEV

that is not typically suppressed in comparison with the 5D KK scale or its dual picture

compositeness scale. There are other options, however. It is known that the phase structure
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Figure 2.9: Here we show a cartoon of an approximate CFT dual of our 5D model. On the left is the
picture of fixed points annihilating under continuous variation of some descriptor of the theory, as
explored in [25]. On the right is our picture of quasi-fixed points annihilating under renormalization
group evolution.

of superconductivity can be quite rich, allowing for condensates with inhomogeneous spatial

configurations such as stripes or crystalline structure, and this has been reproduced in the

holographic context [40].

A dynamical dilaton field, corresponding to the condensates of operators in the CFT

and fluctuations about these points in field space, has a potential that depends on which

operators take on VEVs, and its potential selects the most attractive channel for resolving

the tachyon. The extra-dimensional modulus field, the radion, is the dual to this dilaton.

Finding the classical extrema of the 5D effective potential corresponds to identifying the

vacuum state of the dual CFT.

When sourced operators with nontrivial scaling dimension take on vacuum expectation

values, approximate conformal invariance is spontaneously broken, and the dilaton potential

is nontrivial (more than a scale-invariant quartic). If the potential has a nontrivial minimum,

the resulting mass of the dilaton particle is proportional to the degree of explicit breaking of

conformal symmetry. In our picture, as a function of the gap of the CFT associated with

a VEV of a marginally relevant operator Oε, an IR tachyon instability eventually emerges
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for smaller values of 〈Oε〉, in the regime of discrete scale invariance. At this point the VEV

〈OH〉 turns on in addition to 〈Oε〉.

The kink in the toy model of Section 2.3, or its cousin, the non-existence of solutions

with nonvanishing Higgs VEV past some critical z1 in the dynamical model of Section 2.4,

are the most curious features of this setup. These behaviors appear to be strongly tied to

the type of instability that is dominant in the model. The tachyon that emerges due to

the renormalization group instability/violation of the BF bound appears to be a necessary

component for novel behavior of the potential. This hypothesis is supported by what is

observed in Figure 2.3, and in the behavior of the scalar solutions in Section 2.4. Taking, for

example, v2
H to be large, giving a large 4D tachyonic mass to the Higgs on the brane, gives a

more standard kind of picture where a Higgs condensate turns on and determines the brane

location. However, for smaller or negative v2
H , when there is no longer a 4D brane-localized

tachyon, there is a turnaround in the behavior of the solutions. For v2
H below the critical

value, it is the bulk mass falling below the BF bound that is the more important component

of the instability.

2.6 Discussion

2.6.1 Connections to Condensed Matter and Statistical Physics

The construction we explore potentially gives a new way to think about self-organized

criticality in the fields where it was first explored and named [19]. The scaling of perturbations

(1/f flicker noise in the literature), and the instabilities associated with catastrophic failure
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and its possible connection to an emergent discrete scale invariance have their signatures

in the purported holographic dual we have proposed. The 1/f so-called “flicker” noise (in

fact 1/fα, where α can depend on the system under consideration) is simply the signature of

criticality itself [20] – a fixed point where perturbations exhibit scaling laws. There should

be CFTs describing the coarse-grained effective theory of such systems where criticality is

self-organized, and there could be AdS dual descriptions of such theories. The scaling laws

associated with the self-organized critical point are associated in this case to the scaling

behavior of field solutions in AdS space. The above discussion applies to any critical point,

not just self-organized ones. However, the particular 5D picture we have presented here

appears to have features which place it close to systems with self-organization. These share

the commonality that the systems in question are brought to the point of some sort of failure

mode that leads to time dynamics, typically a form of adjustment. It has been suggested

that the development of the adjustment behavior can be associated, in the coarse-grained

theory, with scaling dimensions of the critical point being driven into the complex plane, and

creating a discrete scale invariance, with fluctuations obeying a log-periodic power law. In

the context of quantum field theory, it is known that such scaling laws are not allowed, and

have instabilities associated with them [36]. In our picture these instabilities map to the

region in the radion potential in which there are unresolved tachyons. Should the system be

placed at these points of instability, it is, at the moment, unknown what the response of the

system will be.
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2.6.2 Incorporation of the Standard Model

The eventual goal is to embed this class of Higgs sector into a theory which accommodates the

rest of the SM field content, and where the Higgs resides not precisely at the point of criticality,

but instead picks a VEV and breaks the electroweak gauge symmetry spontaneously. This

may occur as a result of finite radiative corrections, or perhaps through nontrivial feedback

due to explicit breaking of conformal invariance in the SM (for example, from confinement

and chiral symmetry breaking in QCD), or in extensions of it (as in [14]). If the SM can

accommodate such a Higgs sector, a key calculation will be the Higgs cubic coupling in the

context of the manner in which its potential is generated, as this will be eventually probed

by colliders. As we will discuss in the next section, cosmology of such an extension of the

SM could be very interesting. As we have emphasized, we have not yet fully identified the

vacuum state, which we argue must be time-dependent unless tuning is performed.

2.7 Speculation: Cosmology

The phenomenology of this scenario, if employed by nature in creating a low electroweak

scale, is expected to be quite novel. Cosmology stands out as a particularly interesting area,

due to the interplay between the radion and the Higgs. Metastability of the self-organized

critical state is a vital consideration, although possibly resolved trivially by details of the

deformation that drives self-organization or by a more complete model without a hard wall.

A very interesting possibility is that dynamics of the radion could “rock” the early universe

across the electroweak phase transition, sourcing a stochastic gravitational wave background,

and creating an era of the early universe with an exotic equation of state (leading to modified
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constraints on inflationary scenarios and/or moduli masses) [55]. This may be interesting

also from the standpoint of baryo- and leptogenesis.

Even more curious features are likely to emerge under a full calculation of the classical

background, which we have left for future work. As we have emphasized, in writing down

a 4D Lorentz-invariant radion potential, we have been required to do some violence to the

theory. That is, we have calculated the potential under the presumption that the metric

slices are flat. However, at the minima we have identified, the consistency conditions for a

flat metric ansatz on the boundaries of the space, that both the UV and IR contributions

to the radion potential separately vanish at the minimum, cannot be met without tuning.

Bent 4D slices thus appear to be an integral part of the full solution to the theory at or near

Higgs criticality. The theory is telling us that, as part of the resolution of the AdS tachyon,

it breaks Lorentz invariance spontaneously at long distances. It is interesting to speculate at

the form that this takes without (at least in this work) undertaking a detailed calculation.

Pessimistically, we might imagine that the solution could be a runaway. This seems

unlikely from the following consideration of the dynamical model discussed in Section 2.4:

one could imagine adjusting the bulk cubic coupling λ between φd and the Higgs, increasing

it starting from some small value. The system would then reside at the minimum of the

Goldberger-Wise potential created by the VEV of the φd scalar, and the Higgs would have

positive mass squared. One would in this case start in an unbroken phase with a massive

Higgs field near the KK scale, and a completely static geometry (presuming the usual single

tuning of the UV brane tension). Increasing the coupling would move the turn-on of the

Higgs VEV ever closer to the minimum of the Goldberger-Wise potential, the critical z1

value approaching the minimum from large z1. The lowest-lying Higgs excitation would then
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gradually move to the bottom of the spectrum. There is a fine-tuned value of λ where the

Higgs extremum coincides exactly at the minimum of the GW potential. The theory at this

point, as the usual solution to the theory at the Goldberger-Wise minimum tells us, has a

massive radion. Due to the adjustment of λ, it also has a (finely-tuned) massless Higgs. The

only nearby instability in the low energy theory seems like the usual one associated with the

Higgs phase transition. Further increase in λ either results in a Higgs VEV and symmetry

breaking of the usual sort, or a more novel transition. It would appear the latter is a good

possibility in some fraction of the parameter space of the model.

We have shown that the change in the radion potential due to the Higgs contribution

creates a new minimum and for large negative v2
H , there appears to be an onset of a novel

type of transition that does not satisfy the usual metric junction condition. This means

that the transition is not likely a normal Higgs one, but rather could be a transition to a

spontaneously Lorentz-violating dynamical background. The radion should still be stabilized

by its mass if we remain close to the boundary of the critical region. Therefore if it moves, it

likely oscillates rather than runs away, acting “trapped” [56].7 Amusingly, such a “trapped”

modulus, the oscillating radion field, might look cosmologically similar to non-relativistic

matter from the standpoint of the low energy theory: a Bose-Einstein condensate of radion

particles. Deeper into the critical Higgs region, as the metric junction conditions become

further from being satisfied, this time dependence may become very complicated, involving a

mixture of the many degrees of freedom in the model. A simulation including full backreaction

may be needed. It will be interesting to see more clearly what the low energy theory looks

like with further study.
7We thank Ofri Telem for suggesting the possibility of an oscillating radion background.
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In short, the resolution of the IR-emergent AdS tachyon appears to require a spontaneous

breakdown of 4D Lorentz invariance possibly a time-dependent oscillatory vacuum state. In

the language of condensed matter physics and superconductivity literature, the theory would

be resolving the instability by entering a “striped phase” at long distances with oscillations

of the radion state breaking time translation invariance. The generic phenomenon of classical

spontaneous breakdown of time translation invariance was investigated in [38], with a quantum

mechanical version explored in [39]. These striped phases in condensed matter systems appear

to arise in the presence of a frustration in the system where competing phenomena strive to

set the vacuum state. In the case of our radion model, there are two competing “minima”

of the potential: one where the radion is at a global minimum set by the Goldberger-Wise

mechanism, but the Higgs is unstable, and the other where the Higgs field is stabilized, but

the 5D gravity sector is not at an extremum of the action. The outcome in some condensed

matter systems is to resolve such tension by entering a translation invariance-breaking striped

phase, and we are suggesting similar physics may be at work in resolution of this AdS tachyon,

although the breaking could be of time-translation invariance. A picture of these competing

extrema is shown in Figure 2.10.

This sort of time dependent vacuum state and its application to cosmology was first

explored in [41], with important recent followup work concerning stability of this scenario

in [42].

In the 4D CFT language, there may be strongly coupled quasi-conformal 4D theories with

a dynamically generated gap that have aspects of matter-Λ cosmology built into their ground

state at long distances due to frustration of the dilaton. Classical breaking of time-translation

invariance in the 5D theory corresponds to its quantum mechanical counterpart in the 4D
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Figure 2.10: Here we show the radion potential. The dashed line is the potential if the Higgs VEV
is left vanishing. There is a minimum of this potential where the metric ansatz for the IR brane
is satisfied, but it corresponds to an unstable Higgs configuration. The solid line is the region
where the effective Higgs mass squared in the low energy theory is positive. At the dot, the mass
vanishes, and if v2

H < v2
H(crit), the potential of the radion is minimized if the unstable Higgs region

is forbidden. The gravity sector is not extremized here – the metric junction condition on the IR
brane is not met.

dual. The apparent puzzle of the light and seemingly unprotected Higgs in the critical region

may be that it is the Goldstone boson of this breaking, a type of phonon, perhaps making the

lightness of the Higgs directly connected to the presence of a cosmology with non-relativistic

matter and dark energy content.

A better understanding of the dynamical aspects of this class of Higgs model is definitely

required to make these statements more firm, but there seem to be some quite promising

avenues to pursue.

2.8 Conclusions

We have discussed a new possible approach to the Higgs hierarchy problem. The model is in

part inspired by attempts to model aspects of self-organized criticality in condensed matter
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systems in which it has been hypothesized that some classes of these critical states on the

brink of catastrophic failure contain critical exponents that are becoming complex under

loading of the system, leading to discrete scale invariance and instabilities.

We have explored 5D constructions that have features that are similar to the behavior

just described. It has made us directly confront the AdS tachyon, associated with violation

of the Breitenlohner-Freedman bound, and search for the manner in which field theory might

resolve it. In this model, the resolution takes the form of an IR brane with characteristics

that depend on the 5D fundamental parameters. We found that there is are large regions of

the parameter space where a novel type of transition appears to be taking place.

A dynamical cosmology is an unavoidable consequence of the model when placed inside

or near this region. Time evolution appears crucial to resolution of the AdS tachyon in

this model. This could be a feature rather than a bug, tying together puzzling aspects of

fundamental particle physics with puzzling features of cosmology in a novel way. It remains

to be seen what the Higgs vev and spectrum will be once this time evolution is completely

taken into account, and whether its effective mass and/or vacuum expectation value are tied

in some interesting way to aspects of the cosmology.

Top priorities are to further investigate the cosmological dynamics, determine whether

this type of setup can be utilized as an extension of the Standard Model, study its novel

phenomenological implications and constraints if so, and to seek an embedding in a more

complete microscopic theory.
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Chapter 3

Radion-Activated Higgs Mechanism

3.1 Introduction

The mass of the Higgs is far smaller than dimensional analysis predicts given that there are so

far no experimental signatures of new physics indicating new symmetries near the electroweak

scale. This suggests that there may be some degree of fine tuning of parameters to achieve

consistency with observations. Of course, the Higgs mass problem is not the only one of the

Standard Model. The SM offers no explanation of large fermion mass hierarchies, of dark

matter, of the matter/anti-matter asymmetry, etc. Strong dynamics, and/or field theories in

higher-dimensional spacetimes offer resolutions or at least interesting reformulations of many

of these problems, along with partially ameliorating the Higgs hierarchy problem.

The Higgs mass couples to singlet sectors in many extensions of the electroweak sector,

which can put the the hierarchy problem into a new light [14]. The question is no longer

“Why is the Higgs light?” Rather, the correct question is “Why does a small Higgs mass

coincide with the global (or a cosmologically metastable) minimum of the scalar potential?”
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Such scalars are generic features in models with additional compact spatial dimensions [33].

In these models, there are typically moduli that are gauge singlet states with non-trivial

couplings to matter required by higher dimensional general covariance [52, 57]. Stabilization

of these moduli is typically non-trivial as the moduli can be interpreted as Goldstone bosons of

spontaneously broken spacetime symmetries. Providing a potential for them often requires new

scalar degrees of freedom whose dynamics serve to explicitly break the spacetime symmetries,

demoting the moduli to pseudo-Goldstone bosons.

In this work, we explore the relationship between extra-dimensional radius stabilization

and the Higgs mass. In particular, the modulus of Randall-Sundrum models (the “radion”)

generally plays a crucial role in determining the value of the Higgs vacuum expectation value.

The same goes for the reverse: the Higgs VEV itself will backreact on the geometry, and feed

into the total effective potential for the radion.

This first motivates the development of a formalism for dealing with multi-scalar models

of 5D RS model radius stabilization. This is the focus of the first part of this work. We

show that even in cases of complicated bulk dynamics with many interacting scalar fields,

the classical effective potential lives on the boundary. Making the assumption that the 5D

action is of Einstein-Hilbert form with minimal couplings to bulk scalar fields, we calculate

the classical potential to all orders in the 5D gravitational coupling constant.

The criteria for minimization of this effective potential determine aspects of the physics

such as the Kaluza-Klein scale, and the masses of light resonances. We study these criteria, and

provide conditions for extremization of this potential that fully include geometric backreaction

effects.

We then apply this formalism to a few illustrative examples of the Higgs mechanism in
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RS models. Given the lack of signals for extra-dimensional resonances in collider experiments,

we look for models which achieve moderate separation of scales between the electroweak scale

and the scale associated with the IR brane f/v & O(10). The Higgs mass term is generally a

function of the brane separation. Thus, in order to achieve a light Higgs, the minimum of the

modulus potential must coincide with the region where the Higgs mass is small. We expect

(and find) that tuning is involved in these cases. For example, such a coincidence problem

may require that the IR brane mistune (between the brane tension and the bulk cosmological

constant) be adjusted to high degree in order to keep the Higgs light. We explore the type and

degree of tuning required in a few examples in which there is non-trivial interplay between

electroweak symmetry breaking and radius stabilization.

As noted in [58], fine tuning can have dramatic phenomenological consequences when

parameters of the Standard Model are set by the dynamics of a modulus field. These

consequences influence both early universe cosmology and collider physics. Cosmology can be

dramatically changed by interplay of Higgs and modulus field, with oscillations of the coupled

scalar system leading to repercussions for gravity waves, and constraints on inflationary

models. It is with this in mind that we choose models whose parameter space explore the

full range of classes of mixed modulus-Higgs potential. The specifics of these classes are

expanded on in the introduction to Section 3.3.

The example models we study are as follows:

• Higgs on the IR brane, Goldberger-Wise scalar stabilizing field in the bulk;

• Higgs in the bulk, with mass near the Breitenlohner-Freedman bound [24], stabilizing

the geometry (studied previously in [44, 45]);
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• Both Higgs and Goldberger-Wise stabilizing field in the bulk.

For simplicity of presentation, these models are all studied to lowest non-trivial order in the

gravitational backreaction, where neither the Higgs or Goldberger-Wise scalar develop VEVs

that are comparable to the AdS curvature.

An important result from these studies is that mass mixing between the Higgs and radion

is completely generic. Mass mixing occurs in different ways: through symmetry-allowed

couplings between a Goldberger-Wise field and the Higgs, or from mixing of the Higgs with

the 5D gravity sector through backreaction.1 It occurs both when the Higgs is purely localized

on the IR brane through couplings to the Goldberger-Wise field, or when the Higgs is in the

bulk of the extra dimension. This mixing is different in the various classes of Higgs-radion

potential, and influences the spectrum of light scalar modes.

In Section 3.2 we discuss general properties of multi-scalar stabilization, giving condi-

tions under which the geometry is stabilized. In Section 3.3, we explore the construction,

phenomenology, and spectra of three different models where the Higgs is coupled to the extra-

dimensional radion. In Section 3.4 we discuss a CFT interpretation of different multi-scalar

stabilization models. In Section 3.5 we conclude.

3.2 General Properties of the Radion Potential

Before analyzing particular models, we first study some general properties of radius stabiliza-

tion when there is more than one 5D scalar field that has non-vanishing vacuum expectation

value. In such cases, the radion potential is affected by backreaction of all of these VEVs
1This is in addition to kinetic mixing, which can occur through couplings of the Higgs to either the 5D

curvature, or to the extrinsic curvature of the IR brane [59].
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onto the geometry. In what follows, we consider arbitrary backreaction onto the geometry,

however we presume that the action is of Einstein-Hilbert form, with no higher curvature

operators.

The generic problem is one of N real scalar fields minimally coupled to gravity in 5D space

with negative cosmological constant Λ5 = −6k2/κ2. The bulk geometry can be described

with metric

ds2 = e−2A(y) dx2
4 − dy2 , (3.2.1)

where we have presumed flat 4D slices. The space is cut off on both sides by branes at

positions y0 and y1.

All dimensionful quantities are understood to be expressed in units of the AdS curvature:

k = 1. For perturbative control of the 5D gravity theory, the 5D Newton constant must be

small: κ2 = 1
2M3

5
∼ O(1/10). The action is:

S =
∫

d4x dy√g
[

1
2
∑
i

(∂Mφi)2 − V ({φi})−
1

2κ2R

]

−
∫

d4x
√
−g0V0({φi})

∣∣∣∣
y=y0

−
∫

d4x
√
−g1V1({φi})

∣∣∣∣
y=y1

,

(3.2.2)

where the scalar potential includes the bulk cosmological constant term.

The bulk Einstein equations relate derivatives of A(y) to the scalar fields in the following

way:

A′
2 = κ2

12
∑
i

φ′2i −
κ2

6 V ({φi}),

A′′ = κ2

3
∑
i

φ′i
2
.

(3.2.3)
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The scalar curvature is given by

R = 20A′2 − 8A′′. (3.2.4)

In the absence of scalar field VEVs, or in the limit of small κ2, the space is AdS.

Plugging the result for the scalar curvature, and for the scalar terms into the action above,

we find that the bulk portion is a derivative, and thus can be expressed as a boundary term:

Sbulk = 2
κ2

∫
d4x dy ∂

∂y

[
e−4A(y)A′(y)

]
= 2
κ2

∫
d4x

[
e−4A(y0)A′(y0)− e−4A(y1)A′(y1)

]
. (3.2.5)

The factor of 2 is from integration over the circle. We note that on the boundaries, there

must be a jump in the derivative of the metric. This can be seen most easily from the orbifold

perspective, where on either side of an orbifold fixed point, you must have A(y0,1)+ = A(y0,1)−

and A′(y0,1)+ = −A′(y0,1)−. This leads to a term in the scalar curvature R which is a delta

function, as you must have A′′(y0,1) ⊇ ±2δ(y0,1 − y)A′(y0,1). Inclusion of the delta function

term in the scalar curvature gives additional boundary contributions to the effective action.

Including all terms, the effective potential can now be expressed as a pure boundary

term [47]:

Veff = e−4A(y0)
[
V0({φi(y0)})− 6

κ2A
′(y0)

]
+ e−4A(y1)

[
V1({φi(y1)}) + 6

κ2A
′(y1)

]
. (3.2.6)

where, at the moment, none of the boundary conditions have been imposed, nor even the

bulk scalar equations of motion, which are given by:

φ′′i = 4A′φ′i + ∂V

∂φi
. (3.2.7)
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The scalar boundary conditions are given (in these coordinates) as:

φ′i

∣∣∣∣
y0,y1

= ±1
2
∂V0,1

∂φi

∣∣∣∣
y0,y1

. (3.2.8)

The boundary Einstein equations (the metric junction conditions that match the geometry

to the brane-localized stress-energy) are

A′
∣∣∣∣
y0,y1

= ±κ
2

6 V0,1

∣∣∣∣
y0,y1

, (3.2.9)

which correspond to the UV and IR terms in the effective potential vanishing individually.

One can associate the brane separation with the vacuum expectation value of the radion.

The metric boundary condition at y1 can be thought of as setting the VEV of the radion.

That is, one varies y1 until the IR brane contribution to the effective potential vanishes. We

show in the next Subsection that it is always the case that the minimum in the static effective

potential corresponds to vanishing VIR after all scalar bulk and boundary equations of motion

are imposed.2

At this point we can impose the scalar field equations of motion. For a single scalar field,

if we impose the bulk equations, the effective potential is then a function of the two remaining

freedoms in the scalar field (its value and derivative, on, for example, the UV brane), and

the position of the IR brane. If one further imposes the scalar boundary conditions on both

of the two branes, then only the value of y1 remains, to be determined by minimizing the

effective potential with respect to it. However, we might be interested in a more intuitive
2However, it curiously remains possible that extrema or saddles arise where neither the scalar or metric

conditions are satisfied (and this occurs in some models [60]). This may be due to nearby extrema which do
not satisfy the ansatz of a Lorentz invariant background.
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measure of the effective potential, particularly when taking into account the multiple scalar

degrees of freedom, where we expect to have a multidimensional scalar potential.

We advocate an approach inspired by holography, where the effective potential is measured

in terms of field values on the UV brane only. In this case, the procedure we should take to

find the effective potential is as follows:

• pick a particular value of y1;

• impose the IR boundary conditions, eliminating N of the 2N scalar boundary conditions.

N degrees of freedom remain, e.g. the values of the fields on the UV brane;

• we are left with N scalar boundary values and the free value of y1. Ideally, one would

then, for constant UV field values, minimize the effective action over y1.

This last step is difficult to implement in practice. However, if at least one of the scalar

fields (say φN ) has “stiff” boundary conditions in the UV, then one instead imposes that UV

brane condition, leaving N − 1 scalar degrees of freedom on the UV brane. The value of y1

corresponds to the last degree of freedom, so that one has Veff(φ1(y0), · · · , φN−1(y0); y1).

3.2.1 Derivative of the Radion Potential

We are interested in finding stable configurations of the branes, where the effective potential

is minimized. We explore here the conditions for minimization, showing analytically that

they correspond in most, but not all, cases to vanishing of the IR portion of the effective

potential.

Employing the above procedure, imposing the IR brane boundary conditions for the scalar

fields the derivative of the effective potential with respect to y1 takes a particularly simple
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form:

dV
dy1

= e−4A(y0)∑
i

(
∂V0

∂φi
(y0)− 2φ′i(y0)

)
dφi
dy1

(y0)− 4e−4A1
dA1

dy1

[
V1 + 6

κ2A
′
1

]
. (3.2.10)

The first term is vanishing if the boundary conditions for the scalars on the UV brane are

imposed. The second term is vanishing if the metric junction condition in the IR is imposed.

We thus note that this formula implies that extremization of the action implies (as it must,

of course) extremization of the effective potential. However, the converse is not necessarily

the case. It may be that this expression vanishes where the two terms cancel against each

other and neither metric nor scalar boundary conditions are met. We hypothesize that this

may occur when there are extrema of the action “nearby” in configuration space that do

not obey the static, homogeneous, and isotropic ansatz that was the starting point for this

analysis of the effective action.

We note that there is a method that generalizes the well known superpotential method

for stabilization [61] to include multiple scalar fields. This method guarantees a solution in

which the effective potential is extremized.

3.3 Examples of Radion-Induced Symmetry Breaking

We now explore some specific simple models that illustrate different classes of multi-scalar

potentials where a Higgs instability occurs over some region of radius values. We are

particularly interested in models where some tuning has been performed to obtain mild or

large hierarchies between the electroweak scale and the KK scale. Broadly speaking, there are
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3 classes of tunings distinguished by the shape of the 2-dimensional scalar potential. These

are as follows:

• All parameters of the 5D theory are of order 1 (in units of the AdS curvature for

dimensionful couplings). Tuning is achieved by making the symmetry breaking critical

point extremely close to the minimum of the radion potential.

• The Higgs potential has only mild dependence on the radion VEV. Tuning is achieved

by arranging the Higgs effective mass term to be small over a large range of radius,

including at the minimum of the radion potential.

• The radion potential itself is very shallow due to tuning. The Higgs VEV then

contributes sizably to the stabilization, and even small Higgs VEV successfully stabilizes

the geometry for large KK scale.

In Figure 3.1, we display the basic pictures of these three types of 2D scalar potentials.

These different types of tunings have implications for phenomenology. For example,

there may be consequences for cosmology, affecting the manner in which the early universe

electroweak phase transition takes place [62–64], and possibly playing a crucial role during

post-inflationary reheating [58]. Additionally, the different tunings have implications for the

mass spectrum of the lightest scalar modes, and for general considerations about vacuum

energy [65, 66]. For example, the radion mass may be typically lighter or heavier than the

Higgs for the different classes of model.
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Figure 3.1: In this figure, we roughly characterize the different types of potentials in the space of
the radion and the Higgs VEVs. Each plot shows a potential as a function of a modulus VEV, φ,
and a Higgs VEV. Dashed lines indicate points at which the Higgs potential is minimized with φ
held constant. In the first image, all couplings are order 1, however, the minimum of the modulus
potential is tuned to be close to the critical point for the Higgs. In the second, the dependence of the
Higgs potential on the modulus field is weak, and the bare Higgs mass is taken to be somewhat small.
In the final plot, the modulus potential without the Higgs is very flat, and thus the backreaction of
the Higgs onto the modulus potential is the dominant feature in the potential.

3.3.1 Higgs on the Brane

We now want to consider the case in which the interactions between the Higgs and the GW

scalar take place on the IR brane. We assume no bulk interactions between the fields. This

can be done with a Higgs which is either in the bulk or completely localized on the IR brane.

We first consider the latter.

When the Higgs is localized on the IR brane, the only field that propagates in the bulk is

the Goldberger-Wise (GW) scalar. The bulk action is then

Sbulk =
∫

d5x
√
g
(1

2g
MN∂MΦ ∂NΦ + 6

κ2 −
1
2m

2
ΦΦ2 − 1

2κ2R
)
. (3.3.1)

We take m2
Φ ≡ ε(ε − 4), where ε is taken to be O(1/10) in order to generate exponential

hierarchies without severe tuning. The bulk action is supplemented by brane-localized
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Lagrangian terms, including a kinetic term and potential for the Higgs on the IR brane:

Sbrane = −
∫

d4x
√
−g0 V0(Φ)

∣∣∣∣
y=y0

−
∫

d4x
√
−g1

(
|∂µH|2 − V1(Φ, |H|)

)∣∣∣∣
y=y1

. (3.3.2)

We presume the following form for the brane-localized potentials:

V0 = T0 + γ0(Φ− v0)2,

V1 = T1 + λH |H|2(|H|2 − v2
H − λΦ) + γ1(Φ− v1)2.

(3.3.3)

These include brane tensions and localized mass terms for the Goldberger-Wise stabilizing

field that displace the VEV from the origin. In addition, there is a standard potential for the

IR brane-localized Higgs with an additional trilinear coupling to the Goldberger-Wise field.

This last term is crucial for our purposes, as it couples the Higgs field to the radius.

We then solve the equation of motion (3.2.7), supplemented by the boundary condi-

tions (3.2.8), under the assumption of an x-independent background VEV, 〈Φ〉 = φ(y).

Putting everything together we get the effective dilaton potential of Equation (3.2.6) in the

case of a single bulk scalar field, with the added contributions of the brane-localized Higgs.

We consider the small backreaction limit, κ � 1. In this case, A′ ≈ 1 and the bulk

equation of motion can be solved in general to give

φ(y) = φεe
εy + φ4e

(4−ε)y. (3.3.4)

The coefficients are fixed by imposing the boundary conditions. We adopt a stiff wall boundary

condition for the GW field on the UV brane, corresponding to the limit γ0 →∞, which fixes
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φ0 ≡ φ(y = 0) = v0.

The IR brane potential contains the interaction between the GW scalar and the Higgs.

We do not take the stiff wall limit for the GW scalar on the IR brane, so φ1 ≡ φ(y1) is not

fixed at v1. Through the trilinear coupling to Φ, the brane-localized Higgs mass is then a

function of y1. The equation of motion for the Higgs background that minimizes the effective

potential energy is

2〈H〉2 ≡ v2(y1) =


0 v2

H + λφ1 < 0

v2
H + λφ1 v2

H + λφ1 > 0,

(3.3.5)

while the boundary condition for φ(y) is

φ′1 = −γ1(φ1 − v1) + 1
4λλHv

2(y1). (3.3.6)

If we impose only the IR boundary condition for φ, leaving the Higgs VEV free (not imposing

Equation (3.3.5)), we can explore the two dimensional effective potential as a function of v

and y1.

In the small backreaction limit, the effective potential for the system is

Veff = e−4y0

(
V0 −

6
κ2 −

1
4φ
′
0

2 − ε(4− ε)
4 φ2

0

)
+ e−4y1

(
V1 + 6

κ2 + 1
4φ
′
1

2 + ε(4− ε)
4 φ2

1

)
. (3.3.7)

For small y1 values, it can be arranged that v2
H + λφ1 < 0, and the origin in Higgs field space

is a stable minimum: 〈H〉 = 0.

In this region, the effective potential (after imposing the Higgs equation of motion) is
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Figure 3.2: Higgs VEV in units of the symmetry breaking scale f and its dependence on various
parameters of the model. On the left, we show the variation as a function of the IR brane mistune
δT1. On the right, we display it in terms of how close the minimum of the radion potential is to yc1,
the critical point in the extra dimension where the interplay between the GW scalar and the Higgs
first triggers electroweak symmetry breaking. We have taken v0 = 1/10, v1 = 2, γ1 = 1, λH = 1/8,
κ = 1/50. The different curves are obtained by fixing the ratio λ/v2

H , so that equal values of ε
correspond to equal values of yc1.

determined by the single GW field and its backreaction onto the geometry.

On the other hand, for larger y1 values, the Higgs may develop a VEV. For example,

when ε is taken to be small and we set γ1 = 0, we can approximate the electroweak symmetry

breaking condition as

y1 &
1
ε

log
(
− v

2
H

λv0

)
. (3.3.8)

Minimizing the effective potential with respect to y1 relates the Higgs VEV to the symmetry

breaking scale. The effective VEV, in units of the Kaluza-Klein scale f , scales with δT1, the

IR brane mistune, as
v

f
≈
(

64δT1

λH(16− λ2λH)

)1/4

. (3.3.9)

In Figure 3.2 we quantify the amount of tuning associated with a given Higgs VEV v. The

Higgs VEV is fixed in the following way: first we identify the effective 4D scale of gravity, i.e.

the Planck scale, via M2
Pl ≈ 1/(2κ2), as a consequence of the warped geometry. For a given

value of κ, we then reproduce the experimentally measured hierarchy between the Planck
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and the weak scale, log(MPl/v) ≈ 38.4. We scan over f by changing ε ∼ 1/10, so that the

corresponding values of y1 provide a large range of Kaluza-Klein scales. To obtain a small

v/f , parameters must be chosen so that the global minimum of the effective potential is very

close to the critical point for electroweak symmetry breaking. We denote the critical values

of the 5D parameters with the superscript “c”. We display this information in two different

ways: on the left, as a function of δT1, which is the physical parameter that needs to be tuned

to adjust the location of the minimum of the effective potential. On the right, as a function

of y1, the location of the minimum itself, which is more useful to visually determine how

close the minimum has to be to the critical point. As expected from the analytic estimate

of Equation (3.3.9), a small Higgs VEV requires a very small mistune in the brane tension

against the bulk cosmological constant.

Mass Spectrum

In order to understand the spectrum of the theory, we consider fluctuations around the

background solutions for the metric and the two scalar field profiles to linearized order. In

particular, we parametrize the various degrees of freedom as

Φ(x, y) = φ(y) + ϕ(x, y),

H(x) = 1√
2

[v + h(x)] exp(iα),

ds2 = e−2A(y)−2F (x,y)ηµν dxµ dxν − (1 + 2F (x, y))2 dy2 .

(3.3.10)

It is possible to show that, when having only one scalar field in the bulk, the whole set of

linearized Einstein equations, together with the equations of motion for the scalar fields,
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Figure 3.3: Dependence of the mass scales in the theory on various parameters of the model. On
the left, we show how for a fixed value of κ the IR brane mistune controls the Higgs mass and
VEV, while the radion mass is essentially unchanged. On the right, we see that the radion mass is
dependent on the amount of backreaction. The parameters are the same as in Figure 3.2.

reduces to a single homogeneous differential equation for F in the bulk [51]:

F ′′ − 2A′F ′ − 4A′′F − 2φ
′′

φ′
F ′ + 4φ

′′

φ′
A′F = e2A�F. (3.3.11)

We also have to specify the boundary conditions. When considering a stiff wall UV brane

boundary condition for the background GW field (γ0 →∞), the UV boundary condition is

F ′0 = 2A′0F0. The IR boundary condition for F can be obtained by combining the following

equations:

φ′ϕ = 3
κ2 (F ′ − 2A′F ),

−2ϕ′1 = ∂2V1

∂φ2 ϕ1 + ∂2V1

∂φ∂h
h+ 2F1

∂V1

∂φ
,

�h+ e−2A1

(
∂2V1

∂φ∂h
ϕ1 + ∂2V1

∂h2 h

)
= 0.

(3.3.12)

Notice that the mass eigenvalue appears both in the bulk equation and in the boundary

condition because of the presence of the brane-localized Higgs kinetic term which leads to

the � ≡ ∂µ∂
µ operator.
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Solutions are parametrized by 3 unknowns. Two are integration constants associated with

the second order equation for F , and the third is the eigenvalue. One integration constant

can be fixed by choosing a convenient normalization, and the other is eliminated by imposing

the UV brane boundary condition. To find the eigenvalues, we employ a shooting method

and determine the mass eigenvalues for which the IR boundary condition is satisfied. We

find that the spectrum contains a light radion and Higgs along with a KK tower due to the

bulk GW field.34

Figure 3.3 shows the mass spectrum obtained by solving Equation (3.3.11) supplemented

by the boundary conditions (3.3.12). Once again, we fix v to the electroweak value and we

scan over f by varying ε ∼ 1/10. We can see how the mass of the Higgs fluctuation tracks

the Higgs VEV and is controlled by the amount of mistune (left subfigure), while the radion

mass is determined by the backreaction parameter κ (right subfigure). On the other hand,

the Higgs and radion masses are essentially insensitive to changes in κ and δT1, respectively.

The lightest particle in the spectrum can be either the Higgs or the radion, depending on

the choice of parameters. This is in contrast to the results of Subsection 3.3.3, where we

consider only the Higgs in the bulk, and the radion is constrained to be the lightest state in

the spectrum.

3.3.2 Two Bulk Fields

In this Subsection, we consider the case where both fields, GW scalar Φ and the Higgs H,

propagate in the bulk. For simplicity, we assume that they are uncoupled, despite such a
3As usual, there is no separate KK tower for the radion field, as these modes are eaten by the massive KK

gravitons.
4Recent work also utilizes a new approach to get the full potential for the lightest scalar mode, going

beyond the mass eigenvalue [67].
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coupling being allowed by the symmetry. However, they still interact indirectly through

gravity, as both fields backreact on the geometry. We assume that the Higgs is localized

towards the IR brane by taking its bulk mass close to (but above) the Breitenlohner-Freedman

bound m2
H = −4. Note that the bulk mass is constant.

The bulk action is given by

Sbulk =
∫

d5x
√
g
(1

2∂
NΦ∂NΦ + ∂NH†∂NH + 6

κ2 −
1
2m

2
ΦΦ2 −m2

H |H|
2 − 1

2κ2R
)
. (3.3.13)

Again we take m2
Φ ≡ ε(ε − 4) with ε ∼ O(1/10), and we also define ν2 ≡ 4 + m2

H with

ν ∼ O(1/10). This bulk action is supplemented by brane-localized Lagrangian terms

Sbrane = −
∫

d4x
√
−g0V0(Φ, |H|)

∣∣∣∣
y=y0

−
∫

d4x
√
−g1V1(Φ, |H|)

∣∣∣∣
y=y1

. (3.3.14)

The brane-localized potentials are given by the following:

V0(Φ, |H|) = T0 + γ0(Φ− v0)2 +m2
0|H|

2,

V1(Φ, |H|) = T1 + γ1(Φ− v1)2 + λH |H|2(|H|2 − v2
H).

(3.3.15)

In this Subsection, we work in the simplifying limit γ0,1 →∞, which sets the UV/IR boundary

conditions for the GW field as Φ(y = y0) = v0 and Φ(y = y1) = v1 respectively.

We write the VEVs for the GW and the Higgs field respectively as 〈Φ〉 = φ(y) and

〈|H|〉 = v(y)/
√

2. Presuming small metric backreaction, the bulk equations of motion for the
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scalars are given by

φ′′ − 4φ′ − ε(ε− 4)φ = 0,

v′′ − 4v′ − (−4 + ν2)v = 0.
(3.3.16)

The GW field φ has the same profile as in the previous Subsection, which is given by (3.3.4)

where the coefficients φε and φ4 are fixed by the boundary conditions φ(y0 = 0) = v0 and

φ(y1) = v1. The solution for the Higgs VEV can be conveniently expressed as

v(y) = v(y1)e2(y−y1)
(
eνy − re−νy

eνy1 − re−νy1

)
, (3.3.17)

where v(y1) and r are integration constants which will be determined by the Higgs boundary

conditions generated by the brane potentials (3.3.15):

v′(y0) = m2
0

2 v(y0),

v′(y1) = λH
2 v(y1)

(
v2
H − v2(y1)

)
.

(3.3.18)

The UV boundary condition fixes r as

r = m2
0 − 4− 2ν

m2
0 − 4 + 2ν . (3.3.19)

The constant v(y1), the Higgs VEV on the IR brane, is determined by the IR boundary

condition which has two solutions. One of them is the trivial one v(y1) = 0 corresponding to

unbroken electroweak symmetry. By defining m2
1 ≡ λHv

2
H , the second solution is given by

v2(y1) = 1
λH

[
(m2

1 − 4− 2ν) + 4ν(m2
0 − 4− 2ν)

(m2
0 − 4− 2ν)− e2νy1(m2

0 − 4 + 2ν)

]
, (3.3.20)
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provided that the term inside brackets is positive. In this case, the above solution is the

preferred one, corresponding to broken electroweak symmetry.

If the Higgs has a nonzero VEV, it contributes to the 4D effective potential (3.3.7) by a

term given by

V v
eff =

[
m2

0
2 v2 − 1

4v
′2 + 1

4m
2
Hv

2
]∣∣∣∣
y=0

+ e−4y1

[
λH
2 v2

(
v2

2 − v
2
H

)
+ 1

4v
′2 − 1

4m
2
Hv

2
]∣∣∣∣
y=y1

(3.3.21)

By using the Higgs solution (3.3.17) and the boundary conditions (3.3.19) and (3.3.20), the

above expression takes a very simple form:

V v
eff = −λH4 v4(y1)e−4y1 . (3.3.22)

We can directly see that it is negative definite, therefore if there is a solution with a non-trivial

VEV, then it will be energetically favored.

Parameter Space for Electroweak Symmetry Breaking

By inspecting the function v2(y1), we can see that it has a singularity at

ys1 = 1
2ν log

(
m0 − 4− 2ν
m2

0 − 4 + 2ν

)
, (3.3.23)

since the denominator of the second term in (3.3.20) diverges. In the region of parameter

space where m2
0 − 4 < −2ν, ys1 is positive, hence physical. As a result, the effective potential

will be unbounded from below at y1 = ys1. This singularity is an artifact of neglecting

the backreaction of the Higgs on the geometry, which cannot be done in the vicinity of ys1.
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Nevertheless, since we want to continue to work in the small backreaction limit, we will

exclude the m2
0 − 4 < −2ν from our parameter space.

For the rest of the discussion, we will assume m2
0−4 > −2ν and define α0,1 ≡ m2

0,1−4−2ν

for notational simplicity. By taking the derivative of (3.3.20) with respect to y1, we find

∂v2(y1)
∂y1

= 1
λH

8α0ν
2(α0 + 4ν)e2νy1

[α0 − e2νy1(α0 + 4ν)]2 . (3.3.24)

This tells us that v2(y1) is either monotonically increasing or decreasing depending on the

sign of α0. We will consider the former case in this particular example.

In order to have symmetry breaking, we need limy1→∞ v
2(y1) > 0 which implies α1 > 0.

Additionally, the symmetry will be unbroken in the UV if v2(y1 = 0) < 0, or α0 > α1. In this

case there is a “critical” position of the IR brane, y1 = yc1, where the effective Higgs mass

squared term is vanishing. This point corresponds to v2(y1 = yc1) = 0 and is given by

yc1 = 1
2ν log

(
α0(α1 + 4ν)
α1(α0 + 4ν)

)
. (3.3.25)

A convenient measure of the size of the Higgs VEV is the mass that would be given to a

gauge field by the Higgs mechanism. For small backreaction, this can be approximated by

(
veff
f

)2

=
∫ y1

y0
dy e−2(y−y1)v(y)2, (3.3.26)

where f = e−y1 is the conformal symmetry breaking scale, i.e. the KK scale.
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The full effective potential can be expressed as the sum of the UV and IR contributions:

Veff(y1) = e−4y0V UV
eff (y1) + e−4y1V IR

eff (y1). (3.3.27)

The condition for an extremum of the effective potential is that V IR
eff vanishes, provided that

the scalar boundary conditions (3.2.8) are satisfied. Such a point, let us denote it by yext1 , is

a minimum provided that

V ′′eff(y1)
∣∣∣∣
y1=yext

1

> 0. (3.3.28)

Since the Higgs contribution to the effective potential scales as the fourth power of the Higgs

VEV, we can neglect it for finding the extremum points and their stability. Then we can

approximate V IR
eff by

V IR
eff (y1) ≈ δT̃1 − v0v1(2− ε)(4− ε)eεy1 + v2

0(2− ε)2e2εy1 , (3.3.29)

where in the second line we absorbed all the y1-independent terms into the definition of δT̃1.

The extremum of the potential is determined by the solution of the quadratic equation:

δT̃1 − v0v1(2− ε)(4− ε)f−εext + v2
0(2− ε)2f−2ε

ext = 0, (3.3.30)

where fext = exp{−yext1 } denotes the conformal breaking scale at the extremum point yext1 .

To determine the stability, we need to calculate the full effective potential. Again ignoring
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Higgs contributions, it can approximately be expressed as

Veff(f) ≈ δT̃0 + δT̃1f
4 − 4v0v1(2− ε)f 4−ε + 2v2

0(2− ε)f 4−2ε. (3.3.31)

Since V ′′eff(y1) and V ′′eff(f) have the same sign, we can calculate the latter. Then, the stability

condition reads

12δT̃1 − 4v0v1(2− ε)(3− ε)(4− ε)f−εext + 2v2
0(2− ε)(3− 2ε)(4− 2ε)f−2ε

ext > 0. (3.3.32)

Finally, we replace δT̃1 with the solution of (3.3.30). Then we find that the extremum point

fext is stable if

fext <

(
(v1/v0)(4− ε)

4− 2ε

)−1/ε

. (3.3.33)

Mass Spectrum

In this Subsection, we will work out the mass spectrum when both fields are propagating in

the bulk. We will parameterize the fluctuations of the metric and the field in the same way

as in Subsection 3.3.1, except now the Higgs field does also depend on the bulk coordinate y:

H(x, y) = 1√
2

[v(y) + h(x, y)] exp{iα}. (3.3.34)
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In this case, the linearized Einstein equations for fields F, h, ϕ take the form

12A′2F − 6A′′F − 6A′F ′ + F ′′ = −κ
2

3

[
2V F + 3F (φ′2 + v′2)− ∂V

∂φ
ϕ− ∂V

∂v
h− φ′ϕ′ − v′h′

]

− κ2

3
∑
j=0,1

(
4VjF −

∂Vj
∂φ

ϕ− ∂Vj
∂v

h

)
δ(y − yj), (3.3.35)

4A′F ′ + e2A�F = −κ
2

3

(
4V F + ∂V

∂φ
ϕ+ ∂V

∂v
h− φ′ϕ′ − v′h′

)
, (3.3.36)

∂µ(3F ′ − 6A′F ) = κ2∂µ(φ′ϕ+ v′h), (3.3.37)

where all derivatives of the bulk and brane potentials are evaluated on the background scalar

VEVs. The µ5-equation can directly be integrated to give

F ′ − 2A′F = κ2

3 (φ′ϕ+ v′h). (3.3.38)

By combining the µν- and 55-equations in the bulk we obtain

F ′′ − 2A′F ′ + e2A�F = 2κ2

3 (φ′ϕ′ + v′h′). (3.3.39)

Matching the singular terms in the µν-equation gives the junction conditions for F :

[F ′]i = 2κ2

3 ViF + κ2

3

(
∂Vi
∂φ

ϕ+ ∂Vi
∂v

h

)
. (3.3.40)

By using the boundary conditions for the background solution, one can show that this is

equivalent to the µ5-equation so it provides no new constraints.
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The linearized scalar field equations are given by

e2A�ϕ− ϕ′′ + 4A′ϕ′ + ∂2V

∂φ2 ϕ = −6F ′φ′ − 4∂V
∂φ

F, (3.3.41)

e2A�h− h′′ + 4A′h′ + ∂2V

∂v2 h = −6F ′v′ − 4∂V
∂v

F, (3.3.42)

together with the boundary conditions

[ϕ′ − 2φ′F ]i = ∂2Vi
∂φ2

∣∣∣∣
φ
ϕ, (3.3.43)

[h′ − 2v′F ]i = ∂2Vi
∂v2 h. (3.3.44)

So far, there are three second order differential equations, (3.3.39)(3.3.41) and (3.3.42), which

need to be solved simultaneously. However, we can use the µ5-equation (3.3.38) to eliminate

ϕ from the system. Then (3.3.39) becomes

F ′′ − 2A′F ′ − 4A′′F − 2φ
′′

φ′
F ′ + 4A′φ

′′

φ′
F = e2A�F + 2κ2

3

(
v′′ − φ′′

φ′
v′
)
h. (3.3.45)

To find the mass spectrum, we expand both F and h into their Kaluza-Klein (KK) modes

by

F (x, y) =
∑
n

Fn(y)Rn(x), (3.3.46)

h(x, y) =
∑
n

hn(y)Rn(x), (3.3.47)

where each KK mode in the above expansions satisfies �Rn = −m2
nRn. Using (3.3.42) and
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(3.3.45), we write the system of differential equations to determine the mass spectrum as

F ′′n − 2A′F ′n − 4A′′Fn − 2φ
′′

φ′
F ′n + 4A′φ

′′

φ′
Fn + e2Am2

nFn = 2κ2

3

(
v′′ − φ′′

φ′
v′
)
hn, (3.3.48)

h′′n − 4A′h′n −
(
∂2V

∂v2 − e
2Am2

n

)
hn = 6F ′nv′ + 4∂V

∂v
Fn. (3.3.49)

This system of differential equations have five integration constants; two from each equation

plus the eigenvalue. Two of them are fixed by the boundary condition (3.3.44), which reads

h′n − 2v′Fn = ±1
2
∂2V0,1

∂v2 hn, +/− is for the UV/IR brane. (3.3.50)

In the case of stiff-wall boundary conditions, (3.3.43) sets ϕ = 0 on both branes. Then,

(3.3.40) implies the relation

F ′n − 2A′Fn = κ2

3 v
′hn, on the branes. (3.3.51)

The remaining integration constant can be fixed by normalizing both Fn and hn by a common

factor, since the system is invariant under such a scaling.

The rest of this Subsection is devoted to solving this system of equations to zero and

leading order in the backreaction. We will assume that κ is small enough so that the

background field profiles are accurately expressed by their zero backreaction solutions. We

shall investigate the validity of this assumption later.
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Mass Spectrum with Backreaction Neglected

First, we will study the mass spectrum in the κ2 → 0 limit. This means that we will search

for the mass eigenvalues which remain finite after this limit. We will denote these eigenvalues

and their corresponding eigenvector components Fn and hn by the superscript (0). Then

(3.3.48) and (3.3.49) become

(
F (0)′
n − 2F (0)

n

)′
− 2φ

′′

φ′

(
F (0)′
n − 2F (0)

n

)
+ e2y

(
m(0)
n

)2
F (0)
n = 0, (3.3.52)

h(0)′′
n − 4h(0)′

n −
(
∂2V

∂v2 − e
2y
(
m(0)
n

)2
)
h(0)
n = 6F (0)′

n v′ + 4∂V
∂v

F (0)
n . (3.3.53)

The µ5-component of the Einstein equations (3.3.38) tells us that F (0)′
n − 2F (0)

n ∝ κ2. Then

(3.3.52) implies F (0)
n ∝ κ2 too. Hence, the mass spectrum in the κ2 → 0 limit is given by the

differential equation

h′′n − 4h′n + (m2
ne

2y −m2
H)hn = 0, (3.3.54)

with boundary conditions

h′n = ±1
2
∂2V0,1

∂v2 hn, (3.3.55)

where +/− for UV/IR brane, and we have omitted the superscripts for brevity.

We see that the fluctuations F and h are decoupled from each other in this limit, which

is expected since there is no explicit coupling between the GW and the Higgs field. In the

absence of backreaction, each field does not know about the existence of the other.
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The solution of (3.3.54) is given in terms of Bessel functions:

hn = e2y[Jν(mne
y) + cYν(mne

y)], (3.3.56)

where c is a constant which is determined by the UV boundary condition. The mass eigenvalue

is fixed by the IR boundary condition. After applying both, we find that the mass spectrum

is given by the roots of

bv(mn) = J̃1
ν (mn)− J̃0

ν (mn)
Ỹ 0
ν (mn)

Ỹ 1
ν (mn), (3.3.57)

where we defined

X̃0(mn) ≡
(
∂2V0

∂v2 − 4
)
Xν(mn)−mn(Xν−1(mn)−Xν+1(mn)), (3.3.58)

X̃1(mn) ≡
(
∂2V1

∂v2 + 4
)
Xν(mn) +mne

y1(Xν−1(mne
y1)−Xν+1(mne

y1)), (3.3.59)

with X = {J, Y }. The Higgs mass is the smallest mn which satisfy bv(mn) = 0.

The Higgs sector of the model is specified by five parameters; m2
0, m2

1, λH , ν and f . Two

of them can be fixed in terms of the others, by setting the effective Higgs VEV (3.3.26) and

the Higgs mass to 246 GeV and 126 GeV respectively. We have chosen to keep m2
0, ν and f

free, and calculate m2
1 and λH in terms of the rest. We show the results in Figure 3.4. One

can see that a fair amount of tuning is needed in the IR brane mass parameter of the Higgs.

One might get the impression that the tuning is less severe when we lower the ν parameter,

or increase the hierarchy between the electroweak and conformal breaking scales. But in that
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Figure 3.4: In this figure, we are plotting the necessary value of m2
1 in order to get vEW = 246 GeV

and mh = 126 GeV, as a function of m2
0. The hierarchy between the electroweak and the conformal

breaking scale is f/vEW = 10 and f/vEW = 100 for the left and right plot respectively. In the
shaded region, there is no “critical region”, i.e. the electroweak symmetry is broken, even if the IR
brane is very close to the UV brane.

case, the tuning between the GW and the Higgs sector does increase, as we shall see shortly.

Since the GW contribution dominates the effective potential, the minimum is mainly

determined by the GW sector. Therefore, one can choose a particular value for the IR mistune

δT1, such that the minimum coincides with yc1, as long as (3.3.33) is satisfied. We denote this

“critical” mistune by δT c1 . Then, a convenient parameter to measure the tuning between the

GW and the Higgs sector is |δT1/δT
c
1 | − 1.

In Figure 3.5, we show the required tuning on the parameter space where the electroweak

symmetry breaking is activated by the radion. The procedure to obtain these plots is as

follows: We have set the GW sector parameters to be v0 = 1/50, v1 = 1 and ε = 1/10.

Then we set the conformal breaking scale to be f = 10(50) TeV for the left(right) plot. For

each point on the α0 − α1 plane, we fix the Higgs parameters such that veff = 246 GeV and

mh = 126 GeV. Finally, we solve for δT1 such that V IR
eff = 0.

Different points in Figure 3.5 which share the same α0 = m2
0 − 4− 2ν values are obtained

by varying ν. For a fixed α0, larger ν values correspond to larger α1 = m2
1 − 4 − 2ν, thus
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Figure 3.5: These plots show the amount of tuning required between the Higgs and the GW sector
when the breaking scale is set to f = 10 TeV (left figure) and f = 50 TeV (right figure). Different
points which have the same α0 value are obtained by varying ν which is decreasing as one goes up
on the vertical axis. We can observe that the tuning increases as we go the the top-right region of
the α0 − α1 plane. Also increasing the breaking scale increases the tuning, which is expected.

ν increases as one goes up on the vertical axis. As one can see more clearly in the plot on

the right, tuning between the GW and the Higgs sectors does also increase in this direction.

Therefore, as one relaxes the tuning in the m2
1 parameter, the tuning in δT1 becomes larger.

The Radion Mass

To calculate the radion mass, we make the following ansatz for the radion wavefunction, and

the radion mass eigenvalue:

Fr = e2A
(
1 + κ2F̃r

)
and m2

r = κ2l2r . (3.3.60)

By plugging this ansatz into (3.3.45), and keeping only the terms which are at leading order

in κ2 we find

F̃ ′′r + F̃ ′r

(
2− 2φ

′′

φ′

)
= 2

3

[
(φ′2 + v′2) +

(
v′′ − φ′′

φ′
v′
)
hre
−2y

]
− e2yl2r . (3.3.61)
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The solution of this equation is

F̃ ′r(y) = 1
u(y)

[2
3

∫ y

0
dy′ u(y′)(φ′2 + gv(y′))− l2r

∫ y

0
dy′ u(y′)e2y + F̃ ′r(0)

]
, (3.3.62)

where

u(y) = exp
{∫ y

0
dy′

(
2− 2φ

′′

φ′

)}
and gv(y) = v′2 +

(
v′′ − φ′′

φ′
v′
)
hre
−2y. (3.3.63)

The function u(y) can be obtained analytically:

u(y) =
(
φ′(0)
φ′(y)

)2

e2y. (3.3.64)

By plugging this result into (3.3.62) and evaluating it at y = y1, we can write an expression

for the radion mass:

l2r
f 2 =

(∫ y1

0
dy e

4(y−y1)

φ′(y)2

)−1[1
3 + 2

3

∫ y1

0
dy gv(y)

φ′2
e2(y−y1) +

(
F̃ ′(0)e−2y1

φ′(0)2 − F̃ ′(y1)
φ′(y1)2

)]
, (3.3.65)

where we have dropped the e−2y1 term after evaluating the integral
∫ y1

0 dy e2(y−y1). The

boundary values for F̃ ′r can be expressed in terms of the boundary values for hr using the

junction conditions given in (3.3.40). Since ϕ = 0 on the branes in the case of stiff wall

boundary conditions, these give

F̃ ′r = 1
3v
′hre

−2y, on the branes. (3.3.66)
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Plugging this result into (3.3.65) gives

l2r
f 2 =

(∫ y1

0
dy e

4(y−y1)

φ′2

)−1[1
3 + 2

3

∫ y1

0
dy gv(y)

φ′2
e2(y−y1)

+ 1
3

(
v′(0)hr(0)
φ′(0)2 − v′(y1)hr(y1)

φ′(y1)2

)
e−2y1

]
.

(3.3.67)

The first term in this expression is the radion mass in the absence of the Higgs VEV, which

can be calculated analytically. Ignoring the terms which are proportional to e−2y1 and higher,

it is given by

l2r,0
f 2 ≡

1
3

(∫ y1

0
dy e

4(y−y1)

φ′2

)−1

= 4
3ε(2− ε)

2v2
0e
εy1

[
(v1/v0)(4− ε)

4− 2ε − eεy1

]
. (3.3.68)

We note that this result confirms the stability condition we have derived in (3.3.33).

In the case of nonzero Higgs VEV, the radion mass receives contributions due to its mixing

with the Higgs, which are given by the remaining terms in (3.3.67). To calculate them, all we

need is the profile for the field hr. It can be obtained by solving (3.3.42) together with the

boundary condition (3.3.44) in the small backreaction limit. By using the ansatz (3.3.60),

the equation of motion and the boundary condition for h̃r ≡ hre
−2y are given respectively by

h̃′′r − ν2h̃r = 4[3v′ + (−4 + ν2)v] = 4(v′′ − v′), (3.3.69)

and

(h̃′r + 2h̃r)− 2v′ = ±1
2
∂2V0,1

∂v2 h̃r, +/− on the UV/IR brane. (3.3.70)
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Figure 3.6: In these plots, we show the values of the radion mass rescaled with the breaking scale
f and backreaction parameter κ. In both plots, we fix v1 = 1 and vary v0. On the left figure, we
fix the breaking scale to f = 10 TeV and plot for various values of ε. On the right figure, we fix
ε = 1/10 and plot for various values of the breaking scale.

This equation can be solved exactly, and its solution can be plugged into (3.3.67) to determine

the correction to the radion mass due to Higgs-Radion mixing. The expression for the

correction is fairly complicated, but it can be easily seen that it scales with v2(y1) ∼ v2
eff/f

2,

so they are heavily suppressed compared to the leading term inside the brackets of (3.3.67).

Hence we conclude that, for the parameter space we are interested in, the radion mass is given

by (3.3.68) to a very good approximation. We are showing the radion mass as a function of

GW parameters in Figure 3.6.

The Validity of Small Backreaction

At the beginning of this Subsection, we have ignored the backreaction of gravity when

obtaining the solutions for the VEVs of both field, and we have used those solutions to

calculate the mass spectrum. Now, we shall check the validity of this approximation.

In this model, the field profiles in the bulk have different scales. While the GW field

starts with O(0.01) and ends with O(1), the Higgs field scales as ∼ v(y1)e−2y1 and ∼ v(y1)

near the UV and IR branes respectively. Therefore, the backreaction of the GW field on the
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Higgs profile can be sizable, due to the fact that the GW field heavily dominates throughout

the bulk. Hence, we should analyze the backreaction carefully, and determine the largest

value of κ, so that the results we have derived so far remain valid.

In order to study the backreaction, we need to use the general form of the equation of

motion which is given by (3.2.7). The function A′(y) is given by (3.2.3), which for this model

reads

A′ =
√

1 + κ2

12[φ′2 + v′2 − ε(ε− 4)φ2 − (−4 + ν2)v2]. (3.3.71)

We are only interested in the backreaction of the GW field to leading order. Therefore we

approximate A′ as

A′ ≈ 1 + κ2

24
(
φ′2 − ε(ε− 4)φ2

)
. (3.3.72)

This function peaks on the IR brane, thus we can use its IR value to determine the strength

of the backreaction. Hence we estimate the size of the corrections as

κ2

24
(
φ′2(y1)− ε(ε− 4)φ2(y1)

)
≈ κ2

24 ×O(1), (3.3.73)

Although this number seems quite small, it has a significant effect on the Higgs VEV as we

shall see below.

The Higgs VEV on the IR brane is determined by the IR boundary condition for the
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Higgs, which can be rearranged to have the form

v2(y1)
v2
H

= 1− 2
λHv2

H

v′(y1)
v(y1) . (3.3.74)

The Higgs parameters we have used in this Subsection typically have λ−1
H ≈ 17 and m2

1 ≈ 4

to satisfy vEW = 246 GeV and mh = 126 GeV. This sets v2
H = λ−1

H m2
1 ≈ 68. So the number

on the LHS of (3.3.74) is very small. Therefore, a delicate cancellation between two O(1)

parameters is needed. This equation encodes the tuning required to get a Higgs VEV that is

suppressed compared with the KK scale. For a fixed set of 5D parameters, Equation (3.3.74)

effectively gives the Higgs VEV as a function of y1, which is the position of the IR brane that

minimizes the effective potential. One can alternatively see that there is a large sensitivity to

5D parameters. For example, by increasing the value of the 5D Newton constant, κ2 even

slightly, one finds that the Higgs VEV will change significantly because of the sensitivity of

the cancellation to small changes.

To see explicitly how large the backreaction parameter κ can be, let us assume that we

want to know v2(y1) to a 10% accuracy. Then a rough upper bound for κ can be given by

κ2

24
(
φ′2(y1)− ε(ε− 4)φ2(y1)

)
. 0.1× v2(y1)

v2
H

. (3.3.75)

For a hierarchy f/veff ∼ 10, we get κ . O(1)× 10−3.

In the next Subsection, we will study the same model but without the GW field. Then

the only source of the backreaction is due to the Higgs field itself. In that case, we need to
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Figure 3.7: On the left figure, we show the ratio between v2(y1) obtained by solving (3.2.7)
numerically with nonzero backreaction, and the analytical result (3.3.20) obtained by neglecting the
backreaction. The green dots show the results for the model of this Subsection, where both GW and
the Higgs are in the bulk, while the blue dots are the results for the model of the next Subsection,
where only the Higgs is in the bulk. The green and blue dashed vertical lines show the upper bound
estimates for κ calculated via (3.3.75) and (3.3.76) respectively. The gray line corresponds to a ratio
of 0.9 which we have assumed in our estimates. On the right figure, we plot the Radion-Higgs mass
ratio for κ = 4× 10−3. The parameters for these plots are v0 = 1/50, v1 = 1, ε = 1/10, f = 10 TeV,
m2

0 = 43/10, ν = 1/10 unless otherwise specified. The remaining free parameters are fixed such that
vEW = 246 GeV and mh = 126 GeV.

replace the GW field in the above expression by the Higgs field:

κ2

24
(
v′2(y1)− (−4 + ν2)v2(y1)

)
. 0.1× v2(y1)

v2
H

. (3.3.76)

The term inside the parentheses on the LHS is ∼ 8v2(y1), thus the bound on κ in this model

is given by

κ .

√
0.1× 3

v2
H

∼ O(1)× 10−2. (3.3.77)

On the left plot of Figure 3.7, we show the ratio v2
κ(y1)/v2

0(y1) as a function of κ, where

v2
κ(y1) is the Higgs VEV square on the IR brane found by numerically solving (3.2.7) with

nonzero backreaction, and v2
0(y1) is the analytical result with no backreaction given in
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(3.3.20). The green and blue dots show the results for models of this and the next Subsection

respectively. The green and blue dashed vertical lines denote the bounds calculated via

(3.3.75) and (3.3.76) respectively, while the gray line shows the v2
κ(y1)/v2

0(y1) ratio of 0.9,

which we have used in our estimates. We can see that the backreaction has a much bigger

effect when both GW and the Higgs are in the bulk, and our estimates agree with the

numerical results quite well.

On the right plot of Figure 3.7, we show the Radion-Higgs mass ratio by assuming

κ = 4× 10−3. We see that, if we insist on staying in the regime where the backreaction can

be neglected, then the radion mass is about an order of magnitude smaller than the Higgs

mass. The radion can be made heavier by increasing the backreaction, but one needs a full

numerical analysis of the mass spectrum, which is beyond the scope of this work.

3.3.3 Higgs in the Bulk

In this Subsection, we will study a model where the Higgs is the only stabilizing field in the

bulk. This model has two major differences compared to the one in the previous Subsection

where both the Goldberger-Wise and the Higgs fields were propagating in the bulk. First,

the parameter space for electroweak symmetry breaking receives another constraint due to

the fact that now the Higgs is responsible for radius stabilization. This means that we don’t

have the freedom of adjusting Goldberger-Wise parameters to get a stable minimum; instead,

we demand that the Higgs parameters α0,1 and ν satisfy additional conditions which we shall

derive below. The second main difference will be the radion mass, which now depends only

on the Higgs parameters.
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Parameter Space for Electroweak Symmetry Breaking

We will be using the notation introduced in Subsection 3.3.2 and assume α0 > 0 so that

(3.3.24) is positive definite. From (3.3.22), we can write the effective potential everywhere as

Veff(y1) =


e−4y1δT1, No EWSB

e−4y1
[
δT1 − λH

4 v
4(y1)

]
, EWSB,

(3.3.78)

where we have tuned δT0 = 0. By taking the derivative and setting it to zero, we find that at

an extremum point y1 = yext1 , the IR brane mistune is given by

δT ext
1 = λH

8 v2(yext1 )
[
2v2(yext1 )− ∂v2(y1)

∂y1

∣∣∣∣
y1=yext

1

]
. (3.3.79)

In order to not have a runaway solution in the UV, i.e. to have a global minimum, we demand

that this term is positive. Then the second derivative of Veff at y1 = yext1 , where δT1 is

replaced by δT ext
1 is given by

V ′′eff(yext1 ) = e−4y1
λH
2

v2(y1)
(

4∂v
2(y1)
∂y1

− ∂2v2(y1)
∂y2

1

)
−
(
∂v2(y1)
∂y1

)2
∣∣∣∣

y1=yext
1

. (3.3.80)

By using explicit expression for v2(y1), it is possible to show that δT ext
1 > 0 implies V ′′eff(yext1 ) >

0, so we can use the former. Then we obtain the following constraint on the parameter α1:

α1 >
4α0ν[(1 + ν)(α0 + 4ν)e2νy1 − α0]

[(e2νy1 − 1)α0 + 4νe2νy1 ]2
∣∣∣∣
y1=yext

1

. (3.3.81)

We are showing the effect of this constraint on the Higgs parameter space in Figure 3.8. In
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Figure 3.8: In this figure, the circles denotes possible {α0, α1} pairs characterized by vEW = 246 GeV
and mh = 126 GeV. The hierarchy between the electroweak and the conformal breaking scales is
f/vEW = 10 and f/vEW = 100 for the left and right plot respectively. The gray shaded area denotes
the region in parameter space where there is no “critical” value of y1. The color shaded areas are
the regions where the condition for global minimum (3.3.81) is violated. To improve clarity, we are
showing the {α0, α1} pairs corresponding to these regions with semi-transparent circles.

these plots, we are plottingm2
1 in terms ofm2

0 such that the electroweak scale is vEW = 246 GeV

and the Higgs mass is mh = 126 GeV. The methods and the equations for determining m2
1

are identical to the Goldberger-Wise and Higgs model studied in the previous Subsection.

The semi-transparent circles correspond to the points where the constraint (3.3.81) is not

satisfied, hence those points should be excluded from the parameter space. We can see that

the constraint becomes more stringent as one decreases ν and increases the breaking scale f .

The Radion Mass

The radion mass can be calculated by following the procedure described in Subsection 3.3.2.

For this model we find

l2r
f 2 = 1

3

(∫ y1

0
dy e

4(y−y1)

v′(y)2

)−1[
1− h̃r(y1)

v′(y1) + h̃r(0)
v′(0) e

−2y1

]
, (3.3.82)
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Figure 3.9: In this figure, we are plotting the ratio between the radion mass and the Higgs mass as
a function of α0 by assuming κ = 6× 10−2. The breaking scale is f = 10 TeV and f = 50 TeV on
the left and right figure respectively. The Higgs parameters are fixed such that vEW = 246 GeV and
mh = 126 GeV.

where h̃r is the solution to equations (3.3.69) and (3.3.70). Again, the full solution is analytical,

but fairly complicated. Nevertheless, we can get a good insight by calculating the factor

which multiplies the term inside the brackets. It is given by

I ≡ 1
3

(∫ y1

0
dy e

4(y−y1)

v′(y)2

)−1

= 4v2(y1)m2
0ν

2e−2νy1

3(e2νy1 − 1)(m2
0 − 4 + 2ν)

[
e2νy1(2 + ν)− r(2− ν)

(1− re−2νy1)2

]
, (3.3.83)

where r = m2
0−4−2ν

m2
0−4+2ν . We find that the term inside the brackets varies between 1.0 and 1.4 in

the parameter space we are using. We show the results of the Radion-Higgs mass ratio in

Figure 3.9 as a function of α0 = m2
0 − 4− 2ν, under the assumption that κ = 6× 10−2. To

make the plots we have used the full analytical result given in (3.3.82). We can see that in

this model, the radion is two to three orders of magnitude lighter than the Higgs. Since the

effect of the backreaction is not as significant as in the previous model, we expect that a

significantly light radion is a property of this model, even with backreaction.5

It might seem surprising that decreasing ν increases the radion mass. To understand the
5Note that radion masses at the GeV scale and above are still largely unconstrained by the latest

experimental results, as shown by the detailed analysis of [68].
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effect of this parameter, it is useful to study the quantity I in detail. Since f ∼ O(10 TeV),

we have y1 ∼ O(30). Choosing ν ≈ 1/10 implies e2νy1 ∼ O(1000) hence we can assume

e2νy1 � 1. In this approximation, I becomes

I ≈ 4
3v

2(y1)m
2
0(2 + ν)ν2

m2
0 − 4 + 2ν e

−2νy1 , e2νy1 � 1. (3.3.84)

In this regime, the radion mass is heavily suppressed by e−2νy1 , which is O(10−3), in addition

to suppression by v2(y1) and ν2. On the other hand, if ν ∼ 1/100, then e2νy1 ∼ O(1). In this

case, we can evaluate I at the leading order in ν. The result is

I ≈ 8
3v

2(y1) m2
0ν

2

m2
0 − 4

e2νy1

(e2νy1 − 1)2 , ν � 1. (3.3.85)

We see that the exponential suppression is absent in this case, hence the radion is heavier in

this regime.

3.4 CFT Interpretation

Field theories in AdS admit an interpretation in terms of a 4D strongly coupled CFT

(or approximate CFT) dual [26, 69]. In this Section, we discuss a CFT interpretation of

multi-scalar stabilization models.

It is useful to first recall the CFT interpretation of the original unstabilized Randall-

Sundrum construction [33], and then the simplest stabilization mechanism introduced by

Goldberger and Wise [52, 57]. We then discuss the specific interpretation of multi-scalar

models with emphasis on those where there are critical points for symmetry breaking in the
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moduli space for the radion.

The original 2-brane RS model with weak 5D gravity has an interpretation as a large-N

approximate CFT where the conformal symmetry is spontaneously broken. The radion

degree of freedom corresponds to the dilaton – the Goldstone boson of spontaneously broken

conformal invariance. The classical equations of motion (Einstein’s equations) rule out a

static geometry unless the UV and IR brane tensions are individually tuned against the

bulk cosmological constant. These two tunings represent (respectively) the need to have

a vanishing bare cosmological constant so that there is no explicit breaking of conformal

invariance, and the vanishing of the dilaton quartic, an allowed coupling that would otherwise

destabilize the conformally non-invariant vacuum state. In other words, as is well known [70],

spontaneous breaking of exact conformal invariance without breaking Poincaré invariance

requires a flat direction.

Even in this case, with both tunings performed (and ignoring quantum effects)6, the

continuum of physically inequivalent vacua (the moduli space of inter-brane separations)

present a problem for creating a low energy description that resembles our Standard Model.

Thus, a model must incorporate a stabilization mechanism. The simplest such mechanism

posits a bulk scalar field that develops a vacuum expectation value, deforming the geometry

through gravitational backreaction. If this scalar has an approximate shift symmetry, violated

by (for example) a small bulk mass term, its VEV grows slowly, and backreaction effects are

sizable only deep into the bulk of AdS. This backreaction leads to an effective potential for

the inter-brane separation, and stabilization is achieved dynamically without tuning of the IR
6In fact, even with both UV and IR brane tunings performed, quantum corrections will generally lead to a

nonzero Casimir potential between the branes.
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brane tension (the UV tuning must still be performed, or enforced by additional symmetries

to obtain static geometries). The slow growth of the scalar VEV in the UV region of the

geometry ensures that the generated hierarchy is exponentially large.

This 5D picture is dual to 4D dimensional transmutation in which a nearly marginal

operator (not necessarily classically marginal as is the case for asymptotic freedom) is given

a nonzero coupling constant. Its logarithmic evolution breaks conformal invariance explicitly,

leading to the dynamical generation of an infrared scale where either the theory has flowed

very far away from the UV fixed point [34, 35], or has flowed to a point where the effective

dilaton quartic has become small [47, 71].

There is a similar class of 5D models where, in the 4D CFT dual, it is a composite

operator that serves as the nearly marginal deformation of the CFT. This occurs in the case

where there is a 5D field with mass near the Breitenlohner-Freedman bound, which (in 5D)

is m2 = −4 in units of the AdS curvature [25, 48, 72]. The corresponding operator O in

the CFT dual has dimension ∆ ∼ 2, such that at large N , the composite operator O†O has

dimension ∆ ∼ 4. Thus, turning on this composite operator corresponds at large N to a

nearly marginal deformation of the CFT. The model we discuss where only the Higgs is in

the bulk is of this form, where it is the Higgs vacuum expectation value that backreacts on

the geometry and stabilizes the inter-brane separation.

To understand the CFT interpretation of radion-induced Higgs criticality, it is first

necessary to review the interpretation of the UV brane and field dynamics there. In models

with a UV brane, the interpretation is that there are two sectors of the theory, a fundamental

sector and a CFT sector, and that these sectors mix.

First, we review the basics of the correspondence without the UV brane (or with the UV
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brane taken to the boundary of AdS). In this case the correspondence links field configurations

on the boundary of AdS (which are not integrated over in the higher dimensional partition

function) to sources for a dual CFT:

ZCFT[J(x) = φ(x, z = 0)] =
∫

[Dφ]bulk exp[iS(φ)]. (3.4.1)

The CFT with sources could be described by a Lagrangian of the form LCFT = L0
CFT +

J(x)OCFT.

When the UV brane is introduced, the path integral has no restriction – effectively the

sources are promoted to dynamical fields that mix with the CFT, and the new dual 4D

Lagrangian is of the form

L = Lfundamental(φ(x)) + L0
CFT + λφ(x)O. (3.4.2)

The CFT and fundamental sector mix with each other. Through the mixing, spontaneous

breaking of conformal invariance in the CFT sector from VEVs of CFT operators, 〈O〉, is

communicated to the fundamental sector. The size of these VEVs corresponds in 5D to

the position of the IR brane. Integrating out the CFT (or bulk, in the 5D picture) degrees

of freedom leads to an effective theory for the fundamental degrees of freedom in which

parameters of the EFT, like the Higgs mass squared term, are a function of y1. This y1

dependence can be such that the EFT crosses phase boundaries for symmetry breaking

transitions as y1 is varied.

In short, the 5D theory with two branes is dual to a 4D theory where a fundamental
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and CFT sector are coupled to each other, and where the CFT is spontaneously broken by

operator VEVs. The coupling between the two allows a “CFT-induced criticality”, where

CFT operator VEVs induce instabilities in the fundamental sector. In 5D, the instabilities

leading to non-trivial VEVs are induced by varying the position of the IR brane.

In the case of using this picture as a model for electroweak physics, the effective Higgs

mass squared term is, in the 4D picture, a function of CFT operator VEVs. For certain values

of these VEVs, the effective mass squared may become negative, and induce electroweak

breaking. In 5D, the mass squared of the lowest lying state of the bulk Higgs can become

negative for ranges of y1, such that electroweak symmetry breaking is induced by the radion

VEV.

3.5 Conclusions

We have explored radius stabilization in the context of 5D models in warped space with

multiple scalar fields. General results for multi-scalar models are derived to all orders in

backreaction for 5D Einstein-Hilbert gravity. We suggest a holography-inspired approach

to the multi-scalar potential, and additionally derive a superpotential method for creating

static geometries with multiple bulk scalar fields.

Of particular interest given recent experimental results are the phenomenological implica-

tions of Higgs fine tuning. We explored 5D models focusing on obtaining a hierarchy between

extra-dimensional excitations and the electroweak symmetry breaking scale. 5D models with

such a hierarchy are close to the critical point for the electroweak sector, and thus, generically,

the radion will be a dynamical degree of freedom that scans the Higgs phase transition.
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Three examples were presented where the radion scans the effective Higgs mass parameter

across a symmetry breaking phase transition:

• A model with the Higgs on the IR brane, where a bulk Goldberger-Wise scalar couples

to the Higgs and scans its effective mass.

• A model with only a Higgs field in the bulk, where coupling to the radion arises through

geometrical backreaction.

• A model with both Higgs and a Goldberger-Wise scalar in the bulk.

These three models cover a range of types of modulus-Higgs potential that give a hierarchy

between extra-dimensional resonances and the electroweak scale.

The models presented are an important step in understanding electroweak symmetry

breaking in the context of holographic composite Higgs models, particularly those where the

Higgs is light in comparison to the compositeness scale. An important message is that the

tuning of the Higgs itself has implications in terms of cosmology and collider phenomenology

through the manner of the Randall-Sundrum/electroweak early universe physics and the low

lying spectrum of scalar states.

The formalism we have developed for multi-scalar stabilization models is relevant for

all theories in which the Higgs emerges as a mode that is light in comparison with the

compactification scale. In general, the Higgs plays a non-trivial part in stabilization, and this

work helps further elucidate the connection between the compactification scale and that of

electroweak physics.
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Chapter 4

Anomaly Inflow and Holography

4.1 Introduction

Fermion anomalies have played an important role in a plethora of different aspects in

theoretical physics. The discovery of the one-loop triangle anomaly of Adler, Bell, and

Jackiw (ABJ) [73, 74] taught us that fermion anomalies not only have direct implications on

observable phenomena such as π0 → γγ, but also provide strong constraints on consistent

quantum field theories. That chiral anomalies do not receive any renormalization beyond

one-loop (Adler-Bardeen theorem [75], see also [76] for a review) was then beautifully realized

in ‘t Hooft anomaly matching argument [77] showing that fermion anomalies can yield

non-trivial consequences in the spectrum of the infrared (IR) phase of the confining gauge

theory. Applications of anomaly matching (together with other sets of techniques) resulted in

tremendous success in uncovering phases and dualities of supersymmetric gauge theories [78–

80]. In theories with spontaneously broken global symmetries, the chiral anomalies of

the ultraviolet (UV) phase of the theory are maintained in the IR by the (gauged) Wess-
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Zumino-Witten (WZW) action [81, 82]. This also led to an elegant resolution of the

puzzle of CP-violation, e.g. K+K− → π+π−π0, which is absent in any order in chiral

perturbation theory [82]. In string theory, the requirement of anomaly cancellation was

crucial in arriving at the conclusion that for any supersymmetric theory in 10D with gravity

and gauge supermultiplets, the only allowed gauge groups are SO(32) or E8 × E8 [83, 84].

Fermion anomalies in spacetime dimension D = 2n often find their natural description

from a higher-dimensional setup. Notably, the form of chiral anomalies compatible with

the Wess-Zumino consistency condition [81] can be constructed by starting from an Abelian

anomaly in 2n+ 2 dimensions and subsequently arriving at (non-Abelian) anomalies in 2n

dimensions via the descent equations [85–89] (see also [17, 90]). As an intermediate step

of the descent formalism, one finds that the relevant quantity in 2n + 1 dimensions is the

Chern-Simons (CS) action.

A deeper physical insight of the descent procedure was then realized by the idea of anomaly

inflow originally discovered in [91]. In its perturbative version, the bulk CS theory is not

gauge-invariant when the theory is defined on a manifold with boundary. This variance is

then cancelled by fermions localized on the boundary, making the overall bulk plus boundary

theory consistent. A non-perturbative version of the anomaly inflow was discussed in [92,

93] in the context of topological phases of matter, and its full justifications were presented

recently in [94] (see also [95]). Many condensed matter systems that exhibit non-trivial

topological phases can be described by and hence are the physical realizations of anomaly

inflow [92]. One of the first example of topological phases of matter is the integer quantum

Hall effect [96], which admits a description in terms of U(1) CS theory in the (2 + 1)D bulk
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of the material [95, 97]:

S ∼ κ
∫
A ∧ F, κ ∈ Z. (4.1.1)

This is not gauge-invariant if the material has a physical boundary, and the resulting variance

coincides with the first Chern class ∝
∫ i

2πF . This contribution is cancelled by the chiral

anomaly of localized fermions on the (1 + 1)D boundary charged under U(1) (called “edge

modes”). The combined system of bulk + boundary is anomaly-free and the quantized Hall

conductance is proportional to κ.

In the language of anomaly inflow, 11D M-theory can also be thought of as being

“topological matter”. In the bulk of 11D spacetime, the 3-form superpartner of the metric

field C (with 4-form field strength G = dC) has the coupling

S ∼
∫

11D
C ∧G ∧G, (4.1.2)

and again this is not invariant in the presence of the boundary. The anomaly inflow is then

completed by the introduction of “edge modes” which in this case are shown to be a 10D E8

gauge supermultiplet [98, 99].

For completeness, we also mention that there have been many works with regard to

anomalies in orbifold field theories, see for example [100–106]. Anomalies in orbifold gauge

theories have a “shape” independent of extra-dimensional profiles and are localized on the

boundaries. It may be instructive to recall the form of the anomaly in a theory with

S1/(Z2 × Z′2) orbifold. Consider a U(1) gauge theory with bulk fermions with boundary

conditions (BC) denoted as (α0, α1), where αi = ± for i = 0(1) means Neumann (+) or
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Dirichlet (−) BC for the left-handed Weyl component of the 5D spinor at the UV (IR)

boundary brane. For instance, (+,+) gives rise to a left-handed zero mode, while the choice

(−,−) results in a right-handed zero-mode. Other choices do not lead to any zero mode. In

this notation, the anomaly of a bulk fermion is given by [106]

A(x, z) =
(
Q3

48π2FµνF̃
µν

)
1
2[α0δ(z − z0) + α1δ(z − z1)]. (4.1.3)

Here, the expression in parenthesis is the 4D U(1) chiral anomaly with charge Q. The

corresponding 5D anomaly is split between UV and IR boundaries with equal size, and the

sign is determined by the BC. From this, one sees that for (+,+) or (−,−) (like in the case of

a S2/Z2 orbifold), the anomaly function integrated over the extra dimension does not vanish.

Such an anomaly in the orbifold theory is often referred to as a “globally non-vanishing”

anomaly, and it arises from the zero mode. In this case, the cancellation of 4D anomalies is

sufficient to render the full 5D theory consistent [100]. For other choices of BC such as (+,−)

or (−,+), however, the 5D anomaly function integrates to zero and is denoted as “globally

vanishing” anomaly. Importantly, in this case, 4D anomaly cancellation is not enough, and in

fact, there is no anomaly in the 4D effective field theory (EFT) [101, 106]. While the 4D

EFT is free of anomaly, the 5D theory nonetheless has localized anomalies. These anomalies

may be cancelled by localized fermions, or localized higher-dimensional Wess-Zumino counter

terms [106]. Sometimes, they are cancelled by bulk Green-Schwarz mechanisms [102, 103]. In

some cases, anomaly inflow by the bulk CS action can restore consistency of the theory. In

this sense, anomalies in orbifold gauge theories are certainly related to anomaly inflow, but

the two are not equivalent.
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In this paper, we study in detail the physics of anomaly inflow in AdS5, and in particular

obtain its holographic dual interpretations in terms of strongly coupled 4D (deformed) CFT.

Of course, this can be equally phrased as a study of the AdS/CFT duality of a bulk CS

theory. Yet another equivalent characterization, by now completely redundant, is the bulk

AdS description corresponding to the anomaly of 4D CFT. We find our analysis has several

important motivations. First off, ever since its first discovery [91], interest in anomaly inflow

was revived and has increased recently both in the condensed matter theory and high energy

theory communities, also thanks to the powerful machinery of the Dai-Freed theorem [107]

and generalized symmetries [108]. See for instance [92, 93] for the exposition of the subject

written in a high energy theorist’s language. Many surprising results are revealed by thorough

explorations of anomaly inflow using modern techniques. While the anomaly inflow itself is

largely insensitive to the specific form of the metric, the choice of AdS5 for the bulk metric

nevertheless has a nice advantage. Namely, in this case, in addition to the standard features

of anomaly inflow, i.e. cancellation of “problems” between the bulk and boundary physics,

an additional description emerges. That is, the combination of bulk + boundary can be

interpreted as a unified description in terms of holographic 4D field theory. The dual 4D

CFT consists of a strongly interacting CFT and external degrees of freedom, and the physics

of anomaly inflow is dual to the interplay between these two sectors which results in a shared

anomaly. As such, understanding holographic aspects of anomaly inflow seems well-justified.

Of course, CS theory in the context of AdS/CFT and its implications in terms of anomaly in

SU(4) R-symmetry current were discussed in [69]. Subsequently, AdS/CFT of trace and chiral

anomaly were studied for example in [109–114]. To our knowledge, however, a systematic

study of holography for anomaly inflow, especially for non-supersymmetric theories which are
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more relevant in particle physics model building and phenomenology, are much less explored

(see however [106, 115, 116]). Moreover, we found the introduction of UV and IR boundaries

(branes) to lead to a remarkably rich description in the context of AdS/CFT. For one, most

of particle physics models in AdS5 were constructed with both UV and IR branes [33] or

even with additional branes [117], and understanding the holographic version of anomaly

inflow in a similar setup can provide more straightforward applications in particle physics.

On a more theoretical side, anomaly inflow in AdS/CFT has been studied much less in the

presence of UV and IR branes, and nevertheless we would like to emphasize that they provide

excellent theoretical “tools”, leading to a much richer story for anomaly inflow. Namely, with

Neumann BC, the UV brane allows to introduce the concept of “weakly gauging” of the global

symmetry of the 4D CFT, resulting in “dynamical” source fields. On the other hand, the IR

brane makes it possible to incorporate the phenomena of “confinement” and “spontaneous

symmetry breaking”. In this way, even setting aside its usage in particle phenomenology,

the UV and IR branes with their associated boundary conditions offer invaluable theoretical

handles and we are able to explore full facets of anomaly inflow holographically.

In fact, we have found that anomaly inflow with Neumann IR-BC in AdS5 is the holographic

realization of ‘t Hooft anomaly matching. To this end, it was important to realize that in this

case the variance generated by the bulk CS theory is cancelled by localized degrees of freedom

on the boundaries. In the end, we show how anomaly matching occurs for both purely global

(‘t Hooft type) and weakly gauged (ABJ type) symmetries. These results, therefore, led us

to speculate that fermion anomalies from holographic anomaly inflow are necessarily free

of mixed anomalies with confining large-Ns gauge symmetries of the dual CFT. These are

discussed in section 4.5.
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On the other hand, when the IR-BC is chosen so that a subgroup H1 of the bulk gauge

group G satisfies Neumann BC, while the coset G/H1 is set to Dirichlet BC, the 4D dual

theory describes spontaneous symmetry breaking G→ H1 (whether weakly gauged or not). In

this case, we show that in the low energy effective theory, the WZW action naturally appears

and achieves anomaly matching. One key difference compared to the previous case with fully

Neumann IR-BC is that in the current choice there are no IR brane-localized terms that are

required by 5D consistency. This then is related to the fact that anomaly cancellation is done

not by IR brane-localized degrees of freedom, but rather by delocalized modes, i.e. Goldstone

modes which holographically correspond to a 5D Wilson line Σ ∼ exp(i
∫
dzAz(x, z)). This

may represent a less conventional feature of anomaly inflow. Discussion along these lines is

presented in section 4.6.

To complete the outline of this paper, we first mention that in section 4.2 we describe the

basic setup of the gauge theory with CS action in a slice of AdS5. We then in section 4.3

describe the non-perturbative version of anomaly inflow in terms of the APS η-invariant [118],

reducing it eventually to the perturbative version by means of the APS index theorem [118].

It may be worth mentioning, however, that the rest of the paper is readable independently

of the discussion in section 4.3. Reading the last part of section 4.3 should be enough

background for the rest of the paper. In section 4.4, we perform the gauge fixing in a way

that the holographic aspects of the theory become apparent. In particular, we compute the

holographic partition function, which we use in later sections to study anomaly inflow. As

described above, sections 4.5 and 4.6 contain our main results. In section 4.7 we discuss the

issue of quantization conditions for the CS level.
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4.2 Gauge theory in a slice of AdS5

In the rest of the paper, we wish to study a gauge theory in a slice of five-dimensional anti-de

Sitter space, AdS5. In particular, our prime interest is to study a gauge theory in the presence

of a Chern-Simons action and to understand its 4D CFT dual interpretation. Most of what

we discuss will go through whether or not the theory includes the usual gauge kinetic terms.

In the absence of the gauge kinetic term, the 5D theory is purely topological. As we will

discuss in section 4.3 such a topological field theory may be thought of as being induced by

integrating out massive Dirac fermions in the bulk perturbatively [119–121]. We, however, do

not need to specify a particular UV completion.

When the theory includes both the gauge kinetic and CS terms, the action for the gauge

group G is given by

S = S0 + SCS, S0 = − 1
2g2

5

∫
d5x
√
gTr

[
FMNFLSg

MLgNS
]
,

SCS = c
∫
d5x εMNPQR Tr

(
AM∂NAP∂QAR + 3

2AMANAP∂QAR + 3
5AMANAPAQAR

)
,

(4.2.1)

where the metric takes the form (with mostly minus convention, ηµν = diag(+,−,−,−))

ds2 = a(z)2
(
dx2 − dz2

)
, a(z) = 1

kz
. (4.2.2)

Here, k is the compactification scale. The theory is defined on the interval z0 ≤ z ≤ z1. At

the boundaries, we put 3-branes that we call UV brane and IR brane, respectively.

It is often convenient to adopt a differential form notation to simplify expressions. In

these terms, the gauge connection is a 1-form A ≡ AAMT
AdXM and the field strength is a
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2-form F = dA+ A2 = 1
2F

A
MNT

AdXMdXN . In this notation, the wedge product symbols are

suppressed, e.g. A2 = A ∧ A. For instance, the CS action can be written as

SCS = c
∫

Tr
(
AdAdA+ 3

2A
3dA+ 3

5A
5
)
. (4.2.3)

At the moment, the overall coefficient c, called the level, is considered to be a free parameter.

In section 4.7, we will show that it is quantized by anomaly cancellation requirements. The

5D CS action is the integral of the canonical form ω
(0)
5 (A),

SCS = c
∫

5D
ω

(0)
5 (A). (4.2.4)

The canonical CS term ω
(0)
5 (A) is related to the 6D Abelian anomaly Ω6(A) = Tr(F 3) and

4D (non-Abelian) chiral anomaly ω
(1)
4 (α,A) via descent equations as Ω6 = dω

(0)
5 (A) and

δαω
(0)
5 (A) = dω

(1)
4 (α,A). One has the freedom to add local counter terms to this, and this

leads to the shifted CS action, ω(0)
5 → ω̃

(0)
5 = ω

(0)
5 + dB4. The resulting 4D anomaly is then a

shifted anomaly.

Suitable gauge-invariant boundary conditions (BC) can be obtained by studying the

variation of S0. This leads to

δS0 = 2
g2

5

∫
dzd4x Tr[δAµ(aDνFνµ +Dz(aFµz))] + Tr[δAzDµ(aFµz)] (4.2.5)

+ 2
g2

5

∫
UV
d4x Tr[δAµaFµz]−

2
g2

5

∫
IR
d4x Tr[δAµaFµz]. (4.2.6)

Eq. (4.2.5) gives the bulk equations of motion (EOM), while eq. (4.2.6) is the boundary EOM
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and provides the BC. A vanishing boundary variation is achieved by either setting δAµ = 0

(Dirichlet BC) or Fµz = 0 (Neumann BC).1 While in the orbifold construction S1/Z2 the UV

and IR BC are correlated, we are treating the extra-dimensional direction as an interval (or

S1/(Z2 × Z′2)) and we are free to choose UV and IR BC independently.

4.3 Anomaly inflow

In this section, we review the basic idea of anomaly inflow. However, we first remark that the

discussion in the rest of paper can be understood in a mostly self-contained manner with a

minimal conceptual picture of anomaly inflow. Readers primarily interested in anomaly inflow

by bulk CS theory and its AdS/CFT interpretations, therefore, may read a brief discussion

below around eq. (4.3.12) and (4.3.13) and safely skip the rest of this section.

A non-perturbative formulation of anomaly inflow was given in a recent paper [94]. In the

non-perturbative version, anomaly inflow is described in terms of the η-invariant of Atiyah,

Patodi, and Singer (APS) [118]. The idea is the following: we start with a bulk massive

fermion Ψ(x, z) coupled to a background gauge field and gravity. We, however, will focus

only on the gauge field part. The goal is to compute the partition function of this theory

with some local (and chiral) BC. Examples of such local BC are PRΨ|UV = 0 and PLΨ|IR = 0

and so on, where PL/R = 1
2(1∓ γ5) is the chiral projection operator. Since we have two

boundaries, and adopting the interval formulation (or S1/(Z2 × Z′2)), we impose independent

UV and IR BC. We denote the BC that keeps the LH component of Ψ (i.e. RH component

projected out) as “L”, while the BC that keeps the RH component as “R”. For instance,
1In the axial gauge Az = 0, the condition Fµz = 0 becomes ∂zAµ = 0, a usual form of Neumann BC. Also,

once a BC for Aµ is specified, that of Az is fixed by the bulk EOM.
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writing a general BC as (α0, α1), the choice (L,R) means that the bulk Ψ is projected onto

LH (RH) component on the UV (IR) brane. Calling the bulk Y and boundaries W0 and W1,

the path integral of a bulk massive fermion with the BC (α0, α1) may be written as2

Z[Y, (α0, α1)] = 〈α0|Y |α1〉 ≡
∫

(α0,α1)
DΨDΨ̄ e−S. (4.3.1)

The states |α0(1)〉 defined on the Hilbert space of the boundary incorporate the BC. The

meaning of this statement is as follows. Let us consider the example of L-UV-BC. Writing

the boundary Dirac operator as DW and chirality operator as γτ with {γτ ,DW} = 0, the

bulk fermion Ψ can be expanded in terms of modes of DW ,

DWψL,a = λaψR,a, DWψR,a = λaψL,a, γ
τψL/R,a = ∓ψL/R,a. (4.3.2)

The mode expansion is given by

Ψ =
∑
a

(AL,aψL,a + AR,aψR,a), (4.3.3)

where the fermionic operators coefficients AL/R,a are annihilation operators for LH (RH)

modes. In terms of this, L-UV-BC is a condition on the UV value such that the RH modes

are fixed to be zero, while the LH mode is unconstrained. The latter condition may be

rephrased as its “conjugate momentum” mode being fixed to be zero.3 Hence, 〈α0 = L| is
2See [94, 95] for the description of path integral in terms of state overlaps and for more details.
3Recall that a plane wave in position space corresponds to a delta function in its conjugate momentum

space, and vice versa.
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defined by the properties

〈L|AR,a = 0, and 〈L|A†L,a = 0. (4.3.4)

Going back to the evaluation of the partition function eq. (4.3.1), we note that, in general,

the bulk Dirac operator is not self-adjoint in the presence of a boundary. In order for the Dirac

operator to be self-adjoint, hence to result in a well-defined real spectrum, a special class of

global BC, called APS-BC [118], should be imposed. Without going into too much technical

details, we simply quote the result here, referring to [94, 95] for more details. Provided the

geometry near the boundary is ∼ [z0, ε)×W0 (similarly for the IR boundary) and |m|ε� 1

(i.e. the bulk mass m is much larger than the curvature scale), the Euclidean path integral

near the boundary is effectively a projection to the vacuum e−ε|m| ≈ |Ω〉〈Ω| and the partition

function eq. (4.3.1) can be computed in the limit |m| → ∞ to get

Z[Y, (α0, α1)] = 〈α0|Ω〉〈Ω|Y |Ω〉〈Ω|α1〉

= 〈α0|Ω〉〈Ω|APS〉
|〈Ω|APS〉|2 〈APS|Y |APS〉 〈APS|Ω〉〈Ω|α1〉

|〈Ω|APS〉|2 .

(4.3.5)

We used e−ε|m| ≈ |Ω〉〈Ω| and that in the limit |m| → ∞ the Hilbert space becomes effectively

one-dimensional. In particular, this implies |Y 〉 ∝ |APS〉 ∝ |Ω〉, where |Y 〉 is the path

integral over Y (recall that path integration over Y gives a state vector in the Hilbert space

on the boundary). The first and the last factor in eq. (4.3.5) are UV and IR boundary

contributions and the middle term is identified as the bulk contribution. |APS〉 is a state in

the Hilbert space of the boundary that incorporates the required APS-BC. As shown in [94],

the boundary contributions are related to
∣∣∣DetD±W

∣∣∣, where D±W is the chiral Dirac operator

on the boundary W0(1) and its exact nature depends on the BC and associated localized
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modes.4 For us, the precise form of the boundary contributions are not important.5 Instead,

we are interested in the bulk contribution, 〈APS|Y |APS〉. This is just a path integral over Y

with APS-BC. As mentioned above, the bulk Dirac operator DY with APS-BC is self-adjoint

and its spectrum is well-defined and real. The massive fermion now can be integrated out

non-perturbatively, and the phase of the partition function can be determined. In fact, this

is one of the important reasons to rewrite the partition function in the form of eq. (4.3.5).

Formally, the path integral of Ψ with negative mass −m (m > 0) is Det(DY − im). Using

Pauli-Villars (PV) regularization (with positive mass +M (M > 0)), we get

〈APS|Y |APS〉 =
∏
a

λa − im
λa + iM

=
∏
a

λa
λa + iM

∏
a

λa − im
λa

. (4.3.6)

Each factor of the form ∏
a λa/(λ+ iM) is recognized as the partition function of a massless

fermion in PV-regularization. In the limit M � |λa|, each term has a phase −iπ2 sign(λa)

and the overall phase is therefore −iπ2
∑
a sign(λa). This formal expression, which requires a

regularization, is known as the APS η-invariant. Similarly, in the limit m→∞, the phase of

the second factor is found to be also −iπ2
∑
a sign(λa). Therefore, the phase of the bulk term

is given by6

phase of 〈APS|Y |APS〉 = −iπ
∑
a

sign(λa)|reg = −iπηY . (4.3.7)

4A study of non-perturbative anomaly inflow in extra-dimensional particle physics models and its connection
with “anomalies in orbifold field theories” will be presented elsewhere [122].

5To be clear, the precise form of the boundary term is very important. In fact, because the boundary
term is

∣∣DetD±W
∣∣, and not say DetD±W , the non-perturbative anomaly inflow formula eq. (4.3.8) provides the

unique determination of the phase of the boundary partition function, provided eq. (4.3.8) is independent of
the choice of Y (i.e. absence of anomaly).

6The phase of eq. (4.3.6) is indeed regularized. For λa �M,m, the phase is 0 and the sum over the entire
“UV” modes is trivial. In addition, for the zero mode (if the Dirac operator does have zero modes), the phase
is given by (setting m = M →∞) −iπ. In this sense, in PV regularization, sign(λa = 0) = +1.
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If we instead had chosen a positive mass +m, the phase of the PV-regularized (with negative

mass −M) partition function would be just minus that of eq. (4.3.7). Using this, the

integration of the bulk massive fermion non-perturbatively eq. (4.3.5) may be written as

Z[Y, (α0, α1)] = Z0 · e∓iπηY · Z1, (4.3.8)

where Z0(1) are the boundary contributions, while the exponentiated η-invariant is the bulk

contribution. This is the formula for the non-perturbative version of anomaly inflow. A

perturbative version can be obtained from this thanks to the APS index theorem [118]. For a

closed manifold X of dimension d+ 27, according to the Atiyah-Singer index theorem [123],

the index of the Dirac operator, the number of positive chiral zero modes minus the number

of negative chiral zero modes, is equal to

ind(DX) = n+ − n− =
∫
X
Id+2, Id+2 = Â(R)tr exp

(
iF

2π

)∣∣∣∣
d+2

, (4.3.9)

where Â(R) is the Dirac genus of the manifold (R being the Ricci curvature)8 and tr exp
(
iF
2π

)
is the Chern character (F is the field strength 2-form). If, on the other hand, the manifold

X has a boundary, the relevant formula is the APS index theorem [118],

ind(DX) =
∫
X
Id+2 −

η∂X
2 , (4.3.10)

7We imagine a theory defined on a d-dimensional spacetime W (d = 4 in our case), which itself is a
boundary of a d + 1 manifold Y (bulk of AdS5). We then define a d + 2-dimensional manifold X, whose
boundary is ∂X = Y ∪ −Y ′; since Y has a boundary, we combine Y with Y ′ where ∂Y ′ = W = ∂Y to form
a closed manifold Y ∪ −Y ′ (where −Y ′ is the orientation reversal of Y ).

8For an explicit form of Â(R) see e.g. [124, 125].
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where the η-invariant contribution may be interpreted as the boundary correction. In the

perturbation theory we are focusing on here, it is straightforward to see that (taking d = 4)

eiπηY = exp
(
i

1
48π2

∫
Y
ω

(0)
5 (A)

)
, (4.3.11)

that is, the bulk term in eq. (4.3.8) turns into the 5D CS action in the perturbative limit.

The perturbative anomaly inflow is performed by the interplay of the bulk CS interaction

and the boundary modes. In fact, this is our starting point for the rest of the paper. We

study the anomaly inflow of various CS theories and obtain its dual CFT descriptions.

In order to illustrate the point, let us consider the simple example of a U(1) CS theory in

a slice of AdS5:

SCS = c
∫

5D
AdAdA = c

∫
5D

AFF. (4.3.12)

Under a gauge transformation, A→ A+ dv and F → F , and CS action changes by

δSCS = c
∫

IR
vFF − c

∫
UV

vFF. (4.3.13)

To get eq. (4.3.13) we performed an integration by parts and used dF = 0. We see that the

CS theory defined on a manifold with boundary is not gauge invariant, and the variance

terms induced on the boundary have the form of chiral anomaly. In order to make the 5D

theory consistent, such surface terms need to be cancelled, and one way to achieve this is

to introduce boundary localized fermions (edge modes) charged under U(1). This is the

essential feature of perturbative anomaly inflow and can be generalized to more complicated

(and interesting) cases. Below, we study various CS theories, including non-Abelian and/or
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mixed CS theories, with special emphasis on their holographic dual descriptions. While the

description given so far makes the interplay between bulk and boundary physics clear, it is

not yet the optimal one for a holographic study. For this reason, in the next section, we first

discuss a description of the gauge theory in which the AdS/CFT duality becomes apparent.

4.4 Holographic partition function

In this section, we discuss the gauge fixing issue, adopting the axial gauge. Since we are

interested in the holographic study, we perform the gauge fixing in such a way that the

holographic nature of the AdS5 gauge theory becomes manifest: we derive the gauge-fixed

holographic partition function Zg.f.. Our discussion in this section is influenced by the work

of [115]. We, however, generalize it to arbitrary UV and IR boundary conditions. In addition,

when the UV-BC is chosen to be Neumann for some non-trivial subgroup H0 ⊂ G, we show

that there is a residual gauge redundancy, requiring further (brane-localized) gauge fixing.9

Let us consider a very general situation. We take the bulk gauge group to be G. We

imagine a general BC by which G is broken down to H0 ⊂ G on the UV brane and to H1 ⊂ G

on the IR brane. In this case, the full 5D gauge symmetry is given by

GB = {g(x, z) ∈ G | ĝ ≡ g(x, z0) ∈ H0, ḡ ≡ g(x, z1) ∈ H1}. (4.4.1)

The dual 4D CFT then has a global symmetry group G, which is spontaneously broken to H1

by confinement at the scale associated with the IR brane location. H0 ⊂ G on the UV brane
9In [126], in the context of AdS/QCD without a CS term, a discussion was presented in which a field

redefinition, instead of gauge fixing, is used. Both approaches produce agreeing results when expected.
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is dual to the fact that the H0 part of G is weakly gauged, featuring an explicit breaking of

G by gauging. The inclusion of the 5D CS action further incorporates the anomaly structure

into the 4D dual gauge theory.

We denote the Lie algebra of G as g. Similarly, h0 is the Lie algebra of H0 and we denote

the space generated by the coset G/H0 generators to be k0. Likewise, h1 is the Lie algebra

of H1 and k1 denotes the space spanned by the generators of the coset G/H1. Generators of

g are written as TA ∈ g, A = 1, . . . ,Dim[g]. Likewise, T im ∈ hm and T am ∈ km,m = 0, 1 are

the unbroken and broken generators, respectively.

Before gauge fixing, the holographic partition function of a gauge theory of eq. (4.4.1)

takes the form

Z[Ba] =
∫
DBi Z

[
BA

]
, (4.4.2)

Z
[
BA

]
=
∫
DAµ(x, z)|Â=B

Ā:

 (F )i1=0

(A)a1=0

DAz(x, z) eiS[Aµ(x,z),Az(x,z)]. (4.4.3)

Let us explain the notation we used in these expressions. First, Z
[
BA

]
is the partition function

with UV boundary value of the bulk gauge field A taken to be BA. Here, we suppressed

the Lorentz index for the sake of brevity. The superscript A runs over all generators. This

statement about the UV-BC is also written schematically as the superscript “Â = B” in

eq. (4.4.3). The subscript in the same equation denotes instead the IR-BC. (F )i1 = 0 means

Fµz = 0 for T i1 ∈ h1. The expression (A)a1 = 0 can be understood in the same way. As it

is, Z
[
BA

]
is the holographic partition function with Dirichlet UV-BC for all generators. In
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order to obtain the partition function corresponding to eq. (4.4.1), we need to promote the

background source for the T i0 ∈ h0 to dynamical fields. This is done by path integrating

over the fields Bi. Once this is done, then the partition function depends only on Ba, the

background fields associated with T a0 ∈ k0. The final result of this whole procedure is

summarized by eq. (4.4.2) and (4.4.3).

As a next step, we want to incorporate the axial gauge, Az = 0. As usual, this is done by

inserting the following gauge-fixing factor into eq. (4.4.2):

1 =
∫
DAz δ(Az) =

∫
Dg Det

[
δAgz
δg

]
δ(Agz)

=
∫
DΣ1(x) Dh1(x) Dh0(x) Dg|ĝ=h0

ḡ=Σ1◦h1 Det[Dz(Az)] δ(Agz),
(4.4.4)

where Ag ≡ g(d+ A)g−1 is the gauge transformation of the gauge connection A by g ∈ G.

To obtain the last line, we used the fact that for a compact group G and a closed subgroup H

the integration over the group manifold can be split into H and G/H parts with proper left

invariant Haar measures [115, 127]. In particular, for the coset part, the G-invariant measure

on G/H can be expressed as [127]

DΣ =
∏
a

(
Σ−1dΣ

)a
, (4.4.5)

where (Σ−1dΣ)a is defined via (Σ−1dΣ)k = (Σ−1dΣ)aT a, T a ∈ k. The G-invariance is seen
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by noting that under an arbitrary g ∈ G, (Σ−1dΣ)k transforms as10

(
Σ−1dΣ

)
k
→ h−1(g,Σ)

(
Σ−1dΣ

)
k
h(g,Σ). (4.4.7)

In the above, h(g,Σ) ∈ H is defined by gΣ = Σg(g,Σ)h(g,Σ). If we had used a naive

(non-invariant) measure ∏a dξa (recall Σ = e−ξaT
a), then G-invariance of the quantum theory

could be restored by adding a proper term
∫
L(ξ) to the action. The role of this term is to

precisely cancel the non-invariance of the naive measure.

The gauge redundancy by GB can be singled out by the following change of variable:

g → g = Λ̃ ◦ g′, where ˆ̃Λ = Λ̃(x, z0) = 1 and ¯̃Λ = Λ̃(x, z1) = Σ1(x).11 After inserting the

transformed version of eq. (4.4.4) into eq. (4.4.2) we get

Z[Ba] =
∫
DBi Z

[
BA

]
, (4.4.8)

Z
[
BA

]
=
∫ [
Dh0 Dh1 Dg′|ĝ

′=h0
ḡ′=h1

]
DΣ1(x)DAµ(x, z)|Â=B

Ā:

 (F )i1=0

(A)a1=0

DAz(x, z)

× Det[Dz(Az)] δ
(
AΛ̃◦g′
z

)
eiS[Aµ(x,z),Az(x,z)]. (4.4.9)

10On the other hand,
(
Σ−1dΣ

)
h
transforms inhomogeneously as(

Σ−1dΣ
)
h
→ h−1(g,Σ)

(
Σ−1dΣ

)
h
h(g,Σ) + h−1dh. (4.4.6)

11The existence of such Λ̃(x, z) is guaranteed provided π4(G/H) = 0. This is understood by observing that
Λ̃ is effectively an extension of Σ1(x) defined on S4 (IR brane) to a 5D disk D5. If π4(x) = 0, then every
coset element admits an extension to D5. If, on the other hand, π4(G/H) is non-trivial, then while a Σ(x)
belonging to the trivial class of π4(G/H) can be extended to D5, any Σ(x) in the non-trivial elements can
at best be deformed into a representative of the corresponding class and the resulting object is defined on
S4 × [0, 1] [128]. For simplicity, we assume π4(G/H) = 0 in what follows.
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Notice that
[
Dh0 Dh1 Dg′|ĝ

′=h0
ḡ′=h1

]
is nothing but the integration over GB, the gauge redundancy

we hope to remove from the path integral.

We proceed further with a change of variable: A′ = AΛ̃◦g′ . This simplifies the argument

of the delta function, making the evaluation of the Az-integral trivial. Taking into account

the changes of UV-BC, IR-BC, and performing the Az-integral using the delta function, we

arrive at

Z[Ba] =
∫
GB

[
Dh0 Dh1 Dg′|ĝ

′=h0
ḡ′=h1

] ∫
DBi DΣ1(x)DA′µ(x, z)|Â′=Bh0

Ā′:


(

(F ′1)Σ
−1
1
)i

=0

(
(A′1)Σ

−1
1
)a

=0

× e
iS

[
(A′µ)(Λ̃◦g′)−1 (x,z),0(Λ̃◦g′)−1

]
. (4.4.10)

To get eq. (4.4.10) we used the fact that, upon Az-integration, Det[Dz(Az)]→ Det[∂z] and

dropped this irrelevant constant. We also used the H1-invariance of the IR-BC to simplify its

form. Notice that now the second argument (fifth component) in the action is a pure gauge

contribution, which in general does not vanish.

Let us now analyze how the latest form of the partition function depends on h0 and g′.

First of all, whenH0 is not trivial, there is a residual gauge freedom that needs to be fixed. The

existence of this residual gauge redundancy is seen by the appearance of the extra integration

over h0 compared to the case with a trivial H0. A more careful statement can be made as

follows. The bulk axial gauge fixing coincides with the condition A′z = g(∂z + Az)g−1 = 0.

This is a condition on g, selecting a specific gauge orbit. The solution to this equation is the
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Wilson line

g = P exp
(∫ z

z0
dz′ Az(x, z′)

)
, (4.4.11)

stretched from the UV brane to a point in the bulk at z.12 This g successfully removes any

Az component everywhere in the bulk except at z = z0 where g becomes 1. For the Dirichlet

UV-BC, this is not an issue since the UV brane preserves no gauge symmetry. If, however,

the UV-BC involves a non-trivial H0, this indicates that the bulk axial gauge fixing is not

complete, and we need to add a brane-localized gauge fixing term to eliminate the residual

gauge freedom. Since the details of this extra gauge fixing do not affect our discussion below

in any crucial way, we simply set h0 = 1 and drop the integration over h0. This is also

equivalent to properly reinterpreting the gauge fixing constraint in eq. (4.4.4), so that instead

of integrating over the entire gauge manifold, we pick a specific gauge orbit.

The advantage of this approach is that it also allows us to more easily study the g′

transformation appearing in the action. We know that there are different contributions to

S[Aµ, A5], namely the gauge and CS action. The former is by assumption gauge invariant.

The latter in general is not, but nevertheless we can use the fact that its variation only

contributes as a boundary term to the variation of the full action, and therefore only depends

on the boundary values of g′. Thus, by setting h0 = 1, and by assuming from now on that

the CS action satisfies ω(0)
5 (Ah) = 0, i.e. the CS action (hence the associated anomaly ω(1)

4 )

vanishes when the gauge field A is restricted to its H1 part, we can conclude that the full

action S[Aµ, A5] is invariant under any g′ ∈ GB transformation. The property ω(0)
5 (Ah) = 0

is referred to as an anomaly-free embedding (AFE) of H1 ⊂ G.
12An equivalent solution is the Wilson line from the IR brane to a bulk point at z. Our argument can be

applied to both cases.
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After dropping the g′ transformation from eq. (4.4.10), we make one last change of variable,

which moves the Σ1 dependence from the IR-BC to the UV-BC. We set Aµ = (A′µ)Σ−1
1 to

obtain

Z[Ba] =
∫
GB

[
Dh0 Dh1 Dg′|ĝ

′=h0
ḡ′=h1

] ∫
DBi DΣ1(x)DAµ(x, z)|Â=BΣ−1

1

Ā:

 Fi1=0

Aa1=0

eiS[AΛ(x,z)], (4.4.12)

where now AM = {Aµ, 0} indicates a 5D vector with vanishing fifth component, and Λ =

Λ̃−1 ◦ Σ1, with Λ̂ = Σ1 and Λ̄ = 1. At this point, we want to make a couple of comments.

First, we note that the integrand becomes completely independent of any GB element and

the integral over GB (the infinite gauge redundancy) will be cancelled between the numerator

and the denominator in any observable computation. Therefore, as usual, we can simply

drop that factor. Second, since we have chosen the axial gauge, we do not need ghost fields

to exponentiate the determinant factor. Third, the transformation parameter Λ(x, z) can be

thought of as an interpolating function between a coset element Λ̂ and a trivial element Λ̄.

As we mentioned before, such an element exists whenever π4(G/H) = 0.

We finally arrive at the gauge-fixed holographic partition function for arbitrary choice of

UV and IR BC:

Zg.f.[Ba] =
∫
DBi DΣ1(x)DAµ(x, z)|Â=BΣ−1

1

Ā:

 Fi1=0

Aa1=0

eiS[AΛ(x,z)]. (general UV-BC, IR-BC)

(4.4.13)

Using this general formula, we can obtain results for special cases. Two particularly relevant
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ones are (i) pure Dirichlet UV-BC and pure Neumann IR-BC and (ii) pure Dirichlet UV-BC

and mixed IR-BC with a G/H1 symmetry breaking pattern. In the first case, we simply

remove the integration over Bi and Σ1 and set Σ1 = 1 (hence Λ = 1 as well). In the second

case, while we remove the Bi-integral, we keep Σ1 and Λ as they are. We obtain13

Zg.f.
[
BA

]
=
∫
DAµ(x, z)|Â=B

Ā:FA=0 e
iS[A(x,z)], (D-UV-BC, N-IR-BC) (4.4.14)

Zg.f.
[
BA

]
=
∫
DΣ1(x)DAµ(x, z)|Â=BΣ−1

1

Ā:

 Fi1=0

Aa1=0

eiS[AΛ(x,z)]. (D-UV-BC, G/H1-IR-BC) (4.4.15)

4.5 Unbroken symmetry and ‘t Hooft anomaly match-

ing

Having developed the necessary formalism to study gauge theories in a slice of AdS5 holo-

graphically, we now turn to the holography of anomaly inflow. In this section, we focus on

the case where the IR-BC is purely Neumann. In its 4D dual CFT, this corresponds to the

global symmetry (either weakly gauged or not) unbroken by the vacuum condensate. The

case of mixed IR-BC with the breaking pattern G/H1 will be the subject of the next section.

4.5.1 Purely global symmetry

We first study the case with pure Dirichlet UV-BC. The dual CFT then has a purely global

symmetry G, without any gauging. In particular, the relevant partition function is eq. (4.4.14)

and the BA associated with all TA ∈ g are non-dynamical background fields.
13We have confirmed the following results by separate explicit computations.
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In order to study the (in)variance of the theory, we check how the partition function

transforms as we vary the source fields. Considering an infinitesimal transformation g ≈ 1−α,

the partition function transforms as

Zg.f.
[(
BA

)α]
=
∫
DAµ(x, z)|Â=Bα

Ā:FA=0 e
iS0[A]+iSCS[A]

=
∫
DAµ(x, z)|Â=B

Ā:FA=0 e
iS0[A]+iSCS[Aα],

(4.5.1)

where we made a change of variable A→ Aα and used the G-invariance of the gauge action

S0 and of the IR-BC. In addition, given a UV-localized group element g(x) ≈ 1−α(x) acting

on the source B, we extended it to a 5D one as α(x, z) = α(x).14 From the second line of this

equation, it is clear that the (in)variance of the partition function when the UV-BC is purely

Dirichlet is fully determined by the transformation of the CS action. Using eq. (4.2.4) and

∫
5D
δαω

(0)
5 (A) =

∫
5D
dω

(1)
4 (α,A) (4.5.2)

we obtain

Zg.f.
[(
BA

)α]
= e−ic

∫
UV ω

(1)
4 (α,B)

∫
DAµ(x, z)|Â=B

Ā:FA=0 e
iS0[A] eic

∫
IR ω

(1)
4 (α,Ā) eiSCS[A]. (4.5.3)

Here, since the UV brane-localized variance term is independent of Aµ, we factor it out of

the path integral. We also observe that the partition function is not invariant under the

transformation. Before we proceed any further, however, we first need to discuss one problem.

That is, under the transformation, the integrand picks up an IR brane-localized variance
14In the case of G/H1 discussed in section 4.6, an extra subtlety appears regarding the extension of a 4D

local gauge group element to a 5D one.
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term. Recalling that the bulk gauge symmetry G is unbroken at the IR brane, such an IR

brane-localized variance is not acceptable.15 In order to remedy this issue, we introduce an

IR-localized effective action, ΓIR
[
Ā
]
, which under an infinitesimal transformation Aα shifts

by an opposite anomaly factor to cancel the bulk-generated anomaly factor:

eiΓIR[Āα] = e−ic
∫

IR ω
(1)
4 (α,Ā)eiΓIR[Ā]. (4.5.4)

Such an effective action may be obtained by first introducing an anomalous set of 4D Weyl

fermions charged under G and localized on the IR brane. Integrating out the fermions then

generates ΓIR
[
Ā
]
:

eiΓIR[Ā] ≡
∫
DψDψ̄ eiSIR[Ā,ψ,ψ̄]. (4.5.5)

In this case, however, the coefficient c cannot be arbitrary, and in fact, must be an integral

multiple of the coefficient of the chiral anomaly due to a single Weyl fermion. This leads to

the quantization condition for the CS level c. This issue will be discussed in section 4.7.

The UV-localized variance term, on the other hand, is perfectly fine: G is completely

broken on the UV brane. In terms of the modified partition function Z̃g.f. with ΓIR inserted,

the transformation rule for the holographic partition function is therefore given by

Z̃g.f.
[
BA

]
=
∫
DAµ(x, z)|Â=B

Ā:FA=0 e
iS0[A]+iSCS[A] eiΓIR[Ā],

Z̃g.f.
[(
BA

)α]
= e−ic

∫
UV ω

(1)
4 (α,B) Z̃g.f.

[
BA

]
.

(4.5.6)

15In fact, there is an alternative to this view point. Since the 5D gauge theory is intrinsically non-
renormalizable, it is at best an effective field theory. An effective gauge theory with non-vanishing gauge
anomaly can still be consistently quantized below a cut-off scale and the associated cut-off scale can be
estimated by the knowledge of the anomaly [127]. A study of a 5D U(1) gauge theory along this line was
presented in [106].
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In order to obtain the dual 4D CFT interpretation, we now view Z̃g.f.
[
BA

]
as the partition

function of a 4D CFT with classical source
(
BA

)
µ
coupled to the CFT current operators Jµ.

The phase factor in eq. (4.5.6) shows that the global symmetry G of the CFT is anomalous.

This anomalous global symmetry G is unbroken by confinement, a fact dual to the pure

Neumann IR-BC. Furthermore, the appearance of both the UV- and IR-localized anomaly

factors in eq. (4.5.3), with same magnitude but opposite signs, encodes what we might call a

‘t Hooft anomaly matching. In order to see this explicitly, as is usually done, let us first weakly

gauge G. This is done by switching the UV-BC to be purely Neumann. Under this change,

what we called the source fields B before now turn into dynamical fields, and the UV-localized

variance needs to be cancelled just like we did for the IR-localized anomaly factor. We proceed

as we did for the IR-localized anomaly term, by introducing a UV-localized effective action

ΓUV[B], which again may be obtained by integrating out UV-localized 4D Weyl fermions. In

order to achieve gauge anomaly cancellation, we require

eiΓUV[Bα] = e+ic
∫

UV ω
(1)
4 (α,B) eiΓUV[B]. (4.5.7)

The full partition function then becomes

Z̃g.f. =
∫
DBA eiΓUV[B] DAµ(x, z)|Â=B

Ā:FA=0 e
iS0[A]+iSCS[A] eiΓIR[Ā]. (4.5.8)

As expected, the partition function is independent of any B fields, and the symmetry property

of the theory is tested by making a change of variable (or field redefinition) in the form of a

G-transformation and check whether it results in an anomalous change to the original theory
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or not.

The 4D interpretation goes as follows. The 4D confining gauge theory (in fact deformed

CFT) has a weakly gauged symmetry G. In addition to the CFT preons, there is an

anomalous set of external fermions (UV-localized fermions that induce ΓUV) charged under G.

While CFT and external sector are not individually G-anomaly free, these two contributions,

nonetheless, cancel, making the gauging of G legal. Importantly, these external fermions

need not couple to the confining CFT gauge force, and they are spectator fermions. Along

the renormalization group (RG) flow, while the chiral anomaly does not get renormalized,

the CFT sector undergoes confinement. By assumption, G is not broken, and the original

anomaly of the CFT preons should be reproduced by a spectrum of massless composite

fermions. These composite fermions are the IR brane-localized fermions we introduced in 5D

to cancel the IR-localized variance. For these reasons, the choice of Neumann IR-BC and the

resulting requirement of cancelling the IR-localized variance term by 4D fermions on the IR

brane is the holographic realization of ‘t Hooft anomaly matching.

One perhaps interesting feature deduced from the above discussion is that the anomaly

inflowed from the bulk CS theory must be the one that has vanishing mixed anomaly between

global G and confining gauge group Gs of the CFT. In order to make this point clear, we

may consider a U(1) CS theory in the bulk. The variances induced on the boundaries

are dual to a U(1)3 anomaly of the global symmetry. If this global U(1) current had a

Adler-Bell-Jackiw (ABJ) type anomaly [73, 74] with the confining gauge force of the CFT,

then the spectators would be necessarily coupled to the strong interaction as well, and as a

result, ‘t Hooft argument for the anomaly matching would not hold. However, we have seen

that, with Neumann IR-BC, anomaly inflow by the bulk CS action always comes with an
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IR-localized variance term in addition to the UV variance term: ‘t Hooft anomaly matching

is automatically at play. As we discuss in section 4.5.2, this fact holds even if G is weakly

gauged.

4.5.2 Partially gauged symmetry

In this section, we consider the anomaly inflow with a mixed UV-BC in which a subgroup

H0 ⊂ G takes a Neumann BC, while the coset G/H0 has a Dirichlet BC. In order to make

the discussion as concrete as possible, we consider a product group G = G1 × G2, where

G1 = U(1) and G2 is any compact simple Lie group. We choose UV-BC such that one factor

group takes Neumann while the other takes Dirichlet BC. This choice is interesting because

it admits a non-trivial mixed CS action, hence a mixed anomaly interpretation in the dual

4D picture. A lot of qualitative features we describe below apply to more general cases and

an explicit analysis with arbitrary choice of G→ H0 can be achieved straightforwardly.

In the 4D dual description, the CFT has a global G = G1 ×G2 symmetry and one factor

group (either G1 or G2) is weakly gauged. We present both cases, one with gauged G1

and the other with gauged G2. With pure Neumann IR-BC, none of these symmetries are

broken at the confinement scale. The anomaly inflow from the mixed CS action will get a

4D interpretation in terms of G1-G2 mixed anomaly, while inflow by the pure CS actions

corresponds to pure G1 and/or G2 anomalies.

Let us choose G2 = SU(2). Any other choice of G2 will require a very similar discussion.16

The bulk CS action consists of two contributions: pure U(1) and mixed U(1)-SU(2). The
16One exceptional property of the group SU(2) is that it has vanishing dabc ∝ Tr[T a{T b, T c}] and the pure

SU(2) CS action vanishes identically. This feature is dual to the fact that there is no perturbative SU(2)
anomaly in 4D.
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form of the mixed CS action can be obtained by first embedding U(1) and SU(2) into a

simple compact Lie group GGUT. Once this is done, then the GUT gauge field A can be

written as a sum A = V +W in terms of the U(1) gauge field V and the SU(2) gauge field

W . The mixed CS action can be read off from the CS action of A [129]. In terms of the

canonical ω(0)
5 (A), after a couple of integrations by parts, we get (including the pure U(1) CS

action)

SCS[V,W ] = c1

∫
5D

V dV dV + c12

∫
5D

3Tr
[
V F 2

W

]
+ dTr

[(
2VWdW + 3

2VW
3
)]
, (4.5.9)

where FW = dW +W 2 is the SU(2) field strength 2-form. Notice that the last term, obtained

as a result of integration by parts, is a brane-localized term. The virtue of this form for the

CS action is that the bulk CS actions are manifestly SU(2)-invariant and any non-trivial

SU(2) transformations are from the boundary terms. It may be worth mentioning that a

priori the two CS levels c1 and c12 are independent and are subject to separate quantization

conditions (see section 4.7).

Under U(1) and SU(2) transformations, the CS action changes as

δα1SCS = c1

∫
IR

α1dV̄ dV̄ + c12

∫
IR

(
3Tr

[
α1F

2
W̄

]
− Tr

[
α1

(
2dW̄dW̄ + 9

2dW̄W̄ 2
)])

− c1

∫
UV

α1dV̂ dV̂ − c12

∫
UV

(
3Tr

[
α1F

2
Ŵ

]
− Tr

[
α1

(
2dŴdŴ + 9

2dŴŴ 2
)])

,

(4.5.10)

δα2SCS = c12

∫
IR

Tr
[
2V̄ dα2

(
dW̄ − 2W̄ 2

)
+ 9

2 V̄
(
dα2W̄

2
)]

− c12

∫
UV

Tr
[
2V̂ dα2

(
dŴ − 2Ŵ 2

)
+ 9

2 V̂
(
dα2Ŵ

2
)]
. (4.5.11)
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Next we discuss two cases, one with gauged G1 and the other with gauged G2 in turn.

G = G1 × G2 with gauged G1

We first consider the case with Neumann UV-BC for U(1) and Dirichlet UV-BC for SU(2).

The relevant partition function is

Zg.f.
[
BA

]
=
∫
DBi DAµ|Â=B

Ā:FA=0 e
iS0+iSCS , (4.5.12)

with SCS given in eq. (4.5.9). In this case, Bi = V̂ and Ba = Ŵ . Since the full G = G1 ×G2

is unbroken on the IR brane, we need to cancel the anomaly factors there. In the 4D

dual description, the c1-term in eq. (4.5.10) corresponds to the U(1)3 anomaly, while the

c12-terms in eq. (4.5.10) and (4.5.11) represent the mixed anomaly. One way to eliminate the

IR-localized variance is to introduce IR-localized Weyl fermions charged under both U(1)

and SU(2). The requirement is that this set is anomalous in such a way that their U(1)3

and mixed anomalies cancel the CS-generated variance terms. In order to present another

possibility, however, we take a slightly different path.

We can add a local counter terms dB4(A0, A1) to the bulk CS term in such a way that

the CS action becomes invariant under an H0 ⊂ G transformation. In particular, this works

well for the product group. Applying this to the mixed CS action, in the current example,

we take A0 = V and A1 = A = V + W . The shifted mixed CS action ω(0)
5 → ω̃

(0)
5 (V,A) =

ω
(0)
5 (A)− ω(0)

5 (V ) + dB4(V,A) is then invariant under a U(1) transformations. To be more

precise, we first note that ω(0)
5 (A) contains the pure U(1) CS action as well as the mixed CS

action. Using a short notation for the mixed CS action as ω(0)
5 (mixed) = ω

(0)
5 (A)− ω(0)

5 (V ),
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what we really do is

SCS = c1

∫
ω

(0)
5 (V ) + c12

∫
ω

(0)
5 (mixed)

→ c1

∫
ω

(0)
5 (V ) + c12

∫
ω̃

(0)
5 (V,A)

= c1

∫
ω

(0)
5 (V ) + c12

∫ [
ω

(0)
5 (mixed) + dB4(V,A)

]
.

(4.5.13)

Notice that in ω̃(0)
5 (V,A) there is a cancellation between two U(1) CS actions, and effectively

the procedure is equivalent to adding a local counter terms dB4 to the original mixed CS

action. An important property we recover is that this shifted CS action is invariant under a

U(1) transformation. We will write the shifted CS action as S̃CS = SCS + SCT, where SCT is

the action for the counter terms. In order to show the U(1)-invariance more explicitly, we

first note that the explicit form of the counter term B4 in this case is given by

SCT = cCT

∫
5D

dB4(V,A),

B4(V,A) = Tr
[
VWdW + 1

2VW
3
]
.

(4.5.14)

One may notice that these two terms in B4 are exactly the same as the boundary terms

in eq. (4.5.9), only the relative coefficients differ. Also, eventually, cCT = c12 as is evident

from eq. (4.5.13). Here, we use a separate notation temporarily to make one important point

below. Explicit computations show that with counter term added, the shifted CS action
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transforms according to

δα1S̃CS = c1

∫
IR

α1dV̄ dV̄ + c12

∫
IR

(
1− cCT

c12

)
Tr
[
α1F

2
W̄

]
− c1

∫
UV

α1dV̂ dV̂ − c12

∫
UV

(
1− cCT

c12

)
Tr
[
α1F

2
Ŵ

]
, (4.5.15)

δα2S̃CS = c12

∫
IR

(
2 + cCT

c12

)
Tr
[
V̄ dα2dW̄

]
− c12

∫
UV

(
2 + cCT

c12

)
Tr
[
V̂ dα2dŴ

]
.

(4.5.16)

It is observed that the mixed anomaly terms are such that in units of c12 the “sum” of U(1)

and SU(2) variations is fixed, (1− cCT/c12) + (2 + cCT/c12) = 3, regardless of the size of the

counter term. In contrast, the “difference” is not fixed, and in fact is proportional to the size

of the counter term [127]. We also confirm that with cCT = c12, the shifted mixed CS action

is indeed invariant under U(1) transformations: all the mixed anomaly is attributed to the

SU(2) currents.

We now introduce a set of IR-localized Weyl fermions charged under both U(1) and SU(2)

such that their chiral anomaly cancels the CS-induced variance terms. Equivalently, we add

ΓIR
[
V̄ , W̄

]
which transforms as

eiΓIR[V̄ α1 ,W̄ ] = e−ic1
∫

IR α1F 2
V̄ eiΓIR[V̄ ,W̄ ],

eiΓIR[V̄ ,W̄α2 ] = e−ic12
∫

IR 3Tr[V̄ dα2dW̄ ] eiΓIR[V̄ ,W̄ ].
(4.5.17)

Considering the UV-localized variance term, since only the U(1) factor takes Neumann BC,

we only need to cancel the pure U(1)3 variance term. Hence, on the UV brane, we add a set

of Weyl fermions charged under U(1) only. The UV brane-localized effective action, upon
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integrating out these fermions, is then required to transform as

eiΓUV[V̂ α1 ] = e+ic1
∫

UV α1F 2
V̂ eiΓUV[V̂ ]. (4.5.18)

Moving on to the 4D dual interpretation, at the UV scale, the theory consists of a CFT

sector and a set of external fermions. The CFT has a global symmetry groupG = SU(2)×U(1),

of which the U(1) factor is weakly gauged. The external fermions are charged under the

U(1) gauge force. The U(1)3 gauge anomaly is cancelled between the two contributions from

the CFT and the external sector. There is a non-vanishing U(1)-SU(2) mixed anomaly of

ABJ type, which comes only from the CFT sector. Naively, depending on the UV regulator,

the mixed anomaly can be shared among gauge and global currents. In particular, if the

gauge current is anomalous, we have an issue with gauging the U(1) factor. However, we

added local counter terms proportional to B4(V,A), so that we moved all the mixed anomaly

to the global SU(2) currents. In this way, the gauged U(1) symmetry is free of any mixed

anomalies. Thanks to this feature, the external fermions need not carry the global SU(2)

quantum numbers. This is an analog of what occurs in QCD: there the anomaly computed

from the Feynman diagrams (consistent anomaly) results in the non-conservation of both

vector and axial-vector currents. However, by adding an appropriate counter term (Bardeen’s

counter term), the vector current becomes conserved and all the mixed anomaly is moved to

the axial-vector current (covariant anomaly) [130].

As the theory RG runs to the IR scale, the CFT sector confines and the anomalies are

matched by massless composite fermions. Notice that in the current example, the U(1) factor

is physically gauged. Nevertheless, anomaly matching arguments go through since U(1) is not
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a confining force. As for the SU(2) part, as usual, we formally weakly gauge it, and introduce

extra external spectator fermions to cancel the mixed anomaly. This mixed anomaly is also

reliably reproduced by the massless composite fermions in the IR. Our holographic study of

anomaly inflow, therefore, shows that in a confining gauge theory, the anomaly associated

with a weakly gauged symmetry in the UV (i.e. U(1) gauge anomaly carried by the composite

sector) as well as the ABJ anomaly (i.e. mixed U(1)-SU(2)) are matched by the composite

spectrum in the IR.

G = G1 × G2 with gauged G2

In this case, we take A0 = W and A1 = A. The counter term B4(W,A) is similarly given by

B4(W,A) = −Tr
[
2VWdW + 3

2VW
3
]
. (4.5.19)

This exactly cancels the boundary terms in eq. (4.5.9) and the shifted CS action becomes

manifestly SU(2) invariant. Under a U(1) transformation, we get

δα1S̃CS = c1

∫
IR

α1F
2
V̄ + c12

∫
IR

3Tr
[
α1F

2
W̄

]
− (UV), (4.5.20)

where the UV-localized variance terms are obtained from the IR-localized terms with the

replacement V̄ , W̄ → V̂ , Ŵ . In this case, there is no gauge anomaly. All the anomalies are

on the global current, either pure global U(1)3 or ABJ-type mixed anomalies. On the IR,

since G is preserved, we again need to include brane-localized fermions. On the UV, on the

other hand, thanks to the counter term B4, no SU(2) variance term shows up and there’s no
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need to add anything.

The 4D interpretation is straightforward. The CFT has a global symmetry group G =

SU(2)×U(1) and SU(2) is weakly gauged. While there are global U(1)3 and mixed anomalies,

a proper counter term is added in such a way that the gauged SU(2) is free of any mixed

anomaly. We can again formally weakly gauge the U(1) part and add spectator fermions. In

the IR, when the CFT confines, composite fermions achieve ‘t Hooft anomaly matching, the 4D

dual of IR-localized fermions. Once again, our holographic study of anomaly inflow indicates

that an ABJ anomaly in the UV, when the gauged external legs are weakly interacting, is

matched by the composite spectrum in the IR. While in the previous section it was U(1) that

was weakly gauged, here it is a non-Abelian group, namely SU(2), and the same analysis can

be performed with any non-Abelian group.

4.6 Spontaneously broken symmetry and Wess-Zumino-

Witten action

In this section, we consider the possibility that the IR-BC breaks G down to H1 ⊂ G. In its

holographic 4D CFT dual, this corresponds to the spontaneous breaking of the symmetry

group G down to H1 by confinement. If the UV-BC is Dirichlet for all G, the bulk gauge

group is dual to a global symmetry of the 4D CFT. On the other hand, choosing Neumann

UV-BC for all G corresponds to a weakly gauged symmetry. A slightly less trivial case can be

analyzed by choosing Dirichlet UV-BC for some of the generators, and Neumann UV-BC for

the rest. For instance, if we choose Neumann UV-BC for a subgroup H0 ⊂ H1, and Dirichlet
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for the rest, the dual picture is that of a CFT with global symmetry G spontaneously broken

to H1 by vacuum condensate, and a subgroup H0 ⊂ H1 is weakly gauged. This is very much

like what happens in QCD. There, G is the chiral symmetry G = SU(3)L× SU(3)R, which is

broken to H1 = SU(3)V by the quark condensate. Moreover, U(1)EM ⊂ H1 is weakly gauged.

Using the result of section 4.4, we start with eq. (4.4.13), which we report below again for

convenience:

Zg.f.
[
BA

]
=
∫
DBi Z

[
BA

]
=
∫
DBi DΣ1(x)DAµ(x, z)|Â=BΣ−1

1

Ā:

 Fi1=0

Aa1=0

eiS[AΛ(x,z)], (4.6.1)

where Λ̂ = Σ1 and Λ̄ = 1. Before we delve into a detailed discussion of the two separate cases

(Dirichlet UV-BC vs Neumann UV-BC) let us study the gauge transformation properties of

Z
[
BA

]
. Once this is understood, it’s easier to focus on a specific case.

The action consists of the gauge kinetic term, S0, and of the CS action, which for now we

set to its canonical version SCS = c
∫
ω

(0)
5 (A). Also, for the sake of simplicity, we will just

write Ā for the IR-BC. For example, IR-BC after a gauge transformation by h ∈ H will be

denoted as Āh, and this means (F h
1 )i = 0 for the unbroken generators and (Ah1)a = 0 for the

broken ones. Under ĝ ∈ G on the UV brane, Z
[
BA

]
transforms as

Z
[(
BA

)ĝ]
=
∫
DΣ1

∫
DAµ|Â=BΣ−1

1 ◦ĝ

Ā eiS0[AΛ]+iSCS[AΛ]

=
∫
DΣĝ

1

∫
DAµ|Â=B(Σĝ)−1◦ĝ

Ā eiS0[AΛg ]+iSCS[AΛg ]

=
∫
DΣ1

∫
DAµ|Â=Bh(ĝ,Σ)◦Σ−1

Ā eiS0[AΛg ]+iSCS[AΛg ].

(4.6.2)
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In the second line, we made a change of integration variable Σ1 → Σĝ
1, and used the fact that

the integration measure on G/H1 is the left invariant Haar measure to get the third line.

We mention that we extend a given ĝ(x) ≈ 1− α̂(x) on the UV brane to 5D such that

g(x, z0) = ĝ and g(x, z1) = ḡ ∈ H1 [115]. The reason for the latter condition is simply that

on the IR brane H1 is the only unbroken gauge group. Such an extension of gauge element

exists provided π4(G/H) is trivial, which we assume in the paper. This can be understood

by first decomposing g = Σ1h, Σ1 ∈ G/H1, h ∈ H1, and realizing that the desired extension

is equivalent to the deformation that takes a coset element on the UV brane into a trivial

element, i.e. H1-element, on the IR brane.

In order to make the overall transformation more manifest, next we make a change of

variable: A→ Ah(g,Σ). The partition function becomes

Z
[(
BA

)ĝ]
=
∫
DΣ1

∫
DAµ|Â=BΣ−1

1
Ā eiS0[A]+iSCS[AΛg◦h]

=
∫
DΣ1

∫
DAµ|Â=BΣ−1

1
Ā eiS0[A]+iSCS[Ag◦Λ],

(4.6.3)

where we used the H1-invariance of the IR-BC and the G-invariance of S0. We also used

gΛ = Λgh(g,Λ) to rewrite the argument of the CS action. Hence, we see that the theory

is not invariant under a given g ∈ G transformation, and in particular, its non-invariance

comes from the bulk CS action. In order to understand the form of the transformation, it is

sufficient to study the infinitesimal version. Under ĝ ≈ 1− α̂, we get

Z
[(
BA

)ĝ]
=
∫
DΣ1

∫
DAµ|Â=BΣ−1

1
Ā eiS0[A]+iSCS[AΛ]+iδαSCS[AΛ]

= e−ic
∫

UV ω
(1)
4 (α̂,B)

∫
DΣ1

∫
DAµ|Â=BΣ−1

1
Ā eiS0[A]+iSCS[AΛ] e+ic

∫
IR ω

(1)
4 (ᾱ,Ah).

(4.6.4)
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We used that Aµ(x, z0) = Âµ = B
Σ−1

1
µ and Aµ(x, z1) = Āµ = Ah, where Ah is the restriction

of the gauge field to h1. It may be worth mentioning that with (A)g◦Λ = (AΛ)g we denote the

whole gauge transformation of AΛ as a single gauge connection, i.e.
(
AΛ
)g

= g
(
d+ AΛ

)
g−1.

In order to restore 5D consistency, we need to modify the theory to remove the IR-localized

variance term. This may be attained by adding an appropriately anomalous set of localized

4D fermions. Alternatively, the problem is solved if the subgroup H1 is an anomaly-free

embedding (AFE). Anomaly-free embedding means ω(0)
5 (Ah) = 0, i.e. the CS action (hence

associated anomaly ω(1)
4 ) vanishes when the gauge field A is restricted to its H1 part. In

what follows, we take the second path.17 In addition, we also promote ω(0)
5 (A)→ ω̃

(0)
5 (Ah, A)

so that the bulk CS action is invariant under H1 transformations. When it comes to the

UV-localized variance term, the required amendment and associated dual interpretation

depends on the UV-BC.

4.6.1 Purely global symmetry

When all of G satisfies Dirichlet BC on the UV brane, from a 5D perspective, there is no

induced UV surface terms as a result of a gauge transformation. Hence, once we cure the IR

brane-localized non-invariance, the 5D theory is consistent. Denoting the shifted CS action

as S̃CS = c
∫
ω̃

(0)
5 (Ah, A), eq. (4.6.4) becomes

Zg.f.
[
BA

]
=
∫
DΣ1

∫
DAµ|Â=BΣ−1

1
Ā eiS0[A]+iS̃CS[AΛ]

→ Zg.f.
[(
BA

)α̂]
= e−ic

∫
UV ω̃

(1)
4 (α̂,B) Zg.f.

[
BA

]
.

(4.6.5)

17In fact, in the derivation of eq. (4.6.1) it was already assumed that H1 is AFE.
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We remark that while the theory is not invariant under α̂ ∈ k1 transformations, the anomalous

phase ω̃(1)
4 (α̂, B) vanishes for α̂ ∈ h transformations.

In the dual 4D CFT, we interpret this as an anomalous global symmetry G of the CFT.

More precisely, the global symmetry G is spontaneously broken at the confinement scale by

the vacuum condensate, and while the unbroken group H1 is free of anomalies (thanks to

the counter term we added), the anomaly associated with G/H1 is captured by the above

phase factor. Since H1 ⊂ G is already anomaly-free, it can be gauged if wanted. In 5D, this

is equivalent to the statement that we can freely switch the UV-BC to Neumann without

needing extra modifications.

We have seen that if H1 ⊂ G is an AFE, no IR brane-localized state is needed. Given

that the UV phase has a non-trivial anomaly, this raises a question about anomaly matching.

In QCD, the chiral anomaly in the UV quark phase is matched in the IR hadronic phase by

the gauged WZW term of Nambu-Goldstone bosons (NGBs) [82]. It is then natural to ask if

this feature can be seen in the current framework. After all, since we take Dirichlet UV-BC

for all G, all of G/H1 describes physical NGBs in the dual 4D CFT. It can be shown that

the answer to this question is yes, but with some subtleties. To see this, we first rewrite the

(shifted) CS action in the partition function as

ω̃
(0)
5

((
AΛ
)
h
, AΛ

)
→ ω̃

(0)
5 (Ah, A) +

(
ω̃

(0)
5

((
AΛ
)
h
, AΛ

)
− ω̃(0)

5 (Ah, A)
)

= ω̃
(0)
5 (Ah, A) + LWZW

c
.

(4.6.6)

First of all, the new version is trivially equal to the original CS action. In order to see how

the expression in parenthesis is indeed the wanted WZW action, we note that it vanishes
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trivially as Σ1 → 1, and it depends only on the (UV) boundary value.18 Hence, it satisfies

two of the three conditions for it to qualify as the WZW action. For the last requirement,

i.e. solving the anomalous Ward identity, it is sufficient to show that ω̃(0)
5 (Ah, A), as part of

the partition function, is invariant under G-transformations. This is achieved rather easily.

One just recalls that under an arbitrary g ∈ G transformation, the change of the partition

function is captured by A→ Ah(g,Σ1) in the CS terms. For ω̃(0)
5 (Ah, A) this corresponds to

just ω̃(0)
5 ((Ah)h(g,Σ1), Ah(g,Σ1)), which is invariant. Therefore, the expression in parenthesis

is indeed the WZW term. For the same reason, in the splitting ω̃(0)
5 (Ah, A) + LWZW/c, the

first term is invariant under any g ∈ G transformation, and the non-invariance is completely

encoded in the WZW term.

Crucially, in the partition function, e.g. eq. (4.6.5), the path integral variable Σ1(x)

depends only on the 4D spacetime coordinates, and upon integrating over the bulk, we get

the holographic effective action which depends on Σ1(x) as well as on the boundary value B.

In particular, as we just showed, the WZW action only depends on the boundary value, and

it can be taken out of the integral over Aµ(x, z):

Zg.f.
[
BA

]
=
∫
DΣ1(x) eiSWZW[BA,Σ1]

∫
DAµ|Â=BΣ−1

1
Ā eiS0[A]+iS̃CS[A]

=
∫
DΣ1(x) eiSWZW[BA,Σ1] eiSh,0[BA,Σ1].

(4.6.7)

In the above, Sh,0 is the holographic effective action obtained by integrating out the bulk

degrees of freedom. With pure Dirichlet UV-BC, this action describes the chiral perturbation

theory (see for example [126]) of massless NGBs. The physical NGB fields Σ1(x) correspond

18d
(
ω̃

(0)
5
((
AΛ)

h
, AΛ)− ω̃(0)

5 (Ah, A)
)

= Ω6(AΛ)− Ω6(A) = 0.
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to the Wilson line of the zero mode A5, and hence constitute the low energy degrees of

freedom. From this discussion, therefore, it is clear that, in the deep IR after integrating out

all massive hadronic states (i.e. integrating out the bulk in 5D), the anomaly of the global

symmetry is maintained by the WZW term of NGBs.

We wish to emphasize the differences of the WZW action we obtained in the holographic

context compared to the discussion in the context of 2n-dimensional spacetime. There, the

WZW term is given as ω̃(0)
2n+1(Ah, A)− ω̃(0)

2n+1

(
(AΛ−1)h, AΛ−1

)
, and the non-invariance comes

from the first term, while the second term is invariant. Here, on the other hand, the WZW

term is given by eq. (4.6.6), and the non-invariance is from ω̃
(0)
5 (AΛ

h , A
Λ), the naive shifted

CS term being invariant. Of course, this is in part because here the g ∈ G transformation is

effectively in terms of h(g,Σ1).

A slightly more explicit expression for the WZW action is obtained as follows. Since we as-

sume that H1 is an anomaly-free embedding (AFE) in G, the d-symbol, dijk ∝ Tr[{T i, T j}T k],

vanishes for H1. We can write

ω
(0)
5 (AΛ) = ω̃

(0)
5 (0, AΛ) = ω̃

(0)
5 (Λ−1dΛ, A)

= ω
(0)
5 (A)− ω(0)

5 (Λ−1dΛ) + dB4(Λ−1dΛ, A).
(4.6.8)

To get the second equality, we used ω̃
(0)
2n+1((Ah)g, Ag) = ω̃

(0)
2n+1(Ah, A) with g = Λ−1. The

WZW action then is obtained to be

SWZW[Σ1, B]/c = −
∫

5D
ω

(0)
5 (Λ−1dΛ) +

∫
∂(5D)

B4
(
Λ−1dΛ, A

)
+B4

(
(AΛ)h, AΛ

)
−B4(Ah, A).

(4.6.9)
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We can use this to extract the pure NGB WZW terms. For this, we just set A = 0. Since

B2n vanishes if one or both of the arguments are set to zero, we get

SWZW[Σ1, B = 0]/c = −
∫

5D
ω

(0)
5

(
Λ−1dΛ

)
+
∫
∂(5D)

B4((ΛdΛ−1)h,ΛdΛ−1). (4.6.10)

For small ξ(x)a, we expand Σ1(x) = e−ξ(x) ≈ 1 − ξa(x)Xa, and in particular, Σ1dΣ−1
1 =

dξ +O(ξ2). The point is that infinitesimally, Σ1dΣ−1
1 = dξ ∈ k (i.e. (ΛdΛ−1)h = 0), and the

B4 term does not contribute. Using U = Λ−1dΛ ≈ −dξ, straightforward steps lead to

SWZW[ξ, B = 0]/c = −(−1)5 1
10

∫
5D

Tr
[
(dξ)5

]
+O(ξ6)

= − 1
10

∫
UV

Tr
[
ξ(x)(dξ(x))4

]
+O(ξ6).

(4.6.11)

A direct comparison with the existing literature such as [131] can be made by noting that

for chiral symmetry, the parametrization Σ = e−2iξ is used (note the factor of 2). Also, as

we show in section 4.7, the overall coefficient consistent with the quantization condition is

c = κ
24π2 with κ ∈ Z (see also [129, 132]). Taking into account the factor 25 from the difference

in GB parametrization, we get

SWZW[ξ, B = 0] = − 2
15π2κ

∫
UV

Tr
[
ξ(x)(dξ(x))4

]
+O(ξ6), ξ = Π(x)

Fπ
. (4.6.12)

This agrees with [131].
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4.6.2 Gauged symmetry

In this section, we gauge some part of the group G, and analyze the resulting anomaly inflow.

This is done by taking Neumann UV-BC for some of the generators of g. We will first consider

the case in which we only gauge a subgroup H0 ⊂ H1. This is an analog of QCD, and we

will obtain a gauged version of the WZW action as the low energy effective action, as we

expect. The gauged WZW action includes terms that match ABJ and ‘t Hooft anomalies [82].

We then move on to analyze the most general possibility. We consider a situation in which

a subgroup H0 ⊂ G which is not a proper subset of H1 is gauged. This is a prototypical

situation for dynamical symmetry breaking of the electroweak group of the SM [90, 133].

Here, we focus on the topological terms in such a theory, and show, among other things, that

the (would-be) NGBs associated with the gauged generators can be removed by means of

field redefinitions.

Gauging a subgroup H0 ⊂ H1: analog of QCD

Let us first consider the case in which the UV-BC for the subgroup H0 ⊂ H1 ⊂ G is taken

to be Neumann, while the rest G/H0 is set to be Dirichlet. The relevant partition function

is eq. (4.6.1) with the shifted CS action and Bi
µ ∈ h0. As we discussed in section 4.6.1,

the shifted CS action is invariant under any H1 transformations. This in turn implies that

under any gauged H0 ⊂ H1 transformations, the shifted action is automatically invariant

as well. Therefore, we do not need to add any UV brane-localized effective action: with

ω
(0)
5 (A) → ω̃

(0)
5 (Ah, A) the 5D theory is consistent. Using eq. (4.6.4), the change in the
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partition function under an infinitesimal G/H1 transformation γ̂ ∈ k1 is found to be

Zg.f.
[
(Ba)γ̂

]
=
∫
D
(
Bi
)γ̂ ∫

D(Σ1)γ̂DAµ|Â=B(Σ1
γ̂)−1

◦γ̂

Ā eiS0[A]+S̃CS[AΛ(x,z)]

=
∫
DBi

∫
DΣ1DAµ|Â=Bh(γ̂,Σ1)◦Σ−1

1
Ā eiS0[A]+S̃CS[AΛ(x,z)].

(4.6.13)

Here, we changed the integration variables Bi → (Bi)γ̂ and Σ1 → Σγ̂
1 and used the invariance

of the left-invariant Haar measure. In the second line, we used gΣ1 = Σg
1 h(g,Σ1). To extract

the anomaly phase, we further redefine Aµ → Ah(γ̂,Σ1)
µ and get

Zg.f.
[
(Ba)γ̂

]
=
∫
DBi e−ic

∫
UV ω̃

(1)
4 (γ̂,Bi,Ba)

∫
DΣ1DAµ|Â=BΣ−1

1
Ā eiS0[A]+S̃CS[AΛ(x,z)]

=
∫
DBi e−ic

∫
UV ω̃

(1)
4 (γ̂,Bi,Ba) Z

[
BA

]
.

(4.6.14)

Alternatively, we can write this directly in terms of the WZW action, where the partition

function is expressed as

Zg.f.
[
BA

]
=
∫
DBi

∫
DΣ1 e

iSWZW[BA,Σ1] eiSh,0[BA,Σ1]. (4.6.15)

Recall that Sh,0 is the holographic effective action and is invariant under any G transformation

(see eq. (4.6.7)): any variance comes from the WZW action. Eq. (4.6.14) turns into

Zg.f.
[
(Ba)γ̂

]
=
∫
DBi e−ic

∫
UV ω̃

(1)
4 (γ̂,Bi,Ba)

∫
DΣ1 e

iSWZW[BA,Σ1] eiSh,0[BA,Σ1]. (4.6.16)

This form of transformation makes the following 4D dual interpretation very transparent.

In the 4D dual CFT, we have a global symmetry G which is broken down to H1 ⊂ G

by confinement. In addition, H0 ⊂ H1 is weakly gauged. In the strongly interacting CFT,
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we regulate the UV-divergences such that H1 is anomaly-free. The advantage of such a

choice is that the gauged symmetry H0 is automatically anomaly-free. However, there can

still be anomalies in global currents. In particular, we can have mixed anomalies among

global and gauged currents as well as pure global anomalies. Thanks to the proper local

counter terms added (i.e. choice of UV-regulator), the mixed anomalies come entirely from

the global currents. Under a global transformation γ̂ ∈ k1, the CFT is anomalous and the

anomaly is captured by the phase factor in eq. (4.6.16). We emphasize that the anomaly

factor depends on both the classical source Ba and the gauged dynamical field Bi. In

detail, this single anomaly phase contains both pure global anomalies as well as mixed

global-gauge anomalies. This of course is equivalent to the statement that the WZW action

contains local operators that match chiral anomalies of the UV phase [82]. For example, in

QCD, the gauged WZW Lagrangian contains LWZW ⊃ n e2

24π2Fπ
π0FF̃ , which on one hand

explains the π0 → γγ decay, and on the other hand, reproduces the ABJ anomaly when the

quantization condition n = Nc = 3 is chosen. The QCD WZW Lagrangian also contains

LWZW ⊃ −2
3ie

n
π2F 3

π
εµνρσAµ∂νπ

+∂ρπ
−∂σπ

0, which in turn reproduces the QCD VAAA anomaly

for n = Nc = 3. Once we specify G, H1, and H0, our formalism allows explicit computations

of all of these.

General analysis

In this section, we consider the most general possibility in which H0 ⊂ G is gauged and G

is spontaneously broken to H1. The transformation of the partition function is obtained

through a series of similar steps as in section 4.6.2. The final result has the same form as

eq. (4.6.14) but the transformation parameter γ̂ is not constrained to be just γ̂ ∈ k1 and
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instead takes any value α̂ ∈ g. There are three different kinds of transformations we need

to consider separately. First, under β̂ ∈ h1, the partition function is invariant. As a result,

there is no UV-brane surface terms associated with these transformations, hence no “remedy”

is needed. Second, we can perform a pure global transformation γ̂ which is not part of h1

(G/(H0 ∪H1) transformations). For these transformations, the partition function changes in

exactly the same manner as in section 4.6.2 and in the 4D dual description we get anomalies

in the global currents. Finally, we can consider δ̂ ∈ h0 which is not part of h1 (H0 \H0 ∩H1

transformations). For these transformations, we get UV-localized anomaly factors, and given

that these generators are not broken on the UV brane, we need to cure this problem. This is

done by inserting

eiΓUV[Bi] ≡
∫
DψDψ̄ eiSUV[Bi,ψ,ψ̄] (4.6.17)

into the partition function. As usual, we require it to transform so as to cancel the variance

of the third kind (i.e. δ̂ transformations). Specifically, ΓUV[Bi] is invariant under both H1

and G/(H0 ∪H1) transformations, whilst it changes under a H0 \H0 ∩H1 transformation in

an opposite way to the way the bulk action does. The final form of the consistent partition

function is then written as

Zg.f.
[
BA

]
=
∫
DBi eiΓUV[Bi]

∫
DΣ1DAµ|Â=BΣ−1

1
Ā eiS0[A]+iS̃CS[AΛ]. (4.6.18)
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This is invariant under any H0 ∪H1 transformations, although under an infinitesimal trans-

formation g ≈ 1− γ̂ ∈ G/(H0 ∪H1) it changes as

Zg.f.
[
(Ba)γ̂

]
=
∫
DBi eiΓUV[Bi] e−ic

∫
UV ω̃

(1)
4 (γ̂,Bi,Ba)

∫
DΣ1DAµ|Â=BΣ−1

1
Ā eiS0[A]+iS̃CS[AΛ].

(4.6.19)

We are now ready to discuss the dual 4D CFT description. The UV theory consists of the

CFT sector and an external sector of Weyl fermions. The subgroup H0 of G is weakly gauged.

In the IR, the CFT sector confines and this breaks G down to a subgroup H1. Unlike what

happens in QCD, this unbroken subgroup H1 does not need to be aligned with the gauged

H0, a typical situation occurring in dynamical symmetry breaking. We added proper local

counter terms to the theory so that the UV-regulator preserves the H1-symmetry. For this

reason, the external fermions in the UV theory form an anomaly-free set under the H0 ∩H1

gauge forces.

The anomaly story of this theory is rather rich: the anomaly phase in eq. (4.6.19) includes

several different classes of anomalies. First, we have the gauge anomaly associated with

the unbroken gauge symmetry H0 ∩H1. The UV CFT is free of this gauge anomaly since

the UV-regulator respects the H0 ∩ H1 symmetry (i.e ω(0)
5 (A) → ω̃

(0)
5 (Ah1 , A)). For this

reason, the external fermions do not carry any H0 ∩H1 anomalies. Second, the UV CFT has

non-trivial anomalies in the global symmetry G/H0. However, a subset H1 \H0∩H1 ⊂ G/H0

is anomaly free for the same reason why the gauged H0 ∩H1 is anomaly free. The remaining

global symmetry G/(H0 ∪ H1) is, however, anomalous and the pure global anomaly or ‘t

Hooft anomaly (e.g. anomaly in 〈JJJ〉 with all global currents J) is included in the phase

in eq. (4.6.19). Third, the UV CFT has non-vanishing gauge anomalies for the broken part
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H0 \ H0 ∩ H1. This is cancelled by the chiral anomaly of the external fermions. We see

that, generically, external fermions are charged under the gauged H0, and while they carry

non-trivial anomalies under the broken part H0 \H0 ∩H1, they form an anomaly-free set

under H0 ∩H1. The anomaly phase in eq. (4.6.19) hence does not contain these anomalies.

In fact, we need to look at the δ̂-variation to probe these, and the anomaly phase from the

bulk (CFT) is exactly cancelled by that of ΓUV (external fermions). There are several mixed

anomalies we want to discuss. One of them is the mixed anomaly among gauged H0 ∩H1 and

global G/(H0 ∪H1) currents and is present in eq. (4.6.19). The local counter terms added to

the theory result in the gauged current being conserved, and all the mixed anomaly is moved

to the global currents. Next, there is a mixed anomaly among the gauged H0 \H0 ∩H1 and

the global G/(H0∪H1) currents, and eq. (4.6.19) includes these in principle. The requirement

is that the addition of external fermions cancels any possible mixed anomaly in the gauged

currents, and again all the mixed anomalies are stored in the global currents. In general,

there may be also a mixed anomaly among gauged H0 \H0 ∩H1 and global H1 \H0 ∩H1,

and we need to make sure that the mixed anomaly is all attributed to the global symmetry.

This, and some of the above mentioned conditions, may require extra local counter terms on

the UV brane.

When the CFT sector confines in the IR, the gauge bosons associated with the broken

generators acquire mass via the “technicolor” mechanism. Hence, these massive gauge bosons

are integrated out in the IR, leaving only massless gauge bosons of H0 ∩H1. In addition, we

have physical NGBs associated with G/(H0 ∪H1). The “would-be” NGBs of H0 \H0 ∩H1

are eaten by the massive gauge bosons and removed in the unitary gauge. What happens to

the external fermions? We recall that they couple to the broken gauge generators, and we
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think that they will also become massive and get integrated out. On the other hand, in the

IR, we do not have any massless composite fermions in the spectrum, a dual picture of the

absence of IR brane-localized fermions in the 5D. Hence, the anomalies of the UV theory

described above must be matched by the WZW action made of the physical NGBs and the

massless gauge bosons. Explicit confirmation of this deserves a separate designated study

and we leave it for future works.

Removing the “would-be” NGBs

As already mentioned in the previous section, the NGBs associated with the broken gauged

generators are a gauge artifact and can be eliminated in the unitary gauge. In this section,

we confirm that this expectation is fulfilled in our holographic description of anomaly inflow.

In fact, we show that this is achieved via field redefinitions, or change of integration variables,

which is an allowed operation for path-integrated, i.e. dynamical, fields. Recall that the

boundary value B for the Dirichlet UV-BC corresponds to a classical source in the 4D dual

theory. On the other hand, the boundary value B for the Neumann UV-BC is dual to a

dynamical gauge field and is path-integrated. Therefore, we see that for the latter case, the

integration field variable can be redefined so as to eliminate the corresponding Σ1-dependence.

Such freedom, however, is absent for the purely global symmetry. In order to illustrate the

point in a clean setup, instead of dealing with the most general case, in this section we

consider the pure Neumann UV-BC.

Since all of the G generators are gauged, none of Σ1 corresponds to physical degrees of

freedom. Therefore, we should be able to entirely remove the Σ1-dependence. We first note
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that for small NGB field ξ, we can expand Σ1 ≈ 1− ξ and get

S̃CS
[
AΛ
]

= c
∫

5D
ω̃

(0)
5

((
AΛ
)
h
, AΛ

)
≈ c

∫
5D
ω̃

(0)
5 (Ah, A) + c

∫
5D
dω̃

(1)
4 (ξ, Ah, A).

(4.6.20)

Using this, the partition function can be expressed as19

Zg.f. =
∫
DΣ1DB eiΓUV[B] e

−ic
∫

UV ω̃
(1)
4

(
ξ̂,B

Σ−1
1
)
DAµ|Â=BΣ−1

1
Ā eiS0[A]+iS̃CS[A]. (4.6.21)

The Σ1-dependence can be eliminated by a change of variable, B → BΣ1 . Under this we get

Zg.f. =
∫
DΣ1DBΣ1 eiΓUV[BΣ1 ] e−ic

∫
UV ω̃

(1)
4 (ξ̂,B) DAµ|Â=B

Ā eiS0[A]+iS̃CS[A]

=
∫
DΣ1DB

(
eiGUV[ξ̂,B] eiΓUV[B]

)
e−ic

∫
UV ω̃

1
4(ξ̂,B) DAµ|Â=B

Ā eiS0[A]+iS̃CS[A],

(4.6.22)

where GUV
[
ξ̂, B

]
is the anomaly functional of the external sector. Hence, we observe that the

“would-be” NGB dependence is completely encoded in the two anomaly factors associated

with the CFT and external degrees of freedom. In particular, we see that, provided the gauge

anomaly cancels, the entire Σ1-dependence disappears from the whole integrand, and the

overall immaterial Σ1-integral can be dropped. In other words, provided the gauged group is

free of anomalies (hence suitable for gauging to begin with), the NGBs are unphysical and

removable.
19Recall that Λ is the 5D extension of the 4D Σ1. Likewise, given a 4D ξ̂ we extend it to 5D so that

ξUV = ξ̂ and ξIR = 0.
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4.7 Quantization conditions

The coefficient of the 5D CS action, called CS level, is subject to quantization conditions. A

quick and easy way to derive this is by requiring that the variance of the 5D CS action under

a gauge transformation is cancelled by the chiral anomaly of the 4D Weyl fermions localized

on the boundaries. For simplicity we focus on a U(1) CS theory (see also [132]). We first

recall that the consistent chiral anomaly20 takes the form

∂µJ
µ
L = − 1

48π2F
µν
L F̃Lµν , ∂µJ

µ
R = + 1

48π2F
µν
R F̃Rµν , (4.7.2)

with JµL = ψ̄Lγ
µψL and JµR = ψ̄Rγ

µψR. When the Weyl fermions ψL and ψR have a vector-like

coupling to the gauge field, FLµν = FRµν . The main point here is that the chiral anomaly

takes value in units of 1
48π2 . The U(1) CS theory in the bulk takes the form

SCS = c
∫

5D
AdAdA. (4.7.3)

20This is the form of the anomaly one gets from the triangle diagram. It is called consistent anomaly
since the result is consistent with Feynman diagram computations. In the presence of a single Weyl fermion,
this is the only possible form. However, when the theory includes both LH and RH Weyl fermions, one
can choose to decompose the currents in vector and axial-vector. In this case, there is an ambiguity in
the form of the anomalous Ward identity. This ambiguity is due to possible local counter term(s) one can
add to the theory. Equivalently, it is related to the UV regulator one chooses. A counter term of the form
SCT = 1

6π2

∫
d4xεµνρσA

µV ν∂ρV σ can make the vector current conserved, while all of the anomaly is “moved”
to the axial current:

∂µJ
µ
V = 0, ∂µJ

µ
A = 1

8π2

(
FµνV F̃V µν + 1

3F
µν
A F̃Aµν

)
. (4.7.1)

This form of the anomaly is called covariant anomaly since the theory is now invariant under the vector
symmetry.
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Under gauge transformations, we get

δSCS = c

2

(∫
IR
d4xᾱF F̃ −

∫
UV
d4xα̂F F̃

)
. (4.7.4)

Thus, the cancellation of these variance terms by κ 4D Weyl fermions requires

c = κ

24π2 , κ ∈ Z. (4.7.5)

For instance, for κ > 0, the UV-localized variance term can be canceled by κ RH fermions,

while the IR-localized terms can be canceled by κ LH fermions.

When the IR-BC is chosen so that the dual 4D picture describes spontaneous symmetry

breaking, the relevant quantization condition comes from the argument by Witten in [82] (see

also [115]). A proper reinterpretation of Witten’s argument in the context of anomaly inflow

may be given as follows. First, we recall the instances in which we required the extension of

the coset element from a map defined on 4D spacetime S4 to the 5D bulk. For example, in

the derivation of the gauge-fixed holographic effective action, we needed to make a change of

variable with the property that Λ̃UV = 1 and Λ̃IR = Σ1 ∈ G/H1. Consequently, we extended

the 4D Σ1(x) ∈ G/H1 to a 5D object Λ(x, z) such that ΛUV = Σ1(x) and ΛIR = 1. Also, for

any g ∈ G transformation on the source field B, we assumed the existence of an extension to an

element of the bulk gauge group GB. By a decomposition g(x) = γ(x)h(x), γ ∈ G/H1, h ∈ H1,

such an extension is equivalent to the possibility of deforming γ(x) at the UV brane to 1

(i.e. H1-element) at the IR brane. All these deformations/extensions have to do with the

homotopy group π4(G/H1). When π4(G/H1) = 0, we can extend Σ1(x) to D5. In what
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follows, we will assume this is the case.21 Even when π4(G/H) = 0, there is an important

question. Namely, one may consider two different extensions, Λ1(x, z) and Λ2(x, z), and the

physics should be the same regardless of the extension chosen. Suppose Λ1 is defined on D5

and Λ2 is defined on D′5, with the spacetime manifold S4 being the boundary of both D5

and D′5. The equivalence of the two extensions then imposes a quantization condition for

the bulk CS action. Calling SCSi the CS action with Λi, i = 1, 2, the statement that the

quantum action can be multi-valued only if the changes are integral multiples of 2π yields

ei(SCS1−SCS2) = e
ic

(∫
D5

ω
(0)
5 −

∫
D′5

ω
(0)
5

)
= eic

∫
S5 ω

(0)
5 = ei2πn. (4.7.6)

Therefore, if π5(G/H1) is trivial, then there is no quantization condition: all choices of Λ(x, z)

are (topologically) equivalent. If, on the other hand, π5(G/H1) 6= 0, we are forced to choose

the coefficient c such that the above requirement is fulfilled. In the context of 4D QCD chiral

symmetry breaking, G = SU(3) × SU(3) and H1 = SU(3)V , the fifth homotopy group is

π5(G/H1) = Z and Witten gave the correct normalization for the base 5-sphere [82].22

In the holographic description of anomaly inflow, we seem to have another way to

determine the level c. Namely, we may use the fact that a single parameter c determines

the anomaly of the UV and IR branes by the holographic realization of anomaly matching.

Furthermore, changing UV and IR BC is equivalent to gauging (UV-BC) and spontaneous

breaking (IR-BC), and it is conceivable that the “norm” of anomaly should not change

under these “deformations”. For instance, given the bulk CS action, if we choose (partially)
21As argued in [128], when π4(G/H1) is non-trivial, then we can deform Σ1(x) to Σa(x), a fixed representative

of each homotopy class. Even in this case, the WZW action can still be defined with the same conclusions.
22Any other element of the π5(G/H1) is an integer multiple of the base sphere, hence once the integral

over the base sphere is fixed, the remaining ones are just integer multiples of the value for the base sphere.
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Neumann UV-BC, cancellation of the CS induced anomaly by the UV-localized Weyl fermions

fixes the coefficient c. Then, if we choose IR-BC so that G is broken to H1, we get the

WZW action with pre-determined coefficient. In fact, we used this to fix c to be c = κ
24π2 in

section 4.6.1, and successfully obtained the known normalization for the pure NGB WZW

action. Furthermore, switching the UV-BC to a different one afterwards leads to a deformed

theory with a fixed CS level.

4.8 Conclusions

In this paper, we systematically investigated the perturbative anomaly inflow by the bulk

Chern-Simons (CS) theory in five-dimensional anti-de Sitter spacetime (AdS5). When the

bulk geometry is AdS5, we are granted a holographic dual CFT description, in addition

to the usual bulk–boundary interplay. The physics becomes especially rich and interesting

once we introduce 3-branes. The UV brane allows us to incorporate “weakly gauging” of

the global symmetry and as such the dual CFT possesses Adler, Bell, and Jackiw (ABJ)

anomalies [73, 74] as well as ‘t Hooft anomalies [77]. On the other hand, the phenomena of

“confinement” and “spontaneous symmetry breaking” can be introduced once the IR brane is

added. Therefore, through its dual description in terms of strongly coupled 4D CFT, anomaly

inflow in the presence of UV and IR branes in AdS background captures a variety of features

realized by fermion anomalies in quantum field theories. A holographic approach to anomaly

inflow turns out to provide an especially economic framework to organize and cover various

facets of the fermion anomaly. Namely, one first makes a choice of bulk gauge group, based

on the interest in Abelian vs non-Abelian anomaly, and anomaly of a single group vs mixed
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anomaly. Then, distinctions between the possible UV and IR BC integrate in a unified setup

most, if not all, characteristics of chiral anomalies in confining gauge theories.

We showed that the choice of pure Neumann boundary conditions on the IR brane realizes

‘t Hooft anomaly matching holographically. We found that both ABJ (Neumann UV-BC)

and ‘t Hooft (Dirichlet UV-BC) anomalies are matched by the composite fermions once 5D

gauge invariance is restored by IR brane-localized 4D Weyl fermions. In the case of Neumann

UV-BC, the necessary UV brane-localized fermions that restore 5D gauge invariance are

physical spectator states. For Dirichlet UV-BC, as in the standard ‘t Hooft argument for

the anomaly matching [77], formally weakly gauging the global symmetry group is achieved

by simply switching the Dirichlet UV-BC to Neumann. Once this change is made, then the

existence of spectator fermions is required by 5D gauge invariance. Based on our findings that

both ABJ and ‘t Hooft anomalies are matched by composite fermions when the symmetry G

is not broken on the IR brane, we infer that anomalies that inflow from the bulk CS theory

are necessarily free of mixed anomalies with the confining gauge group of the 4D dual CFT.

In the case of a mixed CS theory, taking U(1)× SU(2) as an example, we demonstrated that

proper local counter terms can be added to the bulk CS action so that the mixed U(1)-SU(2)

anomaly is transferred between U(1) and SU(2) currents. We explicitly showed the form of

local counter terms whose role is to attribute the entire mixed anomaly to either the U(1) or

SU(2) currents.

We then worked out in detail the case of IR-BC such that the bulk gauge group G

is broken down to a subgroup H1. This choice is dual to a spontaneously broken global

symmetry of the CFT. By first considering pure Dirichlet UV-BC (purely global symmetry of

the CFT), we described how the Wess-Zumino-Witten action [81, 82] naturally arises from
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the bulk CS action. In particular, we argued that unlike in the case of Neumann IR-BC,

5D gauge invariance does not require any IR brane-localized modes. Nevertheless, anomaly

matching occurs via modes which are delocalized in the entire bulk. These modes, described

as Wilson lines along the fifth direction, are indeed Goldstone bosons (GB) of spontaneously

broken global symmetry, confirming our expectation based on the standard situation in QCD.

When some part of G is weakly gauged, by taking Neumann UV-BC, we discussed how our

formulation leads to a unified description of both ABJ and ‘t Hooft anomalies. In particular,

in such a case, we showed explicitly that the “would-be” GBs can be completely removed

by means of field redefinitions. This matches the observation that the source fields for the

weakly gauged symmetry become dynamical, and the associated GBs are eaten and become

longitudinal modes of the gauge bosons of broken generators. In 5D, this is realized by the

fact that the sources are path-integrated over once the UV-BC are chosen as Neumann, and

this allows for the possibility of performing a change of variable. We also studied a very

general case: G broken down to H0 by UV-BC and G broken down to H1 by IR-BC. This

is a prototypical setup for models of dynamical symmetry breaking, in which a symmetry

group G is spontaneously broken to a subgroup H1 and in addition another subgroup H0

(not necessarily aligned with H1) is weakly gauged.

Finally, we discussed the issue of quantization condition for the CS level. We described

how such a requirement arises as an anomaly cancellation condition between brane-localized

fermions and the bulk CS term when the BC is Neumann. On the other hand, when the BC

is Dirichlet, we have reformulated Witten’s argument [82] in the context of anomaly inflow

in AdS5 and shown that it indeed agrees with the condition obtained from Neumann BC.

Since two distinct 4D theories with unbroken vs broken symmetry correspond to the same
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bulk theory in 5D with different BC, we speculated that the quantization condition of CS

level might be insensitive to these “deformations” of the theory (i.e. changes of BC). In this

sense, our analysis opens up the possibility of fixing the level for one choice of BC, and then

studying the theory with different BC and pre-determined normalization condition.
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Chapter 5

Neutron Star Mergers Chirp About

Vacuum Energy

5.1 Introduction

The recent observations of gravitational waves (GW’s) from the merger of neutron stars

(NS’s) by LIGO/Virgo [134] along with the corresponding electromagnetic observations of

the resulting kilonova have reverberated across most areas of physics and astronomy. From

the point of view of particle physics the most important consequence of GW170817 and

future merger events is our new ability to directly examine the properties of the QCD matter

forming the inner layers of NS’s, allowing us to use NS’s as laboratories for fundamental

physics [135–137]. This might also open up new avenues to testing the gravitational properties

of vacuum energy (VE) which may also get at the heart of some of the deepest puzzles in

fundamental physics [138].

It has long been speculated that there may be a new phase of nuclear matter at the core
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of the NS’s [139]. If such a phase indeed exists it is expected to be accompanied by a jump

in VE [140] of order Λ4
QCD (where ΛQCD ∼ 200 MeV is the usual QCD scale) making NS’s

the only known objects where VE might make up a non-negligible fraction of the total mass.

Therefore studies of the interior structure of NS’s can also probe the gravitational properties

of VE, possibly shedding light on some of the most interesting open questions in physics: it

could provide verification of the equivalence principle for VE. This would be the first test

independent of those obtained from the cosmic acceleration of the Universe. Acceleration of

the Universe provides information on VE in the low-temperature low density phase of the

SM, while NS’s could probe a low temperature but very high density phase if it exists in

their cores. This could allow us to isolate the QCD contribution to ordinary VE and probe

its gravitational properties.

Alongside the exciting advent of the gravitational wave observation era shepherded in by

LIGO/Virgo, the Neutron star Interior Composition ExploreR (NICER) mission will soon

measure masses and radii of several millisecond pulsars [141]. These measurements as well

as the chirps from the inspiral of merging neutron stars can provide information about the

equation of state (EoS) of dense nuclear matter. The chirps in particular are sensitive to the

tidal deformability of NS’s as they approach each other [142–146]. There has already been

considerable work on constraining the EoS using the new LIGO/Virgo data [147–151].

There exists an extensive literature focused on trying to put bounds on the nuclear EoS

at high densities from neutron star measurements (see for example [152–155]). Some recent

theoretical work has focused on modeling possible new phases at the cores of neutron stars

by using quasi-particle quarks rather than neutrons to provide the simplest description of the

microscopic physics [156–162]. Further work has been done using NS’s to constrain “beyond
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the Standard Model” physics [135–137].

In this paper we will assume that there is only Standard Model physics involved in

the composition of neutron stars, and we will not try to model the microphysics of the

putative new phase. Our main goal is to investigate the observable effects of the presence of

VE on the GW signal as well as the mass versus radius curve of NS’s, possibly providing

new experimental probes of VE. To achieve this we will parameterize the effect of the new

phase with a jump in the ground state energy due to a QCD phase transition assumed at

the core [138, 161, 163, 164]. This new phase would appear at a critical pressure of order

pc ∝ Λ4
QCD, and is expected to also lead to a change of VE [140] of order ∆Λ ∝ Λ4

QCD. We will

follow the conventional models for NS’s where the EoS is divided into 7 layers, but we modify

the innermost layer to take the effect of the phase transition and the appearance of VE at

the core into account. Previous studies treat all 7 layers as simple polytropic fluids, but this

is expected to be a poor fit to an inner core exhibiting the physics of a new phase of QCD,

where the vacuum energy does not vanish. We will then evaluate the tidal Love numbers

for such models, varying over the value of the vacuum energy at the core. One important

consequence of the new phase (along with the presence of vacuum energy) is that the jump

conditions at the boundary of the inner core have to be modified from those traditionally

used in NS simulations [161, 163, 164]. We will explore the effect of a difference in energy

densities of the two phases that includes a discontinuous, density independent term reflecting

the absence of the low density QCD contribution to VE [138]. We will present several models

of NS cores and estimate the effect of VE on tidal Love numbers. We find that VE can have

a significant effect on NS merger waveforms with high chirp masses, so that such events serve

as a probe of the physics of vacuum energy.
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While vacuum energy is found to have a significant effect on waveforms, there are

currently significant uncertainties both in terms of experimental waveform data and in terms

of theoretical expectations for parameters describing the equation of state. Disentangling the

effect of the QCD vacuum energy from other high density physics is currently not yet possible,

however, the future of gravity wave observation holds great promise in terms of obtaining

multiple independent measurements of neutron star observables, significantly tightening

constraints on the equation of state of QCD. Additionally, progress may be made on the

theory side – QCD is a complete microscopic theory, therefore its high density behavior can

be uniquely determined from first principles. The ultimate goal is to use neutron stars as

new astrophysical laboratories for studying physics at the density frontier, and determining

whether the SM (plus classical gravity) agrees with data, or whether new exotic (gravitational

or particle) physics is necessary to explain the observations.

The paper is organized as follows. In Section 2 we present the models we use for nuclear

matter in the interior of NS’s, along with a detailed discussion of the treatment of the phase

transition at the boundary of the innermost layer. Section 3 contains the description of the

tidal deformability of NS’s. The results of our simulations and the effects of VE on the NS

observables are given in Section 4: we show the mass versus radius curves and the tidal

deformabilities for three different well-studied NS models and the effects of VE on those

observables. Finally we conclude in Section 5.
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5.2 Modeling High Density QCD

The main difference between our work and that of previous studies of tidal deformability of

NS’s is that we will fully account for a phase transition to an exotic phase of QCD in the

innermost core region of NS’s. Crucially, we take into account the Standard Model expectation

that there is a constant shift Λ, independent of baryon number density, in the ground state

energy relative to the surrounding layers parametrizing the change in VE due to the phase

transition. In the ordinary phase of QCD the nonperturbative condensates of quarks and

gluons make contributions [140] of order (100 MeV)4 to the VE. These contributions, along

with those from other sectors of the SM, are canceled by the “bare” cosmological constant

down to the observed cosmological constant of order (meV)4:

ΛSM vac
QCD + ΛSM other + Λbare ' (10−3 eV)4 . (5.2.1)

The origin of the mechanism leading to this cancelation remains unknown. In an exotic phase

of QCD the QCD contributions to the VE will have order one modifications and hence the

precise cancelation will no longer apply:

Λexotic
QCD + ΛSM other + Λbare ' ∆Λ , (5.2.2)

where ∆Λ is the shift in the QCD vacuum energy due to the phase transition. Hence in the

absence of a dynamical adjustment mechanism, Standard Model physics predicts a density

independent shift in the energy of the exotic phase compared to the ordinary phase, which

will serve as a new effective cosmological constant term for this phase. An estimate of the
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difference between the VE of the exotic phase and the ordinary vacuum is given by nuclear

saturation density: |∆Λ| ∼ Λ4
QCD [138]. Such a phase change is strongly suspected to occur

at high chemical potential, with theoretical evidence arising from truncated diagrammatic

expansions and other approximate methods [157, 162]. The phase change is in fact part of

the standard picture of the QCD phase diagram. For many plausible descriptions of the

matter in the outer portions of the star, nuclear saturation density is approached near the

core of the densest NS’s, making it quite possible that the most massive NS’s contain cores

with an exotic phase. In this section, we give a description of how one can model the QCD

equation of state at various pressures, with particular attention paid to the phase transition

that may occur in the innermost region.

5.2.1 Modeling the Outer Layers

The physics of neutron stars is an extremely rich field, and there are many details that

go into modeling the different regions of NS’s. Such an analysis is well beyond the scope

of this work, however there are methods for coarse-graining these complexities to obtain

an approximate equation of state for nuclear matter up until the phase transition we are

interested in. Such an approximation is sufficient for the purposes of making predictions for

gravitational wave signals. The most common methodology for modeling the high density

nuclear physics region outside the exotic phase core is to separate the neutron star into

multiple layers, with each layer satisfying a non-relativistic polytropic equation of state. The

parameters of the polytrope are fixed either by matching conditions or by fitting results from

more detailed studies.
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We follow this established methodology and model the nuclear fluid and its corresponding

EoS as a piecewise polytrope where the boundaries between each layer are set by a given

value of the pressure. Following previous work [154, 155] we will parametrize the EoS with a

total of 7 layers. The Israel junction conditions [165] require that the pressure must always

be continuous between layers, even if each side of the boundary is separated by a first order

phase transition. It is traditional to parameterize the EoS by assuming that the pressure is

given by a power of the mass density ρ(r) = mnn(r) rather than a power of the energy density

(as would be natural for a high-density, relativistic fluid). Since we want to efficiently compare

our results with the existing state of the art simulations (some of which have been used as

benchmarks for the LIGO/Virgo analysis) we will bow to this tradition and parametrize the

EoS as

p = Kiρ
γi , pi−1 ≤ p ≤ pi , (5.2.3)

where i ∈ {1, . . . , 7} for Ki, γi and i ∈ {1, . . . , 6} for pi. The pressures, pi, dividing the

various layers have a one to one correspondence with the boundaries in the mass density: ρi.

The Einstein equations contain the energy density, which is related to the mass density via

the first law of thermodynamics: d(ε/ρ) = −p d(1/ρ). Integrating the first law together with

(5.2.3) yields the corresponding energy density:

ε = (1 + ai)ρ+ Ki

γi − 1ρ
γi , (5.2.4)

where the ai are integration constants. Note that the appearance of the ai parameters is a

consequence of using a polytropic ansatz for the mass density. Naively, one would think that
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using a relativistic polytropic ansatz for the energy density would have led us to a relation

with one less free parameter. However another thermodynamical condition, continuity of

the chemical potential, would have forced us to reintroduce the baryon number density,

and therefore to bring back another parameter. So these simply correspond to different

parametrizations of the EoS, and we adopt the one described above in order to follow the

traditional approach.

By using 7 layers we have introduced a large number of parameters (γi, Ki and ai). Most

of those can be determined by continuity of various quantities at the layer boundaries. For

the outer 6 layers we assume the continuity of the energy density at the boundaries, which

allows us to determine the ai’s:

ai = ε(ρi−1)
ρi−1

− 1− Ki

γi − 1ρ
γi−1
i−1 . (5.2.5)

If the K1 constant for the outermost layer is known, then the other Ki values (except for the

innermost layer) can be determined by the continuity of the pressure:

Ki = Ki−1ρ
γi−1−γi
i−1 , i ∈ {2, . . . , 6} . (5.2.6)

For the outermost layer, the “crust”, we have p0 = 0. Requiring that limρ→0
ε
ρ

= 1 (physically

this means that the edge of the star is ordinary non-relativistic matter) implies that a1 = 0.

Thus the parameterization of the EoS of the NS for the outer layers will require us to specify

the critical pressures pi, all the polytropic exponents γi as well as the outermost polytropic

constant K1, while all other parameters will be determined by the continuity conditions.
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5.2.2 Modeling the Core and the Effect of VE

For the last layer, we use an equation of state that incorporates physics associated with a

change in the QCD vacuum state due to high density. There are two effects expected at this

phase transition: a vacuum energy term Λ in the fluid that is independent of baryon number

density, and a jump in energy density across the boundary. Unlike in the outer layers, in

the exotic phase the nature of the baryonic states may be very different from the usual zero

temperature baryons. Since QCD conserves baryon number, for the innermost layer it is

more natural to use baryon number density n in place of the mass density as the variable

parametrizing the EoS for the central core (p > p6). In this case, the equation of state can

be written as:

p = K̃7n
γ7 − Λ , (5.2.7)

ε = ã7n+ K̃7

γ7 − 1n
γ7 + Λ . (5.2.8)

Note that the vacuum energy appears with the opposite sign in the energy density and

pressure, just as with the cosmological constant. Our goal is to see how sensitive neutron

star observables are to the VE shift Λ.

To keep the form of the EoS unchanged in the various layers we can introduce the density

ρ = mnn where mn is the ordinary neutron mass, and use this rescaled number density for

the innermost layer. We can easily see that in terms of this rescaled density the EoS will
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have the same form as for the outer layers:

p = K7ρ
γ7 − Λ , (5.2.9)

ε = (1 + a7)ρ+ K7

γ7 − 1ρ
γ7 + Λ , (5.2.10)

where K7 = K̃7/m
γ7
n , (1 + a7) = ã7/mn are just redefinitions of the unknown constants

parametrizing the EoS for the inner layer. We adopt this notation in order to stay close to

the standard formalism used in the literature.

Let us now examine in detail the continuity (or jump) of the various quantities at the

phase boundary between the sixth and the seventh (innermost) layer. The Israel junction

conditions [165] still require that the pressure be continuous:

K7ρ
γ7
+ − Λ = K6ρ

γ6
− = p6 , (5.2.11)

but due to the appearance of the Λ term this now requires a jump in ρ(r) from ρ+ to ρ−

(where ρ− = ρ6) and consequently also in ε(r) from ε+ to ε−. Since QCD conserves baryon

number, another quantity that we need to require to be continuous is the chemical potential

µ (that is we are assuming chemical equilibrium at the phase boundaries with conserved

baryon number). The chemical potential at zero temperature is given by

µ = ε+ p

n
, (5.2.12)

where n is again the baryon number density. This relation holds even if the VE is nonzero.
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Therefore the jumps from ε+ to ε− and from ρ+ and ρ− (in our convention ρ+ = mnn+ and

ρ− = mnn−) are related to each other by

ε+ + p6

ρ+
= ε− + p6

ρ−
. (5.2.13)

The convexity of the free energy
(
∂2F
∂V 2

)
T,N

> 0 can be translated to
(
∂p
∂n

)
T,N

> 0. This

latter form implies that the number density increases with pressure, yielding ρ+ ≥ ρ−. This

condition together with the continuity of the chemical potential tells us that the jump in

energy density should also be positive, i.e. ε+ ≥ ε−.

A typical phase transition will have both ∆ε and Λ non-vanishing, and this scenario is

the focus of our studies. We choose to parametrize the jump in energy density such that it is

proportional to the absolute value of the shift in VE:

ε+ − ε− = α|Λ| . (5.2.14)

For each value of γ7, α, and Λ, this condition, together with continuity of the chemical

potential, fixes the values of K7 and a7. This parametrization of the phase transition has

the advantage that the Λ = 0 limit reproduces the results obtained in the literature since

both the mass density and the energy density become continuous in this case. In principle, α

could be taken to be zero, isolating the effects of vacuum energy from a jump in the energy

density, corresponding to a second order phase transition. Here we will assume that the

phase transition is first order with an accompanying jump in most quantities across the phase

boundary and take α > 0. A final consistency condition is that both the full pressure and
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the partial pressure of the fluid, K7ρ
γ7 , must be positive. This implies that Λ must satisfy

−p6 < Λ.

5.3 Modeling Neutron Stars

After presenting the relevant physics of the dense QCD matter forming the interior of the NS

we are now ready to review the usual method for calculating the structure of the interior of

the NS. GW emission observed by LIGO/Virgo originates from the inspiral phase, when the

stars are far apart relative to their radii. In this stage of the merger, the NS’s are still well

approximated by nearly spherically symmetric static objects, with deviations described by

a linear response in an expansion in spherical harmonics. In this paper we will ignore the

effects of NS angular momentum but plan to further investigate that in a future publication.

First we briefly review the equations relevant for the spherically symmetric solution and then

present an overview of the perturbations due to the gravitational field of the other NS.

5.3.1 Spherically Symmetric Solutions

At lowest order, the stars are spherically symmetric, and their mass distribution is given by

the solution to the Tolman-Oppenheimer-Volkoff (TOV) equations [166]. These equations

are easily derived by starting with a spherically symmetric metric ansatz

ds2 = eν(r)dt2 −
(

1− 2Gm(r)
r

)−1

dr2 − r2dΩ2 , (5.3.1)
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and using the associated Einstein equations assuming a spherically symmetric fluid distribution

with pressure p(r) and energy density ε(r). The resulting TOV equations are:

m′(r) = 4πr2ε(r) , (5.3.2)

p′(r) = − p(r) + ε(r)
r(r − 2Gm(r))G

[
m(r) + 4πr3p(r)

]
, (5.3.3)

ν ′(r) = − 2p′(r)
p(r) + ε(r) , (5.3.4)

where ′ denotes differentiation with respect to the radial coordinate r. The TOV metric

provides the unperturbed solution around which the gravitational field of the second star

will introduce perturbations that can be dealt with using a multipole expansion. From the

solution to these equations, one obtains the internal structure of the star: the mass as a

function of radius, as well as the thicknesses and masses of the various layers.

5.3.2 Tidal Distortion and Love Numbers

In a neutron star binary, each neutron star experiences gravitational tidal forces due to the

other. This force squeezes the stars along the axis passing through both of their centers,

and deforms the stars, inducing a quadrupole moment. The size of this induced quadrupole

moment is determined by the structure of each neutron star, which can be characterized by

its compactness and the stiffness of the EoS. These in turn depend on the physical properties

of the dense QCD matter as described by its EoS discussed in the previous section. The

effect of the induced quadrupole on gravitational wave data is to change the power emission

as a function of time and frequency. Thus LIGO data on NS inspirals contains information
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about this tidal deformability, which depends on the equation of state of the matter making

up the stars.

A common way to describe the deformability of a star is through the Love number. Love

numbers were originally introduced in the study of Newtonian tides [167]. The application of

Love numbers to gravitational waves produced in neutron star inspirals was initiated in refs.

[142, 143], and further generalized in [168]. Detailed studies of the prospects for gravitational

wave detection were provided in [144–146].

In the local rest frame of one star a small tidal field can be described in terms of a Taylor

expansion of the Newtonian gravitational potential, or the time-time component of the metric

tensor. There are two contributions, one from the effect of the distant star, and the other

from the induced quadrupole moment. At large distances (using Cartesian coordinates, xi)

gtt takes the form [144]

1 + gtt
2 ≈ GM

r
+ 3GQij

2r5 xixj − 1
2Eijx

ixj . . . (5.3.5)

Here Eij parametrizes the external tidal gravitational field, and Qij is the induced quadrupole

moment. Both matrices are traceless and symmetric. To linear order in the response, the

induced quadrupole is determined by the tidal deformability, λ, defined by

Qij = −λ Eij . (5.3.6)
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One can then define a dimensionless quantity k2 by

k2 = 3
2
Gλ

R5 , (5.3.7)

where R is the radius of the neutron star. This is referred to as the l = 2 tidal Love number,

and is the main physical observable. The advantage of this parametrization is that the Love

number does not vary much with the size of the star, with typical Love numbers ranging

from k2 = 0.001 to k2 = 1 as masses and equations of state are varied.

In order to determine k2, one performs the perturbative expansion of the solutions to the

Einstein equations in the presence of an external gravitational field assuming a multipole

expansion. Thus inside and near the star we will write the metric perturbation as an expansion

in spherical harmonics Y m
l . Due to the axial symmetry around the axis connecting the centers

of the two stars, m is zero, and since the tidal deformation is dominantly quadrupolar, with

no dipole, the leading contribution is at l = 2 [144]. Hence the full perturbed metric gαβ +hαβ

(where gαβ is the metric from (5.3.1)) is written as

hαβ = diag
(
eν(r)H(r), eµ(r)H(r), r2K(r), r2 sin2 θK(r)

)
Y 0

2 (θ, φ) , (5.3.8)

where eµ(r) and eν(r) are the functions in the solution to the unperturbed spherically symmetric

metric (5.3.1):

eµ(r) = (1− 2Gm(r)/r)−1 , (5.3.9)

ν ′(r) = − 2p′(r)
p(r) + ε(r) , (5.3.10)
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and the Einstein equations relate the functions K and H:

K ′(r) = H ′(r) +H(r)ν ′(r) . (5.3.11)

Inserting the perturbed metric into Einstein’s equations results in a second order differential

equation for H(r):

H ′′ = 2Heµ
−2πG

[
5ε+ 9p+ dε

dp
(ε+ p)

]
+ 3
r2 + 2G2eµ

(
m(r)
r2 + 4πrp

)2


+ 2
r
H ′eµ

{
−1 + Gm(r)

r
+ 2πGr2(ε− p)

}
.

(5.3.12)

To find solutions, one starts with a series expansion of H very near the core of the star,

at small r:

H(r) = a r2 +O
(
r4
)
. (5.3.13)

The linear term drops out since the solution must be regular at r = 0. The size of the

coefficient a is linearly proportional to the size of the external perturbation, Eij, and is not

an intrinsic property of the star, as is clear from the fact that it is simply a normalization

coefficient for the solution to the linear ODE for H. One can thus pick this coefficient

arbitrarily in numerically solving for H. The l = 2 tidal Love number, on the other hand is

an intrinsic property, and the value for a drops out in calculating it. The value for k2 can be

calculated once H is found, and matched at large r onto the metric ansatz in Eq. (5.3.5). It
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is given by

k2 = 8C5

5 (1− 2C)2[2 + 2C(y − 1)− y]

×
{

2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1− 2C)2[2− y + 2C(y − 1)] log(1− 2C)
}−1

,

(5.3.14)

where C is the compactness parameter GM/R, and y is obtained from the solution to H

evaluated on the surface of the star:

y = RH ′(R)
H(R) . (5.3.15)

Another dimensionless quantity, known as the dimensionless tidal deformability, is often

found in the literature. It is obtained from the definition of k2 by factoring out the C5 in

front:

λ̄ = 2k2

3C5 = λ

G4M5 . (5.3.16)

5.4 Results and Fits

We are now ready to present our results for the effects of adding a VE component to the

innermost layer. We will use several different benchmark EoS’s for modeling the NS’s and

investigate the consequences of the presence of VE in each of those cases. Two of the EoS’s are

more “conservative” in the sense that the maximum stable NS mass that can be achieved just

barely goes above 2M� (the maximum NS mass observed thus far is M = (2.01± 0.04)M�).

The two more conservative models are the AP4 [169] and SLy [153] EoS’s, which were also
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SLy AP4 Hebeler
K1 9.27637× 10−6 See [155]
p1 (0.348867)4

p2 (7.78544)4 See [155]
p3 (10.5248)4

p4 (40.6446)4 (41.0810)4 (72.2274)4

p5 (103.804)4 (97.1544)4 (102.430)4

p6 (176.497)4 (179.161)4 (149.531)4

γ1 1.58425
γ2 1.28733
γ3 0.62223
γ4 1.35692

See [155]

γ5 3.005 2.830 4.5
γ6 2.988 3.445 5.5
γ7 2.851 3.348 3

Table 5.1: The parameters used for each EoS. The exponents γi are dimensionless, the various
pressures have units of MeV4, andK1 is in units of MeV4−4γ1 . The Hebeler et al. parametrization [155]
uses a semi-analytic expression which is not piecewise polytropic in the outer region of the star, and
thus cannot be displayed in the table.

used as benchmarks by LIGO/Virgo [134]. We also consider the less restrictive model of

Hebeler et al. [155] which permits larger masses, up to nearly 3M�. For the AP4 and SLy

models we use the piecewise polytropic parametrization for all 7 layers provided by Read et

al. [154]. We have tabulated the corresponding parameters in Table 5.1. While the model

of Hebeler et al. also uses a piecewise polytropic EoS for the innermost three layers, for the

outer four layers corresponding to the crust they use a semi-analytic expression. In their

parametrization, the outer crust is modeled by the BPS EoS [170] assuming β equilibrium1,

followed by a layer for which chiral EFT (valid up to the nuclear saturation density around

0.18 baryons/fm3) is used to obtain the EoS. This semi-analytic expression is consistent with

the piecewise polytropic approach of AP4 and SLy.
1β-equilibrium corresponds to equal rates of neutron decay and proton capture of electrons.
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Varying the EoS leads to more or less compact NS’s, whose deformability will also change.

The compactness of the NS can be characterized by the radius of a NS with a fixed mass.

The deformability describes how much the NS reacts to the presence of the gravitational field

of the second NS in the binary merger event and is characterized by the tidal deformability.

In the first subsection, we present our results for the mass versus radius, M(R), curves of

neutron stars with different nuclear EoS’s including the effect of VE, while in the second,

we study the tidal deformability and comment on the potential for LIGO/Virgo to discern

between models with different assumptions about the change in VE in exotic phases of QCD.

5.4.1 M(R) Results

We first present the results for the mass versus radius curves for the three different benchmark

equations of state, whose parameters are displayed in Table 5.1. These three benchmarks

cover a realistic range of possible EoS’s, with a wide variation in the maximum possible

stable neutron star mass. We take care not to violate basic constraints on the behavior of

high density QCD matter. For example, when pressures near the center of the star become

very large, and relativistic effects dominate, one must ensure that the equation of state does

not violate causality. Causality requires that the speed of sound in the fluid does not exceed

the speed of light:

vs =
√
dp

dε
≤ 1 . (5.4.1)

However, using simple EoS models this condition is often violated for very large central

pressures. Such violation does not imply the instability of the NS, but is rather an indication

that the ansatz for the EoS is no longer a good approximation of the underlying nuclear
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physics in that region. Such causality violation would never arise in the true QCD equation

of state at very high densities.

The true stability condition for the central pressures that a neutron star can support is

given by
∂M

∂pcenter
> 0 . (5.4.2)

This constraint arises from considerations of radial pulsation modes of the star, and is

directly associated with stability of the fundamental mode of oscillation [171]. The relation

in Eq. (5.4.2) above can be violated when the jump in the energy density is too large [163]:

ε+ − ε− ≥
1
2ε− + 3

2p6 . (5.4.3)

Above this bound, the mass of the NS no longer increases with increasing core pressure, and

the NS is unstable [159–161, 163, 164].

We note that the condition in Eq. (5.4.2) can be satisfied for two stars of the same

mass, but different internal pressures [172], corresponding to different phases in the core of

the star. In such cases, the critical energy density jump exceeds that in Eq. (5.4.3) at the

transition. However, even with this instability, one sometimes finds for p > p6, that there is a

disconnected class of solutions that does not exceed the bound in Eq. (5.4.2). The possibility

then arises that some of the exotic, disconnected solutions have the same masses as some of

the normal, lower pressure solutions.

Which of the two conditions, causality or monotonicity, will limit the central pressure

depends on the EoS. For AP4 and SLy, the limit is set by causality. This bound can be
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Figure 5.1: Mass versus radius curves corresponding to the stiff parametrization of Hebeler et
al. [155] with α = 3. Dotted curves in the plot on the left correspond to unstable configurations
violating Eq. (5.4.2). Positive values of Λ are shown in the plot on the left, and negative ones on
the right.

avoided by modifying the EoS via a “causal extension” [155] into the regions where the

pressure exceeds the maximal value set by the causality bound. For the models we are working

with, we have found that this extension simply flattens out the curves at the point where

causality is violated, and hence does not change the value of the maximum mass significantly.

For this reason we have chosen not to make this modification and ended the curves at the

point where the speed of sound reaches unity.

TheM(R) curve and the effect of VE for the Hebeler et al. EoS [155] are shown in Fig. 5.1.

Each curve is obtained by varying the pressure at the center of the star but keeping all of the

other parameters fixed. We have fixed α = 3 in this plot, as well as all those that follow.2

When the central pressure is greater than p6, the value of Λ becomes relevant and the other

curves depart from the behavior of the Λ = 0 case. Dotted parts of the curves correspond to

unstable regions, i.e. solutions of the TOV equations in which the stability condition (5.4.2) is

violated. The shaded region represents the most massive neutron star measured to date, with
2Taking α to be small reduces the change in the curves relative the Λ = 0 case, however small values of α

are not representative of most phase transitions, which are typically accompanied by a change in the energy
density as well as the vacuum energy.
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Figure 5.2: M(R) curves for the SLy and AP4 equations of state for various Λ values on the seventh
layer. For all the curves, the proportionality constant α in the jump equation (5.2.14) is chosen to
be α = 3. The gray region shows the allowed mass range of the heaviest neutron star, with mass
(2.01± 0.04)M�.

a mass of (2.01± 0.04)M� [173]. Notice that for some positive values of Λ, i.e. when the jump

in energy density is big enough according to Eq. (5.4.3), we find a second stable region which

is disconnected from the main branch, as discussed above. This means that for a given mass,

there are two possible types of stars, one with no exotic phase in the core, and another with a

significant portion of the star in the new phase. This gives rise to interesting effects, both for

M(R) curves and in GW observables. For example, assuming that the Λ = (165 MeV)4 curve

is the correct one, it would be possible to observe two 2M� neutron stars with significantly

different radii. That is, there are two stable configurations for stars with the same mass. It

is quite interesting that the physics of QCD may allow for a plethora of different compact

objects, with population numbers depending on the conditions of their formation.

Our procedure for introducing the VE for this model is the following. In order to make sure

that all values of Λ considered here are compatible with a neutron star mass of (2.01±0.04)M�,

we stop the next-to-innermost polytropic region as soon as the mass reaches 2.00M�. This

corresponds to choosing a critical pressure p6 ≈ (150 MeV)4. Once the critical pressure is
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reached, we transition into the innermost polytropic region with a nonzero VE, and we allow

for the central pressure to be as high as possible without violating the causality bound.

Next we present results for the AP4 [169] and SLy [153] EoS models. The M(R) curves

for the AP4 and SLy models with different values of the VE in the innermost layer are shown

in Fig. 5.2. One can again see that up to a certain critical mass, the curves corresponding

to different Λ’s in the innermost layer do coincide with each other. The reason for this is

that below this mass the central pressure is not high enough to enter the exotic high density

phase of QCD. The critical pressure for the phase transition to occur is set by p6 which is

an input of the model. For the AP4 and SLy models, p6 ≈ (179 MeV)4 and p6 ≈ (176 MeV)4

respectively which correspond to a critical mass of approximately 1.6M� for both models.

The plots for all three EoS’s show that the maximal mass of the neutron star decreases

for both positive and negative values of VE. This is a generic feature of neutron star models

with phase transitions with vacuum energy in our study, and is due to the jump in the energy

density across the phase transition. This conclusion is similar to that obtained in previous

works that study phase transitions without vacuum energy [174].

5.4.2 Tidal Deformabilities and LIGO/Virgo

Let us now discuss NS observables from GW’s emitted during the merger of NS’s. The

frequency versus time behavior of the waveform of the emitted gravitational wave, usually

expressed in terms of the “gravitational wave phase” appearing in the Fourier transform of

the chirp, can be determined by an expansion in relativistic effects, starting at Newtonian

order, and proceeding to post-Newtonian corrections in the velocity. At dominant Newtonian
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order, where the two NS’s are approximated by point masses, the waveform depends only on

a particular combination of the masses called the chirp mass:

M = µ3/5M
2/5
tot = (M1M2)3/5

(M1 +M2)1/5 , (5.4.4)

where µ is the reduced mass of the system [175]. For the recently observed merger event,

GW170817, the chirp mass was measured to beM = 1.188+0.004
−0.002M�.

Since this is the dominant contribution to the waveform, the chirp mass can be determined

quite accurately. However, the individual masses must be extracted from higher order velocity

corrections to the waveform, and are thus more difficult to constrain. At higher order, spin-

couplings are important as well, and without information about the stars’ rotational speeds

and axes, precise extraction of the masses is impossible. This information is in principle

retrievable from measurements of the waveform, but is difficult as it relies on data near

the end of the inspiral, where current experiments lose sensitivity, and where full numerical

simulation of the merger event may be necessary [176].

At present, the individual masses can only be estimated by using the chirp mass and some

assumptions for the angular rotation frequency of the stars. For GW170817 in the low-spin

case, the estimated mass range is 1.36–1.60M� for the heavy star and 1.17–1.36M� for the

light star, while for the high-spin case, there is considerably more possible variation in the

masses: 1.36–2.26M� for the heavy star and 0.86–1.36M� for its less massive partner.

Similarly, it is not yet possible to measure individual tidal deformabilities. However, it is

possible to constrain a weighted combination of the individual masses and deformabilities

through their contribution to the gravitational wave phase at order v5. This so-called
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“combined dimensionless tidal deformability” is defined as

Λ̃ = 16
13

(M1 + 12M2)M4
1 λ̄1 + (M2 + 12M1)M4

2 λ̄2

(M1 +M2)5 . (5.4.5)

For the recent event GW170817, the current constraint placed on Λ̃ is ≤ 800 for the low-spin

assumption and ≤ 700 for the high-spin case. In the low-spin case, the neutron star masses

are probably too low to contain an exotic QCD phase, and thus event GW170817 would not

contain information about VE. Of course, this may not be the case for future merger events,

which may involve heavier NS’s. In the high-spin case, however, the inner core could be in

the exotic phase, and the constraints from GW170817 are relevant for studying VE.

The rest of this section contains our results for the effects of VE on the tidal deformabilities,

which will be presented in a series of plots. Each plot will be presented both for the Hebeler

et al. EoS, which allows for larger NS masses and hence larger effects from VE, as well as for

the AP4 and SLy EoS’s, which cut NS masses off at 2M� and thus have smaller VE effects.

• Fig. 5.3 shows the individual tidal deformabilities of both NS’s and the effect of VE

using the Hebeler et al. EoS.

• Fig. 5.4 translates the effects of VE into a fractional shift of the combined tidal

deformability Λ̃. This plot shows that the effect of VE can be as large as 70% and is

generically sizable for the case of the Hebeler et al. EoS.

• Figs. 5.5, 5.6, 5.7 repeat the same analyses for the AP4 and SLy EoS’s, where we see

that the deviations are generically smaller, but can still reach 25–30% for larger chirp

masses.
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• Figs. 5.8, 5.9 emphasize the role of the chirp mass: they show the maximal achievable

effect of VE as the chirp mass is increased. We can see that observing events with chirp

masses above 1.6–1.8M� will be key to observing the effects of VE.

• Fig. 5.10 shows the effect of VE on GW170817 (assuming the Hebeler EoS) where

it can significantly change the allowed region of NS masses one would infer from the

constraint on the tidal deformability.

The EoS parametrization of Hebeler et al. [155] allows for large possible deviations in

the tidal deformability when a VE term is added to the central core in the new phase. In

Fig. 5.3, we show the effect of varying the VE term for a selection of three different input

chirp masses. The curves are obtained by fixing the chirp massM at a few representative

values and then scanning over the mass of the heaviest star, M1. Typically it is found that

the heavier the star, the smaller the tidal deformability. This is largely due to the fact that

more massive stars typically have smaller radii, and thus respond less to external tidal fields.

We note that the Λ = (165 MeV)4 curve in the third plot is composed of two separate

branches, corresponding to the two separate stable stars with equal masses but different radii

as explained in the previous section. The branch with the highest values of λ̄2 corresponds

to only the most massive star laying in the disconnected branch of the M(R) curve, while

in the other case both stars in the binary would come from the disconnected branch. Part

of the reason why the deviations from the Λ = 0 curve are significant here can be found

directly in Fig. 5.1. Since there the maximum mass for the Λ = 0 curve is close to 3M�, the

curves that correspond to a nonzero Λ can depart significantly without being excluded by

the measurement of the most massive neutron star, (2.01± 0.04)M�.
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Figure 5.3: Tidal deformabilities for the Hebeler et al. parametrization with α = 3. Each plot
corresponds to a different chirp mass. Dotted parts of the curves with Λ = (165 MeV)4 correspond
to unstable configurations. In all cases, the deviation from the Λ = 0 curve is significant.

As we are most interested in the changes brought about by considering non-vanishing VE,

it is useful to introduce a variable that quantifies the relative shift in Λ̃ due to VE:

δ ≡ Λ̃− Λ̃0

Λ̃0
, (5.4.6)

where Λ̃0 is the value of Λ̃ obtained by taking the VE term to zero.

The deviation as a function of the heavy star mass, M1, for the Hebeler et al. parametriza-

tion is shown in Fig. 5.4. The negative values for δ mean that introducing a VE term lowers
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Figure 5.4: Plots on the right show the relative deviation of the combined dimensionless tidal
deformability, Λ̃, as a function of the heaviest star mass for the Hebeler et al. parametrization with
α = 3 for various values of the chirp mass. Plots on the left show Λ̃ for vanishing VE for the same
chirp masses. Dotted parts of the curves correspond to unstable configurations. The disconnected
branches associated with two stable NS configurations allow for the largest deviations.
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Figure 5.5: Tidal deformability curves for a neutron star binary with SLy and AP4 EoS’s. The chirp
mass is taken to beM = 1.188M�, which is the same value as in GW170817. λ̄1 and λ̄2 correspond
to the dimensionless tidal deformability parameters for the heavy and light stars, respectively.
Each curve is obtained by varying the heavy star mass while holding the chirp mass fixed. The
α-parameter of (5.2.14) is chosen to be α = 3.

the value of Λ̃. In order to isolate as much as possible the effects that a nonzero value of Λ has

on the internal structure of the stars, we are comparing each point in a given curve with the

corresponding event on the Λ = 0 curve that has the same neutron star masses. Therefore,

any deviation in the value of Λ̃ comes entirely from the change in the tidal deformabilities, λ̄i.

Even with the more conservative SLy and AP4 models one still finds large deviations in

Λ̃ for events with larger chirp masses. The case of the (smaller) chirp mass corresponding

to GW170817 is displayed in Fig. 5.5, and the deviations in deformability are small. This

is because the combined deformability is typically dominated by the contribution from the

less massive star, which does not contain a core in the new phase where VE plays a role.

However for higher chirp masses the effect of vacuum energy can be sizable even for the SLy

and AP4 EoS’s, as shown in Figs. 5.6 and 5.7. As the chirp mass increases more of the star

contains the new phase, and eventually both stars typically contain cores in the new phase,

yielding the increased sensitivity to VE. The high chirp mass we have chosen for these figures

corresponds, if the stars are of equal mass, to individual masses of 1.9M�, approaching that
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Figure 5.6: Plot of the deviation of the combined dimensionless tidal deformability as a function of
the heavy star mass for the SLy EoS with different values for the chirp mass. M = 1.188M� is the
same as the one of GW170817, whileM = 1.65M� corresponds to a chirp mass where if the two NS
masses are equal they have a mass of 1.9M�. For the smaller chirp mass the effect is rather small,
however for a higher chirp mass the effect can be as large as 38%. The α-parameter of (5.2.14) is
again chosen to be α = 3.

of the most massive NS observed to date. One can see that for this case the deviation can be

as large as 37%, even for these more conservative equations of state.

Since the chirp mass is the most accurately measured property of the NS merger, it is

worthwhile to examine the dependence of δ (characterizing the sensitivity to VE) on the chirp

mass. In Figs. 5.8 (Hebeler) and 5.9 (AP4 and SLy) we plot Λ̃max
0 and δmax as a function

of the chirp mass. The superscript expresses the fact that, when evaluating the quantities

in Eqs. (5.4.5) and (5.4.6), the mass of the heavy star is kept fixed at the maximal value

allowed by the corresponding fixed value of Λ. Fixing one of the stars to have maximal mass
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Figure 5.7: Plot of the deviation of the combined dimensionless tidal deformability as a function
of the heavy star mass for the AP4 EoS with different values for the chirp mass. Plots on the left
show the value of Λ̃, while plots on the right show the fractional deviation, δ. The chirp mass
M = 1.188M� is the same as the one of GW170817, whileM = 1.65M� corresponds to a chirp
mass where if the two NS masses are equal they have a mass of 1.9M�. For the smaller chirp mass
the effect is rather small, however for a higher chirp mass the effect can be as large as 25%. Again
the α-parameter of (5.2.14) is chosen to be α = 3.

will generically (though not always) give the largest VE effect on Λ̃. The important result of

the plots is that the deviation increases substantially above a certain chirp mass denoted by

the vertical gray line in the plots. This threshold corresponds to the chirp mass for which

the lighter star mass also reaches the critical mass for the phase transition. Therefore, the

large deviation can be understood from the fact that both stars are in the new phase.

In our final plot in Fig. 5.10, we display the limits that GW170817 places on VE assuming

the Hebeler et al. parametrization. In particular, we note that including a VE term significantly
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Figure 5.8: Dependence on the chirp mass in the Hebeler et al. parametrization, keeping the
heaviest star mass fixed at M1 = 2.27M� (the maximum value for the Λ = (150 MeV)4 curve). The
left plot shows the corresponding value of the combined tidal deformability for the Λ = 0 curve.
The right plot represents the relative deviation of the combined tidal deformability by turning on
Λ = (150 MeV)4 and is a measure of how the effect of VE potentially increases with the chirp mass.
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Figure 5.9: Dependence on the chirp mass in the AP4 and SLy parametrizations, keeping the
heaviest star mass fixed at M1 = 1.98M� (the maximum value for the Λ = (120 MeV)4 curve). The
chirp mass range is fromM = 1.188M� toM≈ 1.72M�, where the latter corresponds to the case
when both stars have masses M1,2 = 1.98M�. The left plot shows the corresponding value of the
combined tidal deformability for the Λ = 0 curves. The right plot represents the relative deviation
of the combined tidal deformability and is a measure of how the effect of VE potentially increases
with the chirp mass. The vertical gray line denotes the chirp mass at which the light star mass
reaches the critical mass for the phase transition.

changes the allowed range of the individual masses for the high-spin assumption. The effect

is less pronounced for the SLy and AP4 models. As more data on NS mergers are collected

with some of those corresponding to mergers of more massive stars, strong limits could be

placed on the EoS of dense nuclear matter. This will especially be true once the sensitivities
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Figure 5.10: Combined tidal deformability Λ̃ as a function of the heavy star mass M1 for the Hebeler
et al. parametrization with α = 3. The chirp mass is the same as in the event GW170817. The
figure shows the upper bounds set by the LIGO/Virgo analysis and demonstrates how a nonzero
value of Λ can affect the allowed mass range.

for probing the tidal contributions to the gravitational wave phase further improve.

The future outlook is difficult to extrapolate, but promising. At present, due to the

sensitivity of the experiments, the limited statistics, and the number of parameters involved

in the simulations, it is not possible to precisely and unambiguously determine from NS

measurements the vacuum energy contribution to the QCD equation of state. However, the

constraints that are placed in the coming years will depend strongly on currently uncertain

characteristics of NS binaries or NS-black hole mergers that will be captured by upcoming

data-taking runs at LIGO and other GW observatories [177]. Constraints will depend upon

masses, spins, and branch populations in cases where there are multiple configurations with

the same mass. In addition, the sensitivities of the experiments will evolve, and may be able

to better capture higher order contributions to the waveforms. This will help single out the
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different contributions to the observable quantities, for example distinguish the effects of

vacuum energy from the rest of the EoS parameters, once the uncertainties on masses, radii

and tidal deformabilities are reduced. Finally, utilization of neutron stars as laboratories to

study very high density physics and VE depends crucially on a precise theoretical calculation

of the QCD equation of state at high densities [178]. Such a calculation is certainly very

difficult, mainly due to technical challenges rather than conceptual ones. Taking an optimistic

viewpoint on these issues leads us to the conclusion that neutron star mergers can tell us

about the interface of gravity and quantum field theory in a regime never before tested.

5.5 Conclusions

In this paper, we have argued that neutron star mergers can be a valuable tool for testing

new phases of QCD at large densities, in particular for finding the contribution of a VE

term in exotic high density phases. To study the effects of such a new phase on neutron star

observables, we have started with the conventional 7-layer parametrization of the EoS, then

assumed a nonzero value for the VE in the innermost layer leading to a jump in the energy

density. For the three benchmark models we have chosen, we have calculated theM(R) curves

and tidal Love numbers for different values of the VE. By using those results, we have obtained

individual tidal deformabilities and calculated the combined dimensionless tidal deformability

parameter which can be constrained by neutron star mergers observed in gravitational wave

observatories. We have found that for larger chirp masses, the nonzero VE at the innermost

core can have an O(1) effect on the combined dimensionless tidal deformability parameter,

hence future observations of neutron star merger chirps can place strong limits on the EoS of
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dense nuclear matter. We have also shown that for some parameters, introducing a nonzero

VE can create a disconnected branch of stable neutron star solutions allowing the possibility

of having two neutron stars of the same mass with significantly different radii. This possibility

is unique to EoS’s which have a phase transition at the core, hence it is a smoking gun for

new phases of QCD.
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