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ABSTRACT

From Muñiz et. al. (2021):

I present a novel way of wavefront sensing using a commercially available, continuous-

wave time-of-flight camera with QVGA-resolution. This CMOS phase camera is capa-

ble of sensing externally modulated light sources with frequencies up to 100 MHz. The

high-spatial-resolution of the sensor, combined with our integrated control electronics,

allows the camera to image power modulation index as low as -62 dBc/second/pixel.

The phase camera is applicable to problems where alignment and mode-mismatch

sensing is needed and suited for diagnostic and control applications in gravitational-

wave detectors. Specifically, I explore the use of the phase camera in sensing the beat

signals due to thermal distortions from point-like heat absorbers on the test masses

in the Advanced LIGO detectors. The camera is capable of sensing optical path dis-

tortions greater than about two nanometers in the Advanced LIGO input mirrors,

limited by the phase resolution. In homodyne readout, the performance can reach up

to 0.1 nm, limited by the modulation amplitude sensitivity.
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output from the DDS by triggering the DDS update on the rising edge

of the external local oscillator. The rest of the design block function-

ality is the same as discussed in Fig. 30. The RF switch at the output

of the DDS can be discarded if six sub-quads are desired for image

capture. In this scenario, the DDS is configured to phase-step one par-

ticular channel in synchronization with the quadrature pulses received

by the microcontroller. . . . . . . . . . . . . . . . . . . . . . . . . . 168
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Chapter 1

Introduction

For the past five years, the Advanced LIGO and VIRGO gravitational wave detectors

have been making observations of compact binary mergers [7, 8]. The first ever

gravitational wave detection, GW150914 [9], was marked by the coincident detection

of the inspiral and merger of two binary black holes marking the beginning of the field

of gravitational wave astronomy. Since then, each of the detectors has undergone two

phases of upgrades [2] to improve measurement sensitivity. The subsequent observing

runs have yielded over 50 gravitational wave detections from binary collisions [10, 11].

This chapter intends to provide the reader with the necessary background in the

field of gravitational wave astronomy with the purpose of motivating the new tech-

nologies for gravitational wave detectors, which is the principal topic of this thesis.

Section 1.1 begins with a relevant, but brief historical discussion on the birth of grav-

itational wave metrology. The proceeding sections describe the experimental method

of detection as well as design considerations when operating a gravitational wave

detector.

1.1 A brief history of gravitational waves

In his theory of general relativity, Einstein correctly predicted the existence and na-

ture of gravitational radiation. He assessed that asymmetric, accelerating bodies

would create wave-like distortions in spacetime and that these waves propagate out-

ward at the speed of light – this was the first definition of what we later come to

know as gravitational waves [12, 13]. In other words, the gravitational field produced
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by a moving source does not change instantaneously at arbitrary distances from the

source. Therefore, we can consider as a relativistic problem, in which the Special

Theory of Relativity tells us that the space-time interval ds between two neighboring

points is given by

ds2 = −c2dt2 + dx2 + dy2 + dz2

= ηµνdx
µdxν , (1.1)

where ηµν is the Minkowski metric for flat space-time and the indices µ and ν, rep-

resent the coordinates t,x,y,z from 0 to 3. The same physics carries over to into the

General Theory of Relativity; however, we consider that gravity causes the “flat”

space-time described by the Minkowski metric to curve. This leads to a very general

definition for the space-time interval is

ds2 = gµνdx
µdxν (1.2)

In the case where spacetime is close to flat, we can apply the weak field approximation

to field equations and arrive at a description for curved spacetime:

gµν = ηµν + hµν (1.3)

The perturbative term, |hµν | �1, describes the deviation from flat spacetime. By

choosing to work in the transverse traceless gauge, Einstein’s field equation, in vac-

uum, simplifies to the more familiar wave equation with coordinates defined by freely-

falling test masses; where we gloss over some details related to the choice of the

coordinate system (gauge choice).

(
∇2 − 1

c2

∂2

∂t2
)
hµν = 0 (1.4)

It is often more intuitive to view gravitational wave theory through the lens of elec-

tromagnetic theory. In this case, we see that the solution to the wave equation 1.4 has

the familiar form of plane wave for a gravitational wave propagating in the z -direction:

hµν = Aµνe
iωgt−kx, (1.5)
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Aµν =

(
h+ h×

h× h+

)
, (1.6)

where Aµν is the amplitude of the gravitational wave and h+ = Axx = −Ayy and h× =

Axy = Ayx. Other than the wave-like nature of gravitational waves, the solution also

reveals that there are two orthogonal polarization directions, h+ and h− associated

with the wave. From the constraints imposed in the construction of our coordinate

system, the requirements for constructing a detector of gravitational radiation become

more obvious. In fact, it was the insight of Pirani[14] in his publication on the

significance of the Riemann tensor, that gives us our first clue at a means of measuring

gravitational waves:

It is assumed that an observer can, by the use of light signals or otherwise,

determine the coordinates of a neighboring particle in his local Cartesian

coordinate system

Pirani’s statement implied that light could be used as a metric for measuring

the relative distance between coordinate masses. The transition from gedanken to

gravitational wave detector was ushered in by the development of the Michelson

inteferometer [15] and advancements in laser technology. The realization of a gravi-

tational wave detector came in the form of Rai Weiss’s quarterly progress report in

1972 where the fundamental noise sources are defined with remarkable precision and

the inteferometer design is proposed[16]. In the proceeding chapters, I will detail

the basic components of a gravitational wave detector and design considerations and

limitations that motivated the advancements to the LIGO detectors in the present

day.

1.2 Using Interferometry to Detect Gravitational Waves

The schematic design of a gravitational wave detector begins with understanding that

in our gauge choice, gravity does not act as a force; but rather is a result of motion

through space-time. Therefore, a set of freely-falling masses would not accelerate in

the presence of a gravitational wave and can be used to define a coordinate system
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Figure 1: The Michelson Interferometer consists of an incident electric field that

is partially reflected and transmitted from the beam splitter. As the two light beams

propagate along the adjacent arms, they accumulate a phase proportional to the

length of each arm. The recombined output field is a superposition of the single-

bounce fields in the x̂ and ŷ directions.
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in space-time. Relativity tells us that it is possible to use the light travel time be-

tween a set of coordinate test masses to get a measure of the distance between them.

Consider the light propagation starting at the beam splitter in the simple Michelson

interferometer in Fig 1. From principles of Special Relativity, we know neighboring

events linked by a light beam are considered lightlike. Thus, the proper length is

given by

ds2 = 0. (1.7)

We can simplify the math without loss of generality by choosing our axes such that

each of the detector arms are aligned with both the x̂ and ŷ directions, respectively. If

we only consider propagation along the arm in the x̂-axis then the space-time interval

is given by

ds2 = 0 = gµνdx
µdxν

= c2dt2 −
(
1 + h+

)
dx2 (1.8)

Rearranging,

dt

dx
=

1

c

√
1 + h+ (1.9)

≈ 1

c

[
1 +

1

2
h+

]
.

The time required for light to reach the end mirror (for an initial time of t = 0) is

then given by

t1 =
1

c

∫ lx

0

[
1 +

1

2
h+(x)

]
dx, (1.10)

where lx is the length of the x-arm. Therefore, the total round trip time for the light

in the x-arm is

trtx =
2lx
c

+
1

2c

∫ lx

0

[h+(x) + h+(x+ lx]) dx (1.11)

The round trip time of light along the y-arm is given by

trty =
2ly
c
− 1

2c

∫ ly

0

[h+(y) + h+(y + ly)] dx (1.12)
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In the case that the gravitational wave period is much larger than the round trip of

light in the interferometer (i.e. 2πfgwtrt � 1), the perturbation can be approximated

as constant, or h+(ηi) ≈ h+(ηi + li) = constant). Therefore, we can calculate the

difference in travel time between the arms as

∆τ = trtx − trty =
2l

c
h+ (1.13)

where lx = ly = l. The measurable quantity of interest is the differential phase shift,

which is related to the round trip time by 2πf , where f is the frequency of the light

in the interferometer:

∆Φ = Φx(trtx)− Φy(trty) =
4πl

λ
h+ (1.14)

This reveals that the measured phase shift produced by a gravitational wave is related

to the phase accumulation of light in a round trip of the interferometer arms by a

fractional amount h+.

1.2.1 Basic Michelson Configuration

In the previous section, I showed that a gravitational wave propagating along the ẑ

direction of an interferometer can produce a differential phase shift at the output of

the arms. By design, the Michelson interferometer acts as a transducer for differential

phase shift to optical power fluctuations at the output. This is precisely the effect we

want to measure.

Consider the basic Michelson interferometer configuration shown in Fig 1. If we

place our origin at the beam splitter, then the incident monochromatic light source

has the form Ein = E0e
iωt. The effect of the beam splitter is to equally split the beam

along two adjacent paths. Thus, the incident field experiences a factor of r = 1/
√

2

in reflection and t = i/
√

2 in transmission of the beam splitter. Additionally, the

reflection off the end test masses produces an additional π phase shift; however, this

term is canceled out because the effect is common to both arms. Therefore, after one

round trip through the interferometer, the respective fields at the output are given

by

Ex =
i

2
Eine

−2ikxlx , (1.15)
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Ey =
i

2
Eine

−2ikyly (1.16)

Notice that the input field Ein accumulates a phase of 2kl for a single round trip

in each of the respective interferometer arms. We can then write the total field at

the output as a superposition of the individual fields in each of the arms Eout =

Ex + Ey. Because we are actually measuring the output power on a photodiode, we

must integrate the beam intensity I ∝ |Eout|2 over the area of the photodiode:

PASY =

∫

A

IdA = Pin cos2(∆Φ), (1.17)

where ∆Φ = φx − φy = kxlx − kyly. Equation 1.17 shows that the relative length

change between the two arms produces a fluctuation of power at the output port. It

follows that if a gravitational wave incident on the interferometer caused a small shift

in the differential arm length, then the power at the output can be approximated as

PASY |bright ≈ Pin(1 − ∆Φ2). Consequently, this means that the DC term dominates

the measured output power, making it difficult to measure the fluctuation due to

a small phase shift. From a technical standpoint, operating on a bright fringe also

couples laser intensity noise into the output.

Alternatively, one can consider introducing a phase difference of π/2 between the

arms, such that the light at the output undergoes complete destructive interference.

Conservation of energy also requires that there is power reflected back toward the

laser when there is a π/2 phase difference between the arms (upgrades to the base

interferometer which mitigate this effect will be discussed in the next section). In this

case, we are operating on a complete dark fringe, which means measuring a second

order fluctuation in the power produced by an already infinitesimally small change in

length.

PASY |dark = Pin sin2(∆Φ) ≈ Pin(∆Φ2) (1.18)

1.3 A brief overview: Readout Schemes

In this section I will provide an introductory discussion for various readout methods

as applied to the simple michelson interferometer in Section 1.2.1. Figure 2 illustrates

each of the different readout schemes: heterodyne, homodyne, and DC readout. In
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Figure 2: Various readout schemes in gravitational wave interferometry [3].

each of these readout schemes, a strong case is made for operating the interferometer

on a dark fringe. If instead the desired measurement is of a “zero”, or null, then this

proves to be a viable measurement method. Immediately, this would ensure that the

measured output is independent of fluctuations in the laser power. When operating

on a dark fringe the carrier, with frequency fc, is suppressed at the output, instead,

the relative beat between carrier and gravitational wave sidebands fgw is measured

at the output: fsig = fc± fgw. All of these methods require an optical local oscillator

field to produce a significant amplitude modulation of the power measured at the

anti-symmetric port.

1.3.1 Heterodyne readout

Heterodyne detection methods often involve a phase modulation of the input carrier

field. This is typically performed using an electro-optic modulator (EOM), which adds

radio frequency (RF) sidebands (fsb) at ± the carrier frequency. The frequency offset

ensures that the sideband fields accumulate phase differently from the carrier as they

propagate through the interferometer. The difference in accumulated phase results

in the leakage of the sideband field at the anti-symmetric port if a small differential

offset is introduce between the arms of the interferometer (colloquially known as the

Schnupp Asymmetry [17]).

Recall Equation 1.17, if we introduce a path difference the arms such that ∆Φ =
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k∆l = π/2, this ensures that the bright carrier field at the output destructively

interferes. Therefore, the RF sidebands act as a optical reference oscillator for the

output field resulting in a beat term at fsb ± fsig. All higher frequency terms (2ω

terms), are subsequently filtered by the low bandwidth of the receiver electronics. In

Figure 2, a photodiode with an RF amplifier is used to measure the heterodyne beat

signal, which is proportional to a voltage signal. The output voltage is demodulated

(mixed with the same reference signal used to drive the EOM) at the heterodyne

frequency to extract the baseband gravitational wave signal.

One caveat of the heterodyne detection method is that the appropriate demodu-

lation phase φdemod must be configured via some adjustment of cable length or other

method of tuning phase, in order to ensure the appropriate sin or cos function is

mixed with the output. The in-phase (I) and quadrature (Q) sampling of the signal

during demodulation introduces an undesirable oscillatory term in the shot noise of

a heterodyne readout (for a comprehensive description of this effect refer to [18]).

For this reason, and many others that will be made apparent, heterodyne readout is

not used in modern-day gravitational wave interferometers; however, there are other

applications for heterodyne sensing methods which will be introduced in Section 1.5.

1.3.2 Homodyne readout

Here I discuss a traditional homodyne readout for breadth of discussion; however,

this method is not directly employed as a readout scheme for advanced gravitational

wave interferometers. In the homodyne readout scheme, part of the carrier field is

split at the input of the interferometer and is used as a reference LO oscillator at the

output. When a gravitational wave produces a differential change in the arms, the

audio frequency sidebands interfere with the phase shifted optical reference LO. This

method has the advantage that φdemod can be dynamically tuned along the optical

path, removing the need for any additional electronics.

The immediate drawback of this method is that laser intensity noise couples di-

rectly into the readout as in the simple Michelson scheme previously mentioned.

Additionally, the added optical path requires precise alignment and control schemes,

which contribute to additional noise coupling in the interferometer and provide and

pathway for additional optical loss. Although traditional methods of homodyne de-

tection are not practical for gravitational wave detection, one important advantage
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of homodyne readout is the feasibility of achieving quantum-limited measurement

through squeezed states of light [19].

1.3.3 Special Case of Homodyne readout: DC readout

DC readout is a special case of homodyne readout, where a small asymmetry, typically

on the order of a few picometers is introduced between the arms of the interferometer.

In this case, the interferometer is operated slightly off the dark fringe (dark fringe

offset), which allows the carrier field to leak into the output and serve as an optical

reference oscillator. Consider the introduction of a static offset between the arms,

∆ΦDC , then the bright fringe operation defined in Equation1.17 can be described by:

PASY ∝ Pin(1 + 2∆ΦGW∆ΦDC) (1.19)

Here we observe that the mixing of the reference field with the gravitational wave

sidebands creates an amplitude modulation of the output power that scales linearly

with the gravitational wave amplitude. The main drawback to DC readout is that

noise couples directly into the readout as an amplitude modulation of the gravitational

wave sideband. Noise is not necessarily limited to laser intensity noise in this case;

misalignment and point defects can also degrade the readout. With that said, second

generation detectors benefit from highly stabilized lasers with reduced intensity noise

and using optical cavities helps ensure the purity of the beam at the readout.

One significant benefit of the DC readout scheme is that the optical LO path is

intrinsic to the interferometer, meaning that no additional alignment is needed for

ensuring that the LO remain along the carrier path. This also means that the readout

phase is fixed with the static offset introduced between the interferometer arms. DC

readout remains the current readout method used in the advanced LIGO detectors.

It is worth mentioning a fourth readout method, known as “balanced homodyne

readout” [20], which improves upon the DC readout method. Much like the traditional

homodyne readout, an additional optical path is used to generate the optical LO. The

optical LO and the field at the ASY are combined on a 50/50 beamsplitter, which

the power is then measured on two photodiodes placed in reflection and transmission

of the beamsplitter. The “balanced” readout comes from the fact that the dominant

DC power and subsequent noise couplings appear as the sum of the measured power
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on the photodiodes, while the gravitational wave signal appears as the difference.

Balanced homodyne detection is currently planned for third generation detectors as

an upgrade to facilitate the implementation of squeezed light states for quantum noise

reduction [20].

1.4 The Advanced LIGO Detector

The advanced LIGO detector features upgrades to improve sensitivity and extend the

frequency bandwidth of the simple Michelson interformeter. The advanced interfer-

ometer is comprised of two main resonant cavities and two complementary cavities

as shown in Figure 3. The addition of two input test mirrors in the Michelson cre-

ate Fabry-Perot cavities in each of the arms. Therefore, the Fabry-Perot Michelson

increases the effective arm length in the interferometer by building up power in the

arms. The power buildup in the arm cavities effectively increases the signal strength

at ASY proportional to the gain of the cavity. Additionally, this also results in a

reduction of shot noise by the same factor. This will be discussed in more detail in

the next section.

The power recycling mirror (PRM) is added between the laser and the beamsplit-

ter to increase effective laser power in the interferometer. The power recycling cavity

(PRC) is tuned such that the light reflected from the interferometer is in phase with

the incident light. Additionally, a signal recycling mirror (SRM) is placed at the

ASY port to tune the frequency response of the detector. The signal recycling cavity

(SRC) serves to enhance the gravitational wave signal measured at the output of the

interferometer. The following sections discuss ways in which these optical cavities

improve sensitivity in the advanced LIGO detector.

1.4.1 Fabry-Perot Cavities

Eqn. 1.14 tells us that sensitivity to gravitational waves is proportional to the dif-

ferential change in length of the arms. Therefore, increasing the length of the arms

is a way to improve sensitivity to gravitational wave signals. One way of achieving

this and meeting the practical limitations of detector design, is to design an optical

resonator, or Fabry-Perot cavity, in each of the arms. By setting the distance between

the arms to be half-integers of the wavelength of the incident light, the light incident
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Figure 3: A simplified design scheme of the Advanced LIGO detector during O3 [2].

The input laser is a pre-stabilized Fabry-Perot Nd:YAG laser. A phase modulation

electro-optic modulator (EOM) adds sidebands to the main beam at three radio

frequencies used for length and angular control. An input mode cleaner (IMC) is

then used to clean the spatial modes of the laser, allowing only the fundamental

mode to resonate; along with the sidebands. Arm cavities are formed from the input

test masses (ITMs) and end test masses (ETMs). The power recycling mirrors (PRM)

signal recycling mirrors (SRM), and beamsplitter (BS) form composite cavities with

the main arm cavities and work to enhance resonant power buildup and tune frequency

dependence. Power is picked off in reflection of the power recycling mirror (REFL)

and in the power recycling cavity (POP) for sensing and control of auxiliary degrees

of freedom. An output Faraday isolator (OFI) is positioned at the anti-symmetric

(AS) port to prevent any back reflected light from reentering the interferometer. The

OFI is also used to inject squeezed light from the optical parametric oscillator (OPO).

The output mode cleaner (OMC) is a bow-tie cavity, which filters higher order spatial

modes at the AS port. The output photodiodes (DCPDs) measure the gravitational

wave signal in the differential arm length (DARM).
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Figure 4: Representation of the carrier field as it propagates through a Fabry-Perot

cavity.

on the cavity and the light circulating throughout the cavity constructively interfere.

The light is effectively “trapped” in the cavity and optical power is increased.

To see how this is works, consider the schematic diagram of the Fabry-Perot cavity

in Figure. 4 – we can ignore the transverse direction of light in this example since

we are only concerned with the longitudinal propagation and accumulated phase.

In this configuration monochromatic light, Ei, enters a two mirror cavity of length

L, with the input and end mirrors having reflection and transmission coefficients of:

r1, t1, r2, t2, respectively. Some of the light is reflected off the first input mirror, Eref ,

and another fraction is transmitted through into the cavity. A fraction of this light is

transmitted through the end mirror of the resonator, Et, and another fraction of the

light is reflected back toward the input mirror of the cavity. The successive bounces

of light between the mirrors of the cavity can be represented as a geometric series.

Therefore, we can represent the reflection and transmission coefficients, as well as the

cavity gain as:

rFP =
Er
Et

= −r1 +
t21r2e

−i2kL

1− r1r2e−i2kL
, (1.20)

tFP =
Et
Ei

=
t1t2e

−ikL

1− r1r2e−i2kL
, (1.21)

gFP =
Ecav
Ei

=
t1

1− r1r2e−i2kL
(1.22)

The power reflectivity and transmissivity, in Figure 5a,45b and the phase of the light,

in Figure 5c, are plotted as a function of the cavity shift off resonance. As the cavity



14

length is sweeped, the point at which the maximum amount of power is reflected and

transmitted by the Fabry-Perot cavity, known as resonance, is given by the condition

(kL = πn). Here, the maximum gain of the cavity is also achieved and the phase of

the incident light goes through a full 360circ phase shift.

The sign of the reflected light as the cavity passes through resonance is an im-

portant for gravitational wave detector operation. To illustrate this consider the

reflectivity of the lossless (r1 + r2 = 1) cavity in Equation. 1.20 at resonance.

rFP (0) ≈ −r1 + r2

1− r1r2

(1.23)

The advanced LIGO detectors are designed such that the reflectivity of the ETM is

greater than the ITM (or r1 < r2 for our Fabry-Perot cavity). If we consider this

case of Equation 1.23, then, a majority of the light leaks back through the ITM

on resonance and the cavity is said to be over-coupled. Another special case with

relevance to gravitational wave detection is when r1 = r2. This type of cavity is

deemed as critically-coupled and all of the incident light is transmitted through the

end mirror. This cavity design sees application in LIGO mode cleaner cavities, which

help removed unwanted spatial modes from the fundamental beam.

Another relevant parameter that characterizes a Fabry-Perot cavity is the sharp-

ness of the resonance peak, or the finesse F . Finesse is defined as the ratio of

free spectral range νFSR = c/2L, or spacing between resonance peaks, to the cav-

ity linewidth, or full-width at half maximum. This is represented mathematically as

follows

F =
νFSR

FWHM
=

π
√
r1r2

1− r1r2

(1.24)

Notice that the expression in Equation 1.24 depends entirely on the reflectivities of

the mirrors. The higher the mirror reflectivities, the more prominent the resonance

peak. In the case where r2 = 1 This directly translates to an enhancement of the

cavity storage time τFP by a factor of F/2π written as

τFP =
L

c

F
π

(1.25)

Therefore, the effective length of the cavity increases proportionally with higher fi-

nesse (this is only true until the gravitational wave period reaches storage limit of
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Figure 5: A lossless over-coupled cavity (r1 < r2 similar to the arm cavity in aLIGO.

The power in each case is normalized by the total incident power. This cavity has a

finesse of 450. Each plot considers only a single fsr of the cavity. (a) The fractional

power reflected from the cavity as a function of the shift off resonance. (b) The

fractional power transmitted from the cavity as a function of the shift off resonance.

(c) Phase shift of light in the cavity as a function of the shift off resonance. (d) Cavity

gain as a function of the shift off resonance.
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the cavity). Converting this into improvement in phase sensitivity simply involves

multiplying F/2π by a factor of 4. It is worth noting that any noise associated with

the displacement of the cavity mirrors also increases by a factor of the finesse as well.

Discussion on methods for mitigating optical losses from cavity misalignments and

degradation of the phase signal will be elaborated on in later sections.

1.4.2 Power Recycled Fabry-Perot Interferometer

One significant consequence of choosing an operating point near the dark fringe, is

that conservation of energy requires that all the light be reflected back toward the

symmetric port. A more efficacious use of this reflected power would be to reinject it

back into the Fabry-Perot Michelson (FPM). The solution is simple when considering

that the Fabry-Perot Michelson can be seen as a effective cavity with frequency de-

pendence (Fig. 6). Then, by positioning mirror between the laser and the FPM at a

length lPRC , we can create another cavity such that the light reflected from the FPM

constructively interferes with the light coming from the laser. Fritschel et. al [21]

show that placing a “recycling” mirror at the symmetric port increases the optical

gain of the FPM, thus reducing shot noise.

To determine the gain of the power-recycling FPM, we can use Eqn. 1.22 in the

case where the reflectivity of the second mirror is given by the composite reflectivity

of the FPM rFPM . The input mirror is simply a partially transmitting mirror with

a reflectivity rp. If we consider the light transmitted through the end mirror of the

FPM as an optical loss LFPM of the power recycling cavity, then conservation of

energy tells us

rFPM = 1− NFPM

2
LFPM , (1.26)

where the loss scales with the round trip number of bounces in the cavity NFPM
1.

Plugging this into Eqn. 1.22, the power gain in the power-recycled cavity takes the

form

1The effective number of bounces in a Fabry-Perot cavity is related to the finesse of the cavity

by

N =
2F
π

(1.27)
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Figure 6: A power-recycled Fabry-Perot Michelson inteferometer. In this

configuration, a mirror PRM, having a reflectivity of rp is added to the symmetric

port at a distance lp from the beamsplitter. This forms a coupled cavity between the

Fabry-Perot Michelson interferometer and the PRM. the effective length of the cavity

is given by lPRC = lp + lx+ly
2
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GPRC =
PPRC
Pin

=
1− r2

p[
1− rPRM(1− NFPM

2
LFPM)

]2 (1.28)

By differentiating Eqn. 1.28 with respect to rp and setting the derivative equal to

zero, we can determine where the gain is maximized. The gain is maximized when

rp = 1− rFPM and to first order we see

Gmax
PRC ≈

1

NFPMLFPM
(1.29)

or that gain is inversely proportional to the total loss in the FPM. This reveals that

the optical losses in the FPM must be kept low to realize significant gain of the PRC.

The power recycling cavity does not alter the frequency response of the interfer-

ometer. In the same sense, the phase shift produced by a gravitational wave is not

increased by the addition of a power recycling cavity. This can be reasoned heuristi-

cally by considering that the gravitational wave sidebands only appear in the signal

at the anti-symmetric port. Therefore, only the power of the carrier is the enhanced

by the power recycling gain. This also results in a reduction of the shot noise of

a power-recycled interferometer by 1/GPRC . The next section will discuss ways in

which the frequency response is tailored in the aLIGO detector.

1.4.3 Dual-Recycled Fabry-Perot Interferometer

Signal Recycled FPMI

It was shown in the previous section that with power recycling, the circulating carrier

power is increased by adding a mirror at the symmetric port. A similar technique

involving recycling can be used to enhance the power in the gravitational wave signal

sideband. By placing a partially-reflective, signal recycling mirror (SRM), at the

output port, a resonant cavity is formed which increases the storage time of the

gravitational wave signal sidebands [22], thus increasing sensitivity below the cavity

pole frequency.

If we consider the power recycling cavity operating in tandem, then the result is a

dual-recycled FPMI, with increased carrier power in the arms and higher sensitivity to

gravitational wave signal sidebands. One drawback of this method, is that increased

storage time of the gravitational wave signals means the interferometer operates in
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Figure 7: A dual-recycled Fabry-Perot Michelson inteferometer. This mod-

ification is one of the defining changes made in the transition from initial LIGO to

aLIGO. In this configuration, a signal recycling mirror SRM, is added at the anti-

symmetric port at a length ls from the beamsplitter. The signal recycling mirror

forms a coupled cavity with the two inner test masses, which “traps” the gravita-

tional wave signal sidebands. The light sees the SRM and ITMs as have a composite

reflectivity of rSRC . The effective length of the cavity is given by lSRC = ls + lx+ly
2
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a much more narrower frequency bandwidth, which is not always ideal for detection.

The next section, discusses ways in which the signal-recycling cavity is tuned to allow

for a much more broadband detector response.

Resonant Sideband Extraction

Resonant sideband extraction is a technique which decreases the signal storage time

of the gravitational wave sidebands in the arm cavity, while increasing the carrier

power [23]. It is the current technique of signal enhancement used by advanced LIGO

detectors.

To see how it works, consider the light propagating toward the ITM after reflecting

off the ETM in Figure 7. The reflectivity seen by the light in this case represents the

combined reflectivities of the SRC and ITM, rSRC . Additionally, we know that when

a gravitational wave modulates the circulating light in the arm cavities, it generates

sidebands that are offset at a frequency fgw. Therefore, the signal sidebands and

carrier light can be made to see very different cavities depending on the microscopic

tuning of the length of the SRC. In this case, it is possible to lower the finesse of

the signal sidebands in the arm cavity, while increasing the finesse for the carrier

light. This also ensures that much of the carrier power is trapped in the arms of the

interferometer and doesn’t exit through the input mirrors, mitigating the effects of

thermal absorption in the substrates of the test masses. The consequences of high

power operation, will be highlighted in detail in later sections.

1.5 Length Control and Alignment Sensing in LIGO

In previous sections, the layout of the aLIGO system was discussed as being composed

of a large network of coupled optical cavities with suspended optics. In order to

effectively measure the distances between the test masses to integer multiples of the

light wavelength, techniques for reducing motion along the seven degrees of freedom

in the interferometer have to be employed. The requirement for aLIGO is that the

longitudinal motion for aLIGO to be controlled to less than a picometer[7]. In this

section, I will discuss the cornerstone method for active length control in aLIGO

and elaborate on how this is generalized for a large-scale dual-recycled Fabry-Perot

Michelson Interferometer (DRFPMI).
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1.5.1 The Pound-Drever-Hall Technique

Carrier Field

Upper SB 

Lower SB

EOM
Laser

RF Photodetector
𝜑

Error Signal

Figure 8: Illustration of the Pound-Drever-Hall locking scheme used to achieve reso-

nance in a Fabry-Perot cavity. The phase modulated sidebands undergo a separate

round-trip phase propagation as they are reflected from the cavity on resonance, thus

acting as a reference field. When the cavity is offset from resonance the immediately

reflected sidebands and carrier field are optically-mixed and detected by the photot-

diode. The resulting phase difference between the carrier and sideband fields appears

as a modulation of the incident power on the photodiode.

The fundamental application of the Pound-Drever-Hall (PDH) technique is to

stabilize the laser frequency and ensure that fluctuations in the laser frequency from

the linewidth are mitigated. From an application standpoint, PDH works by using

the phase relationship between an optical carrier field and RF modulated sidebands

to keep a cavity on resonance. This also ensures, that any technical laser noise is

decoupled from laser frequency fluctuations. To see how this works, consider that the

carrier field Ec = E0e
iωct incident on a symmetric cavity with no losses (as shown in

Figure 8). The incident light is phase modulated using an electro-optic modulator
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(EOM), which adds sidebands at a frequency of ±Ω2. Therefore, the field incident

on the cavity is given by:

Ein = Ece
iΓ sin(Ωt) (1.30)

≈ Ec(1 + iΓ sin(Ωt) (1.31)

= Ec

[
1 + Γ

(eiΩt − e−iΩt
2

)]
, (1.32)

where here it is assumed that the modulation index Γ is kept relatively small (Γ << 1)

such that only the carrier and first order sidebands are dominant. The modulation

frequency is such that the sideband frequency sits outside the bandwidth of the cavity.

This is done such that the when the cavity is resonant on the carrier, the sidebands

are rejected from the cavity. By applying the reflection coefficient for the cavity to

the sidebands, Equation 1.20, we can show how the cavity response differs:

rsb± = −r1 +
t21r2e

−i2(k+kΩ)L

1− r1r2e−i2(k+kΩ)L
(1.33)

Here kΩ is the sideband wavenumber at the given modulation frequency. The reflected

field is given by the heterodyne beat between the carrier and sidebands. In terms

of the optical power, this represents an amplitude modulation of the optical power

at the modulation frequency (The formal derivation is provided in Black [24]). The

measured optical power is then converted into a photocurrent. The output signal is

demodulated using a mixer, which extracts the modulated signal to baseband. All

frequencies above DC are subsequently filtered out using a low pass filter and the

error signal is given by

ε = 2
√
PcPsb=

[
rcr
∗
sb+

+ r∗crsb−
]
, (1.34)

where rc is simply the reflection coefficient for the carrier field.

Figure 9 shows the error signal as a function of the cavity detuning for a lossless,

symmetric cavity. As the cavity is misaligned from the resonance, we see that the

measured error signal is proportional to the phase of the carrier. The slope can then

be used to determine on which side of resonance the cavity is on. Therefore, by

2Phase modulation is the appropriate choice where control over fast oscillations is needed resulting

in a large servo bandwidth [24] [25].
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Figure 9: Here the normalized error signal is plotted as a function of the cavity

detuning for a modulation frequency of 25MHz. The cavity is modeled as a losses

cavity with symmetric mirrors with a finesse of 500. Notice the regime around the

resonance is where the error signal is linear, which is ideal for feedback controls.
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actuating on the cavity length or laser frequency, it is possible to hold a cavity on

resonance3. It is important to note that the slope of the carrier and sidebands have

opposite signs going through resonance. This implies that it is possible to lock to

a given sideband provided a sign flip in the feedback loop electronics (This method

is later used in Section 4.3.1 for measuring the phase of a single sideband). Since

information about the cavity length is also encoded in the error signal around the

resonance condition, it is also possible to extract information about how much the

cavity length was perturbed. In the next section I will explore this as a generalized

method for PDH used in the aLIGO detectors.

1.5.2 Length sensing and control of a DRFPMI

The individual lengths of optical cavities and the interferometer are given by the

graphic in Figure 7. Since sensing and control of the interferometer is done with re-

spect to the differential and common arm motion, then by symmetry we can condense

these motions into five degrees of freedom representing the sum and difference of the

arm cavity motion. The various degrees of freedom are given in Table 1.

Table 1: Five degrees of longitudinal motion in a DRFPMI.

Degree of Freedom Parameter Acronym

Differential Arm Cavity Lx − Ly DARM

Common Arm Cavity Lx + Ly CARM

Differential Michelson lx − ly MICH

Power-Recycling Cavity lp − (lx + ly)/2 PRCL

Signal-Recycling Cavity ls − (lx + ly)/2 SRCL

As previously mentioned, sensing these degrees of freedom require a generalized

application of PDH, where multiple sidebands are used for sensing in different parts

of the interferometer. It turns out that only two modulation frequencies, 9MHz

and 45MHz, are required for global sensing of the differential and common motion

of the arm cavities in aLIGO[7]. By allowing these sidebands to resonate in the

3An application note on PDH locking: The cavity must be tuned close to resonance in order for

the servo to have sufficient bandwidth to lock the cavity.
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interferometer and picking off the signal at specifically selected ports, it is possible to

sense the five degrees of freedom associated with the DRFPMI.

The various sensing ports are illustrated in Figure 3. The sensing ports used at the

symmetric port are the reflection port (REFL) and the pick-off port (POP). REFL is

used to measure information associated with 9MHz and POP measures information

relating to the relative beat between the 9MHz and 45MHz sideband. The Schnupp

asymmetry allows for the 45MHz sideband to couple into the dark port (DP)4.

Length sensing and control is one facet of interferometer control, similarly, LIGO

is also concerned with alignment and control of the various optical cavities. Many of

the same techniques and sensing ports used for length sensing also apply to alignment

sensing, such as the use of RF sidebands to generate error signals for active control.

However, the formal name for a sensing system used to achieve alignment control is

a wavefront sensor (WFS). This will be discussed in more detail in the next chapter

as it applies directly to the work done in this thesis.

1.6 Alignment Sensing and Control (ASC) in LIGO

In the previous section, I discussed how we can maintain control over the length de-

grees of freedom in LIGO. In this section I will briefly discuss how we maintain control

over the angular degrees of freedom and challenges to maintaining control of align-

ment in LIGO. The angular degrees of freedom in LIGO refer to the “pitch”-rotation

about the horizontal axis-and “yaw”-rotation about the vertical axis experienced by

the mirrors in the interferometer. In order to achieve optimal strain sensitivity, the

ASC must meet the following control requirements[25]:

1. The ASC must maintain angular degrees of freedom in the interferometer to

∼ 10nrad in accuracy. This ensures that coupling from intensity noise, beam

jitter or oscillator noise is reduced. This also means that angular motion of the

optics must be controlled to < 10nrad RMS [27, 28].

2. The beam deviation from the center of the mirrors must be held to within 1

mm [28]. Additionally, the displacement noise introduced by the ASC must be a

4The Schnupp asymmetry is carefully chosen so that: 1) A sufficient amount of sideband is

present at the dark port for sensing. 2) Intensity fluctuations of the laser do not couple into the

interferometer readout. The amount of asymmetry in the aLIGO detectors is 8 cm [26]
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factor of 10 lower than the interferometer displacement noise in the gravitational

wave detection bandwidth.

3. Additionally, angular displacements in the direction of the input laser must

be less than 1.5 × 10−14 rad/
√

Hz and transverse deviations must be less than

2.8 × 10−10 m/
√

Hz

The content in this section requires prior knowledge of the Gaussian beams and

higher-order modes, as well as coupling of Gaussian beams in optical cavities. The

reader is encouraged to take a look at Appendix A, for a review on Gaussian beams,

higher-order modes, and coupling into optical cavities. First, I will discuss the frame-

work for alignment theory developed by Anderson and then the practical application

of alignment sensing for interferometers.

1.6.1 Misalignment and Mode Mismatch

If we consider a beam incident on a Fabry-Perot cavity, the beam is said to be

aligned with the cavity if the optical axis and cavity axis are coincident. Conversely,

a displacement or rotation of the cavity mirrors produces a misalignment of the optical

axis with the cavity axis. This results in reduction of the resonant beam power in

the cavity due only a fraction of the incident beam coupling into the cavity. Theory

on the misalignment of optical resonant cavities is explored by Anderson [29] and

experimental methods are demonstrated by Morrison [30].

Anderson tells us that the most convenient way to express the spatial modes of

a stable resonant cavity is using the HG modes. This ensures minimal losses as the

beam resonates in the cavity and that the beam retains its shape as well. Additionally,

we can also express our input beam as a linear combination of the HG modes, which

is useful for describing when the input beam is either displaced or rotated about

the cavity axis (shown in Figure 10 a and b ). The lowest order HG modes in one

dimension (x dimension) are:
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Figure 10: Cases of misalignment of the input beam with respect to the cavity: (a)

Transverse displacement of ∆α along the x direction; (b) Rotation of the input axis

by an angle ∆θ with respect to the cavity axis; (c) mismatch of the beam waist; (d)

displacement of the beam waist with respect to the cavity waist along the direction

of propagation
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U0(x) =

(
2

πω2
0

)1/4

e−x
2/ω2

0

U1(x) =

(
2

πω2
0

)1/4
2x

ω0

e−x
2/ω2

0 (1.35)

Notice that for simplicity, we consider a point at the waist at which the radius of

curvature goes to infinity and the relative phase accumulation of the beam is zero.

We expand these lowest order modes to describe the input beam in the case where:

1) it is displaced from the cavity axis and 2) it is rotated about the cavity axis.

Mode mismatch is described by the bottom two cases in Figure 10; where 1) the size

of the input beam waist does not match the cavity waist and 2) the beam waist is

displaced from the cavity waist. The radial symmetry of the cavity leads us to choose

the LG modes as our cavity eigenmodes. Similar to before, we can expand the input

beam as a linear combination of the LG modes. The lowest order LG modes assuming

radial symmetry (l=0) are:

V0(r) =
2

π

1

ω0

e−r
2/ω2

0

V1(r) =
2

π

1

ω0

(
1− 2r2

ω2
0

)
e−r

2/ω2
0 (1.36)

In general, if we want to calculate cavity coupling, we would compute the overlap

intergral of the incident beam mode ψ1 with the cavity mode ψ2. it is desired that

the input beam maximally couples (complete overlap) with the cavity mode. The

coupling coefficient is given by [31]:

η =
|
∫
ψ∗1ψ2dA|∫
|ψ1|2

∫
|ψ2|2

(1.37)

Transverse displacement of input beam

If we consider a small displacement αx/x0 � 1 of the input beam from the cavity axis

this leads to coupling into the first order HG mode. The importance of this result
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Degree of

Freedom

Parameter Coupling co-

efficient

Mode Phase(deg) Frequency

Transverse

displace-

ment

∆αµ ∆αµ/ω0 U1(µ) 0 ν0

Tilt ∆θµ ∆θµ
πω0

λ
U1(µ) 90 ν0

Waist size ω′0 ω′0/ω0 − 1 V1(r) 0 2ν0

Waist posi-

tion

b λb
2πω2

0
V1(r) 90 2ν0

Table 2: First order cavity misalignment and mode mismatch coupling coefficients

as given in [29], where µ = x or y. ∆αµ is the amount of transverse displacement

experienced by the input beam and ∆θµ denotes the amount of tilt the input beam

experiences relative to the cavity axis. ω′0 denotes the input beam waist and b rep-

resents the difference in waist position from the cavity waist. ν0 is the frequency

difference between the TEM00 Gaussian mode and higher order modes given by:

ν0 = c
2d

1
π

cos−1
[(

1− d
R1

)(
1− d

R2

)]1/2

, where R1 and R2 are the radius of curvatures

of the cavity mirrors and d is the distance between the mirrors.
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is that transverse displacements of the optical axis with respect to the input beam

axis can be described by the first order HG modes. This holds true for translations

of the input beam along both x and y directions of the cavity axis since we defined

the HG modes to be separable in x and y. The coupling coefficient for a transverse

displacement of the optical axis is given in Table 2. As mentioned, this approximation

only holds if the displacement is taken to be much smaller than the cavity waist.

Tilt of input beam

Another case of misalignment occurs when the optical axis is rotated in either pitch

or yaw by some angle ∆θµ with respect to cavity axis (see Figure 10) . Similarly, we

see that the misalignment due to tilt produces coupling of the input beam into the

first order mode; however, there is a phase shift of 90 degrees at the waist. We can

see from Figure 10 that a large rotation of the optical axis in the near field results in

a negligible phase shift in the far field. Conversely, a small translation of the optical

axis in the near field results in a significant phase difference in the far field.

Waist size shift

Next, we consider a small perturbation to the input beam waist such that ω′0 =

ω0(1 + ε). Following the calculation in [29], we see that waist mismatch produces

coupling into the lowest order LG01, or “bullseye” mode (for reference a spatial map

of this mode is shown in Appendix A). The Laguerre-Gauss basis is used in this case

based on the radial symmetry; however, we can also choose to express coupling due

to mode mismatch in the cavity basis, or as a sum of the two second order HG modes.

In this sense, we can consider mode mismatch to be a second order effect.

Waist position shift

Finally, we consider the case where the beam size is matched but the waist is shifted

a distance b along the z direction. Since the radius of curvature is finite at the cavity

waist, we need to include this term in the expressions for the eigenmodes of the cavity.

The result is that a shift in waist position of the input beam couples into the first

order LG mode similar to a shift in waist size; however, the mismatch mode is now

in quadrature with the fundamental Gaussian mode.
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1.6.2 Wavefront Sensing

The application of wavefront sensing in gravitational wave detectors is for the pur-

pose of detecting higher order mode content coupling into the interferometer via

misalignment or mode mismatch. Similar to the PDH locking method discussed in

Section 1.5.2, wavefront sensing uses non-resonant sidebands in reflection of a cav-

ity to extract alignment and mismatch signals. The use of non-resonant sidebands

also allows length signals to be acquired by the detector. In the case of wavefront

sensing, intensity modulation of the optical beat between the carrier and sidebands is

used to probe the alignment of the optical cavity. One of the key differences between

the Pound-Drever Hall technique and wavefront sensing is, typically, a segmented,

radio-frequency (RF) photodiode is used to measure the optical beat field of the

immediately reflected sidebands and the carrier after a single pass through the cav-

ity. The error signals are then extracted by subtracting the appropriate segments of

photodiode corresponding to geometry of the misalignment or mode mismatch.

To illustrate wavefront sensing analytically, consider the modulated one-dimensional

carrier field incident on the cavity of the form

E1 = A1a0U0, (1.38)

where A1 is the amplitude coefficient and U0 is the fundamental Gaussian mode.

We describe the time dependence of the field using a0 which contains the phase

modulation m(t) and the relative phase difference Φ between the two fundamental

mode components of the two beams. We write a0 as

a0 = ej(ωt+m(t)+Φ), (1.39)

where ω is the angular frequency of the incident light. Notice, fundamentally there

is no difference between Equations 1.30 and 1.38, with the exception that here we

are choosing to express the incident field as an eigenmode of the cavity. When the

cavity is on resonance, the sidebands are immediately reflected and the carrier field

is transmitted through the cavity. If there is a misalignment or mode mismatch, the

part of the field inside the cavity couples into the respective higher order modes. The

form of the beam in the presence of misalignment or mode mismatch can be described

by
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Transverse displacement Tilt Waist size Waist position

r0 1 1 1 1

θ0 0 0 0 0

r1 � 1 � 1 0 0

θ1 0 π
2

0 0

r2 0 0 � 1 � 1

θ2 0 0 0 π
2

Table 3: Parameters used to characterize tilt, transverse displacement, waist size,

and waist position of the higher order misalignment/mismatch modes resonant in the

cavity.

E2 = A2 (b0U0 + b1U1 + b2U2) , (1.40)

where again A2 represents the amplitude coefficient for the field inside the cavity and

Un describes the modes resonant in the cavity. The complex coefficients, bn determine

the magnitude of the misalignment and/or mismatch present in the cavity. It is given

by

bn = rne
i(θn+ωt+φn(z)) (1.41)

Table 3 shows the values of rn and θ0 for each of the discussed misalignment/mis-

match types, where in all cases r0 = 1. As previously mentioned before, the phase

difference present between the fundamental beam and the higher order modes allows

one to distinguish each of the cases of misalignment /mode mismatch. Another thing

to note is that the beam inside the cavity is not modulated; therefore, the higher or-

der modes associated with misalignment and mode mismatch are unmodulated upon

leaking output from the cavity input mirror. The resulting field in reflection of the

cavity is given by the sum of the two fields

E = E1 + E2 = (a0A1 + b0A2)U0 + b1A2U1 + b2A2U2, (1.42)

and the optical power is given by EE∗. In the case that the m(t) � 1, evaluating



33

for the optical power gives us a spatially dependent intensity modulated signal at

the modulation frequency of interest. I will show that by integrating this signal over

various photodiode geometries, we can extract both length and alignment error signals

of interest.

Detecting with a single element photodiode

Since we are only considering optical power incident in the x-direction, we only need to

integrate in one-dimension. We can assume that the beam size at the detector is much

smaller than the sensor area, which allows us to ignore clipping of the photodiode.

Therefore, the modulated intensity can be found by evaluating the integral from ±∞

I =

∫ ∞

−∞
|EE∗| dx

∝ m(t)A1A2 sin Φ (1.43)

The result of Equation 1.43 shows that the higher order mode contributions from

misalignment and mode mismatch produce no net contribution to the measured mod-

ulated intensity at our detector. Here, the intensity is proportional to relative phase

difference between the two beams. In essence, integrating over the entire area of the

sensor allows us to recover information about differential changes in the length of

the cavity, which is consistent with the error signal obtained via the traditional PDH

method in Section 1.5.2.

Detecting with a split photodiode

Consider now an RF photodiode split along the y-axis. If the incident signal is

distributed symmetrically over the detector, then the difference of the integrated

intensities can be used to determine the misalignment error signals

I ∝
∫ ∞

0

|EE∗| dx−
∫ 0

−∞
|EE∗| dx (1.44)

Because this is also true for the orthogonal direction, photodiodes used for sensing are

typically split into four quadrants. Subtraction of the left and right quadrants allows

for sensing of “yaw” and top and bottom for sensing of “pitch” degrees of freedom.
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The integration of the quadrants result in a cancellation of the cosine terms; therefore,

the intensity is given by

I ∝ r1m(t)A1A2 sin (θ1 + ϕ1(z)) , (1.45)

where ϕ1 = arctan

(
λz

πω2
0

)

where r1 and θ1 are given by the values in Table 3 and ϕ1 is the Gouy phase shift of

the higher order mode. We see that for errors in tilt (θ1 = π/2), the error signal is

proportional to cos[ϕ1(z)] and we get a maximum signal at the waist (z = 0). Addi-

tionally, for misalignments due to translation (θ1 = 0), the error signal is proportional

to sin[ϕ1(z)] and we get a maximum signal in the far field where ϕ1 → π/2.

This result is significant because it determines where our photodiode should be

placed in order to sense both types of misalignment. In the near-field, or close to the

beam waist, a tilt produces an error signal on our phototdiode since the plane wave

phase fronts of the two beams produce a differential phase pattern. Conversely, in the

far-field the phase fronts of the two beams can be approximated as spherical waves

in which both of the radii of curvature become equal to the distance of propagation

in the far field. In this case, no interference pattern is produce in the far field and no

error signal is detected.

The opposite is true for translations, which produce no signal at the waist, but at

a distance far from the waist the photodiode will see a larger intensity contribution

along the direction of the shifted beam.

Detecting with an annularly split photodiode

An annularly split, or “bullseye” photodiode is the pragmatic choice in the detection

of radially symmetric mismatch modes. Annular photodiodes commonly feature an

inner circular region upon which the beam is centered, a null point around the central

region, and an outer ring. By subtracting the integrated intensity of the inner region

from the outer region, we can obtained the measured error signal.

I ∝
∫ ∞

r

|EE∗| rdr −
∫ r

0

|EE∗| rdr (1.46)
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The cylindrical symmetry means that the integral only needs to be evaluated over

the radial coordinate. The result of the integral is similar to the case for the split

photodiode, with the exception that only the even terms are left after integration.

Therefore, the measured intensity is of the form

I ∝ r2m(t)A1A2 sin (θ2 + ϕ2(z)) , (1.47)

where ϕ2 = 2arctan

(
λz

πω2
0

)
.

In this case, positioning our photodiode at the waist would optimize sensitivity for

measuring waist position mismatch (θ2 = π/2). A simple qualitative explanation for

this is because the input beam now has some curvature at the cavity waist due to

the offset in waist position. The signal is maximum when ϕ(z)2 = 0. Sensitivity to

mismatches in waist size (θ2 = 0) is maximum when the measuring at ϕ(z)2 = π/2,

or when z = πω2
0/λ.

1.6.3 Wavefront sensing of a Dual-Recycled Fabry-Perot Michelson In-

terferometer

The section aims to highlight the in-situ sensing of wavefront sensing aLIGO. For

more general discussion on wavefront sensing in aLIGO see [33, 32]. For a dual-

recycled interferometer with Fabry-Perot arms the complexity of sensing becomes

much more challenging. The four longitudinal degrees of freedom are sensed using the

typical Pound-Drever Hall length sensing technique, where RF-sensitive photodiodes

are placed at three separate detection ports in the interferometer: the reflection port,

antisymmetric port, and the recycling cavity pick-off port. By sampling the intensity

modulated signal between carrier and sideband, it is possible to extract an error signal

for length, proportional to the relative phase difference of the two reflected beams.

The alignment sensing technique used in aLIGO also has the added benefit that

the same sensors can be used for both length and angular sensing. This is because the

spatial pattern between the carrier field and sidebands can also carry misalignment

information. One key difference between alignment signals and length signals is that

the relative Gouy phase shift accumulated by the higher order misalignment modes.

By positioning a wavefront sensor at the appropriate location, we can distinguish
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Figure 11: aLIGO optical sensors layout [32].
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between a misalignment produced by the input or end mirrors. The presence of a

misalignment in either mirror of the cavity will cause either the TEM10 or TEM01

mode to resonate in the cavity, thus the magnitude of the misalignments can be de-

tected in the beat signal measured at the detector. The interference pattern produced

between the TEM10 and TEM00 will depend on the relative Gouy phase shift between

the two modes, which is a function of the longitudinal position of the sensors along

the optical axis.

Comparing both DC and RF signals, we can see that DC signals are used to

sense the absolute position of the beam on the cavity optics and the RF signals are

used to sense the relative positions of the cavity mirrors with respect to each other.

Because the aLIGO detector is a coupled network of optical cavities, several degrees of

freedom must be sensed in both transverse position and angle. First, the input beam

contributes a degree of freedom in both pitch and yaw. Each of the core optics in

the interferometer contributes an additional angular degrees of freedom for each optic

– this includes the four arm cavity mirrors, beam splitter, and signal and recycling

cavity mirrors – for a total of 13 degrees of freedom in total. Because the input

beam and recycling mirrors can be described by relative motion of the other cavity

optics, we only need to consider 10 independent degrees of freedom. For the aLIGO

interferometer, generally there will be at least two wavefront sensors, separated by

90◦ Gouy phase5, at each of the output ports (REFL, AS, POP, TRX, TRY as shown

in Figure 12). The suffixes A and B in Figure 12 denote the two respective sensors.

The RF amplitude-modulated signal detected by each wavefront sensor positioned at

one of the four detection ports has the general form given by [28]

WFS(η,Θ,Γ) ∝ Pinf(Γ)×
N∑

i=1

AiΘi cos(η − ηi) cos(ωmt− φDi), (1.48)

where, Pin is the input power, Γ is the modulation index – where f(Γ) ≈ Γ for

Γ � 1, η is the additional Gouy phase shift due to the longitudinal position of

the WFS, and N are the total number of degrees of freedom. For the ith angular

degree of freedom, we also define: Ai the magnitude of the intensity modulated beat

between the fundamental and misalignment modes, Θi the misalignment angle, ηi the

5The concept of Gouy phase in a gravitational wave detector is detailed in Appendix B.
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relative Gouy phase shift between the fundamental and misalignment modes measured

at the detector, and φDi is the phase of the signal at the modulation frequency.

By demodulating in the respective quadrature, we are able to spatially resolve any

amplitude fluctuations due to misalignment and mode mismatach. The sensitivity to a

particular degree of freedom in the interferometer depends highly on the demodulation

phase. For maximum sensitivity to differential motion at the AS port, the sensing

signal is demodulated in quadrature (Q-phase). The signal demodulation phase is

set in quadrature (Q). Since sensing at the AS port is the main focus of this thesis,

I will limit the discussion to sensing at the AS port. (For more detailed information

on sensing schemes refer to [32].

The total power available for each sensor, considering the nominal operating power

of 125 W for aLIGO, is 50 mW. This applies to every sensor before the AS port, where

99% of the power is used to control length and 1% is used for angular sensing leaving

only 5 mW of power for 2 sensors or 2.5 mW of incident power [32]. This means that

logistically, sensors placed at the AS port must be able to sense modulated signals of

much less power in order to measure any significant spatial features of the alignment

signals. A discussion on how this was considered in our sensor design is discussed in

Chapter 3 and 4.

Overview: Sensing Scheme

In practice, solving the analytical form of Equation 1.48 for each coupled DOF is quite

challenging; therefore, in order to measure the response of each sensor to multiple

degrees of freedom, numerical models have been developed [32] which extract the

response of each sensor to a particular degree of freedom. The response of each

sensor to an excitation of a particular degree of freedom can be used to develop a

sensing matrix. By inverting the sensing matrix, an input matrix is generated which

reconstructs the error signals for a particular degree of freedom. The error signals for

each degree of freedom are then filtered and sent as inputs to the suspension system

to control angular position of the optics.

An example of the architecture overview of the sensing scheme in aLIGO is shown

in Figure 12. The signal flow is described by the following:
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Figure 12: Feedback loop for the ASC in aLIGO [32]. The optical response of the

mirrors is measured by the wavefront sensors, which is used to develop an input

matrix for feeding back the error signals into the actuators.

IFO optical response Initial response of a particular degree of freedom to an an-

gular motion.

Input matrix The signals on the sensor, with the addition of sensor noise (in the

form of shot noise in this example) are combined in an input matrix to define

the error signals for a particular degree of freedom.

Control filters and mirror compensators The resulting error signals are filtered

and mapped onto the respective mirror degree of freedom.

Pendulum response The compensating force applied to the suspension system to

actuate on a particular degree of freedom.

1.7 ASC considerations on sensitivity

Any misalignment or mode-mismatch (due to static or transient sources) between

the four main interferometer cavities will cause non-resonant HOMs to couple into

the optical cavities. Since HOMs accumulate a different Gouy phase from the funda-

mental mode, this will result in a degradation of alignment signals and greater loss
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of sensitivity. There are a few progenitors of problems that afflict the ASC chain

that are worth highlighting for the scope of discussion; however, I refer the reader to

[32, 34] for a much more elaborate description of these issues. Here are a few issues

that are of particular interest to this thesis because of the potential for a detectable

amplitude modulation measurement:

• Angular noise coupling to DARM: Residual beam spot motion on the main

cavity mirrors produces an effective length change of the main optical cavities.

This can be converted into a modulated intensity noise upon reflection from one

of the filter cavities.

• Influence of radiation pressure: High power operation causes significant radi-

ation pressure torque on the cavity mirrors leading to coupling between pitch

and yaw resonances. This is referred to as the soft and hard mode resonances,

which are used as the eigenbasis for alignment schemes in aLIGO [33].

1.8 Conclusion

The aLIGO detectors contain a complex network of coupled optical cavities that re-

quire precision control in order to maintain sufficient sensitivity to gravitational wave

signals. The Pound-Drever-Hall method for controlling length uses high-frequency

modulation/demodulation of the RF beat between carrier and sidebands to ensure

control of mirror position. Moreover, the addition of wavefront sensors, positioned at

the appropriate Gouy phase separation, measure the two lowest order HOMs (TEM10

and TEM01) associated with tilt and displacement of the interferometer mirrors.

This chapter highlighted each of these methods to motivate the need for a dynamic

and high resolution wavefront sensor. As I will show in the next chapter, external

environmental and physical effects can disturb the alignment and mode matching of

the interferometer during operation. Therefore, it is crucial that LIGO wavefront

sensors can characterize the spatial information produced by these disturbances in

the readout of the interferometer.
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Chapter 2

Motivation for Developing a

Solid-State Phase Camera

Upgrades to the advanced LIGO detectors include increasing laser power and imple-

menting squeezed states of light. In particular, higher laser power has the benefit

of adding increasing sensitivity to gravitational wave signals and reducing detector

shot noise by 1/
√
Pin. With that said, transitioning to higher power has created

several problems for current generation gravitational wave detectors during the third

observing run.

In particular, high power operation has lead to optical absorption of power in

the coatings and substrate of the test masses, worsening the effects of material in-

homogeneities and point-defects already present in the test masses. This has led to

distortion of the optical wavefront of the beam entering and exiting the main LIGO

cavities, which acts as a vehicle for HOM coupling into the control signals and read-

out of the interferometer (discussed in Section 2.1.1). In Section 2.1.1 I will discuss

specifically how the coupling of HOM from wavefront distortion can affect sideband

quality, interferometer operation, and readout sensitivity to gravitational wave sig-

nals. Section 2.2 addresses other effects of high power on sideband quality as it relates

to the input beam and is included for breadth of discussion; although, this is not the

main focus of the work in this thesis.

In Section 2.3 I cover some of the existing wavefront sensing technology used in

the aLIGO detectors for identifying these wavefront distortions either through direct

measurement of the optical wavefront or through measurement of the sideband beat
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signal. In Section 2.4 I will discuss image sensors and their potential for imaging

spatial mode content in gravitational wave detectors.

2.1 Effects of high power in LIGO detectors

During O3, the aLIGO detectors operated with a nominal operating power of 30-45

W. Considering the power recycling cavity gain gPRC ≈ 45 and the main arm cavity

gain gARM ≈ 225, the total circulating arm power in each arm can be determined by

PARM ≈
1

2
(gPRC ∗ gARM ∗ Pin) , (2.1)

which leads to a nominal circulating arm power of ≈ 150 kW. Considering this amount

of circulating power, and an effective optical absorption of 0.5 ppm [6] on the highly

reflective coatings of the test masses, this results in a loss of 0.075- 0.1 W due to

absorbed optical power in the test masses. There are two effects that result from

absorbed power in the test masses:

1. Thermo-refractive effect: a change in the refractive index of the substrate

leading to significant wavefront distortion as the beam propagates through the

test mass.

2. Thermo-elastic effect: thermal expansion leads to a change in the shape of

the test mass. A common result of this effect is a physical deformation (“bump”

as shown on the highly-reflective coating of the ITM in Fig. 13) appears on the

surface of the test mass. This results in a change in the radius of curvature of

the test mass, which affects the Gaussian mode resonant in the cavity.

Both effects scale proportionally to temperature change produced by the heating

profile of the beam. Therefore, higher laser power worsens these effects by increasing

the amount of thermal energy absorbed in the test masses. Furthermore, absorbed

power can be classified as either uniform or non-uniform:

• Uniform absorption results in low-spatial frequency thermal lenses and curva-

ture errors of the test mass substrate. Uniform absorption effects are typically

much easier to deal with as they are easily modeled by spherical wavefront er-

rors [36]. In aLIGO, a thermal compensation system (TCS) is used to provide
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Figure 13: An illustration of the optical wavefront distortion induced as a result of

thermal lensing in the substrate and curvature errors of the mirror due to heating

of the test mass [35]. The surface deformation appears almost as a “bump” on the

mirror surface, which scatters light into HOMs.

correction for low-spatial frequency thermal lensing. This consists of a system of

sensors (e.g. Hartmann wavefront sensors (HWS) ) and actuators (ring heaters

attached to the barrel of the test masses and a CO2 laser heating compensation

plates) to apply correction to the mirrors. Discussion of the TCS is outside the

scope of this thesis; however, a good summary of the TCS is provided in [35].

• Non-uniform absorption gives rise to high-spatial frequency features on the test

masses. A common example of high -spatial frequency features in aLIGO are

infamous point absorbers. Research into the origin of point absorbers is still an

on-going effort; however, the wavefront distortion produced by point absorbers

remains a current issue to advanced gravitational wave detectors. Because point

absorbers are incredibly small (refer to Fig. 14 for scale) compared to the res-

olution of current sensors, wavefront distortions induced by the thermal lens of

a point absorber becomes difficult to characterize. Additionally, point absorber

features scatter light into HOMs beyond the resolution of quadrant or bullseye

photodiodes.
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Figure 14: A dark field microscope image of a point absorber as measured on an

aLIGO optic [6].

2.1.1 Wavefront distortions

Wavefront distortions are defined as the spatial deviations from the nominal phase

front of an electromagnetic field following transmission through or reflection off an

optical element. For simplicity, we can consider the case where a beam of wavelength

λ with a non-uniform spatial profile I(x, y) is absorbed on the surface of the optic.

The resulting phase distortion induced by the uniform heating is then proportional

to the amount of optical path length change ∆S(x, y) induced by the thermal effects

mentioned above

Φ(x, y) =
2π

λ
∆S(x, y) (2.2)

For this analysis, we can ignore the individual thermal effects on ∆S(x, y) and use

the fact that the thermo-optic effect is the dominant source of thermal distortion in

fused silica [37]. Assuming the light incident on a cavity is purely U00 (written in the

basis of the cavity), then the distortion will cause some of the light to be scattered

into higher order modes. We can model this as the incident field U00 subject to the

phase distortion Φ(x, y)

E = U00e
iΦ(x,y) (2.3)

The scattering of the field between modes is then expressed by calculating the overlap

Mmnpq =
〈
Upq|eiΦ(x,y)|Umn

〉
(2.4)
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Let’s say we are interested in the coupling as it relates to the fundamental mode

since that is what carries the GW signal sideband. Therefore, we can describe the

coupling in terms of the fraction of power scattered out of the TEM00 mode due to

the wavefront distortion by

S00,00 ≡ 1−M2
00,00

= 1− |
〈
U00|eiΦ(x,y)|U00

〉
|2 (2.5)

In the limit that ∆S(x, y)� λ, we can expand the exponential and to first order we

get

S00,00 ≈ 1− | 〈U00|1 + iΦ(x, y)|U00〉 |2

≈ 2 〈U00|iΦ(x, y)|U00〉 (2.6)

In this case, we can see that the power scatter due to the phase distortion can be

considered as a loss to the total cavity gain by extension of Equation 1.26. As a

corollary, increasing optical power will also increase the thermal distortions leading

to a decrease of optical arm cavity gain. Now, consider that the sidebands included

in our example and assume that the WD distortion produced by thermal effects are

purely spherical such that power is predominately scattered in the TEM20 mode. In

this case, we get [25]

S20,00 =
〈
U20|ei

2π
λ

∆S|U00

〉
(2.7)

=
〈
U20|ei

πDr2

λ |U00

〉

≈
〈
U20|i

πDω2

4λ
|U20

〉
, for k

Dω2

2
� 1

= i
πDω2

4λ
, (2.8)

where ω is the beam waist size and D ∝ Pabs/ω is the defocus. The result of Equa-

tion 2.7 shows that the amount of power loss due to the TEM20 mode is directly

proportional to the amount of power absorbed by the optic. There a number of ways

in which higher order mode coupling from wavefront distortions can lead to difficulty

in controlling the interferometer and a reduction in signal sensitivity.
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2.1.2 Impact of wavefront distortions on interferometer performance

Reduced sideband power: Measurement of 9MHz sideband during O3

This section discusses the sideband power level measurements taken by Daniel Sigg

following the replacement of ITM X and Y at LHO [38]. A persistent issue during

the third observing run was the “missing” 9 MHz sideband power when measuring

in reflection of the arm cavities. After the ITMs were replaced, the sideband power

levels were re-measured. Table 4 summarizes these measurements as a ratio of the

normalized power before and after replacing the ITMs.

Port DC 45 MHz 9 MHz Carrier

Input power 1 1 0.98 1

POP A NSUM 1.21 1.07 1.69 1.20

POP B NSUM 1.20 0.85 1.71 1.19

OMC A NSUM 1.04 1.19 0.24 0.79

OMC B NSUM 1.10 1.22 0.24 0.81

AS C NSUM 1.00 1.22 0.29 0.68

Table 4: The normalized power ratio of old vs. new sideband and carrier power after

replacing ITMs.

Some interesting results of this measurement, which identified the contaminated

ITMs as the main culprit behind the reduced 9 MHz sideband power buildup are:

• The 9 MHz power recycling gain increased by roughly a factor of 1.7

• Accounting for the input efficiency and losses along the optical path of PSL to

REFL, the percentage of power in the carrier, 45 MHz and 9 MHz was estimated

to be roughly 9%, 25%, and 65%.

• The 9 MHz power at the AS port was reduced by a factor of ∼4 in comparison,

thus reducing the amount of “junk” light from the 9 MHz at the AS port.

• Out of the 320 mW of power measured at the AS port, 269 mW was measured

in the 45 MHz sideband, 32-46 mW in the carrier and 4-5 mW in the 9 MHz

sideband. In the carrier, 23.3 mW of power was measured in the TEM00 and 9
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- 23 mW was measured in higher order modes. In comparison, before the ITMs

were replaced, the higher order mode power and fundamental mode power were

measured at roughly equal levels.

Maintaining adequate sideband power in the interferometer is important for gen-

erating reliable control signals and for the readout of gravitational wave signals. For

most of O3, the LHO had to deal with sub-par 9 MHz sideband power buildup be-

cause the spatial map of the 9 MHz sideband could not be directly imaged. Therefore,

these measurements stress the need for a phase camera as a diagnostic tool.

Reduced optical gain in the power recycling cavity

Recall from Equation 1.26 that the maximum gain of the PRC scales inversely with the

amount of optical loss in the cavity. When power is scattered out of the fundamental

mode of the interferometer after reflection from a distorted test mass, the power in

the fundamental mode is reduced leading to optical loss in the cavity.

This effect was observed during O3 when the incident optical power on the PRC

was increased from 25 W to ∼ 40 W and the corresponding power increase did not

increase the power buildup in the PRC. Figure 15 shows the relationship between

the input power and the measured power in the recycling cavity. The measured

power buildup is given for two separate beam spot locations on the ETMs at LLO.

The difference between the measurements at separate locations indicates that the

reduction in optical gain could be mitigated by simply changing the location of the

beam spot.

Increased jitter noise coupling

Input beam jitter coupling has been an important technical noise source for LHO

during the second and third observing runs of aLIGO. Beam jitter is the result of

fluctuations in the beam propagation direction or beam position. This often leads

to the excitation of first-order HG-modes that co-propagate with the fundamental

TEM00. Input beam jitter is worsened by cavity mismatch, which results in amplitude

modulation of the beam jitter modes coupling back into the main interferometer

detection port.
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Figure 15: Power incident on the beam splitter as a function of the interferometer

input power at LIGO Livingston Observatory (LLO) [2]. The dashed line is the

expected power buildup assuming no losses. Power is measured at POP and taken

for two separate locations on the end test masses.

During O2 at LHO, it was observed that arm cavity mismatch contributed a

significant amount of beam jitter noise coupling into the differential arm (DARM).

Efforts to reduce beam jitter included reducing motion of optics on the PSL table

and periscope in addition to subtraction of jitter noise from the readout. However,

it was found that replacing input X-arm test mass, which had a point absorber in

the coating, reduced the amount of coupled jitter noise from the pre-stabilized laser

to DARM [40]. Following O3, the ITMY test mass was also replaced, which also

resulted in an additional reduction of input beam jitter coupling due to the increased

arm symmetry and common mode rejection of jitter modes. The overall reduction in

beam jitter was measured to be close to a factor of 10 (see Fig. 16). Additionally, the

same factor of improvement in beam jitter was also observed in DARM, in particular,
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Figure 16: A comparison of beam jitter during pre-O2 (Apr 2019) and post-O3 (May

2021) after removal of the point absorber-affected input test masses [39].

at around 500 Hz where a small peak due to beam jitter coupling had been present

throughout O3.

Increases in noise at the anti-symmetric port

There are two mechanism by which noise can couple into the anti-symmetric port due

to wavefront distortions:

• Common-mode WD are distortions that are symmetric to the front surface of the

beam splitter, which reduce the mode matching in the power recycling cavity.

An example in LIGO would be a common-mode change in the radii of curvature

of the ETMs. The change in curvature of the ETMs would not alter the input

mode into the PRC; however, the mode size of the beam re-entering the cavity
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would be altered. This leads to a mode mismatch of the PRC, reducing the

power gain at the beam splitter. Consequently, the shot noise increases by the

square of the calculated overlap between the input mode and fundamental mode

(Equation 2.4).

• Differential-mode WD are distortions that are anti-symmetric to the front sur-

face of the beam splitter, which increase the amount of “junk” light at the

anti-symmetric port. Generally, an imbalance in the reflectivity between the

ITMs will cause the light to interfere constructively at the anti-symmetric port.

This “junk” light does not contain any information about the phase changes

produced by a GW signal. An additional side effect is that intrinsically this

light will have some shot noise and potentially some intensity noise.

Loss in achievable squeezing

Planned upgrades for advanced gravitational wave detectors include the use of squeezed

vacuum states of light for improving vacuum fluctuations at the detector output

[41, 42]. This is done by injecting squeezed vacuum states of light into the AS port,

which have the effect of reducing the uncertainty in the quadrature phase of the field

that we are interested in and increasing uncertainty in the in-phase signal. Imple-

mentation of squeezed light states are done in a effort to improve shot-noise limited

sensitivity at high frequencies [43]. The main challenge with squeezing is mitigating

the optical losses in the interferometer. Optical losses occur when power is coupled out

of the fundamental mode due to either scattering, absorption, or wavefront distortion

during transmission or reflection from an optical interface.

To better understand how optical losses impact squeezed light states, consider

that any optical loss can be modeled by a beamsplitter (see Fig. 17) with a power

reflectivity of ηloss = 1 − L, where L is the amount of optical loss. Figure 17 shows

that in the presence of optical losses, the unsqueezed vacuum field δEvac enters the

beamsplitter and combines with the transmitted field δEin. The fluctuations in the

output field is then given by the sum of the fluctuations in the input field [44]

δEout =
√
ηlossδEin + i

√
1− ηlossδEvac (2.9)

Calculating the variance of the fluctuations,
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Figure 17: Beamsplitter model of optical loss.

Vout = ηlossVin + (1− ηloss) Vvac (2.10)

It follows from Equation 2.10, that an increase in optical losses directly correlates

with an increase in the amplitude of the vacuum fluctuations. Generally, this model

can be considered for several sources of optical loss, in which the total loss throughout

the interferometer is given by the product of the individual losses. When applying

this to the case of the entire interferometer, as is done in McCuller et. al (2021),

the principle mechanism of optical loss at high frequencies is revealed to be due to

the imperfections in spatial overlap between the input beam mode and the resonant

cavity mode (i.e. mode mismatch) [45].

The current target level for achievable squeezing in the aLIGO detectors in 3dB

of squeezing; however, the highest level of measured squeezing was 2.2 and 3.1 dB for

the LIGO Hanford (LHO) and Livingston (LLO) observatories, respectively [46]. The

discrepancy between squeezing levels can be attributed to the amount of optical loss

due to mode matching between the in-vacuum optical parametric oscillator (VOPO)

– squeezing source – and the output mode cleaner (OMC), which is around 30% [47].

Therefore, improving squeezing levels requires robust sensing elements that prioritize

characterization of transverse-modes that propagate through the interferometer.
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2.2 Other effects of high power: sideband imbalances from

residual amplitude modulation of electro-optic modula-

tor

To extract error signals we use a technique where phase modulation is applied to

the incident carrier field which generates sidebands that are offset in frequency from

the carrier. Upon reflection from an optical cavity, the sideband and carrier fields

interfere and produce the beat signal of interest at the modulation frequency. The

measured demodulated signal is then used determine if the cavity shifts off-resonance

due to changes in length. As explained previously in Section 1.5.1, this is colloquially

known as the Pound-Drever-Hall technique. Based on this, it is easy to see how

alignment of the interferometer is highly-dependent on the quality of the sidebands

and the phase modulation used to generate the sidebands. When an electro-optic

modulator (EOM) generates sidebands on the incident electric field, the amount of

phase shift is given by the familiar expression [48]

∆φ =
πn3

xrV

λ
, (2.11)

where nx, r, V, and λ are the unperturbed refractive index in the x direction, an

electro-optic coefficient, the applied voltage, and the laser wavelength, respectively.

During the phase modulation it has also been shown [49, 50] that a residual ampli-

tude modulation (RAM) of the field can appear as a result of mismatch between the

incident field polarization axis and crystal axis. Additionally, ref. [51] has also shown

that optical cavities formed within the crystal can also contributed to undesired am-

plitude modulation. Typically, these issues are a result of temperature drifts, which

result in thermal expansion of the crystal. To see how a residual amplitude modu-

lation would impose imbalances in the sidebands consider that the field incident on

our cavity experiences both amplitude and phase modulation due to the RAM of the

EOM

E = Ec [1 + Γa sin (ωmt+ ∆φ)] eiΓp sinωmt, (2.12)

where Ec = Eineiωct is the carrier field, ωm is the modulation frequency, Γa and Γp

are the modulation depths of the RAM and phase modulation, respectively. Here,
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∆φ represents the relative phase difference between the RAM and phase modulation.

Solving for the case of a single sideband for Γp � 1

E = Ec [1 + Γa (cosφ sinωmt+ sinφ cosωmt)]

[
1 +

Γp
2
eiωmt

]
(2.13)

E = Ec

[
1 +

Γa
2

cosφeiωmt +
Γa
2

sinφeiωmt +
Γp
2
eiωmt

]

I have assumed here that the beat frequencies at 2ωm are filtered by the bandwidth

of the detector and can therefore be ignored from this analysis. The result of the field

in Equation 2.13 implies that an additional phase offset is introduced as a result of

the amplitude modulation.

2.3 Overview of Wavefront Sensing Technology in LIGO

In this section, I present a literature review of current wavefront sensing technology

used in LIGO.

2.3.1 Hartmann Wavefront Sensors

Parameter Value

CCD size 12.3 mm × 12.3 mm

Spatial resolution 7 mm × 7 mm ITM

Wavefront sensitivity 1.3 nm RMS

Frame rate 1 Hz

Table 5: Specifications for the Hartmann wavefront sensor used in aLIGO.

Hartmann Wavefront Sensors (HWS) provide a direct measurement of the WD by

measuring the gradient change of a wavefront relative to a reference state. The HWS is

composed of an auxiliary probe beam, typically a super-luminescent diode (SLED),

and charge-coupled device (CCD) with a Hartmann plate. Direct measurement is

achieved by measuring the wavefront distortions accumulated by the injected probe

beam after reflection or transmission through the optic of interest. To see how this

works, consider the case where the probe beam returns after experiencing a WD
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Figure 18: An illustration of the usage of the Hartmann wavefront sensor. The

probe beam is magnified onto the imaging plane P of the optic by a telescope and

the wavefront (dashed line) experiences the distortion (solid line) induced by the

deformities in the test mass substrate. The return probe beam is refocused onto

the Hartmann sensor and measured it the conjugate image plane P’, which ensures

one-to-one mapping of the induced WD.

through a thermal lens in the optic. Here we find it is useful to describe each point

on the undistorted wavefront as an individual ray, where the undistorted state is

considered the reference. Therefore, any distortions to the optical wavefront will

produce a displacement of each ray from the reference position, thus creating a local

gradient of the incident wavefront. By integrating over the gradients a spatial map

of the wavefront distortion incident on the HWS can be generated.

In the aLIGO, there are four HWS positioned at each of the test masses to monitor

the amount of wavefront distortion induced by thermal lensing. The incident probe

beam is first magnified by a telescope in order to sample a 200 mm diameter space

on the HR surfaces of the test masses. Upon return to the CCD, the distorted probe

beam passes through the Hartmann plate and the deviations in the wavefront are

measured. A schematic diagram of the usage of the HWS is provided in Figure 18.

For reference, some relevant specifications of the Hartmann wavefront sensor are also

shown in Table 5.

One significant limitation of the Hartmann sensors is the inability to resolve

features smaller than the spatial resolution of the sensor (∼ 7 mm in both of the
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Figure 19: Hartmann sensor image of the point absorber shown in Fig. 14 [2]. The

main interferometer beam spot on the optic is indicated by the shaded part of the

grid and the illuminated defect is given by the step contour region. The contour

spacing is 20 nm and the largest contour ring represents a distortion of 20 nm. The

Hartmann wavefront sensors has an uncertainty of about ± 1 cm in the location of

the origin of the coordinate system.
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Figure 20: An illustration of the sensor layout for quadrant and bullseye photodiodes

[52]. Pitch, yaw, mode mismatch and sum signals can be extracted by taking the

appropriate combination of sensor elements.

transverse directions). As previously mentioned, most point absorber features are

in the sub-millimeter regime, which induce WD much smaller than the resolution of

the Hartmann sensors. An example of an optical path distortion measurement (in-

cludes thermo-elastic and thermo-refractive deformations) using the Hartmann sensor

is shown in the contour map of Figure 19.

Hartmann sensors offer the advantage of independent monitoring of the spatial

profile of each of the test masses. This decouples the resonant effects of other cavities

in the interferometer. Using this we can reliably provide compensation to a single

test mass via the TCS. Consequently, this means that changes in interferometer beam

mode cannot be sampled with the HWS, which is important for understanding the

quality of mode matching and alignment between cavities. In Section 2.3.2, I will

present sensors complementary to the HWS, that are designed to directly monitor

the beam mode propagating throughout the different cavity subsystems.

2.3.2 Resonant quadrant and bullseye photodiodes

Under ideal operating conditions, the fundamental U00 mode is the dominate mode

propagating throughout the interferometer. Recall from Section 1.6, that in the event

that of a misaligned or mismatched optical cavity, the eigenmode of the cavity allows
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power to couple into higher order modes, U01,10 and U02 + U20, respectively. The

signal measured at a single element photodiode would then be the superposed fields

of the fundamental mode and misalignment/mode mismatch mode. Section 1.6.2,

reveals what would happen if this interference term were then integrated over the

entire plane. We would see a complete cancellation. Therefore, we use photodiodes

with split geometries (i.e. bullseye and quadrant photodiodes) and take the difference

of the segments to extract the relevant interference terms. Figure 20 depicts the two

common resonant photodiode geometries used in LIGO.

The Cartesian symmetry of the quadrant detector makes it ideal for sensing the

alignment modes U01,10. The distinction between a quadrant photodetector (QPD)

and quadrant wavefront sensors (WFS) is that quadrant wavefront sensors typically

feature a RF resonant circuit, which is tuned to operate at the frequencies of sidebands

in LIGO – 9 and 45 MHz. One key drawback to note is that each resonant circuit

can only operate at a signal resonance frequency, this requires the installation of

multiple resonant photodetectors to sense the sidebands and multiples of sidebands

propagating throughout the interferometer. Additionally, two quadrant wavefront

sensors must be positioned at the appropriate Gouy phase apart (90◦) to be able to

sense both position and displacement degrees of freedom.

Based on the same argument of symmetry discussed above, we know that the

beat signal produced by the radially symmetric “donut” mode (LG01) will completely

cancel when integrated over the segments of a quadrant photodiode. In this case, the

best way to recover the mismatch error signal is to use a bullseye photodetector

(BPD) and subtract the inner radius from the outer radius (depicted in Figure 20).

In theory, this sounds simple enough; however, in practice a few calibration steps are

required to ensure sensitivity to the donut mode symmetry:

Beam size requirement on the BPD must be ω0 = 2
√
r0 where r0 is the radius

of the LG01. This is done so that the null point of the LG01 mode matches

boundaries of the inner and outer radius of the BPD. The BPDs are built

such that the null point is at 1 mm from the center, which can be used to

determine the appropriate power ratio required between between the inner and

outer segments [53].
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Figure 21: Illustration of an LG10 mode through a π/2 mode converter [52]. Mode

mismatch in a well-aligned Fabry-Perot cavity will produce coupling into the LG01

mode. The LG01 mode is rotated to a 45◦HG11 mode by a π/2 mode converter. The

mode converter consists of two cylndrical lenses placed f
√

2 apart in distance, where

f is the focal length [52].

Gouy phase separation between BPDs must be 45◦ or 135◦ to sense the or-

thogonal mode matching degrees of freedom – waist size and position.

Gouy phase mode converter with resonant quadrant photodiode

It was recently discovered by Magaña et. al. that the use of a mode converter

can be applied to heterodyne beat sensing with a quadrant photodiode [52]. This

removes the need for using resonant bullseye photodiodes, which have proved difficult

to manufacture and calibrate in-situ during measurements. The scheme works by

placing a pair of cylindrical lenses in front of a resonant quadrant photodiode, which

converts the axially symmetric fields of the mode mismatch mode to allowing for

sensing on the geometry of the quadrant photodiode. The lenses work by propagating

the phase of one axis by π/2 relative to the other axis, which breaks the symmetry

between the axially symmetric donut mode (shown on the left in Figure 21. In

addition, because the mode converter does not change mode order, it preserves the

angular and modal mismatch error signals completely. Thus, it has been shown that

alignment error signals can still be recovered using this method [52].



59

Some drawbacks of using a mode converter are the additional cylindrical lenses

that must be added in front of the wavefront sensors to achieve mode conversion.

The addition of these lenses sets specific constraints on the beam waist size and on

the alignment of the beam through the cylindrical lens axis, which if not configured

properly, can result in a distortion of the measured error signal. Additionally, mode

converters used with resonant quadrant photodiodes have the same functional limita-

tions of the resonant quadrant photodiodes (i.e. “pixel” resolution and sensing noise

added by external electronics).

2.3.3 Scanning-based phase cameras

The first generation of phase cameras introduced in LIGO were based on a scanning

technique where the test beam; after propagating through the interferometer, is su-

perposed with a separate reference beam [54]. In LIGO, typically the test beam would

be the main interferometer beam, which picks up the higher order mode distortion

from a mismatched cavity; however, for the initial tests of the scanning phase camera,

a high-finesse cavity was tuned to allow higher order mismatch modes to transmit

on the test laser (see Figure 22). A separate reference laser, offset in frequency from

the carrier, is used to downstream to generate the beat note between the two beams.

Two galvanometers are then used to spirally-scan the two beams over the surface of

a photodetector. A pin-hole is used to ensure that the beams are only combined only

for a single pixel. Each point is then used to spatially map the measured beat signal.

A few limitations to this method are:

• Discontinuities in the scanning pattern resulted in difficulties interpreting phase

information (see Figure 23. This is observed by the phase map produced in

• Scan frequencies are limited to only about 5 Hz, which is a physical limit of

the galvanometer inertia. For this reason, spiral patterns are used as this is the

fastest scanning pattern in situ

• Sample resolution is limited to only about 1000 points per scan
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Figure 22: A schematic diagram of a scanning phase camera [54].

Figure 23: Beat map of TEM21 on a scanning phase camera [54].
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Figure 24: Camera image at AS AIR when LHO was locked in MICH DARK [55].

2.4 Image Sensors

In LIGO, image sensors are widely used for monitoring beam quality and position at

each of the detector ports. Specifically, one use case is the imaging of the junk light

that appears at the AS port due to WDs. Some exotic mode structures can appear

at the anti-symmetric port due to this unwanted light. For example, a 9th-order

transverse mode was observed on the OMC transmission at LHO during O2 [2].

Another example of this can be seen by the AS AIR image shown in Figure 24.

In this measurement [55], the camera image were used to estimate the percentage of

power coupled into mismatch and alignment modes.

2.5 Conclusion

Changes in the mode size and radii of curvature of the main arm cavities change

the cavity mode and affect mode-matching. High power-induced thermal effects have

been the main mechanism for wavefront distortion in aLIGO, which cause optical loss

in the cavities by scattering power into higher order modes. Unless properly identified

and mitigated, optical scattering into higher order modes will cause: loss of optical

gain in the main arm cavities, reduction of mode matching in the main optical and

auxiliary cavities, losses of sideband power, increased jitter noise, and degradation

of squeezed light states. Therefore, wavefront diagnostic tools are imperative for

ensuring that the LIGO detectors operate with increased duty cycle and at design



62

sensitivity.

This chapter reviewed several diagnostic sensors used for characterizing wave-

front distortions both directly and indirectly. The Hartmann wavefront sensor, has

demonstrated proficiency in mapping the spatial distortions in the optical wavefront

produced by point absorbers on the test masses; however, it is limited to only a single

frequency of the carrier and cannot describe how the sidebands are affected by thermal

distortions. For this reason, bullseye and quadrant photodetectors have been imple-

mented in a heterodyne scheme to measure the beat signal of anti-resonant sideband

and higher order mode produced by the phase distortion. The main drawbacks of

using resonant photodetectors are limited spatial resolution and cost to manufacture

different detector geometries.

Image sensors have demonstrated the ability of generating high resolution images

of beam intensity profiles at fast frame rates. Therefore, a new generation of wavefront

sensors (phase cameras) based on CCD and CMOS cameras have been in recent

development for use as diagnostic tools in aLIGO. The promise of these sensors is to

offer high resolution spatial maps of the individual cavity modes. This will ultimately

lead to a significant improvement of detector diagnostics.

Chapter 4 will present the work I have done in developing a phase camera based

on a 3D time-of-flight CMOS camera wave.
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Chapter 3

Time-of-Flight Cameras: Hardware

Heritage

The intended use for most time-of-flight cameras involves the direct measurement of

light travel time. However, in most cases of commercial time-of-flight cameras, the

direct measurement of light travel time from a round trip bounce of an emitted light

source is actually impractical. This is because classical electronics are far too slow

to sample differences in the light travel time that are on the order of picoseconds.

Instead, the relative phase difference is measured between an emitted and reflected

intensity modulated light source. This development in 3D-ToF sensing provided a

practical and robust solution in industrial applications involving environment aware-

ness for machines. The implications of this sensing scheme are far-reaching and in

this section I will motivate how this technology can be used to make phase-sensitive

measurements in modern-day gravitational wave detectors.

3.1 Hardware Origins: The two-tap Lock-in Pixel

ToF cameras equipped with in-pixel (de)modulation, such as the OPT8241-CDK-

EVM, consist of an array of pixels with control electronics capable of computational

and signal processing capabilities. The demodulation pixels are based on the photonic

mixer device technology, which was pioneered by Schwarte [4]. The architecture of a

pixel based on the photonic mixer device (PMD), consists of one or more integration

wells, known as taps. A schematic of a commonly-used two-tap pixel is shown in
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Figure 25.

Typically, a modulation block internal to the time-of-flight camera is responsible

for generating intensity modulated light and synchronously driving the charge sepa-

ration within the pixels. After the intensity modulated light completes one round trip

from the scene and back to the camera, it is absorbed in the photosensitive area, or

photo gate (PG), where photons are converted into charge carriers via the photoelec-

tric effect. Electrodes in the substrate area below the oxide layer are driven by the

reference oscillator and used to move charge carriers into the storage wells at Node

A and B. The control electronics dictate which well is active during an integration

cycle. As a result, the total integrated signal within the respective well is equal to the

scalar product of reflected light signal and the reference modulation signal. During

the readout process, the integrated signals between the two nodes are subtracted.

For a modulating signal with a duty cycle of 50%, this ensures suppression of any

DC signal offset from initial resetting of the capacitive nodes in the measured RF

readout. This process is formally known as correlated balanced sampling (CBS) (See

Section 3.3).

To see this consider the unmodulated, or ambient, signal in the presence of a

modulated driving field in the demodulation pixel. For a reference signal with a 50%

duty cycle, the DC signal will be present in Node A for half the integration cycle and

Node B for the other half. When taking the difference, these values cancel. In the case

of the modulated signal, the difference between the two nodes will be proportional

to the amount of phase difference measured between the modulated signal and the

reference signal.

In the next section we will explore the process of demodulation in a solid-state

ToF camera and how phase and amplitude are retrieved from the optical signal.

3.2 Demodulation Theory: Measuring amplitude, phase and

offset

Demodulation in a CW-ToF camera is based on a phase detection technique where

the incident intensity-modulated light is synchronously sampled at discrete phase

intervals ϕi, i ∈ [1, N ] in the camera. When the modulated light arrives at the ToF

sensor it contains some unknown amount of phase delay φ. Therefore, in order to



65

Figure 25: Illustration of a single demodulation pixel with two-tap architecture. This

device can be thought of as two diodes connected by a common ground at the anodes.

Incident light is collected in the photosensitive area of the pixel. The photosensitive

area is separated from conductive MOS gates at Nodes A and B by a silicon oxide

layer. When charge carriers are generated in the photo gates via the photoelectric

effect, they are subject to the textitpush-pull voltages applied to the photo gates. The

resulting electric field drives the charge to either Node A or B in a dynamic see-saw

motion [4]. Continuing with the analogy to electronic circuits, this can be modeled

as a fast switch that acts as an electro-optic shutter between two capacitors. The

charge is then integrated on the capacitors of the respective nodes. During readout,

the wells are discharged and the signal is given as difference between the two MOS

gates.
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recover information about φ and the modulated amplitude of the sinusoidal signal,

a minimum of three sampling points, or quads, are required to interrogate the signal

(for our application, four are used). This is referred to in literature as the diagonal

least-squares algorithm [See [56] for more details], which dictates that resolution can

be increased by sampling at equally-spaced intervals. In the case that at least one

of the signals (reference or illumination) is sinusoidal then φ can be found by the

measurement of the cross-correlation evaluated at the chosen phase step. The cross-

correlation function C(τ) is defined as

C(τ) = lim
T→∞

1

T

∫ T/2

−T/2
s(t) · r(t+ τ)dt (3.1)

with the reflected modulated signal s(t) and reference oscillator signal r(t) defined as

s(t) = a0 + am cos(Ωt− φ) and r(t) = cos(Ωt) (3.2)

where a0 represents the DC component of the signal and am and Ω are the modulation

amplitude and frequency, respectively. In this simple case, we can exclude any phase

offset due to electronics or propagation delay from transmission lines without loss of

generality. Conversely, if it is desired to manually tune the phase readout, adjusting

propagation delay by the addition or subtraction of cable length can prove to be a

simple, yet effective technique for achieving this result1. Substituting for s(t) and r(t)

in Equation 3.1, the cross-correlation is calculated as the following:

C(τ) = lim
T→∞

1

T

∫ T/2

−T/2

[
a0 + am cos(Ωt− φ)

]
·
[

cos Ω(t+ τ)
]
dt (3.3)

= lim
T→∞

1

T

∫ T/2

−T/2

[am
2

cos(Ωτ − φ)
]
dt

= A0 + A cos(ϕi − φ)

A0 comes out as an integration constant in Equation 3.3 and is the contribution from

ambient light. Additionally, we have defined A = am/2 and Ωτi = ϕi. Calculating for

four sampling points (i.e. ϕ ∈ [0◦, 90◦, 180◦, 270◦]), we arrive at a set of four equations

with four unknowns, which describe the signal sampled at the various phase steps:

1For a detailed demonstration of this technique using the internal modulation system of the

OPT8241-CDK-EVM refer to Section 4.1
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C(ϕ0◦) = A0 + A cos(φ) (3.4)

C(ϕ90◦) = A0 + A sin(φ) (3.5)

C(ϕ180◦) = A0 − A cos(φ) (3.6)

C(ϕ270◦) = A0 − A sin(φ) (3.7)

The in-phase and quadrature components of the signal are found by evaluating the

difference of Equations 3.4,3.6 and Equations 3.5,3.7. By taking the difference, we

also see that the DC terms get subtracted out of the result, as shown here:

I = C(ϕ0◦)− C(ϕ180◦) = 2A cos(φ) (3.8)

and

Q = C(ϕ90◦)− C(ϕ270◦) = 2A sin(φ) (3.9)

The amplitude (A) can be found by calculating the magnitude of the measured RF

signal in the complex plane. This is equivalent to evaluating the quadrature sum of

the in-phase and quadrature components of the signal and normalizing by the square

root of the number of samples (in this case four). Using similar complex analysis,

the desired phase (φ) is calculated by evaluating the angle that the measured RF

signal vector forms with the complex plane, or by calculating the inverse tangent of

the quadrature and in-phase signal. This is a direct result of dividing Equation 3.9

by Equation 3.8, as shown here:

A =

√
I2 +Q2

2
(3.10)

φ = ][I + iQ] = arctan
(Q
I

)
(3.11)

The DC signal contribution is simply the average over the measured quads. The im-

portance of this result lie is the fact that information about DC and RF contributions

of the incident light can determined in a single measurement by respectively adding

or subtracting the measured pixel values.

A0 =
C(0) + C(π/2) + C(π) + C(3π/2)

4
(3.12)
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The formalism above implies that the illumination signal and the sampling function

are ideal sine waves. Typically, most commercially-available ToF cameras modulate

the current to generate an amplitude modulated illumination signal (i.e. switch the

laser source on and off at logic levels). In this case the harmonics of the square wave

cannot be ignored, since around half of the total power is its harmonics. A complete

analysis of how this effect is shown in [56]. In our setup, we avoid this by using an

electro-optic modulator to generate a sinusoidal phase modulation on the incident

light, which is converted into an intensity modulation by an external optical cavity.

This solves the problem of harmonic distortion; however, sampling with a square

wave causes significant attenuation of the measured amplitude [57] assuming that

sufficiently high demodulation frequencies aren’t used (order of MHz). For high fre-

quencies, the in-pixel demodulation becomes bandwidth limited and acts as a low

pass filter for the reference signal.

3.3 The Practical Pixel: ToF Performance Characteristics

In the previous section I discussed the basic operating principles of ToF cameras

and the innovation of how the PMD synchronously demodulates amplitude modu-

lated light within the ToF camera. In the ideal pixel the conversion from measured

photons to demodulated signal occurs without any significant attenuation or loss.

Realistically, losses can vary depending on the wavelength of light used, choice of

modulation frequency, and charge conversion efficiency. Additionally, non-linearity

during demodulation can also produce signal distortion during readout, thus impact-

ing camera performance. In this section, I will define these performance parameters

within the context of ToF sensors, in particular the OPT8241-CDK-EVM.

3.3.1 Fill Factor

Because a CMOS sensor has control electronics built-in to the pixel, the subsequent

light sensitive area is reduced. Additionally, electronics that allow for in-pixel demod-

ulation in ToF cameras also contribute to the reduction of photosensitive area. The

quantity known as the, pixel fill factor, represents this percentage of photosensitive

pixel area (Aphotosensitive) to total pixel area (Atotal). This is given by the expression
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Fp =
Aphotosensitive

Atotal
(3.13)

This ratio also sets a limit on the amount of photons that can be accumulated in a sin-

gle pixel during an integration period. ToF cameras with a two-tap pixel architecture,

or two integration wells, typically have a fill factor of around 6.6% [57].

3.3.2 Quantum Efficiency and Responsivity

In addition to the fact that not all photons are capture by the pixel, during the

charge generation process, not all photons are converted into charge carriers. The

relationship which describes the fractional amount of total generated photoelectrons

(ne) from the number of incident photons (np) is known as the quantum efficiency

η(λ). The quantum efficiency depends on the wavelength of light used as well as the

material parameters of the camera. Here we define the η(λ) as

QE(λ) = η(λ) =
ne
np

(3.14)

For a silicon-based sensor, the QE is relatively low at wavelengths > 1µm. For the

OPT8241-CDK-EVM we provide a rough order of magnitude estimate for the QE

of 2% based on the measurements of [58] for a two-tap pixel. In ToF cameras the

pixel architecture can also influence quantum efficiency. Studies show that placement

of storage gates over the photosensitive area can lead to a reduction in quantum

efficiency due to the absorption of light in silicon [59]. This issue is typically solved

by positioning photogates on the sides of the photosensitive area as shown in Fig 25.

The trade-off is that this architecture often results in a lower fill factor per pixel.

A similar quantity known as the responsivity R, which is related to ηλ, is sometimes

more useful as it directly relates the input-output gain of the sensor in terms of light

power to amount of photocurrent generated. The responsivity is given by

R = η
qeλ

hc
, (3.15)

where qe is the electron charge, h is Planck’s constant and c is the speed of light.

A ROM estimate of the responsivity of silicon is around 0.3A/W for 1µm [60]. If

we consider that the CMOS phase camera is uniformly illuminated by light source

with an normalized intensity of 1W/m2 and a pixel area of 225µm [61], then total
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power per pixel is 225µW (this amount represents the ideal measured power per pixel

without accounting for the optical fill factor). Using the responsivity for silicon, we

can estimate that 67.5 µA of photocurrent is generated per pixel. This is a very small

amount of current generated in each pixel; however, since our setup is not limited by

low power surface emitting lasers , we are able to increase the amount of photocurrent

generated, thereby improving SNR.

Additionally, this assumes that the illumination is uniform over the pixel array;

however, in our design we utilize a beam with a Gaussian profile. In this case, we

must determine a calibration target, which accounts for the integrated Gaussian beam

over the sensor area – this is discussed in more detail in Section 4.3.2.

3.3.3 Demodulation Contrast

In interferometry, the contrast defines the ratio between the difference of the highest

and lowest measurable signal and the the average of the highest and lowest measurable

signal. The ideal contrast for an interferometer is 1, which means the highest and

lowest signals are completely resolvable by the system. When discussing demodulation

pixels, an analogous parameter known as the demodulation contrast can be used to

characterize pixel performance.

The demodulation contrast is essentially a measure how well a demodulation pixel

can distinguish between a modulated charge carrier and an unmodulated carrier. It

is defined as the ratio of the measured RF amplitude to the ambient offset value

Contrast =
A

A0

= 2 ∗

√[
C(0)− C(π)

]2
+
[
C(π/2)− C(3π/2)

]2

C(0) + C(π/2) + C(π) + C(3π/2)
(3.16)

One thing to note is that the demodulation contrast scales inversely with the mod-

ulating frequency. This is explained because the pixel is bandwidth limited at high

frequencies, causing some photoelectrons to be omitted from one of the wells during

the integration cycle. This leads to a reduction of the demodulated amplitude, thus

reducing the contrast.

There are other material and functional parameters that can also influence the

demodulation contrast, those include: fringing fields, gate length, and wavelength.

Longer wavelengths can lead to longer diffusion times for the incident light, which
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reduce the demodulation contrast. Conversely, higher fringe fields and shorter gate

length between photogates contribute to an increase of charge separation between the

nodes, thus increasing the contrast. For our experiment we keep the wavelength fixed

to 1µm and the fringe fields and gate length are fixed parameters of the OPT8241-

CDK-EVM.

3.3.4 Dynamic Range and Signal-to-Noise

A discussion on performance parameters for a ToF camera would not be complete

without discussing the signal-to-noise (SNR) and dynamic range (D/R). These quan-

tities, much like the contrast are useful for characterizing camera performance over

the range of measurable values and at the shot-noise limited sensitivity. For a tradi-

tional ToF camera, the SNR is calculated as the ratio of the measured demodulated

amplitude to the rms noise under illuminated conditions. In this case, the rms noise

includes both dark and photon shot noise sources, since the integration is held ac-

tive for the measurement. Because our measurements use a Gaussian laser source,

the demodulated output is integrated and spatially-averaged and over the Gaussian

profile.

SNR =
Ā

σA
(3.17)

Here, Ā denotes the spatial average over the demodulated amplitude and σA is the

measured rms noise under illuminated conditions. The D/R delineates the range of

signal levels that the camera can resolve. Quantifying the D/R is critical because

a sufficiently high carrier field intensity can saturate the pixels of the ToF camera.

Therefore, the D/R provides the user with the practical operating range of the camera.

Here we define the dynamic range as the ratio of the saturation point (Asat) to the

noise floor (σdark)

D/R = 20 log10

( Asat
σdark

)
(3.18)

The dynamic range for conventional two-tap demodulation pixels has been measured

to be up to 71 dB for pixels not limited by significant amounts of dark noise [57, 56].

We report the measured dynamic range for the CMOS phase camera in Table 11. A

discussion on the implications of these values is given in Section ??.
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3.3.5 Influence of non-linearities in demodulation

Nonlinear effects from demodulation electronics can produce distortions in the read-

out. In this section we examine the influence of these linear and quadratic distortions

on the phase and amplitude readout of the 4-phase demodulation scheme. To zeroth

order, the amplitude and phase are calculated using Equations 3.10,3.11, respectively.

To model the effects on phase and amplitude caused by control electronics (i.e. am-

plifier gain and nonlinear demodulation), we include first and second order correction

terms to the measured RF readout. To second order, series expansion is as follows:

C(ϕi) = Ci + αCi + βC2
i , (3.19)

where α and β are the first and second order coefficients of the expansion. Substituting

this into Equation 3.11, and solving for the measured phase φ results in:

φ = arctan

[
(C0 − C2) + α (C0 − C2) + β (C2

0 − C2
2)

(C1 − C3) + α (C1 − C3) + β (C2
1 − C2

3)

]

= arctan

[
(C0 − C2) + α (C0 − C2) + β (C0 − C2) (C0 + C2)

(C1 − C3) + α (C1 − C3) + β (C1 − C3) (C1 + C3)

]
(3.20)

Using Equations 3.4,3.5,3.6, and 3.7 we can solve for the sum in the quadratic term,

which simplifies to twice the DC value (A0). Factoring constants in the expression

gives

φ = arctan

[
(1 + α + 2A0β) (C0 − C2)

(1 + α + 2A0β) (C1 − C3)

]
= arctan

(
C0 − C2

C1 − C3

)
(3.21)

We see that both the linear and quadratic terms cancel out and the measured phase

gives the same result as if there were no irregularities in the readout. The significance

of this result illustrates the importance of using a two-tap demodulation pixel, as in

the OPT8241-CDK-EVM. This result shows us that the phase readout will be insen-

sitive to most disturbances caused by electronic sources (More information on noise

sources will be discussed in Section 3.4). In most cases this means the phase readout

will have higher sensitivity than the amplitude. By substituting Equation 3.19 in the

expression for demodulated amplitude (Equation 3.10), one can see that these linear

and quadratic effects do not cancel out. The result is shown here:
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A =
1 + α + 2A0β

2

√
(C0 − C2)2 − (C1 − C3)2 (3.22)

Another important point comes up by examining the result of Equation 3.22. We see

that the quadratic dependence scales with the DC signal. The physical significance of

this term, is that it accounts for uneven sampling intervals, where the unmodulated

signal is not completely canceled by CBS. Techniques for mitigating these effects will

be discussed in Section ??.

3.4 Noise Sources in the CMOS phase camera

Since the CMOS phase camera is based on the OPT8241 ToF sensor, the readout is

subject to noise related to both ToF imagers as well as CMOS sensors. There are

four main noise sources worth mentioning when discussing limiting sources of noise

in these sensors which include: (1) photon shot noise, (2) electronic noise, (3) fixed

pattern noise and (4) quantization noise. In this section I will give a brief overview

of these noise sources which limit sensing in the phase camera.

3.4.1 Electronic (Read) Noise

Electronic noise includes all noise sources involved in charge conversion and signal

processing within the image sensor. In the time-of-flight camera, the charge transport

characteristics of the demodulation pixel, such as the Johnson noise associated with

the resetting of charge storage capacitors (pixel reset noise), contributes largely to

the electronic noise floor[62]. Consider the demodulation pixel architecture shown in

Fig.25, where each demodulation pixel can be modeled as have two charge storage

nodes A and B with two switches moving charges between two capacitive wells. The

behavior of an ideal capacitor is expected to be lossless, but in reality, we consider

an equivalent series resistance (ESR), where a capacitor behaves like capacitor and

resistor in series. Often, capacitors are used in series with resistors, so we consider the

noise across two series resistors. The voltage variance, or single-sided power spectral

density is given by:

vtherm(t)2 = 4kBTRB, (3.23)
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where B is the bandwidth of the circuit. The noise described by Eqn.3.23, known

as the Johnson-Nyquist noise, is a limiting source of noise above the shot noise for

most circuits. The RMS voltage noise can be found by substituting for the effective

noise bandwidth of the circuit, 1/4RC, and by taking the square root of Eqn.3.23. To

express this in terms of the RMS noise charge we use the relationship between charge

and voltage for a capacitor, Ntherm = Cvtherm.

Ntherm =
√
kbTC (3.24)

Furthermore, we can express Eqn.3.24 by the number of electrons generated due to

thermal fluctuations by dividing by the electron charge.

ntherm =

√
kbTC

qe
(3.25)

Eqn.3.25 reveals that even in the zero bandwidth limit, where the switch is open and

resistance is infinite, there is still thermal noise due to charge left on the capacitor.

In this sense, the thermal noise is due to the thermodynamic fluctuation of charge on

the capacitor averaged over many reset events. Other types of noise included in the

category of read noise include flicker and amplifier noise. These noise sources also

depend on temperature and are as a result of the noise within the MOSFET device

in each pixel. Because these noise sources are associated with the electronics of the

camera, they can be estimated from image dark frames. Methods for estimating read

noise are presented in Section 4.3

Other sources of electronic noise may be systematic in nature. Additionally, non-

linear demodulation can manifest as a sinusoidal pattern in the demodulated output

of the sensor [60]. Various techniques in signal processing [63, 64] have shown efficacy

in correcting for these non-uniformities in the readout.

3.4.2 Quantization Noise

Quantization noise noise is the result when a continuous signal is sampled into discrete

values. This occurs in either a dedicated quantizer or an analog-to-digital/digital-to-

analog converter (ADC/DAC). In the case of the OPT8241-CDK-EVM, the ADC is

responsible for sampling and digitization of the input signal. During sampling, the
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time-varying analog signal is converted into a discrete-time signal, which is repre-

sented by a sequence of real numbers. These numbers are then assigned a particular

signal level based on the bit depth of the converter. Modeling of quantization noise

for an ideal N-bit converter was first proposed by W.R. Bennett in [65]. This sim-

plified model assumes that the quantization steps ∆ are relatively small compared

to the signal fluctuations, such that the error due to quantization noise is relatively

uniform over the sampling interval. In this case, the quantization error signal q(t) is

modeled as a sawtooth function with a slope of s :

q(t) = st, − ∆

2s
< t <

∆

2s
(3.26)

The root-mean-square quantization noise is then

σquan =

√√√√ s

∆

∫ ∆
2s

−∆
2s

(st)2dt

=
∆2

√
12

(3.27)

One thing to notice about the result of Equation 3.27, is that the quantization noise

is independent of the measured signal. Additionally, since ∆ ∼ 2−N [66], where N

is number of bits used in the ADC, the noise is reduced by a factor of 22N for each

added bit. As noted, this model only applies when ∆ is small compared to the signal

amplitude, however, in the case where the signal is much smaller than the step size,

then this model no longer applies and the quantization noise becomes signal depen-

dent. The effects of quantization noise are apparent in the 4-bit, ambient readout

channel of OPT8241-CDK-EVM we use in our system of which the implications will

be discussed in Section 4.3.2.

3.4.3 Fixed Pattern Noise

Fixed pattern noise (FPN) describes the spatial noise associated with non-homogeneity

between neighboring pixels on the sensor. Two sources of FPN commonly cited in

CMOS image sensors are[63]:

1. Dark current: The current generated in the sensor when no photons are incident

on the pixels. Typically dark current varies with both integration time and
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temperature; therefore, for a given integration time and temperature, the dark

current contributes a “fixed” offset term to the FPN. Removing FPN associated

with the dark current, usually involves subtraction of the mean dark current

from each of the measured image frames.

2. Responsivity variations between pixels: Differences in doping between pixels can

lead to variations in photoelectron generation between pixels, which results in

a signal-dependent gain term of the FPN.

FPN can be modeled as the signal-dependent noise in each frame [64]

σFPN = α C̃ + β, (3.28)

where α is the gain and β is the column or row offset in the images. C̃ represents the

true DC signal with additive Gaussian noise, which represents the temporal fluctua-

tions of the signal contributing to the fixed pattern noise due to the gain. The FPN

can be estimated by taking the spatial standard deviation of the uniformly illumi-

nated image frames. Another method for estimating the pattern noise is taking the

spatial standard deviation of a relatively constant signal region in an image frame,

which is the method we use for our analysis. With the appropriate calibration factor

(refer to section 4.3.2), the FPN can be expressed in terms of the number of electrons,

which is necessary for providing a noise budget estimate.

It is worth noting that since σFPN varies as a function of the signal intensity, trivial

background frame subtraction will not work to improve the SNR. Spatial averaging

of frames can reduce the noise at the cost of signal resolution. It is also possible to

use spatial filter images using fourier techniques to reduce the gain component of the

FPN [64].

3.4.4 Modeling Shot Noise in the CMOS Phase Camera

Traditionally, signal shot noise is defined by the statistical uncertainty in the arrival

time of incident photons on a detector. The distribution of these photons can be mod-

eled using a Poisson distribution, which sets the uncertainty in photon detection equal

to the square root of the DC photon flux (nDC multiplied by the DC integration time

(tDC). Because we are concerned with the mean number of photoelectrons generated

per unit time in the camera, we convert this value using the quantum efficiency. In
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the case of the CMOS phase camera, the demodulation is also considering during the

integration. To begin this analysis, we consider that the incident light is amplitude

modulated at the frequency Ω = 2πf . Therefore, we can describe a signal model for

the measured signal which contains both the measured AC and DC photoelectron

flux:

n(t) = ndc + nac · cos(Ωt) (3.29)

where nac is the AC photoelectron flux. Demodulation is carried out as the integrated

average over the measurement interval, T. By definition we find that the time-averaged

photoelectron flux is given by:

< nAC >t≡
1

T

∫ T
2

−T
2

n(t) · (eiΩt + e−iΩt) dt =< n(t) · 2 cos(Ωt) >t (3.30)

where < >t indicates the time-average. Here, we denote demodulation of the upper

and lower sideband by the cosine term in the time-average. Similarly, the average DC

photoelectron flux is given by:

< nDC >t≡
1

T

∫ T
2

−T
2

n(t) dt =< n(t) >t (3.31)

The mean number of photoelectrons generated for given time interval is simply de-

termined by evaluating the integration in Equations 3.30 and 3.31 for the AC and

DC time interval, tAC and tDC , respectively:

< NAC >tAC ≡
∫ tAC

2

− tAC
2

< n(t) · 2 cos(Ωt) > dt (3.32)

= nAC

∫ tAC
2

− tAC
2

(
1 + cos(2Ωt)

2

)
dt (3.33)

=
nACtAC

2
(= 0 for noise) (3.34)

and,
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< NDC >tDC ≡
∫ tDC

2

− tDC
2

< n(t) > dt (3.35)

=

∫ tDC
2

− tDC
2

nDC dt (3.36)

= nDCtDC (= 0 for noise) (3.37)

As we see from Equation 3.32, the unmodulated signal and higher frequency terms go

to zero during the AC integration time. Similarly, in Equation 3.35, the modulated

signal and higher frequency terms go to zero during the DC integration time. A

factor of 1/2 in Equation 3.32 accounts for the demodulation of the upper and lower

sidebands. In both cases we have assumed that the only source of Gaussian noise

comes from the statistical fluctuations of the generated charge carriers (modulated

and unmodulated); therefore, the noise in each of these cases averages to zero. We can

then calculate the variance of < NAC > and < NDC > using the following property

of variances:

σ2
X ≡< (X − µ)2 >=< X2 > − < X >2 , (3.38)

where X represents a continuous random variable with a mean of µ. Substituting

Equation 3.32 into Equation 3.38, we can determine the variance in the modulated

number of photoelectrons:
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σ2
NAC

=< N2
AC > − < NAC >

2 (3.39)

=

∫ tAC
2

− tAC
2

∫ tAC
2

− tAC
2

< n(t)n(t̃) > ·
(
eiΩt + e−iΩt

) (
eiΩt̃ + e−iΩt̃

)
dt dt̃ (3.40)

=

∫ tAC
2

− tAC
2

n(t)
(
eiΩt + e−iΩt

)
δ(t− t̃) dt

∫ tAC
2

− tAC
2

(
eiΩt̃ + e−iΩt̃

)
dt̃ (3.41)

=

∫ tAC
2

− tAC
2

n(t̃)
(
eiΩt̃ + e−iΩt̃

)2

dt̃ (3.42)

=

∫ tAC
2

− tAC
2

n(t̃)
[
2 + 2 cos

(
2Ωt̃
)]
dt̃ (3.43)

= 2

∫ tAC
2

− tAC
2

n(t̃) dt̃ = 2nDCtAC (3.44)

We can use the same method to determine the variance for the unmodulated signal

component.

σ2
NDC

=< N2
DC > − < NDC >

2 (3.45)

=

∫ tDC
2

− tDC
2

∫ tDC
2

− tDC
2

< n(t)n(t̃) > dt dt̃ (3.46)

=

∫ tDC
2

− tDC
2

∫ tDC
2

− tDC
2

n(t) δ(t− t̃) dt dt̃ (3.47)

=

∫ tDC
2

− tDC
2

n(t̃) dt̃ = nDCtDC (3.48)

The result of Equations 3.39 and 3.45 is as we would expect for statistical fluctuations

of the input signal. We see that the variations in the DC signal are given by the square

root of the photoelectron flux evaluated over the DC integration time, which agrees

with the traditional definition for the shot noise limit. Interestingly, the measured

fluctuations in the modulated light do not depend on the AC signal, but rather on

the DC photoelectron flux over the AC integration time. The factor of two arises

from the demodulation of both sidebands.
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Ideally, the limiting noise sources for the CMOS phase camera have a Gaussian

distribution [67, 68]. Under this assumption, the variance of each of the quadrature

measurements is constant (σ2). In this case, the total noise in the amplitude (σA)

can be estimated as the quadrature sum over individual noise sources. The total

phase noise (σφ) is estimated as the ratio of the total noise in amplitude to the mean

amplitude of the signal, as phase and amplitude noise should be uncorrelated.

In this section I have discussed some of the limiting noise sources in the CMOS

phase camera. Although shot noise is a limiting source of noise for most CMOS

cameras, we find that this is not the case for our camera. The quantitative analysis

of the noise in the CMOS phase camera will be discussed in Section ??. The next

section discusses the measurement procedure of the modulated sidebands used to

estimate noise and modulation depth sensitivity thresholds.
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Chapter 4

Demonstration of the Solid State

Phase Camera

This chapter presents the work done toward developing a novel solid-state phase

camera for use in the advanced LIGO detectors. This CMOS phase camera is based

on a compact, commercially-available time-of-flight camera, the OPT8241 Camera

Development Kit Evaluation Board (OPT8241-CDK-EVM), repurposed to function

as an active wavefront sensor in a heterodyne sensing scheme. The first half of this

chapter begins by covering the initial tests done with the base design of the camera.

This includes measurement of the phase sensitivity of the camera by measuring the

heterodyne beat produced by the misalignment TEM10 mode.

Section 4.3 discusses the performance characterization of our prototype CMOS

phase camera design at Syracuse. This includes discussion of our experimental setup

for measuring the sideband beat signal and calibration methods. Finally, section 4.3.4

presents the measurements to determine the phase sensing limit of our camera1.

1Note that most of the information presented in Sections 4.3, such as figures and calculations are

replicated from Muniz et al. (2021).
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4.1 Initial Test using the OPT8241-CDK-EVM (Active In-

ternal Modulation)

Here I report a quantitative study done to assess the phase sensing capabilities of the

OPT8241-CDK-EVM in a heterodyne detection scheme. Here, the internal modula-

tion of the OPT8241-CDK-EVM is used as the reference oscillator for phase modulat-

ing the incident light. Additionally, I demonstrate that OPT8241-CDK-EVM may be

used for phase detection without the on-board illumination source, in an externally-

illuminated configuration. For this measurement, the phase and amplitude (RF) and

ambient (DC) readout of the OPT8241-CDK-EVM is measured as the demodulation

phase is shifted via coaxial cable delay line.

4.1.1 Setup for Measuring Phase-Shifted Alignment Signal

OPT8241-EVM

13
.4

8M
H

z

ϕ

EOM2EOM1
Nd:YAG Laser

Pre-Mode Cleaner

Figure 26: Optical setup for measuring the heterodyne beat in reflection of a PMC

cavity.

An overview of the optical layout is shown in Figure 26. Here, the 1064 nm

Nd:YAG laser is phase modulated by two separate EOMs–EOM1 and EOM2–generating

sidebands at both 13.48 MHz and 25 MHz, respectively. A monolithic, triangular

cavity–pre-mode cleaner (PMC) cavity–is used as a reference cavity for the measure-

ment. The PMC is made to follow the laser frequency using a PDH locking method.

In this scheme a broadband RF photodiode positioned in reflection of the cavity

is used to measure the heterodyne beat between the 13.48 MHz sideband and the
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carrier. The corresponding signal is demodulated to baseband frequencies and low

pass filtered to remove high frequency terms. The actuation signal responds to rel-

ative phase changes between the carrier and sideband to produce an equivalent, but

opposite change in the laser cavity length.

The modulated illumination drive signal, normally used to modulate the on-board

illumination source, is routed out to drive EOM2. The square wave drive signal is

then passed through a 2-30 MHz mini-circuits bandpass filter, to remove harmonics

and ensure that the signal going to the EOM2 is completely sinsuoidal. Additionally,

the output RF power of the signal taken after filter was measured at -2.8 dB (∼ 0.52

mW), which was too low to drive EOM2. For this reason, a RF power amplifier was

used to increase the drive signal to a range sufficient for generating phase modulated

sidebands on EOM2 (20-26.99 dB, or 0.1-0.5 mW) [48].

To induce the appropriate phase delay φ for these measurements, varying lengths

of coaxial cable were used. Electromagnetic theory tells us that the phase delay of an

electromagnetic wave propagating through a non-dispersive medium depends solely

on the frequency of the wave. This is theory is encompassed by the following relation

[69]:

φ(f) = 360◦ · f · τ , (4.1)

where f is the frequency of light and τ represents the delay time. Similar to the analog

with optical cavities, the travel time of the signal depends on the physical length the

cable, L, in this case. The permittivity ε, of the dielectric material is included as

multiplicative constant which increases the effective length Leff the signal propagates

in the material.

τ =
Leff
c

(4.2)

In the formula above, Leff = L
√
ε. Equation 4.2 can be substituted into Equation 4.1

to solve for the amount of cable length needed to produce a quadrature phase shift

of the demodulated signal. For a signal at a frequency of 25 MHz and considering

the dielectric constant of the material inside the coaxial cable (ε = 2.1 [69]), the

required length is calculated to be ≈ 2 m (6.6 ft) of cable length for a π/2 phase

shift. The measurement was performed by adjusting the demodulation phase using
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equally-spaced increments of coaxial cable–individually measured at 0.65 m (≈ 2.1

ft)–for a total of 1.92 m or 83◦ in delay.

Capture Settings

Parameter Value Comments

Frame Rate (fps) 50 fps

Demodulation Frequency

(MHz)

25 MHz

Pixel Resolution (um) 15 This defines the average size of

each pixel on the sensor array.

Quad Integration time (ms) 1.2

Quads 4 Four quad readout is measured

with π/2 phase-stepped demodu-

lation; Six quad readout is mea-

sured with π/3 phase-stepped de-

modulation.

Sub-frames 4 The camera allows the capture of

1-4 sub-frames to construct a sin-

gle frame. Each sub-frame is con-

structed with the readout of all

the quads above.

Pixel Resolution (µm) 15 This defines the average size of

each pixel on the sensor array.

DC Power (µW) [sensor; for

incident beam of size w0 ≈
0.50 mm]

3.2 Incident power measured after 1.5

neutral density filtering.

DC Power (µW) [per pixel],

estimated with beam size w0

≈ 0.50 mm

7.4 ×10−3 The incident power on each pixel

in the sensor array

Table 6: The table summarizes the range of camera capture setting and the absolute

rating for the illuminated signals.
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The PMC cavity was locked to the carrier, TEM00 mode, and a slight cavity

misalignment is induced to allow coupling of a higher order TEM10 into the sideband

field. The beat between the carrier field and sideband field is measured in reflection

of the PMC reference. A total of 100 illuminated and non-illuminated image frames

were captured for each measurement. Image frames were acquired for DC, phase and

amplitude read outs of the camera. The capture parameters for the measurements

are summarized in Table 7

4.1.2 Results of Qualitative Analysis

The TEM00 mode is imaged on the ambient (DC) channel of the OPT8241-CDK-

EVM, as shown in Figure 27. The TEM00 mode is unchanged in the DC image

because the carrier power saturates the camera sensor (i.e. P0 >> Psb. Additionally,

the DC component of the beam is insensitive to the changes demodulation phase pro-

duced by changing cable length. The native ambient data value is scaled such that

a larger signal value is given by a lower digital number (DN) value (This is typically

done because the DC value is uninteresting for many ToF camera applications). How-

ever, we scale the ambient data to represent a pixel saturation close to the highest

digital number value of 15 for a 4-bit resolution. We find that the low resolution of

the ADC results in significant quantization noise due to rounding error.

We also determine a rough estimate of the DC saturation per pixel. This is an

important performance parameter because a high DC signal value can saturate the

RF readout. For a 0.50 mm, beam the total incident power recorded after a 3%

transmission filter was 3.2µW. The DC power per-pixel can then be calculated by

integrating the total incident power over the area of the pixel:

Ppix =

∫

Apix

I · dA = I(0)d2
pix (4.3)

We find that the total power per pixel is 7.4 ×10−3µW.

The phase and amplitude, along with calculated I and Q images are shown for

varying cable lengths in Figure 28. The ADC outputs phase and amplitude as a

12-bit DN value, at a 1.5 mrad/bit phase resolution (i.e. 2π/4096). The I and Q

image frames are calculated using Equations 3.8 and 3.9 and represent the signal

after mixing. PDH theory tells us in the regime where the modulation frequency is
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Figure 27: Single frame capture of the TEM00 mode measured in reflection of the

PMC cavity. The image is captured in 4-bit resolution of the ambient (DC) readout

channel.

high compared to the cavity response (Ω >> ∆νfsr/F) the sidebands are completely

reflected and only the imaginary, or sine term, remains in the error signal. As a result,

the phase frames are more sensitive to quadrature phase shifts, as shown in Figure 28.

However, we observe that the misalignment of our cavity results in an additional phase

delay of the optical beat signal, which contributes a cosine term. This is shown in

the calculated in-phase (I) component of the signal shown in Figure 28.

The TEM10 imaged in Figure 28 confirms the input beam is misaligned along the

y-axis of the cavity. It should be noted that the slight tilt apparent in the images

is associated with the global shuttering of the camera and not a result of the mis-

alignment. We also see that the amplitude (magnitude) of the TEM10 mode remains

constant between each measurement of phase. This is expected since the modulation

depth (Γin = 0.147) is held constant for these measurements. To determine if the

measured phase shift is consistent with the theoretical estimate, we plot the phase of

a single pixel value for each constant region of phase (Region A and B in Figure 29.

The plot in Figure 29 shows the 2π wrapped phase as the length of the coaxial cable
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Figure 28: These images show phase and amplitude and the calculated I and Q as

cable length is varied.
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Figure 29: Plot of cable length vs. 2π-wrapped phase shift in radians.
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is increased. It is clear to see that in Region A, the phase is shifted by ≈ π/2 after

a total of 1.92 m of cable length. Although less apparent from the plot in Figure 29,

the phase in Region B also experiences a total phase shift of π/2.

In summary, this initial study demonstrates that the OPT8241-CDK-EVM is

capable of sensing alignment modes and making phase sensitive measurements of

amplitude modulated light from an external optical setup. The next steps to realizing

this camera as a high-resolution wavefront sensor, is to modify the hardware to allow

for user control of demodulation signals and frame timing. The next section details

the hardware and software implementation in the CMOS phase camera to allow for

this desired level of user control.

4.2 Design Architecture

Our design offers several advantages, one being that the electronic parts are commer-

cially available and allow for rapid prototype, which we demonstrate. In this section,

we cover the hardware and software changes necessary to realize external modulation

and frame control using the OPT8241-CDK-EVM. First, I will highlight the required

electronic components and how they are used in our design, then I will explain how we

develop software to integrate each of these components and provide the demodulation

signal to the camera during each integration period.

4.2.1 Hardware

This section presents the design architecture for the CMOS phase camera. The various

electronic components, along with their functionality, are listed below and illustrated

in Fig. 30.

Microcontroller

We use the STM32F407VGT6-Discovery Board (shown in Fig. 31) to control wave-

form generation and frame synchronization in our camera. The discovery board fea-

tures the ARM Cortex-M4 32-bit microcontroller in a 100-pin LQFP package. The

low power operation (requiring only a 3 V and 5 V line) and general purpose I/O pin

logic, make this discovery board ideal for our integrated electronics setup. Firmware

is transferred to the microcontroller from the host CPU via a high-speed mini-USB
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Figure 30: The image above shows the system’s overview of the phase camera signal

chain and design components. The microcontroller acts as the host device controlling

waveform generation and image frame capture. This process begins with the micro-

controller initializing a Direct Digital Synthesizer (DDS) board driven at the clock

frequency input. During initialization, quadrature phase-stepped signals are gener-

ated on the four analog output channels of the DDS. The signals are then sent to a

RF switch, which waits for the frame capture sequence before allowing the signals

to pass to the camera. During frame capture, a frame initialization trigger is sent

out by the microcontroller to the ToF camera board. The camera responds sending

a series of quadrature pulses back to the microcontroller, which are used in an inter-

rupt sequence as control signals for the RF switch logic. This ensures that the output

waveform is synchronized with the clock input (i.e. phase-locked) before going to

the camera. After the signal passes through the RF switch, it is conditioned by the

electronics in the Camera Extension Board. A CMOS converter, squares the analog

modulation signal from the DDS and provides an additional inverted output that

is only used to for driving the camera system clock. These signals are then passed

through a gating switch, which removes transient noise from the squared input to the

camera.
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(1)
Figure 31: An image of the STM32F407VGT6-Discovery Board.

interface. Software integration and programming flow for the CMOS phase camera is

delineated in Section 4.2.2.

The microcontroller interfaces with a Direct Digital Synthesizer (DDS) board to

begin the waveform generation process. This process begins when SPI lines on the

microcontroller transmits a data sequence to initialize each of the individual channels

on the DDS board. The microcontroller controls when the frame capture sequence on

the camera begins by sending out a frame initialization pulse, which is also used to

set the camera frame rate. ToF camera board responds by sending a series of pulses

(typically 4) within the span of the frame initialization pulse. Each of these pulses

are used in an interrupt sequence to determine when the DDS outputs each of the

phase-stepped demodulation (quad) signals. In the version of the board represented

in Fig. 30, the control logic is passed to a RF switch, which is used to switch between

the four analog output channels of the DDS during each quad integration period.

Direct Digital Synthesizer (DDS)

The CMOS phase camera electronic design uses the AD9959 Direct Digital Synthe-

sizer (DDS) evaluation board for the demodulation signal generation. The DDS board

features a 32-bit frequency, 14-bit phase, and 10-bit amplitude tuning resolution for
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Figure 32: The AD9959 Direct Digital Synthesizer Evaluation Board [5].

high-precision signal generation. The I/O circuitry, USB and digital and analog out-

puts are all powered on a 3.3V and 5V, supply for low power operation. The board

also features four analog outputs, which are synchronized analog output, which are all

synchronized to the reference clock signal. The AD9959 has four internal DDS cores

consisting of a 32-bit phase accumulator and phase-to-amplitude converter, which

sample the input clock signal to generate a digital sine wave on each of the four out-

put channels. Each of the channels can be independently tuned in frequency (up to

500 MHz), phase, and amplitude by providing the appropriate tuning word via SPI

data transfer. The frequency tuning word is calculated using the following equation:

FTW =
(232)(fOUT )

fCLK
, (4.4)

where fCLK is the system clock frequency of the DDS (400 MHz), fOUT is the desired

output frequency of the DDS channel, and 232 represents the resolution of the phase

accumulator. The FTW is represented as a decimal value (0 ≤ FTW ≤ 231), but is

transferred as a binary value from the microcontroller to the DDS. Additionally the

phase of each of the channels can be independently tuned using a phase offset word
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(POW), which allows for a programmable offset in phase with respect to each of the

channels. The phase offset word can be calculated using the following equation:

PTW =
(Φ)(214)

360
, (4.5)

where 214 is the resolution of the register that stores the phase value, Φ is the desired

phase output and 360 represents the total phase value.

In our setup we operate the DDS in a single-tone mode by first initializing the DDS

with a master reset signal upon boot up [5]. This occurs when the microcontroller

sends an active low signal to RESET pin of the DDS. Operation in this mode allows

for the DAC channels to be independently programmed in frequency and phase, which

we utilize in the next step. More details on software used to program the DDS and

single-tone mode operation are provided in section 4.2.2 and in the Appendix.

We use the external reference local oscillator (LO) as input for the reference clock

(REF CLK) on the DDS. The frequency range for this input is between 1 MHz and

500 MHz and the input voltage range is between 200 mV to 1000 mV. In our setup the

25 MHz signal from the oscillator outputs at a voltage of 3.3 V, so we attenuate the

signal before sending it to the DDS board. As mentioned, all channels are internally

synchronized to the reference clock signal. During initialization and frame capture,

instructions are passed from the microcontroller to the DDS via SPI lines. In order to

update the registers on the DDS the microcontroller must enable the address register

bits through a data update sequence on the “IO update” pin of the DDS. This is

discussed in further detail in section 4.2.2. We program the DDS to offset each of

the four channels by the respective phase delays of: Φ = 0o, 90o, 180o, 270o, with

respect to the reference clock signal set at the user-defined demodulation frequency

fdemod.

It is important to note that there is an inherent delay (≈ 1ms) between phase

steps imposed by the IO update sequence. Because of this, we use either an RF

switch or synchronization flip-flop to ensure that the phase-stepped outputs remain

synchronized with the reference LO. Next, I will discuss the use of the RF switch and

flip-flop in our CMOS phase camera design.
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RF Switch

We use a single-pole four throw (SP4T) from Mini-Circuits (JSW4-272DR+) to switch

between the four phase-stepped outputs of the DDS board, viz. Φ = 0o, 90o, 180o, 270o.

The switching time for this RF switch is 1.9 µs to turn to the “ON” state and 1.4 µs

to turn to the “OFF” state, which is suitable for the frame timing requirements of

our camera. The microcontroller controls the RF switch through three logic control

inputs, which can each be set to either a “HIGH (H)” or “LOW (L)” input state.

Setting all the control inputs to a low state, results in continuity between the RF

common port and the RF input port 1. Conversely, setting all the control inputs to

a high state, puts the RF switch in a quiescent state. Additionally, combination of

high and low states are used to switch between the other three inputs on the switch.

In our electronics design, we assign three microcontroller pins (PE9, PE10, PE11)

to control logic input 1,2, and 3, respectively. An interrupt sequence, triggered by

the quadrature pulses from the camera, is used to control the output logic from

the microcontroller. This ensures that the RF switch only switches between the four

input ports during the appropriate phase step. During the low period of a quadrature

pulse, the microcontroller switches off to allow for readout of the phase-stepped signal.

This ensures any noise from the high frequency demodulation signal is gated during

the readout sequence. One advantage of using the RF switch is that the frequency

bandwidth of the switch (5 MHz to 2700 MHz) is within the operating range required

for imaging the 9 MHz and 45 MHz sidebands we are interested in for application in

LIGO.

Synchronization Flip-Flop

A common issue encountered when updating the phase offset on the DDS board is

ensuring that the latency is fixed between phase-stepping when using SPI data trans-

fer. Otherwise, uncertainty in timing can result when the synchronization clock (one-

fourth of the system clock) oversamples the update pulse (I/O update) used to update

the phase offset register value [5]. We find this issue often appears during a master re-

set of the microcontroller, where the initial “zero” phase jumps between different offset

values. We resolve this issue by using an asynchronous J-K flip-flop (CD54ACT109).

The flip-flop ensures the same relative phase on every camera startup by updating
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the phase registers synchronously with the rising edge of the external LO clock input

(we define this as a phase-locked system). The update sequence is also programmed

to last greater than one period of the synchronization clock of the DDS (>10 ns) in

order to meet the DDS timing requirements for the I/O update pulse.

We operate the flip-flop on a 5 V supply to allow for a maximum clock frequency

input up to 68 MHz. The microcontroller output, normally used to update the regis-

ters on the DDS, is passed to the J input of the flip-flop. Additionally, a second logic

signal from the microcontroller is assigned to the CLR input on the flip-flop. The

logic table for application is provided below:

Inputs Outputs
Function

CLR PR J K CLK Q Q

H H H L Rising Edge H L

L H – – – L H Clear

Table 7: Logic used for programming the flip-flop.

In our design, we have established two use cases for the flip-flop: 1) in conjunction

with the RF switch and 2) standalone. The first approach is similar to that mentioned

in Section 4.2.1, with the exception that the demodulation phase is always fixed upon

reset events. We find the first method of operation to be more robust as the it does

not rely on a synchronized register update for every phase step, but is limited to four

demodulation steps and supports only a single frequency input. The second approach

uses the flip-flop to actively update the registers and phase-step the output of one of

the DDS channels in accordance with the quadrature pulses from the camera. This

would allow for more than four phase steps to be used for greater phase resolution

and only a single output port of the DDS is needed.

One might also imagine that a secondary RF switch can be used at the input to

allow for the imaging of different modulation frequencies in real-time. This scheme

can also be performed with the two use cases mentioned above. Although, we have

yet to realize this scheme in our current design, we present this as a future work in

Section ??.
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Figure 33: In-house camera extension board designed for signal conditioning and

interfacing with the camera board.

Camera Extension Board

A custom extension board (shown in Fig. 33) was built for signal conditioning and

to interface with the camera board. The functionality of the board is to receive the

analog, phase-stepped output from the DDS, convert that signal to CMOS logic levels

and gate the output signal during quadrature pulse integration periods. The board

also routes the quadrature pulses from the camera board to the microcontroller and

the frame initialization triggers to the camera using RF-shielded connections. To

convert the sinusoidal reference signal to a CMOS logic level clock, i.e. ‘squaring

the clock’, we use a high-speed clock distribution integrated circuit (Analog Devices

AD9513). Also on the extension board is an additional high-speed buffer chip (Texas

Instrument’s SN74LVC126A), used to gate the output demodulation waveform during

each quad exposure. During the off state of the buffer, the output goes to high

impedance, which eliminates transient noise between quads.

All firmware is developed within the Keil µVision IDE and flashed to the MC
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Figure 34: Custom-built enclosure for the CMOS phase camera sensor board and

extension board.

via a USB interface. This allows the MC to run as the master device after an initial

reset event. Firmware and capture and control operation will be discussed in the next

section.

Camera Housing Unit

We have also designed an enclosure to house the OPT8241-CDK-EVM and extension

board. This is done to ensure that any noise on the demodulation channels due to

external RF signal coupling is mitigated. The metallic enclosure design is shown in

Figure 34.

4.2.2 Software

Software implementation in our prototype CMOS phase camera is realized in simple

three steps: initialization, response, and capture/readout. The flow chart shown in

Fig. 35 gives a general overview of the control and capture process of our camera. In



98

Frame Initialization Trigger 
sent to Camera Board

Frame Sequence Initiated

Quadrature 
Pulses Received by 

MC?

Initializaiton of DDS                       

fmod =25 MHz; ?  = 0,90, 180, 

270

Start

No

Yes

CMOS-Level Phase-Stepped 
Signal to Camera

Nquads = 
4 or 6?

No

Display 
Phase and 
Amplitude

Frame Readout

Yes

Figure 35: Dataflow in our CMOS phase camera design.
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this section, I will discuss the details of each of these processes as well as describe

how we use the microcontroller to interface the DDS board and control frame se-

quencing on the camera board. Finally, I will provide a complete description of the

frame capture timing. We utilize the STM32CubeMX graphical tool to initialize the

relevant hardware abstraction layer (HAL) drivers and set the clock frequency of the

microcontroller (168 MHz). Programming development is done within µVision IDE.

Initialization

Initialization of the CMOS phase camera, is the process during which the microcon-

troller prepares the DDS for waveform generation. This begins when the GPIO line

(PD9) pulls down the active high reset pin of the DDS and issues a master reset

of active registers on the DDS. After issuing a master reset, frequency, phase and

amplitude can be controlled independently for each output channel of the DDS (i.e.

single-tone mode).

Before tuning frequency and phase, the boot-up parameters of the DDS are set by

enabling and assigning value to the appropriate register functions. During every data

transfer sequence, the chip select (CSB) pin on the DDS must be held low. For this

task, we assign the GPIO pin (PD8) on the microcontroller. This process enables the

user to write a sequence of data to the registers, starting with the least significant bit

(LSB)2. We operate the DDS in a single-bit serial mode using a 2-wire connection for

SPI communication. In this mode, two lines are used for master-input-slave-output

(MISO) and master-output-slave-input (MOSI) communication, which is essentially

SPI protocol for reading/writing operations between the microcontroller and DDS. In

our system, we assign GPIO pins–PA6 and PA5, respectively– for SPI communication.

An additional line for controlling the serial clock (SCLK), is assigned to the GPIO

pin (PA7). During communication, 8-bit data sequences are written to the assigned

function register. A description of the most significant register functions we use, as

well as what we use them for is provided here:

2Note:For operation where the DDS is not synchronized with the input clock signal, the I/O

update pulse (<20 ms) (PB11) is directly passed to the DDS to update the registers after data

transfer. When the DDS is synchronized with the input clock, the I/O update pulse is instead

passed as an input to a synchronization flip-flop. The flip-flop then waits (<240 ms) for a rising

edge of the input clock before triggering an I/O update sequence on the DDS.
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• Channel Select Register (CSR) [Address – 0x00]: The channel select register is

used for enabling the individual channels of the DDS. It also assigns the order

in which data is read by the DDS–we program this register such that the LSB

is read first.

• Function Register 1 (FR1) [Address – 0x01]: This register is primarily used for

setting the system clock (SCLK) of the DDS. The multiplier of the phase-locked

loop (PLL) is set to multiply the input reference clock by a factor 16 which sets

the DDS system clock to the maximum frequency of 400 MHz. This register

is also programmed to allow the microcontroller to externally power down all

functions on the DDS board.

• Function Register 2 (FR2) [Address – 0x02]: This register is used to “zero” the

phase and frequency accumulators of the DDS.

• Channel Function Register 3 (CFR3) [Address – 0x03]: This register sets the

phase accumulator to automatically and synchronously clear every time an I/O

update signal is received by the DDS. This ensures no initial offset in phase

between the channels of the DDS. This register is also responsible for setting

the output waveform of the DDS– in our case, a sine wave.

• Channel Frequency Tuning Word 0 (CFTW0) [Address – 0x04]: 32-bit register

used to set the output frequency on each of the DDS channels. First, the desired

output channel is addressed, then the frequency tuning word is written to the

register value. The register values do not update until an I/O update sequence

is initiated.

• Channel Phase Offset Word 0 (CPOW0) [Address – 0x05]: 16-bit register used

to set the output phase on each of the DDS channels. First, the desired output

channel is addressed, then the phase offset word is written to the register value.

The register values do not update until an I/O update sequence is initiated.

After initialization is complete, the DDS generates four, quadrature phase-stepped

sine signals on each of the respective output channels. At this stage, the RF switch

remains inactive so the modulation signal is prevented from reaching the camera. It
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is only when the microcontroller receives a response from the camera board, that the

phase-stepped signals are sent to the camera.

Response

In the response phase, the microcontroller begins by sending a frame initialization

trigger (PC6) to the camera board. The frequency of the pulsed signal is set to match

the desired frame rate of the camera and the pulse duration is set to be greater than

the minimum required for normal camera operation (> 2 system clock cycles of the

OPT8241-CDK-EVM). The system clock of the camera board is set at 24 MHz by

default [61], so for our measurements we set the frame rate at 7.1 Hz with a pulse

duration of 19.50 ms.

This trigger pulse puts the camera board in a slave mode operation and initiates

the frame capture process. During this process, the camera board produces four

quadrature pulses which are sent to the microcontroller on an external interrupt line

(PA0). Each of the pulses trigger a separate interrupt event. The interrupt sequence

starts an internal counter (TIM3) in the microcontroller which is used for exposure

timing of the quadrature captures. The active input port of the RF switch is left on

during this period (≈ 1 ms for each quad), and then turned off after integration. If

the flip-flop is used instead, then the quadrature pulses are used to step the phase on

a single channel of the DDS.

Additional GPIO pins are assigned to control logic 1,2, and 3 of the RF switch –

PE9,PE11,and PE13, respectively. The truth table for controlling the RF switch is

given below:

Capture/Readout

The timing diagram for a single frame capture and readout is shown in Fig. 36. To

begin frame capture, we run a custom Python script which connects to the host

camera/cameras and sets the parameters for frame capture (e.g. integration time,

quad count and subframe count). The register settings are set according to [70] to

allow for the use of externally modulated signals to be sent to the camera. It is

important to note that the internal clock of the camera must be disabled (‘’tg dis”)

before changing the camera parameters. The measurement type is also designated
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Inputs Outputs

Control 1 Control 2 Control 3 RF1 RF2 RF3 RF4

L L L ON – – –

L L H – ON – –

H L L – – ON –

H L H – – – ON

H H H – – – –

Table 8: Logic used for controlling the RF switch.

(i.e. depth—amplitude and phase, or IQ) and the output data is rescaled to the

QVGA format of the camera. As mentioned, the frame capture sequence begins with

an initialization trigger, which sets the frame rate. The quadrature pulse period

then sets the integration time for the demodulated signal in the camera. After the

conclusion of each integration period, the signals are converted via the ADC within

in each pixel and assigned a digital number value based on the bit resolution of the

ADC.

The camera calculates the in-phase and quadrature information from the raw

data stream and processes this in terms of the phase and amplitude of the signal.

We use the Voxel Viewer software, to record the phase and amplitude image frames

for subsequent analysis. More on the analysis process will be discussed in the next

sections.

4.3 Performance Characterization of the Solid State Phase

Camera

4.3.1 Experimental Design

The experimental setup shown in Fig 37 was used for the measurement and calibration

of the CMOS phase camera. In this setup, a reference, triangular cavity Fig 37 is used

to stabilize the frequency of a 1064 nm Nd:YAG laser via Pound-Drever-Hall (PDH)

locking. The PMC has a finesse of 165 and features a piezoelectric-actuated (PZT)

mirror at the apex which allows for tuning of the cavity resonance. The carrier field,
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Figure 36: Timing diagram for a single frame capture of the CMOS phase camera.

The nominal integration period for a single quad is ≈ 1.1 ms for a frame rate of 7 Hz.

The readout and dead time in this case are ≈ 2.9 ms. These values are multiplied by

a factor of 4 for a four quad measurement capture.

Ec = E0e
iωct, is phase-modulated using a resonant electro-optic modulator (EOM)

referenced to a 25-MHz local oscillator. This process adds sidebands to the optical

carrier field which are offset at the modulation frequency Ω/2π. The peak-to-peak

drive voltage of the LO determines the amount of phase modulation, or the phase

modulation index Γ, the field incident on the PMC is given by

Ein = Ece
iΓcosΩt (4.6)

Since Γ << 1, we can apply a Taylor expansion to the exponential term and using

the simple identity for cosine,

Ein ≈ Ec (1 + iΓcosΩt) (4.7)

= Ec

(
1 +

iΓ

2
eiΩt +

iΓ

2
e−iΩt

)
(4.8)

We see that the frequency response of the cavity produces a separate phase and

amplitude change in the carrier and sidebands, respectively. This change is described

by the complex response function of the cavity:
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Figure 37: The experimental layout used for testing and quantifying the noise levels

of the phase camera. The laser is stabilized by locking to the pre-mode cleaner cavity

using the PDH technique. The amplitude-modulated beat signal is generated in the

reflection of the cavity when it is locked to one of the 25 MHz sidebands. The bbPD1

is the photodiode sensor used for PDH locking. The bbPD2 is used in calibration

and measures the power modulation index of the beam incident on the camera. The

total power incident on the camera is attenuated to ∼10 µW [1].

R(ω) =
Eref
Ein

=

[−r1 + r2r3e
iϕ

1− r1r2r3eiϕ

]
, (4.9)

where r1,2,3 are the reflection coefficients of the mirrors and ϕ is the round trip phase

accumulation. ϕ is given by 3ω/∆νfsr where ω is the carrier frequency and ∆νfsr

is the cavity free spectral range. To produce a significant amount of amplitude beat

signal between carrier and sideband, the PMC cavity length was tuned to resonate

on a single sideband. Under the simplifying assumption that one sideband passes the

PMC 100%, while the other light gets reflected 100%, the reflected field becomes to

first order

Eref ≈ Ec

(
R(ω) +R(ω − Ω)

iΓ

2
e−iΩt

)
, (4.10)

which is then passed through a 50/50 beam splitter where half of the laser light is

reflected onto a single-element broadband rf phototdiode (bbPD1) for PDH locking

and the other half is directed to the camera. From here, the beam power is split again
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with 90% of the light going to the camera and 10% incident on a second photodiode

(bbPD2) used for calibration – discussed more in Section 4.3.2. The power incident

on the camera is thus amplitude modulated with amplitude modulation index Γ:

IPC = |Eref |2

= |Ec|2
[
R(ω) + iR(ω − Ω)

(
Γ

2
e−iΩt

)][
R(ω) + iR(ω − Ω)

(
Γ

2
e−iΩt

)]∗
(4.11)

= |Ec|2
(
|R(ω)|2 +

Γ2

4
|R(ω − Ω)|2 − iR(ω)R(ω − Ω) [iΓsinΩt]

)
(4.12)

≈ |Ẽc|2
(

1 +
R(ω − Ω)

R(ω)
ΓsinΩt

)
(4.13)

The sideband contributes a negligible amount of DC power since the beam in reflection

is entirely dominated by carrier light; therefore, we only consider the power in the

carrier in DC. We denote the frequency-dependent carrier field amplitude by

Ẽc = R(ω) Ec. (4.14)

The amplitude modulated optical signal directed onto the camera generates propor-

tional photocurrent iPC which is related to Equation 4.11 by the quantum efficiency

η such that

iPC ≈ η IPC . (4.15)

During demodulation, the photocurrent is integrated for a time T, and subsequently

converted into a voltage. Frequency terms greater than the modulation frequency are

filtered by the bandwidth of the camera. We express the demodulation as a linear

combination of the in phase and quadrature phase signals by taking the product

of the incident photocurrent and the reference signal cos(Ωt) and evaluating at the

respective demodulation phases (θm = 0, 90, 180, 270)
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VPC =
gPC
T

∫ T/2

−T/2
iPC cos(Ωt+ θm) dt (4.16)

=
gPC
T

[∫ T/2

−T/2
iPC cos(Ωt)cos(θm) dt−

∫ T/2

−T/2
iPC sin(Ωt)sin(θm) dt

]
(4.17)

= gPC (<[iPC ]cosθm −=[iPC ]sinθm) (4.18)

= gPCη

(
=
[
Γ|Ẽc|2

R(ω − Ω)

R(ω)

]
sinθm

)
, (4.19)

where gPC(V/e−) is the gain of the ADC. Here we see that the demodulated output

extracts the real and imaginary components of the signal. Since the upper sideband is

allowed to transmit through the triangular cavity, only the lower sideband is measured

in reflection. This is observed as the demodulated output being purely imaginary.

The phase and amplitude can be found by substituting the results of Equation 4.16

into Equations 3.10 and 3.11. In this single-sideband scenario power modulation

index Γ is also related to the sideband-to-carrier ratio SCR via

SCR [dBc] = 20 log10

(
Γ

2

)
, (4.20)

where we use the IEEE’s definition [71]. Unlike typical photodetectors, the measured

photocurrent is demodulated at Ω in each pixel on the sensor array. The corresponding

amplitude and phase maps are then constructed using the measured values of I and

Q for each frame. The CMOS phase camera in our experiment was set to capture at

a frame rate of 7 Hz with total exposure time of 32 ms, although frame rates of up to

60 Hz are supported by the camera. Additional capture settings for our measurements

are referenced in Table ??. The lowest achievable demodulation frequency for our

current electronics setup is 5 MHz. This is primarily due to the RF switch bandwidth.

This limitation is improved with the use of the CD54ACT109 flip-flop, which allows for

synchronized demodulation output down to kilohertz frequencies. The AC integration

time is internally set to never exceed 30% of the DC integration time3, this allows for

sufficient readout and dead time after frame readout.
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Figure 38: The DC intensity profile, which is used in calibration, is plotted as a

function of sensor position. The residual of the Gaussian fit to the DC profile is

shown in the plane on the bottom. The dominant 4-bit digitization noise in the DC

output is noticeable. In contrast, the RF output is digitized with 12-bit resolution

[1].
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4.3.2 Calibration Methods

For each frame of the 320 × 240-pixel array, the respective amplitude, phase, and

ambient readout channels of the camera are expressed in terms of counts of the analog-

to-digital converter or digital numbers (DN). We perform a calibration procedure to

extract a calibration factor, κ, which relates the total number of generated photo-

electrons in an image to the corresponding DN value. The calibration procedure is

as follows:

1. We use the broadband photodiode (bbPD2, see Fig. 37), to obtain a calibrated

measurement of the modulation index of the beam incident on the camera. We

measured its DC transimpedance Zdc to be 1975 Ω and its RF transimpedance

Zrf at 25 MHz, the frequency of the local oscillator, to be 4750 Ω. Then, the

power modulation index (Γm) of an arbitrary beam incident on bbPD2 can be

calculated via

Γm =
1

2
· V

rf
pp · Zdc
Zrf · Vdc

, (4.21)

where the peak-to-peak RF signal (V rf
pp ) and the mean DC signal (Vdc) measured

by bbPD2 are read on an oscilloscope. The factor of 1/2 is used to convert peak-

to-peak voltage to amplitude. Using Ohm’s law, we can solve for Γm in terms

of the photoelectron flux for both the DC and AC signal.

Γm =
1

2
· I

rf
pp

Idc
(4.22)

=
1

2
· qNrf/trf
qNdc/tdc

(4.23)

=
1

2
· nac
ndc

=
1

2
Γ (4.24)

In Equation 4.22, q is the charge of an electron and both Nrf/Ndc describe the

total number of charge carriers over the respective integration times trf/tdc. The

double-sideband modulation index is given by Γ. Now that we have established

a relationship between the DC and AC signal, we can use this to determine the

relationship between the calibration values.

3The DC integration time makes up about 3/4ths of the frame initialization trigger and the rest

is a dead period which includes frame readout and processing of DC frames
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2. To quantify the number of photons incident on the camera we measure the

incident power (Pin) using a calibrated Thorlabs power meter. Since the NIR

filter on the camera has a 5% transmission at 1064 nm at normal incidence [61],

the total power incident on the camera after the filter (P sensor
in ) can be calculated.

The range of DC power up to saturation is provided in Table ?? for a beam

size of 0.25 mm used in this measurement. The DC power per pixel can then

be calculated by dividing the measured intensity profile I(x,y) by the pixel area

Apix, refer to Table ??. We find that that the minimum DC power detectable in

each pixel from a Gaussian beam is of the order of a few nW and the maximum

power of each pixel at saturation is ≈ 14.6nW. Using the ambient channel of

the camera, we can measure the profile of the incident beam. We fit a Gaussian

profile normalized to the P sensor
in to get the Gaussian beam parameters and

calculate the power density of the beam incident on the sensor, psensorin (x, y),

see Fig. 38. The number of photons per area incident on the sensor during the

exposure time Texp can then be estimated by

np(x, y) =
psensorin (x, y) · Texp

hν
(4.25)

The exposure time is the sum of each of the quadrature exposure time during

which the signal is integrated.

3. The number of photoelectrons generated in each pixel is related to the num-

ber of photons via the quantum efficiency η, which for the OPT8241 sensor is

approximately 2% for 1064 nm light [58]. Thus we have

Ne =

∫

Apixel

ne(x, y) dxdy =

∫

Apixel

η · np(x, y) dxdy (4.26)

4. Finally, the calibration factor κ is given by the ratio of the total number of

photoelectrons generated to the sum of digital numbers reported in a region of

interest (ROI):

κDC(e−/DN) =
ΣROI(Ne)

ΣROI(DNDC)
(4.27)

Similarly, the AC calibration is given by

κAC(e−/DN) = Γm
ΣROI(Ne)

ΣROI(DNAC)
, (4.28)
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where Γm is the modulation index from Eq. 4.21 and we divide by the camera

output in the AC readout, DNAC . We estimate a calibration factor of κDC of

1.9 · 105 e−/DN and κAC of 1.0 · 103 e−/DN .

4.3.3 Quantitative Noise Analysis

Here we quantify the temporal and spatial noise of the CMOS phase camera. The

noise performance is characterized using the experimental layout described in Sec-

tion 4.3.1. To characterize the DC power saturation levels, we vary the intensity of

the 1064 nm laser beam incident on the CMOS sensor. We observe pixel saturation at

6µW of incident power with beam radius of 0.25 mm. Additional camera performance

parameters are summarized in Table 10.

To determine the RF sensing capabilities and noise limitations of the phase camera

the DC intensity of the beam incident on the sensor is held constant while the power

modulation index is varied by sweeping the cavity, as illustrated in Fig. 37. Using

this method, we report performance measurements for power modulation index values

from zero to 0.046. The AC calibration factor, calculated in Section refsec:calibration,

is used to convert the measured noise into equivalent number of photoelectrons. The

total noise in an individual pixel in a single frame is estimated by adding in quadrature

photon shot noise, fixed pattern noise, and electronics noise, all of which are measured

with an integration time of 32 ms. The total amplitude and phase noise are measured

as the standard deviation of the corresponding image obtained by subtracting two

independent illuminated frames and dividing the result by
√

24. The result in Fig. 39

show a close agreement between measured and estimated noise. We find that the shot

noise limit is a factor of 8 below the total measured noise and the camera sensitivity

is limited by background electronic noise and fixed pattern noise.

The demodulation pixels suppress the DC contribution of the illuminating beam

using correlated balance sampling [58, 56]. However, a sufficiently high carrier field

intensity will saturate the pixel of the sensor. The dynamic range is the ratio of the

saturation point to the noise floor defined as [58]

D/R = 20 log10

( Asat
σdark

)
, (4.29)

4The details of this calculation are provided in Appendix D.
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Figure 39: The figure above shows the phase camera noise as the power modulation

index of the incident beam is varied at constant beam intensity. The root-mean-

square amplitude noise (top) and phase noise (bottom) per pixel of the camera are

calculated from a single image captured (no averaging). As the beam profile is the

same across these measurements, the sensor area considered is the same. The shot

noise and fixed pattern noise remain constant under these illumination conditions.

We find that the total measured per pixel noise in phase and amplitude agrees closely

with the sum of the budgeted noise sources. The current prototype of the phase

camera is predominantly limited by the electronic noise and the shot noise is a factor

of 8 below the total noise. The phase noise improves with higher power modulation

index and with averaging of frames. The bottom plot also shows the measured per

pixel phase noise with 50 frame averages in purple [1].
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where Asat is the pixel saturation value, i.e. maximum digital number and σdark is the

dark noise of the pixels. We estimate an operating dynamic range of 75 dB for the

phase camera. However, due to the low modulation index of the illuminating beam

in our test setup, the camera saturates in DC before reaching the full dynamic range

of the amplitude and the phase readouts.

4.3.4 Sensitivity to Power Modulation Index

Camera performance for each measurement can also be quantified by calculating

the signal-to-noise ratio (SNR). We define the SNR as the ratio of the demodulated

amplitude A (estimated using spatial averaging) to the measured amplitude noise σA.

SNR =
A

σA
≈ < NAC >

σAC
(4.30)

As shown in Equation 4.30, SNR can also be expressed as the ratio of the modulated

number of photoelectrons incident on the camera to the measured amplitude noise.

Using this standard, we can define a measurement criteria for evaluating significant

detection of power modulation index as having an SNR equal to or above the “σ0”

level.

SNR =
< NAC >

σAC
≥ σ0 (4.31)

Substituting the results from Equations 3.30 and 4.22 into Equation 4.31, we see that

nACtAC
2σAC

≥ σ0 (4.32)

Γ
nDCtAC
2σAC

≥ σ0 (4.33)

rearranging,

Γ ≥ σ0
2σAC
nDCtAC

(4.34)

We define Equation 4.34 as the detectability of a modulation index, where the ex-

pression to the right side of the inequality sets the threshold for significant detection.

In the case that the camera is shot noise limited, we can substitute the result from
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Equation 3.39 into the expression on the right of the inequality. Therefore, in the

double-sideband case we get,

Γ ≥ 4σ0

σAC
(4.35)

and for a single sideband,

Γm ≥
2σ0

σAC
=

2σ0√
2nDCtAC

. (4.36)

Since frames and pixels are independent and equally-distributed, averaging can be

used to improve the signal-to-noise ratio. It is well-known that the signal-to-noise

improves as the square root of the averaged frames
√
Nframe and, similarly for pixels,√

Npix. Calculations showing how signal-to-noise improves with averaging is shown

in Appendix C. Because image frames and pixels can be averaged independently, both

contribute a factor of square root of number of averages to the measured noise.

Γm ≥
2σ0√

Nframes Npix · 2nDCtAC
(4.37)

We define the SNR for individual pixels on a single frame, as well as after spatial

and/or temporal averaging. We observe that for averaging up to 50 independent

frames, the SNR improves as
√
Nframe, Fig. 40. The figure shows the SNR as a

function of the power modulation index Γm for up to 50 averaged frames. The y-axis

is scaled by 1/
√
Nframes, such that the data points line up if the noise in the frames

are independent. We find the SNR scales linearly with the modulation index of the

illuminating beam at constant beam intensity. By fitting a linear model to the data,

we find that our camera is capable of detecting a modulation depth of 0.0063 with a

significance of greater than σ. The fit also shows for 50 frame averages that the phase

camera can detect signals above a modulation index of 0.0009 without any spatial

averaging, see Fig. 40.

Using equation 4.20 and substituting the power modulation index of 0.0063 (SNR = 1),

we can also find the camera’s sensitivity limit for resolving the sideband-to-carrier ra-

tio SCR in dBc per frame per pixel:

SCRLIM = 20 log10

(
Γ1fr,1pix

SNR=1

2

)
= −50 dBc/fr/pix. (4.38)
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Figure 40: Top plot: Single-frame-SNR as a function of Γm. The y-axis shows the

single-frame-SNR, defined as SNR/
√
Nframes. The horizontal error bars show the

experimental errors in the estimation of the Γm using the calibrated bbPD2 photo

detector. We find the SNR improves with the square root of the number of frames

and number of pixels, consistent with temporally and spatially independent pixel

noise. Pixel averaging can be implemented to improve the SNR at the cost of spatial

resolution. The blue line represents a linear fit through the data. Using the fit, we

estimate with 50 averages, the CMOS phase camera is capable of sensing RF signals

in each pixel with Γm as low as 0.0009. Bottom figures: Phase images – single frame

(top row) and with 50 averages (bottom row), for incident beams with low (left) and

high (right) power modulation index. The phase resolution improves linearly with

SNR [1].
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Since the frame rate for the test data was 7 Hz, and we only used about 50% of

the maximum quad integration time per frame (see Table 9) we find approximately

SCRLIM = −62 dBc/sec/pix. (4.39)
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Chapter 5

Application to LIGO: Signal

Modeling for Point Absorbers on

CMOS phase camera

Note that the information presented in this chapter (i.e. figures and calculations) are

taken from Muniz et al. (2021). Details involving point absorber calculations are

presented in Appendix E for reference.

5.1 Signal Modeling for Point Absorbers

One of the critical issues limiting the sensitivity of Advanced LIGO is the presence

of small (few tens of µm diameter) absorptive defects on the test masses, referred to

as point absorbers. Exposed to the laser field in the interferometer arms, these test

mass defects cause local heating and result in local optical path length distortions

for the laser field. These optical distortions excite higher-order modes in LIGO’s

coupled cavities, leading to excess optical loss and limiting the sensitivity of the

detectors. Furthermore, the path distortions affect the carrier and sideband phase

fronts differently, thus deteriorating the alignment and angular control error signals.

A phase camera is capable of mapping these phase front distortions. Error signals can

be extracted from the camera output and can be used to control corrective actuators.

Unlike conventional quadrant photodiodes, the phase cameras offer a high spatial

resolution to resolve the phase front changes due to the point absorbers.
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Figure 41: The simplified Advanced LIGO setup for point absorber modeling. To

simplify the simulation we do not include the effects of the power and the signal re-

cycling cavities. Instead, we model the input power to be equal to the power at the

beamsplitter during the Advanced LIGO O3 run [2]. The other parameters of the in-

terferometer are summarized in the table 12. The optical path distortions due to the

point absorbers is modeled with a Lorentzian profile for each of the input test masses.

The carrier and the sideband fields are calculated under plane beam/paraxial approx-

imation and the corresponding beat signals are calculated at the anti-symmetric port

of the beamsplitter [1].
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Simulation Parameters

Differential arm offset 10 pm

Arm cavity finesse 446

PHomodyne ref. Beam 50 mW

PBS
in 1500 W

wBS
0 6 cm

LSchnupp 8 cm

Carrier recycling gain 40

45 MHz recycling gain 2

45 MHz phase mod. index

at input 0.18

at beamsplitter 0.04

Table 12: Simulation Parameters of the interferometer shown in Fig. 41. They ap-

proximately correspond to the Advanced LIGO parameters [2].

To get an approximate estimate of the phase camera’s ability to sense the effect

of point absorbers LIGO’s input test masses, we present a simplified model without

considering the coupled cavity layout of LIGO, shown in Fig. 41. We initially also

ignore Gouy phase shifts because beamsplitter and input test masses are essentially

in the same Gouy phase. We will get back to the effect of the output beam Gouy

phase shift. While these are oversimplifications, they still allow us the estimate the

required sensitivity to pick up the point absorber phase distortions in a phase camera

image taken at the interferometer anti-symmetric port. We consider two scenarios,

the current Advanced LIGO, which uses DC readout, and the A+ upgrade, which

uses homodyne readout without differential arm DC offset. We choose the model

parameters in accordance with the existing Advanced LIGO facilities. We assume

the carrier and the 9 MHz and 45 MHz sidebands (with modulation index Γ) are

incident at the 50/50 beamsplitter. Considering the approximate power-recycling

gain of 40 for the carrier and 2 for the 45MHz sidebands we can estimate the power

modulation index of the beam incident on the beamsplitter [2, 40]. The beam then

propagates from the beamsplitter to the input test mass in each of the arm cavities.
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We model the response of the point absorbers to first-order, which affects the phase

of the sidebands, but leaves the carrier unperturbed. The carrier experiences only a

phase shift due to the DARM offset between the two arm cavities:

rcarx = +1 · eiΦDARM/2 rcary = +1 · e−iΦDARM/2 (5.1)

rsbx = −1 · ei2kX(~x,~y) rsby = −1 · ei2kY(~x,~y) (5.2)

where X(~x, ~y) and Y(~x, ~y) are the one-way transmission maps encoding the optical

path distortions. Under these simplified assumptions one can calculate the fields of

the carrier and sidebands at the anti-symmetric port of the beamsplitter. The beat

map between the carrier or the reference beam with the sideband in I and Q is given

by

I(x, y) = Re(sb∗+c+ c∗sb−) (5.3)

Q(x, y) = Im(sb∗+c+ c∗sb−) (5.4)

One can analytically show that in the Gouy phase of the beamsplitter (φ = 0) the

beat in I(x, y) and Q(x, y) between the carrier and the sidebands at the AS port is

first-order independent of the optical path distortions due to the point absorber. We

recover the usual DC readout terms:

I(~x, ~y) = 0 (5.5)

−Q(~x, ~y) = Γpin(~x, ~y) sin(
ΦDC

2
) sin(

ωsLs
c

) (5.6)

However, this does not remain true at every Gouy phase in the readout beam. The

small point absorber distortion evolves differently with Gouy phase. For simplicity,

we can assume that the distortion fields X(~x, ~y) and Y(~x, ~y) contains only one higher-

order mode of order N = l + m. (l and k are for example the Hermite-Gauss mode

orders.) Then the I readout quadrature become

Iφ = kΓpin sin(
ΦDC

2
) cos(

ωsLs
c

) sin(Nφ)(X− Y) (5.7)

where the spatial shape is given by the beat of the fundamental and the N-th order

mode, ΨN(~x, ~y) ·Ψ0(~x, ~y). Equation 5.7 can be generalized by expanding X(~x, ~y) and

Y(~x, ~y) in terms of higher order Gaussian modes, which is straight forward, a little
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Figure 42: Size of the expected power modulation index in the interferometer anti-

symmetric port I-quadrature, as a function of the optical path distortions (OPD)

due to a point absorber on an input test mass. The power modulation index scales

linearly with the OPD before it plateaus to a constant, which is caused due to the

sidebands, 9 MHz and 45 MHz, leaking through the AS port. The dashed red line

shows the minimum power modulation index that the CMOS phase camera can sense

using only a single frame. The solid red line shows the minimum power modulation

index that the CMOS phase camera can sense after 50 averaged frames. In homodyne

readout, where there is no large orthogonal Q-quadrature signal to compete with, we

can sense distortions greater than 0.1 nm using 50 averaged frame. In the current DC

readout there is a large Q-quadrature signal due to the differential arm DC offset.

The phase resolution of the CMOS phase camera will thus limit sensing capabilities.

The solid black line represents the per pixel phase resolution limit after 50 frame

averages (see Fig. 39). Assume the camera is place in the appropriate Gouy phase,

we can resolve optical path distortions greater than 2 nm in the DC readout scheme

of current Advanced LIGO detectors. Typical optical path distortions due to these

point absorbers in Advanced LIGO ranges from few nanometers to a few hundreds of

nanometer [6, 2]. The parameters of the simulation are summarized in Table 12.
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complicated, and not necessary if we are only interested in the camera sensitivity

limitation.

The presence of a large beat signal in the Q quadrature from the DC readout

scheme means that we also have to worry about the camera phase resolution. The

beat map phase rotation is given by

I
Q
φ

= k cot(
ωsLs
c

) sin(Nφ)(X− Y) (5.8)

During the A+ upgrade Advanced LIGO will switch to a homodyne readout

scheme, reducing the DC offset to zero, and instead using a separate carrier ref-

erence beam as local oscillator. We assume that the reference beam has about the

same amplitude as the current carrier due to the DC offset, as this permits using

the same sensing and readout electronics. Thus, the expression 5.7 for sensing the

effect from the point absorbers remains essentially the same, with one difference: For

diagnostic purposes we now have control over the phase αHom of the reference beam.

The I quadrature thus becomes

Iφ = kΓ
√
prefpin cos(

ωsLs
c

) sin(Nφ− αHom)(X− Y) (5.9)

Thus we can pick the beamsplitter Gouy phase φ = 0, a 90 deg rotated reference

beam, αHom = π/2, removing the large beat signal in the Q quadrature and avoiding

the phase resolution limitation of the phase camera.

The power modulation index of the beat signal is given by

ΓI =
2I
DC

; ΓQ =
2Q
DC

(5.10)

Figure Eq. 42 shows the size of the expected power modulation index signal as a

function of the optical path distortion (OPD). The red horizontal dashed line repre-

sents the approximate power modulation index sensitivity limit of the phase camera

for each pixel. The vertical black dashed lime corresponds to the phase resolution

limit of the camera, and is relevant in the presence of a large signal in the orthogonal

quadrature due to the interferometer differential arm fringe offset. We expect the

phase camera to be sensitive enough to pickup optical path distortions greater than

about ∼ 2 nm where the readout is limited by phase resolution of the phase camera.

Otherwise, the phase camera is capable of sensing OPD due to point absorbers as low

as ∼ 0.1 nm. Typically, the OPD caused due to point absorbers ranges between tens
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up to a few hundreds of nanometers [6, 2]. Currently Hartmann wavefront sensors

are used to image point absorbers in aLIGO directly. These sensors map the point

absorbers onto the surface of the test masses [6], but do not measure their impact

on the interferometer. The CMOS phase camera does not directly image the point

distortions, but instead measures the change in the interferometer phase front at the

AS port caused due to these point defects. Using the model discussed above, we

simulate an example case for a typical point absorber [6] with 20 nm of optical path

distortion at full width half maximum, see Fig. 43.

5.1.1 Implications for Gravitational Wave Detectors

The simple interferometer model presented above leads us to conclude that the CMOS

phase camera developed in our group is capable of diagnosing the effect of point

absorbers on the LIGO input test masses when installed at the interferometer anti-

symmetric port. The exact Gouy phase of the camera will matter though, as there

is no signal in the beamsplitter Gouy phase. Having a separate local oscillator refer-

ence beam, either as part of the homodyne readout or as a separate local oscillator

for the phase camera, will simplify the image analysis. Lastly, we note that the

model presented above does not include the signal recycling cavity and the power

recycling cavity of the Advanced LIGO detector. While the power recycling cavity

only filters the beam incident on the beamsplitter, the signal recycling cavity will

spatially filter the effect of the point absorber, cleaning up the mode. However, with

a signal recycling mirror transmission around 32%, the signal recycling cavity has

an extremely low finesse, preserving the distortion signal, but also making modeling

rather complicated.
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Figure 43: Simulated signal for a point absorber with 20 nm optical path distortion

as seen at the anti-symmetric port (no recycling cavity, zero Guoy phase; see text).

The 6 cm beam at the beamsplitter in our simulation, Fig 41, is rescaled to match the

beam in our test setup (see Section 4.3.4), using the test images as reference for the

point absorber free data including camera noise. The phase readout is not meaningful

outside the illuminated region. The phase maps highlight the phase around π/2±π/4
to illustrate the phase distortions due to the point absorber. Top left: Reference test

image for a single frame without any point absorbers. The non-Gaussian features

arise from the distorted laser beam in reflection in the experimental setup. Top

right: The relative phase distortion due to the point absorber is added to the test

image for a single frame. Bottom left and bottom right: Same as top left and top

right respectively, but with an average of 50 frames. We measure ∼28 degrees of

accumulated phase in the presence of the 20 nm point absorber. This estimate is

consistent with the analytical calculation in Section 5.1.
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Chapter 6

Conclusions

6.1 Summary

At the time of writing, the LIGO detectors are currently preparing for the fourth

observing run, O4. One of the primary objectives for LIGO in the next observing

run is moving to higher input power, which will help to improve shot-noise limited

sensitivity. In Chapter 2 I outlined some of the challenges with transitioning to

higher power during the span of O2 and O3. In particular, the presence of point-

absorbers on the test mass surfaces contributed to optical losses via distortion of

the optical wavefront which scatter power out of the fundamental mode. This was

determined to reduce the operational duty cycle of LIGO and lead to lock losses

by disturbing the optical signals used for controlling alignment and mode matching

in the interferometer. The current diagnostic methods used in the active wavefront

sensing system of LIGO provided limited information about the higher order spatial

modes that propagate in the interferometer due to these distortions. Therefore, the

proposal is for next generation detectors to have sensors with multiple RF-sensitive

segments (pixels) capable of distinguishing frequency-dependent spatial modes (i.e. a

phase camera).

In Chapter 4, we demonstrate a CMOS phase camera that is capable of imaging

externally modulated RF beat signals incident on the sensor with high spatial reso-

lution. Despite being limited by fixed pattern noise, the noise levels of the camera

allow sensing of RF beat signals with a power modulation index as low as 0.0009

with 50 frame averages. The phase camera also has the capability to measure the
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beat signals at different frequencies and is sensitive to very low incident beam power

levels. Lastly, the low latency image acquisition, design compactness, and relatively

low cost of the phase camera make it suitable for numerous applications in wavefront

diagnostics and sensing.

In Chapter 5, we model the behavior of a point absorber induced phase distortion

on the beat signal at the AS port. Considering the sensitivity limits of the camera,

due to the large beat signal in the Q quadrature, we determine that the phase camera

is sensitive enough to resolve optical path distortions ∼ 2 nm. Using a reference beam,

as will be used in A+, we see that measurements of the optical path distortion as low

as ∼ 0.1 nm are achievable.

The primary application of a phase camera in gravitational wave detectors is for

diagnostic purpose, imaging any unexpected phase front distortions, such as for ex-

ample those induced by point absorbers on test masses (see section 5.1). However the

phase camera can also be useful for controlling alignment and mode-matching in an in-

terferometer. In particular, the 320×240 pixel resolution of the CMOS phase camera

provides the sensing capabilities to operate and control interferometers with higher-

order Laguerre-Gauss or Hermite-Gauss modes as the operating resonant mode, a

scheme that was proposed to reduce the coupling of thermal noise to the gravita-

tional readout [72, 73]. Additionally, it has been shown that these cameras can be

operated synchronously [70], which allows for multiple cameras to simultaneously

record the beam in separate Gouy phases.

In summary, we expect that the CMOS phase camera will be an excellent tool for

commissioning Advanced LIGO, A+, and future gravitational wave detectors such as

Cosmic Explorer [74] or Einstein Telescope [75], and might also have control applica-

tions.

6.2 Future Work

6.2.1 Integrated Design Solution

Currently, we are working on an integrated design chassis (see Figure 44) to house

the electronic components mentioned in Section 4.2. The design features an all-in-one

adapter board for the microcontroller, RF signal routing, and power supply. The idea

for this enclosure is to provide a user-ready device for easy diagnostic measuring and



129

Figure 44: Custom-built enclosure unit.

testing at LHO.

6.2.2 Plan for O4 Commissioning

Initial discussions for how the phase camera will be used in A+ mainly revolve around

developing a use case as a diagnostic tool. The first step of this plan involves modeling

the phase camera response to distortions on the AS carrier field, due to the effects

of point absorbers. In the simple case, this has been demonstrated in Chapter 5;

however, a higher level analysis of the Gouy phase propagation in the arm cavities

should also be considered.

Discussions on a specific use case for a phase camera mainly revolve around mon-

itoring the mode matching into the filter cavity (FC) and OMC. A potential location

for the CMOS phase camera would be somewhere in AS AIR to monitor the 45 MHz

sideband at the AS port; however, this remains an ongoing discussion.
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Appendix A

Gaussian Beam Optics

To begin, we consider the propagation of an electromagnetic wave through an isotropic

charge and current-free medium. In this case we can write Maxwell’s equations as:

∇× E = −∂B

∂t

∇ · E = 0

∇×B = µ0ε0
∂E

∂t

∇ ·B = 0

Considering only the spatial dependence of the wave, the scalar fields must satisfy

the Helmoltz wave equation:

(∇2 + k)E = 0, (A.1)

where k = 2π
λ

is the wave number. Here, we want to assume a solution to the Helmholtz

equation that would best describe the propagation of our laser. The most trivial

solution we can guess is plane wave; however, we must consider that the transverse

profile of our laser changes as we propagate through space. Therefore, we can assume

an ansatz solution of the form:

E(x, y, z) = ψ (x, y, z)e−ikz (A.2)
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Equation A.2 describes the propagation of the monochromatic wave along the z-axis

and describes the evolution of the wave front in the complex function ψ (x, y, z).

Plugging equation A.1 back into the Helmholtz equation, we get the reduced wave

equation

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
− 2ik

∂ψ

∂z
= 0

The paraxial approximation assumes a change in the profile of the beam, but also

that the beam does not diverge too far from the z-axis, or

∣∣∣∣
∂2ψ

∂z2

∣∣∣∣�
∣∣∣∣2k

∂ψ

∂z

∣∣∣∣ ,
∣∣∣∣
∂2ψ

∂z2

∣∣∣∣�
∣∣∣∣
∂2ψ

∂x2

∣∣∣∣ ,
∣∣∣∣
∂2ψ

∂z2

∣∣∣∣�
∣∣∣∣
∂2ψ

∂y2

∣∣∣∣ .

Using the paraxial approximation, the Helmholtz wave equation reduces to the form

(
∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z

)
ψ (x, y, z) = 0

Equation A is also known as the paraxial wave equation and can also be represented

in cylindrical coordinates as:

(
∂2

∂r2
+

1

r

∂

∂r
− 2ik

∂

∂z

)
ψ (r, z) = 0 (A.3)

where we have dropped the angular dependence ϕ by considering the cylindrical

symmetry of our beam about the z-axis.

A.1 Fundamental Beam Mode

In order to find a solution for the fundamental Gaussian mode, we must take into

account the propagating beam will have the form of a Gaussian and that the Gaussian

diverges slightly as it propagates along the z-axis. This effect is encapsulated by defin-

ing a parameter q(z). Additionally, we also would like to allow for additional phase,
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which is accounted for by a P(z). Therefore, an ansatz solution of the fundamental

Gaussian mode is [31]

ψ = exp

{
−i
[
P (z) +

k

2q(z)

]}
(A.4)

where here we have defined ψ as representing the form of fundamental Gaussian mode.

Substituting this solution into Equation A.3, gives

{[
k2

q2(z)
(q′(z)− 1)

]
r2 − 2k

[
P ′(z) +

i

q(z)

]}
ψ = 0 (A.5)

To be true for all r, each of the coefficients of r must be zero. Therefore, we get two

first order differential equations in terms of q(z) and P(z)

dq(z)

dz
= 1 (A.6)

dP (z)

dz
= − i

q(z)
. (A.7)

Solving Equation A.6, we arrive at an expression for our parameter q

q(z) = q0 + z (A.8)

The quantity q0 is a constant of the integration, which, when taken to be complex

returns the form of the Gaussian. This also represents our q parameter at the value

z = 0. It is convenient to redefine q0 in terms of the beam waist ω0 and the wavelength

λ as:

q0 = i
πω2

0n

λ
= iz0 (A.9)

The complex parameter q0 is re-expressed in terms of the Rayleigh range, z0, or the

distance where the mode area is effectively doubled. In Equation A.9 we also take n

= 1. Now, solving Equation A.7 for P(z) we get

P (z) = −iln
(

1 +
z

q0

)

substituting back into Equation A.4 gives
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ψ = exp

{
−i
[
−iln

(
1 +

z

q0

)
+

k

2(q0 + z)
r2

]}
(A.10)
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Figure 45: The plot above shows the Gaussian beam parameters evaluated for

λ = 1064 nm and ω0 = 1 cm. (a) Beam size ω(z) as a function of distance from

the waist. (b) Radius of curvature R(z) as a function of distance from the waist. (c)

Gouy phase as a function of distance from the waist. (d) Normalized intensity as a

function of beam radius.

it then follows that the beam size w(z) and radius of curvature R(z) can both be

expressed as a function of the position of the beam along the propagation direction

and in terms of z0.

ω2(z) = ω2
0

[
1 +

(
λz

πω2
0n

)2
]

= ω2
0

(
1 +

(
z

z0

)2
)

(A.11)
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R(z) = z

[
1 +

(
πω2

0n

λz

)2
]

= z

(
1 +

(z0

z

)2
)

(A.12)

Notice that the beam size when z = 0 is simply the beam waist ω0 and the radius of

curvature goes to infinity as we would expect for a plane wave. At the Rayleigh range

(z = z0), the beam size is a factor of
√

2 larger than the waist size and the radius

of curvature is double the Rayleigh range. We can also define an additional phase

parameter, known as the Gouy phase ζ(z), which describes the phase accumulation

of the Gaussian wavefront as it propagates

ζ(z) = tan−1

(
z

z0

)
(A.13)

Plots of the radius of curvature, beam size, and Gouy phase are shown in Fig. 45 for

a beam of wavelength 1064 nm and a ω0 = 1cm. Finally, substituting Equations

A.10, A.11 and A.2 we finally arrive at the equation for the fundamental beam mode

E(r, z) = E0
ω0

ω(z)
exp

{
−i[kz − ζ(z)]− r2

(
1

ω2(z)
+

ik

2R(z)

)}
(A.14)

The intensity of the Gaussian beam is given by taking the square magnitude of Equa-

tion A.14

I(r, z) = |E(r, z)|2 = I0

[ω0

ω

]2

exp

[−2r2

ω2(z)

]
, (A.15)

where I0 = |E0|2 and the peak intensity occurs when z = 0 and r = 0. The plot in

Fig. 45d shows the intensity of a Gaussian beam plot for increasing distance from the

waist, varying as a factor of the Rayleigh range. We can see from the plot that when

the distance from the waist is equal to one Rayleigh range in length, the effective area

of the beam is doubled, resulting in a decrease in intensity by a factor of 1/2.

A.2 Higher Order Modes

A.2.1 Hermite-Gauss Modes

If we relax the constraints of cylindrical symmetry, an infinite number of solutions to

the paraxial wave can be found. These solutions are described as higher order modes
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Figure 46: Intensity profiles of Hermite-Gauss modes for m = 0,1 and n = 0,1.

to the fundamental Gaussian mode. If we consider Cartesian symmetry, the solution

for the paraxial wave equation is given by

HG(x, y, z)m,n = E0
ω0

ω(z)
Hm

(√
2x

ω(z)

)
Hn

(√
2y

ω(z)

)
(A.16)

· exp
(
i(m+ n+ 1)ζ(z)− ikz − ik(x2 + y2)

2R(z)
− x2 + y2

ω2

)
,

where H(s) are the familiar Hermite polynomials (1, 2s, 4s2 − 2, 8s3 − 12s, ...). The

HG modes are illustrated in Figure 46 up to first order. Notice that if we set m

= n = 0, we return to our original solution for the fundamental Gaussian beam.

Additionally, since the HG modes form a complete and orthogonal basis set, we can

decompose any solution of the paraxial wave equation into a linear combination of HG

modes. The Cartesian symmetry of the HG basis is particularly useful in describing

beam propagation as a result of misalignment in optical cavities due to translation

or rotation. Another thing to consider is that the Gouy phase depends on the mode

order by the term (m+n+1), where m is the horizontal index and n is the vertical

index. This means that Gouy phase advances differently along the horizontal and

vertical axis, which proves useful for general applications in wavefront sensing.
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Figure 47: Intensity profiles of Laguerre-Gauss modes for p = 0,1 and l = 0,1.

A.2.2 Laguerre-Gauss Modes

Applying cylindrical symmetry, we get the Laguerre-Gauss (LG) Modes, which also

form a complete and orthogonal set of solutions to the paraxial wave equation. The

general form of the LG modes is given by:

LG(r, φ, z)p,l = E0
ω0

ω(z)

( √
2r

ω2(z)

)
Llp

(
2r2

ω2(z)

)
(A.17)

· exp
(
i(2p+ l + 1)ζ(z)− ikz + ilφ− ikr2

2q(z)

)
,

where Llp are the Laguerre polynomials. The azimuthal index is represented by l and

the radial index is represented by p. We can see from intensity distribution of the

first few mode orders (Figure 47), that for when p = l = 0, we return to the solution

for the fundamental Gaussian. When l = 0, the azimuthal dependence on phase ilφ

disappears and the intensity is nonzero at the center. When l 6= 0 the power at the

center is zero and the phase front of the beam varies with ilφ.
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Appendix B

Gouy Phase

Gouy phase as defined in A.13, is the deviation of the optical phase front as a function

of the Gaussian beam propagation along the ẑ-axis, which has a range of ζ = ±π/2
for z = ± inf. This can physically be interpreted as the Gaussian beam behaving like

a plane wave in the near field (z ≈ 0) and behaving like a spherical wave when in the

far field (z ≈ ± inf). To see how this translates to how Gouy phase is used in LIGO

consider that the alignment of a laser beam can be described by the two degrees of

freedom: position and angle from the optical axis. By placing a sensor at the origin or

at the beam waist, we expect our measurement to have higher sensitivity to rotation

of the beam angle compared to placing our sensor at the far field where we expect

higher sensitivity to the displacement of the laser. Therefore, in order to sample both

alignment degrees of freedom, we must have two sensors separated by 90 degrees of

Gouy phase.

In practice the near field is not always the ideal location for placing a sensor, as

putting a sensor inside a Fabry-Perot cavity to measure changes in waist size would

be impossible. Typically, the way to measure such a degree of freedom would be to

sample a pick-off beam either in transmission or reflection of the optical cavity and

using a telescope (series of lenses) to ensure the sensors are placed at the appropriate

Gouy phase 1. Then by rotating to the eigenbasis of the optical cavity, or optical

system, create a matrix that describes the sensitivity to particular degree of freedom.

This is known as constructing a sensing matrix. Actually, sensors are seldomly placed

1Note a direct way of measuring the Gouy phase of the beam does not yet exist so typically one

must model the propagation of the beam and fit the beam waist.
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in the near field and far field for this reason and, in most cases, it is typically easier

to place sensors at ± 45 degrees Gouy phase.

In LIGO, the discussion of Gouy phase is often presented in the context of dis-

cussing the round trip phase accumulation in an optical cavity. As I will show, this is

important because Gouy phase is proportional to the spacing between spatial modes,

or transverse mode spacing, in an optical cavity. The relationship between the Gouy

phase and transverse mode spacing of an optical cavity is given by the relation:

νTMS =
ζ

2π
νFSR (B.1)

The discussion I present here is only brief; however, I encourage the reader to review

the LIGO technical note by Koji Arai for a detailed overview on the topic [76]. Recall

that the free spectral range νFSR = c/2L defines the spacing between the fundamental

mode resonance peaks in the cavity. Additionally, the Gouy phase propagation for

higher order modes in a cavity is much different than the fundamental (i.e. ζnm =

(m+ n+ 1)ζ(z)), such that higher order modes see a much different cavity than the

fundamental. It can be shown that the round trip accumulated Gouy phase shift can

be computed from the round trip ABCD matrix of the optical cavity such that:

ζ = sgnB cos−1

(
A+D

2

)
, (B.2)

where A,B,C, and D are the matrix elements of the optical system of interest.
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Appendix C

Improving SNR with Signal

Averaging

Consider the noisy signal with a signal component ns(t) and added Gaussian noise

ñs(t):

n(t) = ns(t) + ñs(t) (C.1)

Assuming that the signal measurements are independent and samples are equally-

spaced, then the noiseless signal is simply the sum over each repetition of the mea-

surement N.

N∑

i=1

ns(t) = Nns(t) (C.2)

For completely random noise, with zero mean and variance σn, after N repetitions of

the measurement, the average noise is simply the average over the variances.

N∑

i=1

ñs(t) =
√
Nσ2

n =
√
Nσn (C.3)

Therefore, the averaged signal-to-noise ratio (SNRN) is given by:

SNRN =
Nns√
Nσn

=
√
N SNR (C.4)

Considering only the signal, we see that it is improved by a factor of 1/
√
N .
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Appendix D

Image Analysis Code

Parameters

1 f unc t i on p=paramsPCsensdata ( )

2

3 % d e f i n e s d i r e c t o r y in fo rmat ion f o r data r e t r i e v a l

4 p . d i r . meas name = ’ 062420 data ’ ; % Measurement name and date

( user de f ined )

5 p . d i r . d a t a f o l d e r = [ ’ /Volumes/MUNIZERIK/

Modulat ionDepth var iat ion 062420 / ’ ,p . d i r . meas name , ’ / ’ ] ; %

Direc to ry where measurement data i s s to r ed ( user de f ined )

6 p . d i r . meas type = { ’ Amplitude ’ , ’ Phase ’ , ’ Ambient ’ } ; %

Measurement type de s i gna to r ( changes depend on measurement

)

7 p . d i r . p i n c s t r = { ’ 0 .007 ’ , ’ 0 .024 ’ , ’ 0 .031 ’ , ’ 0 .046 ’ } ; %

Measured modulation depth f o r l a b e l i n g purposes % ’0.031 ’ ,

8

9 % parameters o f phase camera

10 p . camera . p i x s i z e = 0 . 0 1 5 ; % Phys i ca l p i x e l s i z e [mm]

11 p . camera . p i x e l a r e a = p . camera . p i x s i z e ˆ2 ; % I n d i v i d u a l p i x e l

area

12 p . camera . f i l t e r t r a n s = 0 . 0 5 ; % Attenuation f a c t o r o f IR band−
pass f i l t e r coat ing ( t ransmi s s i on )
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13 p . camera .QE = 0 . 0 2 ; % quantum e f f i c i e n c y o f standard cmos

camera @1064 [ e−/s /photon/ s ] [ c i t e : https : //www. tho r l ab s .

com/newgrouppage9 . cfm? ob j e c t g roup id =4024]

14 p . camera . imgSizeX = 320 ;

15 p . camera . imgSizeY = 240 ;

16 p . camera . t exp = 32e−3; % Exposure time f o r quad measurements

[ s ]

17 p . camera . t exp ac = 6 .4 e−3; % Exposure time f o r quad

measurements [ s ] [ d ead t ime f a c t o r ∗( t dc / total quad number

) ]

18

19 % measurement parameters

20

21 p . data . P inc = 7.24 e−6; % Inc iden t power on camera [W]

22 p . data . d c v o l t = [232 e−3 232e−3 232e−3 232e−3] ; % DC vo l tage

measured on PD [ Volts ] %232e−3

23 p . data . r f v o l t = [ 7 . 4 e−3 27 .2 e−3 34 .4 e−3 50 .8 e−3] ; % RF

vo l tage measured on PD [ Volts ] %34.4e−3

24 p . data . r f v o l t e r r = [ 2 e−3 2e−3 2e−3 2e−3] ; %Uncerta inty in

RF vo l tage measured on PD [ Volts ]

25 p . data . d c v o l t e r r = [ 1 e−3 1e−3 1e−3 1e−3] ; %Uncerta inty in

RF vo l tage measured on PD [ Volts ]

26 p . data . dc ohm = 1975 ; % Transimpedance o f DC channel [ Volts /

Amp]

27 p . data . rf ohm = 4750 ; % Transimpedance o f RF channel [ Volts /

Amp]

28

29 % p h y s i c a l and measurement cons tant s

30 p . constant . q e = 1 .6 e−19; % charge o f an e l e c t r o n [C]

31 p . constant . h = 6.626 e−34; % Planck ’ s constant [ Jou l e s ∗ s ]

32 p . constant . c = 3e8 ; % Speed o f l i g h t [m/ s ]

33 p . constant . wavelength = 1064e−9; % Wavelength o f i n c i d e n t

l i g h t [m]
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34 p . constant . R pd = 0 . 0 8 ; % Respons iv i ty o f bbRF photodiode [A/

W] [ c i t e : https : // dcc . l i g o . org /DocDB/0025/ D1002969 /008/

BroadbandPD . pdf ]

35 p . constant . E photon = (p . constant . h∗p . constant . c ) /p . constant .

wavelength ; % Energy per photon @ 1064nm [ J/photon ]

36 p . constant . QE pd = (p . constant . R pd/p . constant . wavelength ) . . .

% quantum e f f i c i e n c y o f bb photodiode @1064 [ e−/s /photon/

s ]

37 ∗ ( ( p . constant . h∗p . constant . c ) /p . constant .

q e ) ;

38

39 % Create a g r id and boundary c o n d i t i o n s f o r c i r c u l a r ROI and

f i t t i n g

40 [ p . g r i d . column , p . g r id . row ] = meshgrid ( 1 : p . camera . imgSizeX , 1 : p

. camera . imgSizeY ) ; % Creates 240 x320 g r id o f row and

column to d e f i n e image s i z e

41 p . g r id . xpos = −((p . camera . imgSizeX−1)∗p . camera . p i x s i z e ) . . .

% Resca l e s g r id to p h y s i c a l dimensions o f

camera in x−d i r e c t i o n

42 /2 : p . camera . p i x s i z e : ( ( p . camera . imgSizeX−1)

. . .

43 ∗p . camera . p i x s i z e ) /2 ;

44 p . g r id . ypos = −((p . camera . imgSizeY−1)∗p . camera . p i x s i z e ) . . .

% Resca l e s g r id to p h y s i c a l dimensions o f

camera in x−d i r e c t i o n

45 /2 : p . camera . p i x s i z e : ( ( p . camera . imgSizeY−1)

. . .

46 ∗p . camera . p i x s i z e ) /2 ;

47

48 % Creat ing r e g i o n s o f i n t e r e s t (ROI) f o r a n a l y s i s

49 p . ROI1 . l a b e l = ’ c i r c u l a r ’ ;

50 p . ROI1 . centerX = 167 ;

51 p . ROI1 . centerY = 110 ;
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52 p . ROI1 . rad iu s = 25 ;

53 p . ROI1 . cmask = (p . g r i d . row − p . ROI1 . centerY ) .ˆ2 . . .

54 + (p . g r id . column − p . ROI1 . centerX ) .ˆ2 <= p .

ROI1 . rad iu s . ˆ 2 ;

55

56 p . ROI2 . l a b e l = ’ l a r g e square ’ ;

57 p . ROI2 . width = 40 ;

58 p . ROI2 . he ight = 40 ;

59 p . ROI2 . centerX = 167 ;

60 p . ROI2 . centerY = 110 ;

61 p . ROI2 . x1 = p . ROI2 . centerX−p . ROI2 . width /2 ;

62 p . ROI2 . x2 = p . ROI2 . centerX+p . ROI2 . width /2 ;

63 p . ROI2 . y1 = p . ROI2 . centerY−p . ROI2 . he ight /2 ;

64 p . ROI2 . y2 = p . ROI2 . centerY+p . ROI2 . he ight /2 ;

65

66 p . ROI3 . l a b e l = ’ smal l square ’ ;

67 p . ROI3 . width = 2 ;

68 p . ROI3 . he ight = 2 ;

69 p . ROI3 . centerX = 163 ;

70 p . ROI3 . centerY = 112 ;

71 p . ROI3 . x1 = p . ROI3 . centerX−p . ROI3 . width /2 ;

72 p . ROI3 . x2 = p . ROI3 . centerX+p . ROI3 . width /2 ;

73 p . ROI3 . y1 = p . ROI3 . centerY−p . ROI3 . he ight /2 ;

74 p . ROI3 . y2 = p . ROI3 . centerY+p . ROI3 . he ight /2 ;

75

76 % Calcu la te parameters o f i n c i d e n t l i g h t s i g n a l

77 p . s i g n a l . d c cu r r en t = p . data . d c v o l t . / p . data . dc ohm ; % DC

current generated in bbPD from c a r r i e r s i g n a l

78 p . s i g n a l . r f c u r r e n t = p . data . r f v o l t . / p . data . rf ohm ; % RF

current generated in bbPD from modulated s i g n a l

79 p . s i g n a l . d e l r f = 0 . 5∗ ( p . data . dc ohm . / ( p . data . d c v o l t .∗p . data .

rf ohm ) ) ;
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80 p . s i g n a l . de ldc = −0.5∗((p . data . r f v o l t .∗p . data . dc ohm ) . / ( p .

data . d c v o l t . ˆ 2 . ∗ p . data . dc ohm ) ) ;

81 % p . s i g n a l . d c c u r r e n t r e l a t i v e e r r = (p . data . d c v o l t e r r . / p .

data . d c v o l t ) . / p . data . dc ohm ;

82 % p . s i g n a l . r f c u r r e n t r e l a t i v e e r r = (p . data . r f v o l t e r r . / p .

data . r f v o l t ) . / p . data . rf ohm ;

83 p . s i g n a l . gamma = (p . s i g n a l . r f c u r r e n t . / p . s i g n a l . d c cu r r en t )

/2 ; % Modulation depth c a l c u l a t e d as : I r f p e a k / I dc

84 % p . s i g n a l . gamma err = (p . s i g n a l . r f c u r r e n t r e l a t i v e e r r . / p .

s i g n a l . d c c u r r e n t r e l a t i v e e r r ) /2 ;

85 p . s i g n a l . gamma err = s q r t ( ( p . s i g n a l . d e l r f ) . ˆ 2 . ∗ ( p . data .

r f v o l t e r r ) . ˆ2 + (p . s i g n a l . de ldc ) . ˆ 2 . ∗ ( p . data . d c v o l t e r r

) . ˆ 2 ) ;

86 p . s i g n a l . Psensor = p . data . P inc ∗p . camera . f i l t e r t r a n s ; % Power

i n c i d e n t on camera

87

88 p . s i g n a l . E beam = p . s i g n a l . Psensor∗p . camera . t exp ; % photons

per watt in DC s i g n a l

89 p . s i g n a l . Np dc = p . s i g n a l . E beam/p . constant . E photon ; %

Calcu lated photons per p i x e l in dc [# photons ]

90 p . s i g n a l . Ne dc = p . camera .QE∗p . s i g n a l . Np dc ; % Calcu lated

pho toe l e c t r on s per p i x e l in dc [# e−]

91 p . s i g n a l . Ne ac = p . s i g n a l . gamma.∗p . s i g n a l . Ne dc ; % Calcu lated

pho toe l e c t r on s per p i x e l in r f [# e−]

92

93

94

95

96 % p . s i g n a l . E beam = p . data . P inc ∗p . camera . t exp ∗p . camera .

f i l t e r t r a n s ; % photons per watt in DC s i g n a l

97 % p . s i g n a l . Np dc = p . s i g n a l . E beam/p . constant . E photon ; %

Calcu lated photons per p i x e l in dc [# photons ]
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98 % p . s i g n a l . Ne dc = p . camera .QE∗p . s i g n a l . Np dc ; % Calcu lated

pho toe l e c t r on s per p i x e l in dc [# e−]

99

100

101

102 % Parameters f o r s i g n a l model used in c a l i b r a t i o n

103 p . s igna lmode l . coordsys = ’ Cartes ian ’ ; %Coordinate system

104 [ p . s igna lmode l . xgr id , p . s igna lmode l . ygr id ] = meshgrid (p . g r i d .

xpos , . . . % Creates 240 x320 g r id o f row and column to

s c a l e d to p h y s i c a l s enso r s i z e

105 p . g r id .

ypos )

;

106 p . s igna lmode l . Z ( : , : , 1 ) = p . s igna lmode l . xgr id ;

107 p . s igna lmode l . Z ( : , : , 2 ) = p . s igna lmode l . ygr id ;

108 p . s igna lmode l . i n i t i a l g u e s s = [ 4 , 0 , . 5 , 0 , . 5 , 0 ] ;

109 p . s igna lmode l . lb = [0 ,−p . camera . imgSizeX∗p . camera . p i x s i z e

/ 2 , 0 , . . .

110 −p . camera . imgSizeX∗p . camera . p i x s i z e

/ 2 , 0 , 0 ] ;

111 p . s igna lmode l . ub = [ realmax ( ’ double ’ ) , ( p . camera . imgSizeX∗p .

camera . p i x s i z e ) / 2 , . . .

112 ( ( p . camera . imgSizeX∗p . camera . p i x s i z e ) /2)

ˆ 2 , . . .

113 (p . camera . imgSizeX∗p . camera . p i x s i z e )

/ 2 , . . .

114 ( ( p . camera . imgSizeX∗p . camera . p i x s i z e ) /2)

ˆ2 , p i / 4 ] ;

115

116 p . s igna lmode l . gauss = @(A, Z) A(1) ∗exp ( −2∗((Z ( : , : , 1 )−A(2) )

. ˆ 2/ (A(3) ˆ2) . . . % Numerical model o f 2D gauss ian

117 + (Z ( : , : , 2 )−A(4) ) . ˆ 2/ (A(5) ˆ2) )

) ;
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118 %p . s igna lmode l . gauss = @(A, Z) A(1) ∗exp ( −((Z ( : , : , 1 )−A(2) )

.ˆ2/(2∗A(3) ˆ2) . . . % Numerical model o f 2D gauss ian

119 %+ (Z ( : , : , 2 )−A(4) ) .ˆ2/(2∗A(5)

ˆ2) ) ) ;

Camera Calibration

1 %

2 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 % func t i on [ g , g a u s s c o e f f ] = Cal ibrateData (p , measurement ,

imgFi l e s )

4 %

5 %

6 % Inputs : input parameters , measurement data , and image f i l e

data

7 % Outputs : c a l i b r a t i o n f a c t o r ”g” and gauss ian f i t

c o e f f i c i e n t s

8 %

9 %

10 %

11 % Erik Muniz 07 .01 .2020

12 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 %

14

15 f unc t i on [ g , g a u s s c o e f f ] = Cal ibrateSensData (p , measurement )

16

17 f o r j = 1 : l ength (p . d i r . p i n c s t r )

18 img frame array . dc = cat (3 , measurement (3 ) . imgs { : , j }) ;

19 img frame array . ac = cat (3 , measurement (1 ) . imgs { : , j }) ;



147

20

21 mean imgs . dc = mean( img frame array . dc , 3 ) ;

22 mean imgs . ac = mean( img frame array . ac , 3 ) ;

23

24 ac crop = mean imgs . ac .∗p . ROI1 . cmask ;

% Crops c i r c u l a r ROI

from ac images

25 dc crop = mean imgs . dc .∗p . ROI1 . cmask ;

% Crops c i r c u l a r ROI

from dc images

26

27

28 % F i t t i n g gauss ian p r o f i l e to mean images

29 [ g a u s s c o e f f . dc{ j } , resnorm{ j } , r e s { j } ] = l s q c u r v e f i t (p .

s igna lmode l . gauss , p . s igna lmode l . i n i t i a l g u e s s ( 1 : 5 ) , . . .

30 p . s igna lmode l . Z , dc crop , p .

s igna lmode l . lb ( 1 : 5 ) , p . s igna lmode l

. ub ( 1 : 5 ) ) ;

31

32 Area beam dc = pi ∗ g a u s s c o e f f . dc{ j } (3) ∗ g a u s s c o e f f . dc{ j

} (5) ; % E f f e c t i v e beam mode area on camera o f DC beam

33

34 I d c 0 = (2∗p . s i g n a l . Psensor ) /Area beam dc ; % Number o f

e l e c t r o n s per p i x e l with l i g h t s e n s i t i v e area A pix (

DC)

35

36 I s e n s o r c o e f f = [ I dc 0 , g a u s s c o e f f . dc{ j } (2) ,

g a u s s c o e f f . dc{ j } (3) , . . .

37 g a u s s c o e f f . dc{ j } (4) , g a u s s c o e f f . dc{ j } (5)

] ;

38

39 I s e n s o r g a u s s = p . s igna lmode l . gauss ( I s e n s o r c o e f f , p .

s igna lmode l . Z) ; % Gaussian p r o f i l e o f i n c i d e n t beam
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40

41 Np gauss dc = ( I s e n s o r g a u s s .∗p . camera . t exp ) . / p . constant

. E photon ;

42 Ne gauss dc = p . camera .QE.∗ Np gauss dc ;

43 Ne gauss ac = Ne gauss dc .∗p . s i g n a l . gamma( j ) ;

44

45

46 S dn dc = sum( dc crop ( : ) ) ;

47 S dn ac = sum( ac crop ( : ) ) ;

48

49 g . dc ( j ) = (p . camera . p i x e l a r e a ∗sum(sum( Ne gauss dc .∗p . ROI1

. cmask ) ) ) / S dn dc ;

50 g . ac ( j ) = (p . camera . p i x e l a r e a ∗sum(sum( Ne gauss ac .∗p . ROI1

. cmask ) ) ) / S dn ac ;

51

52

53 end

54

55 g . dc = mean( g . dc ( 1 : 4 ) ) ;

56 g . ac = mean( g . ac ( 1 : 4 ) ) ;

57

58

59 %% −−−Plot Data−−−
60

61 % % Plot 3D Data and Fi t t ed curve f o r DC image

62 %

63 % % Plot AC s i g n a l and f i t

64 %

65 % hf1=f i g u r e (100) ; s e t ( hf1 , ’ Pos i t ion ’ , [ 1 0 0 0 600 800 500 ] ) ;

66 % C = del2 ( gauss (A, Z) ) ;

67 % s = mesh (p . g r i d . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , gauss (A, Z) ,C

) ;

68 % s . FaceColor = ’ f l a t ’ ; hold on
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69 % s u r f a c e (p . g r i d . xpos , p . g r i d . ypos , dc s i g , ’ EdgeColor ’ , ’ none ’ ) ;

alpha ( 0 . 5 ) ;

70 % colormap ( ’ j e t ’ ) ; view (−35 ,40) ; g r i d on ;

71 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

72 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)

73 % z l a b e l ( ’ D i g i t a l Number (DN) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )

74 %

75 %

76 %

77 % hf2=f i g u r e (105) ; s e t ( hf2 , ’ Pos i t ion ’ , [ 1 0 0 0 600 800 500 ] ) ;

78 % C2 = de l2 ( gauss (A2 , Z) ) ;

79 % s = mesh (p . g r i d . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , gauss (A2 , Z) ,

C2) ; hold on

80 % s . FaceColor = ’ f l a t ’ ; hold on

81 % s u r f a c e (p . g r i d . xpos , p . g r i d . ypos , A sig , ’ EdgeColor ’ , ’ none ’ ) ;

alpha ( 0 . 5 ) ;

82 % colormap ( ’ pink ’ ) ; view (−35 ,40) ; g r i d on ;

83 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

84 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)

85 % z l a b e l ( ’ D i g i t a l Number (DN) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )

86 %

87 %

88 % f i g u r e (105)

89 % s = mesh (p . g r i d . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , gauss (A2 , Z) )

;

90 % s . FaceColor = ’ f l a t ’ ;
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91 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

92 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)

93 % z l a b e l ( ’ D i g i t a l Number (DN) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )

94 %

95 % f i g u r e (106)

96 % s1 = mesh (p . g r id . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , A s ig ) ;

97 % s1 . FaceColor = ’ f l a t ’ ;

98 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

99 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)

100 % z l a b e l ( ’ D i g i t a l Number (DN) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )

101 %

102 % f i g u r e (107)

103 % s2 = mesh (p . g r id . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , r e s2 ) ;

104 % s2 . FaceColor = ’ f l a t ’ ;

105 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

106 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)

107 % z l a b e l ( ’ D i g i t a l Number (DN) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )

108 %

109 % f i g u r e (103)

110 % mesh (p . g r id . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , g dc .∗ d c s i g )

111 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

112 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)
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113 % z l a b e l ( ’ Generated Photoe lect rons ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )

114 %

115 % f i g u r e (108)

116 % mesh (p . g r id . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , g ac .∗ A sig )

117 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

118 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)

119 % z l a b e l ( ’ Generated Photoe lect rons ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )

120 %

121 % f i g u r e (109)

122 % s = mesh (p . g r i d . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , g ac .∗ gauss (

A2 , Z) ) ;

123 % s . FaceColor = ’ f l a t ’ ;

124 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

125 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)

126 % z l a b e l ( ’ Generated Photoe lect rons ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )

127 %

128 % f i g u r e (110)

129 % s = mesh (p . g r i d . xpos ( 1 : 3 2 0 ) ,p . g r i d . ypos ( 1 : 2 4 0 ) , ( g ac .∗ A sig

−g ac .∗ gauss (A2 , Z) ) ) ;

130 % s . FaceColor = ’ f l a t ’ ;

131 % x l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ , 1 5 )

132 % y l a b e l ( ’ Po s i t i on (mm) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontWeight

’ , ’ bold ’ , ’ FontSize ’ , 1 4 , ’ Rotation ’ ,−27)

133 % z l a b e l ( ’ Generated Photoe lect rons ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’

FontWeight ’ , ’ bold ’ , ’ FontSize ’ , 2 0 )
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Calculating Noise in RF Amplitude and Phase

1 %

2 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 % func t i on [ p i x2p ix no i s e , f r 2 f r n o i s e , s i g c a l c ] = MeasNoise (p

, measurement , g a u s s c o e f f , g )

4 %

5 %

6 % Inputs : p , measurement , gauss ian c o e f f i c i e n t s from f i t , and

c a l i b r a t i o n f a c t o r

7 % Outputs : p i x2p ix no i s e , f r 2 f r n o i s e , and measured s i g n a l −
s i g c a l c

8 %

9 % MeasNoise takes input frame f i l e s from dc and ac

measurements and

10 % c a l c u l a t e s no i s e f l u c t u a t i o n s between ne ighbor ing p i x e l s (

s p a t i a l ) and

11 % f l u c t u a t i o n s between frames ( temporal ) by tak ing the

standard dev i a t i on

12 % of these q u a n t i t i e s .

13 %

14 %

15 % Erik Muniz 07 .01 .2020

16 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 %

18

19 f unc t i on [ s i g c a l c , sub avgrms , frameavg1 ] = MeasNoise (p ,

measurement , g )

20
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21 f o r j = 1 : l ength (p . d i r . p i n c s t r )

22 img frame array = cat (3 , measurement . imgs { : , j }) ;

23

24 mean imgfr = mean( img frame array , 3 ) ;

25 %mean imgcrop = mean imgfr .∗p . ROI1 . cmask ;

26 mean imgcrop = mean imgfr (p . ROI2 . y1 : p . ROI2 . y2 , p . ROI2 . x1 : p

. ROI2 . x2 , : ) ;

27

28 % Compute average o f 10 frames

29 frameavg1 = [ 1 , 4 , 1 6 , 3 6 , 4 9 ] ;

30 f o r l = 1 : l ength ( frameavg1 )

31 r = randperm (50 , frameavg1 ( l ) ) ;

32 f o r k = 1 : l ength ( r )

33 m = r ( k ) ;

34 i f k == 1

35 img sum = img frame array ( : , : ,m) ;

36 e l s e i f k>1

37 img sum = img sum + img frame array ( : , : ,m) ;

38 end

39 end

40 img avg1{ l } = img sum (p . ROI2 . y1 : p . ROI2 . y2 , p . ROI2 . x1 : p

. ROI2 . x2 , : ) . / frameavg1 ( l ) ;

41 % subtracted avg imgs = img avg−mean imgfr ;

42 % subtracted avgimgs rms { l , j } = g∗rms (

subtracted avg imgs ( : ) ) ;

43 end

44

45 f o r l = 1 : l ength ( frameavg1 )

46 r = 50+randperm (50 , frameavg1 ( l ) ) ;

47 f o r k = 1 : l ength ( r )

48 m = r ( k ) ;

49 i f k == 1

50 img sum = img frame array ( : , : ,m) ;
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51 e l s e i f k>1

52 img sum = img sum + img frame array ( : , : ,m) ;

53 end

54 end

55 img avg2{ l } = img sum (p . ROI2 . y1 : p . ROI2 . y2 , p . ROI2 . x1 : p

. ROI2 . x2 , : ) . / frameavg1 ( l ) ;

56 % subtracted avg imgs = img avg−mean imgfr ;

57 % subtracted avgimgs rms { l , j } = g∗rms (

subtracted avg imgs ( : ) ) ;

58 sub avg = ( img avg1{ l } − img avg2{ l }) . / s q r t (2 ) ;

59 sub avgrms{ l , j } = g∗ std ( sub avg ( : ) ) ;

60 end

61

62

63 % f o r l = 1 : l ength ( frameavg )

64 % f o r m = 1 : frameavg ( l )

65 % subtracted img ( : , : ,m) = img frame array ( : , : ,m)−
img frame array ( : , : ,m+1) ;

66 % i f m == 1

67 % sub sum = subtracted img ( : , : ,m) ;

68 % img sum = img frame array ( : , : ,m) ;

69 % e l s e i f m>1

70 % sub sum = sub sum + subtracted img ( : , : ,m) ;

71 % img sum = img sum + img frame array ( : , : ,m) ;

72 % end

73 % end

74 % img avg = img sum (p . ROI2 . y1 : p . ROI2 . y2 , p . ROI2 . x1 : p .

ROI2 . x2 , : ) . / frameavg ( l ) ;

75 % sig mean{ l , j } = g∗mean( img avg ( : ) ) ;

76 % sub avg = sub sum . / frameavg ( l ) ;

77 % sub avgstd { l , j } = g∗rms ( sub avg ( : ) ) ;

78 % f r 2 f r s e { l , j } = g∗( std ( sub avg ( : ) ) / s q r t (2 ) ) ;

79 % end
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80

81 % subtracted img = img frame array ( : , : , 1 )−mean imgfr ;

82 % s u b t r a c t e d i m g f r 2 f r = img frame array ( : , : , 1 )−
img frame array ( : , : , 2 ) ;

83 %

84 s i g c a l c ( j ) = g∗mean( mean imgcrop ( : ) ) ;

85 %p i x 2 p i x n o i s e ( j ) = g∗rms ( subtracted img ( : ) ) ;

86 % f r 2 f r s t d ( j ) = g∗(mean( s u b t r a c t e d i m g f r 2 f r ( : ) ) / s q r t (2 ) )

;

87 % f r 2 f r s e ( j ) = g∗( std ( s u b t r a c t e d i m g f r 2 f r ( : ) ) / s q r t (2 ) ) ;

88 % pixs td f rames { j } = g∗ std ( img frame array , 0 , 3 ) ;

89

90

91 end

92

93 % s i g c a l c = ce l l 2mat ( s i g c a l c ) ;

94 sub avgrms = ce l l 2mat ( sub avgrms ) ;

95 % f r 2 f r s e = ce l l 2mat ( f r 2 f r s e ) ;

96

97 % f i g u r e (114)

98 % subplot ( 1 , 2 , 1 ) ,

99 % imagesc ( img frame array ( : , : , 1 ) )

100 % s e t ( gca , ’ TickLength ’ , [ 0 0 ] ) ;

101 % s e t ( gca , ’ XTickLabel ’ ,{} ) ;

102 % s e t ( gca , ’ YTickLabel ’ ,{} ) ;

103 % colormap ( gca , ’ bone ’ )

104 % hcb1 = co l o rba r ;

105 % hcb1 . Locat ion = ’ northouts ide ’ ;

106 % hcb1 . Label . S t r ing = ’ D i g i t a l Number (DN) ’ ;

107 % hcb1 . Label . FontName = ’ He lvet i ca ’ ;

108 % hcb1 . Label . FontSize = 14 ;

109 % subplot ( 1 , 2 , 2 )

110 % imagesc ( s u b t r a c t e d i m g f r 2 f r )
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111 % s e t ( gca , ’ TickLength ’ , [ 0 0 ] ) ;

112 % s e t ( gca , ’ XTickLabel ’ ,{} ) ;

113 % s e t ( gca , ’ YTickLabel ’ ,{} ) ;

114 % colormap ( gca , ’ bone ’ )

115 % hcb1 = co l o rba r ;

116 % hcb1 . Locat ion = ’ northouts ide ’ ;

117 % hcb1 . Label . S t r ing = ’ D i g i t a l Number (DN) ’ ;

118 % hcb1 . Label . FontName = ’ He lvet i ca ’ ;

119 % hcb1 . Label . FontSize = 14 ;

120 %

1 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % func t i on [ p i x2p ix no i s e , f r 2 f r n o i s e , s i g c a l c ] =

MeasPhaseNoise (p , measurement , g a u s s c o e f f , g )

3 %

4 %

5 % Inputs : p , measurement , gauss ian c o e f f i c i e n t s from f i t , and

c a l i b r a t i o n f a c t o r

6 % Outputs : p i x2p ix no i s e , f r 2 f r n o i s e , and measured s i g n a l −
s i g c a l c

7 %

8 % MeasNoise takes input frame f i l e s from dc and ac

measurements and

9 % c a l c u l a t e s no i s e f l u c t u a t i o n s between ne ighbor ing p i x e l s (

s p a t i a l ) and

10 % f l u c t u a t i o n s between frames ( temporal ) by tak ing the

standard dev i a t i on

11 % of these q u a n t i t i e s .

12 %

13 %

14 % Temporal no i s e i s measured as the std o f p i x e l va lue s
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15 % between mul t ip l e frames . This g i v e s the no i s e f o r every

p i x e l va lue in

16 % the image . The average o f a l l the no i s e va lue s in the std

17 % map i s then c a l c u l a t e d to determine the temporal no i s e .

This ensure s that

18 % f i x e d pattern no i s e and other s p a t i a l no i s e i s averaged out

.

19 %

20 %

21 % Erik Muniz 07 .01 .2020

22 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 %

24

25 f unc t i on [ phasestdnoise map , p h a s e n o i s e s i n g l e v a l ] =

MeasPhaseNoise (p , measurement )

26

27 f o r j = 1 : l ength (p . d i r . p i n c s t r )

28 img frame array = cat (3 , measurement . imgs { : , j }) ;

29 mean imgfr = mean( img frame array , 3 ) ;

30 mean imgcrop = mean imgfr (p . ROI2 . y1 : p . ROI2 . y2 , p . ROI2 . x1 : p

. ROI2 . x2 , : ) ;

31

32 phasestdnoise map { j } = s q r t ( l ength ( img frame array ( 1 , 1 , : )

) . . .

33 /( l ength ( img frame array ( 1 , 1 , : ) )−1) ) . . .

34 .∗ std ( img frame array , 0 , 3 ) ;

% Map o f std between

p i x e l va lue s s tdpe rp ix = s q r t (N/N−1)∗
s q r t (1/N∗sum { i =1}ˆ{N}(X { j , i}−X {AVG,

j }ˆ2)
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35 phases tdno i se mapro i = phasestdnoise map { j }(p . ROI2 . y1 : p .

ROI2 . y2 , p . ROI2 . x1 : p . ROI2 . x2 , : ) ; % R e s t r i c t s a n a l y s i s

o f no i s e to r eg i on o f i n t e r e s t

36 p h a s e n o i s e s i n g l e v a l ( j ) = mean( phases tdno i se mapro i ( : ) ) ;

37

38

39 end

40

41 %sigma phase = temp noise . / a v g s i g ;

42

43 f i g u r e (114)

44 imagesc ( mean imgcrop )

45 s e t ( gca , ’ FontWeight ’ , ’ bold ’ )

46 colormap ( gca , ’ paru la ’ )

47 hcb1 = co l o rba r ;

48 hcb1 . Locat ion = ’ e a s t o u t s i d e ’ ;

49 hcb1 . Label . S t r ing = ’\phi ( rad ) ’ ;

50 hcb1 . Label . FontName = ’ He lve t i c a ’ ;

51 hcb1 . Label . FontSize = 16 ;

52 hcb1 . FontWeight = ’ bold ’ ;

53 s e t ( gcf , ’ Units ’ , ’ i n che s ’ ) ;

54 s c r e e n p o s i t i o n = get ( gcf , ’ Po s i t i on ’ ) ;

55 s e t ( gcf , . . .

56 ’ PaperPos i t ion ’ , [ 0 0 s c r e e n p o s i t i o n ( 3 : 4 ) ] , . . .

57 ’ PaperSize ’ , [ s c r e e n p o s i t i o n ( 3 : 4 ) ] ) ;

58 pr in t ( ’ PhaseSig ’ , ’−dpdf ’ , ’− f i l l p a g e ’ )

59 f i g u r e (115)

60 imagesc ( phases tdno i se mapro i )

61 s e t ( gca , ’ FontWeight ’ , ’ bold ’ )

62 colormap ( gca , ’ paru la ’ )

63 hcb1 = co l o rba r ;

64 hcb1 . Locat ion = ’ e a s t o u t s i d e ’ ;

65 hcb1 . Label . S t r ing = ’\phi ( rad ) ’ ;
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66 hcb1 . Label . FontName = ’ He lve t i c a ’ ;

67 hcb1 . Label . FontSize = 16 ;

68 hcb1 . FontWeight = ’ bold ’ ;

69 s e t ( gcf , ’ Units ’ , ’ i n che s ’ ) ;

70 s c r e e n p o s i t i o n = get ( gcf , ’ Po s i t i on ’ ) ;

71 s e t ( gcf , . . .

72 ’ PaperPos i t ion ’ , [ 0 0 s c r e e n p o s i t i o n ( 3 : 4 ) ] , . . .

73 ’ PaperSize ’ , [ s c r e e n p o s i t i o n ( 3 : 4 ) ] ) ;

74 pr in t ( ’ PhaseStd ’ , ’−dpdf ’ , ’− f i l l p a g e ’ )

75

76 % f i g u r e (39)

77 % l o g l o g ( avg s ig , p h a s e n o i s e s i n g l e v a l ( 1 : 3 ) , ’ square ’ )

78 % hold on

79 % gr id on

80 % ylim ( [ 2 e−1 5e−1])

81 % xlim ( [ . 7 e4 1 .7 e4 ] )

82 % l o g l o g ( avg s ig , s igma phase , ’ ˆ ’ )

83 % legend ({ ’ Measured Total Noise in Phase ’ , ’ Estimated Noise in

Phase : \ s igma {\phi} = \ s igma {AC}/<AC> ’} , ’ FontSize ’ , 1 2 , ’

FontName ’ , ’ He lvet i ca ’ ) ;

84 %

85 % y l a b e l ( ’ Noise ( rad ) ’ , ’ FontName ’ , ’ He lvet i ca ’ , ’ FontSize ’ , 1 8 , ’

FontWeight ’ , ’ bold ’ ) ;

86 % x l a b e l ( ’ ( Averaged S igna l − O f f s e t ) [ e ˆ{ −} ] ’ , ’FontName ’ , ’

He lvet i ca ’ , ’ FontSize ’ , 1 8 , ’ FontWeight ’ , ’ bold ’ ) ;

87 % s e t ( gcf , ’ Units ’ , ’ inches ’ ) ;

88 % s c r e e n p o s i t i o n = get ( gcf , ’ Pos i t ion ’ ) ;

89 % s e t ( gcf , . . .

90 % ’ PaperPosit ion ’ , [ 0 0 s c r e e n p o s i t i o n ( 3 : 4 ) ] , . . .

91 % ’ PaperSize ’ , [ s c r e e n p o s i t i o n ( 3 : 4 ) ] ) ;

92 % pr in t ( ’ PhaseNoise ’ , ’− dpdf ’ , ’− f i l l p a g e ’ )
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Figure 48: Left: Subregions of illuminated image (Pinc = 6µW , Γ = 0.046 – @32

ms exposure) for both phase and amplitude. Amplitude images are averaged over

40x40x101 pixels to determine average signal per frame per pixel. Right: Standard

deviation computed for every pixel in the subregion for 101 frames for both phase

and amplitude. The resulting standard deviation map is spatially averaged to get a

single value for temporal noise.
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Appendix E

Simple Point Absorber Model

Calculation

We use Equation 4.8 to describe the modulated field incident on the beam splitter

picture in Figure 38. In this case we assume that the incident carrier and the sidebands

fields primarily the TEM00 mode, such that Ec = U00 = Ψ0. The power in the

fundamental mode is then given by P0 =
∫

Ψ∗0Ψ0 In our simple model we consider

the prompt reflection off the beam splitter such that the induced phase shift of the

beam splitter can be ignored for the reflected field in this case, the field of the carrier

for both arms can be written as:

Ex
c =

1√
2

Ψ0e
iφsx · eiφxDARM (E.1)

Ey
c =

1√
2

Ψ0e
iφsy · eiφyDARM (E.2)

The factor of 1/
√

(2) appears from transmission through the beam splitter and the

exponential terms are due to the single bounce phase accumulation of the DARM

offset and Schnupp asymmetry. Considering the symmetry between the arms:

φsx =
φs
2

φsy = −φs
2

(E.3)

φxDARM =
φDC

2
φyDARM = −φDC

2
(E.4)
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One should note that φDC , by definition includes the round trip number of bounces

for the Fabry-Perot cavity. In this case φDC = NφDARM , where N is the number of

round trip bounces in the arm cavity. Additionally, the phase shift produced by the

Schnupp asymmetry is defined by φs = ωc,sls/c, where ω is the respective frequency

of the carrier or sideband, ls is the Schnupp length, and c is the speed of light.

Carrier

The carrier field in each arm at the beam splitter after a single round trip is

Ex,BS
c =

Ψ0√
2
eiφsei

φDC
2 (E.5)

Ey,BS
c =

Ψ0√
2
e−iφse−i

φDC
2 (E.6)

and the recombined carrier field at the anti-symmetric port is

EAS
c =

1

2

(
Ex,BS
c − Ey,BS

c

)
(E.7)

=
Ψ0

2

[
ei(φs+φDC/2) − e−i(φs+φDC/2)

]
(E.8)

letting θ = φs + φDC/2,

=
Ψ0

2

[
eiθ − e−iθ

]
(E.9)

Using Euler’s identity eiθ = cos θ + i sin θ

=
Ψ0

2
[(i sin θ + cos θ)− (−i sin θ + cos θ)] (E.10)

= iΨ0 sin θ (E.11)

= iΨ0 sin(φs + φDC/2) (E.12)

By design, when the MICH degree of freedom is held on resonance phase term con-

taining the Schnupp asymmetry goes to zero (φs = 0)

∴ EAS
c = iΨ0 sin

(
φDC

2

)
(E.13)
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Sidebands

Here I will derive the field propagation for the sidebands. Note that the only difference

between the positive and negative sidebands is a difference in sign. For this reason we

only need to solve for a single sideband. The incident field for the positive sideband

is given by

E+
in = Ψ0

iΓ

2
eiΩt, (E.14)

where Γ is the modulation index and Ω is the sideband frequency. Again, we consider

the prompt reflection of the sideband off the beam splitter which contributes a factor

of 1/
√

2. Since the sideband is anti-resonant in the cavity, it only experiences a single

pass through the test mass, which results in a round trip accumulation of the phase

distortion in both arms (i.e. 2kX(~x, ~y), 2kY(~x, ~y)). Therefore, the field at the beam

splitter, for say the x-arm, after the round trip will only include the phase distortion

due to the point absorber, i.e.:

Ex,BS
sb+ = i

Ψ0√
2

Γ

2
eiΩt

[
eiφs/2 · eiφs/2 · ei2kX(~x,~y)/2

]
(E.15)

= i
Ψ0√

2

Γ

2
eiΩt

[
eiφs · eikX(~x,~y)

]
(E.16)

Similarly for the y-arm,

Ey,BS
sb+ = i

Ψ0√
2

Γ

2
eiΩt

[
e−iφs · e−ikY(~x,~y)

]
(E.17)

The recombined field at the AS port is then given by

EAS
sb+ =

i

2

Ψ0

2
ΓeiΩt

[
ei(φs+kX(~x,~y)) − e−i(φs+kY(~x,~y))

]
(E.18)

To simplify calculations, we assume that the Schnupp asymmetry can be tuned such

that the phase distortion is symmetric to both arms Φ(x, y) = kX(~x, ~y) = −kY(~x, ~y).

In this case, we can treat the calculation similar to the carrier field by making the

substitution θ = φs + Φ(x, y):
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EAS
sb+ =

i

2

Ψ0

2
ΓeiΩt

[
ei(φs+Φ(x,y)) − e−i(φs+Φ(x,y))

]
(E.19)

=
i

2

Ψ0

2
ΓeiΩt

[
eiθ − e−iθ

]
(E.20)

=
i

2
Ψ0ΓeiΩt [i sin(φs + Φ(x, y))] (E.21)

Using common trigonometric identities we can expand and considering that the path

distortion produced by the absorber is much smaller than the wavelength, we can use

expansions for sine and cosine to approximate the effect of the absorber to first order

(i.e. sin(Φ(x, y)) ≈ Φ(x, y)). Therefore,

= iΨ0
Γ

2
eiΩt [i sin(φs) + i cos(φs)Φ(x, y)] (E.22)

For the negative sideband we get a similar expression,

EAS
sb− = iΨ0

Γ

2
e−iΩt [−i sin(φs) + i cos(φs)Φ(x, y)] (E.23)

therefore,

EAS
sb+ = −Ψ0

Γ

2
eiΩt [sin(φs) + cos(φs)Φ(x, y)] (E.24)

EAS
sb− = −Ψ0

Γ

2
e−iΩt [− sin(φs) + cos(φs)Φ(x, y)] (E.25)

adding up both of the sidebands at the AS port we get:

EAS
sb = EAS

sb+ + EAS
sb− (E.26)

= Ψ0
Γ

2

{
sin(φs)

[
−eiΩt + e−iΩt

]
+ cos(φs)Φ(x, y)

[
−eiΩt − e−iΩt

]}
(E.27)

Again, we apply Euler’s formula and using properties of odd and even functions we

can cancel some of the sine and cosine terms

∴ EAS
sb = −Ψ0Γ [sin(φs) · i sin(Ωt) + cos(φs)Φ(x, y) · cos(Ωt)] (E.28)

Heterodyne beat of carrier and sideband for fundamental mode

For the measurement, what we are really interested in, is the intensity modulation of

the beat signal. This can be found by calculating P = |Eout|2; where Eout is given by

the combined sideband and carrier field at the output port. Therefore,
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Pout = |Eout|2 = |EAS
c + EAS

sb |2 (E.29)

Here we let δ = sin(φDC
2

), A = sin(Ωt) sin(φs), and B = cos(φs)Φ(x, y) cos(Ωt) to

make the calculation a bit easier. We can then write the beat signal as

(E.30)

= (−iΨ∗0δ + iΨ∗0ΓA+ Ψ∗0ΓB) · (iΨ0δ − iΨ0ΓA+ Ψ0ΓB) (E.31)

where I have denoted the complex conjugate by the ∗

= Ψ∗0 ·Ψ0 [(iδ − iAΓ + ΓB) · (−iδ + iΓA+ ΓB)] (E.32)

= P0

[
−i2δ2 + i2ΓAδ + iδΓB + i2AΓδ − i2Γ2A2 − iAΓ2B − iδΓB + iΓ2AB + Γ2B2

]

(E.33)

Canceling cross terms and evaluating factors of i we get. Note here that since the

modulation depth is small (i.e. Γ � 1, almost all of the power is in the carier and

first order sidebands, or Pc + 2Psb ≈ P0. We can also ignore all second order terms in

Γ since higher frequencies are filtered out by the detector bandwidth. Therefore the

measured power at the output is

= P0δ
2 − 2P0ΓAδ (E.34)

= P0 sin(
ΦDC

2
)− 2P0Γ sin(φs) sin(

φDC
2

) sin(Ωt) (E.35)

we are only interested in the first order term in Γ, which gives us the relative beat

between the carrier and sideband fields at the modulation frequency. We can extract

the phase information of the beat signal by demodulating (multiplying by sine and

cosine) at the modulation frequency. Thus, we obtain the results given by Equations

5.5 and 5.6:

I(~x, ~y) = 0 (E.36)

−Q(~x, ~y) = Γpin(~x, ~y) sin(
ΦDC

2
) sin(

ωsLs
c

) (E.37)
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Considering homodyne readout

As mentioned in Section 5.1, the proposed upgrade for A+ is to transition to a

homodyne readout scheme. This will replace the the carrier field at the AS port

produced by the DARM offset with a separate reference beam of equal amplitude.

The injected reference beam at the AS port will be of the form:

EAS
ref = Ψr sin(αHOM) (E.38)

where αHOM is the phase of the reference beam. The combined reference and

sideband field is then given by

Eout = Ψr sin(αHOM)−Ψ0 [Γi sin(Ωt) sin(φs) + cos(φs)Φ(x, y) cos(Ωt)] (E.39)

Again, we let A = sin(Ωt) sin(φs), and B = cos(φs)Φ(x, y) cos(Ωt)

= Ψr sin(αHOM)−Ψ0Γ(B + iA) (E.40)

Calculating the power at the detector we get

Pout = |Eout|2 = |EAS
ref + EAS

sb |2 (E.41)

= [Ψ∗r sin(αHOM)−Ψ∗0Γ(B − iA)] · [Ψr sin(αHOM)−Ψ0Γ(B + iA)] (E.42)

= Ψ∗rΨr sin2(αHOM)−Ψ∗rΨ0Γ [(B + iA) sin(αHOM)] (E.43)

−Ψ∗0ΨrΓ [(B − iA) sin(αHOM)] + Ψ∗0Ψ0Γ2
(
B2 + A2

)
(E.44)

= |Ψr|2 sin2(αHOM) + |Ψ0|2
(
B2 + A2

)
Γ2 − 2Ψ∗0Ψr sin(αHOM)B (E.45)

Again, we are only interested in the beat signal the modulation frequency Ω.

Therefore, the RF beat term in a homodyne scheme is given by:

PΩ = −2Ψ∗0ΨrΓ sin(αHOM) · cos(φs)Φ(x, y) cos(Ωt) (E.46)
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Appendix F

Imaging of Multiple Modulation

Frequencies with the CMOS phase

camera

As discussed in Section 4.2.1, a flip-flop (FF) can be integrated with the CMOS

phase camera to support four or six quad exposures. The flip-flop also allows the

camera to subsequently image beat signals at different modulation frequencies. The

electronic setup for this operation is shown in Fig. 49. An RF-switch is used to

switch between the modulating frequencies of the local oscillators following the frame

capture sequence governed by the microcontroller. The frequency and phase stepped

output of the DDS are phase-locked by ensuring the updates are triggered on the

rising edge of the local-oscillator by the flip-flop. The functionality of other elements

in this scheme is the same as discussed in Section 4.2.1. This setup is particularly

useful for application in Advanced LIGO, which allows the CMOS phase camera to

image beat signals at 9 MHz and 45 MHz in real time. Using this technique, the

CMOS phase camera can image beat signals at different modulation frequencies with

a low-latency of 1 Hz.



168

Figure 49: Alternate capture scheme mentioned in section §??. It allows simultaneous

imaging of RF signals with different modulation frequencies by selecting a separate

modulation frequencies for every frame. In this scheme, the microcontroller controls

an additional RF switch at the input off the DDS board. A 2-way splitter is used to

provide a clock signal input to a flip-flop circuit. The flip-flop ensures a phase-locked

output from the DDS by triggering the DDS update on the rising edge of the external

local oscillator. The rest of the design block functionality is the same as discussed in

Fig. 30. The RF switch at the output of the DDS can be discarded if six sub-quads

are desired for image capture. In this scenario, the DDS is configured to phase-step

one particular channel in synchronization with the quadrature pulses received by the

microcontroller.
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