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ABSTRACT

Since making the first direct detection of gravitational waves in 2015, the Ad-

vanced Laser Interferometer Gravitational-Wave Observatory (LIGO) together with

the Virgo observatory has detected an additional 51 confirmed signals from binary

mergers. Two of these signals, GW170817 and GW190425, were identified as binary

neutron star mergers. As detector sensitivity improves we expect to see many more

binary neutron star merger events, both from future observing runs of the LIGO-

Virgo network and from planned third-generation detectors. These new detections

will provide an exquisite look at the nature of these systems and of neutron stars

themselves. This thesis describes how gravitational-wave observations of neutron star

mergers can be used to measure the properties of the binary systems and the funda-

mental physics of neutron stars. We use multimessenger observations of GW170817

to measure its viewing angle, which is important to understand the engine driving the

electromagnetic counterpart to the gravitational-wave signal. We describe a new im-

plementation of a fast likelihood model for gravitational-wave parameter estimation.

We demonstrate that this likelihood allows analysis of binary neutron star signals

to be performed quickly enough to inform strategies for electromagnetic follow-up

observations. We measure the tidal deformabilities and radii of the neutron stars in

GW170817, imposing a physical constraint to require that both neutron stars obey

a common nuclear equation of state. We assess the future prospects for measuring

the nuclear equation of state with the LIGO-Virgo network and with the planned

third-generation detector, Cosmic Explorer.
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the true values for both equations of state are still found at the edge of

their respective 90% credible interval because of the correspondingly

smaller statistical uncertainties on these measurements. . . . . . . . . 89

xviii



Preface

Chapter 3 is based on material from:

Daniel Finstad, Soumi De, Duncan A. Brown, Edo Berger, Christopher M. Biwer,

“Measuring the Viewing Angle of GW170817 with Electromagnetic and Gravitational

Waves,” The Astrophysical Journal Letters, Volume 860, Number 1 (2018)

https://iopscience.iop.org/article/10.3847/2041-8213/aac6c1.

Chapter 4 is based on material from:

Daniel Finstad, Duncan A. Brown, “Fast Parameter Estimation of Binary Mergers for

Multimessenger Followup,” The Astrophysical Journal Letters, Volume 905,

Number 1 (2020)

https://iopscience.iop.org/article/10.3847/2041-8213/abca9e.

Chapter 5 is based on material from:

Soumi De, Daniel Finstad, James M. Lattimer, Duncan A. Brown, Edo Berger,

Christopher M. Biwer, “Tidal Deformabilities and Radii of Neutron Stars from the

Observation of GW170817,” Physical Review Letters, Volume 121, Issue 9

(2018)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.091102.

xix

https://iopscience.iop.org/article/10.3847/2041-8213/aac6c1
https://iopscience.iop.org/article/10.3847/2041-8213/abca9e
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.091102


To Mom, Dad, & Lynn



1

Chapter 1

Introduction

The Advanced LIGO [11] gravitational-wave detector network has completed three

observing runs to date, searching the universe for astrophysical signals from coalescing

binary systems, spinning neutron stars, and core-collapse supernovae. The first ob-

serving run saw the first direct detection of gravitational waves from the binary black

hole merger GW150914 [12]. The Virgo detector [13] joined the network towards the

end of the second observing run, and on August 17, 2017 the first signal from a bi-

nary neutron star merger was observed [5]. The aftermath of this binary neutron star

merger was observed across the entire electromagnetic spectrum [14], from gamma-

rays to radio, providing an unprecedented window onto the dynamics of these events.

The full catalog of confident detections to date stands at 52 signals [15, 16], including

two from binary neutron stars, two probable neutron star–black hole systems [17], and

a binary system whose secondary compact object is either the highest mass neutron

star or the lowest mass black hole ever observed [18]. With the next observing runs

of the current detector network promising significantly improved sensitivity [9], and

planning well underway for the third-generation detectors Cosmic Explorer [19] and

Einstein Telescope [20], the coming decades will provide an incredible opportunity to

improve our understanding of neutron stars, black holes, and fundamental physics. In

this thesis, we use observations of binary neutron star mergers to study the properties

of neutron stars. We also examine the ability of current and future gravitational-wave

detectors to measure the nuclear equation of state which describes the behavior of

the high density nucleonic matter that makes up the interior of a neutron star.
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1.1 Gravitational-wave detectors

The two Advanced LIGO detectors, located in Hanford, Washington and Livingston,

Louisiana, together with the Virgo detector in Cascina, Italy comprise a worldwide

gravitational-wave detector network. These detectors are Michelson interferometers

with a Fabry-Perot cavity in each arm which stores the laser light for ∼ 100 bounces,

increasing the apparent arm length by two orders of magnitude. As a gravitational-

wave passes through the detector it causes space-time to be stretched and squeezed. In

an interferometric gravitational-wave detector this distortion results in small changes

in the lengths of the arms. This change in arm length is measured as a phase difference

over time in the laser light that is recombined from both arms, which allows the

measurement of a passing gravitational wave.

Gravitational-wave detectors measure signal amplitude in terms of dimensionless

“strain” h, which is given by

h =
∆L

L
, (1.1)

where L is the arm length of the detector and ∆L is the change in arm length in-

duced by the source. The sensitivity of the detectors is determined by a combination

of noise sources including environmental, thermal, and quantum noise, among oth-

ers [21]. Each noise source impacts detector sensitivity in particular frequency bands,

e.g. environmental noise includes seismic motion which limits detector sensitivity at

frequencies . 10 Hz, and quantum noise includes uncertainty in the photon arrival

time which can be interpreted as shot noise and suppresses sensitivity at frequencies

& 200 Hz. The overall sensitive band for the LIGO and Virgo detectors is roughly

15 − 1000 Hz. From Eqn. 1.1 it can be seen that detector sensitivity increases with

arm length L. To take advantage of this, the LIGO detectors were designed with

4 km arms and the Virgo detector has 3 km arms. Cosmic Explorer is a planned

third-generation detector which will use the same general design as the LIGO and

Virgo detectors except it will have 40 km arms. By increasing the arm lengths by an

order of magnitude as compared to the LIGO detectors, Cosmic Explorer will have

roughly an order of magnitude greater sensitivity. In Fig. 1 we show the noise curves

for the LIGO detectors in the most recent observing run, as well as planned upgrade

stages and a number of proposed detectors.
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1.2 Multimessenger astrophysics

The first observed binary neutron star merger GW170817 was also the first “multi-

messenger” gravitational-wave event, as it was observed with both gravitational and

electromagnetic waves: a short gamma-ray burst was observed ∼ 2 seconds after the

gravitational-wave signal [22, 23], and subsequent electromagnetic emission at X-ray,

ultraviolet, optical, infrared, and radio frequencies identified a two-component kilo-

nova [24, 25, 26, 27, 28, 29, 30]. Detection of an electromagnetic counterpart enables

better understanding of the nature of the merger event and the properties of the

neutron stars involved. One example of the benefit of multimessenger information

is to break the distance-inclination degeneracy that is present in the amplitude of

a gravitational-wave signal from a binary merger. This degeneracy arises from the

fact that the gravitational-wave emission is strongest parallel or anti-parallel to the

direction of the orbital angular momentum of the binary [31], as a result of the am-

plitude of the two polarizations of the gravitational wave being maximum in these

directions [32]. Thus the inclination of the orbital plane is degenerate with the dis-

tance to the source, where a more face-on (or face-away) orientation of the binary at

a larger distance is degenerate with a binary that is closer, but less well-aligned.

In Ch. 3 we present an analysis of GW170817 informed by electromagnetic dis-

tance measurements of its identified host galaxy, NGC 4993 [33]. We demonstrate

that using an independent distance measurement in a gravitational-wave analysis can

break the distance-inclination degeneracy to allow for much tighter constraints on the

inclination angle of the orbital plane of the binary with respect to the line of sight. We

present our measurement in the context of the timing delay of the gamma-ray burst

and observations of the long-lived kilonova afterglow emission to discuss implications

for jet models.

With the increased sensitivity of the next observing runs and future detectors,

we expect significantly more potential multimessenger events in the coming years,

such that it will be necessary for gravitational-wave parameter estimation analyses

to complete in a short amount of time to enable efficient prioritization of resources

for electromagnetic follow-up observations [34]. However, the measurement of source

parameters for low-mass binary inspirals, such as binary neutron star or neutron star–

black hole mergers, is very computationally expensive as a result of the long duration
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of these signals in the sensitive band of gravitational-wave detectors: a typical binary

neutron star signal entering the sensitive band at 20 Hz will last several minutes

before merging. At a sample rate of 4096 Hz, which is standard for most parameter

estimation analyses, this translates to ∼ 2 × 105 frequency-domain data samples

required to capture the signal. Each evaluation of the likelihood then requires a

frequency-domain inner-product of this detector data with a template waveform, and

a full parameter estimation analysis can require O(109) likelihood evaluations [35].

Several methods have been developed to help reduce computational cost [36, 37, 38,

39, 40, 41, 42, 43, 44]. In this thesis we focus on the “relative binning” technique,

which uses an approximation to the likelihood near its peak in order to allow the use

of fewer frequency samples in each likelihood calculation [45, 46].

In Ch. 4 we present an implementation of the relative binning parameter estima-

tion technique as a likelihood model in PyCBC Inference. We extend the relative

model to a coherent network statistic to allow sky localization, and we enable use

for any frequency-domain waveform approximant available in LALSuite [47]. We val-

idate the relative model on large simulated populations of binary neutron star and

neutron star–black hole signals. We demonstrate the feasibility of seeding the analy-

sis of each simulated signal with the best-fit template parameters from a low latency

search pipeline, showing the real-world utility of this model in producing fast and

accurate parameter estimates that can be used to inform electromagnetic follow-up

observations.

1.3 Nuclear equation of state

Neutron stars contain matter at some of the highest densities in the known universe,

therefore they can serve as astrophysical laboratories to study how matter behaves

under these extreme conditions. The behavior of this dense matter is described by the

nuclear equation of state. Gravitational waves from a binary neutron star merger will

carry information about the nuclear equation of state through the tidal deformability

Λ of the neutron stars: as the pair of neutron stars inspiral and their orbital separation

decreases, the gravitational field of each star will induce a deformation in the body of

its companion. This tidal deformation is measurable in a gravitational-wave signal as

the energy required to induce the effect alters the gravitational-wave phase evolution
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of the inspiral [48].

The gravitational waveforms used to measure the nuclear equation of state are

computed using either post-Newtonian methods, which are perturbative expansions

in the invariant velocity of the binary, or using effective-one-body models that in-

clude tidal effects [49, 50, 51, 52, 53, 54] and provide better accuracy than post-

Newtonian models by tuning higher-order terms to numerical relativity waveforms.

The post-Newtonian waveform is written as a power series in the invariant velocity

v = (πMf)1/3, where f is the gravitational-wave frequency and M = m1 + m2 is

the total mass of the binary. As v increases throughout the inspiral, the tidal terms

become large enough to contribute a measurable phase shift in the gravitational-wave

signal. Since the tidal deformation only becomes significant for small orbital sepa-

rations, the effect in the gravitational-wave signal is only measurable at the higher

frequencies just before merger. It has been found that tidal effects only become im-

portant for frequencies f & 400 Hz [55]. Gravitational-wave detectors that use a

laser interferometer are generally less sensitive at these higher frequencies as a result

of quantum noise [56], making tidal effects challenging to measure.

In Ch. 5 we perform the first open-data analysis of GW170817 focused on mea-

suring the tidal deformability of the merging neutron stars. We impose a physical

constraint requiring that both neutron stars obey a common equation of state, and

we construct a prior on the leading order tidal parameter that is uniform to reflect

our uninformed prior knowledge. We describe the derivation of our constraint and

present measurements of the tidal deformability and neutron star radius under sev-

eral different assumptions about the mass distribution of neutron stars in merging

binaries.

A number of previous studies have examined Advanced LIGO’s ability to measure

the neutron star equation of state through the star’s tidal deformability. Lackey

et al. [57] performed parameter estimation for the loudest twenty binary neutron

star events in a year of data, with signal-to-noise ratios ranging from 13 to 64 in

Advanced LIGO at design sensitivity. They found that only the loudest five events

are the most informative toward constraining the equation of state. To constrain

the equation of state they measure the tidal deformability parameter Λ̃, which is the

linear combination of the individual tidal parameters Λ1 and Λ2. To combine the

information from multiple events, they follow a two-step process. First, they sample



6

the posteriors for each of the events individually and then marginalize over all the

parameters except the equation of state dependent parameters (i.e. m1,m2, Λ̃) to

obtain a quasilikelihood. In the second step they sample the joint likelihood for n

binary neutron star events, taking into account that Λ̃ can be expressed in terms of the

masses and the equation of state parameters, and then marginalize over the masses.

They also use Fisher matrix analysis for high signal-to-noise ratio events to compute

the quasilikelihood, and find that for the most part the results with Fisher matrix

are comparable to the Bayesian analysis, but that they slightly underestimate the

uncertainty in radius, pressure and tidal deformability. They find that when stacking

events together, the statistical error reduces, but the systematic error remains. They

claim that systematic errors are due to uncertainties in the post-Newtonian waveform

models.

Agathos et al. [58] expand on the work by Ref. [57] by including more events,

spins for the neutron stars, and by terminating the waveforms at the first point of

contact. They also include higher post-Newtonian terms in their waveform model.

They attempt to infer the neutron star equation of state via two methods: hypothesis

ranking and parameter estimation. For hypothesis ranking, they evaluate the odds

ratio and rank the equations of state. The highest ranked equation of state is assumed

to be the one that is closest to the true equation of state. For parameter estimation,

they expand the Λ(m) relation around m0 = 1.4M� at quadratic order. This allows

them to combine the equation of state dependent parameters for multiple detections,

which are the coefficients cj in the quadratic expression for Λ(m). For the signals they

use, they are only able to measure c0 and can’t infer c1, c2. Their signals have signal-

to-noise ratio between 8 and 30. They find that more than 50 sources are needed to

make comparative equation of state studies successful for the equations of state that

they examine. They also find that if the source mass distribution is strongly peaked,

using flat priors while inferring the equation of state parameters induces systematic

errors. They suggest that this can be mitigated by including better priors for the

masses by incorporating information on masses from other astrophysical observations.

Unfortunately, the equations of state examined by Agathos et al. are quite stiff (i.e.

have a large radius for a given mass), and they are disfavored by GW170817. Since

the measurability of the tidal deformability depends on the nuclear equation of state,
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with stiffer equations being easier to probe as they produce a larger gravitational-

wave phase shift, the results of Agathos et al. are overly optimistic in light of current

knowledge.

More recent work has extended the above analyses using the Fisher matrix formal-

ism, and the inclusion of measurements of the equation of state by other independent

methods such as from NICER. Forbes et al. [59] perform Fisher matrix analysis for

low signal-to-noise ratio events while parameterizing the equation of state with 18

different parameters. They claim that a handful of events will be able to significantly

constrain the equation of state. Similarly, Carson et al. [60] use a Fisher matrix

analysis to explore the implications of multiple binary neutron star detections with

current and future generation detectors to determine the uncertainty in measuring

the tidal deformability. They claim that the uncertainties will continue to dominate

until the end of Voyager-type detectors.

Recently, Landry et al. [61] studied the equation of state constraints from multiple

gravitational wave observations, NICER observations, and including information from

the detection of the most massive neutron stars observed as radio pulsars. They

estimate ∼ 60 total events by the end of Advanced LIGO’s fourth observing run,

and ∼ 4 events with signal-to-noise ratio ≥ 20. They claim that with multiple binary

neutron star events by the end of Advanced LIGO’s fifth observing run, and including

the NICER and radio observations, tight constraints can be placed on the equation

of state. They find that the uncertainty in the tidal deformability of a 1.4M� neutron

star ∆Λ1.4 goes as ∼ 910/
√
n, where n is the number of binary neutron star events

detected by a gravitational-wave detector. This is consistent with results from Carson

et al.

In Ch. 6 we present a comprehensive study of the future prospects for a pre-

cise equation of state measurement from Advanced LIGO and the proposed third-

generation detector Cosmic Explorer. We use the latest information from astrophys-

ical observations to explore a realistic range of equations of state, and perform full

Bayesian parameter estimation without relying on approximate Fisher-matrix tech-

niques. We explore the measurability of the equation of state across the full range

allowed by recent constraints from gravitational-wave and electromagnetic observa-

tions, as well as nuclear experiments. We investigate the effect of different neutron
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star mass distributions on the ability to make precise measurements, and we demon-

strate the importance of a good estimate of the true mass distribution to mitigate

biases in measuring the equation of state.



9

10 100 1000
Frequency / Hz

10−25

10−24

10−23

St
ra

in
n

o
is

e
/

H
z−

1/
2

Cosmic
Explorer

Einstein
Telescope

N
EM

O

aLIGO
(O3)

LIGO A+
Voyager

Figure 1: Noise curves, plotted as the amplitude spectral density, for the LIGO

detectors in the most recently completed observing run (aLIGO) as well as a selection

of proposed upgrade stages and future detectors. LIGO A+ is a planned upgrade

to the LIGO detectors which will include improved quantum squeezing and mirror

coatings. Voyager is a planned detector featuring a new design in the existing LIGO

facilities, which will operate with a laser of 2 micron wavelength. NEMO is a proposed

Australian detector optimized for high frequency sensitivity to study neutron star

physics [1]. Cosmic Explorer is a planned third-generation detector similar in design

to the LIGO detectors except with 40 km arms. Einstein Telescope is another planned

third-generation detector which will be located underground, with 10 km arms in an

equilateral triangle configuration.
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Chapter 2

Parameter Estimation Techniques

We give an overview of the techniques of gravitational-wave parameter estimation,

which are employed widely throughout this thesis. We outline the basic principles

behind Bayesian inference for gravitational-wave astronomy and the sampling meth-

ods we use to produce posterior estimates in our analyses. We also comment on some

practical considerations we found useful in the completion of this work, though we

emphasize the items we discuss are by no means an exhaustive list.

2.1 Bayesian inference

In gravitational-wave astronomy we use Bayesian methods as a convenient way to

infer the astrophysical source parameters from a detected signal [62, 63, 64, 65]. For a

stretch of gravitational-wave detector data ~d(t) identified as containing a gravitational-

wave signal, Bayes’ theorem [66, 67] states that for a hypothesis H, the posterior

probability density is

p(~ϑ|~d(t), H) =
p(~d(t)|~ϑ,H)p(~ϑ|H)

p(~d(t)|H)
. (2.1)

Here p(A|B) denotes the conditional probability of A given B. In the context of

gravitational-wave inference, the hypothesis H is the model of the gravitational wave-

form, and ~ϑ is the set of parameters defining this model. Thus the posterior proba-

bility density p(~ϑ|~d(t), H) is the conditional probability that the gravitational-wave

signal is defined by parameters ~ϑ, given data ~d(t) and waveform model H. The prior

probability density p(~ϑ|H) represents our prior knowledge of the parameters ~ϑ before



11

considering the observed data ~d(t). The posterior probability density is proportional

to the prior probability density, as the Bayesian framework considers any new ob-

servations in the broader context of prior knowledge. The denominator of Eqn. 2.1,

p(~d(t)|H) is known as the “evidence” or “marginal likelihood,” and it serves as a

normalizing constant to ensure the integral of p(~ϑ|~d(t), H) over the parameter space

is equal to unity.

In practice, we are very often interested in posterior estimates of only one or a

few parameters. In this case we can obtain marginalized posterior probability density

functions by integrating p(~ϑ|~d(t), H) over all unwanted parameters. For instance,

given a set of parameters ~ϑ = {θ1, θ2, . . . , θn}, the marginalized posterior probability

density for source parameter θ1 is

p(θ1|~d(t), H) =

∫
p(~ϑ|~d(t), H)dθ2dθ3 . . . dθn. (2.2)

In a parameter estimation analysis of gravitational-wave data, an implicit assump-

tion is made that the gravitational-wave detector noise is stationary, Gaussian, and

uncorrelated between detectors in the network. The data stream from the i-th detec-

tor in a network is then di(t) = ni(t)+si(t), where si(t) is the gravitational waveform

and ni(t) is the Gaussian detector noise. Under these assumptions, the likelihood in

Eqn. 2.1 has the form [68]

p(~d(t)|~ϑ,H) = exp

[
−1

2

N∑
i=1

〈ñi(f)|ñi(f)〉
]

= exp

[
−1

2

N∑
i=1

〈
d̃i(f)− s̃i(f, ~ϑ)|d̃i(f)− s̃i(f, ~ϑ)

〉]
, (2.3)

where N is the number of detectors in the network. The inner product 〈ã|b̃〉 is〈
ãi(f)|b̃i(f)

〉
= 4<

∫ ∞
0

ãi(f)b̃i(f)

S
(i)
n (f)

df , (2.4)

where S
(i)
n (f) is the power spectral density of the i-th detector’s noise. Here, d̃i(f)

and ñi(f) are the frequency-domain representations of the data and noise, obtained

by a Fourier transformation of di(t) and ni(t), respectively. The model waveform

s̃i(f, ~ϑ) may be computed directly in the frequency domain, or in the time domain

and then Fourier transformed to the frequency domain.
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2.2 Sampling

In order to explore the parameter space and produce marginalized posterior distribu-

tions for astrophysical parameters of interest we use a variety of stochastic sampling

techniques. For all sampling methods though the general principle is the same.

2.2.1 Markov Chain Monte Carlo

A common sampling technique is Markov Chain Monte Carlo (MCMC) where the

sampler will assemble a chain of samples drawn from the parameter space according

to several rules. The first sample in the chain is drawn randomly from the prior

probability density function, then at each iteration a new sample is proposed. Each

proposed sample is accepted or rejected according to a tunable acceptance probabil-

ity, which depends on a comparison of the likelihoods of the previous and proposed

samples. If the proposed sample is accepted it is appended to the chain, otherwise the

previous sample is repeated instead. The cycle then repeats and sampling proceeds

until the desired stopping criteria are satisfied. Ensemble MCMC sampling, where

multiple Markov chains are initialized and advanced independently, is also commonly

used as a more efficient means to explore a large parameter space.

Neighboring samples in a Markov chain are not independent of one another, since

the nature of the sampling technique has each sample in the chain rely on the previous

sample [69]. In order to identify samples in the chain that are independent, we

calculate the autocorrelation length τK , which is the characteristic length over which

samples can be considered independent [70]. For a Markov chain Xl of length l, the

autocorrelation length is

τK = 1 + 2
K∑
i=1

R̂i, (2.5)

where K is the index of the first sample in the Markov chain satisfying 5τK ≤ K.

The autocorrelation function R̂i is defined as

R̂i =
1

lσ2

l−i∑
t=1

(Xt − µ) (Xt+i − µ) , (2.6)

where Xt are the samples of Xl between the 0-th and the t-th sample, Xt+i are the

samples of Xl between the 0-th and the (t + 1)-th sample, and µ and σ2 are the

mean and variance of Xt respectively. We can then extract samples from a Markov
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chain that are representative of the posterior probability density function by drawing

samples from the chain spaced by an interval of the autocorrelation length [69].

An additional modification to typical MCMC sampling is to create parallel copies

of each Markov chain at different “temperatures,” and advance chains of each tem-

perature independently. Chains at a temperature T will explore a modified likelihood

so that the posterior probability density function becomes

pT (~ϑ|~d(t), H) =
p(~d(t)|~ϑ,H)

1
T p(~ϑ|H)

p(~d(t)|H)
. (2.7)

This modification causes the Markov chains with a higher temperature to explore an

effectively flatter likelihood landscape, increasing the probability that proposed steps

are accepted and thus making these chains more likely to fully explore the parameter

space and potentially find largely separated modes of high likelihood. As T →∞, the

posterior probability density becomes just the (normalized) prior probability density.

At each iteration the position of Markov chains are swapped between temperatures

using an acceptance criteria described in Ref. [71], allowing information of the like-

lihood across the entire parameter space to propagate among all the chains. Upon

completion of the analysis, posterior samples are taken only from chains where T = 1,

with independent samples extracted from the chains as described above.

2.2.2 Nested sampling

An alternative to MCMC sampling is “nested” sampling [72, 73, 74], which was ini-

tially designed as a means of efficiently computing the evidence but will also produce

marginal posteriors as a useful byproduct. Nested sampling does not rely on chains of

samples, but rather a constantly updating set of “live points.” To initialize the sam-

pling, Nlive samples are drawn from the prior volume and the likelihood L for each

is calculated. Then at each iteration i the live point with the lowest likelihood Li is

dropped from the set, and a new sample is drawn with the condition L > Li. In this

way, a nested sampler will progress through nested “shells” of increasing likelihood,

contracting onto any regions of high likelihood in the parameter space. The remain-

ing prior volume Xi, defined as the fraction of the prior volume contained within an

iso-likelihood contour with L = Li, is then a monotonically decreasing sequence with

1 = X0 > X1 > · · · > XM > 0 (2.8)
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after M iterations. The evidence Z can then be numerically approximated by calcu-

lating the weighted sum over the discarded samples

Z =
M∑
i=1

Liwi, (2.9)

where the weights wi are determined by the quadrature method used, and adding the

contribution from the set of live points

Zlive =
XM

Nlive

Nlive∑
j=1

Lj. (2.10)

Upon completion of the run, every sample in the collection of discarded and live

points is assigned the posterior weight [75]

pj =
Ljwj
Z , (2.11)

where j goes from 1 to M + Nlive, and wj>M = XM/Nlive. These posterior weights

can then be used to draw posterior samples from the full sequence of sampled points

in the analysis [75].

Nested sampling is preferable to an MCMC sampler when calculating evidence,

as the nested sampling algorithm more efficiently explores the full parameter space.

However, the nested samplers available in PyCBC Inference are more restrictive in

the prior distributions that can be used; they draw samples from a unit interval for

each source parameter in the analysis and require a transformation from this space

to the desired prior probability distribution. We have also observed nested samplers

will sometimes fail to produce reasonable posterior estimates for loud signals, which

we discuss in more detail in the next section. In the case where the necessary prior

transformation is unavailable, or when analyzing loud signals, an MCMC sampler will

perform better than the nested samplers.

2.3 Practical considerations

In this section we describe specific details on the implementation of the principles of

Bayesian parameter estimation for gravitational-wave astronomy. In particular, we

outline the parameterized waveform models describing the binary inspiral signals that

we seek to measure, and additional considerations about specific likelihood models

and samplers that are used in this thesis.
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2.3.1 Waveform model

The intrinsic parameters describing the gravitational wave radiated by a binary

merger in its source frame include the component masses m1,2, the three-dimensional

spin vectors ~s1,2 of the compact objects [76], and the eccentricity e of the binary [77].

The “coalescence phase” φ describes the phase of the binary at a fiducial reference

time, which is often taken to be the phase at the time of merger. For binaries contain-

ing neutron stars, additional parameters Λ1,2 describe the tidal deformabilities [48, 78]

of the stars which depend on the equation of state and the masses. The signal ob-

served by a gravitational-wave detector network on Earth depends on six additional

parameters: the geocentric time of arrival tc, the luminosity distance to the binary dL,

and four Euler angles that describe the transformation of the binary’s source frame to

the local frame of the detector network. These four angles are defined by the binary’s

right ascension α, declination δ, polarization angle Ψ, and inclination angle ι (the

angle between the line of sight and the angular momentum axis of the binary).

The binary’s gravitational-wave phasing depends at leading order on its chirp

mass M = (m1m2)3/5(m1 + m2)−1/5, where m1 and m2 are the binary’s component

masses [79]; this quantity will be most accurately measured in a gravitational-wave

detection. The mass ratio η = m1m2/(m1 +m2)2 enters through higher-order correc-

tions and is less accurately measured. In this thesis, we restrict to binaries where the

angular momenta χ1,2 = J1,2/m
2
1,2 of each compact object (often refereed to as the

compact object’s spins) are aligned with the orbital angular momentum vector of the

binary, reducing the number of spin parameters in the waveform from six to two. We

also only consider binaries in quasi-circular orbits, so e = 0.

The static neutron star tidal effects first enter at fifth post-Newtonian order and

depend on the tidal deformability of each star Λi [48, 80]. The parameter Λi measures

how much each neutron star deforms in the presence of a tidal field, and depends on

the neutron star mass and equation of state implicitly through its dimensionless Love

number k2,i and radius Ri: λi = (2/3)k2,iR
5
i . At leading order, the tidal effects are

imprinted in the gravitational-wave signal through the effective tidal deformability

parameter

Λ̃ =
16

13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (2.12)

where q = m2/m1 ≤ 1 is the binary’s mass ratio. We ignore the dynamic tides in this
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thesis, as they do not significantly affect the waveform for the systems considered.

Given a full set of parameters ~ϑ one can generate a model of a gravitational-

waveform from a binary merger using a variety of methods. These methods include:

full numerical solutions of the Einstein equations (see Ref. [81] and references therein),

perturbation theory [82, 83], analytic models calibrated against numerical simula-

tions [84, 85, 86, 87, 88, 89, 90], and post-Newtonian (pN) theory (see e.g. Ref. [91]

and references therein).

Gravitational-wave signals consist of a superposition of harmonic modes. However,

sub-dominant harmonics are too weak to be measured, and so in many cases it is

sufficient to model only the dominant mode. In this case, the gravitational-wave

signal has the same simple dependence on the fiducial phase φ in all detectors,

s̃i(f, ~ϑ, φ) = s̃0
i (f,

~ϑ, 0)eiφ. (2.13)

The posterior probability p(~ϑ|~d(t), H) can be analytically marginalized over φ for

models that use this simplification [68]. If we assume a uniform prior on φ ∈ [0, 2π),

then using the notation of Section 2.1 the logarithm of the marginalized posterior is

log p(~ϑ|~d(t), H) ∝ log p(~ϑ|H) + I0

(∣∣∣∑iO(s̃0
i , d̃i)

∣∣∣)
−1

2

∑
i

[
〈s̃0
i , s̃

0
i 〉 −

〈
d̃i, d̃i

〉]
, (2.14)

where

s̃0
i ≡ s̃i(f, ~ϑ, φ = 0),

O(s̃0
i , d̃i) ≡ 4

∫ ∞
0

s̃∗i (f ;ϑ, 0)d̃i(f)

S
(i)
n (f)

df,

and I0 is the modified Bessel function of the first kind.

In this thesis we use the TaylorF2 [92, 93, 94, 95, 96, 97], IMRPhenomD [98, 99],

and IMRPhenomD NRTidal [98, 99, 100] waveform models. TaylorF2 is a post-

Newtonian waveform model, accurate to 3.5 pN order in orbital phase, 2.0 pN or-

der in spin–spin, quadrupole–monopole and self-spin interactions, and 3.5 pN order

in spin–orbit interactions. IMRPhenomD is a phenomenological model tuned to nu-

merical relativity data, and includes representations of each of the inspiral, merger,

and ringdown portions of a signal. IMRPhenomD NRTidal builds on the IMRPhe-

nomD model by adding corrections to the gravitational-wave phase due to the tidal

deformabilities of neutron stars. All waveforms are generated using their respective

LIGO Algorithm Library [101] implementation.
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2.3.2 emcee pt

Several of the analyses in this thesis use the parallel-tempered MCMC sampler

emcee pt [102, 103]. In these analyses we found frequently that the sampler would fail

to converge in a reasonable time, with the number of independent samples staying

constant at around 3000 which results in a poorly sampled posterior distribution.

PyCBC Inference allows for specifying initial distributions for the MCMC chains,

as opposed to having their positions drawn randomly from the prior. We found that

drawing the initial positions from Gaussian distributions for each parameter, centered

near the peak of the likelihood, would result in full convergence in a reasonably short

amount of time. In practice, the location of the likelihood peak can be determined

by a trial run where the chains are initialized from the full prior distribution, or is

known a priori as is the case when analyzing a simulated signal.

Another consideration for the emcee pt sampler is the number of temperatures

to be used in the analysis. In PyCBC Inference this is a tunable setting which can

be specified by supplying either an integer, in which case the sampler will automati-

cally pick the temperature spacing, or as an array of inverse-temperatures, with each

inverse-temperature specified by βi = 1/Ti. Generally, a sufficient number of tem-

peratures, and appropriate placement of them, is an important consideration when

performing analyses meant to calculate evidence, as this calculation is done via ther-

modynamic integration and can easily produce inaccurate results for poor choices of

temperatures. However in the analyses we perform we are only concerned with mea-

suring posterior probability distributions for various parameters of interest, and as

such we found that using 3 temperatures with the sampler’s automatic spacing was

sufficient.

2.3.3 dynesty

In Ch. 4 we use the dynesty nested sampler [74] for our analysis. We found that

when sampling in component masses m1,2, this sampler would sometimes struggle

to explore the parameter space fully. As a result the sampler would miss regions of

high likelihood, and would prematurely claim to have reached its stopping criteria.

The posterior distributions in these cases would appear “patchy,” with many small,

disjoint regions. We found that in many cases this problem could be avoided by



18

sampling in the natural mass coordinates of a gravitational-wave signal according to

post-Newtonian theory, namely the chirp mass M and mass ratio q = m1/m2 or

symmetric mass ratio η = m1m2/(m1 + m2)2. However for very loud signals, with

signal-to-noise ratio ρ & 75, we sometimes saw the same issue even when sampling

in the natural mass coordinates. We did not find any satisfactory solution to this

problem in the case of loud signals, so for these signals we recommend the use of a

different sampler.

2.3.4 Long duration signals

Gravitational-wave detectors that use an L-shaped interferometer design, such as the

two LIGO detectors and the Virgo detector, have the greatest sensitivity in the di-

rection normal to the plane of the detector arms. This direction is a time-dependent

quantity though, as the Earth rotates and moves along its orbit around the sun. Typ-

ical parameter estimation analyses will neglect any time-dependence in the detector

sensitivity, as the duration of a signal in the sensitive frequency band of current gen-

eration detectors is only a few minutes, over which time the antenna pattern can be

reasonably approximated as constant. However, third-generation detectors such as

Cosmic Explorer will have good sensitivity down to much lower frequencies, which

can translate into a low-mass binary inspiral signal staying in the sensitive band for

an hour or longer. At this point the time-dependence of the detector antenna pat-

tern becomes non-negligible and it is important that the template waveform used

in a likelihood calculation accounts for the variation in sensitivity over its duration.

Currently, the relative likelihood model in PyCBC Inference has an option which will

apply a time-dependent detector antenna response to the template waveforms, and we

use this functionality for analyses in this work that use a third-generation detector.

2.3.5 Relative likelihood

In Ch. 4 and Ch. 6 we use the relative likelihood model available in PyCBC Inference

which uses an approximation to the likelihood near its peak in order to reduce run

time [104, 46, 105]. In practice, the use of this likelihood model requires some care as

the approximation it uses is not valid far from the peak of the likelihood. A specific

failure mode we encountered would happen when attempting to explore a large prior
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volume, which allowed sampling parameter space far from the likelihood peak. In

this failure mode we would see the analysis would “run away” to erroneously large

likelihoods, generally for parameter values near the boundaries of the prior volume.

To prevent this failure we found that placing a mild restriction on the prior volume

was broadly effective. Specifically we found that restricting the chirp mass M to

within ∼ 20% of the expected signal would ensure proper convergence. Alternatively

(or in addition) the relative likelihood model can be tuned to use more frequency

bins in the likelihood calculation which we found would sometimes also prevent this

failure.
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Chapter 3

Measuring the Viewing Angle of

GW170817 with Electromagnetic

and Gravitational Waves

The joint detection of gravitational waves (GWs) and electromagnetic (EM) radia-

tion from the binary neutron star merger GW170817 ushered in a new era of multi-

messenger astronomy. Joint GW–EM observations can be used to measure the pa-

rameters of the binary with better precision than either observation alone. Here,

we use joint GW–EM observations to measure the viewing angle of GW170817, the

angle between the binary’s angular momentum and the line of sight. We combine

a direct measurement of the distance to the host galaxy of GW170817 (NGC 4993)

of 40.7 ± 2.36 Mpc with the Laser Interferometer Gravitational-wave Observatory

(LIGO)/Virgo GW data and find that the viewing angle is 32+10
−13 ± 1.7 degrees (90%

confidence, statistical, and systematic errors). We place a conservative lower limit

on the viewing angle of ≥ 13◦, which is robust to the choice of prior. This measure-

ment provides a constraint on models of the prompt γ-ray and radio/X-ray afterglow

emission associated with the merger; for example, it is consistent with the off-axis

viewing angle inferred for a structured jet model. We provide for the first time the

full posterior samples from Bayesian parameter estimation of LIGO/Virgo data to

enable further analysis by the community.
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3.1 Introduction

On 2017 August 17, the Advanced Laser Interferometer Gravitational-wave Obser-

vatory (LIGO) and Virgo observed the gravitational waves (GWs) from a binary

neutron star merger, dubbed GW170817 [5]. This signal was followed 1.7 s later by a

short gamma-ray burst (GRB), GRB170817A, detected by the Fermi and INTEGRAL

satellites [22, 23]. Rapid follow-up of the LIGO/Virgo sky localization region led to

the identification of an optical counterpart in the galaxy NGC 4993 [106, 33, 107],

which in turn enabled multi-wavelength observations spanning from radio to X-rays.

Ultraviolet, optical, and near-infrared observations covering the first month post-

merger led to the inference of a complex ejecta structure in terms of mass, velocity,

and opacity (e.g., [24, 25, 26, 27, 28, 29, 30]), potentially indicative of non-spherical

angular structure. Radio and X-ray observations revealed brightening emission for the

first ≈ 5 months, which has been interpreted as resulting from an off-axis structured

relativistic jet (e.g., [108, 109, 110, 111, 112]), or alternatively a spherical “cocoon”

of mildly relativistic ejecta (e.g., [113]).

Measuring the angle between the binary’s angular momentum axis and the line of

sight is important for an understanding of the engine powering the multi-wavelength

electromagnetic (EM) emission from GW170817. Following [5], we define the viewing

angle Θ = min(θJN , 180◦ − θJN), where θJN is the angle between the binary’s total

angular momentum and the line of sight [5]. For systems where the angular momen-

tum of each compact object (the spin) is small, and precession of the binary’s orbital

plane is not significant (as is the case for GW170817), θJN ≈ ι, where ι is the angle

between the binary’s orbital angular momentum and the line of sight (the inclination

angle). There is a degeneracy between the binary’s inclination, ι, and the luminosity

distance, dL, when only LIGO/Virgo observations are used to measure the inclina-

tion angle [31]. Breaking this degeneracy with an independent distance measurement

immediately allows one to place tighter constraints on the inclination angle [114].

Using GW observations alone, LIGO and Virgo constrained the viewing angle to

Θ ≤ 55◦ at 90% confidence with a low-spin prior [5]. To provide an independent

distance measurement, Abbott et al. used the estimated Hubble flow velocity for

NGC 4993 of 3017± 166 km s−1 and a flat cosmology with H0 = 67.90± 0.55 km s−1

Mpc−1 to constrain Θ ≤ 28◦[5]. [115] used the combined H0-inclination posterior from
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[116] in conjunction with the Dark Energy Survey measurement of H0 = 67.2+1.2
−1.0 km

s−1 Mpc−1 [117] to infer Θ ≤ 28◦ at 90% confidence [115]. These circuitous approaches

to breaking the distance-inclination degeneracy were motivated partly by the absence

of a precise distance measurement to NGC 4993, as well as by the lack of a published

distance-inclination posterior probability distribution. Furthermore, [115] was not

able to place a strong constraint on the lower bound of Θ, as his analysis used the

GW posteriors [115] and was constrained by LIGO/Virgo’s choice of prior in their

GW analysis [116].

Here, we directly use the most precise distance measurement available for NGC 4993

of dL = 40.7±2.36 Mpc [2] and the LIGO/Virgo GW data [5] to infer Θ directly from

joint GW–EM observations using Bayesian parameter estimation [118, 119, 120]. To

allow our results to be used by the community for further analysis we provide the full

posterior samples from our analysis as supplemental materials.

3.2 Methods

We use Bayesian inference to measure the parameters of GW170817 [65]. We calculate

the posterior probability density function, p(θ|d(t), H), for the set of parameters θ

for the GW model, H, given the LIGO Hanford, Livingston, and Virgo GW data

d(t):

p(θ|d(t), H) =
p(θ|H)p(d(t)|θ, H)

p(d(t)|H)
, (3.1)

where θ is the vector of the gravitational waveform parameters. The prior, p(θ|H), is

the set of assumed prior probability distributions for the waveform parameters. The

likelihood p(d(t)|θ, H) assumes a Gaussian model of detector noise and depends upon

the noise-weighted inner product between the gravitational waveform and the GW

detector data d(t) [121, 122]. Marginalization of the likelihood to obtain the posterior

probabilities is performed using Markov Chain Monte Carlo (MCMC) techniques.

Our implementation used the PyCBC Inference software package [119, 120] and the

parallel-tempered emcee sampler [118].

The MCMC is performed over the detector-frame chirp mass of the binaryMdet,

the mass ratio q = m1/m2,m1 ≥ m2, the component spins χ1,2, the time of coalescence

tc, the phase of coalescence φc, the GW polarization angle ψ, the inclination angle of

the binary ι, R.A. and decl. of the binary, and the luminosity distance dL.
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We assume a uniform prior distribution on the binary component masses, m1,2 ∈
[1.0, 2.0] M�, transformed toMdet and q with a cut on the detector-frame chirp mass

1.1876 ≤ Mdet ≤ 1.2076. We assume a uniform prior on the dimensionless angular

momentum of each neutron star, χ1,2 ∈ [−0.05, 0.05] [123]. The prior on tc is uniform

in the GPS time interval [1187008882.3434, 1187008882.5434]. We assume a uniform

prior between 0 and 2π for φc and ψ. We incorporate EM information through fixing

the R.A. and decl. of GW170817 and through the prior probability distribution on

the luminosity distance p(dL|H). We run the MCMC with two prior distributions on

the inclination angle ι: a prior uniform in cos ι, and a prior uniform in ι to explore

the posterior distribution for small viewing angles.

We use GW strain data from the Advanced LIGO and Virgo detectors for the

GW170817 event, made available through the LIGO Open Science Center (LOSC)

[124]. The LOSC CLN 16 V1 data that we use here include a post-processing noise

subtraction performed by the LIGO/Virgo Collaboration [125, 126]. The LOSC doc-

umentation states that these data have been truncated to remove tapering effects

due to the cleaning process, however the LOSC data shows evidence of tapering after

GPS time 1187008900 in the LIGO Hanford detector. To avoid any contamination of

our results we do not use any data after GPS time 1187008891.

We high-pass the GW data using an eighth-order Butterworth filter that has an

attenuation of 0.1 at 15 Hz. The filter is applied forward and backward to preserve

the phase of the data. A low-pass (anti-aliasing) finite impulse response filter is

applied prior to resampling the data. The data is decimated to a sample rate of

4096 Hz for the analysis. To estimate the detector’s noise power spectral density

(PSD) for computing the GW likelihood, we use Welch’s method with 16-second

Hann-windowed segments (overlapped by 8 s) taken from GPS time 1187007048 to

1187008680. The PSD estimate is truncated to 8 s length in the time domain using

the method described in [127]. The GW data ~d(t) used in the likelihood is taken

from the interval 1187008763 to 1187008891. The GW likelihood is evaluated from a

low-frequency cutoff of 25 Hz to the Nyquist frequency of 2048 Hz.

The waveform model H is the restricted TaylorF2 post-Newtonian (pN) aligned-

spin waveform model. We use the LIGO Algorithm Library implementation [101]
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accurate to 3.5 pN order in orbital phase [93], 2.0 pN order in spin–spin, quadrupole–

monopole and self-spin interactions [95, 94], and 3.5 pN order in spin–orbit inter-

actions [96]. The waveforms are terminated at twice the orbital frequency of a test

particle at the innermost stable circular orbit of a Schwarzschild black hole of mass

M = m1 +m2. We neglect matter effects in the waveforms as we find that their effect

is significantly smaller than the statistical errors on our measurement of dL and ι.

To measure the systematic effect of calibration uncertainties we use the 68% oc-

currence, 1σ calibration uncertainty bounds for LIGO/Virgo’s second observing run

as detailed in [128]. We adjusted the GW strain to the extreme cases of calibra-

tion error in amplitude and phase to determine the systematic effects on parameter

measurement. The strain adjustment was done according to

d̃′(f) =

(
1 +

δR(f)

R(f)

)
d̃(f) (3.2)

where d̃(f) is the frequency-domain GW strain data, δR/R is the relative response

function error (in amplitude and phase), and d̃′(f) is the resulting adjusted strain

data [129].

3.3 Results

As a check on our analysis, we first estimate the parameters of GW170817 using

priors that do not assume any information about the source from EM observations.

We allow the R.A. and decl. to vary uniformly over the entire sky, and the distance to

vary in a wide uniform-in-volume distribution of [5, 80] Mpc. Our analysis localized

the source to a region of ≈ 23 deg2 at 90% confidence, shown in Figure 2. Our sky

localization encloses the location of NGC 4993 (e.g., [33]) and agrees well with the

localization region of [5].

We then fix the sky location of GW170817 to R.A. = 197.450374◦, decl. =

−23.381495◦ [33] and remove these parameters from our parameter estimation. Fix-

ing the sky location of GW170817 has virtually no impact on the inclination mea-

surement, in agreement with previous studies that have explored this correlation

[130, 131]. Finally, we set the prior probability distribution on the luminosity dis-

tance p(dL|H) to a Gaussian distribution centered on 40.7 Mpc with a standard

deviation of 2.36 Mpc, corresponding to the measured distance and quadrature sum
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of statistical and systematic errors reported in [2]. Here we have assumed a Gaussian

distribution on this distance measurement, which we deem valid for a measurement

of this precision and for the purpose of exploring upper and lower bounds.

Using the EM observations as the prior on the luminosity distance results in

significantly narrower posteriors on inclination angle and source-frame chirp mass

M = (m1m2)3/5/(m1 +m2)1/5 shown in Figure 3. The improved chirp mass measure-

ment is due to the reduced error on dL, as the dL posterior samples are used to convert

from the measured detector-frame chirp mass Mdet to the source-frame chirp mass

Msrc [132, 133]. However, the improved precision on distance has no effect on our

measurements of the component masses or spins, because at leading order the mass

ratio q = m1/m2 and spin parameter χeff [63] are not correlated with distance. With

the EM observations as the prior on dL and a prior on the inclination angle uniform

in cos ι, we find that the viewing angle is Θ = 32+10
−13 degrees (90% confidence).

Errors in the calibration of the GW detectors can cause errors in the measured

amplitude of the GW signal and hence in the inclination angle of the binary. We treat

this as a systematic error, which we measure by shifting the amplitude calibration of

the LIGO and Virgo detectors by the 1σ uncertainty bounds for LIGO/Virgo’s second

observing run [128]. We find that shifting the calibration to its most sensitive and

least sensitive extremes results in a ±1.7◦ shift in the peak of the viewing angle when

using a prior on inclination angle that is uniform in cos ι. We quote this shift as the

systematic error on our measurement. Changing the phase error of the calibration

within the bounds reported in [128] produces a negligible effect on the inclination

angle.

A prior uniform in cos ι goes to zero as the viewing angle approaches face on (or

face off), so we repeat our analysis using a prior uniform in ι. Figure 4 shows a

comparison between the prior and the posterior distributions on inclination angle for

each choice of prior. The result using a prior uniform in ι excludes viewing angles

Θ ≤ 14.8◦ at 90% confidence, suggesting that our likelihood is indeed informative at

small viewing angles and the lack of posterior support is not due to the prior uniform

in cos ι vanishing for small angles. Including the systematic error from calibration

uncertainty, we set a conservative constraint of Θ ≥ 13◦ at 90% confidence. This is

consistent with the 10-day interval between the merger and the first observation of

X-ray afterglow [134], which suggests that the GRB is not beamed at the Earth [135].
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3.4 Discussion

Our joint GW–EM analysis of GW170817 used the GW observations along with sky

location and a prior on the distance from direct measurement of these parameters

from EM observations of NGC 4993. Our 90% confidence region on the viewing angle,

Θ = 32+10
−13 ± 1.7 degrees (statistical and systematic errors), is significantly narrower

than the inference made by GW observations alone, by about a factor of 2.6. It

extends well above the Θ < 28◦ bound of [115], which was based on an assumed

Hubble flow velocity for NGC 4993. The precise distance measurement from [2] also

allows us to place a 90% confidence lower bound on Θ that is substantially higher

than the 68% confidence lower bound, Θ > 10◦, reported by [115].

Our improved constraint on Θ has implications for models of the prompt γ-ray

and radio/X-ray afterglow emission from GW170817. For example, our inferred value

is in good agreement with the structured jet models of [110], which favor a viewing

angle of ≈ 33◦, and [112], which favor a viewing angle of ≈ 20◦. While we do

not yet know from a single event if the ejecta components that dominate the early

UV/optical/near-infrared emission are significantly asymmetric, our constraint on Θ

for GW170817 and future mergers will serve to shed light on the ejecta structure (e.g.,

spherical vs. polar vs. equatorial).
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Figure 2: Sky localizations of GW170817 for LIGO/Virgo (green shaded region)

and from our analysis using only GW source information (black contour). Both

localizations are 90% confidence regions, while the LIGO/Virgo region shows contours

at each 10% threshold. The location of NGC 4993 is marked as a red star.
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Figure 3: Comparison of posterior probability distributions without and with com-

bined EM information. The black contours show the results for using only the GW

signal, the blue contours show the results for the fixed sky location of NGC 4993, and

the red contours show the results for both the fixed sky location and a Gaussian prior

on distance of 40.7 ± 2.36 Mpc from [2]. These analyses used a prior on inclination

angle that is uniform in cos ι. For each parameter, we quote the median value and

the 90% credible interval (shown with vertical solid and dashed lines, respectively,

on the posterior plot of each parameter). The EM information on the distance mea-

surement greatly improves the precision with which we measure the inclination angle

(and significantly reduces the uncertainty on the source-frame chirp mass).
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Figure 4: Inclination angle posteriors (solid lines) plotted against their prior (dotted

lines) for two choices of prior: uniform in ι (left), and uniform in cos ι (right). We

quote the median value and the 90% credible interval for ι in each posterior (shown

with vertical lines). The prior uniform in cos ι is the prior used by the LIGO/Virgo

analysis. The uniform prior does not bias measurement away from angles approaching

180◦, so these results suggest that our likelihood is informative close to ι = 180◦ and

that we can place a conservative lower bound on the viewing angle Θ ≥ 13◦ (90%

confidence).
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Chapter 4

Fast Parameter Estimation of

Binary Mergers for

Multimessenger Followup

Significant human and observational resources have been dedicated to electromagnetic

followup of gravitational-wave events detected by Advanced LIGO and Virgo. As the

sensitivity of LIGO and Virgo improves, the rate of sources detected will increase. [34]

have suggested that it may be necessary to prioritize observations of future events.

Optimal prioritization requires a rapid measurement of a gravitational-wave event’s

masses and spins, as these can determine the nature of any electromagnetic emission.

We extend the relative binning method of [45] and [46] to a coherent detector-network

statistic. We show that the method can be seeded from the output of a matched-

filter search and used in a Bayesian parameter measurement framework to produce

marginalized posterior probability densities for the source’s parameters within 20

minutes of detection on 32 CPU cores. We demonstrate that this algorithm produces

unbiased estimates of the parameters with the same accuracy as running parameter

estimation using the standard gravitational-wave likelihood. We encourage the adop-

tion of this method in future LIGO-Virgo observing runs to allow fast dissemination

of the parameters of detected events so that the observing community can make best

use of its resources.
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4.1 Introduction

The observation of the binary neutron star merger GW170817 in gravitational and

electromagnetic waves [5, 14] has demonstrated the importance of multimessenger as-

tronomy in answering fundamental questions in physics, astronomy, and cosmology;

see e.g. [136], [137], and [116]. With the observation of GW190814, gravitational-

wave astronomy has begun to explore the properties of compact objects that are

more massive than previously observed neutron stars and less massive than previ-

ously observed black holes [138]. Advanced LIGO and Virgo perform a search for

compact-object binary mergers with several low-latency analyses based on matched

filtering [139, 140] and release alerts to the astronomical community to enable followup

of detected events. As the sensitivity of the Advanced LIGO and Virgo detectors im-

proves, the rate at which interesting events are detected will increase. [34] have

suggested that it may become necessary to prioritize events for followup in future

LIGO-Virgo observing runs. Optimal prioritization will require the knowledge of the

source-frame component masses and spins of the binary, as these determine the type

of electromagnetic counterpart that may be generated by the merger [141, 142].

In this paper, we demonstrate that it is possible to perform full Bayesian parameter

estimation on binary neutron star and neutron star–black holes signals within 20

minutes of the source’s detection by a matched-filter search (with an average time of

10.8 minutes) using 32 CPU cores (2.3 GHz Xeon® Gold 6140). Our analysis produces

marginalized posterior probability densities for the source’s parameters (including

source-frame masses, spins, sky location, and distance) that can be used to guide

the prioritization of electromagnetic followup in future LIGO-Virgo observing runs.

We achieve this by extending the relative binning method originally introduced by

[45] (and independently developed by [46]) to a fully coherent statistic, seeding the

relative binning algorithm from the output of a matched-filter search, and using the

dynesty nested-sampling package [74]. We have made our code available in the

PyCBC Inference framework [35].

We validate our analysis on a population of simulated binary neutron star and

neutron star–black hole signals in a LIGO-Virgo detector network. A matched-filter

search is used to identify signals that have a false alarm rate better than one per

month. We then use our algorithm to produce marginalized posterior probability
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densities for each qualifying signal. For the parameters of interest, we perform a

percentile-percentile test and demonstrate that our method produces unbiased pa-

rameter estimates. Comparing our sky localization to that of the Bayestar algo-

rithm [143], we find that the 90% credible localization area improves by an average

of 14 deg2. We find that our analysis can recover the source-frame chirp mass to an

accuracy of ∼ 5 × 10−2M� for binary neutron star signals and ∼ 10−1M� for neu-

tron star–black hole signals. We demonstrate that the measurement of mass ratio

and spin is consistent with that of parameter estimation using the full likelihood,

although these quantities are measured less accurately than the chirp mass as they

enter the gravitational waveform at higher order and suffer from a partial degeneracy

[63, 144]. As an example use case, we demonstrate that our method recovers essen-

tially the same posterior probabilities for the parameters of GW170817 as the full

likelihood calculation. Our method obtains marginalized posteriors for GW170817 in

20 minutes, compared to over three hours using the standard likelihood calculation.

This Letter is organized as follows: In Section 4.2 we describe our simulated search.

Section 4.3 describes our parameter estimation analysis and our implementation of

relative binning for a detector network. Section 4.4 present our results including

analysis run times and parameter estimation accuracy. Finally, we contrast our results

to current methods in Section 4.5.

4.2 Simulated Search

We simulate a three-detector network representing the LIGO Hanford, LIGO Liv-

ingston [145, 146], and Virgo [13] detectors. We generate two populations of sim-

ulated signals: 600 binary neutron star and 570 neutron star–black hole binaries.

Each population is injected into a realization of 33 hours of simulated detector data,

which is created by coloring Gaussian noise to the design power spectral density of

each detector [9]. The simulated binary neutron star signals have their chirp mass

drawn uniformly from the interval [0.5, 3] M� and mass ratio q = m1/m2 drawn

uniformly from the interval [1, 3], with constraints on the component masses so that

1 < m1,2/M� < 3. The neutron star’s spins are restricted to be aligned with the

orbital angular momentum and have dimensionless magnitude drawn uniformly from

the interval [−0.05, 0.05]. The simulated neutron star–black hole signals have their
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chirp mass drawn uniformly from the interval [0.5, 7] M� and mass ratio drawn uni-

formly from the interval [1, 10], with constraints on the component masses so that

1 < m1,2/M� < 10. Both component spins are restricted to be aligned with the

orbital angular momentum, with the black hole spin dimensionless magnitude drawn

uniformly from the interval [−0.998, 0.998] and the neutron star spin dimensionless

magnitude drawn uniformly from the interval [−0.05, 0.05]. This population of sources

is chosen to cover the region in which it is expected that there will be neutron star

disruption and an electromagnetic counterpart [142]. Each set of simulated signals is

uniformly distributed in sky location and follow a uniform-in-volume distance distri-

bution with dL ∈ [10, 300] Mpc for binary neutron star signals and dL ∈ [10, 500] Mpc

for neutron star–black hole signals. This corresponds to a signal population with

single-detector signal-to-noise ratios of 1 to O(100). Binary neutron star signals

are simulated using the TaylorF2 waveform approximant [147, 148, 149, 150]. The

neutron star–black hole signals are simulated using the IMRPhenomD approximant

[98, 99]. For both populations, we set the tidal deformability of the neutron stars Λ to

zero, as this does not have a significant effect on the parameters we are investigating

in this paper [4].

To simulate the output of the LIGO-Virgo searches, we run each set of simulated

signals through the PyCBC search pipeline [151] configured to operate in a similar

way to the PyCBC Live low-latency search used in the recent Advanced LIGO–

Virgo observing runs [152]. This search uses matched filtering [153] with a template

bank of gravitational waveforms designed to give at least a 97% match, measured

by noise-weighted overlap, to any potential signal in the relevant parameter space

[154, 15]. The bank is designed to catch potentially electromagnetically-bright sig-

nals, and contains 315,325 waveforms. Template waveforms have component masses

spanning [1, 30] M� and dimensionless spin magnitudes in the range [-1, 1], with

the spin restricted to the direction of the orbital angular momentum. Templates in

the bank are generated using the TaylorF2 approximant for signals with total mass

M = m1 + m2 < 4M� [150], and with a reduced-order model of the SEOBNRv4

approximant otherwise [155]. Candidate triggers are required to be matched by the

same template in at least two detectors in the network and with consistent phase,

amplitude, and time of arrival given the network orientation and relative sensitivities

between detectors [156]. The search pipeline provides best-fit template parameters
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for every trigger and measures the trigger’s statistical significance. The significance

of a trigger is determined by the time-slide method and the pipeline computes a false

alarm rate for each trigger. We select the triggers that have a false alarm rate more

significant than 1 per month as candidate events for parameter estimation followup.

This threshold was selected to be the same as that used to release low-latency events

as public alerts for electromagnetic followup in the third LIGO-Virgo observing run

[157] and corresponds to a network signal-to-noise ratio of approximately 8.3. Of

the total injections made, 306 binary neutron star and 253 neutron star–black hole

injections satisfied this threshold.

4.3 Parameter estimation

We use PyCBC Inference [35] with the dynesty nested sampler [74] to perform

Bayesian parameter estimation on candidate events from the search pipeline. In

general, under the assumption of Gaussian noise characterized by a power spectrum

S(f), the likelihood of obtaining detector data d given the presence of a gravitational

waveform h(θ) is

L(d|θ) ∝ exp

[
−1

2
〈d− h(θ)|d− h(θ)〉

]
, (4.1)

where

〈a|b〉 = 4R

∫ fmax

fmin

ã∗(f)b̃(f)

S(f)
df (4.2)

is the noise-weighted inner product [133, 158]. In evaluating this likelihood, we can

obtain estimates of the gravitational-wave parameters θ through the posterior prob-

ability distribution

p(θ|d) ∝ L(d|θ)p(θ), (4.3)

where p(θ) is the assumed prior probability distribution of the parameters. To cal-

culate the likelihood, we use the relative binning method of [45] and [46], which uses

a linear interpolation across frequency samples over which the accumulated phase

difference δφ between a fiducial waveform and nearby waveforms is less than a tun-

able threshold. This effectively downsamples the number of frequency points used to

compute the likelihood, thereby speeding up the parameter estimation.

The implementation of relative binning used by [46] did not incorporate a coherent



35

network detection statistic. We extend their method to include the extrinsic param-

eters which are needed to measure the sky location of an event: right ascension α,

declination δ, geocentric time of coalescence tc, inclination angle ι, and gravitational-

wave polarization angle ψ. These parameters are incorporated into the likelihood by

projecting each template waveform onto the individual detectors in the network. A

general frequency domain waveform template h as seen by a detector can be written

as

h(f) = F+(α, δ, ψ)h+(f) + F×(α, δ, ψ)h×(f) (4.4)

where h+,× are the plus and cross polarizations of the waveform, and F+,× are the

detector antenna responses to the two polarizations [159]. The amplitude of the

individual waveform polarizations depend on the inclination angle ι [160]

h+ ∝
1

2
(1 + cos2 ι), (4.5)

h× ∝ cos ι. (4.6)

We generate waveforms using both polarizations in order to capture this dependence.

Similarly, we measure α, δ, tc, and ψ dependence through the detector antenna re-

sponses as the orientation of the detector arms, and thus the sensitivity to the two

polarizations, will change as the Earth moves. To account for coherent network tim-

ing delays, we calculate detector-specific arrival times for each template waveform

using α, δ, and tc, based on the geometry of the network with respect to the source

at the time of the signal, along with the light travel time from the Earth center [161].

The relative-binned likelihood calculation requires a fiducial waveform known to

be near the peak of the likelihood. The chirp mass of the template used to generate a

candidate by a search pipeline is accurate to within a few 10−3M� for binary neutron

star signals [162, 163] and to approximately 1% for neutron star–black hole signals

[164]. Since the chirp mass is the leading order parameter governing phase evolution

for a binary inspiral [79], the best-fit template will be near the peak of the likelihood.

We therefore use the parameters that the search pipeline reports for a signal to gen-

erate the fiducial waveform that seeds the relative binning method. For the fiducial

sky location, inclination, and polarization, we arbitrarily choose αf = π, δf = 0,

ιf = 0, and ψf = π, as we find that more accurate initial estimates are unnecessary

to correctly recover the source parameters. The fiducial coalescence time is set to be
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the arithmetic mean of the coalescence time reported by the search pipeline for each

detector.

Parameter estimation is performed over the detector-frame chirp mass M, the

mass ratio q = m1/m2, m1 ≥ m2, the component aligned spins χ1,2, the geocentric

time of coalescence tc, the inclination angle ι, the right ascension α, the declination

δ, the luminosity distance dL, and the gravitational-wave polarization angle ψ. The

likelihood calculation includes an analytic marginalization over the coalescence phase

φc. We use the TaylorF2 approximant to generate the likelihood for binary neutron

star waveforms and the IMRPhenomD approximant for the neutron star–black hole

waveforms. For all simulated signals we use a low-frequency cutoff of 30 Hz and a

sample rate of 2048 Hz.

The prior distributions used in the parameter estimation are the same as those of

the corresponding population of simulated signals for each parameter, with the excep-

tion of the chirp mass which we restrict to be uniform inM∈ [Ms−0.1,Ms+0.1] M�,

where Ms is the chirp mass of the template reported by the search. This constraint

on the chirp mass prior enables quicker convergence of the parameter estimation, but

in all cases the restricted bounds are well outside the region of posterior support and

so do not affect the accuracy of recovery.

For each simulated signal recovered with false alarm rate more significant than 1

per month by the search pipeline, we run the relative-binned parameter estimation

analysis to produce posterior distributions for the 10-dimensional set of waveform

parameters θ = (M, q, χ1, χ2, tc, ι, α, δ, dL, ψ). For each signal, we measure the wall-

clock time that it takes to perform the parameter estimation on 32 cores of an Intel®

Xeon® Gold 6140 processor running at a clock speed of 2.3 GHz.

4.4 Results

The timing results for the two simulated populations as a function of the network

signal-to-noise ratio of the maximum likelihood template are shown in the left panel

of Fig. 5. The average run time for a single signal is 10.8 minutes, with the maximum

run-time being 20 minutes for all signals. The parallelization used by the nested

sampling algorithm is saturated at approximately 32 cores, so while a small decrease

in wall-clock time may be gained by fine-tuning the number of cores, increasing the
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number beyond 32 does not significantly decrease the run time. Processors with a

faster clock speed will generally decrease run time, however.

To determine whether our method of measuring the parameters is accurate for the

population of injected signals, we perform a percentile-percentile (PP) test on each

of the main parameters of interest: chirp mass M, mass ratio q, effective spin χeff =

(m1χ1+m2χ2)/(m1+m2, right ascension α, declination δ, luminosity distance dL, and

inclination ι. The PP test calculates the distribution of percentile ranks for all injected

parameter values within their respective posteriors and constructs the fraction of

injections recovered within a credible interval as a function of credible interval. Any

deviation from uniformity in this distribution for a parameter is an indication of

measurement bias. We measure any deviation with the Kolmogorov-Smirnov (KS)

test [165], which computes the distance between the empirical distribution that we

find for the PP test and the expected distribution. The results of the PP tests are

shown in the right panel of Fig. 5. For every parameter of interest, we find that

the PP test follows the ideal distribution well, with the KS test indicating that the

percentile rank distributions cannot be meaningfully distinguished from uniform. Our

results show that our analysis produces unbiased estimates for each of the parameters

of interest.

To examine the accuracy of sky localization, we calculate the area on the sky

containing 90% of the probability for the location of the source. We compare the area

of this probability contour to the 90% credible interval of the sky-map produced in

low-latency by the Bayestar algorithm [143]. Fig. 6 shows the cumulative fraction

of signals recovered as a function of the 90% confidence localization area for our

method and by Bayestar. For direct comparison to the results of [143], we calculate

the cumulative fraction using all recovered signals, and the subset of the recovered

signals that is detected above threshold in all three detectors. We find that the area

of the 90% credible region improves by an average of 14 deg2 when using the relative

binning parameter estimation compared to Bayestar.

To examine the accuracy of parameter recovery, we calculate the difference be-

tween the median of the posterior and the known injected value for each parameter.

The accuracy of chirp mass recovery in the source-frame is shown in the top panels

of Fig. 7 as a function of the network signal-to-noise ratio for each recovered signal.

As expected, the accuracy of recovery increases as the signal-to-noise increases. For
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binary neutron star signals the difference between the median value of the chirp mass

posterior and the injected value is less than ∼ 5× 10−2M� for all simulated signals.

This accuracy improves by a factor of 2 for signal-to-noise greater than 20. Neutron

star–black hole signals generally have larger uncertainties on their parameters and we

find chirp mass residuals for these signals to be less than 10−1M� for signal-to-noise

greater than 10 and a factor of 2 less than that for signal-to-noise greater than 20.

For comparison, we show the accuracy of the source-frame chirp mass of the best-fit

template from the search. The search measures the detector-frame parameters of the

gravitational-wave signal, so we convert this to the source-frame by computing the

redshift at the median distance reported by Bayestar for the candidate event. The

accuracy of the best-fit chirp mass from the search is an order of magnitude worse

than estimated by [163]. However, the majority of the error comes from the calcu-

lation of the source-frame chirp mass. Comparing the detector-frame chirp mass of

the simulated signal to the best-fit template, we find errors of ∼ 10−3M�. While

the accuracy of the best-fit template degrades for quieter signals, using this estimate

as a seed for the relative-binned analysis does not affect the recovery of the source

parameters.

The middle row of Fig. 7 shows the fractional uncertainty in the chirp mass

σM/〈M〉, where σM and 〈M〉 are the standard deviation and mean of the poste-

rior distribution. By this measure we find the accuracy of our method for the binary

neutron star population is comparable to that of [3]. As an additional check we also

run parameter estimation using the full likelihood for a subset of the population and

find that the accuracy of the relative binning method is consistent with results using

the full likelihood for both binary neutron star and neutron star–black hole signals.

These results show that our recovery of the chirp mass for all signals has more than

sufficient accuracy to determine the expected type of electromagnetic counterpart and

the possible fate of the merger remnant using the method of [34].

The gravitational-wave phase evolution is less sensitive to changes in the mass

ratio and so the component masses of the binary are less well recovered than the

chirp mass [63]. A degeneracy exists between the mass ratio and component spins

of the binary which makes measuring the component masses and spins challenging,

especially for neutron star–black hole systems [144]. The bottom row of Fig. 7 shows

the accuracy of measuring the mass ratio q = m1/m2. Although the measurement
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of this parameter is less accurate than that of the chirp mass, our results are again

comparable to those seen by [3] and they are consistent with our comparison analysis

using the full likelihood on a subset of the population. This demonstrates that the

reduced accuracy is intrinsic to the measurability of the parameter and not a result

of using the relative binning algorithm.

To further illustrate the utility of our method in recovering parameters of interest

to the observing community, Fig. 8 shows the source-frame component mass residuals

for all signals as well as the black hole spin residuals for the neutron star–black hole

signals, plotted as a function of the network signal-to-noise ratio. The binary neutron

star component masses are shown in the left panels of the figure. The residuals on

the primary mass are generally less than about 0.5M� with only a slight tendency to

smaller values as signal-to-noise increases. The secondary mass residuals are some-

what smaller, less than about 0.3M�, which can be attributed to the relatively narrow

mass parameter space (1− 3M�) and our convention requiring m2 < m1.

Neutron star–black hole signals have larger uncertainties on their intrinsic param-

eter estimates owing to the larger mass and spin parameter space and the known

degeneracy between mass ratio and spin [144]. However, these quantities are impor-

tant in determining whether a merger will produce an electromagnetic counterpart.

The residuals on component masses and black hole spin for our neutron star–black

hole signals are shown in the right panels of Fig. 8. We find the primary and secondary

mass residuals are mostly less than 3M� and 1M�, respectively. Our estimates of the

black hole spin are generally uninformative below a signal-to-noise of 20, but above

this threshold we find the residuals are constrained to be less than ∼ 0.3.

As a final example of the effectiveness of our method, we apply it to GW170817

[5] without including any prior knowledge of host galaxy location or distance. For

comparison, we also repeat the analysis using a standard non-relative likelihood, and

the posteriors from both runs are shown in Fig. 9. For all measured parameters, we

find the posterior distributions from the relative and non-relative analyses are nearly

identical, in agreement with [166]. However, the analysis using the relative binning

likelihood seeded by a search took only 20 minutes to complete, as compared to over

3 hours for the standard likelihood computation. In the only confirmed observation

of a multimessenger gravitational-wave source to date, our analysis is able to provide

the same localization region as the standard likelihood as well as the same intrinsic
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parameter estimates in substantially less computational time.

4.5 Conclusion

In previous LIGO-Virgo observing runs, the information provided in low-latency to as-

tronomers consisted of the time of the signal, an estimate of its statistical significance

(false alarm rate), and a three-dimensional localization probability in sky location

and distance. In the recent third observing run, two additional classifications were

released that bin events into one of five broad categories (binary neutron star, binary

black hole, neutron star–black hole, mass gap, or terrestrial noise) and estimate the

probability that the event produced an electromagnetic counterpart [167, 164]. Both

of these methods are based on the parameters of the best-fit matched filter template

recorded by the low-latency search. [163] performed a template-bank simulation that

estimated that the low-latency chirp mass point estimate for binary neutron stars

is accurate to ∼ 10−3 M�, however they note that there can be significant bias in

mass ratio and effective spin from the best-fit template. [164] demonstrated that the

best-fit chirp mass from a search can be used to inform a classification scheme in

which the classifications are correct in a large majority of cases.

Here, we have extended the relative binning algorithm [45, 46] for fast likelihood

evaluation in gravitational-wave parameter estimation to a fully coherent detector

network and demonstrated that it can be seeded by the output of a matched-filter

search. We have applied our method to a set of 559 simulated signals (306 binary

neutron star and 253 neutron star–black hole binaries) as well as to GW170817.

We find that in all cases our method produces unbiased estimates for all measured

parameters in less than 20 minutes. We have shown that our method is capable of

producing full posterior distributions for all signal parameters, which do not suffer

from the biases seen when attempting to measure the mass ratio and spin from the

best-fit template. In the case of GW170817, the relative-binned analysis produces

results nearly identical to those from a standard analysis using the full likelihood,

emphasizing our method’s utility in producing fast parameter estimates that are of

particular interest for electromagnetic followup.

For gravitational-wave events in LIGO’s third observing run, the average time

between an initial trigger alert and the first Bayesian parameter estimation results
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being made available was about 10 hours (although only updated sky maps are re-

leased and not measurement of the source’s parameters). We have demonstrated our

method could reduce this delay time considerably, which would allow for electromag-

netic followup campaigns to be conducted more efficiently. We encourage the LIGO

Scientific and Virgo collaborations to adopt these methods to provide the observing

community with fast and accurate estimates of the parameters of detected signals so

that these can be used to inform and prioritize electromagnetic followup strategies.

Finally, we note that given the computational cost, very few large scale injection

studies of low-mass gravitational-wave signals have been done. Our implementation

of the relative binning method into PyCBC Inference brings these sorts of studies

within reach for even modestly equipped computing facilities.
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Figure 5: Left: The wall-clock time in minutes that it takes to perform the parameter

estimation using the coherent relative binning likelihood and nested sampling on 32

cores of an Intel® Xeon® Gold 6140 processor running at a clock speed of 2.3 GHz as

a function of the network signal-to-noise ratio of the maximum likelihood template.

The average run-time for a single signal is 10.8 minutes, with the maximum run-time

being 20 minutes for all signals. Increasing the number of cores does not significantly

decrease the wall-clock run-time. The run-time shows a slight increase as a function

of the signal-to-noise ratio, as expected given that signals with a larger signal-to-

noise ratio have a more narrowly peaked likelihood. Right: The fraction of injections

recovered within a credible interval plotted as a function of credible interval. Fidelity

to the 1:1 diagonal line is an indication of probability being uniformly distributed

across a given parameter’s posterior distribution and is a measure of the accuracy of

this analysis at the population level. We find that all of the parameters of interest

are estimated in an unbiased way by our parameter estimation method.
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Figure 6: Fraction of injections recovered as a function of the 90% confidence localiza-

tion area. The localization results from our parameter estimation analysis are shown

in blue, and those from the Bayestar algorithm are in orange. The dotted lines show

the results for the entire set of signals, while solid lines show only signals that were

above the detection threshold in all three detectors in our simulated search. We find

our localization areas are consistently smaller than those from Bayestar, as indicated

by the blue lines lying to the left of the orange lines, although the difference in areas is

not large. The improvement in localization area between Bayestar and our analysis

is 14 deg2 on average, and is comparable between the set of triple-coincident signals

and the set of all signals.
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Figure 7: Chirp mass and mass ratio recovery metrics for the binary neutron star

(left column) and neutron star–black hole (right column) signals in our analysis. Top

row: Difference between source-frame chirp mass estimates and the true injected

value, as a function of signal-to-noise ratio. Blue circles denote differences from

the median posterior values from parameter estimation, while orange circles show

differences from best-fit template values from the search. We find that on average

our parameter estimation results improve on the accuracy of the best-fit template by

a factor of 2. Middle and bottom rows: Fractional uncertainties on chirp mass and

mass ratio, respectively, calculated as the ratio of standard deviation and mean of the

posterior distributions. Uncertainties from our relative-binned analysis are shown as

blue circles, and those from a standard non-relative likelihood analysis on a subset

of the population are shown as orange diamonds. Our relative-binned results are

consistent with the non-relative analysis, and also with the results in [3].
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Figure 8: Difference between parameter estimates and true injected values for some

component parameters of interest, plotted against signal-to-noise ratio. The left col-

umn shows results for the component masses of binary neutron star signals, and the

right column shows results for the component masses and black hole spin of neutron

star–black hole signals. Differences are computed from median posterior values, and

masses have been converted to the source-frame using the distance posteriors. We

find both component masses of binary neutron star signals are generally constrained

to within ∼ 0.5M� of the true value for all signals, while the majority of primary and

secondary masses of neutron star–black hole signals are within about 3M� and 1M�

respectively. We find our black hole spin measurements are uninformative below a

signal-to-noise of 20, but for louder signals the spin is within about 0.3 of the true

value.
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Figure 9: Posterior distributions from a relative-binned parameter estimation analysis

of GW170817 (black contour) as compared to a run using the standard non-relative

likelihood (blue contour). Marginalized 1-dimensional histograms for each parameter

are shown along the diagonal, with vertical dashed lines at the median value and

the bounds of the 90% credible interval. Off-diagonal plots show 2-dimensional slices

of the parameter space with contours delineating the 50% and 90% credible regions.

The relative-binned analysis completed in 20 minutes versus roughly 3 hours in the

non-relative case, and all parameter distributions are consistent between the two

analyses.
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Chapter 5

Tidal Deformabilities and Radii of

Neutron Stars from the

Observation of GW170817

We use gravitational-wave observations of the binary neutron star merger GW170817

to explore the tidal deformabilities and radii of neutron stars. We perform Bayesian

parameter estimation with the source location and distance informed by electromag-

netic observations. We also assume that the two stars have the same equation of state;

we demonstrate that for stars with masses comparable to the component masses of

GW170817, this is effectively implemented by assuming that the stars’ dimensionless

tidal deformabilities are determined by the binary’s mass ratio q by Λ1/Λ2 = q6. We

investigate different choices of prior on the component masses of the neutron stars.

We find that the tidal deformability and 90% credible interval is Λ̃ = 222+420
−138 for a

uniform component mass prior, Λ̃ = 245+453
−151 for a component mass prior informed

by radio observations of Galactic double neutron stars, and Λ̃ = 233+448
−144 for a com-

ponent mass prior informed by radio pulsars. We find a robust measurement of the

common areal radius of the neutron stars across all mass priors of 8.9 ≤ R̂ ≤ 13.2 km,

with a mean value of 〈R̂〉 = 10.8 km. Our results are the first measurement of tidal

deformability with a physical constraint on the star’s equation of state and place

the first lower bounds on the deformability and areal radii of neutron stars using

gravitational waves.
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5.1 Introduction

On August 17, 2017 LIGO and Virgo observed gravitational waves from a binary

neutron star coalescence, GW170817 [5]. This observation can be used to explore

the equation of state (EOS) of matter at super-nuclear densities [160, 168]. This

information is encoded as a change in gravitational-wave phase evolution caused by

the tidal deformation of the neutron stars [48]. At leading order, the tidal effects are

imprinted in the gravitational-wave signal through the binary tidal deformability [48,

78]

Λ̃ =
16

13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (5.1)

where q = m2/m1 ≤ 1 is the binary’s mass ratio [cf. Eq. (34) of Ref. [169]]. The

deformability of each star is

Λ1,2 =
2

3
k2

(
R1,2c

2

Gm1,2

)5

, (5.2)

where k2 is the tidal Love number [48, 78], which depends on the star’s mass and the

EOS. R1,2 and m1,2 are the areal radii and masses of the neutron stars, respectively.

In the results of Ref. [5], the priors on Λ1,2 are taken to be completely uncorre-

lated, which is equivalent to assuming that each star may have a different EOS. Here,

we reanalyze the gravitational-wave data using Bayesian inference [35, 170, 118] to

measure the tidal deformability, using a correlation between Λ1 and Λ2 which follows

from the assumption that both stars have the same EOS. We repeat our analysis

without the common EOS constraint and calculate the Bayes factor that compares

the evidences for these two models. We also fix the sky position and distance from

electromagnetic observations [33, 2]. We study the effect of the prior for the compo-

nent masses by performing analyses with three different priors: the first is uniform

between 1 and 2M�, the second is informed by radio observations of double neutron

star binaries, and the third is informed by the masses of isolated pulsars [6].

5.2 The common equation of state constraint

To explore imposing a common EOS constraint, we employ a piecewise polytrope

scheme [171] to simulate thousands of equations of state. Each EOS obeys causality,

connects at low densities to the well-known EOS of neutron star crusts [172], is
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constrained by experimental and theoretical studies of the symmetry properties of

matter near the nuclear saturation density, and satisfies the observational constraint

for the maximum mass of a neutron star, mmax ≥ 2M� [173]. Figure 10 shows the

results of Tolman-Oppenheimer-Volkoff (TOV) integrations [174, 175] to determine Λ

as functions of m, R, and the EOS. Each configuration is color coded according to its

radius. In the relevant mass range, Λ generally varies as m−6. For a given mass m,

there is an inherent spread of about a factor of ten in Λ, which is correlated with R6.

We find that the star’s tidal deformability is related to its compactness parameter

β = Gm/(Rc2) by the relation Λ ' aβ−6. We find that a = 0.0093± 0.0007 bounds

this relation if 1.1M� ≤ m ≤ 1.6M� (note that this is a bound, not a confidence

interval). The additional power of β−1 in the Λ − β relation, relative to β−5 in

Eq. (5.2), originates because the dimensionless tidal Love number, k2, varies roughly

as β−1 for masses ≥ 1M�, although this is not the case for all masses [175]. For

m → 0 we see that k2 → 0 so that k2 is proportional to β with a positive power,

but since neutron stars with m < 1M� are physically unrealistic, that domain is not

pertinent to this Letter.

We observed that, for nearly every specific EOS, the range of stellar radii in the

mass range of interest for GW170817 is typically small. As long as mmax ≥ 2M�,

the piecewise polytrope study reveals 〈∆R〉 = −0.070 km and
√
〈(∆R)2〉 = 0.11

km, where ∆R ≡ R1.6 − R1.1 with R1.1,1.6 the radii of stars with m = 1.1 and m =

1.6M�, respectively. Therefore, for masses relevant for GW170817, each EOS assigns

a common value of R̂ to stellar radii with little sensitivity to the mass. We can combine

the relations Λ ' aβ−6 and R1 = R2 to find the simple prescription Λ1 = q6Λ2. We

impose the common EOS constraint in our analysis using this relation. The exponent

of q changes with chirp massM and forM > 1.5M� this relation has to be modified.

However, this is not relevant for the study of GW170817.

5.3 Implications for the neutron star radius

The common EOS constraint allows us to show that the binary tidal deformability Λ̃

is essentially a function of the chirp mass M, the common radius R̂, and the mass

ratio q, but that its dependence on q is very weak. Substituting the expressions
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Λ ' aβ−6 and R = R̂ into Eq. (5.1), we find

Λ̃ =
16a

13

(
R̂c2

GM

)6

f(q). (5.3)

where f(q) is very weakly dependent on q:

f(q) = q8/5(12− 11q + 12q2)(1 + q)−26/5. (5.4)

For example, if we compare a binary with q = 0.75 to an equal mass binary, we find

f(0.75)/f(1) = 1.021. As long as q ≥ 0.6, valid for 1M� ≤ m ≤ 1.6M� for both

stars, we infer from Eq. (5.3),

Λ̃ = a′

(
R̂c2

GM

)6

, (5.5)

where a′ = 0.0042 ± 0.0004. For stars with masses comparable to GW170817, the

common radius R̂ can be found from the inversion of Eq. (5.5),

R̂ ' R1.4 ' (11.2± 0.2)
M
M�

(
Λ̃

800

)1/6

km. (5.6)

The quoted errors originate from the uncertainties in a and q, and amount, in total,

to 2%.

5.4 Parameter estimation methods

We use Bayesian inference to measure the parameters of GW170817 [65]. We calculate

the posterior probability density function, p(~θ|~d(t), H), for the set of parameters ~θ for

the gravitational-waveform model, H, given the LIGO Hanford, LIGO Livingston,

and Virgo data ~d(t) [124, 125]

p(~θ|~d(t), H) =
p(~θ|H)p(~d(t)|~θ,H)

p(~d(t)|H)
. (5.7)

The prior, p(~θ|H), is the set of assumed probability distributions for the waveform

parameters. The likelihood p(~d(t)|~θ,H) assumes a Gaussian model for the detector

noise [122]. Marginalization of the likelihood to obtain the posterior probabilities is
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performed using Markov Chain Monte Carlo (MCMC) techniques using the PyCBC

Inference software [35, 170] and the parallel-tempered emcee sampler [118, 71, 176].

We fix the sky location and distance to GW170817 [33, 2] and calculate the posterior

probabilities for the remaining source parameters. Following Ref. [5], the waveform

model H is the restricted TaylorF2 post-Newtonian aligned-spin model [92, 93, 94,

95, 96, 97].

To implement the common EOS constraint we construct the priors on Λ1,2 accord-

ing to

Λ1 = q3Λs, Λ2 = q−3Λs, (5.8)

where Λs ∼ U [0, 5000]. We discard draws with Λ̃ > 5000, since these values are

beyond the range of all plausible EOS. The resulting prior on Λ̃ is uniform between 0

and 5000. We also perform analyses that do not assume the common EOS constraint

where we allow completely uncorrelated priors for Λ1,2. This allows us to compare the

evidences between these hypotheses. For the uncorrelated Λ1,2 analyses, the prior for

Λ1 ∼ U [0, 1000] and Λ2 ∼ U [0, 5000] with these intervals set by the range of plausible

equations of state in the mass range of interest, our convention of m1 ≥ m2, and

discarding draws with Λ̃ > 5000.

The choice of mass prior can have an impact on the recovery of the tidal deforma-

bility [58]. To investigate this, we carry out our parameter estimation analyses using

three different priors on the binary’s component masses. First, we assume a uniform

prior on each star’s mass, with m1,2 ∼ U [1, 2]M�. Then, we assume a Gaussian prior

on the component masses m1,2 ∼ N(µ = 1.33, σ = 0.09)M�, which is a fit to masses

of neutron stars observed in double neutron star systems [6]. The third prior assumes

that the component masses are drawn from a fit to the observed mass distributions

of recycled and slow pulsars in the Galaxy with m1 ∼ N(µ = 1.54, σ = 0.23)M�

and m2 ∼ N(µ = 1.49, σ = 0.19)M� [6]. We impose the constraint m1 ≥ m2

which leads to Λ2 ≥ Λ1. For all our analyses, the prior on the component spins is

χ1,2 ∼ U [−0.05, 0.05], consistent with the expected spins of field binaries when they

enter the LIGO-Virgo sensitive band [123].

To measure the source parameters for GW170817, we performed parameter es-

timation on the Advanced LIGO-Virgo data available at the LIGO Open Science

Center [124, 125]. Our analysis was performed with the PyCBC Inference software

[35, 170] and the parallel-tempered emcee sampler [118, 71] for sampling over the
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parameter space using Markov Chain Monte Carlo (MCMC) techniques [176].

The LOSC data files include a post-processing noise subtraction performed by the

LIGO-Virgo Collaboration [125, 126]. The LOSC documentation states that these

data have been truncated to remove tapering effects due to the cleaning process

[125], however the LOSC data shows evidence of tapering after GPS time 1187008900

in the LIGO Hanford detector. To avoid any contamination of our results we do not

use any data after GPS time 1187008891. The power spectral density (PSD) used to

construct the likelihood was calculated using Welch’s method [177] with 16 second

Hann-windowed segments (overlapped by 8 s) taken from GPS time 1187007048 to

1187008680. The PSD estimate is truncated to 8 s length in the time domain using the

method described in Ref. [127]. The gravitational-wave data used in the likelihood

is taken from the interval 1187008691 to 1187008891.

Ref. [178] found that choice of the low-frequency cutoff can have an effect on the

measurement of the neutron star tidal deformability and used a different power spec-

tral density estimation technique to that used in our analysis [179]. We investigated

the effect of changing our estimate of the power spectral density with the power spec-

tral density released as supplemental materials to Ref. [178]. We find that the change

in parameter measurements is smaller than the statistical errors, and conclude that

the choice of power spectral density estimation technique does not affect our results.

To investigate the choice of low-frequency cutoff, we computed the measurabilities of

the chirp massM, signal-to-noise ratio ρ, and binary deformability Λ̃ in the frequency

range 10-2000 Hz. These are defined as the integrand as a function of frequency of

the noise moment integrals I10, I0, and I−10 (see Ref. [4]) and shown in Fig. 12. It

can be seen that the signal-to-noise ratio is non-zero down to a frequency of ∼ 20 Hz

for all the three detectors. While detector sensitivity at this frequency does not af-

fect the measurability of Λ̃, it does affect the measurability of the chirp mass M.

We repeated our analyses at 25 Hz, 23 Hz, and 20 Hz, and found an improvement

in the M measurement when extending until the low-frequency cutoff was 20 Hz.

Consequently, we evaluated the likelihood from a low-frequency cutoff of 20 Hz to the

Nyquist frequency of 2048 Hz. The improved measurement ofM eliminates regions of

higher Λ̃ values from the posterior probability densities, and hence better constrains

the measurement of this parameter, as shown in Fig 15.

The templates for the waveforms used in our parameter estimation analysis are
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generated using the restricted TaylorF2 waveform model, a Fourier domain waveform

model generated using stationary phase approximation. We use the implementation

from the LIGO Algorithm Library (LAL) [101] accurate to 3.5 post-Newtonian (pN)

order in orbital phase [93], 2.0 pN order in spin-spin, quadrupole-monopole and self-

spin interactions[94, 95], and 3.5 pN order in spin-orbit interactions [96]. The tidal

corrections enter at the 5 pN and 6 pN orders [97]. The waveforms are terminated at

twice the orbital frequency of a test particle at the innermost stable circular orbit of

a Schwarzschild black hole of mass M = m1 + m2, where m1,2 are the masses of the

binary’s component stars. The TaylorF2 model assumes that the spins of the neutron

stars are aligned with the orbital angular momentum. Binary neutron stars formed

in the field are expected to have small spins, and precession of the binary’s orbital

plane is not significant [123].

We fix the sky location of the binary to the right ascension RA = 197.450374◦ and

declination Dec = −23.381495◦ [33] for all of our runs. We also fix the luminosity

distance of NGC 4993 dL = 40.7 Mpc [2]. The small error in the known distance of

NGC 4993 produces errors that are much smaller than the errors in measuring the tidal

deformability. We have checked that including the uncertainty in the distance error

does not affect our conclusions of the tidal deformabilities or radius. The MCMC com-

putes the marginalized posterior probabilities for the remaining source parameters:

chirp massM, mass ratio q, the component (aligned) spins χ1,2 = cJ1,2/Gm
2
1,2, com-

ponent tidal deformabilities Λ1,2, polarization angle ψ, inclination angle ι, coalescence

phase φc, and coalescence time tc. When generating the waveform in the MCMC, each

m1,2 draw follows the constraint m1 ≥ m2, and the masses are transformed to the

detector frame chirp mass Mdet and q with a restriction 1.1876 ≤Mdet ≤ 1.2076.

For direct comparison with the results of Ref. [5], Fig 13 shows the posterior

probability densities for Λ1,2 for an MCMC using a 30 Hz low-frequency cutoff for

the uniform component mass prior m1,2 ∼ U [1, 2]M�, and assuming that the priors

on Λ1,2 are completely uncorrelated (Λ1,2 ∼ U [0, 3000]). No cut is placed on Λ̃ in

this analysis. We have digitized the 50% and 90% contours from Fig. 5 of Ref. [5]

and compared them to 50% and 90% upper limit contours for our result computed

using a radial binning to enclose 50% and 90% of the posterior probability starting

from Λ1 = Λ2 = 0. The 90% contours agree well, with a slight difference in the 50%

contours. Given the accuracy of measuring the tidal deformability, this difference can
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be attributed to small differences in the technical aspects of our analysis compared

to that of Ref. [5]. We note that the 90% confidence contour of Fig. 5 in Ref. [5]

with Λ1 = Λ2, passes through Λ̃ ≈ 1100. If we impose Λ1 = q6Λ2, then this contour

continues to follow Λ̃ ≈ 1100 for q ≤ 1. We interpret the difference between this

result and the result of Table I of Ref. [5] Λ̃ ≤ 800 (90% confidence) as being due to

a different choice of prior on Λ̃ (one non-uniform and one uniform).

Our common equation of state constraint is implemented in the MCMC by drawing

a variable Λs ∼ U [0, 5000], drawing the component masses from their respective priors

and computing

Λ1 = q3Λs, Λ2 = q−3Λs, (5.9)

with draws that have Λ̃ > 5000 discarded. This produces a prior that is uniform in

Λ̃ between 0 and 5000, as shown in Fig. 14 for all of our three mass priors discussed

in the main text. For comparison, we also show the prior on Λ̃ computed assuming

independent Λ1,2 ∼ U [0, 3000] and the component mass prior m1,2 ∼ U [1, 2]M�. It

can be seen that this prior vanishes as Λ̃ → 0 and so can bias the posterior at low

values of Λ̃. In addition to the physical requirement of a common EOS constraint,

the prior used in the common EOS analysis is uniform as Λ̃→ 0, allowing us to fully

explore likelihoods in this region, and set lower bounds on our credible intervals.

5.5 Results

Fig. 15 shows the posterior probability densities for the parameters of interest in our

study: the source frame chirp mass Msrc; the mass ratio q = m2/m1; the source

frame component masses msrc
1,2 (which are functions ofMsrc and q); the effective spin

χeff = (m1χ1 + m2χ2)/(m1 + m2); and the binary tidal deformability Λ̃. Posterior

probability densities are shown for the uniform mass prior, double neutron star mass

prior, and the Galactic neutron star mass prior analyses with 20 Hz low-frequency

cutoff, and the uniform mass prior analyses with 25 Hz low-frequency cutoff. All

the four analyses had the common EOS constraint and the causal Λ(m) lower limit

imposed. Electronic files containing the thinned posterior probability densities and

an IPython notebook [180] for manipulating these data are available at Ref. [181].

Figure 11 shows the posterior probability densities for Λ1 and Λ2 with 90% and

50% credible region contours. Overlaid are q contours and Λ̃ contours obtained from
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Eq. (5.1), Λ ' aβ−6, and R1 ' R2 ' R̂ as

Λ1(Λ̃, q) =
13

16
Λ̃

q2(1 + q)4

12q2 − 11q + 12
, Λ2(Λ̃, q) = q−6Λ1. (5.10)

Because of our constraint Λ2 ≥ Λ1, our credible contours are confined to the region

where q ≤ 1. One can easily demonstrate that Λ2 ≥ Λ1 is valid unless (c2/G)dR/dm >

1, which is impossible for realistic equations of state. For the entire set of piecewise

polytropes satisfying mmax > 2M� we considered, (c2/G)dR/dm never exceeded 0.26.

Even if a first order phase transition appeared in stars with masses between m2 and

m1, it would necessarily be true that dR/dm < 0 across the transition. Because of

the q dependence of Λ1, Λ2, the credible region enclosed by the contours broadens

from the double neutron star (most restricted), to the pulsar, to the uniform mass

(least restricted) priors. However, the upper bound of the credible region is robust.

We find Λ̃ = 205+415
−167 for the uniform component mass prior, Λ̃ = 234+452

−180 for the

prior informed by double neutron star binaries in the Galaxy, and Λ̃ = 218+445
−173 for

the prior informed by all Galactic neutron star masses (errors represent 90% credible

intervals). Our measurement of Λ̃ appears to be robust to the choice of component

mass prior, within the (relatively large) statistical errors on its measurement. The

Bayes factors comparing the evidence from the three mass priors are of order unity,

so we cannot claim any preference between the mass priors.

The 90% credible intervals on Λ̃ obtained from the gravitational-wave observations

include regions forbidden by causality. Applying a constraint to our posteriors for

the causal lower limit of Λ as a function of m [182], we obtain Λ̃ = 222+420
−138 for the

uniform component mass prior, Λ̃ = 245+453
−151 for the prior informed by double neutron

star binaries in the Galaxy, and Λ̃ = 233+448
−144 for the prior informed by all Galactic

neutron star masses (errors represent 90% credible intervals). Using Eq. (5.6), we

map our M posteriors and Λ̃ posteriors (with the causal lower limit applied) to

R̂ ' R1.4 posteriors, allowing us to estimate the common radius of the neutron

stars for GW170817 for each mass prior. Figure 16 shows the posterior probability

distribution for the binary tidal deformation Λ̃ and the common radius R̂ of the

neutron stars in the binary. Our results suggest a radius R̂ = 10.7+2.1
−1.6 ± 0.2 km

(90% credible interval, statistical and systematic errors) for the uniform mass prior,

R̂ = 10.9+2.1
−1.6± 0.2 km for double neutron star mass prior, and R̂ = 10.8+2.1

−1.6± 0.2 km

for the prior based on all neutron star masses.
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Finally, we note the post-Newtonian waveform family used will result in systematic

errors in our measurement of the tidal deformability [183, 57]. However, this waveform

family allows a direct comparison to the results of Ref. [5]. Accurate modeling of the

waveform is challenging, as the errors in numerical simulations are comparable to the

size of the matter effects that we are trying to measure [184]. Waveform systematics

and comparison of other waveform models (e.g., [51]) will be investigated in a future

work.

5.6 Discussion

Using Bayesian parameter estimation, we have measured the tidal deformability and

common radius of the neutron stars in GW170817. Table 1 summarizes our findings.

To compare to Ref. [5], which reports a 90% upper limit on Λ̃ ≤ 800 under the

assumption of a uniform prior on Λ̃, we integrate the posterior for Λ̃ to obtain 90%

upper limits on Λ̃. For the common EOS analyses, these are 485, 521, and 516 for

the uniform, double neutron star, and Galactic neutron star component mass priors,

respectively. We find that, in comparison to the unconstrained analysis, the common

EOS assumption significantly reduces the median value and 90% confidence upper

bound of Λ̃ by about 28% and 19%, respectively, for all three mass priors. The

difference between our common EOS results for the three mass priors is consistent

with the physics of the gravitational waveform. At constant M, decreasing q causes

the binary to inspiral more quickly [185]. At constantM and constant q, increasing Λ̃

also causes the binary to inspiral more quickly, so there is a mild degeneracy between

q and Λ̃. The uniform mass prior allows the largest range of mass ratios, so we can

fit the data with a larger q and smaller Λ̃. The double neutron star mass prior allows

the smallest range of mass ratios, and so, a larger Λ̃ is required to fit the data, with

the Galactic neutron star mass prior lying between these two cases.

Nevertheless, considering all analyses we performed with different mass prior

choices, we find a relatively robust measurement of the common neutron star radius

with a mean value 〈R̂〉 = 10.8 km bounded above by R̂ < 13.2 km and below by R̂ >

8.9 km. Nuclear theory and experiment currently predict a somewhat smaller range by

2 km but with approximately the same centroid as our results [172, 186]. A minimum

radius 10.5–11 km is strongly supported by neutron matter theory [187, 188, 189],
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Mass prior Λ̃ R̂ (km) Λ̃90%

Uniform 222+420
−138 10.7+2.1

−1.6 ± 0.2 < 485

Double neutron star 245+453
−151 10.9+2.1

−1.6 ± 0.2 < 521

Galactic neutron star 233+448
−144 10.8+2.1

−1.6 ± 0.2 < 516

Table 1: Results from parameter estimation analyses using three different mass prior

choices with the common EOS constraint, and applying the causal minimum con-

straint to Λ(m). We show 90% credible intervals for Λ̃, 90% credible intervals and

systematic errors for R̂, and the 90% upper limits on Λ̃.

the unitary gas [190], and most nuclear experiments [172, 186, 191]. The only major

nuclear experiment that could indicate radii much larger than 13 km is the PREX

neutron skin measurement, but this has published error bars much larger than pre-

vious analyses based on antiproton data, charge radii of mirror nuclei, and dipole

resonances. Our results are consistent with photospheric radius expansion measure-

ments of x-ray binaries which obtain R ≈ 10–12 km [6, 192, 193]. Reference [194]

found from an analysis of five neutron stars in quiescent low-mass x-ray binaries a

common neutron star radius 9.4± 1.2 km, but systematic effects including uncertain-

ties in interstellar absorption and the neutron stars’ atmospheric compositions are

large. Other analyses have inferred 12±0.7 [195] and 12.3±1.8 km [196] for the radii

of 1.4M� quiescent sources.

We have found that the relation q7.48 < Λ1/Λ2 < q5.76, in fact, completely bounds

the uncertainty for the range ofM relevant to GW170817, assuming m2 > 1M� [182]

and that no strong first-order phase transitions occur near the nuclear saturation

density (i.e., the case in which m1 is a hybrid star and m2 is not). Analyses using

this prescription instead of the q6 correlation produce insignificant differences in our

results. Since models with the common EOS assumption are highly favored over those

without this assumption, our results support the absence of a strong first-order phase

transition in this mass range.

We have shown that, for binary neutron star mergers consistent with observed

double neutron star systems [197], assuming a common EOS implies that Λ1/Λ2 '
q6. We find evidence from GW170817 that favors the common EOS interpretation

compared to uncorrelated deformabilities. Although previous studies have suggested

that measurement of the tidal deformability is sensitive to the choice of mass prior [58],
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we find that varying the mass priors does not significantly influence our conclusions

suggesting that our results are robust to the choice of mass prior. Our results support

the conclusion that we find the first evidence for finite size effects using gravitational-

wave observations.

Recently, the LIGO/Virgo collaborations have placed new constraints on the

radii of the neutron stars using GW170817 [198]. The most direct comparison is

between our uniform mass prior result (R̂ = 10.7+2.1
−1.6 ± 0.2) and the LIGO/Virgo

method that uses equation-of-state-insensitive relations [199, 200] (R1 = 10.8+2.0
−1.7 and

R2 = 10.7+2.1
−1.5 km). This result validates our approximation R1 = R2 used to motivate

the prescription Λ1 = q6Λ2, and Eqs. (5.3, 5.5). Our statistical errors are compara-

ble to the error reported by LIGO/Virgo. Systematic errors from EOS physics of

±0.2 km are added as conservative bounds to our statistical errors, broadening our

measurement error, whereas Ref. [198] marginalized over these errors in the analysis.

Reference [198] also investigates a method of directly measuring the parameters of the

EOS which results in smaller measurement errors. Investigation of these differences

between our analysis and the latter approach will be pursued in a future paper.

Observations of future binary neutron star mergers will allow further constraints

to be placed on the deformability and radius, especially if these binaries have chirp

masses similar to GW170817 as radio observations suggest. As more observations

improve our knowledge of the neutron star mass distribution, more precise mass-

deformability correlations can be used to further constrain the star’s radius.
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Figure 10: The tidal deformability Λ as a function of mass for physically realistic

polytropes. A TOV integration with each EOS parameter set results in a series of

values of Λ(m) that are shown as points colored by their radii R. Dashed curves are

lower bounds to Λ for a given mass m which vary depending on the assumed lower

limit to the neutron star maximum mass, mmax. All values of mmax produce the same

upper bound.
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Figure 11: Posterior probability densities for Λ1,2 with the common EOS constraint

using uniform (left), double neutron stars (middle), and Galactic neutron stars (right)

component mass priors. The 50% and 90% credible region contours are shown as solid

curves. Overlaid are contours of Λ̃ (in magenta) and q (in gray). The values of Λ1

and Λ2 forbidden by causality have been excluded from the posteriors.
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Figure 12: Measurability [4] of the chirp massM, SNR ρ and binary deformability Λ̃

in the frequency range 10 Hz - 2000 Hz. Each detector’s parameter measurability is

scaled to the maximum frequency to show the relative accumulation of measurement

over the detector’s frequency band. Note that between detectors, L1 is more sensitive

than H1, which is more sensitive than V1. Measurability of chirp mass is accumulated

primarily at low frequencies, whereas measurability of tidal deformability is accumu-

lated at higher frequencies. We extend computation of the likelihood down to 20 Hz

where the measured signal-to-noise ratio (the logarthim of the likelihood) drops to

zero in all three detectors.
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Figure 13: Posterior probability density function for Λ1, Λ2 from unconstrained Λ1,2 ∼
U [0, 3000], m1,2 ∼ U [1, 2] M�, 1.1876 ≤M ≤ 1.2076, m1 ≥ m2, 30 Hz low-frequency

cutoff analysis. The black dotted lines show 50% and 90% upper limits from our

analysis. The red dotted lines show 50% and 90% upper limits from the LIGO-Virgo

analysis [5].
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Figure 14: Comparison of the prior probability distributions on Λ̃ for the three mass

priors imposing the common EOS constraint: uniform (purple), double neutron stars

(red), galactic neutron stars (green) with a prior in Λ1,2 ∼ U [0, 3000] and m1,2 ∼
U [1, 2]M�, m1 ≥ m2 without the common EOS constraint (blue). The priors in the

common EOS analysis are uniform across the region of interest.
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Figure 15: Posterior distributions for the source frame chirp massMsrc, mass ratio q, source frame primary mass

msrc
1 and secondary mass msrc

2 , effective spin χeff , and binary deformability parameter Λ̃ from parameter estimation

analyses with three different choices of mass priors. The posteriors represented in blue are from the analysis using a

uniform prior on component masses, m1,2 ∼ U [1, 2]M�, and 20 Hz low-frequency cutoff. The posteriors represented

in red are from the analysis using a Gaussian mass prior for component masses m1,2 ∼ N(µ = 1.33, σ = 0.09)M�

known from radio observations of neutron stars in double neutron star (DNS) systems, and 20 Hz low-frequency

cutoff. The posteriors represented in green are from the analysis using the observed mass distributions of recycled

and slow pulsars in the Galaxy with m1 ∼ N(µ = 1.54, σ = 0.23)M� and m2 ∼ N(µ = 1.49, σ = 0.19)M� [6],

and 20 Hz low-frequency cutoff. The posteriors represented in gray are from the analysis using a uniform prior on

component masses, m1,2 ∼ U [1, 2]M�, and 25 Hz low-frequency cutoff. All four analyses had the common EOS

constraint and the causal Λ(m) lower limit imposed. The one-dimensional plots show marginalized probability

density functions for the parameters. The dashed lines on the one-dimensional histograms represent the 5%, 50%

and 95% percentiles for each analysis, the values of which are quoted in the titles of the histograms. The 2D plots

show 50% and 90% credible regions for the different pairs of parameters. Comparison between the analyses with

low-frequency cutoff 20 Hz (blue) and 25 Hz (gray) for the uniform mass prior case shows that extending from

25 Hz to 20 Hz better constrainsM, which improves the measurement of Λ̃ by eliminating a region of the posterior

with higher values M and high Λ̃.
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Figure 16: The 90% credible region of the posterior probability for the common radius

R̂ and binary tidal deformability Λ̃ with the common EOS constraint for the three

mass priors. The posteriors for the individual parameters are shown with dotted

lines at the 5%, 50% and 95% percentiles. The values of Λ̃, and hence R̂ forbidden

by causality have been excluded from the posteriors.
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Chapter 6

Prospects for Precise Equation of

State Measurements from

Advanced LIGO and Cosmic

Explorer

Neutron star mergers probe the nature of matter at densities and temperatures

far beyond those available in the laboratory. The observation of GW170817 con-

firmed that gravitational waves can yield meaningful insights into the structure of

neutron stars, and hence on the equation of state of matter above nuclear den-

sity [5, 201, 202, 203, 204, 205, 206]. Combining gravitational-wave and electro-

magnetic observations of the first neutron star merger with nuclear theory and nu-

merical simulations has already shed new light on the equation of state of dense

matter [142, 207, 208]. The ability of multi-messenger observations of merging neu-

tron stars to explore nuclear physics is determined by: the signal-to-noise ratio of

the observed gravitational-wave signals; the fidelity of the waveforms used to model

gravitational-wave signals; the ability to model and extract information from electro-

magnetic counterparts; and theoretical modeling of hot and cold dense nuclear matter

and its connection to the observed quantities. In this chapter, we focus on the impact

that the signal-to-noise ratio of the signal has on the ability to measure the neutron

star equation of state with current and future gravitational-wave detectors.
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Gravitational-wave observations of binary neutron star mergers measure the nu-

clear equation of state through the star’s tidal deformability Λ which is imprinted on

the phasing of the inspiral waveform. This measurement of Λ is equivalent to a mea-

surement of the neutron star radius, and hence the nuclear equation of state which

connects these two quantities for a given mass. Previous studies have shown that

Advanced LIGO will be able to measure the radius of a 1.4M� neutron star R1.4 to

better than 10% precision with the first few tens of binary neutron star signals. How-

ever many plausible equations of state produce similar radii for a range of masses, so

that distinguishing between them would require measurement precision better than

2%. In this work we assess the ability of both Advanced LIGO and the proposed

third-generation detector Cosmic Explorer, to make a precise measurement of the

equation of state from a large population of simulated binary neutron star signals,

for several equations of state that span the plausible range. We perform full Bayesian

parameter estimation on all simulated signals and produce a combined measurement

of R1.4. We find that with 321 signals Advanced LIGO is able to measure R1.4 to

better than 2% across the entire range of plausible equations of state, although the

probability of seeing so many signals in the next decade is low. On the other hand

we find that with one year of observation, Cosmic Explorer will be able to measure

R1.4 to within 0.6% for a soft equation of state, and to within 0.15% for a moderately

stiff equation of state.

6.1 Introduction

The observation of the binary neutron star merger GW170817 during the second

observing run of the LIGO-Virgo network provided the first constraints on the cold

dense matter equation of state through gravitational waves [209]. The observations

of AT2017gfo, the electromagnetic counterpart to GW170817, were also able to con-

strain the equation of state through estimates of the ejecta mass and velocity [210],

and by probing the fate of the merger remnant [34]. Additional constraints have

also recently come from pulsar observations and nuclear experiment: X-ray obser-

vations by the NICER instrument of the pulsars J0740+6620 and J0030+0451 have

mapped out some of the neutron star mass-radius relationship through direct ra-

dius measurements [211, 212, 213], and in the low pressure regime the PREX-II
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experiment has made precise measurements of the density dependence of the nuclear

symmetry energy for lead atoms [214], which can be mapped to the higher pressures

in neutron stars in order to also provide an estimate of the expected neutron star

radius [215]. Recent efforts have been made to combine some of these and other

disparate measurements into a generalized constraint on the equation of state, often

given in terms of the radius of a 1.4M� neutron star R1.4: [215] combined the PREX-

II measurement and the NICER constraints on the radius of the pulsar J0030+0451

to give 13.25 km < R1.4 < 14.26 km (1σ limits), and [216] combined GW170817,

quiescent low-mass X-ray binaries, photospheric radius expansion X-ray bursts, and

J0030+0451 to find R1.4 = 11.83+0.62
−0.71 km (2σ limits).

While great strides have been made in producing constraints on the equation of

state, the prospects for improving these constraints using binary merger events still

face significant challenges. GW170817 was a remarkably loud signal, with a signal-to-

noise ratio of over 33, and yet the gravitational-wave observation alone was insufficient

to conclusively distinguish the signal from a pair of merging black holes [209]. A sec-

ond binary neutron star signal, GW190425, was observed by the LIGO-Virgo network

but at a much lower signal-to-noise ratio of 13, which provided negligible information

about the equation of state and also meant that no electromagnetic counterpart was

identified [217]. Similarly, there have been three gravitational-wave observations of

probable neutron star–black hole mergers to date containing no measurable informa-

tion on the equation of state, or any identifiable electromagnetic counterpart from

the possible disruption of the neutron star [18, 17]. Further complicating matters,

the estimated merger rate of binary neutron stars in the local universe has been re-

vised significantly lower after the completion of LIGO’s third observing run [8], which

means a correspondingly lower probability that future observing runs will produce a

large set of observed signals that can be combined into a precise constraint on the

equation of state.

Where previous works have investigated distinguishability between equation of

state models, most have primarily focused on distinguishing models that differ sub-

stantially from one another. However many models exist that are consistent with

current constraints but make similar predictions. As an example, the commonly used

models WFF2, APR4, and SQM3, predict values for R1.4 of 11.16, 11.32, and 11.37

kilometers, respectively. Naturally the prospect of distinguishing between these or
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other similar models is a much greater challenge, but this is very likely what will be

required of future equation of state constraints. For the example models given, this

will require measurements of R1.4 with a precision better than 2%.

The ability to measure the equation of state in gravitational-wave signals depends

very sensitively on the equation of state itself, because the range of plausible models

predict varying amounts of information in an inspiral waveform. Gravitational-wave

signals from coalescing neutron stars carry information about the equation of state

as a result of the tidal deformation that the stars’ gravitational fields produce in one

another. Specifically, the quadrupole moment Qij of one neutron star is related to

the tidal field Eij of the other neutron star according to Qij = −λEij, where λ is the

tidal deformability of the neutron star [48]. The tidal deformability is dependent on

the equation of state and is commonly expressed in dimensionless form as

Λ =
2

3
k2

(
Rc2

Gm

)5

(6.1)

where k2 is the tidal Love number. R and m are the radius and mass of the neutron

star, respectively. The energy expended in deforming the stars results in a phase

difference in the gravitational waveform as compared to a signal with non-deforming

bodies. An equation of state that has a large Λ for a given mass is said to be “stiff”,

and will generally correspond to a larger radius as the neutron star is more able to

hold itself up against gravity. A stiff equation of state produces a larger effect on the

gravitational-wave phasing and is therefore more measurable. Conversely, a “soft”

equation of state will have a smaller Λ and radius for a given mass, and produces a

less measurable effect in a gravitational-wave signal.

Given the difficulty of measuring the equation of state, an established method of

improving constraints is to combine multiple observations in order to reduce statistical

uncertainty [218]. Previous works have used various implementations of this method

to estimate the measurability of the equation of state for a given signal population

or detector network [218, 57, 58, 219, 10]. Lackey and Wade [57] combined signals in

a simulated LIGO-Virgo network at design sensitivity, for several choices of equation

of state. They constrain the neutron star radius across a range of masses and find

that the radius can be measured to within ±1 kilometer with 20 signals. Agathos et

al. [58] combined 200 signals in a LIGO-Virgo network and found that a catalog of at

least 100 signals is sufficient to distinguish between soft, moderate, and stiff equations
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of state if one assumes perfect knowledge of the mass distribution, while 150 or more

signals would be needed if the mass distribution was unknown. [219] project that the

8 loudest signals from a population of 20 in a LIGO-Virgo network will constrain the

radius of a canonical 1.4M�neutron star to within 10%. Pacilio et al. [10] combine

20 signals in both a LIGO-Virgo network and Einstein Telescope, a proposed third-

generation detector. They find that LIGO-Virgo is unable to distinguish between

similarly soft equations of state from a catalog of 12 used in the analysis, although

Einstein Telescope can potentially make this distinction.

In this chapter we build upon these previous works to produce an accurate forecast

for a high precision measurement of the equation of state, using both a LIGO-Virgo

network operating at design sensitivity as well as a planned third-generation detector

Cosmic Explorer. We make our forecast using a population of simulated binary

neutron star signals generated from astrophysically realistic parameter distributions.

We produce parallel populations of these signals for three choices of equation of state

that span the range of the most up-to-date constraints from gravitational-wave events,

electromagnetic observations of pulsars and the kilonova AT2017gfo, and nuclear

experiments. We perform full Bayesian parameter estimation for each signal in our

populations to recover the intrinsic and extrinsic source parameters, and we use a

collection of 2000 realistic equations of state built from nuclear theory as a prior

distribution in our analysis. We produce a combined equation of state measurement

across our populations by transforming each measurement to a constraint on R1.4,

the radius of a 1.4M� neutron star. We find that a LIGO-Virgo network is able to

measure R1.4 to within 2% across the entire range of plausible equations of state,

though a soft equation of state will require significantly more signals that are unlikely

to occur within the next planned observing runs. We find also that an incorrect mass

prior used by our LIGO-Virgo analysis introduces a bias in the equation of state

measurement such that a combined measurement with better than 2% precision will

exclude the true equation of state at high confidence. We find that Cosmic Explorer

is able to achieve better than 0.6% precision on R1.4 with signals representing one

year of observations for even the softest equation of state in our analysis. We find

that in our Cosmic Explorer analysis an incorrect mass prior did introduce a bias,

although it was not large enough to strongly exclude the true equation of state even

with the much smaller statistical uncertainty on the measurement.
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The rest of this chapter is organized as follows: Section 6.2 describes the simulated

binary neutron star signals included in our analysis. In Section 6.3 we give background

information on equation of state information in gravitational-wave inspiral signals and

describe the equations of state used in this analysis. Section 6.4 gives details about

our parameter estimation analysis including the method of combining measurements.

Section 6.5 presents the results of our analysis including constraints for each of our

chosen equations of state. Finally, we conclude in Section 6.6.

6.2 Simulated signals

To simulate measurement scenarios for a LIGO-Virgo network and Cosmic Explorer,

we generate a population of simulated binary neutron star merger signals and project

them onto the corresponding detectors. For LIGO-Virgo we simulate a three-detector

network representing the LIGO Hanford, LIGO Livingston [145, 146], and Virgo [13]

detectors. Each LIGO-Virgo detector is simulated at its design sensitivity by injecting

simulated signals into Gaussian noise colored by the design power spectral density

for each detector [9]. Cosmic Explorer is still in its design phase and does not have

a final configuration or site location determined yet, although potential sites in the

United States include locations in Utah or Idaho. For simplicity we use a hypothetical

Cosmic Explorer detector at the same location and orientation as the LIGO Hanford

detector. We choose the 40 kilometer arm length configuration optimized for detection

of coalescing binaries for our analysis, and signals are injected into Gaussian noise

colored by the corresponding design power spectral density [220].

Following the prescription of [58] we generate our simulated binary neutron star

mergers using astrophysically motivated distributions for the source parameters. The

collection of electromagnetic observations of known galactic pulsars has found their

mass distribution to be well described by a Gaussian centered near 1.4M�. However

the gravitational wave observations of GW190425 and two of the neutron star–black

hole signals show evidence for a greater number of high-mass neutron stars in the

range 1.7− 1.9M�. To account for both possibilities and to investigate the effect of a

different mass distribution on the ability to measure the equation of state, we gener-

ate our population for two choices of mass distribution. For our primary population,

source-frame component masses are drawn from a Gaussian distribution with mean



72

µm = 1.4M� and standard deviation σm = 0.05M�. A secondary population has

source-frame component masses drawn uniformly in the range 1− 2M�. In all cases,

component spins along the axis of orbital angular momentum are drawn from a Gaus-

sian distribution with zero-mean and standard deviation σχ = 0.02. Sky locations

are distributed uniformly across the sky, and the inclination and orientation of the

binary systems is distributed uniformly on the sphere. For signals analyzed with the

LIGO-Virgo network, distances are drawn uniformly in volume in the range [20, 585]

Mpc, where the upper bound is the largest distance at which an optimally oriented

binary merger with equal masses of 2M� would produce a single detector signal-to-

noise ratio of 8. Simulated signals are then pre-filtered via a network matched-filter

signal-to-noise calculation to select the subset with signal-to-noise ρmf > 13.85, which

is equivalent to a signal-to-noise of 8 in each detector. The resulting LIGO-Virgo pop-

ulation contains 321 signals with signal-to-noise ratios that range from about 10 to

73 for the Gaussian-mass case, and 312 signals with signal-to-noise 10 to 65 for the

uniform-mass case. For signals analyzed with Cosmic Explorer, distances are drawn

uniformly in volume in the interval [20, 1100] Mpc, with the upper bound determined

similarly to the LIGO-Virgo case except requiring ρmf > 100. The Cosmic Explorer

population contains 335 signals with signal-to-noise ranging from about 97 to 790.

Except where otherwise noted, stated results will be for the primary population.

We replicate our populations for three different equations of state, which are cho-

sen to span the range allowed by the most comprehensive set of observations and con-

straints currently available. Each sub-population is generated using a single equation

of state, and every neutron star within a sub-population has its tidal deformability

determined by the equation of state and its mass. Our choices of equation of state are

discussed in greater detail in Section 6.3. All simulated signals are generated using

the IMRPhenomD NRTidal waveform approximant [98, 99, 100], which is a frequency

domain waveform available in LALSuite [47]. The waveform uses a phenomenolog-

ical model tuned to numerical relativity data, and it includes contributions to the

gravitational-wave phase due to the tidal deformation of the neutron stars.
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6.3 Equation of state in gravitational waves

A general frequency-domain gravitational waveform can be expressed

h(f) = Af−7/6 exp[i(ψpp + ψtidal)] (6.2)

where A is the waveform amplitude, ψpp is the point-particle contribution to the

phasing, and ψtidal is the contribution to the phasing from tidal effects. At leading

order, the tidal phasing is determined by the effective tidal deformability Λ̃, defined

as

Λ̃ =
16

13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
(6.3)

where q = m2/m1 ≤ 1 is the mass ratio. Thus the leading order tidal phasing in a

gravitational waveform is

ψtidal ∝ Λ̃f 5/3. (6.4)

This means a gravitational-wave signal allows a measurement of the amount of de-

formation occurring during an inspiral, and thus of the equation of state of the dense

matter comprising the interior of the neutron star. As is clear from Equation 6.4

the tidal effect in a gravitational waveform is larger for higher frequencies, and it has

previously been found that it only becomes measurable for f & 400 Hz [55]. Both

the LIGO-Virgo and proposed Cosmic Explorer detectors have decreased sensitivity

at these higher frequencies where the tidal information exists, due to fundamental

limitations of the laser interferometer design [56]. This makes the measurement of

tidal information in gravitational-wave signals inherently challenging, and therefore

differences in measurability between soft and stiff equations of state can be significant.

To illustrate the issue, in Figure 17 we show the match between gravitational wave-

forms with tidal information included versus corresponding waveforms with no tides,

where the match is measured as the noise-weighted overlap between the two wave-

forms. We calculate the match for different combinations of Λ̃ and neutron star mass

m for the case of an equal-mass binary. We plot also the functional m−Λ relationship

for two equations of state representing the soft and stiff ends of the plausible range.

The measurability of the tidal information is equivalent to the degree of mismatch as

compared to a non-tidal waveform. Both equations of state pass through regions of

differing match owing to the mass dependence of the tidal deformability, but the stiff

equation of state consistently lies in regions with substantially lower match implying
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a greater measurability. This is especially true for neutron star masses below about

1.6M�.

To explore the effect of a stiff or soft equation of state on our ability to place

precise constraints, we select for our analysis three equations of state that span the

full plausible range. We require that each equation of state support a maximum

neutron star mass of 2M�. For simplicity, we do not include any equations of state

that contain a phase transition of the dense matter. The equations of state are selected

from a set of 2000 that are constructed from nuclear chiral effective field theory, which

is calibrated to nuclear experiments up to the nuclear saturation density. From soft

to stiff, our chosen equations of state are labeled EOS 487, EOS 895, and EOS 1250,

and in Figure 18 we show their location in the R1.4−Λ1.4 plane along with a selection

of recent equation of state constraints from electromagnetic and gravitational-wave

observations to date. Also plotted are the pairs of (R1.4, Λ1.4) values from the entire

set of 2000 equations of state used in our analysis as a prior distribution for the

parameter estimation, which we discuss in greater detail in Section 6.4.

6.4 Parameter estimation

In general, under the assumption of Gaussian noise characterized by a power spectral

density S(f), the likelihood of obtaining detector data d given the presence of a

gravitational waveform h(θ) is

L(d|θ) ∝ exp

[
−1

2
〈d− h(θ)|d− h(θ)〉

]
, (6.5)

where

〈a|b〉 = 4R

∫ fmax

fmin

ã∗(f)b̃(f)

S(f)
df (6.6)

is the noise-weighted inner product [133, 158] and θ = {θ1, θ2, . . . , θn} is the set of

intrinsic and extrinsic parameters defining the waveform. In evaluating this likelihood,

we can obtain estimates of the gravitational-wave parameters θ through the joint

posterior probability distribution

p(θ|d) ∝ L(d|θ)p(θ), (6.7)

where p(θ) is the assumed prior probability distribution of the parameters. Then the

marginal posterior probability distribution for an individual parameter is obtained
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by integrating p(θ|d) over all nuisance parameters. For instance, the marginalized

posterior distribution for θ1 is

p(θ1|d) =

∫
p(θ|d) dθ2dθ3 . . . dθn. (6.8)

We use PyCBC Inference [221] with the parallel-tempered version of the emcee

sampler [102, 103, 222] to sample the parameter space and produce marginalized

posterior distributions for the source parameters. To help speed convergence we

employ the relative likelihood model available in PyCBC Inference which uses an

approximation to the full resolution likelihood near its peak in order to reduce run-

time, and has been shown to produce comparable parameter estimates to non-relative

models [104, 46, 105]. For signals analyzed in the LIGO-Virgo network we include

frequencies above a low-frequency cutoff of 20 Hz, and for Cosmic Explorer signals we

use frequencies above 7 Hz. All signals are analyzed up to a high frequency cutoff of

2048 Hz. We sample in source-frame component masses, component spins along the

direction of the orbital angular momentum, sky location, distance, geocentric time of

coalescence, inclination, polarization angle, and equation of state. For each parameter

we use a prior distribution that matches the corresponding population distribution

with the exception of the equation of state, where our prior distribution is made

of a collection of 2000 equations of state built from nuclear theory and designed to

be roughly uniform in R1.4 over the interval 9 − 15 kilometers. Each equation of

state provides a mapping between mass, radius, and tidal deformability for a neutron

star. At each iteration, a single equation of state is drawn and used to determine

the tidal deformabilities of both neutron stars based on their source-frame masses.

In generating a template waveform for the likelihood, source-frame masses are first

converted to the detector frame through scaling by a factor of (1 + z), where z is the

cosmological redshift at the sampled distance assuming a flat ΛCDM cosmology. All

template waveforms are generated using the IMRPhenomD NRTidal waveform in order

to match the simulated signals and avoid any systematic errors arising from different

implementations across waveform families.

Multiple signals s1, s2, . . . , sN are considered independent of one another and thus

the posterior distributions for a given parameter θk can be combined straightforwardly
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across all signals [218, 58]

p(θk|s1, s2, . . . , sN) = p(θk)
1−N

N∏
i=1

p(θk|si) (6.9)

where we have assumed the prior p(θk) is the same for all signals.

6.5 Results

In order to combine measurements across an entire population, we transform the

posteriors of the equation of state for all signals to posteriors of a common param-

eter, R1.4. Then each signal we analyze constitutes an independent measurement of

the same physical quantity, and we can combine posterior distributions across many

events following the procedure outlined in the previous section. To simulate a scenario

of cumulatively combining each new signal as it occurs, we combine R1.4 posteriors

one at a time to track the radius constraint (as measured by the 90% credible in-

terval width) as a function of the number of signals included. This also allows for a

straightforward conversion to constraint over time, given a merger rate and detector

network sensitivity.

For the 321 signals in our LIGO-Virgo network analysis the combined R1.4 con-

straint is shown in Figure 19 for each of the three equations of state we used. As

expected, we find a hierarchy in the constraints from the three different equations of

state, with a stiffer equation of state leading to a better final precision as a result

of the more measurable tidal information in the signals. After combining all signals

from EOS 1250, the 90% credible interval on R1.4 is approximately 90 meters. For

the moderately stiff EOS 895 the final 90% credible interval width is a slightly larger

130 meters. The softest equation of state in our analysis, EOS 487, produced the

weakest constraint with a final 90% credible interval of 200 meters. These credible

intervals correspond to measurement precision on the true R1.4 in each population of

0.7%, 1.1%, and 1.9% respectively.

Constraints at intermediate numbers of signals will depend on the particular order

in which the signals are combined, but we attempt to determine a general threshold

for 10% precision in two ways: 1. we perform the signal combination for 10 random

permutations of the order; 2. we remove all signals with signal-to-noise ρ > 30

and combine the remainder of the population to prevent any outsize influence from
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anomalously loud events. With both methods we find that a 10% precision threshold

is achieved after combining roughly 50 signals. This is consistent with other works

that have found a better than 10% constraint for similar numbers of signals seen

by the LIGO-Virgo network [57, 219]. In Figure 20 we plot the result of combining

the 277 signals in the population with ρ < 30. The final R1.4 constraint for each of

the equations of state is a factor of roughly 1.5 larger than was found for the entire

population as a consequence of removing the loudest signals.

In previous works it has been shown that imperfect knowledge of the mass distri-

bution of neutron stars can introduce a bias into the equation of state measurement,

owing to the mass dependence of the tidal deformability [58, 223]. To investigate the

implications of this effect in the context of precision equation of state measurements,

we repeat our analysis on the Gaussian distributed mass population using a prior on

the component masses that is uniform in the range 1−2M�. The combined R1.4 con-

straint results from this analysis can be seen in Figure 21, where the signal ordering

is the same as in Figure 19 for the sake of comparison. We find a small but significant

bias toward smaller radii in our R1.4 measurement for all three equations of state in

our analysis, although the statistical uncertainties are not significantly changed. For

EOS 1250 and EOS 895, we find the bias is enough to exclude the true value of R1.4

at very high confidence after combining about 20 and 100 signals, respectively.

We investigate also the effect on a precision equation of state constraint from

a neutron star mass distribution with greater representation of higher mass stars,

since larger masses correspond to smaller Λ. To do this we perform our analysis on

a population that is drawn uniformly in neutron star masses from 1 − 2M�. The

combined R1.4 constraint results are shown in Figure 22. We find for each equation

of state we analyze the R1.4 constraint is essentially unchanged from the Gaussian

distributed population analysis, with final measurement precisions ranging from 1−
2%.

While our LIGO-Virgo analysis includes hundreds of binary neutron star signals

to produce a combined constraint, it is not at all certain that the merger rate and de-

tector sensitivity will produce so many signals. To convert our signal-number forecast

to a potential time horizon, we estimate the probability of seeing different numbers

of events, assuming any population of mergers in the local universe will follow the
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universal analytic signal-to-noise distribution described in [7]. We calculate this prob-

ability as a function of the total number of events, and we convert that to number of

years at the projected sensitivity for the upcoming fourth LIGO observing run (O4).

We use the median binary neutron star merger rate estimateR = 320 Gpc−3yr−1 from

[8], the projected O4 search volume V T = 0.016 Gpc3yr from [9], and we assume a

detection threshold network signal-to-noise ρt = 9. The calculated probabilities of

seeing 10, 25, and 50 events with ρ > 10, consistent with the signals we include in

this work, can be seen in Figure 23. We note that O4 is expected to last approxi-

mately one year, though we calculate probabilities beyond that timeline to allow for

any delays in the planned detector upgrades and to provide a lower limit for future

observing runs that are expected to operate with improved sensitivity. We find that

while 10 binary neutron star signals with ρ > 10 will almost certainly be seen in just

3 years of observation at O4 sensitivity, it will take over 12 years at this sensitivity

to have any significant probability of seeing 50 signals.

Planned upgrades are expected to substantially increase detector sensitivity for

the fifth observing run and beyond, though no official estimate of the search vol-

ume has yet been published. An improved network sensitivity would effectively shift

the probability curves in Figure 23 leftward by the factor of improvement in search

volume, though we note that even an order of magnitude improvement would likely

result in at most 50 signals in several years of observation under the assumptions

made here.

Finally, we explore the ability of Cosmic Explorer to precisely measure the equa-

tion of state. The extreme sensitivity of the Cosmic Explorer design means that it

is expected to be sensitive to the complete population of merging binaries out to a

redshift of z = 1 [224]. This means that given current merger rate estimates, Cosmic

Explorer will likely see hundreds of binary neutron star signals with ρ > 100 in a sin-

gle year of observation, and our simulated population of 335 signals is approximately

representative of that set. The combined R1.4 constraint for EOS 487 and EOS 895

are shown in Figure 24. We find that for both equations of state a 10% precision

threshold is achieved almost immediately, with the precision improving to 0.6% and

0.15% after combining all signals for EOS 487 and EOS 895, respectively. We also

note that these constraint projections are likely slight overestimates, as there will

be many more signals with ρ < 100 seen in one year of observation that would still
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contain measurable tidal information. While the combined equation of state mea-

surement will almost certainly be dominated by the louder signals we consider here,

it is possible that quieter signals will contribute to improve the constraint somewhat.

We also check whether the Cosmic Explorer constraints are robust to an incorrect

choice of mass prior by repeating the analysis using a uniform mass prior from 1−2M�.

Systematic biases from an incorrect choice of prior are smaller for louder signals, so we

expect that our population of Cosmic Explorer signals will suffer less from this effect.

Figure 25 shows the combined R1.4 constraints from this analysis for the medium and

soft equations of state we investigated, where again the ordering has been preserved

from Figure 24 to allow easy comparison. We find there is again a bias toward

smaller radii for both EOS 487 and EOS 895, though it is much smaller in absolute

terms than that seen in the LIGO-Virgo analysis. Still, the correspondingly smaller

statistical uncertainties on our combined measurements make it so the true R1.4 values

lie right at the upper boundary of the 90% credible interval for both equations of

state, emphasizing the need for a good estimate of the neutron star mass distribution

even for Cosmic Explorer. As was the case in our LIGO-Virgo analysis, we find the

statistical uncertainties on the combined measurements are largely unchanged from

the Gaussian mass prior analysis.

6.6 Conclusion

We presented an updated forecast using more plausible equations of state for binary

neutron star mergers seen by a LIGO-Virgo network, and new results for the proposed

Cosmic Explorer detector. We use the most up-to-date estimates for the range of

plausible equations of state and of the merger rate in the local universe. We find that

Advanced LIGO will constrain R1.4 to within 10% at 90% confidence with the first

50 signals, largely consistent with previous works, and we show that this projection

is robust to a change in the mass population of neutron stars. We also extend the

projection to find that across the full range of plausible equations of state, Advanced

LIGO will be able to measure R1.4 to better than about 2% after 321 signals, although

the probability of seeing this many signals before third generation detectors become

operational is potentially very low. On the other hand we find that the much greater

sensitivity of Cosmic Explorer means it will be able to measure R1.4 to better than
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0.6% at 90% confidence across the full range of plausible equations of state with

one year of observation. This precision from Cosmic Explorer will be sufficient to

distinguish even similarly soft equations of state from one another at high confidence.

As discussed by Wysocki et al., our analysis confirms that accurate knowledge of

the mass distribution of neutron stars in the population of merging binaries is vital

to making an unbiased measurement of the equation of state. We find that biases due

to an incorrect mass prior can be present even in measurements from a population

of loud signals in a third-generation detector like Cosmic Explorer, and as such we

emphasize the added importance of efforts to mitigate these biases in the context of

precision equation of state measurements.
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Figure 17: Match between gravitational waveforms for equal mass binaries with and

without tidal deformability included. The match is calculated as the noise-weighted

overlap between the two waveforms in the frequency range 20 − 2048 Hz using the

Advanced LIGO design sensitivity noise curve aLIGODesignSensitivityP1200087.

Waveforms are generated using masses ranging from 1− 2M�, and for the waveform

including tidal deformability we use values of Λ̃ = Λ1 = Λ2 that span the range of

plausible values between the soft (lower curve) and stiff (upper curve) equations of

state selected for our analysis.
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Figure 18: The radius in kilometers and dimensionless tidal deformability of a 1.4M�

neutron star, denoted R1.4 and Λ1.4, for the equations of state used in this work.

The soft, medium, and stiff equations of state whose measurability we assess, EOS

487, EOS 895, and EOS 1250, are shown as a red diamond, red cross, and red star,

respectively. The (Λ1.4, R1.4) coordinates for the 2000 equations of state used as a prior

distribution in our analysis are shown in blue. Shaded regions represent a selection

of constraints on the equation of state from gravitational-wave and electromagnetic

observations, and nuclear experiment. The constraints span a significant range with

potentially some tension between them. The three equations of state we investigate

in this work are chosen to span the majority of the range covered by these constraints.
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Figure 19: Combined R1.4 measurements for our Gaussian mass distributed popu-

lation in the LIGO-Virgo network. Results are shown for the soft (blue), medium

(orange), and stiff (green) equations of state that we used. Signals are combined one

at a time to show an updating constraint on the measurement as each signal is added.

Shaded regions represent the 90% credible interval for each measurement. The true

values of R1.4 for each of the equations of state are plotted as horizontal dashed lines

in the appropriate color. Dotted lines show the fractional uncertainty in the measure-

ment at each number of signals included, measured as the ratio of the 90% credible

interval to the true value of R1.4 for a given equation of state.
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Figure 20: Same as Figure 19 except including only signals with signal-to-noise ρ < 30.

By removing louder signals we attempt to mitigate any potentially outsize effect on

the radius constraint from signals that are unlikely to be seen by the LIGO-Virgo

network. For the stiff, medium, and soft equations of state we find that a 10%

precision measurement on R1.4 is reached after 5, 30, and 50 signals, respectively.
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Figure 21: Same as Figure 19 except we recover all signals with a uniform prior on the

source-frame component masses from 1 − 2M�. This incorrect choice of mass prior

introduces a bias in the equation of state measurement, leading to systematically

lower estimates of R1.4. We find that for EOS 1250 and EOS 895 the bias causes

the true equation of state to be ruled out at high confidence after about 20 and 100

signals, respectively.
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Figure 22: Combined R1.4 measurements for our uniform mass population in the

LIGO-Virgo network. Source-frame component masses are drawn from 1 − 2M� to

represent a population with more high-mass neutron stars. All signals are recovered

with a uniform mass prior from 1−2M� and signals are combined following the same

procedure as the Gaussian mass population. We find the combined equation of state

measurements from the uniform mass population are essentially unchanged from the

Gaussian mass population, with precision on the measurement of R1.4 ranging from

1− 2%.
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Figure 23: Probability of seeing 10, 25, and 50 events with signal-to-noise ρ > 10 over

time, assuming the population of merging binary neutron stars in the local universe

follows the universal signal-to-noise distribution described in [7]. The probabilities for

10, 25, and 50 events are shown as solid, dashed, and dotted lines, respectively. We

use the median binary neutron star merger rate estimate from [8] and the projected

sensitive volume for the upcoming fourth observing run (O4) of the Advanced LIGO

network [9] to plot probabilities against number of years at O4 sensitivity. We assume

a detection threshold network signal-to-noise ratio of 9.
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Figure 24: Combined R1.4 measurements for our Gaussian mass distributed popula-

tion in Cosmic Explorer, which is representative of the signals expected in one year

of observation. Results are shown for the soft (blue) and medium (orange) equations

of state in our analysis. As in Fig. 19 the horizontal dashed lines indicate the true

value of R1.4 for each equation of state, and the dotted lines show the calculated

fractional uncertainty which is defined as the ratio of the 90% credible interval to the

true value of R1.4. We find that for both equations of state, a 10% precision thresh-

old on the measurement of R1.4 is achieved almost immediately, consistent with the

third-generation detector result from [10]. The measurement precision improves to

0.6% and 0.15% for the soft and medium equations of state, respectively, after all

signals are combined.
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Figure 25: Same as Figure 24 except we recover signals using a uniform mass prior

from 1 − 2M�. The ordering of signals has been preserved from the Gaussian prior

analysis for comparison, and it can be seen that the combined constraints for both

equations of state is again biased toward smaller radii as a result of the incorrect

mass prior. The bias is smaller than what was seen in our LIGO-Virgo analysis as

a result of the much louder signals in the Cosmic Explorer population, however the

true values for both equations of state are still found at the edge of their respective

90% credible interval because of the correspondingly smaller statistical uncertainties

on these measurements.
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Chapter 7

Conclusions

In the current era of gravitational-wave astrophysics we are moving beyond first direct

detections and first multimessenger observations, to now making routine discoveries

that deepen our understanding of the compact objects in our cosmic neighborhood.

The LIGO-Virgo gravitational-wave detector network has detected 52 confirmed bi-

nary merger observations so far, and the detection rate has only accelerated as im-

proved detector sensitivity extends our reach deeper into the universe. From the two

observed binary neutron star mergers, our knowledge of the dynamics of these events

and of neutron star physics has grown dramatically. They have provided confirmation

of binary neutron star mergers as a source of short gamma-ray bursts, and also as

important sites of heavy element production through r-process nucleosynthesis that

can help explain observed chemical abundances. They have also shown that it is

possible to measure the tidal information in a gravitational-wave signal to meaning-

fully update our constraints on the nuclear equation of state. As the LIGO-Virgo

detectors approach their design sensitivity, and as third-generation detectors begin to

come online, we expect to see many more binary neutron star mergers in the coming

years. We anticipate that these new detections will provide even further insights into

the physics of neutron stars.

In this thesis we have studied binary neutron star mergers, through a combination

of observations and computational modeling. Specifically we explore the ability of a

gravitational-wave analysis to extract physical parameters of the binary system, and of

the neutron stars involved in the merger. We investigate the impact of multimessenger

information on a gravitational-wave analysis, and we study the measurability of the
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nuclear equation of state, both now and in the future.

We have presented an analysis of the binary neutron star merger GW170817 in-

formed by electromagnetic distance measurements of its identified host galaxy, and

we demonstrated that using an independent distance measurement in a gravitational-

wave analysis can break the distance-inclination degeneracy to allow for much tighter

constraints on the inclination angle of the binary. We find our improved measurement

of the inclination supports models for a structured relativistic jet and its afterglow

emission being viewed off-axis.

We have presented measurements of the tidal deformabilities and radii of the

neutron stars in GW170817. Our analysis imposed a physical constraint to require

that both neutron stars obey the same equation of state, and we used a prior on

the leading order tidal parameter constructed to contain all physical models of the

equation of state without biasing the measurement toward any particular model.

We note that the methodology we employed could be adapted for the analysis of

future binary neutron star merger events with similar masses. We find our results

are broadly consistent with several other studies [198, 210, 225, 142] which employed

various methods to measure the tidal deformabilities and radii in their own analyses

of GW170817.

We have presented a likelihood model developed for PyCBC Inference that uses

the relative binning parameter estimation technique to reduce computational cost

for potential multimessenger gravitational-wave sources. We extended the work of

previous implementations to make our relative likelihood model a coherent network

statistic so that it can additionally measure sky locations. We validated the relative

model on populations of simulated binary neutron star and simulated neutron star–

black hole merger signals, and we showed that it is possible to seed the relative analysis

with the best-fit template parameters from a low-latency search pipeline. We found

that the parameter estimation for all signals in our simulated populations completed

in less than 20 minutes, with sky localization and intrinsic parameter estimates that

are comparable to analyses done with a standard non-relative likelihood.

We have presented a comprehensive study of the future prospects for a precise

equation of state measurement from Advanced LIGO and Cosmic Explorer. We ex-

plored the measurability of the equation of state across the full parameter space
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allowed by combined constraints from astrophysical observations and nuclear exper-

iments. We showed that a precision threshold for measurements to distinguish be-

tween substantially similar theoretical models for the equation of state is equivalent

to measuring the radius of a 1.4M� neutron star to better than 2%, and we pre-

sented a framework for combining individual equation of state measurements across

entire populations to produce a combined, high-precision measurement. We found it

is unlikely that Advanced LIGO will achieve 2% precision in the next observing runs

given current estimates of the merger rate for binary neutron stars, however Cosmic

Explorer will measure the equation of state to better than 1% within one year of

operation. Our framework can be directly applied to any future signals from binary

neutron star mergers, and we anticipate that the resulting precise knowledge of the

true equation of state will be invaluable for efforts to model these merger events and

their associated kilonovae.
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