
Syracuse University Syracuse University 

SURFACE at Syracuse University SURFACE at Syracuse University 

Dissertations - ALL SURFACE at Syracuse University 

Summer 8-27-2021 

Self-organization in Models of Cyclically Sheared Suspensions Self-organization in Models of Cyclically Sheared Suspensions 

Jikai Wang 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Wang, Jikai, "Self-organization in Models of Cyclically Sheared Suspensions" (2021). Dissertations - ALL. 
1356. 
https://surface.syr.edu/etd/1356 

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at 
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of 
SURFACE at Syracuse University. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fetd%2F1356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1356?utm_source=surface.syr.edu%2Fetd%2F1356&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Abstract

This thesis presents a study of random self-organized systems using computer

simulated models inspired by cyclically-sheared non-Brownian suspensions of mono-

disperse spherical particles in a density-matched fluid. When driven at low Reynolds

number, such systems have vanishing thermal fluctuations and only short-range

interactions between individual particles. Nevertheless, they show intriguing col-

lective behaviors at large length scales, such as a strong suppression of fluctuations

in the number density. Such self-organized “hyperuniform” states can useful in in-

dustrial applications where well-controlled states can ease the processing of such

materials.

In Chapter 2, we propose a new way of generating hyperuniform suspensions,

by incorporating slow gravity-driven sedimentation into a cyclically-sheared sus-

pension. The effect of self-compaction drives the particle system towards its critical

state automatically. We thus achieve quality hyperuniform distribution without

fine-tuning of the system parameters. Computer simulations were conducted that

mimic an experimental setup, and we successfully demonstrated a process leading

to hyperuniformity in the steady state in the simulations. To this end, we char-

acterize the spatial structure in both real space and reciprocal space to bolster our

findings.

In Chapter 3, we were inspired by dynamical jamming fronts [1], which prompted

us to conduct a detailed study of our sheared suspension system with sedimenta-

tion that shows a qualitatively similar propagating front. We conducted extensive

measurements to better describe the compaction front in this dilute system that is

far from jamming. We found that the density profile of the front is solely dependent



on geometric parameters of the system; its surprisingly does not vary with the ef-

fective diffusion rate. To further investigate the formation of the compaction front,

we conducted point perturbation simulations to extract a correlation length in ho-

mogeneous systems as the critical packing fraction is approached from below. We

show that the scaling exponent of the compaction front width compares favorably

with the correlation length from our point perturbation measurements, and could

be consistent with either the directed percolation universality class or conserved

directed percolation.

In Chapter 4, we summarize this body of work and present an outlook for future

directions.
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Chapter 1

Introduction

This dissertation focuses on the self-organization of disordered systems using com-

puter simulations and statistical analysis techniques. A particularly simple disor-

dered system might be a collection of random discs in a plane, perhaps produced

from a stochastic process without any external stress or any long-range interactions.

Such a system does not have any obvious correlations or discrete symmetries and

no obvious order can be found in it. Other systems that appear random upon first

glance may reveal more subtle order on further analysis; we will visit specific ex-

amples of this in my work.

FIGURE 1.1: [2] (left) Simulated packing of particles with the color
scheme denoting the number of contacts per particle. [3] (right) A

cross-section of micron-sized colloidal particles in suspension.

1



Nature provides us with a variety of disordered systems, in many fields includ-

ing chemistry, biology, neuroscience, petroleum science, food science, and computer

science, as well as physics from condensed matter to astrophysics and cosmology.

Researchers have dedicated significant time and effort to understand disordered

systems, with great progress over the years. The result is not only an increase in

academic output but also developments and applications in various industries.

Performing experiments, or intervening with the natural world, provides us

with an opportunity to achieve degrees of order in a disordered system by apply-

ing simple external driving [4, 5]. In this work, we are interested in manipulating

disordered particle suspensions in simple ways that can lead to self-organized long-

range order in the spatial organization of the particles. Before describing the rele-

vant background on particle suspensions, we review some basic known features of

granular materials more generally.

1.1 Granular systems

A granular material is made up of numerous macroscopic particles that typically

have only short-range interactions due to particle-particle contacts [6]. As a mat-

ter of definition, the particles are considered to be large enough (> 1µm) so that

thermal fluctuation is minimal. Many systems in the real world fall in this category

such as a container of marbles or coffee beans, piles of rice, sand dunes, or snow [7–

9]. Researchers have carried out extensive research about the mechanical proper-

ties of granular systems which can be fluid-like, solid-like, or gas-like, depending

on the situation at hand [10, 11]. Such research is important in many applications,

for example when designing storage silos for grains, where one wants to be able to

calculate the static pressure of the grains inside the wall of the silo to determine the
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design and strength of the steel to ensure safety in this form of storage [12]. Physi-

cists, mathematicians, and computer scientists have been focusing on improving

simulation techniques to better understand granular systems for decades. This is,

in many cases, still challenging; just a gram of fine sand can contain millions of par-

ticles irregular in shape. Yet, the outcomes of such research can be transferable and

beneficial to many disciplines.

The density of a granular system is an important indicator of its expected be-

havior. At high density, particles can jam into a state where they no longer flow

easily [13, 14]. A jammed system may be mechanically stable and resistant to ex-

ternal stresses [15]. This can occur when the particles are frictional [16, 17] or even

when they are frictionless [18–21]. Both situations have been studied extensively in

theory [22] and also experiment [14, 23] and numerical simulations [24–27]. This

research on jamming not only helps us understand natural phenomena in our daily

life but also enables us to utilize jammed materials to do useful things [28].

On the other hand, when a system is less dense, it could become liquid-like

or gas-like in a dynamic, flowing state. This kind of state allows for particles to

relocate when they are perturbed and the spatial distribution can be different from

a totally random disordered system. Studying routes to self-organized states with

well-defined properties has been an emerging trend recently. The study of self-

organization can help us understand their dynamical behavior even within different

non-equilibrium phases, and the phase transitions between them.

1.1.1 Experiments on cyclically sheared suspensions

One particularly interesting case is the self-organization of particle suspensions —

collections of hard particles immersed in a liquid. Using cyclic shear as an external
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drive, researchers have done a variety of experiments with loosely-packed suspen-

sions [29–31]. In these experiments, they place spherical polystyrene particles in

density-matched fluids in coaxial cylinders which will rotate and shear the system

periodically (see Fig. 1.2). The fluid has a low Reynolds number so that the inertia

of the fluid and the particles are both negligible. These systems show irreversible

behaviors when they are sheared. Remarkably, after applying many cycles of low-

amplitude shear, the system can reach a steady state where the particle trajectories

are reversible and no collisions occur during shearing.

FIGURE 1.2: Experimental setup used to study self-organization un-
der cyclic shear by Ref. [31]. (a) Setup where two concentric cylinders
are used to shear the sample in the gap between them. A laser sheet
projected from the side allows a two-dimensional slice to be seen. (b)
Image of the suspension. (c) Difference of particle images between two
shearing cycles in a reversible state. The image is monotone indicat-
ing reversible particle trajectories. (d) Difference of particle images
between two shearing cycles in an irreversible state, where light and

dark regions are from the net particle displacements.

The steady-state behavior of the system can be controlled by varying the shear-

ing amplitude, γ, given by the maximum rotational displacement of the outer wall

divided by the gap size. A system with a volume fraction φ can reach a reversible

steady state when γ is below a threshold value, γc, and it will have only irreversible

4



steady states when γ is larger. Although early reports invoked long-range hydrody-

namic forces or chaos to describe these behaviors [29], it is now generally accepted

that the short-range contact interactions between the particles are the important fea-

ture of this system, and this physics alone can account for the above macroscopic

behaviors [30].

For a suspension system with a packing fraction or driving amplitude lower

than the critical one, it will undergo time evolution and enter an “absorbing state”,

defined as a configuration where further driving does not change the state. In this

state, the initially active system will become inactive after a period of reconfigura-

tion. Beyond the critical threshold, the system is constantly active and the particle

trajectories are effectively diffusive at long times. There is a second-order transition

of a non-equilibrium system that separate these absorbing states from the diffusive

ones [32].

1.1.2 Universality Class of Random Organization

The systems with absorbing states have been studied extensively over a few decades

and the closest resemblance to random organization systems are directed percola-

tion (DP) and conserved directed percolation (CDP) in terms of universal scaling

behavior. Similarly, DP and CDP systems utilize stochastic processes that evolve

in time, to reach absorbing states. As described in [32] and [33], from a reaction-

diffusion perspective, DP consists of the following evolving processes which hap-

pen in the lattice of sites. One active site can activate nearby sites with some fixed

probability. If considering the entire lattice, activation happens continuously, clus-

ters of active sites will propagate indefinitely and the system will be in a steady

state. Otherwise, if at any step, no activation can be recorded, the system will stop

spread and fall in an absorbing state. Given a dimension d ≥ 2, one can expect a
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critical probability 0 < pc < 1 exists which separates these two states. This phe-

nomenon is more general and looks similar to a random organization system. The

difference is that in DP, the system evolves through the spread of active sites while a

random organization system evolves through the movement of particles. One may

notice that the number of active sites in DP is conserved. This brought CDP into

people’s attention since the number of active sites in CDP is conserved and thus,

could be more related to random organization systems. By studying and compar-

ing the universal scaling exponent of these three systems [34, 35], we may be able

to solidify possible connections between the random organization system and other

stochastic systems.

1.1.3 Previous simulations

To better understand the properties of granular systems and absorbing states, peo-

ple have developed simulation models to reproduce the same behavior observed in

their experiment counterparts.

Based on experimental sandpile models that are trying to explorer self-organized

criticality (soc), S S Manna has proposed a simpler two-phase simulation model that

is set on a square lattice [36]. Each site on this 2D lattice can be occupied by one or

more particles or simply stay empty. Whenever a site is occupied by more than one

particle, the side is considered to be active and will undergo a random process so

that it can become empty or stationary again. The active site will purge each of

its particles into its neighboring sides by random selections of directions and these

changes may invoke new active sites to its neighbors and then, the random purging

of those sites will happen or be calculated during the next simulation cycle. This

random process will be conducted from the beginning to the point where all sites

are considered stationary in which each site contains at most one particle.
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People also found that for the system which undergoes random walks, noise

can affect the asymptotic behavior of the random processes in a way that is not local

especially with lower dimensionalities involved in the model [37]. The result shows

that for a two-dimensional system, the introduction of noise will not only affect its

micro behaviors, but also the macro scale evolution of the system. For a granular

system, the diffusion process will normally show a power-law decay behavior that

is well measured and proved before in different dimensions. With the introduction

of the fluctuation, the scaling factor of such power-law decay is changed in a non-

trivial way such that it deviates from the result via mean-field theory. In fact, the

behavior of the system is change as well as many properties which will be discussed

in later chapters.

Inspired by the observed phase transition and the dynamics of particles in ex-

periments, Corte proposed a simpler model of a driven non-equilibrium system

that can incorporate the behavior of sheared suspensions and irreversible particle

movements. The model is sufficient to provide enough ingredients for us to mea-

sure the threshold of phase transition and other behaviors. Corte first introduced

a simpler 1D system that consists of a line of particles that will be sheared along

the line. Each particle will be sheared with a displacement l and if it collides with

another particle, both particles will be given random kicks into random directions

along the line and they will redistribute. The whole process is about to apply this

rule to all particles one by one and cycle by cycle until no collision is recorded which

is called absorbing state or the system enters an actively diffusive state where a rela-

tively constant portion of particles remains active. Use this model, Corte found that

for l > lc, there is no absorbing state and it’s impossible to let all particles become

inactive. But with l < lc, there will be an infinite amount of state that can possibly

accommodate all particles without any future collisions happening. The observed
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lc = 0.91± 0.01L/N shows the critical point of this 1D random self-organization

system where L is the length of the system and N is the number of particles involved

in the simulation. With this critical boundary, the portion of active particles is also

measured in active steady states with relation f ∞
a ∼ [(l − lc)/lc]β confirming the

behavior of the system that is near its critical phase transition point. Then, Corte in-

troduced and described a 2D system that consists of particles with hard walls. The

system has no thermal fluctuations and the Reynolds number is low which gives

the particles’ movement a high damping speed. The entire system is periodic on

boundaries and prepared in a random fashion such that the initial positions of par-

ticles are totally random but without overlapping. The system is sheared as well to

a side so all particles inside will shift by an amount that depends on their vertical

locations. Everything is in real space and the particles all have the same diameter

when collisions are checked. We can tell two particles collide with each other by

calculating the distance of their centers and compare it to their diameter. If they

collide, we will give each of them a random kick such that they can fly in different

directions by a random amount. This process is continued until no collision can

be found within one shearing cycle and the evolution of the system is stopped or

can be called that it enters its reversible state. Critical phase transition is observed

for such a random organized system when a critical amplitude of shearing is used

in the simulation even with different simulation parameters like system size, box

shape, boundary conditions, and three-dimensional systems.

Illustration of the proposed 2D simulation model (Fig. 1.3). Within each cycle,

particles are sheared to the same direction with different amplitude base on their

vertical coordinate and if two particles overlap during the process, they will be

given random kicks into random directions. The probability of collision increases

with the strain amplitude γ and volume fraction φ. When local areas are crowded,
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FIGURE 1.3: Simulation model by [30]. This schematic illustrates the
shearing process in a 2D simulation model proposed by Corté to mimic
the corresponding experimental setup. After calculating the particle
displacements under an affine transformation, one then checks for col-
lisions and marks those particles to be given random kicks before the

next cycle.

multiple random kicks are possible if the particle has more than one point of contact

with others.

1.2 Hyperuniformity

Disordered systems normally involve randomness which distinguishes them from

crystal-like systems. Recently, people have discovered a new state of matter call

hyperuniformity in which the systems show order over large distances while still

being disordered over small distances. The variations in spatial distribution are

suppressed with a higher-order decay factor that lies in between those found in

purely random systems and crystals. People suggested that there is hidden order

inside hyperuniform systems other than randomness.

To quantify hyperuniformity, we can simply measure the system’s structural

factors (see Eq.1.1 for definition). For a random granular system, the structural

factor should be around 1 for the entire reciprocal space while in a hyperuniform

system, the structural factor will approach 0 with a small k.
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1.2.1 Hyperuniformity in nature

Researchers also found the hyperuniform pattern in chicken eyes. Specifically, the

spatial distribution of its visual cones has a higher order of uniformity than normal

disordered systems that are usually seen in biological systems. Different kinds of

visual cones will receive different colors of incident light include violet, blue, green,

and red (see Fig. 1.4a). Although different types of cones are of a different size, they

are actually multi-hyperuniform with respect to the visual cones of the same color

(see Fig. 1.4b). This unique pattern ensures the reception of not only the intensity of

light but also the color of light to be evenly distributed across the entire visual area

of the chicken.

1.2.2 Hyperuniformity in suspensions

To study hyperuniformity and non-equilibrium phase transitions, sheared suspen-

sion systems have been proven to be a good candidate that will yield consistent re-

sults in both experiment and simulation [39]. With the configuration of the system

presented, people can measure its uniformity by evaluating the scaling factor of the

variations of spatial distribution or by examining whether the large-scale structural

factor will approach zero. Both are robust methods and largely used in research but

with the limitation of system size. The variance of fraction is also being measured

which is a more suitable method of evaluating uniformity in suspension systems

with particles that have different sizes.

To measure the variance of density fluctuations, we need to select a spherical

window with radius R and measure the number density of particles inside. Given
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FIGURE 1.4: [38] Top Patterns of avian photoreceptors in a chicken’s
eye. Bottom Structural factors of corresponding color cells.

the window volume being Rd where d is the dimension, we have the following

relation:

σ2(R) ≡ 〈ρ2(R)〉 − 〈ρ(R)〉2 ∝ R−λ (1.2)

λ here depends on the type of state of the system. For example, a typical dis-

ordered system would have a λ = 0 while a perfect crystal could have λ = 1. A

hyperuniform system will have a λ ∈ (0, 1) which differs from both of the systems

previously mentioned.

11



1.2.3 Hyperuniformity in other systems

Novel forms of hyperuniform systems are proposed more and more recently in-

cluding jamming systems [41], two phase system [40] (see Fig. 1.5) and glass [42]

in which they all shows the behavior of suppressing large scale fluctuation despite

their different realizations. Also, there are applications of hyperuniformity in other

field such as computer science and information theory [43].

1.3 Inhomogeneous systems

1.3.1 Driving disordered systems out of inhomogeneous states

Our studies in Chapter 2 and 3 of this thesis are aimed at understanding how disor-

dered materials can evolve to controlled states with well-defined properties when

driven in simple ways. Thus, although many studies assume a homogeneous initial

state, we explicitly introduce a slow external drive – sedimentation under gravity –

to push the system towards an inhomogeneous state. We pair with this an external

cyclic drive, applied by the experimenter or simulator, and we seek to understand

if and when such driving can return our system to a more uniform state, and if so,

how this evolution occurs.

Such research on inhomogeneous conditions is important not just because it is

a common condition, but also because it is a way to view the system differently

which could provide us more information about the material. For example, in re-

cent research of jamming transitions, researchers have discovered dynamic jam-

ming fronts propagating in a compressed unjammed system [1]. In their experi-

ment, a system containing bidisperse disks is packed uniformly in a rectangle con-

tainer with the packing fraction below jamming. Then the system is compressed
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with a rack from one side with constant velocity. A propagating smooth transi-

tion area (front) separates the growing jammed region and diminishing unjammed

region.

For a suspension system, we are also interested in inhomogeneous systems for

the following reason. In experiments of sheared suspension systems, people usually

do density matching so that the particles and stay afloat in fluids. This is essential to

make sure that the positions of particles stay unchanged in between shearing cycles

and let the dynamics be solely controlled by periodic shears [30]. This condition

takes effort to achieve and the shearing time diverges to infinity when the system

approaches a critical state.

More realistically, slow sedimentation or creaming will always be present, due

to the sinking of heavy grains or floating of light grains. This holds as well in geo-

physical settings. In Ref. [39], a sedimenting suspension system was proposed and

studied to see how cyclic shear and sedimentation compete to produce a steady

state. In their paper, they conducted experiments with coaxial cylinders as de-

scribed before, while letting the particle density be slightly greater than the density

of the fluid. This system undergoes a process of shearing and sedimenting until it

reaches a steady state in which the density distribution and the top boundary of

the particles are fluctuating but at a constant average height. The vertical density

distributions were measured and found uniform under slow sedimentation. The

authors proposed a quantity to quantify the effective sedimentation velocity as:

A = τD/τs = (π/φc)
3/2d3κ2vs/32D (1.3)

Given a value of A below a threshold of unity, A < 1, the system will show a uni-

form vertical density distribution in steady state and the top of the particles will

maintain at a constant height. This inspired us to further investigate this system
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and it might be a good candidate to acquire hyperuniformity in an automated way.

Along the way, our systematic and careful simulations revealed a different dimen-

sionless number that is related to the one above but serves as a correction due to

different length scales being involved in the problem than what was previously

thought.

1.3.2 Density fronts in driven particle systems

When conducting our numerical simulations of sheared sedimenting suspensions,

we noticed some interesting behaviors during the transient: a dense region would

build up from the bottom wall and propagate upwards through the system. This

behavior looked reminiscent of a feature of dynamic jamming fronts, which have

been investigated in experiments in recent years. Here we introduce that system to

provide this broader context.

In a recent study of dynamic jamming, Ref. [1] studied the emergent behaviors of

a two-dimensional model experiment where hard bi-disperse disks sitting on a 2D

plane are compressed by a straight bar from one side (see Fig. 1.8). Initially, the par-

ticles are below jamming and randomly distributed. When compressed, the system

was found to exhibit a dynamical jamming front that propagates in the direction of

the external compression. The jammed area grows with time, as a jamming front

propagating towards the uncompressed side. On the dilute side of the front, the

particles are in their initial positions; on the compacted side, the system is jammed

with a packing fraction that was found to be consistent with the critical jamming

density. This propagating front will last until reached the end and the entire system

becomes jammed.

In Chapter 3, we will describe our detailed study of fronts in sheared sediment-

ing suspensions, and we will draw connections to the jamming of athermal discs.

14



Interestingly, both non-equilibrium systems share basic features with equilibrium in-

terfaces near criticality. Just like a liquid-vapor interface driven to an ordinary crit-

ical point, we find that the interface becomes increasingly diffuse near the critical

point, mirroring this behavior that was first demonstrated for dynamically jammed

grains. Our findings thus show that this phenomenon is perhaps more general than

initially conceived.

Researchers have already studied systems with sedimentation in various set-

tings [45, 46]. These systems include sedimentation of passive or active colloidal

particles without the presence of shearing. For example, researchers from [46] stud-

ied colloidal suspensions in various experimental setups. They found the sedimen-

tation length (of density transition region) is proportional to the effective diffusion

of their active particles. The effective temperature of the active colloids could be

much higher than the bare temperature with the help of chemical interactions. Also,

[45] shows that, with the presence of bacteria, polystyrene particles will sediment

at a lower velocity due to the influence of bacterial activity and this effect will be

more obvious with higher bacterial concentration. The behavior of sedimentation

front changes as well including a suppressed fluctuation which may be due to the

increased particle diffusivity. All of these provide us valuable insights into the be-

havior of the systems, as well as the formation of the sedimentation front. Even

though diffusivity could have a direct relation with sedimentation front length, in

our sheared particle system, it shows a different picture where the profile of the

sedimentation front is not controlled by how active the particles are, but the geo-

metric relations between particles in a large region. This finding could give us a

closer look at the intrinsic properties of sheared suspensions and how differently it

behaves compared to other colloidal systems.
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FIGURE 1.5: [40] Top An example of stealthy scalar field Bottom The
measured structural factor over different wavelength plotted in log-
scale. A hollow central area indicates reduced fluctuations over the

long range.
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FIGURE 1.6: Sheared sedimenting suspensions in experiments by
Corté et al. (a) Experimental setup from Ref. [39] for the sheared
suspension system with sedimentation. (b) Image of the suspension

showing a two-dimensional slice illuminated with a laser sheet.

FIGURE 1.7: Illustration of the corresponding simulations from
Ref. [39]. Solid particles are packed loosely in a 2D system while being
sheared and sedimenting. Red particles are those who encountered

other particles during shearing which will be given random kicks.
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FIGURE 1.8: Dynamical jamming front in a two-dimensional model
experiment, reproduced from Ref. [44]. The image sequence, from top
to bottom, shows the evolution of an unjammed system being pushed
from one side. A propagating density front can be seen that separates

the area of initial packing and the area of jammed packing.

18



Chapter 2

Hyperuniformity with no fine tuning

in sheared sedimenting suspensions

This chapter is based on a paper published in Nature Communications, 9:2836 (2018)

with J. M. Schwarz and J. D. Paulsen as co-authors. My contribution was to write original

simulation code, perform and analyze the simulations, make analytical calculations, and

contribute to the discussion of the results and the writing of the manuscript.

2.1 Introduction

Particle suspensions can respond to flow in dramatic ways. Steady shear can cause

their viscosity to jump by orders of magnitude in some situations, or to plummet

in others [47–49]. Interparticle or external forces such as gravity can alter suspen-

sion properties over time [50]. These effects put large demands on handling and

processing. Thus, methods are desired for obtaining homogeneous particle distri-

butions with predictable mechanical properties, as a platform for further handling.

On small lengthscales, one wants to break up aggregates or pockets of high density,

since particles moving in close proximity cause significant dissipation. On large
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lengthscales, one wants different parts of the sample to have similar particle densi-

ties so that the rheological response is stable and reliable.

Recent experiments have shown that non-Brownian suspensions can be driven

to well-behaved states simply by applying cyclic, low-Reynolds number shear from

the boundaries [29–31, 51, 52]. For small strain amplitudes γ, the particles auto-

matically self-organize into reversible steady states, but for amplitudes larger than

a critical value, γc, the particles follow irreversible paths indefinitely. An under-

lying non-equilibrium phase transition has been rationalized by simulations with

simple particle kinematics [30] (see the phase diagram in Fig. 2.1a), and has also

been shown to directly affect the rheological response in experiments [30, 31, 53].

Further simulations suggest that in such suspensions, the particles should exhibit

extremely uniform spatial distributions at the critical strain [54, 55]. These distribu-

tions are called “hyperuniform" and are characterized by density fluctuations that

decay rapidly as one looks over larger and larger length scales [40, 56, 57]. Shearing

at the critical amplitude, γc, is thus an attractive method for homogenizing a sus-

pension. Yet, from a practical standpoint it is hindered by requiring precise tuning

of the strain amplitude [54].

Here we present a robust method for obtaining a hyperuniform state in a vis-

cous suspension. Based on recent work by Corte et al., [39], we introduce a small

density mismatch between the suspending fluid and the particles so that they sed-

iment slowly under gravity. In this situation, cyclic shear was found to re-suspend

the particles up to a height where they achieve the critical density, φc [39]. Our sim-

ulations and theoretical arguments show that there is a well-defined regime at low

sedimentation speed where this combination of sedimentation and shear serves to

homogenize the system. In this regime, density fluctuations are significantly sup-

pressed up to a finite length scale. We show that this length scale is set by small
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vertical gradients in the particle concentration, and it can be made arbitrarily large

simply by slowing the sedimentation rate. We thereby construct a phase diagram

for this “self-organized hyperuniformity", which is in good agreement with our

simulation results.

2.2 Model

We use a simulation model originally developed by [30] This method captures a

wide range of behaviors seen in experiments on sheared non-Brownian suspen-

sions, including self-organization [30] and novel memory effects [31, 58]. We place

N particles of diameter d in a square box of width L. The box is periodic on the left

and right sides, and the top and bottom are hard walls. We use units where d = 1

so that lengths are in particle diameters, and we measure time in units of cycles.

Following [39], each cycle consists of particle sedimentation and shear. First, all

particles sediment vertically a distance vs. Shear is then applied in several steps

as illustrated in Fig. 2.1b: (i) particles are displaced with an affine transformation,

(∆x, ∆y) = (γy, 0), where y is the distance of the particle to the bottom wall, (ii)

particles are returned to their original (unsheared) positions, and (iii) particles that

overlap during this transformation are given a kick in a random direction with a

magnitude chosen uniformly between 0 and ε, where ε = 0.5 except where other-

wise stated. The effect of the shearing is to make particles collide that are within an

interaction region, like the one sketched in Fig. 2.1c. (In previous studies, varying

the kick size or collision kinematics did not change the qualitative results [59].)
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FIGURE 2.1: Sheared non-Brownian suspension model after
Ref. [30]. (a) Phase diagram showing reversible steady states at low
volume fraction, φ and strain amplitude, γ. Outside this region, a fi-
nite fraction of particles collides during each cycle in the steady state.
Dashed line: Critical phase boundary. Data show the largest γ where
we obtain a reversible state in simulations with N = 10186 particles.
(b) Simulation algorithm. In each shear cycle, particles are displaced
a horizontal distance ∆x = γy and then returned to their initial posi-
tions. Particles that overlap (red) are given random kicks, to simulate
local irreversibility due to collisions. (c) Interaction region around a
particle. A second particle with its center anywhere inside the dashed
circle will overlap with the particle at the origin (shown as a dark cir-
cle); they would both receive a random kick. Shearing the system ex-
pands the interaction region to the entire shaded area (shown for one
value of γ), which contains the points that are covered by continuously

shearing the dashed circle up to strain amplitude γ and back.
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2.2.1 Implementation

Here, we provide pseudo-code for actual simulation programs. The code represents

one instance of simulation and multiple (5 ∼ 50) have been done for averaging with

each setting.

Algorithm 1 Initialization

1: while φ < φ0 do
2: while n doot valid
3: x ← random(0, W)
4: y← random(0, H)
5: if not periodical boundary then
6: if distance from (x, y) to any boundary < radius then
7: continue
8: if distance from (x, y) to nearby particles ≥ diameter then
9: valid← True

10: update φ

Algorithm 2 Collision Check

1: for particle i from 1 to N do
2: for nearby particles j from 1 to n do
3: (x, y)← particle i coordinates
4: (x′, y′)← particle j coordinates
5: (∆x, ∆y)← (x′ − x, y′ − y)
6: if |∆y| > 2r then continue
7: if ∆y > 0 & ∆x > −

√
4r2 − ∆y2 − γ∆y then

8: collision i, j←True
9: if ∆y < 0 & ∆x <

√
4r2 − ∆y2 − γ∆y then

10: collision i, j←True

2.3 Self-organized criticality

Corté et al. [39] recently showed that for sufficiently slow sedimentation a critical

state is automatically reached, offering a rare example of self-organized criticality
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Algorithm 3 Random Kick

1: for particle 1 to N do
2: if collision during shear then
3: θ ← random(0, 2π)
4: x ← x + εcos(θ)
5: y← y + εsin(θ)
6: if periodical boundary then
7: if x < 0 then x ← x + W
8: if x > W then x ← x−W
9: if y < 0 then y← y + H

10: if y > H then y← y− H
11: else
12: if x < r then x ← 2r− x
13: if x > W − r then x ← 2W − 2r− x
14: if y < r then y← 2r− y
15: if y > H − r then y← 2H − 2r− y

Algorithm 4 Combined with Sedimentation

1: Initialization()
2: cycle = 0
3: while cycle < cuto f f cycle do
4: for particle 1 to N do
5: (x, y)← (x, y− vs)
6: if y < r then y = r
7: Collision Check()
8: Random Kick()
9: cycle← cycle + 1
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FIGURE 2.2: Self-organized criticality at low sedimentation speed.
(a) Snapshot of system in steady state. Red particles are colliding in
the current cycle. (b) Area fraction (plotted on the x axis) versus ver-
tical coordinate, y, at low and high sedimentation velocity vs, with
N = 2547, γ = 3.0, κ = 25.5, and L = 100. Vertical dashed line shows
φc(γ = 3) = 0.20. (c) Scaled steady-state volume fraction φ∞/φc, mea-
sured over a wide range of system parameters (κ, γ, and N as shown in
legend) and velocities (10−5 < vs < 10−2). Inset: Measurements versus
the parameter A = (π/φc)3/2d3κ2vs/32D, proposed by Ref. [39]. The
data is not collapsed. Main: The data collapse when replotted versus
A (Eq. 2.1). For A � 1 (low sedimentation speed), the steady-state
volume fraction φ∞ is equal to the critical value φc. Error bars are from

fluctuations in system height in the steady state.

seen in both simulation and experiment [60]. This behavior occurs when the steady-

state density of the particles is equal to the critical density, φc, and it can be antici-

pated from simple arguments. At any vs, the particles settle to a steady-state height

where sedimentation and diffusion balance, as pictured in Fig. 2.2a For slower sed-

imentation, this balance leads to a higher height, as shown by the vertical density

profiles in Fig. 2.2b. Hence, at lower vs, the average volume fraction throughout the

pack in the steady state, φ∞, is also lower. Crucially, because the diffusion is driven

by collisions, the particles stop spreading apart when they are just far enough away

to stop colliding, so the density cannot decrease below φc. Thus, φ∞ → φc as vs → 0.

Quantitatively, the critical density is achieved when a suitably chosen sedimen-

tation timescale, τs, is much smaller than a diffusion timescale, τD. Corté et al. [39]
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proposed that τs is set by the time to sediment a mean particle spacing (a dis-

tance
√

πd2/4φ), and τD is the time for a particle to diffuse the system height (i.e.,

τD = h2/4D where D is the coefficient of diffusion for a non-sedimenting system

at φ = 2φc, and h = πd2κ/4φ is the system height with κ = N/L being the linear

density of particles along the x axis). In a critical state where φ = φc, the ratio of

these timescales is: A = τD/τs = (π/φc)3/2d3κ2vs/32D.

The inset to Fig. 2.2c shows our measurements of φ∞/φc, where we vary veloc-

ity vs, linear density κ, strain amplitude γ, and system size N over a broad range.

The data indeed approach 1 for small A, but they are clearly not collapsed. (Refer-

ence [39] set their expression for A to be 8 times this value; this merely shifts all the

data along the x axis by a fixed amount.)

We propose that the timescales for diffusion and sedimentation should instead

be considered over the same length scale. Taking τD and τs as the timescales for

particle transport over the system height, we obtain:

A =
τD

τs
=

π

16
d2κvs

φcD
, (2.1)

which serves as a non-dimensional sedimentation speed. This expression produces

an excellent collapse of the data, as shown in Fig. 2.2c.

2.3.1 Dependence of self-organized criticality on collision rule.

The simulation model for cyclically-sheared viscous suspensions that we use in this

work was originally developed by [30] to study self-organized reversible states.

Variants of this model have been studied in recent years. Reference [59] studied

a wide range of driving and collision rules to test for the robustness of results on

memory formation; [55, 61] used isotropic swelling in place of shear as a simpler
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FIGURE 2.3: Results for multiple kicks. Scaled steady-state density
in a suspension sedimenting at velocity 10−4 < v < 10−1, sheared
at strain amplitude γ. We use N = 1000, ε = 0.5, and 1.6 < κ <
31.9. The diffusion constant D is set to 0.0414, the value obtained
by Corté et al. [39]. (a) The data only approximately collapse with
A = (π/φc)3/2d3κ2vs/32D, the scaling proposed by [39]. (b) The data

collapse when plotted versus A = πd2κvs/16φcD.
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method for studying the critical transition, and [37, 59] used center-of-mass con-

serving collisions to suppress long-range diffusion.

Here we probe one aspect of these kinematics in order to make a more precise

comparison to previous results [39]. In a dense portion of the sample, a particle can

encounter multiple other particles during a single cycle. In the present work, we

give just one kick to such a particle, whereas Corté et al. [39] gave one kick for each

particle encountered, which increases diffusion rates in dense regions.

We find that the scaling for obtaining the critical density under sedimentation

does not change between these two models. Figure 2.3 shows φ∞/φc for simulations

we performed with the “multiple kick" rule. The data only approximately collapse

when plotted versus A, but they collapse cleanly when plotted versus A. To contrast

the two expressions, in 5 of these simulations we kept the product κvs constant

while varying κ from 1.6 to 31.9 (with γ = 10), so that A ∝ κvs is fixed but A ∝ κ2vs

varies. Those points show that the data are better collapsed by A, as we found for

single kicks. This test also serves as a further systematic check on our results, as the

two simulation codes were written independently by two of us (J.W. and J.D.P.).

2.3.2 Structure factor

At low sedimentation speed, the suspension is in a critical state, characterized by a

power-law distribution of avalanches that are set off by individual collisions [39].

Although a suggestive connection has been identified between criticality and hy-

peruniformity [54], there is presently no deductive link. To see whether hyperuni-

formity can survive the dynamics of sedimentation and resuspension, we now look

for hyperuniformity in our simulations. Following previous studies [52, 54, 55, 62,
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FIGURE 2.4: Static structure factor. S(k) measured in 2D simulations
with N = 4827, κ = 34.1, and ε = 0.5, at three values of A and in the
steady state. Values are calculated using Eq. 2.2 at wavevectors kx and
ky where an integer number of wavelengths fill the region populated
by the particles. The sum is performed over the bottom 99% of the
particles to avoid the diffuse boundary layer at the top of the sample.
(a) Results for γ = 0.5. At low A, a region with low intensity develops
near the origin, signaling hyperuniformity. (This region is not circular
because of the anisotropic driving.) (b) Results for γ = 3. Despite

larger anisotropy in the structure, hyperuniformity occurs at low A.
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63], we consider the structure factor defined by:

S(k) =
1
N

∣∣∣∑
j

eik·rj
∣∣∣
2
, (2.2)

where k is a two-dimensional (2D) wavevector and rj is the location of the center

of the jth particle. Density fluctuations over large distances in real space affect S(k)

near the origin in reciprocal space; the hallmark of hyperuniformity is that S(k)→ 0

as k→ 0.

Figure 2.4 shows our measurements of the structure factor for two values of

the strain amplitude, γ, and three values of the non-dimensional sedimentation

speed, A. Each panel is an average of 5 systems analyzed at a single snapshot in

time after the system has reached a steady state. For large sedimentation speeds,

A > 1, the data are featureless and show that density fluctuations exist on all length

scales. (The thin white band is due to vertical density gradients.) At smaller A, the

intensity begins to decrease near the origin. Hyperuniformity is clearly present at

A = 0.0077. Crucially, both strain amplitudes produce a hyperuniform state with

no fine tuning of the driving.

2.3.3 Density fluctuations in real space

To probe the system further, we investigate density fluctuations in real space. We

measure the particle number density in circular regions of diameter `, centered at

random locations. As before, we avoid the diffuse boundary layer at the top of the

sample by staying in the bottom 99% of the particles. Denoting the variance of the

number density over these samples by σ2
ρ (`) ≡ 〈ρ2(`)〉 − 〈ρ(`)〉2, hyperuniformity
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is characterized by the rate of decay of σ2
ρ with respect to window size:

σ2
ρ (`) ∝ `−λ, (2.3)

with λ greater than the system dimensionality.

Figure 2.5a shows σ2
ρ (`) for several sedimentation speeds, vs. At the lowest vs,

we observe hyperuniformity with a scaling exponent of λ = 2.60± 0.04. (The data

are also consistent with σ2
ρ (`) ∼ `−3 log(`), a scaling that occurs in jammed pack-

ings [64, 65] and in an isotropic version of the sheared-suspension model in the

presence of noise [37].) Notably, our measurements at low velocity show the same

variance scaling as our simulations of non-sedimenting particles at φ = φc (bottom

curve of Fig. 2.5c with λ = 2.60). At larger velocities, number-density fluctuations

gradually increase, first at long lengthscales and then moving down to smaller `.

The tails at large ` are due to the finite size of the system. In particular, when

the window size ` is comparable to the height of the suspension bed, the sampling

windows are forced to overlap. This reduces the variation in number density as the

measurements are not independent. This effect was identified in [62]; we investi-

gate it further in the next section. The steady-state height of the bed is also shorter

at larger velocities, which limits the data to a smaller range of `.

To demonstrate a hyperuniform scaling of the variance up to even larger length-

scales, we model an analogous system in one dimension (1D). The system is ori-

ented vertically and sedimentation is applied as in the 2D case (see Supplementary

Video 3). Following previous work on such 1D models [30, 66], any particle that is

within an interaction distance γ = 1 of another receives a random kick that is up or

down with a magnitude between 0 and ε. Figure 2.5b shows σ2
ρ (`) measured in the

steady state for different sedimentation speeds. Hyperuniform scaling is observed

over three decades in length with λ = 1.44± 0.02.
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2.3.4 Finite size effects

In Fig. 2.5, the variance of the number density is observed to fall off rapidly at large

`. This occurs when the window size, `, is a significant fraction of the narrowest

system dimension, causing the sampling windows to overlap. The samples are

therefore not statistically independent, so the variation in the number density is

suppressed. This effect has been investigated previously for small variations in

system size [62].

Here we study this effect by probing a large range of system sizes in simula-

tions without sedimentation. We produce hyperuniform distributions of particles

by shearing a square system of side length L near the critical amplitude γc. We

measure the variance of the number density, which decays as `−λ with λ ≈ 2.60.

We then cut subsystems of side length L′ < L out of the original system, and we

measure the variance in the same manner. This is repeated for a total of 6 system

sizes, with ratios L′/L from 0.022 to 1. Each curve is averaged over 42 systems to

suppress noise.

The results are shown in the inset to Fig. 2.6. Each curve follows the same scaling

with ` and falls off rapidly when ` approaches L′. We shift the curves by rescaling

the x axis by L/L′ and the y axis by (L/L′)2.60. Remarkably, all the data fall onto a

single master curve, suggesting that the effect is universal.

2.4 Loss of hyperuniform scaling by linear density gra-

dients

In both 2D and 1D, the loss of hyperuniformity at high sedimentation speeds is no

surprise — these systems show large vertical density gradients at high vs, as shown

already in Fig. 2.2b and seen in earlier work on this model [39]. Nonetheless, one
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wants to know how small the velocity must be to prepare a system in a hyperuni-

form state. In the remainder of this Chapter, we build up a general quantitative

framework that answers this question. Our approach is to split the total variance of

the number density into two additive terms: one from the statistics of the particles

in a critical state, σ2
ρ (`)c, and the other capturing the effect of a global concentration

gradient. That is,

σ2
ρ (`)total = σ2

ρ (`)c + σ2
ρ (`)grad. (2.4)

Our main task is to establish a quantitative description of σ2
ρ (`)grad. As a result

of this analysis, we establish a finite lengthscale `H beyond which hyperuniform

scaling is lost.

To this end, we study the effect of system-spanning density gradients in a well-

controlled setting. First, we generate hyperuniform distributions of particles by

shearing a non-sedimenting system at γ ≈ γc until it reaches a reversible steady

state. We then adjust the y positions of these particles to create a uniform vertical

density gradient. The mapping is uniquely determined by requiring a density map

φ0 → φ(y) = φ0 + |∂φ/∂y|(h− 2y)/2 on a continuum system with constant density

φ0, where 0 < y < h. To see this, we denote the initial uniform distribution by

φL(y) = φ0 and the target distribution by φR(y) = ay + b, as drawn in Fig. 2.7. The

total area under these curves must be identical, so b = φ0 − aH/2, where H is the

height of the system. The mapping must also conserve mass; for a region from the

bottom of the system up to a height y, we have:

∫ y

0
φL(y)dy =

∫ y′

0
φR(y)dy, (2.5)
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where the point at height y maps to height y′. Plugging in the expressions for φL

and φR and performing the integral, we get:

φ0y =
1
2

ay′2 +
(

φ0 −
aH
2

)
y′. (2.6)

Solving for y′, we retrieve the mapping:

y′ =
H
2
− φ0

a
+

√
2φ0y

a
+

(
H
2
− φ0

a

)2

, (2.7)

where a = ∂φ/∂y is the target vertical density gradient.

We measure the variance of these distorted systems, shown in Fig. 2.5c for dif-

ferent values of the gradient, |∂φ/∂y|. As in the full sedimentation simulations, the

variance is affected at large ` first, and at gradually shorter lengths as the perturba-

tion increases.

2.4.1 Variance of density in a continuous system with a linear den-

sity gradient

We can understand these variance curves from simple arguments. We calculate the

variance of a continuous density field with a uniform vertical gradient in a box of

height H and width L, with periodic boundary conditions along x. The density at

position (x, y) is given by:

φ(x, y) = φ0 +
φb − φt

2

(
1− 2y

H

)
, (2.8)
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where φb and φt are the densities at the bottom and top of the system, and φ0 =

(φb + φt)/2 is the mean density. The variance of the number density is defined by:

σ2
ρ (`) = (φ(x, y)− φ0)

2 f (x, y)dxdy, (2.9)

where the probability density function is given by f (x, y) = 1/L(H − `), since

the sampling window cannot cross the top or bottom of the simulation region (i.e.,

`/2 < y < H − `/2). Plugging in and evaluating, we find:

σ2
φ(`)grad =

1
12

(
∂φ

∂y

)2

(H − `)2, (2.10)

where ∂φ/∂y = (φt − φb)/H. Then, converting from concentration to number den-

sity, we find:

σ2
ρ (`)grad =

4
3π2

(
∂φ

∂y

)2

(H − `)2, (2.11)

The total variance in the discrete particle system is obtained by adding this result

to the variance of the corresponding system with no concentration gradient (i.e.,

∂φ/∂y = 0), as anticipated by Eq. 2.4. Figure 2.5c shows that this prediction is in

excellent agreement with the data across all lengthscales and over a large range of

gradients.

The similarity between Fig. 2.5a,b for sedimentation simulations and Fig. 2.5c

for the effect of a simple linear distortion is striking. This result suggests that the

density fluctuations in this system can be largely accounted for by understanding

these concentration gradients. We now move to quantify the strength of the vertical

concentration gradients that arise in the model.
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2.4.2 Vertical density profile

We now derive the vertical density profile, φ(y), in a simplified model of a sheared

sedimenting simulation. We start by solving the simpler case of particles randomly

diffusing with diffusion constant D while sedimenting at an average speed vs. In

the steady state, the flux through a horizontal line at any height must be zero. This

gives:

φ(y)vs = −Dφ′(y), (2.12)

where the left-hand side describes transport due to sedimentation and the right-

hand side describes transport due to diffusion. This equation can be solved to give:

φ(y) = φ(0)e−vsy/D. (2.13)

We additionally assume that φ(y) = 0 above some finite steady-state height h∞.

The coefficient φ(0) is determined from the boundary conditions. All N particles

are contained in a box of width L and height h∞, so:

π

4
d2κ =

∫ h∞

0
φ(0)e−vsy/D. (2.14)

Solving for the coefficient, we get:

φ(0) =
πd2κvs

4D(1− e−vsh∞/D)
. (2.15)
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2.4.3 Magnitude of vertical density gradient

We measure the mean steady-state density gradient, |∆φ/∆y|, by fitting a straight

line to the density profile. We fit the middle 60% of the particles to avoid bound-

ary effects. Figure 2.9 shows our measurements as a function of A. The data are

only approximately collapsed, suggesting that the vertical density gradient is de-

termined by a different balance than what was computed in Eq. 2.1 for the average

density.

In the simple scenario where particles are constantly diffusing in a gravitational

field, the vertical density profile is exponential: φ(y) ∝ e−vsy/D [67]. In the present

simulation model, at the height where the density reaches φc, the particles undergo

few collisions so that diffusion essentially turns off (see Fig. 2.2b and [39]). Thus,

we approximate the density profile as an exponential up to a finite height where

φ = φc, with φ = 0 above that level. This constraint plus the conserved number of

particles yields a unique profile φ(y), with a vertical density gradient given by:

φ′(y) = −πd2κv2
s

4D2
e−vsy/D

1− e−vsh∞/D . (2.16)

In a critical state with h∞ = hc = πκd2/4φc, the second term reduces to e−2A/(1−
e−2A) at half the pack height, y = h∞/2. This expression is order 1 at A = 1, but it

varies widely as a function of A. Nonetheless, the first factor in Eq. 2.16 collapses

the data very well, as shown in Fig. 2.9. Fitting for the numerical prefactor, we find:

∣∣∣∣
∆φ

∆y

∣∣∣∣ ≈ 0.27
d2κv2

s
D2 . (2.17)
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2.4.4 Phase diagram

We can now demonstrate how hyperuniformity is achieved for small density gra-

dients in the full simulations. We insert Eq. 2.17 for the vertical density gradient

into Eq. ?? for the variance of a hyperuniform system subjected to a linear gradient

distortion. We take ` � h (thereby ignoring boundary effects due to the window

encountering the edge of the system), and we assume a critical state where h∞ = hc.

Plugging in and expressing in terms of A, we get:

σ2
ρ (`)total ≈ σ2

ρ (`)c + 4.1A4
φ2

c . (2.18)

This simple expression shows that at a fixed lengthscale `, the total variance is the

sum of a constant term from the statistics of the critical state, σ2
c (`), and a term that

depends on sedimentation via the product A
√

φc.

To test this result, Fig. 2.10a shows the variance σ2
ρ measured at a lengthscale ` =

10 in our sedimentation simulations, as a function of A
√

φc. The data are collapsed,

and they compare well with Eq. 2.18 up to moderate velocities. In Fig. 2.10b, we

plot the magnitude of the scaling exponent, λ, measured locally at ` = 10. The data

are again collapsed at low and moderate velocity, and they show a hyperuniform

scaling (i.e., λ > 2) for sufficiently small A
√

φc.

We construct a phase diagram by measuring the local scaling of σ2
ρ in the same

manner, as a function of ` and A
√

φc. In particular, Fig. 2.10c shows our mea-

surements of the lengthscale `H where λ falls below 2, marking a phase boundary

between hyperuniform and non-hyperuniform scaling. This lengthscale becomes

longer for smaller vs (and hence smaller A) for the simple reason that hyperuni-

form scaling is lost when density fluctuations due to the vertical density gradient

(scaling as A4
φ2

c independent of `) become comparable to the density fluctuations
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in the critical state (σ2
c (`) ∼ `−2.60), as anticipated by Eq. 2.18. Equating these two

terms yields the scaling: `H ∼ (A
√

φc)−4/2.60 ≈ (A
√

φc)−1.54.

Improving on this scaling result, we can predict the precise location of this phase

boundary by solving for the lengthscale `H where the local scaling exponent of

Eq. 2.18 (i.e., ` times the logarithmic derivative of Eq. 2.18) is equal to λ = 2. This

computation yields:

`H ≈ 0.22(A
√

φc)
−1.54, (2.19)

which agrees very well with our data, as shown in Fig. 2.10c. We also obtain a good

description of the 1D simulations by applying the same arguments in that setting

(see the following section). Three measured numerical values have entered into this

calculation of the phase boundary: the numerical prefactor and exponent of σ2
ρ (`)

in the critical state, and the numerical prefactor for the size of the vertical density

gradients in Eq. 2.17. The prediction is otherwise completely constrained by our

physical arguments.

Finally, we note that all the data in Fig. 2.10a-c across a wide range of strain

amplitude, 0 < γ < 10, are in reasonable agreement. Although there are some

differences for larger velocities in Fig. 2.10c, the data for different γ merge together

as the velocity decreases. Hence, for the simulation algorithm and protocol studied

here, there seems to be no practical limit on the value of γ for preparing a hyper-

uniform sample. We have even considered the case where γ = 0, in which particles

receive kicks when they come in contact with each other. Although this limit is

not so physical, it suggests that all that is needed is a source of displacements for

particles that are sufficiently close.
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2.5 One-dimensional model

We can predict the loss of hyperuniform scaling in the 1D system by tailoring our

arguments to this dimension. First, the nondimensional A1D is given by:

A1D =
1
2

dNvs

φcD
. (2.20)

Eq. 2.1 (for the effect of a linear gradient on the variance of the number density)

applies to 1D with no modifications, as it already averages over the x coordinate.

The scaling for vertical density gradients is modified to:

∣∣∣∣
∆φ

∆y

∣∣∣∣ ≈ 0.36
dNv2

s
D2 , (2.21)

where we obtain the numerical prefactor by fitting to the data, shown in Fig. 2.11a.

Adding the variance due to the vertical density gradient to the variance in the

critical state without sedimentation, we get for the total variance in 1D:

σ2
ρ (`) ≈ σ2

c (`) + 0.17A4
1Dφ2

c . (2.22)

We then solve for the length-scale `H where ` times the logarithmic derivative of

Eq. 2.22 (i.e., the local scaling exponent) is equal to λ = 1, where we use σ2
c (`) ≈

0.15`−1.44 from our measurements in 1D (see Fig. 2.5b). This computation yields:

`H ≈ 0.51(A1D
√

φc)
−2.78. (2.23)

We plot the 1D phase diagram in Fig. 2.11b, where the data are obtained in the same

way as in 2D. The prediction is in good agreement with the data.
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2.6 Discussion

We have proposed and demonstrated a simple method for obtaining homogeneous

distributions of particles in non-Brownian suspensions. The ingredients are ex-

tremely simple: we take advantage of a density mismatch between the particles

and the fluid that is common in real settings, plus cyclic shear flow. This proto-

col could be used to ease processing demands in applications. Of course, there are

other means for evenly distributing particles in a fluid; chaotic advection has re-

cently been proposed as another route for homogenizing a suspension [68]. The

key advantage of our method is that the driving amplitude does not have to be set

to a specific critical value. More broadly, we have shown that even in the presence

of body forces on the particles, local collisions are sufficient to reach and maintain a

homogenous state with hyperuniform scaling.

Looking beyond rheological behaviors, hyperuniform distributions of scatter-

ing sites can endow disordered colloidal suspensions with isotropic photonic band

gaps [69, 70]. Our method could be used to prepare bulk materials with such optical

properties, without the need to fine-tune the driving [54]. Moreover, by changing

the driving amplitude, the mean particle spacing can be varied continuously while

maintaining a hyperuniform state.

Surprisingly, our work has revealed three distinct combinations of the param-

eters κ, vs, φc, and D that control self-organization in this system. The criteria for

obtaining the critical density is set by the dimensionless parameter A ∝ κvs/φcD,

vertical density gradients scale with κv2
s /D2, and hyperuniformity is controlled by

A
√

φc ∝ κvs/
√

φcD. By considering the interplay between these effects, we have

identified an emergent lengthscale `H above which hyperuniform scaling breaks

down. This lengthscale, arising from a competition between local organization and

large-scale gradients, is sufficiently general that it should arise in other systems
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with different driving.
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FIGURE 2.5: Number density fluctuations. (a) Steady-state variance of
the number density, σ2

ρ , versus window size, `, in 2D simulations with
sedimentation and shear. The variance is calculated by measuring the
number density of particle centers, ρ, in circular windows of diameter
` sampled uniformly throughout the suspension. Each curve is an av-
erage of 50 systems with N = 9677, γ = 3.0, and κ = 48.4. At low
sedimentation speed, hyperuniform density fluctuations are observed,
as shown by the dotted line following 0.17`−2.60. The data are also con-
sistent with a larger exponent with a logarithmic correction: `−3 log(`)
(solid line). An uncorrelated system would follow a scaling of `−2. (b)
Analogous results in 1D simulations, averaged over 20 systems with
N = 3000 and γ = 1. At low sedimentation speed, hyperuniform den-
sity fluctuations are observed over 3 decades in `, following 0.15`−1.44.
An uncorrelated system would follow a scaling of `−1. (c) Variance of
the number density for initially hyperuniform 2D systems that were
scaled along the y axis to impose a constant density gradient, |∂φ/∂y|.
Each curve is an average over 31 systems with N = 10186, γ = 3.01,
L = 200, and φ = 0.2. The variance increases with the size of the gradi-
ent. The data are precisely captured by summing the measurement at
zero gradient with a term due to a uniform gradient that we calculate
in the continuum limit (dashed lines: Eq. ?? computed with the value

of |∂φ/∂y| in the legend).
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Inset: Variance of the number density, σ2

ρ , versus ` for a square system
of size L = 200 and subsystems of size L′ < L. The largest system has
N = 10186, φ = 0.2, and is sheared cyclically at amplitude γ = 3.01 ≈
γc until it reaches a reversible state. We thus obtain a hyperuniform
configuration with a scaling exponent λ = 2.60. Main: We shift the
curves by scaling the x axis by L/L′ and y axis by (L/L′)λ. The data
collapse onto a single master curve, which falls off rapidly when `L.
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FIGURE 2.7: Mapping a constant-density profile to a profile with a
constant vertical gradient. Left: Density profile, φL(y), versus vertical
position, y (where the dependent variable is on the x axis so that ver-
tical axis is oriented as in the simulation). The system has a uniform
distribution along the y axis with a constant area fraction φ0. Right:
Target density profile of the form φR(y) = ay + b. The shaded region
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FIGURE 2.10: Self-organized hyperuniformity. (a) Variance of the
number density, σ2

ρ , for sampling windows of size ` = 10. The data
over a wide range of parameters are collapsed when plotted versus
A
√

φc. At low velocity (i.e., low A
√

φc), the data plateau to the value
in the critical state. The increase at moderate velocities is well captured
by Eq. 2.18 (dashed line) for the effect of vertical density gradients. (b)
Magnitude of the local scaling exponent, λ, measured at ` = 10. Hype-
runiform scaling (λ > 2) is observed for A

√
φc0.08 at this lengthscale.

(c) Phase diagram for hyperuniform density fluctuations. Hyperuni-
formity emerges below a finite threshold value of A

√
φc, and it extends

to longer lengthscales as the control parameter A
√

φc decreases. Sym-
bols: Lengthscale `H where the local scaling exponent λ of the variance
σ2

ρ (`) is shallower than 2. Dashed line: Phase boundary from our the-
ory with no free parameters, Eq. 2.19.
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Chapter 3

Self-organized compaction fronts in

cyclically-sheared sinking grains

This chapter is based on a manuscript being prepared for submission with J. M. Schwarz

and J. D. Paulsen as co-authors. My contribution was to write original simulation code,

perform and analyze the simulations, and contribute to the discussion of the results and the

writing of the manuscript.

3.1 Background

At thermal equilibrium, the interface separating two coexisting phases is diffuse:

the composition varies continuously from one phase to the over a finite length.

Recent experiments on dynamic jamming fronts in two dimensions [1] identified

a diffuse interface between the jammed and unjammed discs. In both cases, the

thickness of the interface diverges as a critical transition is approached. Noting

this similarity, we investigate the generality of such interfaces using a third system:

random organization in a model of cyclically-sheared non-Brownian suspensions.

We sediment the particles towards a boundary to initiate traveling fronts between
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an active irreversible phase and a quiescent reversible phase. The front width di-

verges as a critical concentration is approached, which we connect with a diverging

lengthscale in the bulk.

When a collection of loose grains is impacted, a jammed region may develop

that grows as it amasses more and more grains on its propagating boundary [71,

72]. Such dynamic jamming underlies the unsteady stress transmission in a wide

range of settings, from iceberg-choked fjords [73] to water and cornstarch suspen-

sions [74–76]. Jamming fronts are also present at low strain rates in the sedimenta-

tion of suspensions, as particles accumulate at the interface marking the top of the

sediment [77, 78]. Understanding the response of such disordered systems driven

far from equilibrium continues to be a frontier of soft-matter science [79].

3.1.1 Dynamical jamming front

Recent experiments by Waitukaitis et al. [44] found that the interface between the

dynamically jammed mass and its quiescent surroundings may be surprisingly

thick. They observed a finite front width that diverged as the dilute phase ap-

proaches the jamming density, which they rationalized by appealing to a diverging

correlation length at the jamming point [80–83]. The width of such fronts is im-

portant because it influences when the growing phase starts to interact with other

boundaries or obstacles. However, it was not clear whether their arguments could

translate to other settings, to serve as an organizing principle among other nonequi-

librium systems.
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3.2 Sedimenting suspensions

Here, we show how to obtain propagating fronts in another system falling in a dis-

tinct universality class. We study random organization in a simplified model of

non-Brownian particles under cyclic shear [30]. By sedimenting the particles into

a hard boundary [39, 84], we create a propagating interface between irreversible

and reversible regions in the suspension (Fig. 3.1b). We show that the front width

diverges as the dilute phase approaches the critical density, as was found in the jam-

ming scenario [44]. We then link the interface thickness to a bulk correlation length

by measuring a growing correlation length in systems without sedimentation. Un-

like in the jamming scenario, the dense phase is mobile with an effective diffusion

constant, whose magnitude surprisingly does not affect the front width. Our results

reveal qualitative connections between dynamic interfaces in jamming and random

organization, as well as static interfaces in equilibrium systems near criticality.

3.2.1 Model

Our simulations are based on a simplified model of cyclically-sheared suspensions

proposed by Corté et al. [30]. We use a zero-shear version of the model [55], which

has the same qualitative behaviors as for finite shear. The model evolves the dy-

namics of N discs of diameter d = 1 in a box of area L2 using discrete cycles, where

particles that overlap during a cycle are given a small kick in a random direction

(Fig. 3.1a), with a magnitude chosen uniformly between 0 and a fixed maximum

kick size, ε. For small area fractions φ0 = Nπ/(4L2), the particles eventually self-

organize into one of many random absorbing states, where there are no overlaps

and the dynamics is reversible thereafter. Previous work identified a critical tran-

sition at a density φc, so that for φ0 > φc the steady state is irreversible and the
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FIGURE 3.1: Self-organized compaction front. (a) Simplified model of
a cyclically-sheared suspension after Ref. [30]. In each cycle, a uniform
sedimentation velocity vs is applied to all particles, and particles that
overlap (red) are given random kicks, to simulate local irreversibility
due to collisions. (b) In the simulations, a dense region grows upwards
with a front velocity v f . When the front reaches the top of the system,
a steady state is attained. (c) Scaled front velocity, v f /vs. Dashed line:
Theoretical prediction [Eq. (3.1)], which assumes that the dilute and
dense phases have uniform densities equal to φ0 and φc (measured in-
dependently). Parameter ranges: 0.05 ≤ ε ≤ 10, 300 < N < 16300,

10−6 ≤ vs ≤ 4× 10−4, 0.05 ≤ φ0 ≤ 0.40, 0.15 ≤ φ0 ≤ 0.44.

dynamics is diffusive at long times [30, 85].

Significant effort has been devoted to understanding the behaviors of this model

under uniform initial conditions and driving [52, 59, 61, 86–88]. Here we probe the

transient dynamics under the addition of slow sedimentation. Following Refs. [39,

84], each cycle in our simulations has an additional component in which all particles

are displaced downwards by a uniform amount, vs. To capture collisions with the

bottom wall, all particle centers with y < d/2 are reflected about that line at the end

of each cycle. We apply periodic boundary conditions to the side walls. We study a
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FIGURE 3.2: Interface shape and thickness. (a) Density profile snap-
shots, spaced evenly in time. The system has ε = 0.5, vs = 1.7× 10−5,
φ0 = 0.2, φc = 0.376. Translating these 6 profiles atop one another
shows that the front propagates with a fixed shape and width. The
measured profile is consistent with a sigmoid function (dashed line).
We fit this function to the data to measure the front width, ∆ f , for each
simulation. (c) Measured front width, ∆ f , versus distance to criticality
of the sedimenting phase, φc − φ0. Closed symbols: transient fronts.
Open symbols: interface at the top of the system in the steady state
(where φ0 is therefore taken to be zero). The data at sufficiently small
φc − φ0 are consistent with a power-law with exponent −1.20 ± 0.15
(dashed line). (d,e) To test for any dependence on other system param-
eters, we divide the data by the power-law fit in panel (c). The behavior
shows no trend with kick size, ε. There is also no growth of the front
width with the system width, which would occur if the interface were
rough. Parameter ranges in (c-e): 0.05 ≤ ε ≤ 10, 300 < N < 8600,

10−7 ≤ vs ≤ 4× 10−4, 0.05 ≤ φ0 ≤ 0.40, 0.15 ≤ φ0 ≤ 0.44.

regime at low sedimentation speed, where the timescale for sedimentation is longer

than the timescale for diffusion: vs � 16φcDL/(πd2N), where D is the coefficient

of diffusion for a non-sedimenting system measured at φ = 2φc.

Figure 3.1b shows a typical system evolution. In the steady state (rightmost

image), the particles settle into a column with an approximately constant density

that is very near φc, as was shown before [39, 84]. Here we see that the system

reaches this state by a front that moves upwards through the system, separating a

compacted region from a dilute region. Each simulation setting has been simulated

200 to 400 times for averaging to acquire quality results for plotting.
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FIGURE 3.3: Response to point perturbation. (a) Starting from a qui-
escent state, a perturbation may set off a chain reaction in which many
particles are activated before the system becomes quiescent again. The
red particles were active at some time during the avalanche; darker
particles received more total kicks. (b) Histograms collected over
many systems for the distance to the farthest activated particle, `, the
number of activated particles, n, and the avalanche duration in cycles,
t. Solid lines: Fits to Eq. (3.7), where the measured exponent α is indi-
cated in each panel. (c) The curves are approximately collapsed when
scaled by the position of the exponential cutoff. (d) Value of the cutoff
versus φc − φ0. Each curve diverges as a power law, with another ex-
ponent that is distinct from α (see Table 3.1). All data are for ε = 0.5

and L = 400.

3.2.2 Front velocity and particle conservation

If we assume that the dilute region has constant density φ0 and the sediment has

constant density φc, then conservation of area dictates [78]:

vsφ0 = v f (φc − φ0) , (3.1)

where v f is the speed of the front. We compare this prediction with the measured

v f in Fig. 3.1c, where we obtain φc from independent simulations without sedimen-

tation that otherwise matches the conditions of the particular data point (e.g., same
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N, L, ε. We find very good agreement, validating this straightforward picture for

the front velocity.

These considerations do not constrain the front profile. Figure 3.2a shows the

density profile from a typical simulation at equal intervals in time. Shifting the

curves onto one another, we find that the front shape is invariant in time (Fig. 3.2b).

It could be consistent with a sigmoid or an error function.

3.2.3 Derivation of the front profile

Assuming that front has already formed and has a profile of the hyperbolic tangent

function. We also assume that, at packing fraction , the chance of the existing active

cluster of particles stopping is

p(φ) =
1

φc − φ
(3.2)

Then, we can calculate the probability distribution of where would an incoming

active cluster of particles stop due to the lack of surrounding particles.

f (y) = p(φ(x))
y

∏
−∞

(1− p(φ(x)) (3.3)

By calculating the derivative of the front profile function we can obtain the incre-

mental change of density between cycles.

dφ

dy
=

φc − φ

∆y

(
e

y f−y
∆y + e

y−y f
∆y
)−1

(3.4)

We measure the front width by fitting the profile to the function:

φ(y) = φ2 −
φ2 − φ1

1 + e(y−y f )/∆ f
. (3.5)
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Note that the densities φ1, φ2 represent the measured density plateaus and may

differ slightly from φc and φ0. We fit them to the data to ensure that ∆ f corresponds

to the interface thickness and is not influenced by variations in these quantities.

Noting that the particles are diffusive in the sediment, one may expect the kick

size ε to affect the front width, since larger ε leads to a larger effective diffusion

constant, D. Surprisingly, we find the front width to be independent of ε in our

simulations. Instead, we find that the front width depends on φc − φ0 alone, as

shown in Fig. 3.2c. We can find the same behavior in the steady state, by measuring

the thickness of the interface at the top of the system, where in this case φ0 is taken

to be zero. These data are plotted as open symbols in Fig. 3.2c. Altogether, the data

are consistent with a power law:

∆ f ∝ (φc − φ0)
−β . (3.6)

with β = 1.19± 0.13. Note that φc and φ0 are already determined for these data in

the same manner as Fig. 3.1c, so that the uncertainty is due to the scatter in the data.

To test this picture further, Fig. 3.2(d,e) shows the same data where we now di-

vide the measured ∆ f by Eq. 3.6. Plotting the results as a function of ε, we confirm

that the interface thickness shows no trend with kick size. Plotting the results as a

function of W indicates that the interface is not rough [89], as ∆ f does not system-

atically increase with system width, W.

3.3 Correlation lengthscale

A finite interface thickness observed in dynamic jamming fronts was explained by

appealing to a diverging correlation lengthscale on approach to jamming [44]. For

random organization, diverging lengthscales have been reported with exponents
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Expression DP CDP/Manna Present work
Decay Maximum radius 2τ − 1 1.536 1.560 1.63± 0.10

Size τ 1.268 1.280 1.39± 0.07
Duration τt 1.450 1.510 1.47± 0.09

Cutoff Maximum radius, `∗ 1/(2σ) 1.089 1.115 1.03± 0.08
Size, n∗ 1/σ 2.179 2.229 1.82± 0.20
Duration, t∗ 1/σt 1.297 1.225 1.45± 0.14

TABLE 3.1: Comparison of critical exponents. Values are shown for
directed percolation (DP, obtained from Ref. [34]), conserved directed
percolation (CDP/Manna, obtained from Ref. [35]) and the present
work using point perturbations in the isotropic random organization

model. Greek notation matches that of Ref. [34].

ranging from 0.72 to 1.1. In particular, Tjhung and Berthier [61] reported static and

dynamic lengthscales with exponents of 0.73± 0.04 and 0.77± 0.06 respectively, and

a hyperuniform lengthscale with exponent 0.76 or 1.23 when approaching φc from

below or above, respectively [55]. Hexner and Levine reported a hyperuniform

lengthscale with an exponent 0.8 for noiseless systems [54] and 1.1± 0.1 when noise

is present [88]. However, it is not a priori clear which of these exponents might be

related to the diverging front width that we observe.

3.3.1 Point perturbation

One intuitive method to probe a diverging lengthscale is to perturb the system at

a point and measure the characteristic radius of the region that responds, as was

done for the jamming transition [81]. This approach is appealing for the problem at

hand, where the front marks the top surface of the active region at φc where parti-

cles are continually activated, causing further activations to propagate up through

the dilute region at density φ0. In our regime at low sedimentation velocities, the

thickness of the interface may correspond to the maximum vertical extent of these

avalanches.
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To study the response to a point perturbation, we start by initializing systems

at some φ0 < φc in a square box of side L = 400, and evolve them to a reversible

state in the absence of sedimentation. Then, we give one particle a random kick.

We again evolve the system to a reversible state. Figure 3.3a shows an example

where the colored particles were active at some time during the avalanche. (Initial

positions shown? Final positions?) For each avalanche, we measure the distance

(initial? Final?) to the farthest particle that is activated, `, the total number of parti-

cles that are activated, n, and the duration of the avalanche in cycles, t. If no other

particles are activated, this corresponds to ` = 0, n = 0, and t = 0.

3.4 Universality class

3.4.1 Calculation of scaling exponents

To build up statistics, for each value of φ0, we generate up to 100 reversible states

as the initial states for the perturbation; each is used in 1, 000 tests where we select

one particle at random, give it a random kick, and observe the resulting avalanche.

Histograms of these quantities are shown in Fig. 3.3b, for five different values of

φc − φ0, all with ε = 0.5. We find good fits to the function:

P(x) ∝ x−α exp(−x/x∗) , (3.7)

where α is determined by fitting a power law to the curve that is closest to the

critical state, and then A, x∗ are fit for each curve. The data may be collapsed onto

a master curve (Fig. 3.3c). We find good collapses for the histograms of ` and n but

not as good for t, as the data for t10 are not as steep and thus peel off the collapse.
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Although data for only five densities are shown in Fig. 3.3b,c for illustration, in

total we generate histograms at over 200 distinct values of φc− φ0, and we fit Eq. 3.7

to each of them. Our measurements of `∗, n∗, and t∗ are shown in Fig. 3.3d. Each

diverges with a different exponent.

3.4.2 Compared with DP and CDP

Together with Fig. 3.3b, we measure six exponents from these data, which we list in

Table 3.1. The values could be consistent with the directed percolation universality

class or conserved directed percolation. Of particular interest is `∗, which signifies

the largest radial extent of a ‘typical’ avalanche. We propose it is central to setting

the interface thickness in the sedimenting suspensions. We measure the exponent

to be 1.03± 0.08, consistent with the measured exponent for the interface thickness

in the sedimentation simulations, 1.19± 0.13 (Fig. 3.2c).

Such comparisons of exponents have been made previously [30, 55, 61, 86],

but the exponent 1/(2σ) from DP or CDP had not been identified as controlling

a lengthscale in random organization, as we have shown here. It may correspond

to the exponent for the lengthscale ξ2 in Ref. [88], for which they measured an ex-

ponent of 1.1± 0.1 in the Manna model.

3.5 Discussion

Whereas Young and Laplace conceived of fluid interfaces as zero-thickness sur-

faces, it is now understood that physical properties make rapid but smooth tran-

sitions there [90]. The finite thickness of an equilibrium fluid interface becomes

most apparent near a critical point, where the interface becomes more and more

diffuse and its thickness diverges [91–93]. Here, we observed an interface between
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reversible and irreversible phases in a model of a cyclically-sheared suspension, and

we demonstrated the divergence of its thickness in the vicinity of a nonequilibrium

critical point.

Several properties of the interface place it in contrast with other non-equilibrium

systems. The front widths we observe are invariant in time, unlike many interfacial

growth phenomena captured by Poisson-like growth or the Kardar-Parisi-Zhang

universality class [89, 94, 95]. Our interfaces are also not observed to roughen, un-

like in the two-dimensional Ising model [96]. Instead, our interfaces bear a stronger

qualitative resemblance to an equilibrium fluid near a critical point, where a diverg-

ing bulk lengthscale is likewise associated with the diverging interface thickness

[93].

We have also identified strong similarities with the phenomenology of dynamic

jamming fronts [44]. Relationships between random organization and jamming

have been explored in the past by developing simple models that can interpolate

between these two possible limiting behaviors of particulate systems with random

or deterministic pairwise interactions [85, 97]. Here we unified a particular phe-

nomenology in these systems by comparing results from previous dynamic jam-

ming experiments [44] and our simulations of random organization. We propose

that the essential shared features are (i) a critical transition, and (ii) a mechanism

for driving the system from a dilute phase towards a dense phase that has an upper

limit on its density. Here we have shown that slow sedimentation [39, 84] pro-

vides such a route for random organization. The connection is perhaps surprising

as there is a nonlinear diffusion process in random organization, which one might

expect would further broaden the fronts. We have shown that it does not. Yet, this

nonlinear diffusion process offers a potentially useful feature: the critical phase of
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a cyclically-sheared suspension may be continuously varied by changing the driv-

ing amplitude, allowing some control over the dense phase that is not available in

jamming.
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Chapter 4

Conclusion

4.1 Summary

Thank you for reading through my thesis and here is a summary of what I and my

advisors did in the past years and what we have learned from it. We first learned

the concept of hyperuniformity which, at that time, was a novel and emerging topic

that captured many researchers’ attention. Joey proposed the idea of sedimentation

and suggested we find hyperuniformity in a sheared sedimenting suspensions. We

conducted simulations based on Corté’s model and performed statistical analysis

on data. We then found reduced large scale spatial density variations (hyperunifor-

mity) and further confirmed it via examination of structural factors. Because of the

nature of sedimentation, there exists a density gradient that interferes with gener-

ating hyperuniform suspensions. Thus, we derived a theoretical model to directly

predict the point at which the system loses hyperuniformity. More importantly,

we quantified the necessary system conditions and preparation time to achieve hy-

peruniformity in a sheared sedimenting system. After getting familiar with inho-

mogeneous suspensions, we proceed to explore more properties is such a system.

Inspired by dynamical jamming fronts [1], we focused on researches of a similar

compaction front that has been discovered in our system. The propagating front

62



shows up when suspensions start to sediment and disappears when the suspension

is in steady state. We found the hyperbolic function is a good match to the density

profile of the transitional front. The width of the front was verified only depends

on the difference of packing fraction of two separate sides while not relate to other

system parameters. This surprised us for its counter-intuitive phenomenon and re-

vealed the intrinsic behavior of sheared suspensions. This may indicate that the

geometry of such a system can be invariant even with different dynamical proper-

ties of the system. We continued to acquire information of the corresponding ho-

mogeneous system to be compared with compaction fronts. We performed single

point perturbation to the system and measured various quantities including max

reach of a perturbed active cluster, cluster size, and duration of the cluster. Thus,

we can compare the scaling of different realizations of suspensions and eventually

compare them to the universality class of DP and CDP.

4.2 Future works

Although I have spent some quality time researching the self-organization of disor-

dered systems. There are still some unfinished work or interesting directions that

can be further studied for the best.

4.2.1 Hyperuniformity in higher dimension

Since our work is entirely based on 2D suspensions, we were always wondering

if there exists hyperuniformity in 3D sedimenting suspensions. Using simulation

scripts based on Corté’s model, it’s not hard to implement a 2D system with enough

particles to utilize. When encountered with a higher dimension system, the simu-

lation model will require significantly increased computing workloads. This can
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be optimized via updating the model, improve the algorithm, or using better hard-

ware like GPUs or distributive computing facilities. We currently have little idea of

higher-dimensional hyperuniformity and this research could be quite helpful for us

to understand it in a more abstract way.

4.2.2 Hyperuniformity in networks

With the knowledge of hyperuniformity of higher dimensions, we can further our

reach to networks. Like the force network that people construct in a jammed system,

we can also construct a probabilistic network that connects particles in a loosely

packed system. This enables us to borrow powerful analytical tools from graph

theory to analyze a hyperuniform system and compare it to a typical disordered

system. Thus, we can have a new way of measuring hyperuniformity and, more

importantly, a perspective of hyperuniformity in networks. Modern networks in-

clude neural networks, traffic networks, logistic networks, social networks and so

much more. The unique features of a hyperuniform network could lead us to a

deeper understanding of nature and its principles.

4.2.3 Robustness of hyperuniform networks

A neural network in the human brain is designed to perform sophisticated tasks

and, at the same time, to be robust to improve our chance to survive in a rapidly

changing environment. It’s proven that a hyperuniform system will contain less

amount of information with the same amount of media compared to a random sys-

tem. This could have its unique value in various applications. Our brain may utilize

this redundant structure to accommodate damages in our neural network. When

developing machine learning models, applying the mechanism of random organi-

zation may suppress overfitting and improve validation scores.
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