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Abstract

This dissertation studies the properties of the conditional mode estimator of stochastic fron-

tier models and applies it to measure technical inefficiency. It consists of two chapters.

The first chapter analyzes the conditional mode estimator’s closed-form expressions, con-

vergence, near-minimax optimality when interpreted using Lasso, and selection rules. The

second chapter applies the true fixed effect stochastic frontier model (Greene, 2005a,b) to

analyze the persistent and transient technical inefficiencies of 425 NYC public middle schools

for cohorts of students that graduated between 2014 to 2016.
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Introduction

This dissertation studies the estimation of technical inefficiency under stochastic frontier

models. In particular, it revisits the conditional mode estimator, which was proposed by

Jondrow et al. (1982) but has been by and large overlooked. This dissertation fills in the

vacuum of research on the conditional mode estimator by taking a closer look at its various

properties in the first chapter and applying it empirically to measure education inefficiency

in the second chapter.

The first chapter is a taxonomy of the various properties of the conditional mode estimator.

It also advocates its use for three reasons. First, similar to the conditional mean estimator,

the conditional mode estimator converges to the real inefficiency when its signal-to-noise ratio

converges to zero. Second, the conditional mode estimator can take the value zero, allowing

policymakers to find efficient units. We also introduce Horrace (2005) probabilities to assess

the selection rule inferred by the zero conditional mode estimates. Third, we show that the

conditional mode estimator achieves near-minimax optimality as it can be re-interpreted as

a LASSO estimator. This chapter also includes several Monte Carlo experiments and an

application to U.S. electric plants to illustrate how to apply the conditional mode estimator.

The second chapter applies the conditional mode estimator to analyze school efficiency.

Specifically, we estimate the persistent and transient technical inefficiencies in Mathematics

(Math) and English Language Arts (ELA) test score gains in NYC public middle schools from

2014 to 2016, using panel data and a "true" fixed effect stochastic frontier model (Greene,

2005a,b). It compares several measures of transient technical inefficiency and show that

around 58% of NYC middle schools are efficient in Math gains, while 16% are efficient in ELA

gains. Multivariate inference techniques are used to determine subsets of efficient schools,

providing actionable decision rules to help policymakers target resources and incentives.
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Chapter 1

The Conditional Mode Estimator in Parametric

Frontier Models

1.1 Introduction

This chapter studies the estimation of technical inefficiency in stochastic frontier models.

Stochastic frontier models (SFM) were introduced by Aigner et al. (1977) and Meeusen and

van den Broeck (1977). They are statistical techniques used to estimate production (or

cost) functions. Here, we primarily consider the canonical cross-sectional stochastic frontier

model, written as:
Yi = f(Xi, β) + εi,

= f(Xi, β) + vi − ui,
(1.1)

as the basis of our analysis. Yi and Xi are the production output and vector of inputs of

firm i, where i = 1, ...., N . SFM differs from traditional production functions in its error

term. The composite error ε is made up of two components, ε = v − u, where v represents

statistical noise and u captures the inefficiency that prevents production from reaching its
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frontier. Hence, it is non-negative1. We refer to u as technical inefficiency. Here we also

assume that u and v are independent and identically distributed as well as independent of

each other and X.

One of the main applications of stochastic frontier models is to estimate the technical inef-

ficiency, ui, for each firm i. The challenge lies in separating technical inefficiency ui from

statistical noise vi, as both are random variables and hence can’t be separately identified. To

address this problem, Jondrow et al. (1982) proposes using the mean and mode of the condi-

tional distribution of ui|εi, namely, E(ui|εi) and M(ui|εi), to measure inefficiency. We refer

to them as the conditional mean estimator and the conditional mode estimator hereafter.

Jondrow et al. (1982) also derives the closed-form expressions of both the conditional mean

and the conditional mode estimator under normal-half normal (NHN) distributions, which

means that vi ∼ N(0, σ2
v) and ui ∼ |N(0, σ2

u)|, and normal-exponential (NE) distributions,

which we write as vi ∼ N(0, σ2
v) and ui ∼ Exp(1/σu), namely, f(ui) = (1/σu) exp (−ui/σu).

Since Jondrow et al. (1982), a plethora of papers have been written either studying the

properties of the conditional mean estimator or applying the conditional mean estimator

in an empirical setting to estimate inefficiency. In terms of its closed-form expressions, the

conditional mean estimator is derived in a wider range of distributional assumptions. For

example, the normal-truncated normal distributional assumption is introduced by Stevenson

(1980) and the conditional mean estimator’s expression in this setting is derived in Kumb-

hakar and Lovell (2003); Normal-gamma distributions are considered by Greene (1980a),

Greene (1980b), and Stevenson (1980) and the parametric form of the conditional mean

estimator in this setting is derived in Greene (1990); Horrace and Parmeter (2018) considers

the Laplace distribution in stochastic frontier models. Nguyen (2010) derives the closed-

form expressions under normal-uniform distributions, Laplace-exponential distributions and
1It would be non-positive if it is a cost frontier.
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Cauthy-half Cauthy distributions. In terms of properties, Wang and Schmidt (2009) de-

rives the distribution of the conditional mean estimator and studies how it converges when

the signal-to-noise ratio converges to zero or infinity; Simar and Wilson (2010) proposes a

bootstrap method to construct the confidence interval of the conditional mean estimator.

The conditional mean estimator has also been applied to analyze the inefficiency of schools,

banks, and others. Chakraborty et al. (2001) uses the conditional mean estimator to mea-

sure the technical inefficiencies of school districts in Utah; Mokhtar et al. (2006) uses it to

compare the efficiencies between Islamic banking and conventional banking; Flores-Lagunes

et al. (2007) applies it to measure fishing vessels’ technical efficiencies, just to name a few.

In sheer contrast to the popularity of the conditional mean estimator, the conditional mode

estimator has been rarely considered. Its closed-form expressions were only extended to

normal-gamma and normal-truncated normal distribution assumptions by Kumbhakar and

Lovell (2003), and we have also yet to find studies that analyze its properties or apply it

to any empirical settings. This chapter tries to fill in this gap by deriving the closed-form

expressions of the conditional mode estimator under various distributional assumptions and

studying their properties.

Based on the findings, we advocate using the conditional mode estimator, in addition to the

conditional mean estimator, when measuring technical inefficiency for several reasons. First,

when the conditional mean estimator is solely used, the estimates are strictly positive, which

implies that all the firms are not operating efficiently. One way to interpret the results is

to consider the firm with the lowest inefficiency estimate as the efficient firm, which is a

rather restrictive assumption2. Also, the value of the conditional mean estimator is strictly

monotonic with the value of the residual, which precludes the possibility of firms being
2 Kumbhakar et al. (2013) attempts to relax this assumption by proposing a ’zero inefficiency stochastic frontier’

that allows for the existence of both efficient and inefficient units with another set of assumptions.
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tied in inefficiency, as it is highly unlikely that different firms’ residuals are identical. The

conditional mode estimator is able to address the aforementioned problems. As one can

easily tell from its closed-form expressions under common distributional assumptions, the

conditional mode estimator allows firms’ estimated technical inefficiencies to be tied at zero

when their residuals do not surpass a certain threshold.

Second, the conditional mode estimator has similar properties with the conditional mean

estimator in terms of convergence. Specifically, following Wang and Schmidt (2009), we

also show that when σv converges to zero, the conditional mode estimator converges to the

real technical inefficiency, and when σv converges to infinity, the conditional mode estimator

converges to the mode of the distribution of real technical inefficiency3.

Third, the conditional mode estimator achieves near-minimax optimality. It is well known

that LASSO (Least Absolute Shrinkage and Selection Operator) minimizes the risk of es-

timation of inefficiency in the panel data setting when there are many efficient firms (or

firms with zero inefficiency). In this chapter, we argue that the conditional mode estimator

for inefficiency can be interpreted as a LASSO type estimator for cross-sectional SFM. It

also possesses near-minimax properties like the LASSO estimator. In other words, using the

conditional mode estimator to estimate technical inefficiency minimizes the maximum risk.

In addition, this chapter also assesses the selection rule based on the results of conditional

mode estimates. As Horrace and Schmidt (1996) point out, both the conditional mean and

the conditional mode estimator are point estimators of the technical inefficiency, which will

not sufficiently capture the entire distribution of inefficiency. To address this problem, sev-

eral approaches have been proposed. For example, Horrace and Schmidt (2000) introduce

multiple comparisons with the best (MCB) approach and apply it to assess time-invariant
3Both half normal and exponential distributions’ modes are at 0.
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technical inefficiency in the fixed-effect stochastic frontier model. Bera and Sharma (1999)

calculate the conditional variance of the estimate. Here we apply the probability statement

method proposed by Horrace (2005) as our inference method. It was used previously to

calculate the probability of particular fishing vessels being efficient (Flores-Lagunes et al.,

2007). Here, combined with the results of technical inefficiency estimates, we use it to mea-

sure the probability of selection rules inferred by the conditional mode estimates containing

the most efficient firm.

The rest of the chapter is organized as follows. In section 1.2, we compile the closed-form

expressions of the conditional mode estimator under the most commonly used distributional

assumptions and extend the expressions to cases under the Laplace distribution (Horrace and

Parmeter, 2018). The conditional mode estimator’s density function is also derived. We show

that it converges in a similar way with the conditional mean estimator when the signal-to-

noise ratio changes. We proceed to use conditional mean and conditional mode estimates to

construct selection rules and assess their reliability using the probability statement approach

in section 1.3. Re-interpretation of the conditional mode estimator as a LASSO estimator is

explained in detail in section 1.4. In section 1.5, we conduct several Monte Carlo experiments

to compare the performances of the conditional mean and the conditional mode estimator

under a range of signal-to-noise ratios. An empirical application analyzing the inefficiency

of U.S. electric utility firms is provided in section 1.6. A summary of the chapter is included

in section 1.7.
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1.2 Closed-Form Expressions and Distributions of the

Conditional Mode Estimator

1.2.1 Closed-Form Expressions of The Conditional Mode Estima-

tor

Most of the closed-form expressions of conditional mode are derived under the assump-

tion that vi is normally distributed. Conveniently, under such assumption, ui|εi often also

follows a normal distribution truncated at 0. Specifically, Jondrow et al. (1982) finds

that when ui is distributed as a half normal distribution, ui ∼ |N(0, σ2
u)|, ui|εi is dis-

tributed as N+(− σ2
uεi

σ2
u+σ2

v
, σ2

uσ
2
v

σ2
u+σ2

v
). If ui follows exponential distribution, f(u) = 1

σu
e−

u
σu , ui|εi

is distributed as N+(−εi + σ2
v

σu
, σ2

v). When ui is distributed as truncated normal, namely,

f(ui) = 1√
2πΦ(µ/σu)exp

(
− (ui−µ)2

2σ2
u

)
, Kumbhakar and Lovell (2003) has shown that ui|εi would

be distributed as N+(−σ
2
uεi+µσ2

v

σ2
v+σ2

u
, σ2

vσ
2
u

σ2
v+σ2

u
). In addition, Nguyen (2010) has proven that when

ui is distributed uniformly on [0, A], where A ∈ R+, the conditional distribution is simply

N(0, σ2
v) truncated at 0 and A. Therefore, we conclude that:

Remark 1 When v is distributed as N(0, σ2
v), if u ∈ R≥0 follows uniform, exponential or

truncated normal distributions, the conditional distribution, f(ui|εi), is a normal distribution

truncated at 0. The mode of such distribution is either the pre-truncated mean or zero,

whichever is larger.

We complied the closed-form expressions of the conditional mode estimator under the as-

sumption that vi follows a normal distribution in table 1.1. Comparing them to those of

the conditional mean estimator, we can find that: First, the conditional mode estimator is

monotonic with the value of ε, whereas the conditional mean estimator is strictly monotonic
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with ε, which precludes ties. Second, unlike the conditional mean estimator, which only gen-

erates positive estimates, the conditional mode estimator allows us to have zero estimates.

This feature is particularly relevant for policymakers as it can be used as a selection rule of

firms that are potentially efficient. Observing how the percentage of firms that are estimated

to have zero conditional mode estimates change also helps us gauge the overall efficiency of

the market.

Table 1.1: Closed-form Formulae for the Conditional Mode Estimator

f(u) M(u|ε)
When v follows a Normal distribution, v ∼ N(0, σv2):
Uniform on [0, A]: f(u) = 1

A
0 ε ≥ 0
−ε −A ≤ ε < 0
A ε < −A

Doubly Truncated Normal on [0, A]: A −σ2
uε+µσ2

v

σ2
v+σ2

u
≥ A

f(u) = 1√
2πσuΦ(µ/σu) exp

(
− (u−µ)2

2σ2
u

)
−σ2

uε+µσ2
v

σ2
v+σ2

u
A > −σ2

uε+µσ2
v

σ2
v+σ2

u
≥ 0

0 −σ2
uε+µσ2

v

σ2
v+σ2

u
< 0

Exponential: f(u) = exp(−u/κ)/κ −ε− σ2
v/κ ε ≤ −σ2

v/κ
0 ε > −σ2

v/κ

When v follows a Laplace distribution, f(v) = exp(−|v|/γ)/(2γ):
Uniform on [0, A]: f(u) = 1

A
0 ε > 0
−ε −A < ε ≤ 0
A ε ≤ −A

Half Normal: u ∼ N(0, σu2) 0 ε ≥ 0
−ε −σ2

u/γ ≤ ε < 0
σ2
u/γ ε < −σ2

u/γ
Exponential: f(u) = exp(−u/κ)/κ 0 ε ≥ 0

0 ε < 0 and κ < γ
−ε ε < 0 and κ > γ
[0,−ε] ε < 0 and κ = γ

Truncated Laplace: 0 ε ≥ 0 and θ > γ
f(u) = [(1− 0.5 exp(−µ/θ))/(2θ)] exp−|u−µ|/θ, where µ > 0 µ ε ≥ 0 and θ < γ

[0, µ] ε ≥ 0 and θ = γ
0 ε < 0, θ = γ and µ > −ε
µ ε < 0, θ < γ
−ε ε < 0 θ > γ and µ < −ε

Truncated Laplace distributions here refer to Laplace distributions truncated at 0 with positive pre-truncated
mean. Truncated Laplace distributions of non-positive pre-truncated mean are exponential distributions.

Recent literature also considered Laplace distributions. Specifically, Horrace and Parme-
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ter (2018)4 analyzes SFM under both Laplace-exponential and Laplace-truncated Laplace

distributions, and shows that when Laplace distribution is assumed, the estimators have

faster polynomial convergence rates and smaller MSEs for the majority of the time than

their normal-exponential counterparts in situations of misspecification. To allow for the

conditional mode estimation under Laplace distributions, we also derive the closed-form

expressions under Laplace-uniform, Laplace-half normal, Laplace-exponential, and Laplace-

truncated Laplace distributions. The results are reported in table 1.1.

The parametric formulae show that the value of the conditional mode estimator under

Laplace distributions is determined jointly by εi and the relative scale of distributional pa-

rameters. This complication comes from the absolute value sign in the Laplace distributions.

Another distinct feature is that in certain cases, conditional mode estimates are not points

but intervals. For instance, under Laplace-truncated Laplace distributions, when θ = γ, the

conditional mode estimator can be any point from 0 to µ, as long as ε is non-negative. This

feature could be potentially applied to model more complicated situations.

1.2.2 Distributions of The Conditional Mode Estimator

Wang and Schmidt (2009) analyzes the properties of the conditional mean estimator and

shows that it converges to u when the signal-to-noise ratio converges to infinity and to E(u)

when the signal-to-noise ratio converges to zero. Here, we investigate if the conditional mode

estimator has similar properties. Specifically, we analyze how the value of the conditional

mode estimator changes when its signal-to-noise ratio, σu/σv, converges to extreme values.

It should be pointed out that, following Wang and Schmidt (2009), we ignore sampling errors

and use the term regression residual (ε̂i or ei) and regression error (εi) interchangeably.
4Corrections to some typos in the math formula of the paper are included in the Appendix.
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We first derive the probability density function of the conditional mode estimator. Recall that

Jondrow et al. (1982) has previously shown that, under the normal-half normal assumption,

the conditional mode estimator (denoted as um) can be written as:

umi = h(εi) =


−εi(σ

2
u

σ2 ), if εi ≤ 0

0, if εi > 0
(1.2)

where σ2 = σ2
u + σ2

v . The fact that when ε is non-positive, the conditional mode value

decreases with ε allows us to perform a change of variable as following:

εi = h−1(umi ) = g(umi ), (1.3)

fum(umi ) = fε(g(umi ))|∂g(umi )
∂umi

|. (1.4)

When vi and ui are distributed as normal and half normal (NHN), Aigner et al. (1977) proves

that fε(εi) = 2
σ
φ
(
εi
σ

)
[1− Φ (εiλσ−1)], where λ = σu/σv. Therefore, as g(umi ) = −σ2

σ2
u
umi , we

show that the probability density function of conditional mode as:

fNHNum (umi ) = FNHN
um (0)δ(umi ) + 2σ

σ2
u

φ

(
σ

σ2
u

umi

)
Φ
(

σ

σuσv
umi

)
I{umi > 0}, (1.5)

where δ(.) is a Dirac’s delta function and FNHN
um (umi ) = 1 − FNHN

ε (−σ2

σ2
u
umi ). Here um is a

mixed random variable that is discontinuous at 0 and continuous in (0,+∞).

Following similar procedure, we find that the probability density function of conditional

mode under normal-exponential (NE) is:

fNEum (umi ) = FNE
um (0) δ(umi ) + 1

σu
exp

{
−u

m
i

σu
− σ2

v

2σ2
u

}
Φ
(
umi
σv

)
I{umi > 0}, (1.6)
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where FNE
um (umi ) = 1−FNE

ε (−umi −
σ2
v

σu
). Here umi is also a mixed variable that is discontinous

at 0.

Based on the probability density functions, we proved that:

Theorem 1

Under normal-half normal or normal-exponential distributions,

(1) When σ2
v −→ 0, (um − u) p−→ 0 and fum d−→ fu.

(2) When σ2
v −→∞, um p−→ Mode(u) and fum d−→ δ(um).

with proof included in the Appendix.

Under the assumption that v is distributed as N(0, σ2
v), when σ2

v converges to 0, theorem 1

shows that not only does um converge to the true underlying u, the distribution of um also

converges to u’s true distribution. As σ2
v converges to infinity, the statistical noise dominates

the error term, um is converging to the mode of their true distribution, which is 0.

We also demonstrate the difference between um and u by plotting their distributions in

figures 1.1 and 1.2 under signal-to-noise ratios ranging from 0.1 to 100. The value of σu is

set to be 1 so that the curves are comparable in scale. The graphs essentially corroborate

with the findings in theorem 1. One can see that the probability density function of the

conditional mode estimator is clearly different than the distribution of ui when σv = 10,

but converges to the distribution of ui when σv unilaterally decreases. This is true for both

normal-half normal distributions and normal-exponential distributions.
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(a) σv = 10, σu = 1.
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(b) σv = 1, σu = 1.
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(c) σv = 0.1, σu = 1.
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(d) σv = 0.01, σu = 1.

Figure 1.1: Distribution of um And u Under Normal-Half Normal Distributions
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(a) σv = 10, σu = 1.
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(b) σv = 1, σu = 1.
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(c) σv = 0.1, σu = 1.
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(d) σv = 0.01, σu = 1.

Figure 1.2: Distribution of um And u Under Normal-Exponential Distributions
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1.3 Assessing Selection Rules using Probability State-

ment Approach

In this section, we apply the probability statement approach (Horrace, 2005) to assess the

selection rules inferred by the conditional mode estimates.

1.3.1 Probability Statement Approach

The probability statement approach allows us to calculate the probabilities of a variety of

probability statements to be true. For example, it allows us to assess the probability that

firm j has the smallest real technical inefficiency, which can be written as:

Pj = Pr {uj ≤ ui ∀ i 6= j|ε1, . . . , εn} =
∫ ∞

0
fuj |εj(u)

n∏
i 6=j

[
1− Fui|εi(u)

]
du, (1.7)

where fu|ε(u) and Fu|ε(u) are the probability density function and cumulative distribution

function of u conditional on ε. Similarly, the probability of firm j being the least efficient,

thus having the largest technical inefficiency, can be written as:

P∗j = Pr {uj ≥ ui ∀ i 6= j|ε1, . . . , εn} =
∫ ∞

0
fuj |εj(u)

n∏
i 6=j

Fui|εi(u)du.

In the following, we will use Pj to denote the probability of firm j being the most efficient

and P∗j to denote the probability of firm j being the least efficient.

In the context of stochastic frontier models, this approach allows us to perform inference on

the ranking of firm-level technical inefficiencies. Specifically, if we rank firms based on their
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conditional mean estimates (denoted as ue), from the smallest to the largest, as:

ûe[1] < ûe[2] < ...... < ûe[N ], (1.8)

then P[1] = Pr
{
u[1] < u[i] ∀ i 6= 1|ε

}
measures the probability that all the firms with ûe

larger than ûe[1] indeed have larger u than u[1]. u[1] is the real inefficiency of the firm with the

smallest estimated inefficiency. In other words, it measures the probability that firm with

the smallest ûe also has the smallest u. Similarly, P[2] = Pr
{
u[2] < u[i] ∀ i 6= 2|ε

}
measures

the probability that firm with the second smallest ûe is the most efficient firm. Therefore,

P[1] + P[2] is the probability that the most efficient firm is the firm with either the smallest

ûe or the second smallest ûe.

1.3.2 Selection Rules based on Conditional Mode Estimates

One of the main applications of estimating technical inefficiencies is to find relatively efficient

firms. When conditional mean estimates are used to find the most technically efficient firm,

it is typically assumed that firm with the smallest conditional mean estimate is the most

efficient. We can formalize it as a selection rule, which can be written as:

Rmean : Select firm j if ûej = min ûei for all i.

and the corresponding subset is Smean ≡
{
j : ûej = min ûei for all i

}
, which contains only

one element.

Here we propose another selection rule, but this time based on the conditional mode esti-

mates. Since the conditional mode estimator can take value zero, we propose only selecting

14



those with zero conditional mode estimates into a set, which can be written as:

Rmode : Select firm j if ûmj = 0,

then the corresponding subset Smode is
{
j : ûmj = 0

}
. Unlike Smean, whose cardinality is

fixed at one, the cardinality of Smode can be larger than 1 as there can be multiple firms with

zero conditional mode estimates. It is also possible that none of the firms are estimated with

zero conditional mode, in which case the cardinality of the subset is 0.

Using probability statement approach, we can assess the likelihood that subsets based on

the aforementioned selection rules capture the most efficient firm. In Bayesian statistics, a

credible interval is defined as the interval that an unobserved parameter value falls with a

particular probability. It allows us to make probability statements for a particular sample.

Here, we can loosely think of those subsets based on selection rules as "credible" subsets in the

sense that there is a certain probability that they contain the most efficient firm. The credible

subset based on the conditional mean results would be a singleton, and the probability of

it capturing the most efficient firm can be written as ∑
j∈Smean

Pj = P[1]. The credible subset

based on conditional mode being zero is ∑
j∈Smode

Pj. In other words, the probability of a

credible subset containing the most efficient firm is the sum of the probabilities of each firm

in that subset being the most efficient firm.

We can also construct a credible subset with a particular probability of containing the most

efficient firm. Specifically,

Remark 2 One can construct a subset of firms that has ω probability of containing the most
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efficient firm, where ω ∈ [0, 1]. This can be done by setting a selection rule Rω as:

Rω : Select all firm ranked from [1] to [J ] such that
J∑

[j]=1
P[j] ≥ ω and

J−1∑
[j]=1

P[j] < ω

The corresponding subset of this selection Sω contains all firms that are ranked from [1] to

[J].

Note that while we can construct a credible subset of any ω by including firms as long as the

sum of their probability statements is or exceeds ω, in order to have the credible subset with

the smallest cardinality, we add into firms sequentially based on their ranking of conditional

mean estimates from the smallest to the largest5. We analyze the performances of selections

rules using Monte Carlo experiments in section 1.5,

5This is similar to the highest posterior density interval concept in Bayesian statistics in that it takes the interval
with the highest density. Here we sequentially include firms from the largest probability of being the most efficient
to the smallest.
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1.4 Re-Interpreting the Conditional Mode Estimator

using Lasso

Our re-interpretation of the conditional mode estimators is based on the Bayesian interpre-

tation of the LASSO and Jondrow et al. (1982). It is well known that the LASSO can be

viewed as the posterior mode estimator in the Bayesian context when imposing indepen-

dent Laplace priors on the coefficients (Tibshirani, 1996; Park and Casella, 2008). Another

popular shrinkage estimator Ridge can be viewed similarly as the posterior mode estimator

when imposing independent normal priors on the coefficients. The mode of the posterior

distribution is the maximum likelihood estimator when it use the posterior distribution as

its likelihood. Noting that the essence of the Bayesian inference is to update the priors on

the parameters of interest using data, the distributions imposed on inefficiency can be seen

as priors in the Bayesian language and the conditional distributions we are using to recon-

struct inefficiency can be viewed as the posterior conditional distributions updated by the

composed error estimate. Materov (1981) shows that conditional mode is the MLE when we

use the joint density of ui and vi given εi = vi−ui, which is directly related to this Bayesian

mode estimators.

From this context, we can see the exponential conditional mode distribution as a Lasso type

estimator and the normal conditional mode as a Ridge type estimator where σ2
v

σu
and σ2

u

σ2

are the tuning parameters driven by the distributional assumption on the inefficiency. The

only difference is the shrinkage effect from the LASSO and the Ridge is symmetric around

the zero, but is asymmetric in conditional mode due to the positiveness of the inefficiency.

In the following section, we will show that the conditional mode possesses the minimax

optimality by a theorem and a brief simulation exercise. The minimax optimality implies

that conditional mode is one of the estimators that minimize the worst estimation error for
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the inefficiency. More importantly, we will also show it is more robust to the misspecification

of the distribution of inefficiency and sparsity of it.6

1.4.1 Near-Minimax Optimality

To show the near-minimax optimality of the exponential conditional mode estimator, we ba-

sically use the setting used in Donoho et al. (1992) and Donoho and Johnstone (1994). The

multiple estimation problem considered in the papers is as follows: We are given observations

ε = (εi)ni=1 where εi = θi + σvvi, vi ∼ N(0, 1), and the objective is to estimate θi by some

estimator, θ̂i. The quality of the estimator is measured by l2 risk, R(θ) = E[∑n
i=1(θ̂i−θi)]. In

our problem, −ui corresponds to θi with a constraint ui ≥ 0. The problem of the positively

constrained parameters are considered in Donoho et al. (1992) so the reader can find more

relevant pieces about the problem setting from the chapter.

For the mini-max optimality, we assume σv
σu

= (2 log n)1/2, that is the signal to noise ratio

is decreasing as we have more firms, which is quite consistent with the competitive market

theory as we will have less inefficient firms as we have more firms to compete. By denoting

λ = σ2
v

σu
, conditional mode becomes

ûmi (λ) = [−ε̂i − λ]+. (1.9)

Following Donoho and Johnstone (1994) and Zou (2006), we can derive the oracle inequality
6The properties of the conditional mean may be discussed similarly. It can be viewed as the mean of the posterior

distribution in the Bayesian context and the mean of the posterior distribution is known to minimize the Bayes Risk
when we use l2 loss function, where Bayes Risk is the expected risk of the parameters of interest evaluated by the
posterior distribution of the parameters. This is related to the superiority of the conditional mode in terms of mean
squared error under correctly specified distribution for inefficiency, which has been shown in Waldman (1984). Also,
conditional mean and conditional mode in general can be viewed as shrinkage estimators as conditional mode shrinks
ε̂i toward E(ui) (Wang and Schmidt, 2009) and conditional mode shrinks ε̂i toward zero.
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for equation 1.9 such that:

Theorem 2

R(ûm(λ)) ≤
(

2 log n+ 3
2

)( n∑
i=1

min(u2
i , σ

2
v) + σ2

v

κ

)
(1.10)

where κ = (log n)2/3 · 2 ·
√
π. The proof is provided in the appendix. This theorem says that

the exponential conditional mode estimator attains the performance measured by the mean

squared error which is differs from the ideal performance (∑n
i=1 min(u2

i , σ
2
v)) with the oracle

(Donoho and Johnstone, 1994) by at most a factor of approximately 2 log n. Combined with

the result from Donoho and Johnstone (1994) that

inf
û

sup
u

R(ûm)
σ2
v +∑n

i=1 min(u2
i , σ

2
v)
∼ 2 log n. (1.11)

(1.11) indicates that the exponential conditional mode estimator achieve the near-minimax

risk. In other words, it is one of the estimators which minimize the maximum risk.7 If we

do not have a prior on the distribution of inefficiency and are willing to minimize the worst

estimation error, the exponential conditional mode estimator could be one of the options we

can take. A couple of remarks follow.

Remark 3 As Donoho et al. (1992) explain, the risk saving is at a price of bias induced by

the shrinkage. This improvement would be more pronounced when there are many efficient

firms. Therefore the exponential um estimator is basically for the competitive markets where

a majority of firms are efficient.

Remark 4 Note that the MSE we are considering is for all the firms, R(u) = E[∑n
i=1(ûmi −

7Donoho et al. (1992) derive a little bit different risk bound (due to the different oracle they are considering of),
but the implication of the result is the same. “... even without knowing a priori ... we can obtain a mean-squared
error which is worse only by logarithmic terms." (Donoho and Johnstone, 1992, p49)
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ui)]. This implies we are more interested in the market level inefficiency or aggregate level

inefficiency. The message from the oracle inequality is that the shrinkage leads to bias on

some of the firms’ inefficiencies but we obtain a larger variance saving from other firms.

So this method would be preferred if we want to predict the overall market inefficiency (or

production).8

Remark 5 Ondrich and Ruggiero (2001) show that the rank correlation between the esti-

mated composed errors, ε̂i, from any SF models with log-concave noise (e.g. normal) and

the associated conditional mode estimates is unity. This implies that, if we are primarily

interested in the efficiency ranking of the firms, qualitatively conditional mode and ε̂i are the

same in most of the cases as we conventionally assume vi ∼ N(0, σ2
v)).9 However, this is not

true for conditional mode estimators as they produce many ties on the top. Only conditional

mode is qualitatively different from ε̂i, giving us an informational gain about the group of

efficient firms.

These points are borne in our simulations next section.10

8The estimation of the density of inefficiency may be one of the examples.
9They also show that the inefficiency we are identifying from the SF models inherently a relative measure of

inefficiency, which may imply that only ranking statistics is informative among the results of SF models.
10Note that the exercise in Waldman (1984) is only for the conditional mean and without the sparsity in inefficiency.
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1.5 Monte Carlo Experiments

In the following, we conduct three Monte Carlo experiments to examine how the conditional

mean and the conditional mode estimators perform with varying sample sizes, signal-to-noise

ratios, and time periods and how they perform under the sparsity assumption.

1.5.1 Comparing the Conditional Mean Estimator and the Con-

ditional Mode Estimator

We first compare how the conditional mean and the conditional mode estimators change when

their signal-to-noise ratio changes. The data generating process is based on the canonical

linear stochastic frontier function, Y = Xβ + v − u. Specifically, X = [X1, X2, X3], with

parameters (β1, β2, β3) = (2, 0.5, 2). X1 is a vector of ones, whereas X2 and X3 are random

draws from normal distributions with variance σ2
v and mean at 1 and 0.5, respectively.

We assume that noise v is generated from a normal distribution, N(0, σ2
v), and signal u is

generated by either a half normal or an exponential distribution with a scale parameter σu

so that the variance parameters satisfy σ2
v +σ2

u = 1. The signal-to-noise ratios considered are

λ = {10− 1
2 , 10− 1

4 , 1, 10 1
4 , 10 1

2}. The sample size N is 1,000. The experiment is iterated for

M = 100 times using Maximum Likelihood Estimation. The Mean Squared Errors (MSE)

of the conditional mode and mean estimates against their true inefficiencies are reported in

table 1.2.11

There are several takeaways from the results in table 1.2. First, when λ is bigger than 1, MSE

decreases with increasing signal-to-noise ratios. For instance, as λ increases from 1 to 10 1
2 ,

MSE(umean) drops from 0.252 to 0.070 and MSE(umode) drops from 0.284 to 0.078. When λ
11MSE = 1

M

∑M

m=1
1
N

∑N

i=1(ûmi − umi)2. This is different from conventional sense of MSE where umi = um.
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Table 1.2: MSEs of the Conditional Mean and Conditional Mode Estimator

Normal-Half Normal Normal-Exponential

10− 1
2 10− 1

4 100 10 1
4 10 1

2 10− 1
2 10− 1

4 100 10 1
4 10 1

2

Conditional Mean
MSE(umean) 0.092 0.170 0.197 0.142 0.072 0.309 0.306 0.252 0.153 0.070
MSE(umean|umode>0) 0.114 0.198 0.224 0.153 0.076 0.700 0.546 0.360 0.186 0.078
MSE(umean|umode=0) 0.075 0.239 0.192 0.138 0.070 0.163 0.138 0.096 0.052 0.022
Conditional Mode
MSE(umode) 0.117 0.217 0.285 0.195 0.093 0.236 0.301 0.284 0.177 0.078
MSE(umean|umode>0) 0.114 0.209 0.248 0.161 0.077 0.541 0.487 0.360 0.197 0.082
MSE(umean|umode=0) 0.091 0.242 0.474 0.752 0.863 0.122 0.170 0.172 0.117 0.054

is less than 1, however, MSE is no longer monotonic with λ. Second, MSE(umean) is smaller

than MSE(umode) in most situations. This is reasonable because of the conditional expecta-

tion function prediction property of the conditional mean (Angrist and Pischke, 2008). One

exception, however, is when λ < 1, under normal-exponential distributions, MSE(umode) is

smaller than MSE(umean). In addition, we break down the MSEs of conditional mean and

conditional mode estimates by firms with ûm > 0 and those with ûm = 0. The results show

that the differences of MSEs are not driven by this breakdown. In other words, when the

overall MSE(umode) is larger (or smaller) than MSE(umean) , both MSE(umode) for firms with

positive mode and MSE(umode) for firms with zero mode are larger (or smaller) than their

mean counterpart.

1.5.2 Comparing Selection Rules

We also compare the performance of selection rules by conditional mean estimates, Rmean,

and by conditional mode estimates, Rmode. Without loss of generality, we assume σ2
v+σ2

u = 1

and a pre-specified signal-to-noise ratio λ = σu/σv. Under either normal-half normal or

normal-exponential distributions, we obtain a sample of size N by taking random draws of

v and u from their respective distribution with variance parameter σv and σu. Note that
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in the event of T > 1, we still take N draws of u as time-invariant technical inefficiency

but take NT draws for v. To prevent the impact of potential sampling error of estimated

coefficients, we do not include any independent variable, equivalently, X = 0. The regression

function can be written as Y = Xβ + ε = v − u. We can then obtain the conditional mean

estimates and conditional mode estimates of each firm and the results of the selection rules.

The process is iterated for M = 1, 000 times.

First, we calculate the percentages of iterations where subsets of selection rules by conditional

mean estimates and conditional mode estimates actually contain the firm with minimum

inefficiency, written as:

P̂mean ≡ 1
M

M∑
m=1

1 {j ∈ Smeanm |umj = min umi for all i} ,

P̂mode ≡ 1
M

M∑
m=1

1
{
j ∈ Smodem |umj = min umi for all i

}
,

where 1 is an indicator function that is only satisfied when the subset based on the selection

rule contains firm with smallest u.

Second, we calculate the probabilities of the subsets containing the most efficient firm, P̂m,

using the probability statement approach in each iteration m. We also report the average

P̂m over all the iterations, calculated as:

¯̂
Pmean ≡ 1

M

M∑
m=1

P̂mean
m .

¯̂
Pmode ≡ 1

M

M∑
m=1

P̂mode
m .

Note that subsets based on different selection rules often have different cardinalities. It is

also intuitive that the larger a subset’s cardinality is, the more likely it contains the least
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inefficient firm. To adjust for the cardinality, we also calculate the average probability per

firm in the subset being the most efficient, namely, Pmode
m /|S̄modem | and ¯̂

Pmode
m /|S̄modem |.12 There

is no adjustment needed for the selection rule by conditional mean estimates as its subset

only contains one firm.

The results are reported in table 1.3. The first panel reports the results when sample size

N increases from 5 to 10, 20, 50, and 100.13 Second panel shows the results when we adjust

the squared signal-to-noise ratio λ2 from 0.1 to 10. We also investigate how the probability

varies with varying T and show the results when T = 1, 5, 10, 50, and 100 in the last panel.

Column 2 - 6 report the results under the normal-half normal assumptions, and column 7 -

11 report the results under the normal-exponential distributions.

We can see that, as sample size increases, Pmean and P̂mean decrease. This can be explained

by the fact that Smean only contains one firm. When the sample gets large, the possibility of

it capturing the correct unit decreases. In contrast, Pmode and P̂mode fluctuate around the

same range as the sample size increases. This is because the cardinality of Smode increases

proportionally to sample size.

Also, as λ2 increases, the probability of each selected firm being the most efficient firm

increases, which is reflected in the increases of Pmean, ¯̂
Pmean for Rmean and Pmode/|S̄mode|,

¯̂
Pmode/|S̄mode| for Rmode. The impacts to Pmode and P̂mode are less straightforward - Both

of them are subject to both λ2 and the cardinality of Smode. In the meantime, changing

λ2 also affect the cardinality of Smode. As a result, we find that Pmode and P̂mode remain

by and large constant under normal-half normal distributions but decreases under normal-
12The more rigorous way of calculating the probability of each unit being selected is P̂modem /|Smodem | and average it

across number of iterations. We use ¯̂
Pmode/|S̄mode| instead because |Smodem | can take value 0 in some iterations.

13It is worth noting that as the sample size increases, the computing power required to calculate P̂M also increases
significantly, as it is an integral of the product of (N − 1) cumulative density functions and 1 probability density
function.
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Table 1.3: Monte Carlo Experiment Results

Normal-Half Normal Normal-Exponential
Statistic N

5 10 20 50 100 5 10 20 50 100
Pmode 0.393 0.488 0.483 0.462 0.504 0.819 0.820 0.845 0.839 0.845
¯̂
Pmode 0.405 0.475 0.488 0.496 0.497 0.882 0.955 0.964 0.966 0.968

Pmean 0.362 0.116 0.061 0.026 0.020 0.403 0.106 0.045 0.039 0.022
¯̂
Pmean 0.363 0.107 0.061 0.033 0.018 0.520 0.208 0.127 0.076 0.043

| ¯̂Smode| 1.221 6.168 12.378 25.063 50.018 2.720 13.350 26.992 53.715 107.509
Pmode/| ¯̂Smode| 0.322 0.079 0.039 0.018 0.010 0.301 0.061 0.031 0.016 0.008
¯̂
Pmode/| ¯̂Smode| 0.332 0.077 0.039 0.020 0.010 0.324 0.072 0.036 0.018 0.009

λ2

0.1 0.5 1 5 10 0.1 0.5 1 5 10
Pmode 0.491 0.485 0.483 0.472 0.463 1.000 0.923 0.845 0.644 0.591
¯̂
Pmode 0.493 0.491 0.488 0.476 0.471 1.000 0.996 0.964 0.769 0.685

Pmean 0.032 0.046 0.061 0.098 0.128 0.023 0.034 0.045 0.082 0.107
¯̂
Pmean 0.032 0.048 0.061 0.109 0.141 0.232 0.137 0.127 0.142 0.161

| ¯̂Smode| 19.955 15.080 12.378 6.590 4.844 49.788 37.019 26.992 11.122 7.571
Pmode/| ¯̂Smode| 0.025 0.032 0.039 0.072 0.096 0.020 0.025 0.031 0.058 0.078
¯̂
Pmode/| ¯̂Smode| 0.025 0.033 0.039 0.072 0.097 0.020 0.027 0.036 0.069 0.091

T

1 5 10 50 100 1 5 10 50 100
Pmode 0.483 0.476 0.496 0.438 0.411 0.845 0.664 0.588 0.492 0.469
¯̂
Pmode 0.488 0.476 0.467 0.436 0.400 0.964 0.761 0.678 0.536 0.476

Pmean 0.061 0.101 0.149 0.246 0.329 0.045 0.099 0.147 0.231 0.284
¯̂
Pmean 0.061 0.108 0.136 0.247 0.317 0.127 0.142 0.163 0.249 0.300

| ¯̂Smode| 12.378 6.625 4.887 2.287 1.530 26.992 10.979 7.406 3.054 2.096
Pmode/| ¯̂Smode| 0.039 0.072 0.101 0.192 0.269 0.031 0.060 0.079 0.161 0.224
¯̂
Pmode/| ¯̂Smode| 0.039 0.072 0.095 0.191 0.262 0.036 0.069 0.092 0.176 0.227

The default setting is that M=1000; λ2 = 1; N=50; T=1;
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exponential distributions.

In addition, increasing T has a similar effect with increasing λ. This is because, under the

time-invariant inefficiency setting, observing more periods of v lowers the variance of v̄, which

makes the signal-to-noise ratio increase.

1.5.3 Comparing the Conditional Mean Estimator and the Con-

ditional Mode Estimator with Sparsity

We construct an experiemnt that relaxs the no sparsity assumption. For simplicity, we

consider a data generating process such that y = ε = v − u, where v ∼ N(0, 1) and u ∼

F = p · τ0 + (1− p) · χ2(k). τ0 is Dirac mass at 0, p is a sparsity parameter taking a positive

scalar in [0, 1] and k is a randomly selected integer from 1 to 10. This setting is intended

to impose different degrees of sparsity in inefficiency and also non-standard specifications

for the distribution of inefficiency. We consider applying four different estimation methods

to the data. First, we estimate σu and σv using the normal-half normal stochastic frontier

model of Aigner et al. (1977) and apply conditional mean and conditional mode to estimate

u. Then, we do the same thing but under normal - exponential. We set N = 1, 000 and

simulate 1, 000 times for each case with p ∈ {0.1, 0.5, 0.9}. We report two statistics: average

RMSE (
√∑n

i=1(ûi − ui)2), and average rank correlation between û and u using Spearman’s

ρ in table 1.4. 14

We can see that the conditional mode estimator, under normal-exponential distribution,

produces the worst results when there is little sparsity in inefficiency in both RMSE and the

rank correlation, but the differences between the results of them are negligible. On the other

hand, when there is little inefficiency, it produces remarkably better results than the other
14We exclude the cases conditional mode estimate inefficiency all zero in the calculation of the spearman’s ρ
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Table 1.4: Simulation Results
RMSE Rank Correlation

Sparcity 1 2 3 4 1 2 3 4

p = 0.1 30.76 29.94 30.98 31.71 0.90 0.90 0.90 0.90
p = 0.5 48.27 37.06 34.08 28.27 0.83 0.84 0.83 0.86
p = 0.9 54.95 52.05 24.49 17.56 0.45 0.47 0.45 0.69

1: Conditional Mean under NHN; 2: Conditional Mode under NHN; 3: Con-
ditional Mean under NE; 4: Conditional Mode under NE.

estimators. This simulation results roughly confirm the minimax property of the exponential

conditional mode estimator.
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1.6 Empirical Application

In this section, we apply a stochastic frontier model to analyze U.S. electric utility industry.

This cross-sectional data set has been previously considered in Greene (1990) and Nguyen

(2010). It contains observations of output (Q), labor (L), capital (K), and fuel (F) from 123

electric utility firms in the U.S, written as:

lnQi = β0 + β1 lnLi + β2 lnKi + β3 lnFi + vi − ui. (1.12)

Here we estimate equation (1.12) using MLE under the normal-exponential distributional

assumption and find that (β̂0, β̂1, β̂2, β̂3) = (8.497,−0.127, 0.089, 1.103). The variance pa-

rameters (σv, σu) are estimated to be (0.088, 0.129), respectively. Hence, the estimated

signal-to-noise ratio σ̂u/σ̂v in this case is 1.4659.

We proceed to estimate the technical inefficiencies and probability statements of each firm

being the most efficient. The results are reported in tables 1.5, 1.6, 1.7 and 1.8 in the ap-

pendix. We rank the firms based on their conditional mean estimates reported in column 3.

Note that ranking by conditional mode estimates would be the same with ranking by con-

ditional mode estimates for firms with positive conditional mode estimates. The estimated

conditional mode values are reported in column 4. Column 5 reports the probability of each

of them being the most efficient firm. Column 6 reports the probability that the subset of

that firm and all the higher-ranked firms containing the firm with the smallest real technical

inefficiency. For instance, row 3 of table 1.5 shows the probability that the most efficient

firm is among S’westernP.S, NortheastUtil, Orange&Rockln is 0.104. Column 6 suggests

that there are 40 firms with zero conditional modes. If we use zero conditional mode as a

selection rule, then the corresponding subset of firms has a 59.4% probability of containing

the most efficient firm. We can also construct a subset that has a certain probability. If one
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is interested in constructing a subset with, for instance, a 95% probability of containing the

most efficient firm, then the results suggest that such subset would require at least 96 firms.

The distributions of conditional mean and conditional mean estimates are plotted in figure

1.3, where we can see that some firms’ conditional mode estimates are stacked at 0. But the

same is not observed in conditional mean estimates, as it only allows for positive estimates.

(a) Conditional Mode (b) Conditional Mean

Figure 1.3: Histogram of Electric Utility Firms’ Estimated Technical Inefficiencies
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1.7 Conclusion

One of the main applications of stochastic frontier models is to measure firm-specific technical

inefficiency. To do so, Jondrow et al. (1982) proposes the conditional mean estimator and

the conditional mode estimator. While there are numerous papers studying the properties of

the conditional mean estimator and applying it to various empirical settings, the conditional

mode estimator has been by and large overlooked.

This paper fills in the gap of research on the conditional mode estimator. We derive its

parametric expressions under various distributional assumptions. Similar to the conditional

mean estimator, we find that the conditional mode estimator converges to the true un-

derlying inefficiencies when σv converges to zero. To assess the ranking of firms based on

estimated technical inefficiencies, we also propose using the probability statement approach.

It measures the probability of any firm being the most efficient or least efficient. We also use

it to measure the probability that selection rules inferred by conditional mean and condi-

tional mode estimates capture the most efficient firm. We then re-interpret the conditional

mode estimator as a LASSO-type estimator and find that under the exponential distribu-

tion, it achieves the near-minimax risk. Several Monte Carlo experiments are included to

compare the differences between the conditional mean estimator and conditional mode esti-

mator. Lastly, we demonstrate how to use the conditional mode estimator by analyzing the

technical inefficiencies of 123 U.S. electric utility firms.
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1.8 Appendix

1.8.1 Proofs

Relevant Results under Laplace-Half Normal Distributional Assumption

When v is distributed as Laplace distribution at 0, fv(v) = 1
2γ exp(− |v|

γ
), and u is dis-

tributed as half-normal distribution, fu(u) =
√

2
π

1
σ

exp(− u2

2σ2 ), we show that fv,u(ε+ u, u) =
1√

2πσγ exp(− |ε+u|
γ
− u2

2σ2 ). After integration with respect to u, we can find that

f(ε) =


1
γ

exp
(
− ε
γ

+ σ2

2γ2

) [
1− Φ(σ

γ
)
]

ε ≥ 0

1
γ

exp( σ2

2γ2 )
[
exp( ε

γ
)
{

Φ(− ε
σ
− σ

γ
)− Φ(−σ

γ
)
}

+ exp(− ε
γ
)
{

1− Φ(− ε
σ

+ σ
γ
)
}]

ε < 0

which allow us to conduct MLE estimation.

For the purpose of finding conditional mode under this circumstance, because fu(u|ε) ∝

fu(u)fv(ε + u), when ε is given, finding the the conditional mode is equivalent with finding

the mode of fu(u)fv(ε+ u).

When u+ ε > 0, we can write

fu(u)fv(ε+ u) = 1√
2πσ

exp
−(u+ σ2

γ
)2

2σ2

× [1
γ

exp(− ε
γ

+ σ2

2γ2 )
]
.

When u+ ε < 0, 0 < u < −ε,

fu(u)fv(ε+ u) = 1√
2πσ

exp
−(u− σ2

γ
)2

2σ2

× [1
γ

exp( ε
γ

+ σ2

2γ2 )
]
.
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Proof of Theorem 1

Case I: σ2
v −→ 0 under normal-half normal

As v is assumed to be distributed as N(0, σ2
v), when σ2

v −→ 0, the distribution of v collapses

into a Dirac Delta function (An application of Dirac Delta function in stochastic frontier

model can be referred to Horrace and Wright (2016)) at 0, which makes ε ≡ v − u p−→ −u.

In addition, σ2
u

σ2
v+σ2

u

p−→ 1. Therefore, um ≡ − σ2
u

σ2
v+σ2

u
ε

p−→ u when ε ≤ 0. The case when ε > 0 is

trivial, because ε→ −u, and u ∈ R≥0. In other words, we will not observe positive valued ε

when σ2
v → 0.

Also, when σ2
v −→ 0, σ p−→ σu, which means that Φ(umσ/σvσu) = Φ(um/σv)

p−→ 1. Thus, we

can write fum(umi , εi ≤ 0) as 2σ
σ2
u
φ
(
σ
σ2
u
umi
)

d−→ 2 1
σu
φ(u

m
i

σu
), which is a half normal distribution,

identical with ui.

Case II: σ2
v −→∞ under normal-half normal:

As u is half normally distributed, the mode of u is at 0. When σ2
v

p−→∞, σ
2
u

σ2
p−→ 0. Therefore,

um = −ε(σ
2
u

σ2 ) p−→ 0 = Mode(u).

Intuitively, because all um converge to 0, the probability density function of um is a dirac

delta function at 0.

Case III: σ2
v −→ 0 under normal-exponential:

When σ2
v −→ 0, ε p−→ −u and σ2

v

σu

p−→ 0. Therefore, um = −ε − σ2
v/σu

p−→ u when u ≥ 0 and 0

when u < 0. It is the same with u.

As um is distributed as 1
σu

exp {−um/σu − σ2
v/2σ2

u}Φ (um/σv), where Φ (um/σv)
p−→ 1 and
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exp {−um/σu − σ2
v/2σ2

u} converges to exp {−um/σu}, the probability density functions even-

tually converges to 1
σu
e−

um

σu , which is identical with the distribution of u.

Case IV: σ2
v −→∞ under normal-exponential:

When σ2
v −→ ∞, −σ2

v/σu converges to negative infinite, which makes ε ≤ −σ2
v/σu holds for

every finite ε value. Thus, um is always 0.

The distribution of um is 1
σu

exp {−um/σu − σ2
v/2σ2

u} [1− Φ (−um/σv)]. When σ2
v −→∞,

exp {−um/σu − σ2
v/2σ2

u} converges to 0. Φ (−um/σv) converges to 1/2. Therefore, the prob-

ability density function converges to δ(um).

Proof of Theorem 2

We are mostly following the proof for the theorem 3 of Zou (2006) but account for the positive

constraint on inefficiency in our proof. We first prove the univariate case. Let ε ∼ N(−u, σ2
v)

where u ≥ 0, and ûm(λ) = [−ε− λ]+ with λ = σv ·
√

2 log n.

We first expand the mean squared error of ûm(λ) such that

E[(ûm(λ)− u)2] = E[(ûm(λ) + ε)2] + E[(−ε− u)2]− 2E[ûm(λ)(u+ ε)]− 2E[ε(u+ ε)]

= E[(ûm(λ) + ε)2] + σ2
v − 2E[ûm(λ)(u+ ε)]− 2σ2

v

= E[(ûm(λ) + ε)2]− 2σ2
vE

[
∂ûm(λ)
∂ε

]
− σ2

v

(1.13)

where we have used the Stein’s lemma (Stein, 1981) that E[ûm(λ)u+ε
σ2
v

] = E
[
∂ûm(λ)
∂ε

]
. We
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consider a partition such that


(ûm(λ) + ε)2 = λ2 and ∂û(λ)

∂ε
= −1, if− ε− λ > 0

(ûm(λ) + ε)2 = ε2 and ∂ûm(λ)
∂ε

= 0, if− ε− λ ≤ 0
(1.14)

Thus, we have

E[(ûm(λ)− u)2] = E[ε2 · I(−ε− λ ≤ 0)] + E[(λ2 + 2σ2
v) · I(−ε− λ > 0)]− σ2

v
(1.15)

For the first term of the right hand side of equation (1.15), we can show

E[ε2 · I(−ε− λ ≤ 0)] = E[ε2 · I(−λ ≤ ε ≤ 0)] + E[ε2 · I(0 ≤ ε)]

≤ λ2 · P (−λ ≤ ε ≤ 0) + 1
2σ

2
v

(1.16)

due to supE[ε2 · I(0 ≤ ε)] = 1
2σ

2
v . Thus we have

E[(ûm(λ)− u)2] ≤ λ2 · P (−λ ≤ ε ≤ 0) + (λ2 + 2σ2
v) · P (ε < −λ)− 1

2σ
2
v

= λ2 · P (ε ≤ 0) + 2σ2
v · P (ε < −λ)− 1

2σ
2
v

≤ λ2 + 3
2σ

2
v ≤

(
λ2

σ2
v

+ 3
2

)
·
(
σ2
v + δ

n

) (1.17)

where δ is an arbitrary positive value. Next, we will use (1.15), again to derive another

upper bound such that

E[(ûm(λ)− u)2] = E[ε2] + E[(λ2 + 2σ2
v − ε2) · I(ε < −λ)]− σ2

v

≤ u2 + 2σ2
v · P (ε < −λ)

(1.18)
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Note that P (ε < −λ) is a function of u such that

P (ε < −λ) =
∫ −λ
−∞

1
σv
φ
(
ε+ u

σv

)
dε = Φ

(
u− λ
σv

)
(1.19)

Let g(u) = P (ε < −λ), then g(u) is a monotonic increasing function in u with g
′(u) =

1
σv
φ
(
u−λ
σv

)
and has the largest derivative at u = λ. We consider a quadratic function,

z(u) = a + 1
2bu

2, which satisfies g(u) ≤ z(u) for all u. Due to the geometric properties of

g(u) and z(u),15 one of the sufficient conditions for z(u) is that z(0) ≥ g(0) and z(λ) ≥ g(λ)

while z′(k) ≥ 1
σv
φ(0) for k ≥ λ. The reader can verify the condition is satisfied when

a∗ = Φ
(
−
√

2 log 2
)−1
· Φ

(
−
√

2 log n
)
and b∗ = φ(0)

λσv
. Furthermore, a∗ + b∗u2 ≤ a∗ + λ2

2σ4
v
u2

for all u ≥ 0 as b∗ ≤ λ2

2σ4
v
for n ≥ 2. So (1.18) becomes

E[(ûm(λ)− u)2] ≤ u2 + 2σ2
v ·
(
a∗ + λ2

2σ4
v

u2
)

≤
(
λ2

σ2
v

+ 1
)(

u2 + 2σ4
v

λ2 · a
∗
)

≤
(
λ2

σ2
v

+ 1
)(

u2 + σ2
v

n · (log n)2/3 · 2 ·
√
π

) (1.20)

The last equality is due to Φ
(
−
√

2 log n
)
≤
∫−√2 logn
−∞

x
−
√

2 lognφ(x)dx = 1√
2 logn

∫−√2 logn
−∞ φ

′(x)dx =
1√

2 lognφ(−
√

2 log n) = 1
n·2·
√
π logn . Finally, equation (1.17) and (1.20) imply

E[(ûm(λ)− u)2] ≤
(
λ2

σ2
v

+ 3
2

)(
min(u2, σ2

v) + σ2
v

n · (log n)2/3 · 2 ·
√
π

)
(1.21)

The multivariate case follows by summation.
15The derivative of g(u) is increasing until u = λ and then decreasing whereas the derivative of z(u) keep increasing.

Also, the minimum value of g(u) is Φ
(
−λ
σv

)
= Φ

(
−
√

2 logn
)
, which is not varying by σv.
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Math Correction in Horrace and Parmeter (2018)

• In equation(5), under ε < 0, θ 6= γ, fε(ε, µ ≤ 0) = 1
2γθ [(λ+ − λ−)eε/θ + λ−e

ε/γ]. Under

ε < 0 and θ = γ, fε(ε, µ ≤ 0) = 1
2γθ (λ+ − ε)eε/θ.

• In the equation below equation (8), fu(u|ε) = c(µ∗)
4γθfε(0)e

− |u−µ∗|
θ
−u
γ .

• The log-likelihood function under section 3.3 is lnL(εi|β, γ, θ) = const.−∑i:εi≥0[ln(γ+

θ) + εi/γ] +∑
i:εi<0 ln[ 1

γ−θ (e
εi/γ − eεi/θ) + 1

γ+θe
εi/θ].

1.8.2 Table
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Table 1.5: Inefficiencies of Electric Utility Firms Ranked 1st - 33rd.

Rank Name E(u|ε) M(u|ε) Probability Cumulative Probability
1 S’westernP.S. 0.017 0.000 0.048 0.048
2 NortheastUtil. 0.023 0.000 0.035 0.083
3 Orange&Rockln. 0.036 0.000 0.021 0.104
4 DaytonPwr.&Lt. 0.037 0.000 0.021 0.125
5 BostonEdison 0.038 0.000 0.020 0.144
6 NewMex.Elec.Ser. 0.041 0.000 0.018 0.162
7 MontanaPower 0.042 0.000 0.018 0.180
8 WestTunasUtil. 0.043 0.000 0.017 0.198
9 SierraPac.Pwr. 0.043 0.000 0.017 0.215
10 ToledoEdison 0.043 0.000 0.017 0.232
11 Ctrl.HudsonG.&E. 0.044 0.000 0.017 0.249
12 PacicP&L 0.045 0.000 0.017 0.266
13 HawaiianElec. 0.045 0.000 0.017 0.282
14 LouisvilleG.&E. 0.048 0.000 0.015 0.298
15 Ctrl.III.Pub.Ser. 0.049 0.000 0.015 0.312
16 BaiigorHydro. 0.050 0.000 0.014 0.327
17 Wisc.Pub.Ser. 0.052 0.000 0.014 0.340
18 Wisc.Pwr.&Light 0.056 0.000 0.013 0.353
19 NevadaPower 0.057 0.000 0.012 0.366
20 Indy.Power&L. 0.057 0.000 0.012 0.378
21 NewEnglandEl. 0.058 0.000 0.012 0.390
22 Ctrl.Tel.&Util. 0.058 0.000 0.012 0.402
23 So.Car.EI.&Gas 0.059 0.000 0.012 0.414
24 ElPasoElec. 0.060 0.000 0.012 0.426
25 Atl.CityElec. 0.061 0.000 0.011 0.437
26 KentuckyUtils. 0.061 0.000 0.011 0.448
27 UtahPower&Lt. 0.061 0.000 0.011 0.460
28 DelmarvaP.&L. 0.062 0.000 0.011 0.471
29 MauiElectric 0.062 0.000 0.011 0.482
30 P.S.Co.ofN.H. 0.063 0.000 0.011 0.493
31 Ark.Mo.Power 0.063 0.000 0.011 0.504
32 FloridaPower 0.065 0.000 0.010 0.514
33 CommunityP.S. 0.066 0.000 0.010 0.525
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Table 1.6: Inefficiencies of Electric Utility Firms Ranked 34th - 66th.

Rank Name E(u|ε) M(u|ε) Probability Cumulative Probability
34 CentralLa.Pwr. 0.066 0.000 0.010 0.535
35 ClevelandEl.I. 0.066 0.000 0.010 0.545
36 CentralKansas 0.067 0.000 0.010 0.555
37 TucsonGas&E. 0.069 0.000 0.010 0.565
38 SavannahE.&P. 0.070 0.000 0.010 0.575
39 NiagaraMohawk 0.071 0.000 0.009 0.584
40 DukePowerCo. 0.071 0.000 0.009 0.594
41 KansasGas&El. 0.072 0.003 0.009 0.603
42 IowaPub.Ser. 0.072 0.005 0.009 0.612
43 SanDiegoG.&E. 0.073 0.005 0.009 0.621
44 Balt.Gas&El. 0.073 0.006 0.009 0.630
45 IowaSouthern 0.075 0.012 0.009 0.639
46 CarolinaP.&L. 0.077 0.016 0.008 0.647
47 BlackHillsP&L 0.077 0.016 0.008 0.656
48 Cinci.Gas&El. 0.078 0.018 0.008 0.664
49 LongIs.Light 0.078 0.019 0.008 0.673
50 Ariz.Pub.Ser. 0.078 0.020 0.008 0.681
51 EmpireDist.El. 0.078 0.020 0.008 0.689
52 Cent.MainePwr. 0.079 0.020 0.008 0.697
53 So.Ind.G.&E. 0.079 0.022 0.008 0.705
54 Ark.Power&Lt. 0.080 0.025 0.008 0.713
55 No.Ind.Pub.Ser. 0.081 0.026 0.008 0.721
56 MinnesotaP.&L. 0.081 0.027 0.008 0.729
57 InterstatePwr. 0.083 0.030 0.008 0.737
58 Pub.Ser.Colo. 0.083 0.030 0.008 0.745
59 NewOrleansP.S. 0.084 0.033 0.007 0.752
60 OhioEdisonCo. 0.085 0.035 0.007 0.759
61 Mo.PublicSer. 0.087 0.040 0.007 0.767
62 MadisonGas&E. 0.088 0.041 0.007 0.774
63 S’westernEl.Pr. 0.089 0.043 0.007 0.781
64 CentralPwr.&L. 0.090 0.046 0.007 0.787
65 LouisianaP.&L. 0.093 0.051 0.007 0.794
66 TampaElectric 0.093 0.052 0.006 0.800
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Table 1.7: Inefficiencies of Electric Utility Firms Ranked 57th - 99th.

Rank Name E(u|ε) M(u|ε) Probability Cumulative Probability
67 IllinoisPower 0.094 0.054 0.006 0.807
68 Pub.Scr.NewMex. 0.096 0.057 0.006 0.813
69 Penn.Pwr.&Lt. 0.096 0.058 0.006 0.819
70 NYStateEl.&Gas 0.099 0.064 0.006 0.825
71 Vir.Elec&Pwr. 0.100 0.064 0.006 0.831
72 Nrth.Sts.Pwr. 0.100 0.064 0.006 0.837
73 TexasPower&L. 0.101 0.066 0.006 0.843
74 East.Utl.Ass. 0.101 0.067 0.006 0.848
75 KansasPwr.&L. 0.104 0.072 0.006 0.854
76 Okla.Gas&Elec. 0.105 0.074 0.005 0.859
77 Miss.Power&L. 0.107 0.077 0.005 0.865
78 ConsumersPwr. 0.107 0.078 0.005 0.870
79 IowaPwr.&Light 0.108 0.079 0.005 0.875
80 GeneralPub.U. 0.110 0.082 0.005 0.880
81 PotomacEl.Pr. 0.111 0.084 0.005 0.885
82 SouthernCo. 0.112 0.086 0.005 0.890
83 DuquesneLight 0.113 0.087 0.005 0.895
84 Pub.Ser.El.&G. 0.113 0.087 0.005 0.900
85 DallasPwr.&L. 0.115 0.090 0.005 0.904
86 UnionElec.Co. 0.115 0.090 0.005 0.909
87 Pac.Gas&Elec. 0.117 0.094 0.005 0.914
88 HoustonLt.&Pr. 0.117 0.094 0.005 0.918
89 MontDak.Utils. 0.118 0.094 0.005 0.923
90 RochesterG.&E. 0.119 0.096 0.004 0.927
91 Pub.Ser.Okla. 0.119 0.096 0.004 0.932
92 Kan.CityP.&L. 0.119 0.097 0.004 0.936
93 UpperPen.Pwr. 0.121 0.099 0.004 0.940
94 OtterTailPwr. 0.121 0.100 0.004 0.945
95 AlleghenyPr. 0.122 0.101 0.004 0.949
96 Amer.Elec.Pr. 0.131 0.113 0.004 0.953
97 Pub.Ser.OfInd. 0.131 0.114 0.004 0.957
98 Phila.Elect. 0.132 0.115 0.004 0.960
99 LakeSup.Dist.Pr. 0.136 0.121 0.004 0.964
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Table 1.8: Inefficiencies of Electric Utility Firms Ranked 100th - 123rd.

Rank Name E(u|ε) M(u|ε) Probability Cumulative Probability
100 UnitedIII.Co. 0.139 0.124 0.003 0.967
101 Colms&So.Ohio 0.140 0.127 0.003 0.971
102 GulfStatesUtl. 0.141 0.128 0.003 0.974
103 NewEng.G.&E.Ass. 0.145 0.132 0.003 0.977
104 TexasElec.Ser. 0.148 0.137 0.003 0.980
105 Common.Edison 0.152 0.141 0.003 0.983
106 FloridaPwr.&L. 0.154 0.144 0.003 0.986
107 Wisc.Elec.Pwr. 0.162 0.154 0.002 0.988
108 St.JosephL&P 0.168 0.161 0.002 0.990
109 So.Cal.Edison 0.168 0.161 0.002 0.993
110 IowaElec.L.&Pwr. 0.170 0.163 0.002 0.995
111 DetroitEdison 0.170 0.163 0.002 0.997
112 HiloElec.Light 0.205 0.202 0.001 0.999
113 Consol.Edison 0.234 0.233 0.001 0.999
114 NewportElec. 0.330 0.330 0.000 1.000
115 MainePub.Ser. 0.355 0.355 0.000 1.000
116 CitizensUtils. 0.362 0.362 0.000 1.000
117 FitchburgG.&E. 0.373 0.373 0.000 1.000
118 UnitedGas.I. 0.414 0.414 0.000 1.000
119 Mt.CarmelPub. 0.493 0.493 0.000 1.000
120 IowaIII.G.&E. 0.519 0.519 0.000 1.000
121 N’westernP.S. 0.702 0.702 0.000 1.000
122 Cal.Pac.Util 0.806 0.806 0.000 1.000
123 Ctrl.Ver.Pub.Ser. 1.294 1.294 0.000 1.000
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Chapter 2

Technical Efficiency of Public Middle Schools in New

York City

2.1 Introduction

While improving public school education has been an empirical concern of parents, teachers,

researchers, and policymakers for decades, a challenge has been the debate over the bal-

ance between increasing financial resources or pressing schools to improve efficiency. This

has led to a multi-pronged policy approach in the United States (US), including both in-

creased public-school spending - real per-pupil expenditures in public education increased

from $7,000 in 1980 to $14,000 in 2015 (Baron, 2019) - and increased public school account-

ability - for example, the No Child Left Behind Act of 2001 (NCLB; Public Law 107-110).

Nonetheless, student academic performance in the US continues to lag other Organization

for Economic Co-operation and Development (OECD) countries despite spending more per

pupil (Grosskopf et al., 2014). This suggests inefficiency in US public schools, where a lack

of competitive market forces may allow it to persist. Consequently, econometrics production

models that account for the existence of inefficiency are required, and this paper leverages the
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stochastic frontier literature (due to Aigner et al. (1977) and Meeusen and van den Broeck

(1977)) to estimate and perform inference on inefficiency measures for public middle schools

(serving grades 6-8) in New York City from 2014 to 2016. The nearest neighbors to our

research are three stochastic frontier analysis of US public schools: Previous research that

also conducted stochastic frontier analyses of US public schools: Chakraborty et al. (2001),

Kang and Greene (2002) and Grosskopf et al. (2014). Our research adds to this literature by

estimating a more flexible production specification Greene (2005a,b) and modern inference

techniques (Horrace, 2005; Flores-Lagunes et al., 2007), applied to data from the largest and

one of the most diverse public-school systems in the country.

Public schools in New York City (NYC) enroll over 1.1 million students in more than 1,700

schools, of which over 200,000 are in middle school grades (grades 6 through 8) in more than

500 schools. The city’s size and diversity provide a unique backdrop for a school efficiency

study, because it has many schools (the primary unit of observation) that operate under a

common set of regulations, funding mechanisms, and procedures, reducing the potential for

heterogeneity bias due to differences in the economic and policy environment. Moreover,

understanding school inefficiency in this environment is of great importance as 72.8% of

students in NYC public schools are from economically disadvantaged backgrounds, a char-

acteristic often negatively associated with educational attainment (Hanushek and Luque,

2003; Kirjavainen, 2012). To this end, we construct a balanced panel of 425 public middle

schools that operate from 2012 to 2016 to estimate each school’s technical inefficiency for

the cohorts of students in grade 8 between the 2014 and 2016 academic years (AY). We be-

gin with a school-level educational production function that measures output during middle

school as the gains in mean students’ test scores in Math and English Language Arts (ELA)

between grade 5 (in the spring semester before students enter middle school grades) and

grade 8 (in the last spring semester of middle school). We use gains in testing outcomes to
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address concerns that produced outputs (e.g., proficiency rates or mean test scores) are a

result of student quality (selection into middle schools) rather than school efficiency. Our

production function, then, also includes inputs that broadly fit into three groups - student

characteristics, teacher characteristics, and school characteristics - in order to provide es-

timates of and to control for the marginal effects of other features of the middle school

environment.

Aside from being the first stochastic frontier analysis of NYC public schools, to the best of

our knowledge this paper is the first to apply the "true fixed effect stochastic frontier model"

of Greene (2005a,b) to US school production1. This model is highly flexible, because it

accounts for both persistent (time-invariant) and transient (time-varying) inefficiency shocks.

For example, Chakraborty et al. (2001) estimate only persistent inefficiency in a cross-section

of Utah public schools. Kang and Greene (2002) estimate only transient inefficiency in an

upstate NY public school district.Grosskopf et al. (2014) estimate only persistent inefficiency

in public districts in Texas. We find that both persistent and transient inefficiency are present

in NYC middle school production and ignoring either component is an empirical mistake.

In addition to improved flexibility of our specification relative to others, our paper con-

siders different measures of transient inefficiency and uses inferential techniques that offer

policy-makers a methodology to determine groups of schools that are on the efficient fron-

tier. In particular, under common distribution assumptions, parametric stochastic frontier

models only yield a truncated (below zero) normal distribution of inefficiency conditional

on the production function residual for each school2. The most common approach to attain

point estimates of school-level inefficiency is then to calculate the means of these conditional

distributions (Jondrow et al., 1982) and rank them. However, the mean of a positive and
1Kirjavainen (2012) is the only other education paper that applies Greene’s model but to Finnish secondary schools
2An exception in the stochastic frontier literature is the Laplace model of Horrace and Parmeter (2018), which

yields conditional distributions with a probability mass at zero inefficiency.
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continuous random variable can never be zero, which means these point estimates can never

identify efficient (inefficiency equal to zero) schools. Therefore, in addition to calculating

the means of these truncated normal distributions for each school, we calculate their modes

as a point estimate of school-level efficiency (Jondrow et al., 1982). Since the truncated

normal distribution for each school has a mode at zero inefficiency with positive probability,

the mode measure allows for efficiency ties, potentially producing a group of firms that are

on the efficient frontier. We also "salvage" the conditional mean point estimate using the

inferential techniques in Horrace (2005) and Flores-Lagunes et al. (2007), which may be used

to select a subset of schools that are efficient at the 95% level. We compare the cardinality

of the set of mode-zero schools to the cardinality of the selected subset based on Horrace

(2005)3.

In the absence of frontier-based analyses, many studies estimate school (and teacher) effec-

tiveness using value-added models (Ladd and Walsh, 2002; Meyer, 1997). We note these

techniques are different in both purpose and form from the models we use here. Beginning

with purpose, value-added models typically aim to identify the benefits of educational inputs

(for example, if value-added increases when a policy is implemented) or the underlying qual-

ity of an education-producing unit (i.e., school or teacher), thus largely ignoring transient

technical inefficiency. In fact, one of the major controversies of using value-added models

for high-stakes public policy decisions stems from the assumption that deviations from each

school’s (or teacher’s) fixed effect4 may provide evidence that estimates are unstable (Koedel

et al., 2015; Schochet and Chiang, 2013)5. The true fixed effect stochastic frontier model

allows for a portion of annual deviations to reflect transient inefficiencies in education pro-
3Mizala et al. (2002) proposed an approach for salvaging the conditional mean point-estimate. The divide pro-

duction units into four quadrants using an efficiency-achievement matrix and treating those in the first quadrant as
efficient. However, the approach is ad hoc, and is no substitute for a proper inference procedure.

4Some use random effects to estimate value-added, but this is relatively rare in the value-added literature.
5Another major controversy stems from bias that results from non-random student selection into schools (Angrist

et al., 2017; Ladd and Walsh, 2002)
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duction (perhaps, for example, related to effort or changes in curriculum) and to estimate the

size of transient inefficiency for each unit. Then, in terms of difference in form, traditional

value-added models estimate the value-added of a unit as deviations from the conditional

mean, while in our model we use the regression equation to develop an efficiency frontier.

Using our probability statement technique, then, we can estimate the likelihood that individ-

ual units or groups of units operate on this efficiency frontier in a given observation year (or

not). Conversely, value-added methods require decisionmakers to designate ad hoc cut-offs to

assign policy levers, perhaps flagging high-value-added units for rewards or low-value-added

units for penalty. Taken together, we believe the true fixed effect stochastic frontier model

can address some of the major controversies that surround the use of value-added models

or previous stochastic frontier techniques used for education policymaking, in part because

the model is intended to identify inefficiency rather than quality, and in part because it

separates persistent from transient inefficiencies, which allows for better targeting of policy

levers towards each form of inefficiency.

In short, we find that student composition of a school is more predictive of production in

ELA, while the teacher composition of a school is more predictive of Math production, which

is consistent with conventional wisdom that ELA achievement is more reflective of home and

individual characteristics, and Math achievement is more reflective of classroom character-

istics (Bryk and Raudenbush, 1989). Second, by separating persistent technical inefficiency

from transient technical inefficiency, we are able to show that both sources of inefficiency

harm the productivity of middle schools in NYC (the conditonal means of both sources range

from about one-half to a whole standard deviation, depending on subject considered and es-

timator used). Third, we offer evidence that both efficient and inefficient schools operate

in all five boroughs of NYC, suggesting school inefficiency is geographically dispersed and

dispersed across schools serving high and low performing students. Fourth, by separating
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inefficiency from the error term (under our set of distributional assumptions), decisionmak-

ers are better able to assess the extent to which declining exam performance during middle

school is due to inefficiency as opposed to statistical noise. Finally, we offer policymakers

a pair of actionable decision rules that are methodologically rigorous and reflect true per-

formance of schools, both derived from the true fixed effects model, including application

of the conditional mode estimator to identify when schools operate efficiently and the more

rigorous Horrace (2005) probabilities to identify a subset of the best.

The rest of the paper is organized as follows. The next section presents the econometric

model and reviews the stochastic frontier literature as it relates to research in educational

inefficiency. Section 2.3 discusses the data. Section 2.4 presents the empirical results. Section

2.5 concludes.
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2.2 Stochastic Frontier Models in Education Efficiency

Stochastic frontier analysis (SFA) is an econometric technique to estimate a production

function while accounting for statistical noise and inefficiency. A highly flexible specification

for panel data is due to Greene (2005a,b), who considers the linear production function:

yit = α + x′itβ + vit − uit − wi, (2.1)

where i = 1, . . . , n and t = 1, . . . T . Here uit represents transient (time-varying) inefficiency

of the i-th school in period t, wi is a fixed- (or random-) effect, and vit is the usual mean-

zero random error term (or regression noise). The variable yit is productive output (e.g.,

student proficiency rates, average test scores, or gains in test scores). The xit is a vector

of production inputs (e.g., student characteristics, teacher quality and experience, principal

quality, and others), β is an unknown vector of marginal products, and α is an unknown

constant. Assuming wi is fixed, let unobserved heterogeneity be αi = α − wi, leading to

the Greene (2005a,b) true fixed effect stocahstic fronteir model6. In general, wi captures all

forms of time-invariant unobserved heterogeneity. Nonetheless, the SFA literature refers to

wi as "persistent technical inefficiency" and we will follow the same practice in what follows.

Our empirical focus is characterizing and making inferences on uit.

Identification of the model requires mutual independence of the random error components

and the ipnuts over i and t. Since the mean of uit (conditional on inputs) is non-zero, identifi-

cation also requires parametric distributional assumptions on the random error components.

Typically it is assumed vit ∼ N(0, σ2
v) with uit ∼ |N(0, σ2

u)| (half normal) or uit distributed

exponentially with variance σ2
u.7 Then the marginal maximum simulated likelihood estima-

6Assuming fixed wi allows identification of the model even when wi is correlated with x, the usual panel date
resutls

7Other distributions for u have been proposed, such as truncated normal (Stevenson, 1980), gamma (Greene,
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tion (MMSLE), proposed by Belotti and Ilardi (2018), leads to consistent estimates of α,

β, σ2
u, σ2

v (as T or n → ∞), and the residuals can be used to consistently estimate αi (as

T →∞). A consistent estimate of α is the maximum of the estimated αi, and a consistent

estimate of persistent inefficiency (wi) is the difference between the estimated α and each

estimated αi. The parametric assumptions (whether u is half normal or exponential) imply

that the distribution of transient inefficiency (u) conditional on εit = vit − uit is a truncated

(at zero) normal distribution parameterized in terms of the estimates of σ2
u, σ2

v , and T with

the regression residuals (eit, say), substituted for errors εit (Aigner et al., 1977).

Point estimation of school-level (transient) technical inefficiency proceeds by calculating

moments of the truncated normal distribution of u conditional on εit = eit. Jondrow et al.

(1982) provide formulae for the conditional expectation, E(u|εit), and the conditional mode,

M(u|εit), which are reproduced in the Appendix. The conditional mean is more commonly

employed in empirical exercises as a point estimate for inefficiency but has the shortcomings

that it is always positive and that the probability of ties across i is zero8. That is, no firm is

on the efficient frontier and there are never ties in the efficiency scores. On the other hand,

the conditional mode allows for ties at zero9. We calculate both point estimates of transient

inefficiency in our application, but suggest that the oft-ignored conditional mode may be a

more useful point estimate for policymakers. That is, the mode determines a group of schools

to be on the efficient frontier, so policy prescriptions can be made for the group of schools

that are under-preforming or to reward schools operating efficiently. This phenomenon is

illustrated in 2.1, which plots the conditional mean and mode for the Normal-Half Normal

(NHN) specification and for the Normal-Exponential (NE) specification for continuous values

1980b,a), uniform and half Cauchy distribution (Nguyen, 2010) and truncated Laplace (Horrace and Parmeter,
2018). Kumbhakar and Lovell (2003) show that the choice of distribution most likely does not affect the relative
ranking of estimated firm-level inefficiency.

8This is an empirical fact to anyone familiar with the empirical literature. It is likely due to economist’s preferences
for conditional expectations

9To see this, consider a N(µ, σ2) density truncated at zero. If µ > 0, the mode is positive, otherwise it is zero.
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Figure 2.1: Relationship between Transient Technical Inefficiency and Residual under NHN

Figure 2.2: Relationship between Transient Technical Inefficiency and Residual under NE

of εit with σ2
u = σ2

v = 1 and α = β = 0.

Selecting the schools with conditional mode equal to zero is a useful policy tool, but it is

not a decision rule grounded in statistical theory, so we also appeal to the selection rule in

Flores-Lagunes et al. (2007) based on the efficiency probabilities of Horrace (2005), which

we briefly describe here and for which we provide more details in the Appendix. Given the n

truncated normal conditional (transient) inefficiency distributions of u and given a specific

time period t, we follow Horrace (2005) to characterize transient technical inefficiency as the
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probability that school i’s draw of u is the smallest in any period t as

πit = Pr (uit < ujt, ∀j 6= i | ε1t, . . . , εnt) (2.2)

These are within-sample, relative "efficiency probabilities". Then one may estimate the

probabilities by substituting εit = eit above and use the estimated efficiency probabilities

to select a subset of schools that contains the unknown efficient school at a prespecified

confidence level (e.g., 95%), following Flores-Lagunes et al. (2007).10 Let the population

rankings of the unknown efficiency probabilities be,

π[n]t > π[n−1]t > · · · > π[1]t,

and let the sample rankings of the estimated probabilities, π̂it be

π̂(n)t > π̂(n−1)t > · · · > π̂(1)t

where [i] 6= (i) in general. Then, the Flores-Lagunes et al. (2007) procedure is to sum the

estimated probabilities, π̂it, from largest to smallest until the sum is at least 0.95. Then the

school indices in the sum represent a "subset of the best schools", containing the unknown

best school, i = [n] , with probability at least 95%. Equivalently, the school indices in the

subset of the best cannot be distinguished and are all on the within-sample efficient frontier

(in a statistical sense). If the subset of the best is a singleton, then there is only one efficient

school, [n] = (n). The subset could contain all n schools, so all schools are on the frontier.

The lower the cardinality of the subset, the sharper the statistical inference on [n].

Education researchers have adopted SFA to estimate production frontiers and to analyze
10We do not show how to do this, so the reader is referred to Horrace (2005) and Flores-Lagunes et al. (2007).
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school inefficiency, including: universities (Dolton et al., 2003; Gronberg et al., 2012; Stevens,

2005; Zoghbi et al., 2013); school districts (Chakraborty et al., 2001; Grosskopf et al., 2014;

Kang and Greene, 2002); and primary and middle schools (Garcia-Diaz et al., 2016; Kir-

javainen, 2012; Pereira and Moreira, 2007; Salas-Velasco, 2020).11 Only a few of these studies

focus on inefficiency in US public school education. Chakraborty et al. (2001) set T = 1

and w = 0 in (1) to measure the inefficiency of public education in Utah. Kang and Greene

(2002) set w = 0 in (1) to analyze technical inefficiency in an upstate NY public school

district from 1989 to 1993. Grosskopf et al. (2014) set T = 1 and w = 0 in (1) to analyze

data from 965 public school districts in Texas. In all these papers, the only estimator of

US school-level inefficiency considered is the conditional mean, E(u|εit), and none of these

papers consider inference over the identification of efficient and inefficient schools in any

meaningful way.

Compared to the other, earlier models, the true fixed effect model relaxes the assumption

that technical inefficiency must be time invariant and allows for unobserved school hetero-

geneity. Unlike Greene (2005a,b), however, we estimate the model using Marginal Maximum

Simulated Likelihood Estimation (MMSLE), proposed by Belotti and Ilardi (2018)12. The

maximum likelihood dummy variable estimation originally proposed by Greene (2005a,b)

suffers from an incidental parameter problem, resulting in inconsistent estimates of σ2
u and

σ2
v .13 MMSLE addresses the incidental parameter problem by treating the marginal likeli-

hood function as an expectation with respect to the change of residuals and estimates vari-

ances through simulation. MMSLE also allows for consideration of both normal-half normal

and normal-exponential distribution assumptions for the technical inefficiency parameter,

uit.14

11Surveys of SFA in education are Worthington (2001), Johnes (2004) and De Witte and López-Torres (2017).
12This estimation is available on Stata in command sftfe.
13More detailed explanation of the incidental parameter problem can be found in Neyman and Scott (1948) and

Lancaster (2000).
14Chen et al. (2014) proposes an alternative using marginal maximum likelihood estimation (MMLE), which utilizes
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2.3 Data

We use data from the New York State Education Department (NYSED) and New York City

Departments of Education (NYC DOE) to construct a balanced panel of education outputs

(test score gains) and education inputs (student, teacher, and school characteristics) for

cohorts of NYC public school students that completed middle school between AY 2014

and AY 2016. Specifically, we use school-level data from the NYS School Report Cards

(SRC), which contains information on school enrollments by grade, student demographics,

and teacher characteristics in every NYS public school. We merge SRC data to aggregated

student data that summarizes the mean gains in Math and English Language Arts (ELA) test

scores between grades 5 and 8 for each cohort in every school as well as mean characteristics

of those test takers15. The resulting panel contains 425 public middle schools in NYC,

excluding charter schools and schools that open, close, or otherwise are missing data during

our sample period. The schools are scattered across all five NYC boroughs, including 133 in

Brooklyn, 115 in the Bronx, 84 in Manhattan, 80 in Queens, and 13 in Staten Island.

2.3.1 Educational Outcomes

We construct cohort-level measures of normalized test score gains to measure schools’ educa-

tion production. We use test scores on annual standardized exams implemented by the New

York State Testing Program (NYSTP), which administrates state-wide mathematics (Math)

and English language arts (ELA) tests to students from grade 3 to grade 8 in compliance

with the standards of the NCLB Act and, later, the "Every Student Succeeds Act (ESSA)

closed skew normal distributions properties González-Farias et al. (2004) to derive closed-form expressions of the
marginal likelihood function to address the incidental parameter problem.

15In the following, unless specified, we use test-takers and students interchangeably.
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of 2015" (Public Law 114-95, 2015)16.

Following common practice in education economics research, we normalize student test per-

formance across grades and years as standardized z-scores with a mean of zero and a standard

deviation of one for each grade and year, thus pegging performance to the citywide mean for

each cohort. The standardized exams are administered in the second half of each academic

year (usually in April or May), so we calculate z-score changes ("gains") between grade 5 and

grade 8 to reflect education production during the middle school period (which spans grade

6 to grade 8)17. Thus, for example, if a student is at precisely the citywide mean for students

in grade 5 in AY 2012 and one standard deviation above average in grade 8 in AY 2015,

their gain score takes a value of one (1). This has implications for interpretations of the

marginal products in equation 2.1. For example, if β equals 0.5 for a variable in xit, such as

the share of students with limited English proficiency, then increasing this share of students

from 0 to 1 increases average gains in test scores by one-half of a standard deviation. For

our main sample, we restrict each cohort to those students who take both the Math and

the ELA standardized exams in both grade 5 and grade 8 to limit the extent to which the

composition of a cohort changes by students transferring into and out of NYC schools and

the bias that results from nonrandom selection into the testing population by exam (such

as students taking one exam but not the other due to expected performance). By including

only students with complete exam data in each cohort, we ensure that the mean cohort-level

gain scores reflect true changes in performance over time for the same students, rather than

changes in the composition of test takers18.
16More information can be found on https://www.schools.nyc.gov/learning/in-our-classrooms/testing.
17We also use specifications that treat grade 8 z-scores as the output, either with baseline performance in grade

5 included as a student characteristic or without that additional variable. The first of these models are akin to
value-added models and produce similar results to those presented in this paper. The second do not control for
baseline performance (an all-too-common practice in previous SFA research), so some estimates differ because they
reflect both marginal effects and uncontrolled student quality.

18To test the sensitivity of our results to cohort restrictions, we relax the sample constraints to keep students with
either complete (grade 5 and 8) Math or ELA exams (rather than both subjects). Results are substantively similar
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2.3.2 Educational Inputs

Following Grosskopf et al. (2014), we include school, teacher, and test-taker characteristics

among our educational inputs. Column one of Table 2.1 lists input variables included in

this study. Test-taker characteristics include sociodemographic information, such as share

of the cohort by race/ethnicity (white, black, Hispanic, Asian, or multiracial), gender, with

limited English proficiency, with disabilities, and from economically disadvantaged house-

holds. Teacher characteristics include the number of teachers per one hundred students, and

teacher quality measures, such as the share of teachers with a master’s degree or greater,

teaching without valid certification, out of certification, and who have more than three years

of experiences. School characteristics include the share of classes taught by teachers with-

out certification, the average number of classes per one hundred students, the number of

staff (excluding teachers) per one hundred pupils, and the number of principal and assistant

principals per one hundred students.

The second column of Table 2.1 reports citywide summary statistics of the educational

inputs. Hispanic students are the largest racial/ethnic group in NYC, accounting for nearly

half of students in the average middle school, followed by black students at 34.7%. More

than three-fourths of students in the average NYC public middle school are economically

disadvantaged, and roughly 17% are students with disabilities. We also report summary

statistics by borough in columns 2-6 of Table 2.1. The share of white students accounts for

only 3.88% in middle schools in the Bronx, but nearly half for the schools in Staten Island.

Compared with other boroughs, schools in the Bronx also have the largest share of students

from economically disadvantaged backgrounds (83.94%) and with limited English proficiency

(8.83%). In terms of teacher and school inputs, middle schools in the Bronx have the highest

share of teachers out of certificate (20.62%) and without valid certification (1.58%). Schools

(in magnitude and direction) to the main results reported and are available from the authors upon request.
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Table 2.1: Summary Statistics for NYC Public Middle Schools

Variable NYC Manhattan The Bronx Brooklyn Queens Staten Island
Test-Taker Characteristics
Share Male 49.60% 48.98% 49.47% 49.05% 50.88% 51.00%
Share Female 50.40% 51.02% 50.53% 50.95% 49.12% 49.00%
Share White 10.40% 8.87% 3.88% 10.20% 15.45% 49.27%
Share Black 34.70% 26.55% 28.03% 49.73% 31.12% 14.14%
Share Hispanic 45.00% 56.26% 64.54% 30.90% 31.50% 27.47%
Share Asian 9.07% 7.18% 3.03% 8.61% 20.60% 8.29%
Share Multiracial 0.81% 1.14% 0.50% 0.56% 1.33% 0.84%
Share Limited English 6.09% 7.48% 8.82% 4.56% 4.02% 1.54%
Share Disadvantaged 77.00% 75.03% 83.94% 78.72% 69.31% 58.52%
Share Disabled 16.90% 20.74% 17.06% 16.14% 13.54% 18.52%
Number of Test-Takers 93.83 56.86 76.64 90.48 143.61 212.51

Teacher Characteristics
No. Teachers / 100 Students 7.42 8.01 7.47 7.84 6.49 6.71
Share Master Deg. or Higher 40.50% 35.62% 32.67% 44.02% 47.02% 66.58%
Share More 3yrs Experience 86.00% 84.40% 80.80% 89.40% 88.34% 94.12%
Share Out of Certificate 15.90% 16.36% 20.62% 14.38% 11.78% 11.31%
Share Without Certificate 1.12% 1.14% 1.58% 1.13% 0.59% 0.17%

School Characteristics
No. of Classes /100 Students 26.76 27.26 27.01 28.6 24.05 25.5
Share Classes Uncertified 15.10% 15.44% 19.41% 13.79% 11.37% 11.12%
No. Staff / 100 Students 1 1.13 1.06 1.03 0.81 0.95
No. Principals / 100 Students 3.02 2.44 3 2.99 3.49 4.23

Mean z-score
Grade 5 Math -0.11 -0.13 -0.24 -0.11 0.04 0.11
Grade 8 Math 0.01 0.02 -0.16 0.01 0.21 0.25
Grade 5 ELA -0.09 -0.12 -0.21 -0.08 0.07 0.13
Grade 8 ELA -0.03 0 -0.2 -0.03 0.13 0.21
n 425 84 115 133 80 13
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in Staten Island is at the other end of the spectrum, having the lowest mean shares of students

from economically disadvantaged background (58.52%) or with limited English proficiency

(1.52%). The share of teachers with master or higher degrees (66.58%) and with three or

more years of experience (94.12%) are also the highest in Staten Island. We note, as well,

that performance varies across districts, with the mean grade 8 Math and ELA z-scores 16%

and 20% of a standard deviation below average for schools in the Bronx, but 25% and 21%

of a standard deviation above average for schools in Staten Island. Average middle school

gains in test performance also vary by district, but not to the same degree; the borough with

the smallest gains is the Bronx with 7% and 1% of a standard deviation gains in Math and

ELA, respectively, and the borough with the greatest gains is Manhattan with 16% and 11%

of a standard deviation gains in those two subjects19.

19All gain scores calculated as the difference between grades 8 and 5 mean performance. At first blush, it is
counterintuitive that gain scores are above 0 for all boroughs, but we note that this reflects that students entering
the district in middle school are lower performing than those enrolled and who take the exams in both grades.
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2.4 Results

Estimates from the "true" fixed-effect stochastic frontier model in equation 2.1 are shown in

Table 2.2. We only present estimates for Math (column 2) and ELA (columns 3) scores using

normal-exponential and normal-half normal specifications of the model, respectively. The

normal-half model for Math and the normal-exponential model for ELA did not converge,

so estimates are not presented.

2.4.1 Marginal Effect of Education Inputs

Columns 2 and 3 of Table 2.2 contain the marginal effects for improvements in Math and

ELA scores, respectively. Generally speaking, we find that improvements in Math scores are

largely uncorrelated with test-taker and school characteristics, while teacher characteristics

are important. Improvement in ELA scores are largely due to student characteristics.

Beginning with the marginal effects of test-taker characteristics, we find none of the student

characteristics are correlated with middle school Math gains at the 95% significance level

(though "share multiracial" is positively and "share limited English proficient" is negatively

correlated with Math gains with p-values less than 0.1). Conversely, share female, Asian,

and limited English proficiency are all positively correlated with ELA gains (while other

test taker characteristics are not). For example, an increase in the share of a cohort who is

female from none to all (0 to 1) is associated with greater gains during middle school of nearly

one-fifth of a standard deviation (0.190). Put differently, a 10 percentage-point increase in

the female share of students is correlated with 1.90 percent of a standard deviation greater

increases in gain scores. Similarly, 10 percentage-point increases in share of a cohort who

are Asian or with limited English proficiency increase ELA gains by 4.53% and 3.85% of a
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Table 2.2: Results of the "True" Fixed Effect Model Es-
timated by MMSLE

Math ELA
Test-Taker Characteristics
Share Female -0.147 0.190***
Share Black -0.0731 0.00227
Share Hispanic 0.174 0.134
Share Asian 0.301 0.453***
Share Multiracial 0.832* 0.284
Share Limited English -0.262* 0.385***
Share Disadvantaged -0.165 -0.0826
Share Disabled -0.0932 0.0971

Teacher Characteristics
No. Teachers / 100 Students 0.0349*** 0.0146
Share Master Deg. or Higher -0.662*** 0.00811
Share More 3yrs Experience 0.635*** 0.09
Share Out of Certificate -0.13 -0.026
Share Without Certificate 1.364** 0.00143

School Characteristics
No. of Classes /100 Students -0.00289 0.00284*
Share Classes Uncertified 0.351 0.323
No. Staff / 100 Students 0.0818* 0.0012
No. Principals / 100 Students -0.0122 -0.0108

σu 0.124 0.132
σv 0.137 0.111
λ 0.9051 1.1892
Observations 1,275 1,275
n 425 425
Distribution Assumed NE NHN

*** p < 0.01, ** p < 0.05, * p < 0.1
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standard deviation, respectively.

Unlike test taker characteristics, we find teacher characteristics are more strongly correlated

with Math performance gains than ELA. As the number of teachers per 100 pupils increases

by 1, Math gains increase by 3.49% of a standard deviation. As the share of teachers with

at least three years of experience increases by 10 percentage-points, Math gains increase

by 6.62% of a standard deviation. Perhaps surprisingly, share of teachers with master’s or

doctorate degrees is negatively associated with gains in Math (a 10 percentage-point increase

is linked with 6.62% of a standard deviation decrease in Math gains) and share of teachers

without certification are positively associated (a 10 percentage-point increase is linked with

13.64% of a standard deviation greater gains). None of these teacher characteristics are

correlated with ELA gains.

School characteristics appear to matter little for education production in both subjects,

because none of the school characteristics are significantly correlated with gains in middle

school Math or ELA performance at the 95% level (though the number of professional staff

per 100 pupils is positively correlated with Math gains at the 90% level and the number of

classes per 100 pupils is positively correlated with ELA gains at the 90% level).

2.4.2 Persistent Technical Inefficiency Estimates

After controlling for production inputs, Figure 2.3 summarizes the distribution of our esti-

mates of Persistent Technical Inefficiency (PTI) by borough and by test subject (Math or

ELA). That is, the figure plots the empirical distribution of our estimates of wi = α − αi.

The rectangular boxes show the medians, 25th, and 75th percentiles of Persistent Techni-

cal Inefficiency (PTI) for each subject and borough. The lower and upper whiskers below

and above each box are the percentiles that are 1.5 times the interquartile range below and
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above the 25th and 75th percentiles, respectively, for each subject and borough. The dots

are individual estimates of PTI for schools outside the whisker percentiles: the most and

least persistently efficient schools in the sample. For example, there are two dots at PTI =

0, indicating that the persistently efficient ELA school is in Brooklyn and the persistently

efficient Math school in the Bronx. It also appears that there is a second Bronx school that

is very close to the efficient frontier in the Math test. In general, we find that the interquar-

tile ranges of PTI are largely higher (and, perhaps, wider) in the Bronx, Brooklyn, and

Manhattan than in Queens and Staten Island. Differences in estimated PTI are less stark

for ELA, but it does seem they are slightly higher in the Bronx than elsewhere. Of greater

note, perhaps, is that the distributions of inefficiency across the NYC’s boroughs are not so

large as to reflect a "tale of two cities" - there are schools in the Bronx that are estimated to

have low PTI as well as schools in Staten Island with moderate to moderately high estimated

PTI. We note that direct comparisons across the two subjects should be avoided, because the

educational production functions for Math and ELA are estimated separately with different

distributional assumptions on the transient inefficiency component, u.

Figure 2.3: Persistent Technical Efficiency (PTI) by Borough

We report the mean and standard error of Persistent Technical Inefficiency (PTI) in Table

2.3. Consistent with Figure 2.3, the Bronx has the highest mean PTI: 1.08 for Math and
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0.58 for ELA, both of which are significantly higher than the average citywide PTI. In other

words, over the period the Bronx is persistently about one standard deviation below the

efficient frontier of normalized test score improvements in Math and about a half a standard

deviation below the frontier in ELA. Conversely, Staten Island has the smallest PTI for Math

and ELA (0.82 and 0.45 for Math and ELA, respectively), and differences from the citywide

mean are statistically significant. Under our modelling assumptions, this implies that schools

in the Bronx persistently operate less efficiently on average than those in Staten Island (or

Queens, for the matter). Given that these schools also serve the lowest performing students,

as shown in Table 2.1, the results suggest that PTI increased the student achievement gap

across boroughs during this period.

Table 2.3: Mean of Persistent Technical Efficiency by Subject and Borough

Subject NYC Manhattan The Bronx Brooklyn Queens Staten Island

Math 0.99 1.04 1.08*** 0.97 0.90*** 0.82**
(0.29) (0.29) (0.31) (0.3) (0.23) (0.24)

ELA 0.53 0.51 0.59*** 0.51 0.53 0.45*
(0.16) (0.14) (0.15) (0.18) (0.13) (0.15)

*** p < 0.01, ** p < 0.05, * p < 0.1

Do schools with large Persistent Technical Inefficiency (PTI) in Math also have large PTI in

ELA? Figure 2.4 presents a scatterplot of PTI in Math against PTI in ELA in all years with a

linear fit line superimposed (the slope of the line is 1.13, with a t-statistic of 16.35). A Spear-

man test, comparing school ranks in Math PTI and ELA PTI, finds a positive (0.6169) and

significant statistic (p-value = 0.0000), suggesting a strong monotonic relationship between

PTI in Math and PTI in ELA.

The positive correlation of inefficiency across subjects to a degree echoes the view of Helm-

stadter and Walton (1985) and Luyten (1994), where schools are viewed as "classic bureau-

cracies" and are expected to have consistent performance across subjects. On the other hand,
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the fact that PTIs across subjects are not perfectly correlated also implies that schools are

differentially effective in their education in different subject areas (Matthews et al., 1981;

Mandeville and Anderson, 1987).

Figure 2.4: Correlation of Persistent Technical Inefficiency in Math and ELA.

2.4.3 Transient Technical Inefficiency

Table 2.4 shows summary statistics of each school’s Transient Technical Inefficiency (TTI)

with plotted distributions for Math and ELA shown in Figures 2.5 and 2.6, respectively. Re-

member, all that these models admit is the truncated (at zero) normal distribution of TTI

conditional on the residual values of 425 school in each of 3 years. Here we point estimate

(summarize) these conditional distributions for each of the 425∗3 = 1, 275 school-years using

their conditional means and modes (and later the conditional probability that each school

is efficient) as described in section 2 and the Appendix. The first row of Table 2.4 contains

summary statistics for the conditional mean of the Math TTI distributions for all schools in

all years. For example, the mean of the conditional mean point estimates of TTI for Math is

0.115. That is, conditional on the residuals, we expect that Math TTI is 0.115 (3rd column)
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for all schools and years. Thus, on average TTI reduces improvements in Math scores by

0.115 standard deviations in the sample, which is comparable in magnitude to the mean

gains in Math scores during this period (0.12 standard deviations citywide as reported in

Table 2.1). Put differently, the grade 8 student achievement gap in Math for schools in the

Bronx and Staten Island is approximately 0.41 standard deviations (as indicated in Table

2.1); the mean citywide TTI is 28% the size of that gap.

Table 2.4: Summary Statistics of TTI - All Schools in All Years

Subject Estimator Mean S.D. Min 25%ile 50%ile 75%ile Max
Math Conditional Mean 0.115 0.063 0.022 0.076 0.1 0.132 0.715

Conditional Mode 0.045 0.081 0 0 0 0.056 0.715
ELA Conditional Mean 0.102 0.038 0.024 0.075 0.096 0.121 0.339

Conditional Mode 0.067 0.056 0 0.018 0.062 0.103 0.339
S.D. = Standard Deviation

The first row of Table 2.4 contains other statistics for the conditional mean estimates of

Math TTI as well. For example, the observation with the minimal conditional mean point

estimate for Math TTI has a value of 0.022, implying that it is 0.022 standard deviations

below the efficient frontier. That is, based on the conditional mean estimates, the most

efficient school-year in the sample for Math TTI is inefficient in expectation. Therefore, the

conditional mean point estimate of TTI is made relative to an out-of-sample standard (a

theoretical best school whose TTI distribution can be described as a Dirac delta at u = 0).

The first row of Table 2.4 also reports the 25th, 50th and 75th percentiles of the conditional

means of Math TTI distributions, as well as the maximal point estimate, which implies that

we expect the least efficient school-year in the sample to be 0.715 standard deviations below

the (theoretical) efficiency frontier.

The second row in Table 2.4 summarizes the conditional mode point estimates of the Math
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TTI distributions. Compared to the conditional mean point estimates (first row), which are

expectations, the conditional modes provide estimates of the most common (or likely) value

of TTI for each observation. While the conditional mean is a measure of central tendency

that can never equal zero for a non-negative u, the conditional mode can occur anywhere in

the non-negative support of the truncated normal distributions that characterizes TTI. In

particular we see in the second row of Table 2.4 that the average of the conditional mode

point estimates is 0.045, which is considerably lower than the average of the conditional mean

estimates (0.115) in the first row. We also see that the minimal estimate of the conditional

mode is exactly zero (5th column). That is, for this school-year the most likely draw from its

conditional distribution of TTI is u = 0, an efficient draw. Looking across the second row in

Table 2.4, this is also true of the school at the 25th percentile (6th column) and the median

school (7th column), meaning that at least half the schools in the sample are likely to be

efficient (their conditional mode is on the frontier) even though they are appear inefficient in

expectation (their conditional mean is not). While the conditional mean and the conditional

mode of TTI summarize the truncated normal distributions in different ways, the mode has

the added benefit of providing an ad hoc decision rule for selecting efficient schools: those

with conditional modes equal to zero20. For example, in the last row of the table we see

that the minimal value for the conditional mode of the ELA TTI is zero (5th column), as

expected. However, the 25th percentile is positive 0.018 (6th column), implying that at least

75% of the observed school-years are unlikely to be efficient.

Finally, we note that in Table 2.4 the maximum conditional mean and the mode estimates

appear to be the same for Math TTI, 0.715 (last column, first and second rows) and for ELA

TTI, 0.339 (last column, third and fourth rows), but this equivalence is rounding error. Due

to the nature of a normal distribution truncated at zero, the distribution’s mean is always
20A statistically rigorous decision rule is based on the Horrace (2005) efficiency probabilities, and is considered in

the sequel.
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larger than its mode. For the maximal school-year observation in the last column of Table

2.4, however, the amount of truncation is so small that at three significant digits (0.715 for

Math and 0.339 for ELA) its effect is negligible21.

Figures 2.5 and 2.6 plot the empirical distributions of our TTI estimates in Table 2.4(note

the axes scales for the two subjects differ). The conditional mean (red) and mode (blue)

distributions in Figure 2.5 correspond to the summary statistics in rows 1 and 2 (respectively)

of Table 2.4, while the distributions in Figure 2.6 correspond to the statistics in rows 3 and 4

of the table. The usefulness of the conditional mode as a decision rule for selecting efficient

schools each year is clear. In Figure 2.5, the blue spike at zero indicates that more than

60% of the school-year observations in the sample are likely to be efficient in terms of their

conditional distributions of Math TTI. In Figure 2.6 the blue spike indicates that about

19% of the school-year observations in the sample are likely to be efficient in terms of their

conditional distributions of ELA TTI. Again, this is an ad hoc decision rule, but one that is

easily understood by policymakers. What could a policymaker make of the red distributions

of the conditional means in Figures 2.5 and 2.6? Not much compared to the blue distributions

of the conditional modes in these figures.

In Table 2.5 we compare TTI by borough and academic year, reporting the percentage of

schools with zero estimated TTI based on the conditional mode point estimate and our ad

hoc decision rule. The table is self-explanatory. Staten Island has the highest percentage

of schools operating efficiently (5th column) in Math (62%), followed by Queens (60%), the

Bronx (59%), Manhattan (58%) and Brooklyn (55%) in order. Conversely, Manhattan and

Brooklyn have the highest percentage of transiently efficient schools (last column) in ELA
21As with any truncated normal distribution with a very large mean equal to its mode (due to symmetry), the

distribution is no longer symmetric after truncation at zero. That is, its new, post-truncation mean is necessarily
larger than its mode, which is unchanged when the pre-truncated mean is positive. Moreover, the mean shifts further
to the right as the amount of truncation increases.
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Figure 2.5: Distribution of Transient Technical Inefficiency in Math

Figure 2.6: Distribution of Transient Technical Inefficiency in ELA
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(18%), followed by the Bronx (17%), Queens (13%), and then Staten Island (10%). Looking

at the trend over time, we find middle schools in the Bronx show consistent improvements in

the percentage of schools operating efficiently, while other boroughs do not have consistent

improvements in efficiency over the period. The share of middle schools in the Bronx with

zero TTI increases from 49% to 60% to 67% in Math and 11% to 16% to 24% in ELA.

Schools in Queens, on the other hand, are less likely to operate with zero TTI in Math over

time (71% to 65% to 45%) with no consistent trends in ELA (20% to 6% to 11%). All other

boroughs also do not display consistent positive or negative trends in TTI22.

Table 2.5: Percentage of Zero-Mode Transiently Efficient Schools by Subject, Borough and Year.

Math ELA
AY2014 AY2015 AY2016 Average AY2014 AY2015 AY2016 Average

Manhattan 50% 70% 55% 58% 11% 30% 13% 18%
The Bronx 49% 60% 67% 59% 11% 16% 24% 17%
Brooklyn 62% 52% 50% 55% 17% 19% 17% 18%
Queens 71% 65% 45% 60% 20% 6% 11% 13%

Staten Island 62% 77% 46% 62% 8% 15% 8% 10%
Total 58% 61% 54% 58% 14% 18% 17% 16%

Figure 2.7 shows a weak but positive relationship between Math TTI and ELA TTI during

our sample period (the slope of the line is 0.56 with a t-statistic of 12.62). The Spearman

test statistics each year range between 0.2834 and 0.3312 and are statistically significant.

2.4.4 Efficiency Probabilities

As suggested previously, the above-described ad hoc rule to identify efficient school-year ob-

servations lacks statistical rigor. Therefore, we calculate school-level efficiency probabilities

Horrace (2005) to identify the subset of schools that operate efficiently each year in terms of
22While it is tempting to compare the magnitudes of TTI in Table 2.4 to the PTI in Table 2.3, the reader is

reminded that PTI may also contain other sources of time-invariant unobserved heterogeneity, so comping TTI to
PTI is ill-advised in general.
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Figure 2.7: Correlation of Transient Technical Inefficiency between Math and ELA

TTI (Flores-Lagunes et al., 2007). A more thorough discussion of the technique is contained

in the Appendix, but as stated earlier, it uses the conditional truncated normal distribution

of TTI for each school to calculate the probability that each school is efficient in each year

(has the smallest u conditional on the data), then selects a minimum cardinality subset of

schools that contain the efficient school with at least 95% probability. This is a rigorous

statistical decision rule, and we have two goals in the analyses that follow. The first is to

calculate this minimal cardinality "subset of the best" schools in each year at the 95% level,

and the second is to compare the cardinality of the subset of the best in each year to the

cardinality of the subset of zero-mode schools in each year.

Table 2.6 contains the results. The first row of the table is for Math TTI in AY 2014. In

2014 there were 246 schools (3rd column) with conditional modes equal to zero. Since we

have a balanced panel of 425 schools, this means that 58% percent of schools are efficient

in 2014 based on our ad hoc decision rule, and this number corresponds to the 58% in the

last row, 2nd column of Table 2.5. Call these 246 schools the "zero-mode subset" of efficient

schools. The 4th column of Table 2.6 is the sum of the efficiency probabilities for the schools

in the zero-mode subset. That is, the probability that the most efficient firm in the sample
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is contained in the zero-mode subset is 75.22% in 2014 for Math TTI. Put another way, the

schools in the zero-mode subset are statistically indistinguishable from the unknown efficient

school with probability 75.22%. Thus, the efficiency probabilities allow us to assign a con-

fidence level to our ad hoc decision rule, however it is well below typical confidence levels

like 90% or 95%. Nonetheless there is policy value in knowing the zero-mode subset. The

second and third rows of Table 2.6 show that the cardinalities of the zero-mode subsets (3rd

column) in AY 2015 and 2016 (259 and 231 schools respectively) are similar to AY 2014, as

are the zero-mode probabilities (4th column), which are 76.10% and 73.09%, respectively.

In sum, we are about 75% confident that about 60% of NYC schools are likely operating

efficiently in terms of Math TTI.

Table 2.6: Subsets of the Best Schools in terms of TTI

Test Cohort Zero-Mode
School
Count

Zero-Mode
Probabili-
ties

Schools in
95% Best
Subset

Math
AY2014 246 75.22% 372
AY2015 259 76.10% 374
AY2016 231 73.09% 369

ELA
AY2014 61 32.30% 334
AY2015 75 37.97% 339
AY2016 72 40.77% 326

Zero-mode probabilites are probabilites that the zero-mode subset contains the tran-
sient technical efficient school in the sample.

Moving to the ELA test results in Table 2.6 (rows 4-6), we see that the cardinalities of

the zero-mode subsets (3rd column) are 61, 75, 72 with probabilities (4th column) 32.30%,

37.97% and 40.77% in AY 2014, 2015 and 2016, respectively. These are much lower cardi-

nalities and probabilities than the Math TTI results, and this is reflected in the smaller blue

spike at zero in compared to Figure 2.5 and 2.6 (which have different scales). Why might

this be the case? Is there something inherent in ELA education that lends itself to lower effi-

ciencies relative to Math education? It is, in fact, a commonly found empirical phenomenon
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that ELA achievement is more reflective of home environment and individual characteristics,

while Math performance is more responsive to classroom characteristics - a finding that is

also consistent with theory about the pedagogy of ELA and Math instruction (Bryk and

Raudenbush, 1989). It is noteworthy too, that our results in Table 2.2 also show test-taker

characteristics are more predictive of greater ELA gains, while teacher characteristics are

correlated with greater Math gains. Keep in mind, however, that we are assuming that the

distribution of Math TTI is half-normal and that of ELA TTI is exponential, and this was

driven by nonconvergence of the likelihood maximization in alternative specifications. Aside

from this technical detail, it may simply be that mathematical standards for "correctness"

are objective and those for the language arts are more subjective, so identifying "best prac-

tices" in ELA may be more difficult than in Math. There is a branch of SFA that attempts

to explore the determinants of technical inefficiency (Cho and Schmidt, 2020). Perhaps such

an analysis may be helpful here, but this is left for future research.

The 5th column of Table 2.6 contains the cardinality of the 95% minimal cardinality subset

of the best (Flores-Lagunes et al., 2007), and in the first row we see that for Math TTI in

2014, 372 of our 425 middle schools were indistinguishable from the best middle school in

the sample with 95% probability. Here, and in the other rows of the table, the zero-mode

subset is always a proper subset of the subset of the best. (Whether this is a coincidence

or not remains to be seen and is left for future research.) The implication is that even if

the zero-mode decision rule is ad hoc and does not achieve usual confidence levels, at least

it identifies a subset of schools that are contained in the subset of the best, as based on a

rigorous statistical decision rule.

Looking down the 5th column across academic years for Math TTI, 369 to 374 (depending

on year) of the 425 schools are statistically indistinguishable from efficient at the 95% level.

For ELA, 326 to 339 of 425 schools are statistically indistinguishable from efficient. These
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are useful statistics that policymakers may use to determine which and how many schools

to target when designing interventions that are intended to improve performance.
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2.5 Conclusion

This study provides summaries of persistent and transient technical efficiency estimates for

each of 425 NYC middle schools using recent advancements in stochastic frontier modeling.

Using the "true" fixed effect stochastic frontier model to estimate gains in mathematics

(Math) and English language arts (ELA), we find substantial variation in persistent technical

inefficiency across the city and between boroughs. We note that while some boroughs have

higher shares of persistently inefficient schools than others, there is a wide and overlapping

distribution across each of the five boroughs in the city, suggesting school efficiency in NYC

is not a "tale of two cities". Thus, while the mean Math and ELA persistent technical

inefficiency in the city are 0.99 and 0.53 standard deviations, respectively - both larger

than the student achievement gap between schools in the borough that enrolls the highest

performing students (Staten Island) and schools in the borough that teaches the lowest

performing students (the Bronx) - school inefficiency itself is widely distributed across the

NYC’s boroughs and schools. Still, to give a sense of magnitude of the results, if the city could

find a way to remove persistent technical inefficiency in schools in the Bronx, for example,

it would eliminate the achievement gap across boroughs (and, in fact, even overshoot the

target).

We next produce estimates of transient technical inefficiency, using both a conditional mean

and a conditional mode estimator. Under the conditional mode estimator and an ad hoc

decision rule, we find around 58% of schools are transiently technically efficient in Math and

16% in ELA. We then apply a probability statement approach to offer rigorous inferential

insights on which school-years are statistically on the efficient frontier, and which are very

likely not. Based on the results of our "zero-mode subset" and the minimal cardinality subset

of the best, the model can be used for both subjects to provide substantial information to
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decisionmakers on which schools likely did and did not operate efficiently each year. These

are important distinctions for policymakers to be able to make; for example, the difference

in the mean achievement gains for students attending a school-year observation in the zero-

mode subset in ELA using the conditional mode is estimated to make 6.2 percent of a

standard deviation greater gains than if that school were operating at the median level of

inefficiency for ELA in that year (equivalent to about 15% of the gap between mean grade

8 achievement in Staten Island and the Bronx).

Another innovation of this study is the use of student-level academic performance data

to estimate gains over time, which are then aggregated to the cohort-school-level to more

accurately measure the education produced during the middle school years. These sorts

of "gains models" are common in other education research but have not yet been used in

stochastic frontier modelling. This innovation allows for improved estimates of the marginal

effects of student, teacher, and school inputs on education production as well as a more

compelling methodology for determining which schools are persistently efficient in each year.

Our results suggest that policymakers should more rigorously consider the role inefficiency

plays in reducing education production in public schools. First, we identify which features

(and types of features) in the school environment are beneficial or harmful to education

production in middle schools, interestingly finding that student composition of a school is

more important for the production of ELA gains, while teacher composition of a school

is more important for the production of Math gains. These results are consistent with

the conventional wisdom that ELA achievement is more responsive to home and individual

characteristics and Math achievement is more responsive to classroom characteristics (Bryk

and Raudenbush, 1989).

Second, by separating persistent technical inefficiency from transient technical inefficiency,
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we offer a methodology for school district administrators to separate the systemic features

of a school that harm efficiency (such as, perhaps, building or principal quality) from those

that change perennially (such as, perhaps, teacher effort or curriculum design). Third,

by separating inefficiency from the error term (under the above-described distributional

assumptions), decisionmakers are better able to assess the extent to which declining exam

performance is due to inefficiency as opposed to statistical noise.

Arming policymakers with actionable decision rules that are methodologically rigorous and

reflect the true performance of schools is a tall ask of any statistical model. By applying

the true fixed effect model with both the conditional mode estimator and the more rigorous

Horrace (2005) probabilities, this paper expands the tool kit of policymakers and illustrates

how to apply those tools to measure inefficiency in education. To avoid making an overstate-

ment of the implications of this study, it is important to recognize that the methodologies in

this paper, while can address some of the shortcomings of previous work such as separating

persistent from transient inefficiencies, are no exceptions to having limitations: on top of

the distribution assumptions made when estimating the model, the intuition-driven linear

functional form, the limited data availability, and regression to the mean all could potentially

influence the validity of our findings. Addressing those concerns requires future efforts such

as cross-validating with alternative methodologies including value-added models (Ladd and

Walsh, 2002; Meyer, 1997) and DEA (Farrell, 1957; Charnes et al., 1978), exploring how

regression to the mean affects stochastic frontier models, conducting field experiments and

qualitative research like focus groups among the educators and students, and others. These

efforts may also allow for better targeting of policy levers towards disincentivizing each form

of inefficiency.
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2.6 Appendix

2.6.1 The Conditional Mean Estimator and the Conditional Mode

Estimator

When v is normal and u is half-normal, the model is Normal-Half Normal (NHN). When u is

exponential, the model is Normal-Exponential (NE). Per Jondrow et al. (1982), the closed-

form expressions of the conditional mean under normal-half normal and normal-exponential

assumptions are:

E (uit | eit, NHN) = σ̂∗

 φ
(
eitλ̂
σ̂

)
1− Φ

(
eitλ̂
σ̂

) −
eitλ̂

σ̂

 , (2.3)

E (uit | eit, NE) = σ̂v

[
φ(Â)

1− Φ(Â)
− Â

]
(2.4)

where σ2 = σ2
u + σ2

v , σ2
∗ = σ2

uσ
2
v/ (σ2

u + σ2
v), λ = σu

σv
and A = εit

σv
+ σv

σu
. φ and Φ are the proba-

bility density function and cumulative distribution function of standard normal distribution.

Estimates are formed by substituting the MMSLE estimates for their population parameters

into these formulae while setting εit = eit.

A less commonly employed estimator proposed by Jondrow et al. (1982) is the mode of

the conditional distribution of uit|εit, denoted as M(uit|εit), to measure transient technical

inefficiency. Under normal-half normal and normal-exponential distribution assumptions,

the conditional mode estimator can be written as:

M (uit | eit, NHN) =


−eit

(
σ̂2
u

σ̂2
u+σ̂2

v

)
, if eit ≤ 0

0, if eit > 0
(2.5)
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M (uit | eit, NE) =


−eit − σ̂2

v

σ̂u
, if eit ≤ − σ̂2

v

σ̂u

0, if eit > − σ̂2
v

σ̂u

(2.6)

The parametric forms of both conditional mean and conditional mode estimators under NHN

and NE are functions of eit. To better understand the differences between the conditional

mean and the conditional mode estimators, we standardize the standard errors σv and σu

to one and plot their relationships with eit under NHN in Figure 2.1 and under NE in

Figure 2.2. The figures show that both conditional mean and conditional mode estimators

are monotonically decreasing with the regression residual. The conditional mode estimator,

however, is always below the conditional mean estimate given the same residual. Moreover,

when the residual surpasses a threshold (0 under NHN or −σ2
v/σu under NE), the conditional

mode estimator takes a value of zero whereas the conditional mean estimator is positive and

monotonically decreasing. This is intuitive - the more negative the regression residual, the

farther the school is below that frontier and the more likely it is to be operating with

large inefficiency. When the regression residual is large and positive, the school’s estimated

productivity is above the production frontier, suggesting the inefficiency is likely to be small.

The difference between the estimators, then, is that, when above the threshold, the estimated

TTI using the conditional mean estimator is small but still positive, whereas using the

conditional mode estimator is zero. We use this conditional mode property to identify "zero-

mode" schools that are likely to be operating efficiently.

Similar to the conditional mean estimator, the conditional mode estimator can be used to

rank schools. However, unlike the conditional mean, the ranking allows for ties if more than

one school is estimated to have zero TTI. Among schools with positive conditional mode

estimates (non-zero estimated inefficiency), however, the order of the rankings is the same

as from the conditional mean.
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2.6.2 Conditional Efficiency Probabilities and the Subset of the

Best Schools

While conditional mean estimates can be used to rank schools and conditional mode esti-

mates can be used to find zero-mode efficient schools, neither estimate can produce joint

probability statements on the relative ranking of the schools. To assess the reliability of the

results and to draw inference on the efficiency rankings, we turn to the probability statement

approach (Horrace, 2005; Flores-Lagunes et al., 2007; Horrace and Richards-Shubik, 2012;

Horrace et al., 2015). Assuming independence of u over i and t, the probability of the event

"school i is efficient at time t" is:

πit = P {uit ≤ ujt ∀i 6= j | ε1t, . . . , εnt} =
∫ ∞

0
fuit|εit(u)

n∏
j 6=i

[
1− Fujt|εjt(u)

]
du (2.7)

where fuit|εit(u) and Ffuit|εit(u) are the probability density function and cumulative distri-

bution function of uit|εit, respectively. If u is half-normal with variance σ2
u, then uit|εit is

N+
(
− εitσ

2
u

σ2
u+σ2

u
, σ2

uσ
2
v

σ2
u+σ2

n

)
. If u is exponential, then uit|εit is N+ (−εit + σ2

v/σu, σ
2
v). To estimate

the probabilities πit, the regression residuals, eit, are substituted into the above formulas

for errors, εit. Then, given any subset of the n schools (like our zero-mode subset), we can

assign a confidence level to the set containing the efficient school by summing the probabili-

ties πit for the schools in the set. Alternatively, let the population rankings of the unknown

efficiency probabilities be,

π[n]t > π[n−1]t > · · · > π[1]t (2.8)

and let the sample rankings of the estimated probabilities, π̂it, be

π̂(n)t > π̂(n−1)t > · · · > π̂(1)t (2.9)
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where [i] 6= (i) in general. We can determine a 95% minimal cardinality subset of the

best school by summing the probabilities from the largest (n) to the smallest (1) until

the sum is at least 0.95. Then, the school indices in the sum are "in contention for the

best school" with probability at least 95% at time t. In other words, these schools cannot

be statistically distinguished from the (unknown) best school in the population, [n]. For

example, if π̂(n)t > 0.95, then the minimal cardinality subset is a singleton containing only

the index (n), and the inference is very sharp. If π̂(n)t < 0.95, but π̂(n)t+ π̂(n−1)t > 0.95 (say),

then the minimal cardinality subset is {(n), (n− 1)}. It is possible that the subset contains

all n schools, {(n), (n−1), . . . , (1)}. This occurs when∑n−1
i=1 π̂(i)t < 0.95 or equivalently when

π̂(1)t > 1− 0.95.
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