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Abstract

The Mordell-Weil Theorem states that if K is a number field and E/K is an elliptic

curve that the group of K-rational points E(K) is a finitely generated abelian group, i.e.

E(K) ∼= ZrK ⊕ E(K)tors, where rK is the rank of E and E(K)tors is the subgroup of torsion

points on E. Unfortunately, very little is known about the rank rK . Even in the case of

K = Q, it is not known which ranks are possible or if the ranks are bounded. However,

there have been great strides in determining the sets E(K)tors. Progress began in 1977

with Mazur’s classification of the possible torsion subgroups E(Q)tors for rational elliptic

curves, and there has since been an explosion of classifications.

Inspired by work of Chou, González-Jiménez, Lozano-Robledo, and Najman, the purpose

of this work is to classify the set ΦGal
Q (9), i.e. the set of possible torsion subgroups for

rational elliptic curves over nonic Galois fields. We not only completely determine the set

ΦGal
Q (9), but we also determine the possible torsion subgroups based on the isomorphism

type of Gal(K/Q). We then determine the possibilities for the growth of torsion from

E(Q)tors to E(K)tors, i.e. what the possibilities are for E(K)tors ⊇ E(Q)tors given a fixed

torsion subgroup E(Q)tors. Extending the techniques used in the classification of ΦGal
Q (9),

we then determine the possible structures over all odd degree Galois fields. Finally, we

explicitly determine the sets ΦGal
Q (d) for all odd d based on the prime factorization for d

while proving a number of other related results.
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1

Chapter 1

Introduction

The purpose of this dissertation is to study the possible torsion structures for rational el-

liptic curves over odd degree Galois fields. We begin this paper by motivating the study

of Diophantine equations in Chapter 2. In particular, we will review a bit of the history

of Diophantine equations and motivate why elliptic curves constitute perhaps the most in-

teresting class of Diophantine equations—if only for their intrinsic beauty. Then in Chap-

ter 3, we will give an overview of the theory of elliptic curves pertinent to the rest of the

paper. For the expert, this chapter can be skipped. For the neophyte, we do not cover

enough to have complete command of the theory—merely to make the subsequent results

and discussions understandable. We do not assume much familiarity with elliptic curves,

but we do assume the reader is familiar with Algebraic Geometry, Algebra, and some

Number Theory. In Chapter 4, we review much of what is currently known about torsion

subgroups of elliptic curves. Because results in this area are often scattered across dozens

of papers and doing research in this area then often means juggling stacks of papers, we

hope collecting a ‘hefty’ amount of results together will be of use.



2

Starting in Chapter 5, we begin the main purpose of this work—classifying torsion sub-

groups of rational elliptic curves over odd degree Galois fields. Chapter 5 begins by classi-

fying the possibilities for ΦGal
Q (9), i.e. the set of isomorphism classes of torsion subgroups

for rational elliptic curves, E(K)tors, where E varies over all rational elliptic curves and

K/Q varies over all nonic Galois fields. We also classify the possibilities for E(K)tors

based on the isomorphism type of Gal(K/Q), as well as classify the possibilities for tor-

sion growth when base extending E(Q)tors to a nonic Galois field. We give examples of

each such possibility.

In Chapter 6, we begin work towards the main result of this paper, which is classifying

the set
⋃∞
k=0 ΦGal

Q (2k + 1), i.e. the set of isomorphism classes of torsion subgroups for ra-

tional elliptic curves E(K)tors as E varies over all rational elliptic curves base extended

to an odd degree Galois number field. We give examples of each such possibility. Further-

more, we are also able to classify the sets ΦGal
Q (d) for any odd integer d based solely on

the prime factorization of d. This result supersedes the result obtained in Chapter 5, in

that the main result of Chapter 5 is a special case of our main result in Chapter 6. How-

ever, the classification obtained in Chapter 6 depends on the results and techniques de-

veloped in Chapter 5. Moreover in the classification of ΦGal
Q (9) in Chapter 5, we prove

more specific results by classifying the possibilities for E(K)tors by the isomorphism type

of Gal(K/Q), as well as classifying the possibilities for torsion growth. Chapters 5 and

6 are fairly self-contained in that they often restate results required from previous chap-

ters. Finally in Chapter 7, we discuss possible future research problems based on the work

contained herein.
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Chapter 2

Diophantine Equations

2.1 Historical Context

Number Theory is among the oldest fields of Mathematics. This fact is owed mostly to

ancient culture’s study of Diophantine equations, named in reference to the 3rd century

mathematician Diophantus of Alexandria who systematically studied these equations.

Definition (Diophantine Equation). A Diophantine equation is an equation of the form

f(x1, . . . , xn) = 0, where f(x1, . . . , xn) ∈ Z[x1, . . . , xn], where the only allowed solutions are

integers (or more generally rational numbers).

Such equations arose naturally for ancient cultures, especially in the context of resource

allocation. For example, Diophantine equations can be found in the Rhind Papyrus of

Egypt, the Chinese Jiuzhang, the Babylonian Plimpton, and ancient Indian, Islamic,

and Greek texts. As an explicit example, consider Problem 17 of the Jiuzhang found in
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[Vog68]: “the price of 1 acre of good land is 300 pieces of gold; the price of 7 acres of bad

land is 500. One has purchased altogether 100 acres; the price was 10,000. How much

good land was bought and how much bad.” This gives a system of equations

x+ y = 100

300x+
500

7
y = 10, 000,

which of course is equivalent to the system of Diophantine equations

x+ y = 100

2100x+ 500y = 70, 000,

yielding solutions x = 25/2 acres and y = 175/2 acres. For more on this history with exam-

ples, see [Kat09]. Diophantine equations were also studied extensively in European math-

ematics, especially in the work of Euler, Gauss, Legendre, Dirichlet, Kummer, Sylvester,

Weierstrass, Hermite, Eisenstein, Fermat, Kronecker, Dedekind, Germain, Poincaré, etc.

The development of tools to study these equations led to enormous growth in Algebraic

Geometry, Complex Analysis, Algebraic and Analytic Number Theory, Algebra, etc.

Of course, a Diophantine equation need not have any solutions. For example, the equation

x2 + y2 = 3 has no integer solutions. A fortiori, there are no rational solutions to this

equation. To see this, suppose that there were rational numbers satisfying the equation.

Clearing denominators, we would then have integers X, Y, Z such that X2 + Y 2 = 3Z2.

Without loss of generality, by cancelling common factors, we assume that gcd(X, Y, Z) = 1.

Examining the equation modulo 3, we see that 3 divides X2 + Y 2. But the only possible

square values modulo 3 are 0 and 1 so that the only way for X2 + Y 2 to be 0 modulo 3 is

for X2 and Y 2 to be 0 modulo 3. This implies that X2 and Y 2, and hence X and Y , are

divisible by 3. But this implies that Z2, and hence Z, is divisible by 3, a contradiction.
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Such “modularity” conditions can be used to prove the nonexistence of rational solutions

to equations such as y2 = 3x2 + 2, 3y = x2 − 5, x5 + y5 + z5 = 2021, etc. The tech-

nique here can be generally summarized as follows: a (rational) solution to a Diophantine

equation implies the existence of a real solution and a solution modulo every (prime) mod-

ulus. Showing that a certain modulus has no solutions proves the nonexistence of integer

solutions.

However, the converse is not necessarily true. This naturally leads to a discussion of the

local-to-global (or Hasse) principle, which essentially says that a Diophantine equation

over Q has rational solutions “if and only if” it has a real solution and a solution mod-

ulo n for n ≥ 2. Using the Chinese Remainder Theorem, this is equivalent to the state-

ment that a Diophantine equation over Q has rational solutions “if and only if” it has

a real solution and a solution modulo pk for all k, i.e. a solution in Qp for all primes p.1

Of course, this “if and only if” is not an equivalence at all. Selmer gave the example of

3x3 + 4y3 + 5z3 = 0 in [Sel51], which has only the trivial solution over Q but possesses a

nonzero real solution and a solution in Qp for every p, see [Conc]. The famous theorem of

Hasse-Minkowski states that the local-to-global principle holds for quadratic forms.

Theorem 2.1 (Hasse-Minkowski). A homogeneous quadratic equation in several variables

is solvable by rational numbers (not all zero) if and only if it is solvable in Qp for all p,

including p =∞.2

David Hilbert asked if there was an algorithm to determine if a given Diophantine equa-

tion has a solution. This was Hilbert’s Tenth Problem of twenty-three proposed at the

1900 International Congress of Mathematicians in Paris. Matiyasevich, Putnam, and

Robinson [Mat93] answered this question in the negative. Of course, one can ask a “Hilbert

1We are being intentionally vague and loose on the details here.
2Q∞ = R.
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Tenth Problem” type question for equations over rings other than Z. This is a deep topic

with connections to many different areas of Mathematics and is still an active area of

research with several papers on the topic being released just this year, e.g. [MRUV20],

[EMSW20], or [Spr20]. For more on this topic, see [Poo03].

Table 2.1: A table from [Poo03] indicating whether Hilbert’s Tenth Problem holds for
various fields of increasing arithmetic complexity (measured by Gal(K/K))

Ring Hilbert’s 10th

C 3

R 3

Fq 3

p-adic fields 3

Fq((t)) ?
Number Fields ?

Q ?
Global Function Fields 7

Fq(t) 7

C(t) ?
C(t1, . . . , tn) 7

R(t) 7

OK ≈?
Z 7

2.2 Linear Diophantine Equations

For Diophantine equations in one variable, it is a simple matter to determine all the inte-

ger (or rational) solutions to the equation. Using the Rational Roots Theorem, there is a

finite list of possible rational solutions (and hence possible integer solutions), which one

then need only test.

Theorem 2.2 (Rational Roots Theorem). If f(x) = anx
n+an−1x

n−1 + · · ·+a1x+a0 ∈ Z[x],

then the equation f(x) = 0 has a rational solution x = p/q, p, q ∈ Z with gcd(p, q) = 1,

only if p | a0 and q | an.

The case of linear Diophantine equations in n variables x1, . . . , xn is also equally simple to
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solve. Suppose we had an equation of the form a1x1 + · · · + anxn = d, where ai, d ∈ Q.

Solving for one of the xi, observe that there is always a rational solution (infinitely many

if n > 1), and that we can parametrize the solutions. What about integer solutions? Clear-

ing denominators, we obtain an equation a′1x1 + · · ·+ a′nxn = d′, where a′i, d
′ ∈ Z. This equa-

tion has integer solutions if and only if gcd(a′1, . . . , a
′
n) divides d′, see [Nat00, Thm. 1.15].

Furthermore, it is equally simple to solve linear congruences (though a somewhat more

difficult task for higher congruences) using the Chinese Remainder Theorem, the theory

of primitive roots, and Quadratic Reciprocity, though we will not discuss this here, see

Chapter 2 and 3 of [Nat00].

2.3 Quadratic Diophantine Equations

The study of quadratic Diophantine equations is really the study of conics. Of course, we

assume our conics are nondegenerate.3 Consider a conic given by a quadratic Diophantine

equation

f(x, y) := a+ bx+ cy + dx2 + exy + fy2 = 0.

Note that the Hasse Principle does apply for conics. We have already seen in the example

of the circle x2 + y2 = 3 that a conic need not possess any rational points whatsoever.

However, when the conic does have a rational point, there is an easy method to find all

the rational points on the curve. We will examine this method for the simple case of x2 +

y2 = 1. We will need a theorem of Bézout:

Theorem 2.3 (Bézout). Let F,G ∈ K[x, y, z] be homogeneous curves of degree m,n,

respectively. Then if F (K) ∩ G(K) is nonempty and F,G do not share a homogeneous

polynomial of positive degree as a factor, then F and G intersect at precisely nm points in

projective space.4

3The case of rational points on degenerate conics is not difficult to handle.
4We will always assume we count intersections with their multiplicity, which is required in Bézout’s Theorem.
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Figure 2.1: Finding the rational points on the circle x2 + y2 = 1.

The circle x2 + y2 = 1 has a rational point (−1, 0) (the black point in Figure 2.1). Drawing

the line through (−1, 0) and a point (0, q), where q ∈ Q, this line intersects the circle at

another point distinct from (−1, 0) (the red point in Figure 2.1). Moreover, because the

point (−1, 0) is rational, this second point of intersection is rational. Conversely, choose a

rational point distinct from (−1, 0) on the circle. Drawing the line through this point and

(−1, 0), we see this line must intersect the line x = 0 at a rational point. With a bit of

algebra, we can see that the set of rational points on this circle, C(Q), is the following:

C(Q) = {(−1, 0)} ∪
ßÅ

1− t2
1 + t2

,
2t

1 + t2

ã
: t ∈ Q

™
.

The point (−1, 0) corresponds to a vertical line through (−1, 0) which intersects the conic

with multiplicity two at (−1, 0) in projective space. The vertical line through (−1, 0) also

intersects the line x = 0 at the point at infinity. It is then simple to see that C(Q) is

isomorphic to the projective line P1(Q).

There is nothing special about the case of the circle. We could have used this approach for

any conic with a rational point. In the conic case, we are dealing with curves of degree 2,
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so that the genus is 0 by the following well known formula:

g =
(d− 1)(d− 2)

2
.

In fact, a more general result is true.

Theorem 2.4 ([HS00, Thm. A.4.2.7]). Let C be a projective plane curve of degree d with

only ordinary singularities. Then its genus is given by

g =
(d− 1)(d− 2)

2
−
∑
P∈S

mP (mP − 1)

2
,

where S is the set of singular points and mP is the multiplicity of C at P .

The converse is true in a sense as well. Suppose C is a smooth projective curve of genus 0

over a field F . Let KC be a canonical divisor over F associated to C. Using the Riemann-

Roch theorem, it is simple to see that −KC is a very ample divisor of degree 2 over F .

Then the dimension of the associated embedding is `(−KC) = 3. Therefore, C can be

embedded into P2 as a smooth curve of degree 2 defined over F , i.e. a conic over F . Then

the above ‘Circle Method’ applies whenever this conic has a F -rational point. Thus, we

have the following description of quadratic Diophantine equations:

Theorem 2.5. Let C be a smooth projective curve of genus 0 defined over a field F . Then

(i) the curve C is isomorphic over F to a conic in P2.

(ii) the curve is isomorphic to P1 over F if and only if it possess a F -rational point.
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2.4 Higher Diophantine Equations

For Diophantine equations given by polynomial functions of many variables with suffi-

ciently high degree, we can see from Theorem 2.4 that the corresponding curves will have

genus g > 1. We have already seen that rational points on linear Diophantine equations

arise from divisibility conditions ‘alone.’ In the case of quadratic Diophantine equations,

rational solutions arise from the fact (assuming C(Q) 6= ∅) that C(Q) ∼= P1(Q). As a ‘moral

argument,’ one may summarize this as Diophantine equations ‘have no business’ having

rational solutions at all unless there is a ‘good reason.’ For higher degree Diophantine

equations, one might then expect them to have either no rational solutions at all or at

most finitely many rational solutions. Indeed, this was Mordell’s conjecture in 1922 (or the

Mordell-Lang Conjecture). This conjecture was later proved by Gerd Faltings, earning him

the Fields Medal.

Theorem 2.6 (Faltings, [Fal84]). Let C/K be a smooth, projective, and geometrically

irreducible5 curve of genus g ≥ 2 over a number field K. Then the set C(K) is finite.

For more on this amazing theorem, see [BS16]. Though Faltings’ theorem proves there are

at most finitely many rational solutions on higher degree Diophantine equations, it does

not say how to actually compute this finite set. Faltings used Arakelov methods for his

proof of Theorem 2.6. There are other proofs of Faltings’ theorem by Vojta [Voj91] using

Diophantine approximation, a proof of Bombieri [Bom90] altering Vojta’s approach, and a

proof of Lawrence-Vankatesh [LV20] using p-adic period maps. Perhaps more importantly,

there is a method of Chabauty, using Coleman integration and an adaptation of the p-adic

method of Skolem, that proves if the Jacobian of C satisfies dim J(C) < g (or generally if

dim J(C) < g), then C(K) is finite. Because computing all the K-rational points on higher

genus curves is a necessity in many torsion classifications, we will give a small flavor of the

5The curve stays irreducible after extending to the algebraic closure of K.
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approach by Chabauty-Coleman, following the description of Poonen [Poo20].

Let C/K be a smooth projective, geometrically integral curve of genus g ≥ 2, and let J

be the Jacobian of C—an abelian variety of dimension g over K—with rank r. Let K/Q

be a number field, and p a prime above p over which C has good reduction. Suppose we

had a K-rational point O ∈ C(K). Then we have an Abel-Jacobi embedding ι : C ↪→ J

given by P 7→ [P −O]. If we do not have a K-rational point, we can always scale P to find

an effective divisor that can serve as a substitute for a K-rational point. The idea is to

compute J(C), and then determine which of the K-rational points in the Jacobian actually

lie on C.

C(Kp)

J(Kp)

J(K)

Figure 2.2: A graphical representation of the embedding C(Kp) into J(Kp).

Because we have more structure after completion, we will work with the p-adic Lie group

Kp. The set C(Kp) of local points on the curve C is an analytic submanifold of the Lie

algebra of J(Kp). Because the K-rational points of C lie in both the Mordell-Weil group

of C and C(Kp), what we want to find is the intersection of the Mordell-Weil group of C

(the dotted line in Figure 2.2) with C(Kp). The Abel-Jacobi map takes rational points to

rational points, so everything is happening inside the ambient Lie group J(Kp). So the

K-rational points are in the intersection of the local points C(Kp) and the group J(K).

We compute this intersection with the hope that this will just be the K-rational points

with nothing ‘extra.’ Using the formal logarithm map, we base change from J(Kp) to
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the local field obtained by integrating 1-forms p-adically. This takes the group law to an

addition law in the vector space Kg
p , where intersections will be simpler to compute. Now

assume that r < g. There then exists a nonzero functional λ vanishing on im J(K). Now

on each residue disk, λ is represented by a (nonzero) power series in a 1-dimensional space.

Therefore, λ has at most finitely many zeros on each closed disk in this compact space.

But then λ pulls back to a nonzero locally analytic function on C(Kp) that vanishes on

C(K). Therefore, C(K) is finite.

Theorem 2.7 ([Cha41], [Col85, Cor. 4a], [MP12, Thm. 5.3b]). Let C be a smooth, projec-

tive, and geometrically integral scheme of dimension 1 over Spec(Q) with genus g ≥ 2

over Q, and let J be its Jacobian variety. Let p be a prime number. Suppose that the

rank of J(Q) is smaller than g, p > 2g, and C has good reduction at p. Then #C(Q) ≤

#C(Fp) + (2g − 2).

Obviously, Jacobians are difficult to work with. Moreover, one has the tedious restriction

of r < g. The work of Minhyong Kim tries to replace Jacobians instead with homology

groups of C, developing a non-abelian Chabauty method which is much more powerful

than ordinary Chabauty. We will not discuss this further. For more on this topic, see the

notes from the 2020 Arizona Winter School at [Ari20]. Finally, we remark there is a much

more ‘high brow’ approach to much of what we have discussed here in terms of general

results from Algebraic Number Theory and Algebraic Geometry, see [HS00] and [Poo17].

2.5 Curves of Genus g = 1

We know (modulo technicalities) that curves of genus g = 0 have infinitely many K-

rational points; moreover, we know how to find them. For curves of genus g > 1, we know

there are at most finitely many K-rational solutions—though finding an effective way to
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compute this set (especially in higher genus) is still a difficult open problem. This leaves

the case of genus g = 1, which is the case of elliptic curves. In a sense, this is the most

interesting case in that the set of K-rational points can be empty, finite, or infinite. We

will not say anything more about elliptic curves here. An overview of the theory of ellip-

tic curves is the purpose of Chapter 3. Instead, we will focus on giving examples of how

elliptic curves and hyperelliptic curves (the higher genus ‘cousin’ of elliptic curves) arise ‘in

nature.’

2.6 Motivating Examples

We will now see a few scenarios in which elliptic (and hyperelliptic) curves naturally arise

that highlight why one would be interested in elliptic curves as well as their connection to

other areas in Mathematics. We begin with the classic cannonball arrangement.

Example 2.1 (The Cannon Ball Problem, [Was03]). Suppose one has a square pyramid

of cannonballs. No longer stable, the pile collapses and the balls scatter. For what size

pyramid can these balls now instead be arranged into a square grid? It is clear that this

is possible for the trivial pile with 0 cannon balls, as well as a pile with 1 cannon ball.

Obviously, there are pile sizes that do not have this property. For instance, if the pile is 2

layers high, then there are 5 total cannon balls, which clearly cannot be arranged into a

square grid as 5 is not a perfect square.

If the pyramid began with x layers, then the total number of cannon balls is

12 + 22 + · · ·+ x2 =
x(x+ 1)(2x+ 1)

6
.

For these cannonballs to be arranged into a square grid, their total must be a perfect
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square; that is, there is a y ∈ Z ⊂ Q with

y2 =
x(x+ 1)(2x+ 1)

6
. (2.1)

A method of Diophantus finds us more points: we know the points (0, 0) and (1, 1) are

on this curve. The line through these points is y = x. Intersecting this line with y2 =

(x(x + 1)(2x + 1))/6, we obtain the solution (1/2, 1/2). Clearly, if (x, y) is a solution to

the equation, then so is (x,−y). Then we have an additional solution (1/2,−1/2). We

can repeat this procedure using the points (1/2,−1/2) and (1, 1). This gives a solution of

(24, 70). One can repeat this method of Diophantus to produce more rational solutions—

though none of them will be integer valued.

This secant line process of finding rational points is really addition of points on an elliptic

curve. After multiplication by 6 in (2.1) and making a substitution of Y = 72y and X =

12x+ 6, we see that the curve in (2.1) is isomorphic to the elliptic curve E : Y = X3 − 36X

with Cremona label 576h2. We have E ∼= Z ⊕ Z/2Z ⊕ Z/2Z. By a theorem of Siegel, c.f.

Theorem 3.7, there are only finitely many integer valued points on E. In this case, the

only integral points are (0, 0), (1,±1), and (24,±70). /

Example 2.2 (Fermat’s Last Theorem). In a marginal note in Fermat’s copy of the Arith-

metica, Pierre de Fermat noted,

“Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos

& generaliter nullam in infinitum ultra quadratum potestatem in duos eius-

dem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi.

Hanc marginis exiguitas non caperet.”

https://www.lmfdb.org/EllipticCurve/Q/576h2/
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That is, he has a truly marvelous proof that xn + yn = zn has no nontrivial solutions for

n > 2, but the margins were too narrow to contain it. In fact, Fermat’s copy of the Arith-

metica contained many unproven marginal notes, which mathematicians took upon them-

selves to prove (or in some cases disprove). The problem stated above was the last of these

marginal notes to be dealt with and became known as Fermat’s Last Theorem (though

Fermat’s Last Conjecture would have been more appropriate). It would take 329 years for

someone to prove this statement, although many tried. For a history of this problem, see

[Sin12] or [Rib95]. Fermat’s Last Theorem was ultimately proven by Wiles and Taylor-

Wiles. In fact, Wiles did not prove Fermat’s Last Theorem directly. Instead, Wiles proved

a statement about elliptic curves.

In 1984, Gerhard Frey assumed that there was a nontrivial solution (a, b, c) for exponent

p > 2 to Fermat’s equation.6 He then conjectured that the (semistable) elliptic curve, now

called the ‘Frey curve’,

y2 = x(x− ap)(x+ bp)

would not be modular, although he was unable to prove this, see [Fre86]. This gap became

known as the ε-conjecture (or epsilon-conjecture), now known as Ribet’s Theorem. Serre

gave a near proof which was completed in 1986 by Ribet [Rib90]. However, a famous con-

jecture of Taniyama-Shimura stated that all elliptic curves were modular. Hence to prove

Fermat’s Last Theorem, it sufficed to prove the Taniyama-Shumura conjecture. Using

ideas of Iwasawa Theory, modular forms, and new techniques in Euler systems developed

by Flach and Kolyvagin, Wiles gave a near proof of Fermat’s Last Theorem in 1993 by

proving that all semistable elliptic curves are modular. The proof contained a small gap

that was filled in the following year by Wiles and Richard Taylor, a former Ph.D. student

of Wiles, see [Wil95] and [TW95]. This was enough to establish Fermat’s Last Theorem.

6To prove Fermat’s Last Theorem, it suffices to prove the theorem for prime p > 2.
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Later work of Breuil, Conrad, Diamond, Taylor in [CDT99] and [BCDT01] would fully

prove the Taniyama-Shimura conjecture (now known as the Modularity Theorem) that

all rational elliptic curves are modular. There exist other generalizations of Fermat’s Last

Theorem: the Generalized Fermat Equation (or Beal conjecture), the Inverse Fermat Equa-

tion, etc. /

Example 2.3 (Congruent Number Problem). What natural numbers n are the areas of

rational right triangles? We call integers n with this property congruent. An integer n is

congruent if and only if there is a rational triplet (x, y, z) with

x2 + y2 = z2 and n =
xy

2
.

The history of this problem dates back to at least the year 972, see [Dic71]. Clearly, 6 is

congruent because 32 + 42 = 52 and 6 =
3(4)

2
. However, restricting to integer sides is not

sufficient. Observe that the triangle with sides 3/2, 20/3, and 41/6 has area 5, showing

that 5 is congruent. Furthermore, 157 is a congruent number, as Zagier proved in [Zag90]

with the following example:

x =
411340519227716149383203

21666555693714761309610

y =
6803298487826435051217540

411340519227716149383203

z =
224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830
.

It is not known in general which integers are congruent, and given an integer n it is not

always a simple task to tell if n is congruent or not. Certainly, if n is congruent, then so

too is m2n for all natural numbers m. Not all integers are congruent numbers. Fermat

showed that 1 was not a congruent number using his method of infinite descent. A vast

generalization of this type of argument is used in the proof of the Mordell-Weil Theorem.
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Now suppose that n is a congruent number, i.e. there is a rational triplet (X, Y, Z) with

X2 + Y 2 = Z2 and XY = 2n. Setting x := (Z/2)2 and y := Z(X − Y )(X + Y )/8, there is a

rational point on the elliptic curve En : y2 = x3 − n2x. Note that En is a twist by n of the

elliptic curve y2 = x3 − x, which is the elliptic curve with Cremona label 32a2. Furthermore,

given a rational point (x, y) ∈ En, we can define

X :=

∣∣∣∣(x− n)(x+ n)

y

∣∣∣∣ , Y := 2n

∣∣∣∣xy
∣∣∣∣ , Z :=

∣∣∣∣x2 + n2

y

∣∣∣∣ .
It is routine to verify that X2 + Y 2 = Z2 and that 2n = XY , so that n is congruent. There-

fore, finding congruent numbers is equivalent to finding elliptic curves En with rank r > 0.

While many congruent numbers are known, it is still an open problem to determine which

integers n are congruent. However, assuming the Birch and Swinnerton-Dyer conjecture,

an amazing theorem of Tunnell gives an effective sufficient and necessary condition for a

square-free integer n to be congruent [Tun83]. For more on this problem, see [Kob93]. /

Example 2.4 (A Diophantine Equation). What are the integer solutions to y2 = x3 −

2? One can ‘easily’ find the solutions (3,±5), but are these all the solutions? We choose

instead to work over the UFD Z[
√
−2] in order to make use of the ‘extra factorization’ it

has available. Then over Z[
√
−2], we have the factorization

x3 = y2 + 2 = (y +
√
−2)(y −

√
−2).

Writing x = u1π
e1
1 · · · πerr , where each πi is irreducible, ei ≥ 1, and πi 6= ±πj for i 6= j, we

then have

u3
1π

3e1
1 · · · π3er

r = (y +
√
−2)(y −

√
−2).

We claim that y +
√
−2 and y −

√
−2 are relatively prime. To prove this, choose an irre-

ducible dividing both y±
√
−2, say π. Then π |

(
(y+
√
−2)−(y−

√
−2)

)
= 2
√
−2 = (

√
−2)3.

https://www.lmfdb.org/EllipticCurve/Q/32a2
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By unique factorization in Z[
√
−2], up to a unit u, we must have π = u

√
−2. But the

only units in Z[
√
−2] are {±1}. So after scaling by a unit, we have π =

√
−2. Now as

π | (y+
√
−2), we have y+

√
−2 = π(a+ b

√
−2) =

√
−2(a+ b

√
−2) = −2b+a

√
−2 for some

a, b ∈ Z. But then as π | (y +
√
−2), we have y +

√
−2 =

√
−2(a+ b

√
−2) = −2b+ a

√
−2

for some a, b ∈ Z. Therefore, y = −2b, which implies x3 = y2 + 2 = 4b2 + 2 ≡ 2 mod 4, a

contradiction as no cube has residue 2 mod 4. This shows that y +
√
−2 and y −

√
−2 are

relatively prime.

Then π3ei
i divides y +

√
−2 or y −

√
−2 (but not both) for each 1 ≤ i ≤ r. Then y +

√
−2 =

u
∏

i∈I π
3ei
i for some I ⊆ {1, . . . , r} and u ∈ Z[

√
−2]× = {±1}. This implies

y +
√
−2 = u

∏
i∈I

π3ei
i =

(
u
∏
i∈I

πeii

)3

= (a+ b
√
−2 )3

for some a, b ∈ Z. Expanding yields y +
√
−2 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2. This forces

y = a3 − 6ab2 and 1 = 3a2b− 2b3 = b(3a2 − 2b2). Now as b(3a2 − 2b2) = 1 with a, b ∈ Z, it

must be that b ∈ {±1}. If b = 1, we have 3a2 − 2 = 1, which gives a = ±1. Using a = ±1

and b = 1, we have solutions (3,±5). If b = −1, then 3a2(−1)− 2(−1)3 = 1, which implies

3a2 = 1, a contradiction to the irrationality of
√

3. Therefore, the only integer solutions to

y2 = x2 + 3 are (3,±5).

This proof is indeed tedious. Moreover, it only proves there are only finitely many inte-

ger solutions but says nothing of rational solutions. Worse yet, this approach does not

necessarily apply to other quadratic rings. For instance, applying this same argument to

y2 = x3− 61 over the ring Z[
√
−61], one would ‘prove’ there are no integer solutions, despite

the existence of solutions (5,±8). What fails in this argument is unique factorization in

the ring Z[
√
−61], which is not a UFD. Generally, this unique factorization argument will

not hold for number fields having class number hK 6= 1.
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How does one cope with the loss of unique factorization? Kummer (in approximately 1846)

said that there should be a further factorization into “ideal numbers” in order to recover

unique factorization. This led Dedekind to define ideals of a ring. He later gave the correct

notion of factorization using (prime) ideals rather than factorization with elements. While

elements may or may not factor uniquely in OK , the ring of integers of K, every ideal of

OK factors uniquely as a product of prime ideals. In the case of y2 = x3−61, while elements

5, 8 +
√
−61, and 8−

√
−61 may not factor uniquely into irreducibles, the ideals generated

by these elements will factor uniquely into a product of prime ideals p, q:

(5) = pq, (8 +
√
−61) = p3, (8−

√
−61) = q3.

One can avoid all of this by appealing to the theory of elliptic curves. The curve E : y2 =

x3 − 2 is the elliptic curve with Cremona label 1728v1, and E(Q) is isomorphic to Z. Hence,

there are infinitely many rational solutions. By Siegel’s theorem, there are only finitely

many integer solutions. Indeed, there are precisely two—namely, (3± 5). /

Example 2.5 (Isosceles Triangle Problem). Does there exist a rational right triangle and

a rational isosceles triangle that have the same area and the same perimeter? Supposing

that the answer was in the affirmative, we could construct the triangles in Figure 2.3,

where k, t, u ∈ Q, 0 < t < 1, 0 < u < 1, and k > 0.

k(1− t2)

2kt k(1 + t2)

l(1 + u2) l(1 + u2)

2lu 2lu

l(1− u2)

Figure 2.3: A hypothetical pairing of a rational right triangle and rational isosceles trian-
gle with the same area and perimeter.

https://www.lmfdb.org/EllipticCurve/Q/1728v1/
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Rescaling each triangle by the same factor preserves the equality of the area and the

perimeter. Therefore without loss of generality, we may assume that l = 1. Equating

the areas and perimeters, we find the following simultaneous system of equations:


k2t(1− t2) = 2u(1− u2)

k + kt = 1 + 2u+ u2.

Define x := u+ 1. Then reframing these equations using x, we obtain


k2t(1− t2) = 2x(x− 1)(x− 2)

k(1 + t) = x2.

Writing the first line as kt(1− t) · k(1 + t) and solving for t and 1− t in the second equation,

we can make the substitutions

k(1 + t) = x2, t =
x2 − k
k

, 1− t =
2k − x2

k
,

to obtain the equation

x2(x2 − k)(2k − x2) = 2kx(x− 1)(x− 2).

Noting that 0 < u < 1, we know that x > 0. Dividing both sides of the equation by x,

expanding, and writing this equation as a quadratic polynomial in k, we see there exists

x ∈ Q, 1 < x < 2, such that

2xk2 + (−3x2 − 2x2 + 6x− 4)k + x5 = 0.

For there to be a rational solution to this equation, the discriminant of this polynomial in
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k must be a rational square. But then for some y ∈ Q, we have

y2 = (−3x2 − 2x2 + 6x− 4)2 − 4(2x)x5 = x6 + 12x5 − 32x4 + 52x2 − 48x+ 16.

We can then define a curve C(Q) by

C : y2 = x6 + 12x5 − 32x4 + 52x2 − 48x+ 16.

Now C is a genus 2 hyperelliptic curve (a higher genus ‘cousin’ to the elliptic curve), and

we would like to determine C(Q). By Theorem 2.6, we know that the set C(Q) is finite.

The Jacobian of C, J(C), has rank J(Q) = 1. Also, the Chabauty-Coleman bound gives

#C(Q) ≤ 10. However, we have yet to actually find any rational points! In fact, we can

find

{∞±, (0,±4), (1,±1), (2,±8), (12/11,±868/113)} ⊆ C(Q).

Therefore, we have completely determined C(Q). Furthermore, the solution correspond-

ing to the rational point (12/11, 868/113) gives us a unique pair of such triangles. It was

Hirakawa and Matsumura in 2018 that answered this discriminant question (and hence

the triangle question), using generalizations of the method of Chabauty-Coleman, in the

affirmative. They showed that there is exactly one pair of such triangles.

Theorem 2.8 ([HM19]). Up to similitude, there exists a unique pair of rational right

triangles and a rational isosceles triangle which have the same perimeter and the same

area. The unique pair consists of the right triangle with sides (377, 135, 352) and isosceles

triangle with sides (366, 366, 132).
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Chapter 3

Elliptic Curves

In this chapter, we will as briefly as possible cover the core background of elliptic curves

that one needs to understand the main results and follow the references therein. We do

not assume much familiarity with elliptic curves. However, we do assume the reader is

familiar with Algebra and Algebraic Geometry, along with at least passing knowledge of

some Number Theory. The primary reference used here is standard reference for elliptic

curves, namely [Sil09]. Although, we have diverged from the presentation in [Sil09] when-

ever necessary. Throughout, unless otherwise specified, all fields will have characteristic 0.

We will not discuss the theory elliptic curves over finite, local, or function fields. Should

the reader want to go further (and there is a vast ocean we have ignored), one can see

[Sil09] or any number of other common references on the topic: [ST15], [Was03], [Kna92],

[Mil06], etc. The author particularly recommends [Hus04] for its readability.
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3.1 The Group Law & Weierstrass Equations

Suppose we begin with a smooth homogenous polynomial of degree 3 over a field K with

a K-rational point. We write F (X, Y, Z) as in (3.1) and examine the curve defined by

F (X, Y, Z) = 0. Note that any smooth cubic curve with a K-rational point can be put

into this form via homogenization. Call the given K-rational point P .

F (X, Y, Z) := aX3 + bX2Y + cXY 2 + dY 3 + eX2Z

+ fXY Z + gY 2Z + hXZ2 + iY Z2 + jZ3

(3.1)

Because F (X, Y, Z) is smooth, we can form the tangent line to F at P . Now choose coor-

dinates so that this tangent line is the line Z = 0. By Bézout’s Theorem, c.f. Theorem 2.3,

we know that this new line Z = 0 intersects the curve at another point, say Q. Again

because the curve is smooth, we can form the tangent line to the curve at Q and choose

coordinates so that this tangent line is the line X = 0. Finally, choose any line through P

distinct from the tangent line at P and choose coordinates so that this is the line Y = 0.

With this new coordinate system, we have a curve F̃ (X, Y, Z) = 0 given by a smooth

homogenous polynomial of degree 3 containing P = [1, 0, 0] and Q = [0, 1, 0]. Routine

verification checks that we have

F̃ (X, Y, Z) := rXY 2 + sZφ(X, Y, Z),

where φ(X, Y, Z) is a homogenous polynomial of degree 2 and r, s ∈ K. Dehomogenizing

the curve F̃ , we have a smooth cubic curve

f(x, y) := xy2 + ax2 + bxy + cy2 + dx+ ey + g = 0, (3.2)
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where the a, b, c, d, e, g ∈ K in (3.2) are not necessarily those in (3.1). By abuse of nota-

tion, make the change of variables x := x+ c to obtain an equation

xy2 + (ax+ b)y = cx2 + dx+ e,

for a possibly new set of a, b, c, d, e. Multiplying by x, we have

(xy)2 + (ax+ b)xy = cx3 + dx2 + ex.

Again by abuse of notation, make the change of variables y := yx to obtain the equation

y2 + axy + by = cx3 + dx2 + ex,

which is the Weierstrass form of an elliptic curve.1 Completing the square by making the

substitution y := y − 1
2
(ax + b), one obtains an equation of the form y2 = f(x), where

f(x) is a cubic polynomial (not necessarily monic). Say that α is the leading coefficient of

f(x). As one final abuse of the notation, after making the change of variables x := x/α

and y := y/α2, we obtain an equation

y2 = x3 + ax2 + bx+ c

for some a, b, c ∈ K. Following all these substitutions, the resulting transformation by

taking the composite of all the substitutions is not linear, but the transformation is ratio-

nal, which will preserve the underlying elliptic curve. If one desires, making the additional

substitution x := x− α (for some carefully chosen α ∈ K) eliminates the x2-term to obtain

y2 = x3 + Ax+B,

1Generally, the Weierstrass form is y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, where a1, a2, a3, a4, a6 ∈ K.
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which is again called the (short) Weierstrass form of the elliptic curve. Given that we have

studied linear and quadratic (homogeneous) polynomial equations, homogeneous cubic

polynomial equations was the next natural step. After the transformations above, we see

that this is the same as studying a polynomial y2 = x3 + Ax+B, which will be one of the

many equivalent definitions for an elliptic curve.

Definition (Elliptic Curve). An elliptic curve defined over a field K, denoted E/K, is any

of the following equivalent objects:

(i) A smooth projective curve of genus 1 over K with a distinguished K-rational point.

(ii) The set {(x, y) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,∆E 6= 0} ∪ {∞} with an

addition structure given by the Chord-Tangent Law.

(iii) The set {(x, y) : y2 = x3 + Ax + B,−16(4A3 + 27B2) 6= 0} ∪ {∞} with an addition

structure given by the Chord-Tangent Law.

(iv) A compact Riemann surface of genus 1.2

(v) An abelian variety of dimension 1 over K.

We will only briefly describe how these definitions are equivalent. For a thorough discus-

sion of these equivalencies, see any “standard” elliptic curve reference, e.g. [Hus04], [Sil09],

[Was03], [Kna92], [Mil06], etc. Before discussing the addition law on an elliptic curve, we

examine their “set structure.” We begin with the equation in (ii), called the (general)

Weierstrass form of an elliptic curve:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

2For this isomorphism, we need K = C.
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Denote by {∞} the point at infinity, O := [0, 1, 0]. If charK 6= 2, we can complete the

square by making the substitution

y 7→ 1

2
(y − a1x− a3),

which gives an equation of the form y2 = 4x3 + b2x
2 + 2b4x + b6, where b2 = a2

1 + 4a2,

b4 = 2a4 + a1a3, b6 = a2
3 + 4a5. Define

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 ∆E = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

c4 = b2
2 − 24b4 j =

c3
4

∆E

c6 = −b3
2 + 36b2b4 − 216b6 ω =

dx

2y + a1x+ a3

=
dy

3x2 + 2a2x+ a4 − a1y
.

We call ∆E, or just ∆, the discriminant of E, j the j-invariant of E, and ω the invariant

differential associated to the equation for E. It is routine to verify that 4b8 = b2b6 − b2
4 and

1728∆ = c3
4 − c2

6. Assume also that charK 6= 2, 3. Then we can make the substitution

(x, y) 7→
Å
x− 3b2

36
,
y

108

ã
,

which eliminates the x2 term, so that we obtain y2 = x3−27c4x−54c6—which is also referred

to as the (short) Weierstrass form for E. Of course, there are many different equations

that give the same elliptic curve. However, if one assumes that the line Z = 0 in projective

space intersects E only at O, the only change of variables fixing O and preserving the

Weierstrass form is x = u2x′ + r and y = u3y′ + u2sx′ + t, where u, r, s, t ∈ K and u 6= 0.
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One can compute the new ai’s obtained after such a substitution:

ua′1 = a1 + 2s u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u2a′2 = a2 − sa1 + 3r − s2 u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u3a′3 = a3 + ra1 + 2t u4c′4 = c4

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st u6c′6 = c6

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 u12∆′ = ∆

u2b′2 = b2 + 12r j′ = j

u4b′4 = b4 + rb2 + 6r2 u−1ω′ = ω.

For more on all this, see [Sil09, III.1]. Take note that after such a substitution, ∆ differs

from ∆′ by a square in K, while j remains invariant—hence the name.

Proposition 3.1 ([Sil09, III.1, Prop. 1.4]).

(a) The curve given by a Weierstrass equation satisfies:

(i) It is nonsingular if and only if ∆ 6= 0.

(ii) It has a node if and only if ∆ = 0 and c4 6= 0.

(iii) It has a cusp if and only if ∆ = c4 = 0.

In cases (ii) and (iii), there is only one singular point.

(b) Two elliptic curves are isomorphic over K if and only if they both have the same j-

invariant.

(c) Let j0 ∈ K. There exists an elliptic curve defined over K(j0) whose j-invariant is

equal to j0.
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If E has a singularity, essentially, it is a node if has two distinct tangent lines at the sin-

gular point, and otherwise the singularity is a cusp. Now assuming charK 6= 2, 3, we can

write our elliptic curve in short Weierstrass form y2 = x3 + Ax + B, in which case we can

rewrite ∆ and j as

∆ = −16(4A3 + 27B2) and j = −1728
(4A)3

∆
.

The only change of variables preserving this form is x = u2x′, y = u3y′ for some u ∈ K×,

in which case u4A′ = A, u6B′ = B, u12∆′ = ∆. Under this change of variables, we have

y2 + (a1u)xy + (a3u
3)y = x3 + (a2u

2)x2 + (a4u
4)x+ a6u

6,

which explains the peculiar numbering in definition (ii) for an elliptic curve. Now for j 6=

0, 1729, a (nonsingular) elliptic curve with j-invariant j0 is given by

E : y2 + xy = x3 − 36

j0 − 1728
x− 1

j0 − 1728
.

One calculates that for an elliptic curve with this model that ∆ = j3
0/(j0−1728)3 and j = j0.

The elliptic curve with model y2 + y = x3 has j-invariant 0, and the elliptic curve with

model y2 = x3 + x has j-invariant 0. The j-invariant completely characterizes elliptic curves

over Q up to isomorphism, hence the name. Certainly, if E and E ′ are elliptic curves with

j(E) 6= j(E ′), then E 6∼= E ′. However, elliptic curves over a number field K with the same

j-invariant need not be isomorphic. They are isomorphic over Q, but the isomorphism

might not be defined over K.

Example 3.1. The elliptic curve with Cremona label 64a4, i.e. y2 = x3 + x, and elliptic

curve with Cremona label 3136t1, i.e. y2 = x3 + 49x, both have j-invariant 1728. However,

these cannot be isomorphic as 64a4 has rank 0 while 3136t1 has rank 1. /

https://www.lmfdb.org/EllipticCurve/Q/64a4
https://www.lmfdb.org/EllipticCurve/Q/3136t1/
https://www.lmfdb.org/EllipticCurve/Q/64a4
https://www.lmfdb.org/EllipticCurve/Q/3136t1/
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However, using the fact that an isomorphism must take the form x = u2x′ + r and y =

u3y′+u2sx′+t, where u, r, s, t ∈ K, and applying Galois cohomology, one can classify elliptic

curves with a given j-invariant over an arbitrary field K. Although, one will not always

need such “heavy machinery” if one makes more specifications about the field(s) involved.

For instance, consider elliptic curves over Q with j 6= 0, 1728. Any elliptic curve with the

same j-invariant as E : y2 = x3 +Ax+B must take the form y2 = x3 + d2Ax+ d3B for some

nonzero d ∈ Q (or equivalently, the form dy3 = x3 + Ax+ B for a nonzero d). We call the

curve Ed : y2 = x3 + d2Ax+ d3B the twist of E by d. The curve Ed will be isomorphic to

E over Q if and only if d ∈ (Q×)2, i.e. if d is a nonzero square. Thus, the Q-isomorphism

classes of elliptic curves with a given j-invariant is isomorphic to Q×/(Q×)2. Suppose that

K is an odd degree number field and d ∈ K×/(K×)2. If E/Q is a rational elliptic curve,

then for Ed to be rational, clearly d2A ∈ Q and d3B ∈ Q. But if d2A = q for some q ∈ Q,

then d satisfies the polynomial equation Ax2 − q = 0, which implies that d is defined either

over a quadratic extension of Q (impossible as Q ⊆ Q(Ax2 − q) ⊆ K and K/Q is odd) or

that d ∈ Q.

Write an elliptic curve E in short Weierstrass form y2 = x3 + Ax + B. We know that the

equation x3 + Ax + B = 0 has at least one real root. If there is only one real root, then

E has one connected real component; otherwise, the equation has three real roots and E

has two connected real components. We show some examples of non-singular and singular

elliptic curves in Figure 3.1 and Figure 3.2, respectively.

We now define the addition law on an elliptic curve, which is given by the so-called Chord-

Tangent Law. We will also refer to as the geometric group law. Say P , Q are two (dis-

tinct) K-rational points on an elliptic curve E, where for simplicity we say that E has the

form y2 = x3 + Ax + B. Draw a line through P and Q. By Bézout’s Theorem, this line

will intersect the elliptic curve at another point, say R̃. Reflect R̃ across the x-axis (noting
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(a) y2 = x(x2 + 1) (b) y2 = x3 − x+ 1

Figure 3.1: An elliptic curve y2 = x3 + Ax+B with 3 real roots, (a), and 1 real root, (b).

(a) y2 = x2(x+ 2) (b) y2 = x3

Figure 3.2: An elliptic curve y2 = x3 + Ax+B with a node, (a), and a cusp, (b).

that in this form (x, y) ∈ E if and only if (x,−y) ∈ E), and call this reflected point R. We

then define P +EQ := R. If P = Q, then form the tangent line to E at P . This tangent line

will intersect E at a point R̃. Reflecting the point R̃ across the x-axis, we obtain a point

R on E. We again define P +E P := R. All of these constructions only involve ring oper-

ations in K, so that R ∈ K ×K, modulo a few minor technical difficulties, and the point

R is clearly on E. We take the identity under this ‘group law’ (we have not proved that

this is an addition law) to be O, the point at infinity. It is also immediately obvious from

this construction that this ‘group law’ is abelian. Moreover, inverses are clear: P = (x, y)
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has inverse −P = (x,−y). It only remains to show that the law is associative—which is a

tour de force in case work and algebra too gratuitous to go into here. Indeed, in any case,

one should prove the law is associative using Algebraic Geometry. A visualization of the

Chord-Tangent Law is given in Figure 3.3, where the sum of the red and blue point is the

yellow point. One can work out these operations explicitly, see [Sil09, III.2], where one can

also see how to handle the singular cases.

Figure 3.3: The Chord-Tangent Law.

All this discussion has (approximately) shown that definitions (ii) and (iii) for an elliptic

curve are equivalent. But why is (i) equivalent to (ii)? Let C be a smooth projective curve

of genus 1 with a distinguished K-rational point O. There are functions x, y ∈ K(C) such

that the map φ : C → P2 given by φ(x, y) = [x, y, 1] is an isomorphism to the definition

of en elliptic curve E of the form given in definition (ii), see [Sil09, III.3, Prop. 3.1]. This

essentially follows from abstract nonsense involving examining the vector space L(nO) for

n ∈ N, and applying the Riemann-Roch Theorem to find an appropriate basis. Then if P ,

Q ∈ E, we have (P ) ∼ (Q) if and only if P = Q.

Proposition 3.2 ([Sil09, III.3, Prop. 3.4]). Let (E,O) be an elliptic curve.
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(i) For every degree-0 divisor D ∈ Div0(E) there exists a unique point P ∈ E satisfying

D ∼ (P )− (O). Define σ : Div0(E)→ E to be the map that sends D to its associated

P .

(ii) The map σ is surjective.

(iii) Let D1, D2 ∈ Div0(E). Then σ(D1) = σ(D2) if and only if D1 ∼ D2. Thus σ induces

a bijection of sets (which we also denote by σ), σ : Pic0(E)
∼−→ E.

(iv) The inverse to σ is the map

κ : E
∼−→ Pic0(E),

P 7→
(
divisor class of (P )− (O)

)

(v) If E is given by a Weierstrass equation, then the “geometric group law” on E and the

“algebraic group law” induced from Pic0(E) using σ are the same.

Corollary 3.3 ([Sil09, III.3, Cor. 3.5]). Let E be an elliptic curve and let D =
∑
np(P ) ∈

DivE. Then D is a principal divisor if and only if

∑
P∈E

nP = 0 and
∑
P∈E

[nP ]P = O.

(Note that the first sum is of integers, while the second is addition on E.)

Using the fact that E ∼= Pic0(E), the associativity of the geometric group law then easily

follows. This shows the equivalence of definitions (i) and (ii) for an elliptic curve. Note

that of course the equivalence of (i) and (ii) in the definition of an elliptic curve requires

choosing a specific affine chart. Choosing different affine charts will result in different

forms for the elliptic curve, but these will all be isomorphic. We will be vague on the
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equivalence of (i) and (v) for an elliptic curve. Essentially, if C is a curve of genus 1 and

P ∈ C(K) is a K-rational point, we form the Jacobian variety of C and the regular map

φ : C → J with φ(P ) = 0. ‘Extending linearly’, the natural map from Div0(C(K)) to J(K)

is an isomorphism.

Perhaps the most interesting equivalence for the definitions of an elliptic curve is between

definitions (iii) and (iv). We define a lattice, Λ, in C to be an additive subgroup of C

generated by two R-linearly independent complex periods ω1, ω2 ∈ C, i.e. Λ = {aω1 +

bω2 : a, b ∈ Z}, where ω1 := a+ ci, ω2 := b+ di with a, b, c, d ∈ R are such that

det

Ö
a b

c d

è
6= 0.

We say that two lattices Λ, Λ′ are homothetic if there is u ∈ C× such that Λ′ = uΛ, i.e.

one lattice can be scaled and rotated such that it then coincides with the other lattice.

This implies that one can always choose ω1 = 1 ∈ R by replacing Λ with 1
ω1

Λ. We define

a fundamental domain (or a fundamental parallelogram) and its compactification for a

lattice to be

FΛ = {aω1 + bω2 : 0 ≤ a < 1, 0 ≤ b < 1}

FΛ = {aω1 + bω2 : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1},

respectively. Now as Λ is an additive subgroup of C, we can form the quotient C/Λ. One

can easily write down an isomorphism C/Λ ∼= FΛ. One can also obtain this via “gluing”

in FΛ, i.e. one can find an isomorphism C/Λ ∼= FΛ/ ∼, where ∼ the identification of the

opposite sides of the parallelogram FΛ. But of course, FΛ is isomorphic to T := S1 × S1, i.e.

a complex torus. Routine verification checks that C/Λ inherits the topology induced from

C, and is homeomorphic to a torus via its identification with FΛ. Moreover, C/Λ inherits

the structure of a 1-dimensional complex manifold, so that C/Λ is a Riemann surface of

genus 1, i.e. a complex torus. Two such tori, C/Λ and C/Λ′, are isomorphic as Riemann
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surfaces if and only if Λ and Λ′ are homothetic.

Now we identify C/Λ with periodic meromorphic functions on C. Define the Weierstrass

℘-function, ℘(z), as

℘(z) :=
1

z2
+
∑
ω∈Λ\0

Å
1

(z − ω)2
− 1

ω2

ã
.

Lengthy but routine computations show that the summation on the right above converges

absolutely, ℘(z) is meromorphic and periodic, and that the only poles for ℘(z) are double

poles at every lattice point ω ∈ Λ. Furthermore,

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3

has poles only at the lattice points ω ∈ Λ, and these are all triple poles. Make the follow-

ing definitions:

G2k =
∑

ω∈Λ\{0}

1

ω2k
, g2 = 60G4, and g3 = 140G6.

One then verifies that the function ℘′(z)2 − 4℘(z)3 + g2℘(z) + g3 has no poles. Furthermore,

the numbers g2 := g2(Λ) and g3 := g3(Λ) depend only on the choice of lattice, and the sum

G2k converges absolutely. It turns out, c.f. [Sil09, VI.3], that any doubly periodic function

over C is a rational function in ℘(z) and ℘′(z), and that the extension C(℘, ℘′)/C(℘) is a

quadratic extension. One then shows that g3
2 − 27g2

3 6= 0. Then we define a mapping

C/Λ E(C)

z (℘(z), ℘′(z)) ,

which is an (complex analytic) isomorphism of the complex Lie groups C/Λ and the ellip-

tic curve y2 = 4x3 − g2x− g3,3 i.e. a map of complex Riemann surfaces that is also a group

3Precisely, its homogenization, so that the map is rightfully [℘(z), ℘′(z), 1].
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homomorphism. One checks that homothetic lattices Λ, Λ′ yield isomorphic elliptic curves.

For the reverse direction, given an elliptic curve y2 = 4x3 − g2x− g3, we can take Λ to be

the lattice with periods ω1, ω2 given by

ω1 =

∫
α

dx

y
and ω2 =

∫
β

dx

y
,

where α, β are closed paths on E(C) that are a basis for H1(E,Z). This is the so-called

Uniformization Theorem, see [Sil09, IV.5, Thm. 5.1]. The computation of ω1, ω2 is tedious

and involves elliptic functions, choosing branch cuts, etc. However, if we can write E in

the form y2 = (x − r1)(x − r2)(x − r3) over C with r1, r2, r3 ∈ R and r1 < r2 < r3, then

ignoring technical difficulties, we can write

ω1 =

∫ r2

r1

dx√
(x− r1)(x− r2)(x− r3)

ω2 =

∫ r3

r2

dx√
(x− r1)(x− r2)(x− r3)

.

This finally completes the equivalences of the definitions for an elliptic curve.

3.2 Mordell-Weil Theorem

Now that we know an elliptic curve is a smooth projective curve of genus 1 (with a spec-

ified K-rational point O) with an addition structure, one might ask what this curve is

as an abelian group. Poincaré conjectured in 1901 that the group of rational points on

an elliptic curve, E(Q), is a finitely generated abelian group [Poi01]. This conjecture was

proved by Mordell in 1922 [Mor22].

Theorem 3.4 (Mordell, 1922). Let E/Q be a rational elliptic curve. Then the group of
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Q-rational points on E, denoted E(Q), is a finitely generated abelian group. In particular,

E(Q) ∼= ZrQ ⊕ E(Q)tors,

where rQ ≥ 0 is the rank of E and E(Q)tors is the torsion subgroup of E.

André Weil [Wei29] then generalized Mordell’s result in 1929, proving that the group of

K-rational points on an abelian variety defined over a number field is a finitely generated

abelian group.

Theorem 3.5 (Mordell-Weil, 1928). Let K be a number field, and let A/K be an abelian

variety. Then the group of K-rational points on A, denoted A(K), is a finitely generated

abelian group. In particular,

A(K) ∼= ZrK ⊕ A(K)tors,

where rK ≥ 0 is the rank of A and A(K)tors is the torsion subgroup.

This was further generalized by Néron in [Nér52].

Theorem 3.6 (Mordell-Weil-Néron, 1952). Let K be a field that is finitely generated over

its prime field, and let A/K be an abelian variety. Then the group of K-rational points on

A, denoted A(K), is a finitely generated abelian group. In particular,

A(K) ∼= ZrK ⊕ A(K)tors,

where rK ≥ 0 is the rank and A(K)tors is the torsion subgroup.

There exist further generalizations by Lang-Néron [LN59], see [Cona] for further discus-
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sion.

From the Mordell–Weil Theorem, it follows that E(K) ∼= ZrK ⊕ E(K)tors, where rK is

the rank of the elliptic curve (depending on K) and E(K)tors is the torsion subgroup of E.

Though vastly studied, there are very few concrete results on the ranks of elliptic curves

E/K. Although, there is some progress in studying the growth of the rank over towers of

number fields. Even in the case of K = Q, it is not known which ranks are possible, or

even if rank are unbounded, i.e. do there exist elliptic curves E/Q of arbitrary large rank.

Note that Shafarevich and Tate [ST67] showed that the rank of elliptic curves over func-

tion fields is unbounded. The current rank record is at least 28, due to Elikes.4 Table 3.1

summarizes historical rank records and can be found in the database [Duj].

Table 3.1: Rank records throughout history

Rank Year Due To
3 1938 Billing
4 1945 Wiman
6 1974 Penney/Pomerance
7 1975 Penney/Pomerance
8 1977 Grunewald/Zimmert
9 1977 Brumer/Kramer
12 1982 Mestre
14 1986 Mestre
15 1992 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao/Kouya
22 1997 Fermigier
23 1998 Martin/McMillen
24 2000 Martin/McMillen
28 2006 Elkies

The greatest successes in the direction of studying ranks has come from examining how

the ranks can grow in towers of number fields, where one employs techniques from Iwa-

4Subject to the GRH, the curve has rank exactly 28, see [KSW19].
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Figure 3.4: Rank records over time.

sawa Theory. However, this is far beyond our scope. There are suggestions that the ranks

of elliptic curves over Q may be bounded. In a recent paper of Machett Wood, Park,

Poonen, and Voight [PPVM19], by modeling Shafarevich-Tate groups using certain al-

ternating matrices of specified ranks, they predict that there are only finitely many el-

liptic curves (up to isomorphism) with rank greater than 21. However, data analyzed by

Lozano-Robledo in [LR21] using statistical modeling suggests that there still may be infi-

nite families with large rank. In any case, the rank of an elliptic curve is “typically” small.

Specifically, “most” elliptic curves have either rank 0 or rank 1. This is commonly referred

to as the minimalist conjecture. We will only comment on this briefly.

To prove the Mordell-Weil Theorem (there is essentially only one proof, they all boil down

to the same idea), one must prove that E(Q)/nE(Q) is finite for some n ≥ 2—typically

n = 2. This is a vast generalization of the descent technique of Fermat. Let Qp be the

p-adic numbers, where we allow p = ∞, i.e. Q∞ = R, and fix an algebraic closure Q of

Q. Denote by H1(Q, E) the profinite cohomology group H1(Gal(Q/Q), E(Q)). We take
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Galois cohomology of the exact sequence

0 −→ E[n] −→ E
[n]−→ E −→ 0

over Q and Qp for each prime p, which gives a long exact sequence (the Kummer sequence),

from which we can obtain the following commutative diagram

0 E(Q)/nE(Q) H1(Q, E[n]) H1(Q, E)[n] 0

0
∏
p≤∞

E(Qp)/nE(Qp)
∏
p≤∞

H1(Qp, E[n])
∏
p≤∞

H1(Qp, E)[n] 0

ι1

ι2

Because the group H1(Q, E[n]) is cumbersome to work with, we choose to work locally

over Qp. We then define the n-Selmer group

Seln(E) := {x ∈ H1(Q, E[n]) : im ι1 ∈ im ι2}.

Then SelnE ⊆ H1(Q, E[n]) bounds E(Q)/nE(Q). The group SelnE is finite and computable—

though this computation is non-trivial. We then define the Shafarevich-Tate group

XE := ker

(
H1(Q, E) −→

∏
p≤∞

H1(Qp, E)

)
,

which then gives an exact sequence

0 −→ E(Q)/nE(Q) −→ SelnE −→X[n] −→ 0.

It is not known whether XE is finite—although it is conjectured to be finite. Measuring

the “average” size of Selmer groups, Bhargava and Shankar [BS15] prove that the “aver-
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age” rank of elliptic curves is at most 7/6 in the sense that

lim
X→∞

∑
htE<X rankE∑

htE<X 1
≤ 7

6
,

which we shall not make any more precise. Again, this limit is conjectured to be 1
2
—the

so-called “50-50 conjecture.” Goldfeld has also conjectured that

lim
D→∞

#{Ed : d ≤ D, rankEd ≥ 1}
#{Ed : d ≤ D} =

1

2
.

This is typically referred to as Goldfeld’s conjecture. We will not make this any more

precise. For more on both of these problems, see [BMSW07] and [Poo15]. There is a con-

jectural formula to compute the rank of an elliptic curve, namely the $1 million prize

problem of Birch and Swinnerton-Dyer:

lim
s→1

L(E, s)

(s− 1)rE
?
=

ΩE Reg(E) #X(E/Q)
∏

p cp

#E(Q)2
tors

,

where L(E, s) is the L-function associated to E, rE is the rank of E, ΩE =
∫
E(R)

∣∣∣dxy ∣∣∣,
Reg(E) is the regulator of E, and cp is Tamagawa number of E at p, i.e. the cardinality

of E(Qp)/E0(Qp), where E0(Qp) is the set of points in E(Qp) whose mod p reduction is

nonsingular in E(Fp).

While the ranks of elliptic curves are quite intractable, the torsion subgroups are much bet-

ter understood. Treating an elliptic curve E as C/Λ, we can easily see that the subgroup

of points of order n,5 denoted E[n], is isomorphic to Z/nZ⊕ Z/nZ. This is demonstrated

for n = 4 in Figure 3.5.

If instead we restrict to the points of order n defined over a number field K (rather than

5By abuse of language, we will say points of order n to mean points P ∈ E such that nP = O; that is, in more
traditional language, points whose order divides n.
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ω1

ω1
2

ω2
ω2
2

ω1 + ω2

Figure 3.5: The subgroup E[4] via the period parallelogram.

over C), it is well-known (see [Sil09]) that E(K)tors
∼= Z/nZ ⊕ Z/nmZ, where n,m ≥ 1

are positive integers. Generally, if A/K is an abelian variety with genus g, A(K)tors is a

Z/nZ-module of rank 2g. Furthermore, fixing a genus g, given a finite abelian group with

rank 2g as a Z/nZ-module, there is an abelian variety over some field with that specified

torsion subgroup.

Finally, we mention in passing two amazing theorems concerning the structure of integral

points on elliptic curves.

Theorem 3.7 (Siegel,[Sil09, IX.3, Thm. 3.1]). Let E/Q be an elliptic curve. Then the set

of integral points on E is finite.

There are ineffective bounds on the size of these integral points due to Baker [Bak90] in
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terms of A,B: if (x, y) is an integral point on E : y2 = x3 + Ax+B, then

max{|x|, |y|} ≤ exp
((

106 ·max{|A|, |B|}
)106
)
.

Theorem 3.8 (Nagell-Lutz, [Nag35, Lut37]). Let E/Q be an elliptic curve with equation

y2 = x3 + Ax + B, where A,B ∈ Z. If P =
(
x(P ), y(P )

)
∈ E(Q) is a nontrivial torsion

point, then x(P ), y(P ) ∈ Z and either y = 0, i.e. [2]P = O, or y(P )2 divides ∆E.

3.3 Isogenies

Now that we have defined elliptic curves, we want to define maps between them. These

will be isogenies. Note that one makes similar definitions for the case of abelian varieties

A/K.

Definition (Isogeny). Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a

morphism φ : E1 → E2 with φ(O) = O. Two elliptic curves E1 and E2 are isogenous if

there is an isogeny from E1 to E2 with φ(E1) 6= {O}.

From routine Algebraic Geometry, a map of projective curves is either surjective or con-

stant, see [Sil09, II.2.3]. Hence for an isogeny of elliptic curves, we either have φ(E1) =

{O} or φ(E1) = E2. But the only isogeny with φ(E1) = {O} is the zero isogeny given

by [0](P ) = O for all P ∈ E1. Alhough it is not immediately obvious, isogenies form an

equivalence relation (this follows from the existence of the dual isogeny). An isogeny be-

tween elliptic curves induces a map of function fields φ∗ : K(E2) → K(E1), which by our

preceding comments must be an injection.

The degree of an isogeny φ, which we will denote by deg φ, is the degree of the finite ex-
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tension K(E1)/φ
∗K(E2). We define similarly the separable and inseparable degrees for φ,

denoted by degs φ and degi φ, respectively. We also refer to the map φ as being separable,

inseparable, or purely inseparable according to the corresponding property of the field ex-

tension K(E1)/φ∗K(E2). By convention, we set deg[0] = 0 so that deg(ψ ◦φ) = degψ ·deg φ

for maps E1
φ−→ E2

ψ−→ E3. Because elliptic curves are abelian groups, one can then

form Hom(E1, E2) to be the group of isogenies in the usual way. Similarly, one defines

EndE := Hom(E,E) in the usual way, where addition in EndE is addition on the elliptic

curve and multiplication in EndE is given by function composition. Then AutE is the set

of invertible endomorphisms. Of course, if E is defined over some field K, one may restrict

Hom(E1, E2), EndE, AutE to just those maps defined over K.

Observe that the definition of an isogeny mentions nothing about the fact that the mor-

phisms respect the group law on the elliptic curve. However, it is the case that every

isogeny is a homomorphism of elliptic curves (the reverse is also true).

Theorem 3.9 ([Sil09, III.4.8]). Let φ : E1 → E2 be an isogeny. Then φ(P + Q) =

φ(P ) + φ(Q) for all P , Q ∈ E1.

Corollary 3.10 ([Sil09, III.4.9]). Let φ : E1 → E2 be a nonzero isogeny. Then kerφ =

φ−1(O) is a finite group.

For an isogeny φ : E1 → E2 with # kerφ = n, we say that E1 has a n-isogeny. If the map

φ is defined over a field K, we say that E1 has a K-rational n-isogeny. Finally, if kerφ is

cyclic, we say that E has a cyclic isogeny. Throughout this work, whenever we refer to an

isogeny, we will typically mean a Q-rational cyclic isogeny.

Example 3.2. For each m ∈ Z, we define the multiplication-by-n isogeny, [n] : E → E, in
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the natural way, i.e. [n](P ) is the n-fold sum of P on E. /

Proposition 3.11 ([Sil09, III.4.2]). Let E1/K and E2/K be elliptic curves, and let n ∈ Z

with n 6= 0. Then the multiplication-by-n map [n] : E → E is nonconstant. Further-

more, the group of isogenies Hom(E1, E2) is a torsion-free Z-module and EndE is a ring

of characteristic 0 with no zero divisors (not necessarily commutative).

Typically, EndE ∼= Z and is entirely composed of the multiplication-by-n maps, i.e. the

map Z → EndE given by n 7→ [n] is an isomorphism. Over fields of characteristic 0, this

map is always injective so that we can view Z ⊆ EndE.6 However, there are elliptic curves

where this inclusion is strict.

Example 3.3 ([Sil09, III.4.4]). Let K be a field with charK 6= 2, and let i ∈ K be a

primitive fourth root of unity, i.e. i2 = −1. Consider the elliptic curve E/K given by

y2 = x3 − x. Observe that we have a map [i] : E → E given by (x, y) 7→ (−x, iy). Note that

E is defined over K but [i] is defined over K if and only if i ∈ K. Furthermore, observe

that (
[i] ◦ [i]

)
(x, y) = [i](−x, iy) = (x,−y) = −(x, y),

so that [i]◦ [i] = [−1]. We then have a ring homomorphism Z[i]→ EndE given by m+ni 7→

[m] + [n] ◦ [i]. Assuming charK = 0, this map is an isomorphism, i.e. Z[i] ∼= EndE. Then

AutE ∼= Z[i]∗ = {±1,±i} is a cyclic group of order 4. Elliptic curves with EndE ) E are

said to have CM, or are simply called CM elliptic curves. It is no coincidence that in this

example that the endomorphism ring was the ring of integers in an imaginary quadratic

field. /

Definition (CM Elliptic Curve). We say that an elliptic curve E has complex multipli-

6Over finite fields, EndE is always strictly larger than Z.
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cation, or CM, if EndE ) Z. It turns out that in our case, EndE will be an order in an

imaginary quadratic field K and EndE ⊗Z Q ∼= K, c.f. Theorem 3.18. In this case, we say

E has CM by K.

With the multiplication-by-n map defined, we can then properly define the n-torsion sub-

group of E.

Definition (n-torsion subgroup). Let E be an elliptic curve, and let n ∈ Z with n ≥ 1.

The n-torsion subgroup of E, denoted by E[n], is the set of points of E of order n, E[n] =

{P ∈ E : [n]P = O}. The torsion subgroup of E, denoted by Etors is the set of points of

finite order on E, i.e. Etors =
⋃∞
n=1 E[n]. If E is defined over K, then E(K)tors denotes the

points of finite order in E(K).

It is worth noting that one can construct isogenies from finite subgroups of E.

Proposition 3.12 ([Sil09, III.4.12]). Let E be an elliptic curve and let Φ be a finite sub-

group of E. There are a unique elliptic curve E ′ and a separable isogeny φ : E → E ′

satisfying kerφ = Φ.

If E is defined over K and Φ is GK/K-invariant, i.e. T σ ∈ Φ for all σ ∈ GK/K ,7 then the

curve E ′ and isogeny φ can be defined over K. There are descriptions on how to construct

equations for E ′ and the isogeny φ : E → E ′, c.f. [Vél71].

Finally, although we will not make much use of it, for every nonconstant isogeny of elliptic

curves φ : E1 → E2 of degree n, there is an isogeny, called the dual isogeny and denoted

φ̂ : E2 → E1, with φ̂ ◦ φ = [n]. If φ = [0], we take φ̂ = [0].

7Throughout, GK/K := Gal(K/K), the absolute Galois group of K.
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Theorem 3.13 ([Sil09, III.6.2]). Let φ : E1 → E2 be an isogeny of elliptic curves. Then

(a) Let m = deg φ. Then φ̂ ◦ φ = [m] on E1 and φ ◦ φ̂ = [m] on E2

(b) Let λ : E2 → E3 be another isogeny. Then ‘λ ◦ φ = φ̂ ◦ λ̂.

(c) Let ψ : E1 → E2 be another isogeny. Then ’φ+ ψ = φ̂+ ψ̂.

(d) For all m ∈ Z, ”[m] = [m] and deg[m] = m2.

(e) deg φ̂ = deg φ

(f)
̂̂
φ = φ.

For more on dual isogenies, especially its construction, see [Sil09, III.6].

3.4 Weil Pairing

Let E/K be an elliptic curve, where K is a field of characteristic p. Fix an integer n ≥ 2,

where if p = charK > 0 we assume that gcd(n, p) = 1. We know that the group of n-

torsion points is E[n] ∼= Z/nZ⊕ Z/nZ. Therefore, E[n] is a free Z/nZ-module of rank two.

We will define an alternating, nondegenerate multilinear map on E[n]. Fix a Z/nZ-basis

for E[n], say {P,Q}. We then have a determinant map:

det : E[n]× E[n]→ Z/nZ

det(aP + bQ,cP + dQ) := ad− bc.

Of course, the values of this map depend on the choice of basis. However, selecting a dif-

ferent basis simply scales all of the values of det : E[n] × E[n] → Z/nZ by an element of

(Z/nZ)×. Note also that this map is not Galois invariant: if P , Q ∈ E[n] and σ ∈ GK/K ,

then det(P σ, Qσ) need not be the same as det(P,Q)σ. It would be advantageous to have a
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‘determinant’ map which is Galois invariant. For this, we need the pairing to take values

in the nth roots of unity. To create such a pairing, we make use of the fact that if E is an

elliptic curve and D =
∑
nP (P ) ∈ Div(E), then D is a principal divisor if and only if∑

P∈E nP = 0 and
∑

P∈E[nP ]P = O.

Suppose that T ∈ E[n]. There is a function f ∈ K(E) with div f = n(T ) − n(O). Let

T ′ ∈ E be a point with [n]T ′ = T . Similarly, we have a function g ∈ K(E) satisfying

div g = [n]∗(T )− [n]∗(O) =
∑

R∈E[n]

(
(T ′ +R)− (R)

)
.

It is routine to check that f ◦ [n] and gn have the same divisor. Scaling f , we can assume

that f ◦ [n] = gn.

Now suppose that S ∈ E[n] is an n-torsion point (not necessarily distinct from T ). For

X ∈ E,

g(X + S)m = f([n]X + [n]S) = f([n]X) = g(X)n.

Then the function en(X) := g(X + S)/g(X) has finite image. But then for all X, e(X) is

an nth root of unity. The map of curves, E → P, given by en(X) then cannot be surjective.

But maps of curves are constant or surjective. Therefore, en(X) is constant.

We then define a pairing en : E[n] × E[n] → µn by defining en(S, T ) =
g(X + S)

g(X)
, where

X ∈ E is any point such that g(X + S) and g(X) are well-defined and nonzero. While the

function g is defined only up to multiplication by some α ∈ K
×

, the value of en(S, T ) is

independent of the choice of α.

Definition (Weil Pairing). We define the map en(S, T ) described above is called the Weil

(en-)pairing.
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There is alternative construction of the Weil pairing: choose X, Y ∈ E and fS, fT ∈ K(E)

with div fS = n(X + S) − n(X) and div fT = n(Y + T ) − n(Y ). Then one can define the

pairing

en(S, T ) =
fS(Y + T )

fS(Y )

¡
fT (X + S)

fT (X)
,

though one need check that this map is well defined and is the same as the Weil pairing

defined above.

Proposition 3.14 ([Sil09, III.8.1]). The Weil en-pairing has the following properties:

(a) It is bilinear:

en(S1 + S2, T ) = en(S1, T ) en(S2, T )

en(S, T1 + T2) = en(S, T1) en(S, T2)

(b) It is alternating: en(T, T ) = 1.

(c) It is nondegenerate: if en(S, T ) = 1 for all S ∈ E[n], then T = O.

(d) It is Galois invariant: en(S, T )σ = en(Sσ, T σ) for all σ ∈ GK/K.

(e) It is compatible: enn′(S, T ) = en([n′]S, T ) for all S ∈ E[nn′] and T ∈ E[n].

The existence of the Weil pairing forces the following useful fact about fields over which

full n-torsion can be defined.

Corollary 3.15 ([Sil09, III.8.1.1]). There exist points S, T ∈ E[n] such that en(S, T ) is a

primitive mth root of unity. In particular, if E[n] ⊂ E(K), then µn ⊂ K×.

Proof. We give the proof in [Sil09]. As S and T range over E[n], the image of en(S, T ) is a
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subgroup of µn, the nth roots of unity, say equal to µd. It follows that

1 = en(S, T )d = en([d]S, T ) for all S, T ∈ E[n].

The nondegeneracy of the en-pairing implies that [d]S = O, and since S is arbitrary, it

follows from [Sil09, III.6.4] that d = n. Finally, if E[n] ⊂ E(K), then the Galois invariance

of the en-pairing implies that en(S, T ) ∈ K∗ for all S, T ∈ E[n]. Hence, µn ⊂ K∗.

If φ : E1 → E is an isogeny, and φ̂ its corresponding dual isogeny, then φ and φ̂ are dual

(or adjoint) with respect to the Weil pairing, see [Sil09, III.8.2]

Proposition 3.16. Let φ : E1 → E2 be an isogeny of elliptic curves. Then for all n-torsion

points S ∈ E1[n] and T ∈ E2[n], en(S, φ̂(T )) = en(φ(S), T ).

For a prime `, one can combine the various e`n-pairings compatibly to define a `-adic Weil

pairing on the `-adic Tate module, T`(E) := lim←−E[`n], where the limit is taken over the

natural maps E[`n+1]
[`]−→ E[`n], which we will not go into here. But this turns out to be

extremely useful. The resulting Weil pairing action on the `-adic Tate module T` gives a

determinant and trace map. Viewing the Tate module as a homology group, we can then

compute the degrees of isogenies topologically by examining its action on H1(E,Z`). This

gives a way of computing points on elliptic curves over finite fields.

Proposition 3.17 ([Sil09, III.8.6]). Let φ ∈ EndE and φ` : T`(T )→ T`(E) be the map that

φ induces on the Tate module of E. Then

detφ` = deg φ and tr(φ`) = 1 + deg φ− deg(1− φ),

where φ` comes from the representation EndE → EndT`(E) given by φ 7→ φ`. In particu-
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lar, detφ` and trφ` are in Z and are independent of `.

3.5 The Endomorphism and Automorphism Groups

Let E be an elliptic curve. It is well known that EndE has characteristic 0, no zero di-

visors, and rank at most 4 when viewed as a Z-module; moreover, EndE has an anti-

involution: φ 7→ φ̂. For φ ∈ EndE, the product φ φ̂ is a non-negative integer, and φ φ̂ = 0

if and only if φ = 0, see [Sil09, §III]. Suppose that K is a (not necessarily commutative) Q-

algebra that is also finitely generated over Q. We call R an order of K if it is a subring of

K that is finitely generated as a Z-module and satisfies R⊗Q = K. To give the possibilities

for EndE, we will need the following definition:

Definition ((Definite) Quaternion Algebra). A (definite) quaternion algebra is an algebra

of the form K = Q + Qα + Qβ + Qαβ, whose multiplication satisfies α2, β2 ∈ Q, α2 < 0,

β2 < 0, and βα = −αβ.

Theorem 3.18 ([Sil09, III.9.3]). Let R be a ring of characteristic 0 having no zero divisors,

and assume that R has the following properties:

(i) R has rank at most four as a Z-module.

(ii) R has an anti-involution α 7→ α̂ satisfying ’α + β = α̂ + β̂, ”αβ = β̂α̂, ̂̂α = α, â = a for

all a ∈ Z ⊂ R.

(iii) For α ∈ R, the product αα̂ is a nonnegative integer, and αα̂ = 0 if and only if α = 0.

Then R is one of the following types of rings

(a) R ∼= Z.
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(b) R is an order in an imaginary quadratic extension of Q.

(c) R is an order in a quaternion algebra over Q.

Corollary 3.19 ([Sil09, III.9.4]). The endomorphism ring of an elliptic curve E/K is

either Z, an order in an imaginary quadratic field, or an order in a quaternion algebra. If

charK = 0, then only the first two are possible.

Complete descriptions of EndE exist, but they are rather tedious. Moreover, it is gener-

ally difficult to determine EndE precisely. However, the automorphism group of an elliptic

curve E is much simpler.

Theorem 3.20 ([Sil09, III.10.1]). Let E/K be an elliptic curve. Then its automorphism

group AutE is a finite group of order dividing 24. More precisely, the order of AutE is

given in Table 3.2:

Table 3.2: The order of AutE depending on j(E) and charK

# AutE j(E) charK

2 j(E) 6= 0, 1728 —
4 j(E) = 1728 charK 6= 2, 3
6 j(E) = 0 charK 6= 2, 3
12 j(E) = 0 = 1728 charK = 3
24 j(E) = 0 = 1728 charK = 2

Corollary 3.21 ([Sil09, III.10.2]). Let E/K be a curve over a field of characteristic not

equal to 2 or 3, let

n =


2, if j(E) 6= 0, 1728

4, if j(E) = 1728

6, if j(E) = 0.



53

Then there is a natural isomorphism of GK/K-modules AutE ∼= µn.

3.6 Division Polynomials

Let E/K be a rational elliptic curve given by a model y2 = x3 + Ax + B, and say that

P = (x, y) ∈ E(K). Suppose that P is a point of order 2, i.e. 2P = O. Then we know that

P = −P = (x,−y). This implies that y = −y so that y = 0. But then x3 + Ax + B = 0

so that x is a root of x3 + Ax + B. Now suppose instead that P is a point of order 3, i.e.

3P = O. Then we know that 2P = P . We can use the duplication formula to find x(2P ),

i.e. the x-coordinate of 2P . We find that x(2P )(x) is

x(2P ) =
x4 − 2Bx2 − 8Bx+ A2

4x3 + 4Ax+ 4B
.

Equating x and x(2P ), we find that 3x4 + 6Ax2 + 12Bx − A2 = 0, so that x is a root of

3x4 + 6Ax2 + 12Bx− A2. We can repeat this process to find conditions for x ∈ K for P =

(x, y) to be a point of order n. These conditions will be necessary, but not sufficient. If x is

defined over K, y2 = x3 + Ax+B need not be defined over K. However, y will be defined

over at most a quadratic extension of K. Of course, these polynomials could be reducible,

e.g. in the case of a point of order 3, x need not be a root of 3x4 + 6Ax2 + 12Bx− A2 but

rather an irreducible factor of 3x4 + 6Ax2 + 12Bx− A2. We wish to formalize this process,

which will result in the division polynomials for E.

Generally speaking, suppose E is an elliptic curve with model y2 = x3 + Ax + B. By

Riemann-Roch, any function with a pole of order 1 at O is a polynomial in X, Y , and can

be written uniquely as a polynomial in K[x] ⊕ Y K[x]. Then for each integer n > 0, we

define a polynomial ψE,n ∈ Z[A,B, x]⊕ yZ[A,B, x], called the n-division polynomial for E.
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We have

divψn =
∑

Q∈E[n]\{O}

(Q)− (n2 − 1)(O).

This shows that if n is odd that ψE,n ∈ Z[A,B, x], and if n is even that ψE,n ∈ yZ[A,B, x].

We define the first few n-division polynomials as follows:

ψE,n =



1, for n = 1,

2y, for n = 2,

3x4 + 6Ax2 + 12Bx− A2, for n = 3,

4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3), for n = 4.

We define ψn for n > 4 using the recursive relations


ψE,2n+1 = ψn+2ψ

3
n − ψn−1ψ

3
n+1, if n ≥ 2

2yψE,2n = ψm(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1), if n ≥ 3.

For some polynomials φn(x) and ωn(x, y), we have

[n]P =

Ç
φn(x)

ψ2
E,n(x)

,
ωn(x, y)

ψE,n(x, y)2

å
.

Let E/Q be a rational elliptic curve given by y2 = x3 + Ax+B, and let P = (x, y) ∈ E(Q)

be a point of order n. If n is odd, then the x-coordinate of P is a root of ψE,n and we can

write

1

n
ψE,n =

∏(
x− x(P )

)
,

where the product is over the nontrivial n-torsion points with distinct coordinates.

If n is even (and not 2), the x-coordinate of P ∈ E[n] \ E[2] is a root of ψE,n/ψE,2 and we
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can write

2

nψE,2
ψE,n =

∏(
x− x(P )

)
,

where the product is taken over the nontrivial n-torsion points (n 6= 2) with distinct x-

coordinates. The polynomial ψE,n has degree (n2 − 1)/2.8 From these equations, we see that

if d | n, then ψE,d | ψE,n. Let fE,n denote the primitive n-division polynomial associated to

ψE,2, i.e. a polynomial whose roots are the x-coordinates of points P ∈ E[n] of exact order

n. Note that if p is prime, then ψE,n = fE,n. For composite n, we have

fE,n =
ψE,n∏
d|n
d6=n

fE,d
.

There is an important relation between the division polynomials for E and it’s twists by d,

Ed. Let Ed be a quadratic twist of E/Q. Then ψE,n = pdψEd,n and fE,n = qdfEd,n for some

pd, qd ∈ Q, depending on d. Then the roots of ψE,n, ψEd,n and fE,n, fEd,n are the same,

respectively.

When asking if E(K) contains a point of exact order n over K, we (vaguely) define the

“method of division polynomials” as follows: if E/Q is an elliptic curve with j-invariant

jE (or a twist of an elliptic curve with j-invariant jE), to determine if E(K) contains a

point of exact order n over a field K, one computes and factors the primitive n-division

polynomial fE,n ∈ Q[x]. Suppose that fE,n = fn1
1 · · · fni

i , where the fi are the irreducible

factors of fE,n over Q[x] and ni ∈ Z+. The x-coordinate of a point of exact order n is then

a root of one of the fi. We can then check if Q(fi) ⊆ K for some i. If not, there cannot be

a point of exact order n on E defined over K. For instance, it may be that K/Q is an odd

degree number field and that Q(fi)/Q is an even degree number field. Then it cannot be

the case that Q(fi) ⊆ K. There can be any number of conditions that Q(fi) might violate

8This is obvious when n is odd. When n is even, this is true so long as we think of y has having ‘degree’ 3/2 in
x from the fact that y2 = x3 + Ax + B.
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to preclude K ⊇ Q(fi). Note that even if Q(fi) ⊆ K for some i, a point of order n may

still not be possible as the y-coordinate need not be defined over Q(fi) ⊆ K, but rather

defined over a quadratic extension of Q(fi) because y2 = x3 + Ax+B.

3.7 Galois Representations

Let GQ := Gal(Q/Q) be the absolute Galois group. One can use Class Field Theory to un-

derstand one-dimensional Galois representations. Let ρ : GQ −→ C× ∼= GL1(C) be the one-

dimensional Galois representation corresponding to Dirichlet characters χ : (Z/nZ)× → C×

via identifying abelian extensions of Q with cyclotomic extensions obtained by adjoining

nth roots of unity. We have an isomorphism (Z/nZ)× → Gal(Q(ζn)/Q), where ζn denotes

a primitive nth root of unity, taking k with gcd(k,N) = 1 to their kth power in a fixed

algebraic closure Q. There is then a maximal abelian quotient, Gab
Q
∼= Gal(Q(ζ∞)/Q),

where ζ∞ denotes the set of all roots of unity in Q. Fix a prime `. We have representa-

tions χn : GQ → Aut(ζ`n) ∼= (Z/ζn)×. Taking the inverse limit over the `-power map, we

obtain the Tate module, T`. The absolute Galois group acts on this limit, and we obtain a

representation χ : GQ → Aut(T`(ζ∞)) ∼= Z×` .

Similarly, we can use elliptic curves to create 2-dimensional Galois representations, which

in return gives us information about the elliptic curve. Let E/Q be a rational elliptic

curve, and fix an integer n ≥ 2. As usual, let E[n] denote the subgroup of E(Q) consisting

of points of order n, i.e. E[n] = {P ∈ E(Q) : [n]P = O}. The absolute Galois group GQ :=

Gal(Q/Q) acts coordinate-wise on the points of E[n]. We then obtain a representation

ρE,n : Gal(Q/Q)→ Aut(E[n]).

But E[n] is a free rank two Z/nZ-module. Fixing a basis, say {P,Q}, for E[n], we know
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that Aut(E[n]) is isomorphic to a subgroup of GL2(Z/nZ). We then have a map

ρE,n : Gal(Q/Q) −→ Aut(E[n]) ↪→ GL2(Z/nZ).

Denote by GE(n) the image of ρE,n under this composition. While the exact image of this

composition depends on the choice of basis, the image is unique up to conjugacy. Denote

by Q(E[n]) the field of definition for E[n], i.e. Q(E[n]) := Q({x, y} : (x, y) ∈ E[n]}). This

is always a finite extension of Q. Furthermore, the extension Q(E[n]) is a Galois extension

of Q. It is routine to verify that ker ρE,n = Gal
(
Q/Q(E[n])

)
. But then by the Galois

correspondence, we have GE(n) ∼= Gal(Q(E[n])/Q). Suppose that P = (x, y) ∈ E[n]. We

denote by x(P ) and y(P ) the x and y coordinates of P , respectively. In this notation, we

have Q(P ) = Q(x(P ), y(P )). Let H be the subgroup of Gal(Q(E[n])/Q) corresponding to

Q(E[n])H = Q(P ) via the Galois correspondence, i.e. Q(P ) is the subfield of Q(E[n]) fixed

by H. Now define ‹H := ρE,n(H). We then have [Q(P ) : Q] = |GE(n) : ‹H|.
A natural question is what are the possible images of ρE,p, where p is a prime. This ques-

tion was answered by Serre.

Theorem 3.22 (Serre, [Ser72]). Let E/Q be a rational elliptic curve, and let GE(p) denote

the image of ρE,p. Supposing that GE(p) 6= GL2(Z/pZ), then there is a Z/pZ=basis of E[p]

such that one of the following possibilities is true:

(i) GE(p) is contained in the normalizer of a split Cartan subgroup of GL2(Z/pZ), or

(ii) GE(p) is contained in the normalizer of a non-split Cartan subgroup of GL2(Z/pZ),

or

(iii) the projective image of G in PGL(E[p]) is isomorphic to A4, S4, or A5, where An, Sn

are the alternating and symmetric group, respectively, or
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(iv) GE(p) is contained in a Borel subgroup of GL2(Z/pZ).

Note that the first case can only occur p ≤ 13 with p 6= 11, the third for p ≤ 13, and the

last for p = 2, 3, 5, 7, 11, 13, 17, or 37. We will take care to define the last case in Theo-

rem 3.22, as it will be the case of interest to us. We say that a subgroup B of GL2(Z/pnZ)

is Borel if every matrix in B is upper triangular, i.e.

B ≤


Ö
a b

0 d

è
: a, b, c ∈ Z/pnZ, a, c ∈ (Z/pnZ)×

 .

Note that if P ∈ E(Q) is a point of order n and P ∈ E(K), where K is a number field,

then we can extend P to a basis of {P,Q} for E[p]. In particular, ρE,p is contained in a

Borel subgroup. Sutherland computed the mod-p image of all non-CM elliptic curves in

the Cremona and Stein-Watkins database—around 140 million elliptic curves. Zywina has

also described conjecturally all the proper subgroups of GL2(Z/pZ) which occur as images

of ρE,p, including all known cases.

Conjecture 3.23 ([Sut16, Zyw15]). Let E/Q be a rational elliptic curve without CM,

and let p be a prime. Then there is a set Sp formed by sp = |Sp| isomorphism types of

subgroups of GL2(Fp), where such that if G is the image of ρE,p, then G is conjugate to one

p 2 3 5 7 11 13 17 37 else
sp 3 7 15 16 7 11 2 2 0

of the subgroups in S, or G ∼= GL2(Z/pZ).

3.8 Modular Curves

Let the modular group be the group of 2-by-2 matrices with integer entries and deter-

minant 1, i.e. SL2(Z). The group SL2(Z) acts on the upper half plane, H, via fractional
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transformations. Let N be a positive integer. We define the principal congruence subgroup

of level N to be

Γ(N) =


Ö
a b

c d

è
∈ SL2(Z) :

Ö
a b

c d

è
≡

Ö
1 0

0 1

è
mod N

 .

We say that a subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ⊆ Γ for some N , in

which case we call Γ a congruence subgroup of level N . We define also

Γ0(N) =


Ö
a b

c d

è
∈ SL2(Z) :

Ö
a b

c d

è
≡

Ö
? ?

0 ?

è
mod N


Γ1(N) =


Ö
a b

c d

è
∈ SL2(Z) :

Ö
a b

c d

è
≡

Ö
1 ?

0 1

è
mod N

 ,

where ? indicates that the element is unspecified. One can recognize each of these sub-

groups as the kernel of certain projection maps, and hence are all normal subgroups of

SL2(Z). Hence, we form the quotient space Y (Γ) := Γ \ H. This quotient space is a Rie-

mann surface—though not necessarily compact. A non-obvious, but nevertheless true, fact

is that we can adjoin to Y (Γ) finitely many points, called cusps, to form a compact Rie-

mann surface X(Γ) (which itself can be recognized as a quotient space). The space X0(N)

is a compact algebraic curve defined over C with a model over Q.

Now X0(N) is a moduli space of isomorphism classes of ordered pairs (E,C), where E is

an elliptic curve and C is a cyclic subgroup of E with order N . Thus, the non-cuspidal

Q-rational points of X0(N) have the following (equivalent) moduli interpretations:

• Isomorphism classes of pairs (E,C), where E/Q is an elliptic curve with a Q-rational

cyclic subgroup of E with order n.
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• Isomorphism classes of pairs (E, 〈P 〉), where E/Q is an elliptic curve and P is a

point of exact order N on E.

• Isomorphism classes of triples (E1, E2, φ), where E1/Q, E2/Q are elliptic curves and

φ : E1 → E2 is an isogeny with cyclic kernel of cardinality N .

Similarly, X(N) classifies the pairs (E, {P,Q}), where E is an elliptic curve over K and

{P,Q} is a basis for E[n], and X1(N) classifies the pairs (E,P ), where E is an elliptic

curve over K and P is a point of exact order n on E.

Example 3.4 ([Kna92]). Let K be a field and E/K be an elliptic curve. Suppose P ∈

E(K) is a point of exact order 4. Translating the elliptic curve so that P is at the origin,

we can write E as y2 + cxy + by = x3 + bx2, i.e. the Tate normal form for E. Observing that

−2P = (−b, 0) and performing some other brief calculations, including a transformation,

we find that E is given by y2 + xy + by = x3 + bx2. This is a (universal) elliptic curve

for X1(4). The discriminant of this elliptic curve is −16b5 + b4, so the value b = 1/16

corresponds to a cusp on X1(4). Then for all b ∈ K× \ {1/16}, Y1(4)(K) is the resulting

elliptic curve. The curve X1(4) is the projective line over K, and the complete set of cusps

of X1(4) is {O, 0, 1/16}. Of course, X1(N) need not always be an elliptic curve, and it

could be that the genus of X1(N) is g = 0 or g > 1. /

One of the significant advantages of working with rational elliptic curves is that there is a

complete classification of the possible Q-rational points on X0(N). We do not have such

a classification for elliptic curves over any other number field. By the equivalence above,

this restricts the possible Q-rational n-isogenies a rational elliptic curve can have. This

classification was the result of decades of work due to Fricke, Kenku, Kubert, Ligozat,

Mazur, Ogg, among others, with Mazur completing the critical classification of p-isogenies,

where p is a prime, see [LR13] for more detailed references.
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Theorem 3.24. Let N ≥ 2 be such that X0(N) has a non-cuspidal Q-rational point. Then

(i) N ≤ 10 or N = 12, 13, 16, 18, or 25. In this case, X0(N) is a curve of genus 0, and

the Q rational points on X0(N) form an infinite 1-parameter family, or

(ii) N = 11, 14, 15, 17, 19, 21, or 27, i.e. X0(N) is a rational elliptic curve (in each

case X0(N)(Q)) is finite, or

(iii) N = 37, 43, 67, or 163. In this case, X0(N) is a curve of genus ≥ 2 and by Faltings’

Theorem has only finitely many Q-rational points.

In particular, a rational elliptic curve may only have a rational cyclic n-isogeny for n ≤ 19

or n ∈ {21, 25, 27, 37, 43, 67, 163}. Furthermore, if E does not have CM, then n ≤ 18 or

n ∈ {21, 25, 37}.

For more on all of these topics, see [DS05].

3.9 CM Elliptic Curves

The theory of elliptic curves with CM is a deep subject area, making extensive use of the

theory of complex multiplication and Class Field Theory. Obviously, going too deep is

far beyond the scope of this work. We will only give an overview for the extra structure

afforded to elliptic curves with CM. For more on this topic, see [Sil94].

Recall that E/K has CM if EndE ) Z. In this case, EndE is isomorphic to an order

in an imaginary quadratic extension of Q, say K, and EndE ⊗Z Q ∼= K. Let K/Q be

a number field (or in more general cases, a global field). We define the modulus m of K

to be
∏

p p
m(p), where the product is taken over all real and finite places of p. Note that
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m(p) ≥ 0 for all p, with all but finitely many m(p) = 0, and m(p) < 1 if p is a real place.

We denote by Km,1 the set of all a ∈ K× so that ordp(a− 1) ≥ m(p) for all finite p | m and

σ(a) > 1 for all real p | m, where σ is the real embedding given by the real place p.

Let S be a finite set of primes dividing m, and let S(m) denote the set of primes dividing

m. We write IS for the group of fractional ideals of K that are relatively prime to S. We

have a map ι : Km,1 → IS(m) given by mapping a to the ideal that it generates. Then

ι(Km,1) is a subgroup of IS(m). We then define the ray class group (modulo m) to be Cm :=

IS(m)/ι(Km,1). Note that if m = 1, then Cm is simply the usual ideal class group Cl(K). It

is known that each class of Cm has infinitely many representatives that are primes of K.

Now let L/K be a finite abelian extension of global fields, with G its Galois group. There

are only finitely many primes of K which ramify in L—those dividing the discriminant

ideal dL/K . Let S be the set of primes dividing dL/K . The Artin reciprocity map ωL/K :

IS → Gal(L/K) associates to each prime p ∈ IS the unique element of the decomposition

group, D(p), that acts as the Frobenius map on the residue field tower Gal
(
(OL/P)/(OK/p)

)
,

where P is a prime of K lying above p. We extend this map linearly so that we have

ωL/K (
∏

i p
ni
i ) =

∏
i(ωL/K(pi))

ni . Denote by ISL the set of fractional ideals of L relatively

prime to S, where S is a finite set of primes of L. Then kerωL/K contains NmL/K(ISL).

The Artin global reciprocity law states that if S is the set of primes ramifying in L, then

ωL/K admits a modulus, say m, with S(m) = S, and that there is an isomorphism

Gal(L/K) ∼= IS/
(
ι(Km,1)NmK/L(ISL)

)
.

A congruence subgroup (modulo m) is a group G with ι(Km,1) ⊆ G ⊆ IS(m). If G is a

congruence subgroup, then there exists a finite abelian extension L/K such that G =
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ι(Km,1)NmL/KI
S(m)
L . Then if G = ι(Km,1), we have a finite abelian extension L/K with

ι(Km,1) = ι(Km,1)NmL/KI
S(m)
L . But by the Artin Reciprocity Theorem, this is isomorphic

to Gal(L/K). Indeed in a sense, classifying abelian extensions of a global field is precisely

the goal of Class Field Theory. We then define the ray class field (modulo m) to be the

finite abelian extension Lm/K with Cm
∼= Gal(Lm/K), and define the Hilbert class field of

K, HK , to be the ray class field of K with m = 1. That is, the Hilbert class field HK/K

is the unique abelian extension of K with Gal(HK/K) = Cl(K), meaning that it is the

maximal unramified abelian extension of K. Finally, we define the conductor, c, of an

abelian extension L/K to be the smallest modulus for L/K, i.e. c divides m for all moduli

of L. We now state some of the main results of the theory of elliptic curves with CM.

Theorem 3.25 ([Sil94, Thm. 4.1, 4.3]). Let K/Q be an imaginary quadratic field with ring

of integers OK, and let E/C be an elliptic curve with EndE ∼= O. Then K(j(E)), i.e. the

field of definition for E, is the Hilbert class field HK of K. Furthermore, [Q(j(E)) : Q] =

[K(j(E)) : K] = hK, where hK is the class number of K.

Theorem 3.26 ([Sil94, Thm. 6.1]). Let E/C be an elliptic curve with CM. Then j(E) is an

algebraic integer.

Indeed, the theory of elliptic curves with CM is very deep and beautiful. For instance,

using the theory of elliptic curves with CM, one discovers, see [Sil94], that

eπ
√

163 = 262537412640768743.999999999999250072597 . . .

is very nearly an integer.
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Chapter 4

Currently Known Results

Throughout this chapter, when convenient, we will make use of the following notation:

• Let Φ(d) denote the set of isomorphism classes of torsion subgroups E(K)tors, where

K varies over all number fields of degree d and E varies over all elliptic curves de-

fined over K. Similarly, let ΦQ(d) denote the set of isomorphism classes of torsion

subgroups E(K)tors, where K varies over all number fields of degree d and E varies

over all rational elliptic curves, i.e. elliptic curves E/Q base extended to K.

• Let ΦGal(d) denote the set of isomorphism classes of torsion subgroups E(K)tors,

where K varies over all Galois number fields of degree d and E varies over all elliptic

curves defined over K. Similarly, let ΦGal
Q (d) denote the set of isomorphism classes of

torsion subgroups E(K)tors, where K varies over all Galois number fields of degree d

and E varies over all rational elliptic curves, i.e. elliptic curves E/Q base extended

to K.
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• Let ΦG(d) denote the set of isomorphism classes of torsion subgroups E(K)tors,

where K varies over all number fields of degree d with Gal(“K/Q) ∼= G, where “K
is the Galois closure of K, and E varies over all rational elliptic curves, i.e. elliptic

curves E/Q base extended to K. Note that if K is Galois, then “K ∼= K. Similarly,

let ΦG
Q(d) denote the set of isomorphism classes of torsion subgroups E(K)tors, where

K varies over all number fields of degree d with Gal(“K/Q) ∼= G, where “K is the

Galois closure of K, and E varies over all rational elliptic curves, i.e. elliptic curves

E/Q base extended to K. Note that if K is Galois, then “K ∼= K.

• Let Φ∞(d) denote the subset of Φ(d) of isomorphism classes of torsion subgroups

E(K))tors which occur for infinitely many non-isomorphic elliptic curves. That is,

the set torsion subgroups T such that there are infinitely many elliptic curves, not

isomorphic over Q, such that there is a field K of degree d with E(K)tors
∼= T . Sim-

ilarly, let Φ∞Q (d) denote the subset of ΦQ(d) of isomorphism classes of torsion sub-

groups E(K)tors which occur for infinitely many non-isomorphic rational elliptic

curves. That is, the set torsion subgroups T such that there are infinitely many ra-

tional elliptic curves, not isomorphic over Q, such that there is a field K of degree d

that, when E is base extended to K, E(K)tors
∼= T .

• Let Φj∈Q(d) denote the set of isomorphism classes of torsion subgroups E(K)tors,

where K varies over all number fields of degree d and E runs over all elliptic curves

with jE ∈ Q. Generally, let Φj∈OK
(d) denote the set of isomorphism classes of torsion

subgroups E(K)tors, where K varies over all number fields of degree d and E runs

over all elliptic curves with jE ∈ OK , where OK is the ring of integers of K.

• If G ∈ Φ(1), let ΦQ(d,G) denote the set of isomorphism classes of torsion subgroups

E(K)tors as E/Q runs over all rational elliptic curves and K/Q runs over all number

fields of degree d.
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• Let S(d) denote the set of primes such that there exists a number field of degree ≤ d

and an elliptic curve E/K such that there is a point of order p on E(K). Similarly,

let SQ(d) denote the set of primes such that there exists a number field of degree ≤ d

and a rational elliptic curve E/K such that, when E is base extended to K, there is

a point of order p on E(K).

• Let R(d) denote the set of primes such that there exists a number field of exact de-

gree d and an elliptic curve E/K such that there is a point of order p on E(K). Sim-

ilarly, let RQ(d) denote the set of primes such that there exists a number field of

exact degree d and a rational elliptic curve E/K such that, when E is base extended

to K, there is a point of order p on E(K).

Note that ΦQ(d) ⊆ Φ(d) for all d. However, it is worth noting that Φ∞Q (d) ⊆ ΦQ(d) ∩

Φ∞(d) can be distinct sets. Clearly, we have Φ∞Q (d) ⊆ Φ∞(d). However, a torsion subgroup

which appears infinitely often for elliptic curves E/K may only occur for finitely many

rational elliptic curves; that is, there may only be finitely many rational elliptic curves

that when base extended to a number field of degree d have a specified torsion subgroup.

Furthermore for all d, we have R(d) ⊆ S(d) and RQ(d) ⊆ SQ(d). If one knows R(d′) for

all d′ ≤ d, then one can recover S(d) via S(d) = ∪k≤dR(k). However, knowledge of S(d′)

for all d′ ≤ d does not allow one to recover R(d). The same observations are true for SQ(d)

and RQ(d), mutatis mutandis.

Even in the cases where Φ(d) or ΦQ(d) are unknown, they are known to be finite sets.

Merel [Mer96] showed that the sets Φ(d) (and hence ΦQ(d)) are uniformly bounded, now

known as the Uniform Boundedness Theorem. However, Merel’s result was not effective.

Instead, Merel merely proved that there existed a constant B(d), depending only on d,

such that |G| ≤ B(d) for all G ∈ Φ(d). Merel’s result was later made effective in work

by Parent [Par99], and Oesterlé (unpublished but can be found in [DKSS17]). Both Merel
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and Parent’s work was based on extending Kamienny and Mazur’s work in Jacobian vari-

eties and Hecke algebras, see [Edi93]. In particular, along with Oesterlé’s work, they prove:

Theorem 4.1 ([Mer96],[Par99]). Let K be a number field of degree d > 1. Then

(i) (Merel) Let E/K be an elliptic curve. If E(K) contains a point of exact prime order

`, then ` ≤ d3d2.

(ii) (Parent) If P is a point of exact prime power order `n, then

(a) `n ≤ 65(3d − 1)(2d)6, if ` ≥ 5

(b) `n ≤ 65(5d − 1)(2d)6, if ` = 3

(c) `n ≤ 129(3d − 1)(3d)6, if ` = 2

In particular, `p ≤ 129(5d − 1)(3d)6 for all primes `.

(iii) (Oesterlé) If p ∈ S(d), then p ≤ (1 + 3d/2)2.

The first classification of torsion subgroups of elliptic curves came with Mazur’s classifica-

tion of the possibilities for E(Q)tors in 1977. The next full classification would not come

until Kammieny, Kenku, and Momose’s classification of Φ(2). There has been an explo-

sion of results since 2000. We now give an overview of the progress in the classification of

torsion subgroups for elliptic curves in various settings.

4.1 The Case of E(Q)tors

The possible structures for E(Q)tors was originally conjectured by Beppo Levi, see [SS96].

Later Trygve Nagell and Andrew Ogg independently arrived at Levi’s conjecture. Drawing

on Ogg’s work connecting torsion subgroups of elliptic curves, modular forms, and isoge-



69

nies of elliptic curves, work of Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et al.

classified the possible Q-rational points on X0(N). Mazur’s work on the Eisenstein ideal

classified the possible Q-rational points on X0(N) in the case where N was prime. Hence,

Mazur was able to classify the possible torsion subgroups for E(Q)tors.

Theorem 4.2 ([Maz77, Maz78]). Let E/Q be a rational elliptic curve. Then E(Q)tors is

isomorphic to precisely one of the following:


Z/nZ, with n = 1, 2, . . . , 10, 12 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4.

Moreover, each possibility occurs for infinitely many distinct elliptic curves.

One can prove Mazur’s Theorem as follows: the modular curve Y1(N) classifies the pairs

(E,P ), where E/C is an elliptic curve and P ∈ E is a point of exact order N ; that is, the

set of rational points on Y1(N), denoted Y1(N)(Q), corresponds to the set of (isomorphism

classes) of pairs (E,P ). The proof then reduces to showing that Y1(N)(Q) is empty for

N > 7. One then naturally considers the map of algebraic curves Y1(N) → Y0(N), where

Y0(N) is the affine curve parametrizing the set of pairs (E,G), where E/C is an elliptic

curve and G ⊆ E is a cyclic subgroup of order N . Let X0(N) denote the compactification

of Y0(N).

One then proves for a rational abelian variety A and a rational map f : X0(N) → A

that if A has good reduction away from N , f(0) 6= f(∞), and A(Q) has rank 0, then no

rational elliptic curve has a point of order N . Furthermore, one must prove the following:

let A/Q be an abelian variety and let N and p be distinct primes, with N odd. If A has

good reduction away from N , A has completely toric reduction at N , and the Jordan-

Hölder constituents of A[p](Q) are 1-dimensional, and either trivial or cyclotomic, then
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A(Q) has rank 0.

But of course, one must first find such an abelian variety A of rank 0. Embedding a curve

into its Jacobian, one can find the abelian variety A by recognizing it as a quotient of the

Jacobian J0(N) of X0(N). Studying the Hecke operators Tp on J0(N), one can identify A

using the Hecke algebra. For the details on all of this, see [Sno13].

4.2 Torsion Subgroups of Elliptic Curves over Gen-

eral Number Fields

Of course, one need not restrict to rational elliptic curves. Instead, one could consider

elliptic curves over a number field, E/K. The first progress in this direction was work

begun by Kenku and Momose, later finished by Kamienny.

Theorem 4.3 ([KM88,Kam92a,Kam92b]). Let K/Q be a quadratic number field, and let

E/K be an elliptic curve. Then E(K)tors is isomorphic to precisely one of the following

groups: 

Z/nZ, with n = 1, 2, . . . , 16, 18 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 or

Z/4Z⊕ Z/4Z.

Moreover, there exist infinitely many Q-isomorphism classes for each possible torsion sub-

group.

Rabarison [Rab10] gives many interesting parametrizations for the torsion subgroups in

Theorem 4.3. Of course, Theorem 4.3 does not say over which quadratic fields the listed
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torsion subgroups appear. In fact, Bosman, Bruin, Dujella, and Najman are able to clas-

sify the possibilities for E(K)tors based on the type of quadratic field.

Theorem 4.4 ([BBDN13b]). Let K/Q be a real quadratic number field K, and let E/K be

an elliptic curve. Then E(K)tors is isomorphic to precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 16, 18or

Z2Z⊕ Z/2nZ, with n = 1, 2, 3, 4.

Moreover, each torsion subgroup occurs for infinitely many Q-isomorphism classes.

Theorem 4.5 ([BBDN13b]). Let K/Q be an imaginary quadratic number field K, and let

E/K be an elliptic curve. Then E(K)tors is isomorphic to precisely one of the following

groups: 

Z/nZ, with n = 1, 2, . . . , 12, 14, 15, 16 or

Z2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 or

Z/4Z⊕ Z/4Z.

Moreover, each torsion subgroup occurs for infinitely many Q-isomorphism classes.

Of course, fixing a quadratic field K/Q and possible torsion subgroup G ∈ Φ(2), The-

orems 4.3, 4.4, and 4.5 say nothing about whether there is an elliptic curve E(K) with

E(K)tors
∼= G. Najman classified the possibilities if K a quadratic cyclotomic field in

[Naj11] and [Naj10]. Moreover, Kamienny and Najman describe a method in [KN11] to

determine all the possible torsion subgroups E(K)tors over a fixed quadratic field, and

they find examples of the smallest quadratic field (measured by the absolute discriminant)

over which that torsion subgroup occurs. They also examine an interplay between rank
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and torsion for the groups E(K) and give some results concerning the density of torsion

subgroups.

The first progress for the case of cubic number fields came with Jeon, Kim, and Schweizer,

who determined the possible torsion structures which appear infinitely often over cubic

fields.

Theorem 4.6 ([JKS04]). Let K/Q be a cubic number field, and let E/K be an elliptic

curve. Then the possibilities for E(K)tors occurring for infinitely many Q-isomorphism

classes are precisely:


Z/nZ, with n = 1, 2, . . . , 16, 18, 20 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 7.

Furthermore by finding certain trigonal modular curves, Jeon, Kim, and Lee [JKL11a]

constructed infinite families of elliptic curves realizing each of these torsion structures.

Jeon [Jeo16] constructs other families of examples in the case of cyclic cubic number fields.

Extending Najman’s work in [Naj12b], Maarten Derickx and Filip Najman classified the

torsion subgroups of elliptic fields over Galois cubic fields, complex cubic fields, and totally

real cubic fields with Galois group S3.

Theorem 4.7 ([DN19]). Let K/Q be a cyclic cubic field, and let E/K be an elliptic curve.

Then E(K)tors is precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 16, 18, 21 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 7.
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Each such possibility occurs for some elliptic curve E/K over some cyclic cubic field K.

Furthermore, the only elliptic curve with Z/16Z torsion over a cyclic cubic field K is y2 +

axy + by = x3 + bx2, where

a =
−11α2 + 2543α + 2240

2232
, b =

481α2 − 2465α− 376

155682
,

and α is a root of x3 − 8x2 − x+ 8/9 and K = Q(α), c.f. [DN19, Lemma 4.13].

Theorem 4.8 ([DN19]). Let K/Q be a complex cubic field, and let E/K be an elliptic

curve. Then E(K)tors is precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 16, 18, 20 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6.

Moreover, there are infinitely many distinct Q-isomorphism classes such that E(K)tors is

isomorphic to one of the groups above for some complex cubic field.

Theorem 4.9 ([DN19]). Let K/Q be a totally real cubic field with Galois group S3, and let

E/K be an elliptic curve. Then E(K)tors is precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 16, 18, 20 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6.

Moreover, there are infinitely many distinct Q-isomorphism classes such that E(K)tors is

isomorphic to one of the groups above for some totally real cubic field with Gal(K/Q) ∼=

S3.
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Their method, in part, relies on a process called Mordell-Weil sieving, which is useful in

finding all rational points on a curve C by examining the Mordell-Weil group of its Ja-

cobian. For more on this topic, see [BS10]. Their work was later extended by Jeon and

Schweizer, who determined in [JS20] over which types of cubic number fields each possi-

ble torsion subgroup can occur, and if the torsion subgroup occurs infinitely often over

that type of field or not. Finally, Bruin and Najman [BN17] show that all elliptic curves

over quadratic fields with E(K)tors ⊇ Z/16Z and elliptic curves over cubic fields with

E(K)tors ⊇ Z/2Z⊕ Z/14Z are base changes of elliptic curves defined over Q. In fact, they

show, [BN17, Thm. 1.2], if E(K)tors
∼= Z/2Z⊕ Z/14Z, then K is cyclic.

However despite all this work, the list from Theorem 4.6 cannot be complete. In [Naj16],

Najman found that the rational elliptic curve with Cremona label 162b1 has 21-torsion

over a cubic field, namely E(Q(ζ9)
+) ∼= Z/21Z, and that this is the unique elliptic curve

with 21-torsion over a cubic field. This was the first known example of a sporadic point on

a modular curve, i.e. sporadic torsion. Today, there are many other known sporadic tor-

sion groups over number fields, c.f. [vH14] where examples of sporadic torsion subgroups

Z/28Z and Z/30Z are given in the case of quintic number fields and Z/25Z and Z/37Z

are given in the sextic case. Until recently, all of the known cases of sporadic torsion cor-

responded to cyclic torsion subgroup. However in a recent paper of González-Jiménez

and Najman [GJN20a], they give an example of a sextic number field K such that (using

Theorem 4.38) E(K)tors
∼= Z/4Z ⊕ Z/12Z—first known example of sporadic torsion for a

non-cyclic torsion subgroup.

The full classification for torsion subgroups of elliptic curves over cubic number fields

(though announced much earlier) was only submitted this year in a paper of Derickx,

Etropolski, van Hoeij, Morrow, and Zureick-Brown. The result relies on the work of many

mathematicians such as Bruin, Jeon, Kato, Kim, Lee, Momose, Najman, Parent, Schweizer,

https://www.lmfdb.org/EllipticCurve/Q/162b1/
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Wang, among others. The classification relies on a number of techniques: local arguments,

Abel-Jacobi maps, quotients of modular curves, modular units, etc. and a vast amount

of computation. Of course, there is a lot of other related work in this general area. For

instance, see [BGRW20]. The final result is that the only possible torsion subgroups are

those from the list of Jeon, Kim, and Schweizer along with Najman’s example of Z/21Z-

torsion.

Theorem 4.10 ([DEvH+20]). Let K/Q be a cubic number field, and let E/K be an elliptic

curve. Then E(K)tors is isomorphic to precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 16, 18, 20, 21 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 7.

Moreover, there exist infinitely many Q-isomorphism classes for each torsion subgroup

except in the case E(K) ∼= Z/21Z. In this case, the base change of the curve with Cremona

label 162b1 to Q(ζ9)+ is the unique elliptic curve over a cubic field with 21-torsion.

All these results, especially the work involved in proving Theorem 4.10, are entangled with

concepts from Algebraic Geometry, e.g. gonality. Recall that the gonality of an algebraic

curve X, denoted γ(X), is the lowest degree of a nonconstant rational map from X to the

projective line. Points of degree d on the modular curves Y1(m,n), when d < γ(Y1(m,n)),

are called sporadic. The torsion structures in Φ(1) are all parametrized by modular curves

of genus 0 and all have infinitely many rational points. All these curves have gonality 1.

The modular curves parametrizing the torsion structures in Φ(2) are of gonality 1 or 2.

Therefore, there are no sporadic points of degree 1 or 2 on these curves. The modular

curves X1(21) has gonality 4 and is the unique rational elliptic curve with 21-torsion over

a cubic field giving a degree three sporadic point. We will not comment further on the

https://www.lmfdb.org/EllipticCurve/Q/162b1/
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connection between gonality, sporadic points, and torsion subgroups of elliptic curves

further here.

For elliptic curves E/K, where K is a number field of degree d, the case of d = 3 is the

last case where a complete classification is known. There are partial results in the cases

of d = 4, 5, 6. In particular, the possible torsion structures occurring for infinitely many

non-isomorphic elliptic curves is known.

Theorem 4.11 ([JKP16]). Let K/Q be a quartic number field, and E/K an elliptic curve.

The possible torsion subgroups occurring for infinitely many distinct Q-isomorphism classes

are precisely:



Z/nZ, with n = 1, 2, . . . , 18, 20, 21, 22, 24 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, . . . , 9 or

Z/3Z⊕ Z/3nZ, with n = 1, 2, 3 or

Z/4Z⊕ Z/4nZ, with n = 1, 2 or

Z/5Z⊕ Z/5Z, or

Z/6Z⊕ Z/6Z.

Moreover, all these torsion structures already occur infinitely often if K varies over all

quadratic extensions of all quadratic number fields, i.e. all biquadratic number fields.

Jeon, Kim, and Lee construct (infinite) families of elliptic curves with cyclic torsion sub-

groups over quartic number fields K such that the Galois closure of K is a dihedral quar-

tic number field, see [JKL15] and [JKL13]. For other related results, see also [JKL11b] and

[Naj12a].
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Theorem 4.12 ([DS17]). Let K/Q be a quintic number field, and E/K an elliptic curve.

The possible torsion subgroups occurring for infinitely many distinct Q-isomorphism classes

are precisely: 
Z/nZ, with n = 1, 2, . . . , 22, 24, 25 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 7, 8.

Theorem 4.13 ([DS17]). Let K/Q be a sextic number field, and E/K an elliptic curve.

The possible torsion subgroups occurring for infinitely many distinct Q-isomorphism classes

are precisely:



Z/nZ, with n = 1, 2, . . . , 22, 24, 26, 27, 28, 30 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, . . . , 10 or

Z/3Z⊕ Z/3nZ, with n = 1, 2, 3, 4 or

Z/4Z⊕ Z/4nZ, with n = 1, 2 or

Z/6Z⊕ Z/6Z.

Of course, there are other related results. For instance, Dey and Roy classified the possible

torsion subgroups of Mordell curves, i.e. elliptic curves of the form E : y2 = x3 + n for

n ∈ Q, over (cubic and) sextic fields, see [DR19].

4.3 Torsion Subgroups of CM Elliptic Curves

Though amazing results have been achieved in classifying Φ(d), progress is still rather

limited. However in the case where E/K has CM, there is much more progress. This is

primarily due to the fact that one has the Theory of Complex Multiplication and espe-

cially the Class Field Theory interpretation of torsion points on elliptic curves, allowing
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many more techniques to be at one’s disposal. In particular, one often has powerful tools

to bound the size of the torsion subgroup, which gives a finite set of possibilities for the

possible torsion subgroups. For example, here are two well known results allowing one to

bound torsion in specific cases, though there are refined bounds in [CCS13]:

Theorem 4.14 (Silverberg, Prasad-Yogananda). Let E be an elliptic curve over a number

field F of degree d, and suppose that E has CM by the order O in the imaginary quadratic

field K. Let e be the exponent of the torsion subgroup of E(F ). Then

(a) φ(e) ≤ w(O)d

(b) If K ⊆ F , then φ(e) ≤ w(O)d/2

(c) If K 6⊆ F , then φ(#E(F )tors) ≤ w(O)d

Proof. See [Sil88] and [PY01].

Theorem 4.15 ([Par89]). Let E/F be an elliptic curve with CM by an imaginary quadratic

order O, and suppose that h(O) = [F : Q]. Then E(F )tors has order 1, 2, 3, 4, or 6.

Olson [Ols74] classified the set ΦCM(1), i.e. the set of possible torsion subgroups for CM

elliptic curves over Q, and determined that there were 6 possibilities (the so-called “Ol-

son groups”).1 The sets ΦCM(2) and ΦCM(3) were determined by Fung, Müller, Petho,

Ströher, Weis, Williams, and Zimmer [MSZ89,FSWZ90a,PWZ97]. Clark, Cook, Corn, Lane,

Rice, Stankewicz, Walters, Winburn, and Wyser give a complete list of possible torsion

subgroups of elliptic curves with complex multiplication over number fields of degree d,

1 ≤ d ≤ 13, see [CCRS14]. Moreover, they give an algorithm to compute list of all tor-

1There are only 13 isomorphism classes of elliptic curves defined over Q with complex multiplication, see [Sil09,
Appendix A, §3].
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sion subgroups E(K)tors that occur for elliptic curves E with CM over number fields K

of degree d. They give a list of the possible torsion subgroups E(K)tors with examples for

number fields of degree 1 ≤ d ≤ 13 in [CCRS14, Sec. 4], which are too long to include in

full here. However, we will include two relevant results for our purposes here.

Theorem 4.16 ([CCRS14, Sec. 4.3]). Let K/Q be a cubic extension, and let E/K be an

elliptic curve with CM. Then the possible torsion subgroups E(K)tors that occur over K are

precisely 
Z/nZ, with n = 1, 2, 3, 4, 6, 9, 14 or

Z/2Z⊕ Z/2Z.

Theorem 4.17 ([CCRS14, Sec. 4.9]). Let K/Q be a nonic extension, and let E/K be an

elliptic curve with CM. Then the possible torsion subgroups E(K)tors that occur over K are

precisely 
Z/nZ, with n = 1, 2, 3, 4, 6, 9, 14, 18, 19, 27 or

Z/2Z⊕ Z/2Z.

Further work of Bourdon, Clark, and Stankewicz, [BCS17], gives a complete classification

of torsion subgroups arising from CM elliptic curves over number fields of odd degree.

They also study the torsion subgroups of elliptic curves with complex multiplication over

number fields admitting at least one real embedding. Finally, they also answer a question

of Schütt on whether there is an absolute bound on the size of torsion subgroups of all

CM elliptic curves defined over all number fields of prime degree in the affirmative. In

particular, they prove the following:

Theorem 4.18 ([BCS17, Thm. 1.5,Odd Degree Theorem]). Let F be a number field of odd
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degree, let E/F be a K-CM elliptic curve, and let T = E(F )tors. Then:

(i) One of the following occurs:

(a) T is isomorphic to the trivial group, Z/2Z, Z/4Z, or Z/2Z⊕ Z/2Z;

(b) T ∼= Z/`nZ for a prime ` ≡ 3 mod 8 and n ∈ Z+ and K = Q(
√
−`);

(c) T ∼= Z/2`nZ for a prime ` ≡ 3 mod 4 and n ∈ Z+ and K = Q(
√
−`).

(ii) If E(F )tors ∼= Z/2Z⊕ Z/2Z, then EndE has discriminant ∆ = −4.

(iii) If E(F )tors ∼= Z/4Z, then EndE has discriminant ∆ ∈ {−4,−16}.

(iv) Each of the groups listed in part (i) arises up to isomorphism as the torsion subgroup

E(F ) of a CM elliptic curve E defined over an odd degree number field F .

Of course, Theorem 4.18 does not identify in which degrees d the subgroups occur. Later,

Bourdon and Pollack were able to extend the work in [BCS17]. In particular, letting

hQ(
√
−`) denote the class number of Q(

√
−`), they prove the following:

Theorem 4.19 ([BP16b, Thm. 1.2,Strong Odd Degree Theorem]). Let ` ≡ 4 mod 4 and

n ∈ Z+. Define δ as follows:

δ =


b3n

2
c − 1, ` > 3,

0, ` = 3 and n = 1,

b3n
2
c − 2, ` = 3 and n ≥ 2.

Then:

(1) For any odd positive integer d, the groups {•},Z/2Z,Z/4Z, and Z/2Z ⊕ Z/2Z appear

as the torsion subgroup of a CM elliptic curve defined over a number field of degree d.



81

(2) Z/`nZ appears as the torsion subgroup of a CM elliptic curve defined over a number

field of odd degree d if and only if ` ≡ 3 mod 8 and d is a multiple of hQ(
√
−`) · `−1

2
· `δ.

(3) Z/2`nZ appears as the torsion subgroup of a CM elliptic curve defined over a number

field of odd degree d if and only if one of the following holds:

(a) ` ≡ 3 mod 8, where n ≥ 2 if ` = 3, and d is a multiple of 3 · hQ(
√
−`) · `−1

2
· `δ, or

(b) ` = 3 and n = 1 and d is any odd positive integer, or

(c) ` ≡ 7 mod 8 and d is a multiple of hQ(
√
−`) · `−1

2
· `δ.

For a given positive integer d, let G (d) denote the set of (isomorphism classes) of abelian

groups that appear as E(F )tors for some elliptic curve E defined over some degree d num-

ber field F , and let TCM(d) = maxG∈G (d) #G. Theorem 4.19 can be used to algorithmically

determine G (d) for any odd degree d. In particular in [BP16b, Table 7], Bourdon and Pol-

lack give a table of groups arising for odd 1 ≤ d ≤ 99. They state, “On a modern desktop

computer, one can process all odd d ≤ 2 · 108 in about 12 hours.” Their paper contains

many interesting results, which would take too long to summarize here. We will comment

that, under the Generalized Riemann Hypothesis, they prove thatÅ
12eγ

π

ã2/3

≤ lim sup
d→∞
d odd

TCM(d)

(d log log d)2/3
≤
Å

24eγ

π

ã2/3

.

Work of Dieulefait, González-Jiménez, and Urroz, see [DGJU11], examined the fields of

definition of torsion points for rational elliptic curves with CM by examining the image

of the mod p Galois representation attached to E. Denote by ED,f the elliptic curve E/Q

having CM by an order R = Z + fOK of conductor f in a quadratic imaginary field K =

Q(
√
−D), where OK is the ring of integers of K.
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Theorem 4.20 ([DGJU11, Thm. 1]). Let E/Q be a rational elliptic curve with CM by an

order K = Q(
√
−D) of conductor f, and let F be a Galois number field not containing K,

then

(i) j(E) 6= 0, 1728:

– If D 6= 8 and f odd, then E(F )[2] = E(Q)[2].

– Otherwise, Q(E[2]) = Q(
√
p), where p | D; in particular, there are 2-torsion points

in a quadratic field different from K.

(ii) j(E) = 1728: In this case, E = Ed
4,1 for d ∈ Q∗/(Q∗)4 and Q(E[2]) = Q(

√
−d); in

particular for d 6= 1, there are 2-torsion points in a quadratic field different from K.

(iii) j(E) = 0: In this case, E = Ed
3,1 for d ∈ Q∗/(Q∗)6 and Q(E[2]) = Q(

√
−3, 3
√

2d).

Moreover, E(F )[2] = E(Q)[2].

Theorem 4.21 ([DGJU11, Thm. 2]). Let E be an elliptic curve defined over Q with CM by

an order of K = Q(
√
−D) and p an odd prime not dividing D. Let F be a Galois number

field not containing K, then E(F )[p] is trivial.

Define n(E) as follows:

n(E) =


2, if j(E) 6= 0, 1728

4, if j(E) = 1728,

6, if j(E) = 0.

Theorem 4.22 ([DGJU11, Thm. 3]). Let E be an elliptic curve defined over Q with CM

by an order of K = Q(
√
−D) of conductor f. We know that E = Ed

D,f for some integer

d ∈ Q∗/(Q∗)n(E). Let p be an odd prime dividing D.
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(i) If p > 7, then there are p-torsion points of E defined over Q(ζp+ζp,
√
d). Furthermore,

d = −p is the only case where any Galois number field containing p-torsion points

contains K.

(ii) If D = 7:

– Case f = 1: There are 7-torsion points of E defined over Q(ζ7 + ζ7,
√
−7d). Further-

more, d = 1 is the only case where any Galois number field containing 7-torsion

points contains K.

– Case f = 2: There are 7-torsion points of E defined over Q(ζ7 + ζ7,
√

7d). Further-

more, d = −1 is the only case where any Galois number field containing 7-torsion

points contains K.

(iii) If D = 3:

– Case f = 1: Q(E[3]) = Q(d1/6,
√
−3). There is a 3-torsion point in the field

Q(
√
d) and, except for d = −3, this quadratic field is different from K. Moreover,

if d = e3, there is a 3-torsion point on Q(
√
−3e) which, except when e is a square,

is different from K.

– Case f 6= 1: There are 3-torsion points in the field Q(
√
d). Except for d = −3, this

quadratic field is different from K.

Daniels and Lozano-Robledo have determined an upper bound on the number of isomor-

phism classes of CM elliptic curves defined over a number field of fixed odd degree N . For

a number field L, define Σ(L) to be the set of all CM j-invariants defined over L but not

defined over Q.2 This set was already known to be finite for any field L.

2Then the total number of CM j-invariants defined over L is 13 + #Σ(L).
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Theorem 4.23 ([DLR15, Thm. 1.1]). Let L be a number field of odd degree. Then #Σ(L) ≤

2 log3([L : Q]). In particular, the number of distinct CM j-invariants defined over L is

bounded by 13 + 2 log3([L : Q]).

Daniels and Lozano-Robledo remark that this bound is essentially sharp, in a sense that

we will not describe here. In fact, they actually prove a much stronger result depending on

the factorization of N .

Theorem 4.24 ([DLR15, Thm. 1.4]). Let L/Q be a number field of odd degree N =

pe11 · · · perr , and let K1, . . . , Kt be the list of imaginary quadratic fields such that there is

j(E) ∈ Σ(L), where E has CM by an order of Ki for some i = 1, . . . , t. Further, let

hi be the class number of Ki, and suppose that hi > 1 for i = 1, . . . , s and hi = 1 for

i = s+ 1, . . . , t. Then

#Σ(L) ≤ 2s+ 2
r∑
j=1

(
ej −

s∑
i=1

fi,j

)
,

where hi = p
fi,1
1 · · · pfi,rr . In particular, #Σ(L) ≤ 2

∑r
j=1 ej.

Observe that because pj ≥ 3, the quantity
∑
ej is maximized if r = 1, p1 = 3, and

e1 = log3N , so that

#Σ(L) ≤ 2
r∑
j=1

ej ≤ 2 log3N,

which proves Theorem 4.23.

Results in the CM case are not limited to torsion subgroups of elliptic curves. In particu-

lar, building on their work in [BC20a] and establishing new results about rational cyclic

isogenies for CM elliptic curves, Bourdon and Clark [BC20b] determine for positive inte-

gers M | N the least degree of an O-CM point on the modular curve X(M,N)/K(ζM ) and

on the modular curve X(M,N)/Q(ζM ).
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Theorem 4.25 ([BC20b, Thm. 1.1]). Let O be an imaginary quadratic order of conductor f,

and let M | N be positive integers. There is a positive integer T (O,M,N), explicitly given,

such that for all positive integers d, there is a field extension F/K(f) of degree d and an

O-CM elliptic curve E/F such that Z/MZ× Z/NZ ↪→ E(F ) if and only if T (O,M,N) | d.

Theorem 4.26 ([BC20b, Thm. 1.2]). Let O be an imaginary quadratic order, let ` be a

prime number, and let a ∈ Z+. Let m denote the maximum over all i ∈ Z≥0 such that

there is an O-CM elliptic curve E/Q(f) with a Q(f)-rational `i-isogeny, and let M denote

the supremum over all i ∈ Z≥0 such that there is an O-CM elliptic curve E/K(f) with

a K(f)-rational cyclic `i-isogeny. The least degree over Q(f) in which there is an O-CM

elliptic curve with a rational point of order `a is as follows:

(i) If a ≤ m, then the least degree is T (O, `a).

(ii) If m < a ≤M , then `a > 2 and the least degree is 2 · T (O, `a).

(iii) If a > M = m, then the least degree is T (O, `a).

(iv) If a > M > m, then ` = 2 and the least degree is 2 · T (O, 2a).

Let T ◦(O, N) denote the least degree over Q(f) in which there is an O-CM elliptic curve

with a rational point of order N .

Theorem 4.27 ([BC20b, Thm. 1.3]). Let O be an imaginary quadratic order. Let N ∈ Z+

have prime power decomposition `a11 · · · `arr with `1 < · · · < `r. The least degree over Q(f) in

which there is an O-CM elliptic curve with a rational point of order N is T (O, N) if and

only if T ◦(O, `aii ) = T (O, `aii ) for all 1 ≤ i ≤ r. Otherwise, the least degree is 2 · T (O, N).

Theorem 4.28 ([BC20b, Thm. 1.4]). Let O be an imaginary quadratic order of discrimi-
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nant ∆. Let

2 ≤M = `a11 · · · `arr | N = `b11 · · · `brr with `1 < · · · < `r.

The least degree [F : Q(f)] of a number field F ⊃ Q(f) for which there is an O-CM elliptic

curve E/F and an injective group homomorphism Z/MZ× Z/NZ ↪→ E(F ) is T (O,M,N)

if and only if all of the following conditions hold: M = 2, ∆ is even, and T ◦(O, `aii , `bii ) =

T (O, `aii , `bii ) for all 1 ≤ i ≤ r. Otherwise, the least degree is 2 · T (O,M,N).

4.4 Torsion Subgroups of Rational Elliptic Curves

Like the case with CM elliptic curve, and unlike the case of elliptic curves over a general

number field K, there has been tremendous progress in classifying the sets ΦQ(d) for var-

ious d. This is owed, in part, due to the fact that there is a complete classification of the

possible Q-rational isogenies for rational elliptic curves.

The initial progress was Najman’s classification of ΦQ(2) and Φ3(Q) in [Naj16], where he

also found the example of the sporadic torsion subgroup on 162b2, which has 21-torsion

over a cubic field, namely E(Q(ζ9)+) ∼= Z/21Z.

Theorem 4.29 ([Naj16, Thm. 2]). Let E/Q be a rational elliptic curve, and let K/Q be a

quadratic field. Then E(K)tors is isomorphic to precisely one of the following groups:



Z/nZ, with n = 1, 2, . . . , 10, 12, 15, 16 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 or

Z/4Z⊕ Z/4Z.

Moreover, each of these groups, except for Z/15Z, occurs over some quadratic field for

https://www.lmfdb.org/EllipticCurve/Q/162b2/
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infinitely many Q-isomorphism classes. The elliptic curves with Cremona labels 50b1 and

50a3 have 15-torsion over Q(
√

5), and the curves with Cremona labels 50b2 and 450b4

have 15-torsion over Q(
√
−15). These are the only rational elliptic curves having non-

trivial 15-torsion over any quadratic field.

Theorem 4.30 ([Naj16, Thm. 2]). Let E/Q be a rational elliptic curve, and let K/Q be a

cubic number field. Then E(K)tors is isomorphic to precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 14, 18, 21 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7.

Moreover, each of these groups, except for Z/21Z, occurs over some cubic field for in-

finitely many Q-isomorphism classes. The elliptic curve 162b1 over Q(ζ9)
+ is the unique

rational elliptic curve with torsion Z/21Z.

Najman gives examples of elliptic curves having each possible torsion structure—not al-

ready occurring over Φ(1)—in Theorem 4.29 and Theorem 4.30 in his paper. Even in the

cases when ΦQ(d) is known, it is generally an open problem to determine which types of

fields of degree d the various torsion subgroups G ∈ ΦQ(d) can occur. Najman classified

the possibilities for E(K)tors for elliptic curves E/K, where K is a quadratic cyclotomic

field, see [Naj11] and [Naj10]. Furthermore as noted, Kamienny and Najman describe a

method in [KN11] to determine all the possible torsion subgroups E(K)tors over a fixed

quadratic field, and provide examples. Otherwise, results in these directions tend to be

to classify the possibilities for E(K)tors, where Gal(“K/Q) is of a fixed isomorphism type.

For instance, see the results of Bosman, Bruin, Dujella, and Najman in [BBDN13b] or the

work of Derickx and Najman in [DN19]. We shall also see examples of this in the classifica-

tion of ΦQ(4) in [Cho16], [GJLR18], and [GJN20b]. But given a fixed field K of degree d,

https://www.lmfdb.org/EllipticCurve/Q/50b1/
https://www.lmfdb.org/EllipticCurve/Q/50a3/
https://www.lmfdb.org/EllipticCurve/Q/50b2/
https://www.lmfdb.org/EllipticCurve/Q/450b4/
https://www.lmfdb.org/EllipticCurve/Q/162b1/


88

it is generally an open problem to determine what are the possibilities for E(K)tors. There

is some partial progress towards this in the case of quadratic fields, see [Trb18].

The classification of ΦQ(4) came in a series of papers, beginning with the paper which in-

spired this work. Chou began the classification of ΦQ(4) by determining the possibilities

for ΦGal
Q (4). Moreover, he determined the possible torsion subgroups based on the isomor-

phism type of Gal(K/Q) and gives examples of each possible torsion subgroup not already

occurring in Φ(1), along with a number of other interesting results.

Theorem 4.31 ([Cho16, Thm. 1.2]). Let E/Q be a rational elliptic curve, and let K be a

quartic Galois extension of Q. Then E(K)tors is isomorphic to one of the following groups:



Z/nZ, with n = 1, . . . , 10, 12, 13, 15, 16 or

Z/2Z⊕ Z/2nZ, with n = 1, . . . , 6, 8, or

Z/3Z⊕ Z/3nZ, with n = 1, 2, or

Z/4Z⊕ Z/4nZ, with n = 1, 2, or

Z/5Z⊕ Z/5Z, or

Z/6Z⊕ Z/6Z.

Moreover, each of these groups, except for Z/15Z, occurs over some quartic Galois field for

infinitely many Q-isomorphism classes.

Theorem 4.32 ([Cho16, Thm. 1.3]). Let E/Q be a rational elliptic curve, and let K be a

quartic cyclic Galois extension, i.e. Gal(K/Q) ∼= Z/4Z. Then E(K)tors is isomorphic to
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precisely one of the following groups:


Z/nZ, with n = 1, . . . , 10, 12, 13, 15, 16, or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 8, or

Z/5Z⊕ Z/5Z.

Theorem 4.33 ([Cho16, Thm. 1.4]). Let E/Q be a rational elliptic curve, and let K be

a quartic bicyclic Galois extension, i.e. Gal(K/Q) ∼= Z/2Z ⊕ Z/2Z. Then E(K)tors is

isomorphic to precisely one of the following groups:



Z/nZ, with n = 1, . . . , 10, 12, 15, 16, or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 8, or

Z/3Z⊕ Z/3nZ, with n = 1, 2, or

Z/4Z⊕ Z/4nZ, with n = 1, 2, or

Z/6Z⊕ Z/6Z.

The only elliptic curves E(K) with E(K)tors
∼= Z/15Z are those from Theorem 4.29,

base extended to a quartic Galois field. González-Jiménez and Lozano-Robledo extended

Chou’s results to determine the set Φ∞Q (4).

Theorem 4.34 ([GJLR18, Thm. 1]). Let E/Q be a rational elliptic curve, and let K/Q be

a quartic number field. Then if E(K)tors occurs for infinitely many distinct Q-isomorphism

classes (or is isomorphic to Z/15Z), then E(K)tors is isomorphic to precisely one of the
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following:



Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 15, 16, 20, 24 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 8 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 or

Z/4Z⊕ Z/4nZ, with n = 1, 2 or

Z/5Z⊕ Z/5Z or

Z/6Z⊕ Z/6Z.

Moreover, if E/Q is an elliptic curve with E(K)tors ∼= Z/15Z over some quartic field K,

then j(E) ∈ {−52/2,−52 · 2413/23,−5 · 293/25, 5 · 2113/215}.

Furthermore, González-Jiménez and Lozano-Robledo partially determine the possible

torsion growths when base extending to K, i.e. if E(Q)tors
∼= G, they partially determine

the possibilities for E(K) ∼= H, where H is a torsion subgroup listed in Theorem 4.34.

They also provide examples of each such torsion subgroup. It is worth noting that by

Theorem 4.11, Z/15Z occurs infinitely often as a torsion subgroup for elliptic curves E/K,

where K is a quartic field. But when one begins with a rational elliptic curve E/Q and

base extends to a quartic field, there are only finitely many elliptic curves that then gain

a point of order 15—precisely the ones in Theorem 4.34. Finally, González-Jiménez and

Najman complete the classification of ΦQ(4) in [GJN20b].

Theorem 4.35 ([GJN20b, Cor. 8.7]). Let E/Q be a rational elliptic curve, and let K/Q be
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a quartic number field. Then E(K)tors is isomorphic to precisely one of the following:



Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 15, 16, 20, 24 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 8 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 or

Z/4Z⊕ Z/4nZ, with n = 1, 2 or

Z/5Z⊕ Z/5Z, or

Z/6Z⊕ Z/6Z.

Moreover, each of these groups, except for Z/15Z, occurs over some quartic field for in-

finitely many Q-isomorphism classes. If E/Q is an elliptic curve with E(K)tors ∼= Z/15Z

over some quartic field K, then j(E) ∈ {−52/2,−52 · 2413/23,−5 · 293/25, 5 · 2113/215}.

Furthermore, they determine the possible torsion structures based on the isomorphism

type of Gal(“K/Q). Note that in the cases where Gal(“K/Q) ∼= Z/4Z or Gal(“K/Q) ∼= V4,

the Klein-4 group, this is just Chou’s result [Cho16].

Theorem 4.36 ([GJN20b, Cor. 8.4,Thm. 8.5]). Let E/Q be a rational elliptic curve, and

let K/Q be a quartic number field. Let “K denote the Galois closure of K/Q. Then

Φ
Z/4Z
Q (4) = Φ(1) ∪ {Z/nZ : = 13, 15, 16} ∪ {Z/2Z⊕ Z/2nZ : n = 6, 8} ∪ {Z/5Z⊕ Z/5Z},

ΦV4
Q (4) = ΦQ(2) ∪ {Z/2Z⊕ Z/16Z,Z/4Z⊕ Z/8Z,Z/6Z⊕ Z/6Z},

ΦD4
Q (4) = ΦQ(2) ∪ {Z/20Z,Z/24Z}, and

ΦS4
Q (4) = ΦA4

Q (4) = Φ(1).

González-Jiménez determines the set ΦQ(5) in [GJ17]. González-Jiménez also determines
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for a fixed possible torsion subgroup G ∼= E(Q)tors the possible torsion subgroups E(K)tors ⊇

G with E(Q)tors ( E(K)tors, and the number of such fields there is torsion growth. In par-

ticular, he shows there is at most one quintic number field K such that there is torsion

growth.

Theorem 4.37 ([GJ17, Thm. 1, Thm. 2]). Let E/Q be a rational elliptic curve, and let

K/Q be a quintic number field. Then E(K)tors is isomorphic to precisely one of the follow-

ing: 
Z/nZ, with n = 1, 2, . . . , 12, 25 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4

Moreover, each of these groups, except for Z/11Z, occurs over some quintic field for in-

finitely many Q-isomorphism classes. The only elliptic curves E/Q with E(K)tors ∼=

Z/11Z over some quintic field K have Cremona label 121a2, 121c2, 121b1. For elliptic

curves E/Q with CM, ΦCM
Q (5) = {O,Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/11Z,Z/2Z⊕ Z/2Z}.

The classification of the set ΦQ(6) began with work of Daniels and González-Jiménez in

[DGJ20], where they classify the possible torsion subgroups E(K)tors which occur infinitely

often, as well as a few other torsion possibilities which do not. They are also able to de-

termine the possible growth of torsion subgroups E(Q)tors to E(K)tors in many cases, c.f.

[DGJ20, Thm. 2].

Theorem 4.38 ([DGJ20, Thm. 1]). Let E/Q be a rational elliptic curve, and let K/Q be

a sextic number field. Then if E(K)tors occurs for infinitely many distinct Q-isomorphism

classes (or is isomorphic to Z/15Z, Z/21Z, or Z/30Z), then E(K)tors is isomorphic to

https://www.lmfdb.org/EllipticCurve/Q/121a2/
https://www.lmfdb.org/EllipticCurve/Q/121c2/
https://www.lmfdb.org/EllipticCurve/Q/121b1/
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precisely one of the following:



Z/nZ, with n = 1, 2, . . . , 21, 30, n 6= 11, 17, 19, 20 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 7, 9 or

Z/3Z⊕ Z/3nZ, with n = 1, 2, 3, 4 or

Z/4Z⊕ Z/4Z, or

Z/6Z⊕ Z/6Z.

Moreover, if E/Q is an elliptic curve with E(K)tors ∼= H over some sextic field K, then if

(i) H = Z/15Z: then E has Cremona label 50a3, 50a4, 50b1, 50b2, 450b4, or 450b3.

(ii) H = Z/21Z: j(E) ∈ {33 · 53/2,−32 · 53 · 1013/221,−33 · 53 · 3823/27,−32 · 56/23}.

(iii) H = Z/30Z: then E has Cremona label 50a3, 50b1, 50b2, or 450b4.

Moreover, Daniels and González-Jiménez give examples of each possible torsion structure

and conjecture that ΦQ(6) is the set of possibilities given in Theorem 4.38 along with the

group Z/4Z⊕ Z/12Z. Finally, they also make progress in determining the possible torsion

growth from E(Q)tors to E(K)tors, where K is a sextic number field. The next progress in

the classification of ΦQ(6) (including the near complete description of the possible growths

for torsion subgroups) came shortly thereafter in work of Guz̆voć.

Theorem 4.39 ([Guz̆21, Thm. 1]). Let E/Q be a rational elliptic curve, and let K/Q be a

https://www.lmfdb.org/EllipticCurve/Q/50a3/
https://www.lmfdb.org/EllipticCurve/Q/50a4/
https://www.lmfdb.org/EllipticCurve/Q/50b1/
https://www.lmfdb.org/EllipticCurve/Q/50b2/
https://www.lmfdb.org/EllipticCurve/Q/450b4/
https://www.lmfdb.org/EllipticCurve/Q/450b3/
https://www.lmfdb.org/EllipticCurve/Q/50a3/
https://www.lmfdb.org/EllipticCurve/Q/50b1/
https://www.lmfdb.org/EllipticCurve/Q/50b2/
https://www.lmfdb.org/EllipticCurve/Q/450b4/
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sextic number field. Then E(K)tors is isomorphic to one of the following:



Z/nZ, with n = 1, 2, . . . , 21, 30, n 6= 11, 17, 19, 20 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 7, 9 or

Z/3Z⊕ Z/3nZ, with n = 1, 2, 3, 4 or

Z/4Z⊕ Z/4Z, or

Z/6Z⊕ Z/6Z.

Furthermore, all but the group Z/3Z⊕ Z/18Z are known to occur.

As Guz̆voć remarks, the group Z/3Z ⊕ Z/18Z is unlikely to actually occur, though he is

unable to prove it entirely in the paper. If this group does not occur as the torsion sub-

group E(K)tors for an elliptic curve over a sextic number field, then this would confirm the

conjecture of Daniels and González-Jiménez.

There are currently no remaining “non-trivial” classifications for the sets ΦQ(d), in the

sense that there is no d > 6 such that ΦQ(d) is known and ΦQ(d) 6= Φ(1). A remarkable

paper of González-Jiménez and Najman actually classify the set ΦQ(7) (along with the

possible torsion growth) and the sets ΦQ(d) for an infinite set of d, namely those whose

smallest prime divisor is at least 11.

Theorem 4.40 ([[GJN20b, Prop7.7]). Let E/Q be an elliptic curve, and K a number field

of degree 7.

(i) If E(Q)tors 6' {O}, then E(Q)tors = E(K)tors.

(ii) If E(Q)tors ' {O}, then E(K)tors ' {O} or Z/7Z. Furthermore, if E(Q)tors ' {O}

and E(K)tors ' Z/7Z, then K is the unique degree 7 number field with this property
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and E is isomorphic to the elliptic curve

Et : y
2 = x3 + 27(t2 − t+ 1)(t6 + 229t5 + 270t4 − 1695t3 + 1430t2 − 235t+ 1)x

+ 54(t12 − 522t11 − 8955t10 + 37950t9 − 70998t8131562t7

− 253239t6 + 316290t5 − 218058t4 + 80090t3 − 14631t2 + 510t+ 1)

for some t ∈ Q.

Theorem 4.41 ([GJN20b, Thm. 7.2]). Let d be a positive integer. Let E/Q be an elliptic

curve, and let K/Q be a number field of degree N , where the smallest prime divisor of N is

≥ d. Then

(i) If d ≥ 11, then E(K)[p∞] = E(Q)[p∞] for all primes p. In particular, E(K)tors =

E(Q)tors.

(ii) If d ≥ 7, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 7.

(iii) If d ≥ 5, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 5, 7, 11.

(iv) If d > 2, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 2, 3, 5, 7, 11, 13, 19, 43, 67, 163.

In particular, this proves the following

Corollary 4.42 ([GJN20b, Cor 7.3]). Let d be a positive integer such that the smallest

prime factor of d is ≥ 11. Then ΦQ(d) = Φ(1).

As González-Jiménez and Najman remark ([GJN20b, Rem. 7.4]), Corollary 4.42 is best
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possible in the sense that for p ∈ {2, 3, 5, 7}, the set

∞⋃
n=1

ΦQ(pn)

contains Z/pkZ for all positive integers k, and hence would be infinite. The positive in-

tegers whose smallest prime divisor is at least 11 are of the form d = 210k + x, where

1 ≤ x < 210 is an integer coprime to 210. But then

φ(210)

210
=

48

210
=

8

35
≈ 0.2286

of all integers satisfy this property. In fact, the methods applied in their paper also apply

to infinite extensions of Q.

Corollary 4.43 ([GJN20b, Cor. 7.6]). Let p ≥ 11 be a prime, and let K be the Zp-

extension of Q. Then E(K)tors = E(Q)tors.

4.5 Growth of Torsion Upon Base Extension

One approach to classifying Φ(d) or ΦQ(d), especially in the cases when the set ΦQ(d′) is

known for d′ | d, is to study how torsion subgroups can grow when base extending from

E(F )tors to E(K)tors, where Q ⊆ F ⊆ K is a finite extension of fields. For instance, while

studying torsion subgroups of elliptic curves defined over cubic fields, Najman proved the

following:

Lemma 4.44 ([Naj12b, Lemma 1]). If the torsion subgroup of an elliptic curves E over Q

has a nontrivial 2-Sylow subgroup, then over any number field of odd degree the torsion of

E will have the same 2-Sylow subgroup as over Q, i.e. E(K)[2∞] = E(Q)[2∞].
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Lemma 4.45 ([Naj16, Lemma 21]). Let K be a cubic field. Then the 5-Sylow groups of

E(Q) and E(K) are equal.

Furthermore while classifying the set ΦQ(3), Najman provided criterion for when one

should not see torsion growth when base extending the elliptic curve based on the struc-

ture of E(K)tors and the Galois group of the number field.

Lemma 4.46 ([Naj16, Lemma 16]). Let p, q be distinct odd primes, F2/F1 a Galois exten-

sion of number fields such that Gal(F2/F1) ' Z/qZ and E/F1 an elliptic curve with no

p-torsion over F1. Then if q does not divide p− 1 and Q(ζp) 6⊂ F2, then E(F2)[p] = 0.

Lemma 4.47 ([Naj16, Lemma 17]). Let p be an odd prime number, q a prime not dividing

p, F2/F1 a Galois extension of number fields such that Gal(F2/F1) ' Z/qZ, E/F1 an

elliptic curve, and suppose E(F1) ⊃ Z/pZ, E(F1) 6⊃ Z/p2Z, and ζp /∈ F2. Then E(F2) 6⊃

Z/p2Z.

These results were vastly generalized in the amazing paper of González-Jiménez and Naj-

man [GJN20b].

Theorem 4.48 ([GJN20b, Thm. 4.1]). Let L/F be a finite extension of number fields, L̂

denote the normal closure of L over F , G = Gal(L̂/F ), and suppose that H = Gal(L̂/L)

is a non-normal maximal subgroup of G. Let p be a prime, a = [F (ζp) : F ], and suppose G

does not contain a cyclic quotient group of order a. Then for every elliptic curve E/F , it

holds that E(L)[p] = E(F )[p].

Theorem 4.49 ([GJN20b, Thm. 4.3]). Let E/F be an elliptic curve, L/F be a finite ex-

tension of number fields with no intermediate fields, and let G = Gal(L/F ), where L̂ is the
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normal closure of L over F . If G is not isomorphic to a quotient of Gal(F (E[p])/F ), then

E(L)[p] = E(F )[p].

Theorem 4.50 ([GJN20b, Thm. 4.5]). Let L/F be a finite extension of number fields,

G = Gal(L̂/F ), where L̂ is the normal closure of L over F , n be a positive integer, and

let p be a prime co-prime to [L : F ]. Suppose that G is not isomorphic to a quotient of

any subgroup of GL2(Z/pnZ) and that Gal(L/L) is maximal in G. Let E/F be an elliptic

curve such that it has a F -rational point of order pn, but no F -rational points of order

pn+1. Then E(L) has no points of order pn+1.

Theorem 4.51 ([GJN20b, Prop. 4.6]). Let E/F be an elliptic curve over a number field F ,

n a positive integer, P ∈ E(F ) be a point of order pn+1. Then [F (P ) : F (pP )] divides p2 or

(p− 1)p.

Theorem 4.52 ([GJN20b, Prop. 4.8]). Let E/F be an elliptic curve over a number field

F , n a positive integer, P ∈ E(F ) be a point of order 2n+1, and let ’F (P ) be the Galois

closure of F (P ) over F (2P ). Then [F (P ) : F (2P )] divides 4 and Gal(’F (P )/F (2P )) is

either trivial, isomorphic to Z/2Z, Z/2Z× Z/2Z, or D4.

The results in Theorem 4.48–4.52 were based on a careful study of the mod n Galois rep-

resentation, building on work of Balakrishnan, Bilu, Dogra, Mazur, Müller, Parent, Re-

bolledo, Serre, Tuitman, Vonk, and Zywina, and the action of Galois on torsion points.

But using these tools, one can do more than just determine criterion for when there is no

torsion growth. González-Jiménez and Najman apply these same techniques to determine

the degrees of the possible fields of definition for points of prime order.

Theorem 4.53 ([GJN20b, Thm. 5.8]). Let E/Q be an elliptic curve, p a prime and P a
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point of order p in E. Then all of the cases in table 4.1 occur for p ≤ 13 or p = 37, and

they are the only ones possible. The degrees in Table 4.1 with an asterisk occur only when

E has CM. For all other p, the possibilities for [Q(P ) : Q] are as is given below. The de-

grees in equations 4.3–4.5 occur only for CM elliptic curves E/Q. Furthermore, the degrees

in equation 4.5 occur only for elliptic curves with j-invariant 0. If a given conjecture is

true, c.f. [GJN20b, Conj. 3.5], then the degrees in equations 4.6 also occur only for elliptic

curves with j-invariant 0.

p2 − 1 for all p, (4.1)

8, 16, 32∗, 136, 256∗, 272, 288 for p = 17, (4.2)

(p− 1)/2, p− 1, p(p− 1)/2, p(p− 1) if p ∈ {19, 43, 67, 163} (4.3)

2(p− 1), (p− 1)2
if p≡1 mod 3 or

Ç
−D
p

å
=1 for any D∈CM (4.4)

(p− 1)2/3, 2(p− 1)2/3 p ≡ 4, 7 mod 9 (4.5)

(p2 − 1)/3, 2(p2 − 1)/3 p ≡ 2, 5 mod 9 (4.6)

where CM = {1, 2, 7, 11, 19, 43, 67, 163}. Apart from the cases above that have been proven

to appear, the only other options that might be possible are:

(p2 − 1)/3, 2(p2 − 1)/3 if p ≡ 8 mod 9. (4.7)

Corollary 4.54 ([GJN20b, Cor. 6.1 (i)–(iv)]).

(i) 11 ∈ RQ(d) if and only if 5 | d.

(ii) 13 ∈ RQ(d) if and only if 3 | d or 4 | d.

(iii) 17 ∈ RQ(d) if and only if 8 | d.



100

Table 4.1: The possible degrees for the field of definitions for points of prime order p = 2,
3, 5, 7, 11, 13, 37

p [Q(P ) : Q]
2 1, 2, 3
3 1, 2, 3, 4, 6, 8
5 1, 2, 4, 5, 8, 10, 16, 20, 24
7 1, 2, 3, 6, 7, 9, 12, 14, 18, 21, 24∗, 36, 42, 48
11 5, 10, 20∗, 40∗, 55, 80∗, 100∗, 110, 120
13 3, 4, 6, 12, 24∗, 39, 48∗, 52, 72, 78, 96, 144∗, 156, 168
37 12, 36, 72∗, 444, 1296∗, 1332, 1368

(iv) 37 ∈ RQ(d) if and only if 12 | d.

As they state in their paper, González-Jiménez and Najman are able to determine the pos-

sible degrees of the fields of definition for points of prime order p for all primes with p 6≡ 8

mod 9 or

Ç
−D
p

å
= 1, which represents a set of primes of density 1535/1536 ≈ 0.9993. In

particular, this computes the possible degrees for the fields of definition of points of prime

order p for all p < 3167. González-Jiménez and Najman are then able to determine the

possible prime orders for points over all fields of degree d ≤ 3342296. Furthermore, comb-

ing these results, given a number field K of degree d, González-Jiménez and Najman are

able to determine when there can be torsion growth when base extending an elliptic curve

E/Q to K based solely on the prime divisors of d, which we shall restate:

Theorem 4.41 ([GJN20b, Thm. 7.2]). Let d be a positive integer. Let E/Q be an elliptic

curve, and let K/Q be a number field of degree N , where the smallest prime divisor of N is

≥ d. Then

(i) If d ≥ 11, then E(K)[p∞] = E(Q)[p∞] for all primes p. In particular, E(K)tors =

E(Q)tors.

(ii) If d ≥ 7, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 7.
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(iii) If d ≥ 5, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 5, 7, 11.

(iv) If d > 2, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 2, 3, 5, 7, 11, 13, 19, 43, 67, 163.

In this same paper, González-Jiménez and Najman complete the classification of ΦQ(4)

and also classify ΦQ(7). Moreover, using Theorem 4.41, they are able to determine ΦQ(d) =

ΦQ(1) for all degrees d whose smallest prime divisor is at least 11. Obviously, Theorem 4.41

says that not only is ΦQ(d) = ΦQ(1) for such d, but that actually E(K)tors = E(Q)tors for

all such fields K.

If that was not enough, González-Jiménez and Najman do even more in a later paper.

Suppose we wanted to determine when there can be torsion growth for elliptic curves over

fields of degree d. By Merel’s Theorem, see [Mer96], we know that the sets ΦQ(d) are uni-

formly bounded. Suppose that for the set ΦQ(d), we have an effective bound Bd, i.e. that

#E(K)tors ≤ Bd. For each prime power `n ≤ Bd, one can compute the `nth division

polynomial ψ`n . For each irreducible factor fi of ψ`n , one can check whether deg fi divides

d. If not, move onto the next prime or prime power. If so, then one checks whether the

point of order `n, say P , is defined over Q(fi). If so, add this field to a list. If not, then

the torsion is defined over a quadratic extension of Q(fi), i.e. the field where y is defined.

Then if 2 deg fi divides d, add the field Q(P ) (the field where both the x, y coordinates

of the `n-torsion point are defined) to the list. This is exactly what González-Jiménez

and Najman do in [GJN20a]. However, this is not a practical algorithm as the degree of

ψn is quadratic in n and the prime powers needed to be checked grow exponentially in

d. However, González-Jiménez and Najman apply information about the mod n Galois

representations attached to E/Q developed in [GJN20b] to avoid division polynomial com-

putations when possible. They apply these techniques to all elliptic curves of conductor

of less than 400,000 (a total of 2,483,649 curves) and all d ≤ 23. They are then able to

arrive at a number of interesting results. For instance, they show that there is no point of
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order 49 on any elliptic curve E/Q for fields of degree less than 42, or points of order 125

over fields of degree less than 50. For a complete description of their results and data, see

[GJN20a].

Of course, one can be more specific than just determining when there can or cannot be

torsion growth. Instead, one could focus on exactly how the torsion structure grows or

changes as one base extends the curve. That is, given G ∈ Φ(1) (or more generally,

G ∈ ΦQ(d′) for some d′), what are the possible torsion subgroups H ∈ ΦQ(d) such that

there is an elliptic curve E/Q with E(K)tors
∼= H and E(Q)tors

∼= G. Of course, one always

has E(Q)tors ⊆ E(K)tors, but what are the possibilities for torsion growth? In [GJT14]

and [GJT16], González-Jiménez and Tornero determine completely the sets ΦQ(2, G)

for G ∈ Φ(1). They give examples of each such possible torsion growth, i.e. examples

where E(Q)tors ( E(K)tors. Moreover, fixing an elliptic curve E/Q, they are able to de-

termine the maximum number of quadratic fields such that E(K)tors 6∼= E(Q)tors. For all

G ∈ Φ(1) except for G ∼= Z/2Z ⊕ Z/2Z, there are at most two quadratic fields such that

E(K)tors 6∼= E(Q)tors. In the case of G ∼= Z/2Z⊕ Z/2Z and H ∼= Z/2Z⊕ Z/4Z, three such

fields are possible. See [GJT16] for a complete description of their results with tables and

examples. González-Jiménez also classifies these sets when restricting to CM elliptic curves

in [GJ21]. In this case, González-Jiménez is also able to give an explicit characterization

of the quadratic fields where the torsion grows in terms of invariants of the elliptic curve.

The possible growths of torsion subgroups in the cubic case was completely characterized

by González-Jiménez, Najman, and Tornero.

Theorem 4.55 ([GJNT16, Thm. 1, Thm. 3]). For G ∈ Φ(1), the set ΦQ(3, G) is given in

Table 4.2. Furthermore, if E/Q is a rational elliptic curve, then

(i) There is at most one cubic number field K, up to isomorphism, such that E(K)tors ∼=

H 6= E(Q)tors for a fixed H ∈ ΦQ(3).
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(ii) There are at most three cubic number fields Ki, i = 1, 2, 3 (non-isomorphic pairwise),

such that E(Ki)tors 6= E(Q)tors. Moreover, the elliptic curve 162b2 is the unique

rational elliptic curve where the torsion grows over three non-isomorphic cubic fields.

Table 4.2: A table of the sets ΦQ(3, G) for G ∈ Φ(1)

G ΦQ(3, G)
{O} {{O},Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/7Z,Z/13Z,Z/2Z× Z/2Z,Z/2Z× Z/14Z}
Z/2Z {Z/2Z,Z/6Z,Z/14Z}
Z/3Z {Z3Z,Z/6Z,Z/9Z,Z/12Z,Z/21Z,Z/2Z× Z/6Z}
Z/4Z {Z/4Z,Z/12Z}
Z/5Z {Z/5Z,Z/10Z}
Z/6Z {Z/6Z,Z/18Z}
Z/7Z {Z/7Z,Z/14Z}
Z/8Z {Z/8Z}
Z/9Z {Z/9Z,Z/18Z}
Z/10Z {Z/10Z}
Z/12Z {Z/12Z}

Z/2Z× Z/2Z {Z/2Z× Z/2Z,Z/2Z× Z/6Z}
Z/2Z× Z/4Z {Z/2Z× Z/4Z}
Z/2Z× Z/6Z {Z/2Z× Z/6Z}
Z/2Z× Z/8Z {Z/2Z× Z/8Z}

They give the number of possible fields over which there is torsion growth, along with

examples of each such torsion growth, in their paper. It is worth noting that from their

paper (as we will use this later) that if H ∼= Z/18Z, there are only two possibilities for G—

Z/6Z or Z/9Z—and in each case there is at most one cubic field where one can see that

torsion growth. Again, González-Jiménez determines the possible torsion growths in the

CM case in [GJ20], along with examples and explicit characterizations of the cubic fields

over which there is growth in terms of invariants attached to the elliptic curve. The sets

ΦQ(d,G) are determined for d = 4 in [GJLR18], d = 5 in [GJ17], and d = 6 in [DGJ20].

Finally from [GJN20b], we know that ΦQ(7, G) = {G} except in the case of G ∼= {O},

where ΦQ(d, {O}) = {{O},Z/7Z}, and that ΦQ(d,G) = {G} for all number fields of degree

d, where the smallest prime divisor of d is at least 11.

https://www.lmfdb.org/EllipticCurve/Q/162b2/
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4.6 Torsion Subgroups of Elliptic Curves over Infinite

Extensions

Of course, one need not limit oneself to just number fields. Instead, one can examine the

possible torsion structures E(K)tors, where K/Q is an infinite extension of fields. The

Mordell-Weil Theorem no longer applies, so one need prove first that the torsion subgroup

is finite (while the rank may be infinite). The first progress in this direction came with

Laska, Lorenz, [LL85], and Fujita’s, [Fuj04, Fuj05], classification of the possibilities for

E(K)tors, where K is the maximal 2-abelian extension of Q, i.e. K = Q({√n : n ∈ Z}).

Generally, the maximal 2-abelian extension of a field F is K = F ({√n : n ∈ OF}), where

OF is the ring of integers of F . For ease of notation, we make the following definition:

Definition. For each fixed integer d ≥ 1, let Q(d∞) denote the compositum of all field

extensions K/Q of degree d. More precisely, let Q be a fixed algebraic closure of Q, then

define Q(d∞) := Q({β ∈ Q : [Q(β) : Q] = d}).

The fields Q(d∞) have been studied by Gal and Grizzard in [GG14], where they prove a

number of interesting results. Laska, Lorenz and Fujita show there are exactly 20 possibili-

ties for E(Q(2∞))tors, where E/Q is a rational elliptic curve.

Theorem 4.56 ([LL85,Fuj04,Fuj05]). Let E/Q be a rational elliptic curve, and let Q(2∞)

be the maximal abelian 2-extension of Q. Then E(K)tors is isomorphic to precisely one of
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the following groups:



Z/nZ, with n = 1, 3, 5, 7, 9, 15 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6, 8 or

Z/3Z⊕ Z/3Z, or

Z/4Z⊕ Z/4nZ, with n = 1, 2, 3, 4 or

Z/2nZ⊕ Z/2nZ, with n = 3, 4.

Moreover, each of the possible torsion subgroups list occur.

Later in [Ejd18], Ejder determined the possibilities for E(K)tors, where K is the maximal

abelian 2-extension of Q and E is an elliptic curve defined over a quadratic cyclotomic

field, i.e. E/Q(i) or E/Q(
√
−3).

The next progress came with [DLRNS18]. First, they prove a finiteness theorem about

torsion subgroups for rational elliptic curves base extended to (possibly infinite) Galois

extensions of Q.

Theorem 4.57 ([DLRNS18, Thm. 4.1]). Let E/Q be an elliptic curve, and let F be a

(possibly infinite) Galois extension of Q that contains only finitely many roots of unity.

Then E(F )tors is finite. Moreover, there is a uniform bound B, depending only on F , such

that #E(F )tors ≤ B for every elliptic curve E/Q.

Using this, they are able to prove the following general result:

Proposition 4.58 ([DLRNS18, Prop. 4.7]). For every d ≥ 2, the cardinality of E(Q(d∞))tors

is finite and uniformly bounded as E varies over elliptic curves over Q.
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Daniels, Lozano-Robledo, Najman, and Sutherland then classify the possibilities for the

torsion subgroups E(Q(3∞))tors, where E/Q is a rational elliptic curve.

Theorem 4.59 ([DLRNS18, Thm. 1.8]). Let E/Q be a rational elliptic curve. Then the

torsion subgroup E(Q(3∞))tors is finite and is isomorphic to precisely one of the following

groups: 

Z/2Z⊕ Z/2nZ, with n = 1, 2, 4, 5, 7, 8, 13 or

Z/4Z⊕ Z/4nZ, with n = 1, 2, 4, 7 or

Z/6Z⊕ Z/6nZ, with n = 1, 2, 3, 5, 7 or

Z/2nZ⊕ Z/2nZ, with n = 4, 6, 7, 9.

All but four of the torsion subgroups, T , listed above occur for infinitely many Q-isomorphism

classes of elliptic curves E/Q. For T ∼= Z/4Z⊕Z/28Z, Z/6Z⊕Z/30Z, Z/6Z⊕Z/42Z, and

Z/14Z⊕ Z/14Z, there are only 2, 2, 4, and 1 (respectively) Q-isomorphism classes of E/Q

for which E(Q(3∞))tors ∼= T .

They give examples of each such torsion subgroup in their paper. Daniels continues to

extend this work in [Dan18]3 by first observing a (less general) version of a result of Gal

and Grizzard.

Proposition 4.60 ([Dan18, Prop. 1.9]). Let K/Q be a finite extension. Then K ⊆ Q(d∞)

if and only if the following two conditions are met:

(i) There exists a group H which is a subdirect product of transitive subgroups of degree

3In examining this paper, it is important that one also see Daniel’s errata in [Dan21]. While the main results
of the paper are still true, the claim about the compositum of all D4-extensions over Q and Q(D∞4 ) being the same
is not necessarily true.
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d with some normal subgroup N such that

1 −→ N −→ H −→ Gal(K/Q) −→ 1

is a short exact sequence.

(ii) We can solve the corresponding Galois embedding problem, i.e. we can find a field

L ⊇ K such that Gal(L/Q) ∼= H.

Motivated by Proposition 4.60(i), Daniels makes the following definition:

Definition. Let G be a transitive subgroup of Sn for some n ≥ 2. We say that a finite

group H is of generalized G-type if it is isomorphic to a quotient of a subdirect product

of transitive subgroups of G. Given a number field K/Q and its Galois closure “K, we

say that K/Q is of generalized G-type if Gal(“K/Q) is a group of generalized G-type. Let

Q(G∞) be the compositum of all fields that are of generalized G-type.

Example 4.1 ([Dan18, Ex. 3.1]). Clearly the groups Z/4Z, Z/2Z are all of generalized D4-

type. More interestingly, the quaternion group Q8 is generalized D4-type since Q8
∼= G/H

with

G = 〈(2, 4)(5, 6, 7, 8), (1, 2, 3, 4), (1, 3)(2, 4), (5, 7)(6, 8)〉,

H = 〈(1, 3)(2, 4)(5, 7)(6, 8)〉.

/

Again, when considering infinite extensions of Q, the Mordell-Weil Theorem no longer

applies. Then one has to worry whether the torsion subgroup of E(K)tors can be infinite.

One might expect the torsion to remain ‘small’ if the fields in question cannot contain

‘many’ roots of unity. With this goal in mind, one often examines compositum of fields
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with specified Galois group G—a compositum of so-called ‘horizontal’ fields. The group

theoretic condition of being of generalized G-type is simply a necessary condition for a

number field with a given Galois group to be contained in the compositum. In any case,

Daniels is then able to classify the possibilities for E(Q(D∞4 ))tors, where E/Q is a rational

elliptic curve.

Theorem 4.61 ([Dan18, Thm 1.10]). Let E/Q be a rational elliptic curve. Then the tor-

sion subgroup E(Q(D∞4 ))tors is finite and is isomorphic to precisely one of the following:



Z/nZ with n = 1, 3, 5, 7, 9, 13, 15 or

Z/3Z⊕ Z/3nZ with n = 1, 5 or

Z/4Z⊕ Z/4nZ with n = 1, 2, 3, 4, 5, 6, 8 or

Z/5Z⊕ Z/5Z or

Z/8Z⊕ Z/8nZ with n = 1, 2, 3, 4 or

Z/12Z⊕ Z/12nZ with n = 1, 2 or

Z/16Z⊕ Z/16Z.

All but three of the 24 torsion structures listed above occur for infinitely many Q-isomorphism

classes of elliptic curves E/Q. The torsion structures that occur finitely often are Z/15Z,

Z/3Z ⊕ Z/15Z, and Z/12Z ⊕ Z/24Z which occur for 4, 2, and 1 Q-isomorphism classes

respectively.

Examples of each torsion subgroup occurring are found in his paper. Daniels, Derickx, and

Hatley4 classified the possibilities for E(Q(A∞4 ))tors in [DDH19].

4While unimportant, it is interesting to note that Hatley owns several llamas: Nimbus, Maverick, Gunnar, and
Wes, who have their own Instagram account, see https://www.nimbusthellama.com/. Moreover, they are available
for rent for parties—they llama meet you! Union College, as Hatley notes, has an archaic policy that faculty are
able to allow their livestock to graze on the quad. So perhaps you may one day find the llamas grazing in the quad.

https://www.nimbusthellama.com/
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Theorem 4.62 ([DDH19, Thm. 1.7]). Let E/Q be a rational elliptic curve. Then the

torsion subgroup E(Q(A∞4 ))tors is finite and isomorphic to precisely one of the following:



Z/nZ, with n = 1, 3, 5, 7, 9, 13, 15, 21 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, . . . , 9 or

Z/3Z⊕ Z/3nZ, with n = 1, 3 or

Z/4Z⊕ Z/4nZ, with n = 1, 2, 3, 4, 7 or

Z/6Z⊕ Z/6Z, or

Z/8Z⊕ Z/8Z.

All but four of the 26 torsion structures listed above occur for infinitely many Q-isomorphism

classes of elliptic curves E/Q. The torsion structures which occur finitely often are Z/15Z,

Z/21Z, Z/2Z⊕ Z/14Z, and Z/3Z⊕ Z/9Z, which occur for 2, 4, 2, and 1 Q-isomorphism

classes, respectively.

Examples of each torsion subgroup that appears are given in their paper. Now let Qab

denote the maximal abelian extension of Q, i.e. the compositum of all abelian extensions

of Q. By the Kronecker-Weber Theorem, Qab = Q({ζn : n ∈ Z+}), where ζn is a primi-

tive nth root of unity. Again, if one is to consider torsion subgroups of elliptic curves over

Qab, one first find a replacement for the Mordell-Weil Theorem—or at least show that

the torsion subgroup is a finite abelian group. Ribet [Rib81] proved that given an abelian

variety A/Q, A(Qab)tors is finite. Of course, one may then wonder if there is a uniform

bound for the size of the torsion structures for elliptic curves over Qab. Chou classified the

possible torsion structures for E(Qab)tors for rational elliptic curves, i.e. what are the pos-

sibilities for the torsion subgroups for rational elliptic curves when base extended to Qab.

By carefully examining isogeny conditions, among other techniques, Chou then proved the

following:
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Theorem 4.63 ([Cho19]). Let E/Q be a rational elliptic curve. Then E(Qab)tors is finite,

and is isomorphic to precisely one of the following groups:



Z/nZ, with n = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 37, 43, 67, 163 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, . . . , 9 or

Z3Z⊕ Z/3nZ, with n = 1, 3 or

Z/4Z⊕ Z/4nZ, with n = 1, 2, 3, 4 or

Z/nZ⊕ Z/nZ, with n = 5, 6, 8.

Each of the listed groups appears as a torsion subgroup for E(Qab)tors for some elliptic

curve over Q.

Now for a prime p, define Q∞,p to be the unique Zp-extension of Q. Let Qn,p be the nth

layer of Q∞,p, i.e. the unique subfield of Q∞,p such that Gal(Qn,p/Q) ' Z/pnZ. We know

that Gal(Q∞,p/Q) ' Zp and Zp is the unique Galois extension of Q with this property. We

know also that

G := Gal(Q(ζp∞)/Q) = lim←−
n

Gal(Q(ζpn+1)/Q)
∼−→ lim←−

n

(Z/pn+1Z)× = Z×p .

Fixing a prime p, define Γp = Zp and

∆p :=


Z/2Z, p = 2

Z/(p− 1)Z, p ≥ 3.

Then G ∼= ∆p × Γp. We can then define Q∞,p := Q(ζp∞)∆p , so that every layer Qn,p is

given by Qn,p = Q(ζpn+1)∆p . Then for p ≥ 3, Qn,p is the unique subfield of Q(ζpn+1) of

degree pn over Q. Elliptic curves have been extensively studied in Zp-extensions. Indeed,

understanding elliptic curves in these extensions this is one of the main goals of Iwasawa
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Theory for elliptic curves—though this mostly focuses on the rank and n-Selmer group of

E. For more on these fields or Iwasawa Theory for elliptic curves, see [Was97] or [Lan90]

and [Gre99], respectively.

Chou, Daniels, Krijan, and Najman classify the possibilities for E(Q∞,p)tors, where E/Q is

a rational elliptic curve, for each prime p.

Theorem 4.64 ([CDKN21, Thm. 1.1]). Let E/Q be a rational elliptic curve, and let p ≥ 5

be a prime. Then E(Q∞,p)tors = E(Q)tors.

Theorem 4.65 ([CDKN21, Thm. 1.2]). Let E/Q be an elliptic curve. Then the group

E(Q∞,2)tors is isomorphic to precisely one of the following:


Z/nZ, with n = 1, 2, . . . , 10, 12 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4.

Each such torsion subgroup occurs for some rational elliptic curve.

Theorem 4.66 ([CDKN21, Thm. 1.3]). Let E/Q be a rational elliptic curve. Then the

group E(Q∞,3)tors is isomorphic to precisely one of the following:


Z/nZ, with n = 1, 2, . . . , 10, 12, 21, 27 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4,

and each such group occurs for some rational elliptic curve.

Furthermore, they are able to prove several interesting general results about the fields of

definitions for torsion points.
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Lemma 4.67 ([CDKN21, Lem. 2.8]). Let p and q be prime numbers such that q − 1 - p

and p - q − 1. Let K/Q be a cyclic extension of degree p, and P ∈ E a point of degree q. If

P ∈ E(K), then P ∈ E(Q).

Lemma 4.68 ([CDKN21, Lem. 2.9]). Let E/Q be a rational elliptic curve and P ∈ E a

point of order n such that Q(P )/Q is Galois, and let E(Q(P ))[n] ' Z/nZ. Then the group

Gal(Q(P )/Q) is isomorphic to a subgroup of (Z/nZ)×.

Proposition 4.69 ([CDKN21, Prop. 2.11]). Let E/F be an elliptic curve over a number

field F , n a positive integer, P ∈ E be a point of order pn+1 such that E(F (pP )) has no

points of order pn+1 and such that F (P )/F (pP ) is Galois. Then [F (P ) : F (pP )] divides p2.

Note that Proposition 4.69 is [GJN20b, Prop. 4.6] with added assumptions. We make the

following definition: K :=
∏

p prime Q∞,p; that is, K is the compositum for all Zp-extensions

of Q. Denote by K≥q the compositum of all Zp-extensions with p ≥ q. Extending the

results in [CDKN21], Guz̆vić and Krijan classify the possibilities for E/Q when base ex-

tended to a compositum of Zp-extensions.

Theorem 4.70 ([GK20, Thm. 1.1]). Let E/Q be a rational elliptic curve, then E(K≥5)tors =

E(Q)tors.

Theorem 4.71 ([GK20, Thm. 1.2]). Let E/Q be a rational elliptic curve. Then E(K)tors is

isomorphic to precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 21, 27 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4.
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Each such possibility occurs as the torsion subgroup for some rational elliptic curve E/Q.

Theorem 4.72 ([GK20, Thm. 1.3]). Let E/Q be a rational elliptic curve. Then for a prime

p ≥ 5, we have E(Q(µp∞))tors = E(Q(µp))tors. Furthermore, E(Q(µ3∞))tors = E(Q(µ33))tors

and E(Q(µ2∞))tors = E(Q(µ24))tors.

Guz̆vić and Krijan remark that Theorem 4.72 is the best possible in the following sense: if

E, E ′ have Cremona label 27a4 and 32a4, respectively, then

E(Q(µ32))tors = Z/9Z ( Z/27Z = E(Q(µ33))tors

E(Q(µ23))tors = Z/2Z⊕ Z/4Z ( Z/2Z⊕ Z/8Z = E(Q(µ24))tors.

4.7 Torsion Subgroups for Elliptic Curves with Speci-

fied Structure

There are many other questions one can ask that also lead to interesting classifications.

For example, rather than simply classifying the sets ΦQ(d), one can be more general and

instead try to classify the sets Φj∈Q(d). Of course, one has ΦQ(d) ⊆ Φj∈Q(d) for all d. But

a priori, this need not be an equality. Guz̆vić classifies the sets Φj∈Q(d) when d is a prime.

Theorem 4.73 ([Guz̆19, Thm. 1.1–1.4]). Let K/Q be a number field of degree p, where p is

a prime. Then if p ≥ 7, Φj∈Q(p) = Φ(1). If p ∈ {3, 5}, then Φj∈Q(p) = ΦQ(p). Finally, if

p = 2, then Φj∈Q(p) = ΦQ(2) ∪ {Z/13Z}.

Guz̆vić also proves a number of other interesting results, including several specifically

about number fields of odd degree.

https://www.lmfdb.org/EllipticCurve/Q/27a4/
https://www.lmfdb.org/EllipticCurve/Q/32a4/
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Lemma 4.74 ([Guz̆19, Lem. 3.9]). Let K/Q be a number field of odd degree. Then there

does not exist an elliptic curve E/K with rational j-invariant such that Z/16Z ⊆ E(K).

Lemma 4.75 ([Guz̆19, Lem. 3.9]). Let K/Q be a number field of odd degree, and let E/K

be an elliptic curve with rational j-invariant. Then E(K) cannot contain Z/2Z⊕ Z/12Z.

Even more general than elliptic curves E/K with jE ∈ Q, one can instead work with

elliptic curves that are Q-curves.

Definition. An elliptic curve is called a Q-curve if it is isogenous (over Q) to all of its

Gal(Q/Q)-conjugates. Q-curves not isogenous to an elliptic curve with rational j-variant

are called strict Q-curves.

Q-curves can be thought of as generalizations of elliptic curves with rational j-invariant.

Assuming Serre’s conjecture (now a theorem, see [KW09a,KW09b]), Ribet proved that Q-

curves are precisely the modular elliptic curves E/K, in that they are a quotient of J1(N)

for some N . All CM elliptic curves are Q-curves. The study of such curves have a number

of interesting applications, as Le Fourn and Najman note in [LFN20]. For instance, Pila

used results about isogenies of non-CM elliptic curves with jE ∈ Q in [Pil17] to prove

results about Diophantine equations coming from “unlikely intersections.” Furthermore,

Dieulefait and Urroz [DJ09] solve the equation x4 + dy2 = zp in the cases d = 2, 3 and p

‘large’ using the properties of Q-curves over quadratic fields.

In a recent paper, Najman studied the isogenies of non-CM elliptic curves with rational j-

invariant over number fields. Cremona and Najman build on this work to prove a number

of interesting results about Q-curves over odd degree number fields.
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Theorem 4.76 ([CN21, Thm. 1.1]). Let E be a Q-curve without complex multiplication

defined over an odd degree number field K. Then

(a) If E has a K-rational isogeny of prime degree `, then ` ∈ {2, 3, 5, 7, 11, 13, 17, 37}.

(b) If d = [K : Q] is not divisible by any prime ` ∈ {2, 3, 5, 7, 11, 13, 17, 37}, and E has a

cyclic isogeny of degree n, then n ≤ 37.

Theorem 4.77 ([CN21, Thm. 1.2]). For every odd positive integer d, there exists a bound

Cd, depending only on d, such that all cyclic isogenies of all Q-curves over all number

fields of degree d are of degree at most Cd.

Theorem 4.78 ([CN21, Thm. 1.3]). Let d be a prime > 7, let K be a number field of degree

d and E/K a Q-curve. Then E(K)tors is one of the groups from Mazur’s Theorem, i.e. a

torsion group of an elliptic curve over Q.

Le Fourn and Najman study the torsion subgroups of Q-curves defined over quadratic

fields.

Theorem 4.79 ([LFN20, Thm. 1.1]). Let E be a Q-curve defined over a quadratic field K.

Then E(K)tors is isomorphic to one of the following groups:



Z/nZ, with n = 1, 2, . . . , 18, n 6= 11, 17 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 or

Z/4Z⊕ Z/4Z.

There are infinitely many Q-curves with each of these torsion subgroups, except for Z/14Z
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and Z/15Z of which there are finitely many.

One can also study sets Φj∈OK
(d). For instance, we have the following results of Fung,

Müller, Ströher, Williams, and Zimmer:

Theorem 4.80 ([ZSM89, Thm. 4]). Let E be an elliptic curve with integral absolute invari-

ant j over a quadratic field K. Then up to isomorphism, the torsion subgroup E(K)tors is

isomorphic to one of the following groups:


Z/nZ, with n = 1, 2, . . . , 8, 10 or

Z/2Z⊕ Z/2Z, with n = 1, 2, 3 or

Z/3Z⊕ Z/3Z.

Moreover, except for Z/2Z, Z/3Z, and Z/2Z⊕ Z/2Z, each such possibility occurs for finitely

many curves E. The curves E/K with E(K)tors ∼= Z/3Z or Z/2Z⊕ Z/2Z have j-invariants

belonging to a finite set.

Theorem 4.81 ([FSWZ90b, Thm. 10]). Let E be an elliptic curve with integral abso-

lute invariant j over a pure cubic field K. Then up to isomorphism, the torsion subgroup

E(K)tors is isomorphic to precisely one of the following groups:


Z/nZ, with n = 1, 2, 3, 4, 5, 6 or

Z/2Z⊕ Z/2Z.

Moreover, except for Z/2Z, Z/3Z, and Z/2Z⊕ Z/2Z, each such possibility occurs for finitely

many curves E and pure cubic fields K. The curves E/K with E(K)tors ∼= Z/2Z ⊕ Z/2Z

have j-invariants belonging to a finite set.
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Of course in each paper, they give examples and have much more specific results, which we

will not state here, about the fields and elliptic curves involved. There are further results

in this direction, e.g. the following result of Kishi:

Theorem 4.82 ([Kis97]). Let K be an imaginary cyclic quartic field, and E/K be an

elliptic curve. Suppose that

(i) f2 < 4 or f3 < 4, where fp is the residue degree of a prime ideal over p in the exten-

sion K/Q, and

(ii) the j ∈ OK.

Then E(K)tors is isomorphic to precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 6, 8 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3.

All these cases occur as the torsion subgroup for some elliptic curve E/K.

4.8 Torsion Subgroups for Elliptic Curves over Func-

tion Fields

One need not restrict to extensions of Q (finite or infinite) when studying torsion sub-

groups of elliptic curves. After all, the Mordell-Weil Theorem (and the Lang-Néron gen-

eralization) equally applies in the case of function fields. Before discussing results in this

direction, we will need to make some definitions.

Definition. Let F be a finite field with characteristic p, and let C/F be be a smooth projec-
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tive curve. Let K = F(C), and let E/K be an elliptic curve. We say that. . .

(i) E is constant if there is an elliptic curve E0/F with E ∼= E0 ×F K. Otherwise, we say

that E is non-constant.

(ii) E is isotrivial if there is a finite extension L/K such that E/L is constant. Other-

wise, we say that E is non-isotrivial.

Essentially, isotriviality states that the curve E is a base extension of a curve over a finite

field. Early progress in the classification of the torsion subgroups E(K)tors in the case

where K is a function field came with the work of Levin and Cox and Parry.

Corollary 4.83 ([Lev68]). Let F be a finite field of characteristic p, and define K = F(T ).

Let E/K be a non-isotrivial elliptic curve. Suppose `e | #E(K)tors for some prime `. Then

if ` 6= p,

` ≤ 7 and e ≤


4, if ` = 2

2, if ` = 3, 5

1, if ` = 7.

If ` = p, then

` ≤ 11 and e ≤


3, if ` = 2

2, if ` = 3

1, if ` = 5, 7, 11.

Theorem 4.84 ([CP80]). Let F be a finite field of characteristic p ≥ 5. Let m,n be positive

integers. Then the following are equivalent:
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(i) There is a non-isotrivial elliptic curve E over F(T ) such that Z/nZ ⊕ Z/nmZ ∼=

E(K)tors \ E(K)[p∞].

(ii) If p - n, the field F contains a primitive nth root of unity and Z/nZ⊕ Z/nmZ is one

of the following groups:



Z/nZ, with n = 1, 2, . . . , 10, 12 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 or

Z/4Z⊕ Z/4Z or

Z/5Z⊕ Z/5Z.

Furthermore, if E(K)tors ∼= Z/nZ ⊕ Z/nmZ and F contains a primitive nth root of unity,

then this torsion group appears for infinitely many non-isomorphic, non-isotrivial elliptic

curves.

Despite these results having been known for many years, no one had used them to classify

the possibilities for E(K)tors. Recent work of McDonald has finally classified the possibili-

ties for E(K)tors in the case where K is a function field of a curve of genus zero or one.

Theorem 4.85 ([McD18, Thm. 1.13]). Let k = Fq for q a power of p. Define K = k(T ),

and let E/K be a non-isotrivial elliptic curve. If p - #E(K)tors, then E(K)tors is isomor-
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phic to precisely one of the following:



Z/nZ, with n = 1, 2, . . . , 10, 12 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 or

Z/4Z⊕ Z/4Z or

Z/5Z⊕ Z/5Z.

(4.8)

If p ≤ 11 and p | #E(K)tors, then E(K)tors is isomorphic to precisely one of the following

groups:



Z/pZ, or

Z/2pZ, if p = 2, 3, 5, 7 or

Z/3pZ, if p = 2, 3, 5 or

Z/4pZ, if p = 2, 3 or

Z/5pZ if p = 2, 3 or



Z/12Z,Z/14Z,Z/18Z, if p = 2 or

Z/5Z⊕ Z/10Z, if p = 2 and ζ5 ∈ k or

Z/2Z⊕ Z/12Z, if p = 3 and ζ4 ∈ k or

Z/2Z⊕ Z/10Z, if p = 5.

If p ≥ 13, then the complete list of possible torsion subgroups is given in (4.8). Further-

more, every group in this list appears infinitely often as E(K)tors for some elliptic curve.

Theorem 4.86 ([McD18, Thm. 3.3]). Let k be a finite field of characteristic 5, and define

K = k(T ). Let E/K be a non-isotrivial elliptic curve. Then the torsion subgroup E(K)tors
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is isomorphic to precisely one of the following groups:



Z/nZ, with n = 1, 2, . . . , 10, 12, 15 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5 or

Z/3Z⊕ Z/3nZ, with n = 1, 2 if ζ3 ∈ k or

Z/4Z⊕ Z/4Z.

Furthermore, each of these groups appears infinitely often as E(K)tors for some elliptic

curve.

Theorem 4.87 ([McD19a, Thm. 1.4.3; McD19b]). Let C be a curve of genus 1 over F,

where F is a field of characteristic p, and define K = F(C). Let E/K be a non-isotrivial.

If p - #E(K)tors, then E(K)tors is isomorphic to precisely one of the following:



Z/nZ, with n = 1, 2, . . . , 12, 14, 15 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 6 or

Z/3Z⊕ Z/3nZ, with n = 1, 2, 3 or

Z/4Z⊕ Z/4nZ, with n = 1, 2 or

Z/5Z⊕ Z/5Z, or

Z/6Z⊕ Z/6Z.

(4.9)
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If p | #E(K)tors, then p ≤ 13 and E(K)tors is one of the following:



Z/pZ, if p = 2, 3, 5, 7, 11, 13 or

Z/2pZ, if p = 3, 5, 7 or

Z/3pZ, if p = 2, 3, 5 or

Z/4pZ, if p = 2, 3, 5 or

Z/5pZ, if p = 2, 3 or

Z/6pZ, if p = 2, 3 or

Z/7pZ, if p = 2, 3 or

Z/8pZ, if p = 2, 3 or

Z/2nZ, for n = 9, 10, 11, 15, if p = 2 or

Z/2Z⊕ Z/2pZ, for n = 3, 5, 7 or

Z/3Z⊕ Z/6nZ, for n = 1, 2, 3, if p = 2 or

Z/2Z⊕ Z/12Z,Z/4Z⊕ Z/12Z, if p = 3 or

Z/5Z⊕ Z/10Z, if p = 2.

If p ≥ 17, then (4.9) is the complete list of possible torsion subgroups. Furthermore, if

E(K)tors ∼= Z/nZ⊕ Z/nmZ and F contains a primitive nth root of unity, then this torsion

group appears for infinitely many non-isomorphic, non-isotrivial elliptic curves.

4.9 Other Related Results

There are a plethora of other interesting results related to torsion subgroups of elliptic

curves. Indeed, many of these results make appearances in the works above. For instance,

Kenku [Ken82] has shown that there are at most eight Q-isomorphism classes of elliptic

curves in each Q-isogeny class, and has a number of other bounds based on what isogenies
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there are.

Theorem 4.88 ([Ken82, Thm. 2]). There are at most eight Q-isomorphism classes of

elliptic curves in each Q-isogeny class.

Let C(E) denote the number of Q-isomorphism classes of elliptic curves in the Q-isogeny

class of E. C(E) is also the number of distinct Q-rational cyclic subgroups of E (including

the identity subgroup). For a prime p, let Cp(E) be the p component of C(E). We have

the product formula C(E) =
∏

pCp(E). By Manin’s theorem Cp(E) is bounded for each p

as E varies over all the Q-isogeny classes of elliptic curves. We have the following table for

bounds Cp, of Cp(E)

Table 4.3: Bounds for Cp

p 2 3 5 7 11 13 17 19 37 43 67 163
Cp 8 4 3 2 2 2 2 2 2 2 2 2

and Cp = 1 for all other primes.

As a final few remarks, Harron and Snowden have counted torsion subgroups of rational

elliptic curves, see [HS17], and Pizzo, Pomerance, and Voight have recently counted elliptic

curves with an isogeny of degree three, see [PPV20]. Bandini and Paladino have studied

fields generated by torsion points of elliptic curves, see [BP12, BP16a]. Finally, González-

Jiménez and Tornero [GJT10] remark on the ubiquity of trivial torsion on elliptic curves,

i.e. the well-known result that “most” rational elliptic curves are such that E(Q)tors
∼=

{O}. The same is true for elliptic curves over function fields, see [Phi21].
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Chapter 5

The Nonic Galois Case

In this chapter, we will classify the possibilities for the torsion subgroups E(K)tors, where

K/Q is a nonic Galois field and E/Q is a rational elliptic curve; that is, we determine the

set ΦGal
Q (9). We then determine the possible growths of torsion subgroups when base ex-

tending an elliptic curve E/Q to K, i.e. given a fixed torsion subgroup E(Q)tors, we deter-

mine the possibilities for the torsion subgroup E(K)tors. Finally, we completely determine

the possibilities for E(K)tors based on the isomorphism type of Gal(K/Q).

5.1 Overview for the Classification

We wish to classify the possible isomorphism classes of torsion subgroups for rational ellip-

tic curves over nonic Galois fields. It will be useful to give a brief overview of the process

we will use for the classification. We will begin by finding the possible prime orders for

torsion points on these elliptic curves. This determines the possible non-trivial Sylow p-

subgroups that can occur. Bounding the Sylow p-subgroups for each possible prime p,

we can then produce a finite list of possible torsion subgroups for these elliptic curves.
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Of course, many of these torsion subgroups will occur. We can easily find examples for

many of these torsion subgroups by ‘base extending’ rational elliptic curves and ellip-

tic curves E(K), where K is a cubic Galois field, to a nonic Galois field—being sure to

avoid adding any additional torsion points. This will give us a much smaller list of possible

torsion subgroups whose existence/non-existence we will need to consider. We eliminate

many of the remaining possibilities on a case-by-case basis, and we find examples for the

rest. Combining all this work, the classification will then immediately follow. Note that

in this chapter and the next, as with the previous chapters, we use the Cremona [Cre]

labeling system for elliptic curves as well as the LMFDB Database [Col21] (our primary

reference). When necessarily, we will label fields by their LMFDB label. Computations

were primarily made in Sage [The20], but other test cases, especially ranks, were made in

MAGMA [BCP97,BCFS10].

Before beginning the proof, we will make a few general remarks of things that we may

implicitly use. We are considering rational elliptic curves, E/Q, over nonic Galois fields.

As |Gal(K/Q)| = 9 is the square of a prime, Gal(K/Q) is necessarily an abelian group.

Moreover, we know that Gal(K/Q) ∼= Z/9Z or Gal(K/Q) ∼= Z/3Z ⊕ Z/3Z. Let F be an

intermediate cubic subfield of K, i.e. Q ⊆ F ⊆ K and [F : Q] = 3. Because Gal(K/Q)

is abelian, we know that the subgroup Gal(F/Q) is normal and hence F/Q is an abelian

Galois extension, and we know that Gal(F/Q) ∼= Z/3Z. Furthermore, as the extension

K/Q is Galois, K is totally real or totally imaginary.

Recall that often when we say “isogeny”, we will often mean Q-rational cyclic isogeny. As

in previous chapters, a “point of order n” will often be taken to mean a point whose order

divides n. Otherwise, we will often say “a point of exact order n.” Finally, we will make

frequent use of the notation established at the start of Chapter 4 and the results contained

therein. When convenient, we will simply restate the results.
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5.2 Points of Prime Order

The first step in any classification of torsion subgroups for elliptic curves naturally be-

gins with a determination of the possible points of prime order for a specified collection of

fields. Lozano-Robledo showed, [LR13, Corollary 1.5], that SQ(9) = {2, 3, 5, 7, 11, 13, 17, 19}.

Further work of González-Jiménez and Najman proved the following result, which we re-

state for convenience:

Corollary 4.54 ([GJN20b, Cor. 6.1 (i)–(iv)]).

(i) 11 ∈ RQ(d) if and only if 5 | d.

(ii) 13 ∈ RQ(d) if and only if 3 | d or 4 | d.

(iii) 17 ∈ RQ(d) if and only if 8 | d.

(iv) 37 ∈ RQ(d) if and only if 12 | d.

Then the following result is immediate.

Lemma 5.1. Let E/Q be a rational elliptic curve, and let K/Q be a nonic field. If P ∈

E(K)tors is a point of order p, then p ∈ {2, 3, 5, 7, 13, 19}.

Proof. We know from [LR13, Corollary 1.5] that SQ(9) = {2, 3, 5, 7, 11, 13, 17, 19}. By

definition, we know that RQ(9) ⊆ SQ(9). Points of order 2, 3, 5, and 7 already occur for

elliptic curves E(Q) and hence for torsion subgroups E(K)tors, c.f. Proposition 5.17 and

Corollary 5.18. Therefore, 2, 3, 5, 7 ∈ RQ(9). We then only need to consider the primes 11,

13, 17, and 19. By Proposition 4.54, we know that 11, 17 /∈ RQ(9) and 13, 19 ∈ RQ(9), c.f.

Table 5.3. Therefore, RQ(9) = {2, 3, 5, 7, 13, 19}. So if P ∈ E(K) is a point of order p, we

must have p ∈ {2, 3, 5, 7, 13, 19}.
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5.3 Bounding the p-Sylow Subgroups

We will now work prime-by-prime to bound the Sylow p-subgroups for each of the primes

p ∈ {2, 3, 5, 7, 13, 19}. Fortunately, it will turn out that the only “real work” involved will

be in the case of p = 2 because the cases where p ∈ {3, 5, 7, 13, 19} can all be handled

essentially in the same way.

5.3.1 The Case of p = 2

For elliptic curves without CM, Rouse and Zureick-Brown have classified all the possible

2-adic images of ρE,2 : Gal(Q/Q)→ GL2(Z2).

Theorem 5.2 ([RZB15]). Let E/Q be a rational elliptic curve without CM. Then there

are exactly 1,208 possibilities for the 2-adic image ρE,2∞(Gal(Q/Q)), up to conjugacy in

GL2(Z2). Moreover,

(i) the index of ρE,2∞(Gal(Q/Q)) in GL2(Z2) divides 64 or 96, and

(ii) the image ρE,2∞(Gal(Q/Q)) is the full inverse image of ρE,32(Gal(Q/Q)) under reduc-

tion modulo 32.

The 1,208 distinct possibilities for the 2-adic images in [RZB15], along with 1-parameter

families determining the curves with these images, are given in a searchable database

on Rouse’s website, https://users.wfu.edu/rouseja/2adic/. Using this result, González-

Jiménez and Lozano-Robledo were able to determine the minimal degrees of definition for

the subgroup E[2n].

Theorem 5.3 ([GJLR17, Theorem 1.4]). Let E/Q be an elliptic curve without CM. Let 1 ≤

s ≤ N be fixed integers, and let T ⊆ E[2N ] be a subgroup isomorphic to Z/2s/Z ⊕ Z/2NZ.

https://users.wfu.edu/rouseja/2adic/
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Then [Q(T ) : Q] is divisible by 2 if s = N = 2, and otherwise by 22N+2s−8 if N ≥ 3, unless

s ≥ 4 and j(E) is one of the two values:

−3 · 182499203

1716
or − 7 · 17231878060803

7916

in which case [Q(T ) : Q] is divisible by 3 · 22N+2s−9. Moreover, this is best possible in that

there are one-parameter families Es,N(t) of elliptic curves over Q such that for each s,N ≥

0 and each t ∈ Q, and subgroups Ts,N ∈ Es,N (t)(Q) isomorphic to Z/2sZ⊕ Z/2NZ such that

[Q(Ts,N) : Q] is equal to the bound given above.

In particular, we can create an initial bound for the 2-Sylow subgroup for E(K)tors, where

K is any odd degree number field, by combining Theorem 4.17 (or generally Theorem 4.18)

and Theorem 5.3.

Lemma 5.4. Let E/Q be a rational elliptic curve, and K/Q be an odd degree number field.

Then E(K)tors does not contain the group Z/2Z⊕ Z/16Z or the group Z/4Z⊕ Z/4Z.

Proof. Suppose that E had CM. Then E(K)tors would be a subgroup of the list given in

Theorem 4.17 (or more generally, Theorem 4.18), but this is not the case. Suppose then

that E does not have CM. Using Theorem 5.3 with s = 1, N = 4 and s = N = 2, we find

that [K : Q] is divisible by 4 or 2, respectively, which is impossible. Therefore, E(K)tors

cannot contain Z/2Z⊕ Z/16Z or Z/4Z⊕ Z/4Z, respectively.

Lemma 5.4 serves as an initial partial bound. However, we can create a better bound for

the 2-Sylow subgroup as we shall show that for nonic Galois fields K, E(K)tors 6⊇ Z/16Z.

First, we prove two lemmas that we shall often make tacit use of.
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Lemma 5.5. Let E/Q be a rational elliptic curve. Then E(Q)[2] ∼= Ed(Q)[2] for all twists

Ed of E.

Proof. Choosing a model y2 = x3 +Ax+B for E, if P = (x, y) is a nontrivial point of order

2, then x(P ) is a root of x3 + Ax+B. But r is a root of x3 + Ax+B if and only if dr is a

root for x3 + Ad2x+Bd3, where d ∈ Q.

Lemma 5.6. Let E/Q be a rational elliptic curve. Let Ed be a twist of E. Choose a model

y2 = x3 +Ax+B for E. If ∆E is a square, then ∆Ed is a square for all twists Ed. Similarly,

if disc(x3 + Ax+B) is a square, then disc(x3 + Ad2x+Bd3) is a square.

Proof. We know that ∆E = −16(4A3 + 27B2). Twisting E by d gives ∆Ed = −16(4A3 +

27B2) · d6 and the first claim follows. Similarly, disc(x3 +Ad2x+Bd3) = −(4A3 − 27B2) · d6

and the second claim follows.

We can now prove the lemma.

Lemma 5.7. Let E/Q be a rational elliptic curve and K/Q an odd degree Galois field.

Then E(K)tors 6⊇ Z/16Z.

Proof. Assume that E(K)tors ⊇ Z/16Z. Clearly, either E(Q)[2∞] = {O} or E(Q)[2∞] 6=

{O}. If E(Q)[2∞] 6= {O}, then it follows from Lemma 4.44 that E(Q)[2∞] = E(K)[2∞] ⊇

Z/16Z, which contradicts Mazur’s classification of Φ(1), c.f. Theorem 4.2. Therefore, it

must be that E(Q)[2∞] = {O}.

Choose a model y2 = x3 + Ax + B for E. If P = (x, y) is a point of order 2, then x(P )

is a root of x3 + Ax + B. Because E(Q)[2∞] = {O}, we know that x3 + Ax + B must
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be irreducible. In particular, Q(P ) ⊆ K is a cubic extension. Because K/Q is an abelian

Galois extension, Q(P ) is Galois. But then the irreducible polynomial x3 + Ax + B then

generates a cubic Galois extension. It is well known, for example see [DF04,Conb], that this

implies disc(x3 + Ax+B) is a square in Q.

Furthermore by Lemma 5.10, E must have a rational cyclic 16-isogeny. Therefore using

[LR13, Table 3], c.f. Table 7.3, any elliptic curve with a rational cyclic 16-isogeny must

have j-invariant

j =
(h8 − 16h4 + 16)3

h4(h4 − 16)

for some h ∈ Q \ {0,±2}. In particular, E is a twist of the curve

E ′ : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
.

Because E is a twist of the curve E ′, the discriminant of E will only differ from the dis-

criminant of E ′ by at most a square. In particular, the discriminant of E ′ must be a

square. Therefore, after computing the discriminant of E ′, there exists y ∈ Q such that

y2 =
136048896h4(h4 − 16)(h8 − 16h4 + 16)6

(h12 − 24h8 + 120h4 + 64)6
.

Absorbing squares into the left hand side, a rational solution (y, h) to the equation above

implies the existence of a rational solution (n,m) to the equation n2 = m4 − 16. But

the curve given by n2 = m4 − 16 is birationally equivalent to the elliptic curve given by

C : y2 = x3 + 64x. Using SAGE, we find that this curve has rank 0 and torsion subgroup

Z/6Z generated by the point (8, 24). Furthermore, C(Q) = {O, (−4, 0), (0,±8), (8,±24)}.

The points (0,±8) correspond to cusps for j, and it is routine to check that the remaining

rational solutions (n,m) do not correspond to rational solutions (y, h).
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With all these results in hand, the following bound for 2-Sylow subgroup E(K)[2∞] is

immediate:

Proposition 5.8. Let E/Q be a rational elliptic curve, and let K be a nonic Galois field.

Then E(K)[2∞] ⊆ Z/2Z× Z/8Z.

Proof. This follows immediately from Lemma 5.4 and Lemma 5.7.

5.3.2 The Case of p = 3, 5, 7, 13, 19

Bounding the p-Sylow subgroups for p > 2 simply makes use of the isogeny restrictions

forced on rational elliptic curves over odd degree Galois number fields. First, we observe

the well known result, see [Naj16,Cho16,GJ17,Cho19,Guz̆19] for just a few references, that

full n-torsion cannot be defined over an odd degree number field (not necessarily Galois)

for any integer n > 2.

Lemma 5.9. Let E/Q be an elliptic curve and let K/Q be an odd degree number field.

Then E[n] 6⊆ E(K)tors for all n > 2. In particular, E(K)tors does not contain full p-torsion

for p > 2.

Proof. Suppose that E[n] ⊆ E(K) for some n. It is well known (see Corollary 3.15) that

by the existence of the Weil pairing, full n-torsion can be defined over a number field

K only if the nth roots of unity are defined over K, i.e. Q(ζn) ⊆ K. But we know that

[Q(ζn) : Q] = φ(n), where φ is the Euler-phi function. Therefore,

[K : Q] = [K : Q(ζn)][Q(ζn) : Q] = [K : Q(ζn)]φ(n).

Because φ(n) is even for n > 2, it must be that n = 2.
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We now recall the classification of the possible rational cyclic isogenies.

Theorem 3.24. Let N ≥ 2 be such that X0(N) has a non-cuspidal Q-rational point. Then

(i) N ≤ 10 or N = 12, 13, 16, 18, or 25. In this case, X0(N) is a curve of genus 0, and

the Q rational points on X0(N) form an infinite 1-parameter family, or

(ii) N = 11, 14, 15, 17, 19, 21, or 27, i.e. X0(N) is a rational elliptic curve (in each

case X0(N)(Q)) is finite, or

(iii) N = 37, 43, 67, or 163. In this case, X0(N) is a curve of genus ≥ 2 and by Faltings’

Theorem has only finitely many Q-rational points.

In particular, a rational elliptic curve may only have a rational cyclic n-isogeny for n ≤ 19

or n ∈ {21, 25, 27, 37, 43, 67, 163}. Furthermore, if E does not have CM, then n ≤ 18 or

n ∈ {21, 25, 37}.

This classification of the possible rational cyclic isogenies for elliptic curves E/Q places

great restrictions on the possible torsion subgroups for elliptic curves over (odd) degree

Galois fields. We prove the following well known results, c.f. [Naj16,Cho16,GJ17,Cho19].

Lemma 5.10 ([Cho16, Lem. 3.10]). Let E/Q be a rational elliptic curve and K/Q be a

Galois extension. If E(K)[n] ∼= Z/nZ, then E has a rational n-isogeny.

Proof. Let {P,Q} be a basis for E[n]. Without loss of generality, assume that P ∈ E(K)

and Q /∈ E(K). Let σ ∈ Gal(Q/Q). Because K/Q is Galois and P ∈ E(K), P σ ∈

E(K)[n] = 〈P 〉. But then E(K)[n] = 〈P 〉 is Galois stable, which implies that E has an

n-isogeny over Q.
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Lemma 5.11 ([Cho19, Lem. 2.7]). Let E/Q be a rational elliptic curve, and let K/Q be a

Galois extension. If E(K)tors ∼= Z/mZ⊕ Z/mnZ, then E has a rational n-isogeny.

Proof. Choose a basis {P,Q} for E(K)tors with P,Q having exact order m and mn, respec-

tively, i.e. E(K)tors = 〈P,Q〉 ∼= Z/mZ⊕Z/mnZ. We know that [m]E(K)tors = 〈mP,mQ〉 ∼=

〈nQ〉 ∼= Z/nZ. Let σ ∈ Gal(Q/Q). Because K/Q is Galois and E/Q is a rational elliptic

curve, the action of σ commutes with [m] and [n]. But then (mQ)σ ∈ E(K)[n] ∼= 〈mQ〉.

But then 〈mQ〉 is a Galois stable subgroup of order n so that E has an n-isogeny over

Q.

We can now combine Lemma 5.9 and Lemma 5.10 to bound the p-Sylow subgroups for

torsion subgroups of E/Q over nonic Galois fields.

Proposition 5.12. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois

field. Then

E(K)[3] ⊆ Z/27Z

E(K)[5] ⊆ Z/25Z

E(K)[7] ⊆ Z/7Z

E(K)[13] ⊆ Z/13Z

E(K)[19] ⊆ Z/19Z

Proof. Because [K : Q] is odd, it follows from Lemma 5.9 that E(K)[p] ∼= Z/pnZ for

some n ≥ 0. Then by Lemma 5.10, E has a cyclic rational pn isogeny. For each p ∈

{3, 5, 7, 13, 19}, the maximal such n can be immediately deduced from Theorem 3.24.
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5.4 The List of Possible Torsion Subgroups

It follows from Proposition 5.8 and Proposition 5.12 that if E/Q is a rational elliptic curve

and K/Q is a nonic Galois field, then

E(K)tors ⊆ (Z/2Z⊕ Z/8Z)⊕ Z/27Z⊕ Z/25Z⊕ Z/7Z⊕ Z/13Z⊕ Z/19Z.

In particular, we can use these Sylow p-subgroup bounds to create a finite list of possibili-

ties for the torsion subgroups E(K)tors. Using only the fact that E(K)tors is a subgroup of

the bounding group above, we would näıvely have a list of 672 possible torsion subgroups

(using the above bound and the fact that E(K)tors
∼= Z/nZ⊕ Z/nmZ for some n,m ∈ Z≥0).

To create a more manageable list, we will first have to eliminate more possibilities for or-

ders of points P ∈ E(K)tors.

Lemma 5.13. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

If p > 7 is a prime, then E(K)tors contains no points of order 3npm for all n,m ≥ 1.

Furthermore, E(K)tors does not contain points of order 32 · 5, 3 · 52, 32 · 7, or 3 · 72.

Proof. If P ∈ E(K)tors is a point of order 3npm, then by Lemma 5.9 E(K)[3npm] ∼=

Z/3npmZ. By Lemma 5.10, E has a cyclic rational 3npm-isogeny. But examining the possi-

ble Q rational isogenies in Theorem 3.24, we see that no such isogeny can exist for p > 7.

Mutatis mutandis, E(K)tors does not contain points of order 32 · 5, 3 · 52, 32 · 7, or 3 · 72.

Lemma 5.14. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

If p, q > 3 are distinct primes, then E(K)tors contains no points of order pnqm for all

n,m ≥ 1.

Proof. If P ∈ E(K)tors is a point of order pnqm, then by Lemma 5.9, E(K)[pnqm] ∼=
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Z/pnqmZ. By Lemma 5.10, E has a cyclic rational pnqm-isogeny. But examining the possi-

ble Q rational isogenies in Theorem 3.24, we see that no such isogeny can exist.

Lemma 5.15. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

Then E(K)tors 6∼= Z/nZ for any n > 19, n 6= 21, 25, 27. Furthermore, E(K)tors contains

neither points of order n ≥ 56 nor points of order n ∈ {40, 52}.

Proof. Suppose that E(K)tors
∼= Z/nZ for some n > 19, n 6= 21, 25, 27. By Lemma 5.1, we

know that n cannot be prime. But by Lemma 5.10 E has a cyclic rational n-isogeny. But

examining the possible Q rational isogenies in Theorem 3.24, the only possible isogenies

for n > 27 are prime, a contradiction.

Now suppose that E(K)tors contained a point of n, where n ∈ {40, 52} or n ≥ 56. If n

is odd, then by Lemma 5.9 E(K)[n] ∼= Z/nZ. By Lemma 5.10, E has a cyclic rational

n-isogeny. But examining the possible Q rational isogenies in Theorem 3.24, there can be

no such isogeny. If n is even, write n = 2k, where by necessity k ≥ 28 or k ∈ {20, 26}.

Either E(K)[n] ∼= Z/2kZ or E(K)[n] ∼= Z/2Z ⊕ Z/2kZ. But in both cases, E has a point

of order k and a rational k-isogeny by Lemma 5.11. By examining the possible prime k in

Lemma 5.1 or k-isogenies in Theorem 3.24, we see that no such k exists.

We are now in a position to create a much smaller list of possibilities for E(K)tors.

Proposition 5.16. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois

field. Then E(K)tors is isomorphic to one of the following groups (although not all cases
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need occur):


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 14, 15, 18, 19, 21, 25, 27 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, . . . , 7, 9, 10, 12, 13, 14, 15, 18, 19, 21, 25, 27.

Proof. By Proposition 5.8 and Proposition 5.12, E(K)tors must be a subgroup of

(Z/2Z⊕ Z/8Z)⊕ Z/27Z⊕ Z/25Z⊕ Z/7Z⊕ Z/13Z⊕ Z/19Z.

Equivalently, E(K)tors
∼= Z/2iZ ⊕ (2j · 3k · 5m · 7n · 13r · 19s)Z for some i, j, k,m, n, r, s,

where i, n, r, s ∈ {0, 1}, j, k ∈ {0, 1, 2, 3}, and i ≤ j. It is then routine to enumerate 672

possibilities for E(K)tors. Eliminating any torsion subgroups excluded by Lemma 5.13,

Lemma 5.14, and Lemma 5.15, we immediately obtain the given list of possible torsion

subgroups.

5.5 Base Extension

Many of the possible torsion subgroups in Proposition 5.16 can be realized by base ex-

tending elliptic curves E(Q) or E(F ), where F is a Galois cubic field, to a nonic Galois

field. We begin by observing that given a torsion subgroup E(Q)tors, there always exists a

number field K of specified degree over which, when we base extend E(Q)tors to E(K)tors,

there is no torsion growth. This fact is used implicitly and explicitly in many torsion pa-

pers, but we do not know of a complete proof of this fact in the literature, so we include

one here.

Proposition 5.17. Let E/Q be a rational elliptic curve, and let d > 1 be an integer. Then

there exists a number field of degree d, K, such that E(K)tors = E(Q)tors.
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Proof. By Theorem 4.1, we know that the sets Φ(d) ⊇ ΦQ(d) are uniformly bounded for

all d ≥ 1. ***By the Mordell-Weil Theorem, Theorem 3.5, we know that E(F )tors is finite

for any number field F . Furthermore by the work of Merel [Mer96] and Parent [Par99], c.f.

Theorem 4.1, we know that the size of E(F )tors is uniformly bounded as F varies over all

number fields of degree d. Let M denote the largest possible order for all E(F )tors, where

F is a number field of degree d. But then there are at most M possibilities for the order

of E(F )tors for any number field F of degree d. Let N be the least common multiple of all

these possible orders. Now E(Q)tors ⊆ E[N ] and Q(E[N ]) is a finite (Galois) extension

of Q. In particular, Q(E[N ]) has finitely many subfields. As there exists infinitely many

number fields of degree d (for instance, this follows from the fact that there are infinitely

many primes and that xd + p is Eisenstein at p), we can choose a field K of degree d such

that K ∩Q(E[N ]) = Q. But then E(K)tors = E(Q)tors, c.f. Lemma 6.14.

Of course, we have not shown that we can choose the field K in Proposition 5.17 to be

a nonic Galois field. Proving this requires little modification from the proof of Proposi-

tion 5.17.

Corollary 5.18. Let E/Q be a rational elliptic curve. Then there exists a nonic Galois

field K such that E(K)tors = E(Q)tors.

Proof. If K1 and K2 are distinct cubic Galois fields, then K1K2 is a nonic Galois field, see

[DF04, Ch. 14,Prop. 21] or [Lan02, VI,§1,Thm. 1.14]. From the proof of Proposition 5.17,

it suffices to prove that we can find infinitely many distinct cubic Galois fields. For any

integer k, choose a := k2 + k + 7. From [Conb, Cor. 2.5], we know that the polynomial x3 −

ax+ a is irreducible over Q and Ka := Q(x3− ax+ a) is a cubic Galois field. By considering

discriminants, for distinct integer a and a′, the fields Ka and Ka′ are distinct.
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Furthermore, we will show that every torsion subgroup over a cubic Galois field occurs

over some nonic Galois field.

Theorem 5.19. Let E/Q be a rational elliptic curve and K1/Q be a Galois cubic field.

Then there exists a Galois cubic field K2/Q, distinct from K1, with E(K1K2)tors ∼= E(K1)tors.

Proof. Fixing an algebraic closure Q, we have E(K1)tors ⊆ E(Q(3∞))tors, where Q(3∞)

denotes the compositum of all cubic fields. It follows from Theorem 4.59 that there are

only finitely many points in E(Q(3∞))tors. Let L denote the field of definition of the points

in E(Q(3∞))tors, i.e. L = Q({xi, yi : O 6= (xi, yi) ∈ E(Q(3∞))tors}). We know that the

extension L/Q is finite and separable. In particular, L has finitely many subfields. Again

for any integer k, choose a := k2+k+7. From [Conb, Cor. 2.5], we know that the polynomial

x3 − ax + a is irreducible over Q, Ka := Q(x3 − ax + a) is a cubic Galois field, and that

distinct a generate distinct cubic Galois fields Ka. Because Ka contains no subfields other

than Q, we know that L ∩Ka ⊆ Ka is either Q or Ka. But as L ∩Ka is a subfield of L and

L/Q has finitely many subfields, there must be an a ∈ Z such that L ∩Ka = Q. Note this

also implies K1 ∩Ka = Q.

Because E(Ka)tors ⊆ E(Q(3∞))tors and L ∩ Ka = Q, we know that E(Ka)tors = E(Q)tors.

Because K1 and Ka are distinct cubic Galois fields, K1Ka is a nonic Galois field, see

[DF04, Ch. 14,Prop. 21] or [Lan02, VI,§1,Thm. 1.14]. But then K1K2 is a nonic Galois

field with E(K1K2)tors
∼= E(K1)tors. Taking K2 := Ka completes the proof.

For convenience, we restate the classification of the sets Φ(1) and ΦQ(3).

Theorem 4.2 ([Maz77, Maz78]). Let E/Q be a rational elliptic curve. Then E(Q)tors is
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isomorphic to precisely one of the following:


Z/nZ, with n = 1, 2, . . . , 10, 12 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4.

Moreover, each possibility occurs for infinitely many distinct elliptic curves.

Theorem 4.30 ([Naj16, Thm. 2]). Let E/Q be a rational elliptic curve, and let K/Q be a

cubic number field. Then E(K)tors is isomorphic to precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 14, 18, 21 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7.

Moreover, each of these groups, except for Z/21Z, occurs over some cubic field for in-

finitely many Q-isomorphism classes. The elliptic curve 162b1 over Q(ζ9)
+ is the unique

rational elliptic curve with torsion Z/21Z.

By Corollary 5.18, we know that each torsion subgroup in Theorem 4.2 occurs over some

nonic Galois field. However, Theorem 5.19 does not yet tell us that every possible tor-

sion subgroup in ΦQ(3) occurs over some nonic Galois field. For this to be the case, we

would need every possible torsion subgroup in ΦQ(3) to occur over a Galois cubic field. By

Corollary 5.18, it suffices to show this for the torsion subgroups in ΦQ(3) \ Φ(1). Table 5.1

demonstrates that each torsion subgroup in ΦQ(3) \ Φ(1) occurs over some cubic Galois field.

Then by combining Corollary 5.18, Table 5.1, and Theorem 5.19, we see that every torsion

subgroup in ΦQ(3) occurs for some rational elliptic curve over some nonic Galois field.

Corollary 5.18 and Theorem 5.19 prove that Φ(1) ⊆ ΦGal
Q (9) and ΦQ(3) ⊆ ΦGal

Q (9). Fur-

thermore, Table 5.2 shows that the torsion subgroups Z/19Z and Z/27Z do occur for some

https://www.lmfdb.org/EllipticCurve/Q/162b1/
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Table 5.1: Examples of torsion subgroups ΦQ(3) \ Φ(1) over cubic Galois fields

Torsion Subgroup Elliptic Curve Cubic Galois Field
Z/13Z 147b1 Q(ζ7)+

Z/14Z 49a3 Q(ζ7)+

Z/18Z 14a4 Q(ζ7)+

Z/21Z 162b1 Q(ζ9)+

Z/2Z× Z/14Z 1922c1 Q(x3 − x2 − 10x+ 8)

rational elliptic curve over some nonic Galois field.

Table 5.2: Examples of E(K) with 19 and 27-torsion

E(K)tors E(Q)tors E K
Z/19Z {O} 361a1 Q(ζ19)+

Z/27Z Z/3Z 27a4 Q(ζ27)+

Eliminating the torsion subgroups occurring in Φ(1) ∪ ΦQ(3) ∪ {Z/19Z,Z/27Z} from the

list of possible torsion subgroups from Proposition 5.16 leaves the following list of torsion

subgroups whose existence or non-existence we have yet to prove:


Z/nZ, with n = 15, 25 or

Z/2Z⊕ Z/2nZ, with n = 5, 6, 9, 10, 12, 13, 14, 15, 18, 19, 21, 25, 27.

It will turn out that none of the torsion subgroups listed above actually occur for some

rational elliptic curve over some nonic Galois field. But of course, we need to actually

prove this.

5.6 Eliminating Torsion Subgroups

We now eliminate the remaining possibilities for E(K)tors. There are more benefits to

working over Galois fields than just Lemma 5.10. The ‘Galoisness’ of our field will allow us

to restrict when there can be torsion growth when base extending our elliptic curve E. For

instance, Najman proved the following useful results in the classification of ΦQ(3), which

we stated earlier but we shall restate for convenience:

https://www.lmfdb.org/EllipticCurve/Q/147b1/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/49a3/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/14a4/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/162b1/
https://www.lmfdb.org/NumberField/3.3.81.1
https://www.lmfdb.org/EllipticCurve/Q/1922c1/
https://www.lmfdb.org/NumberField/3.3.961.1
https://www.lmfdb.org/EllipticCurve/Q/361a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/27a4/
http://www.lmfdb.org/NumberField/9.9.31381059609.1
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Lemma 4.44 ([Naj12b, Lemma 1]). If the torsion subgroup of an elliptic curves E over Q

has a nontrivial 2-Sylow subgroup, then over any number field of odd degree the torsion of

E will have the same 2-Sylow subgroup as over Q, i.e. E(K)[2∞] = E(Q)[2∞].

Lemma 4.45 ([Naj16, Lemma 21]). Let K be a cubic field. Then the 5-Sylow groups of

E(Q) and E(K) are equal.

Lemma 4.46 ([Naj16, Lemma 16]). Let p, q be distinct odd primes, F2/F1 a Galois exten-

sion of number fields such that Gal(F2/F1) ' Z/qZ and E/F1 an elliptic curve with no

p-torsion over F1. Then if q does not divide p− 1 and Q(ζp) 6⊂ F2, then E(F2)[p] = 0.

Lemma 4.47 ([Naj16, Lemma 17]). Let p be an odd prime number, q a prime not dividing

p, F2/F1 a Galois extension of number fields such that Gal(F2/F1) ' Z/qZ, E/F1 an

elliptic curve, and suppose E(F1) ⊃ Z/pZ, E(F1) 6⊃ Z/p2Z, and ζp /∈ F2. Then E(F2) 6⊃

Z/p2Z.

There are many generalizations of these results in [GJN20b]. Using the lemmas above, we

prove the following:

Lemma 5.20. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

Then E(K)tors does not contain Z/2Z⊕ Z/10Z.

Proof. Choose a model for E of the form y2 = x3 + Ax + B. Suppose that E(K)tors

contains Z/2Z⊕ Z/10Z. If P = (x, y) is a nontrivial point of order 2, then x(P ) is a root of

x3+Ax+B. Because E has full 2-torsion over K, K contains a splitting field for x3+Ax+B.

Call this splitting field F . Because x3 + Ax + B is a cubic polynomial, the only possible

degrees for the splitting field F are 1, 3, or 6. Because F ⊆ K and K/Q has odd degree,
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the degree of F/Q is either 1 or 3, i.e. F = Q or F is a cubic Galois field. In either case,

possibly making use of Lemma 4.45, we know that E(F )[5∞] = E(Q)[5∞] ∼= Z/5Z. But

then E(F ) ⊇ Z/2Z ⊕ Z/10Z, which is not a possibility for torsion subgroups of rational

elliptic curves by Mazur’s classification [Maz77, Maz78] of Φ(1), c.f. Theorem 4.2, or for

rational elliptic curves over cubic fields by Najman’s classification [Naj16] of ΦQ(3), c.f.

Theorem 4.30, a contradiction.

We now eliminate the possibility that E(K)tors
∼= Z/25Z, which will turn out to be part of

a more general result.

Lemma 5.21. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

Then E(K)tors does not contain Z/25Z.

Proof. Denote by F a subfield of K of degree 3. Then K/F is Galois and Gal(K/F ) ∼=

Z/3Z. Because K is an odd degree number field and [Q(ζp) : Q] = φ(p) (noting that φ(p)

is even for all odd primes p), Q(ζp) 6⊆ K for all odd primes p. Now the point of order five

is either defined over F (with the possibility that the point is rational) or strictly over K.

Suppose that the point of order 5 is not defined over F , i.e. E(F )[5] = {O}. Then the

point of order five is defined over K. Using Lemma 4.46 with p = 5 and q = 3, we know

that E(K)[5] = {O}, a contradiction.

Suppose then that the point of order five is defined over F , i.e. E(F )[5] 6= {O}. Using

Najman’s classification of ΦQ(3), c.f. Theorem 4.30, we know that E(F ) 6⊇ Z/25Z, which

implies E(F ) ∼= Z/5Z. But then by Lemma 4.47, we have that E(K) 6⊇ Z/25Z.

In fact, the 5-Sylow subgroup of E(K)tors is contained entirely within E(Q)tors.
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Lemma 5.22. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

Then the 5-Sylow subgroup of E(Q)tors and E(K)tors are equal, i.e. E(Q)[5∞] = E(K)[5∞].

Proof. Let F/Q be an intermediate field of K of degree 3. By Lemma 4.45, E(F )[5∞] =

E(Q)[5∞]. By Mazur’s classification of Φ(1), c.f. Theorem 4.2, either E(F )[5∞] = E(Q)[5∞]

= {O} or E(F )[5∞] = E(Q)[5∞] = Z/5Z.

Suppose that E(F )[5∞] = {O}. Because K is an odd degree number field and [Q(ζp) : Q]

= φ(p) (noting that φ(p) is even for all odd primes p), Q(ζp) 6⊆ K for all odd primes

p. We know also that K/F is Galois and Gal(K/F ) ∼= Z/3Z. But then by Lemma 4.46,

E(K)[5∞] = E(F )[5∞] = E(Q)[5∞] = {O}.

Now assume that E(F )[5∞] ∼= Z/5Z. By Najman’s classification of ΦQ(3) in [Naj16],

we know that E(F ) 6⊇ Z/25Z. But then by Lemma 4.47, E(K)[5∞] = E(F )[5∞] =

E(Q)[5∞] ∼= Z/5Z.

Using Lemma 5.20 and Lemma 5.21, we have reduced our list of remaining possible torsion

subgroups to the following:


Z/nZ, with n = 15 or

Z/2Z⊕ Z/2nZ, with n = 6, 9, 12, 13, 14, 18, 19, 21, 27.

In the previous proofs, we eliminated possible torsion subgroups E(K)tors by showing that

points of certain prime orders or prime powers occur ‘early on’, i.e. over strict subfields

of K. That is, certain torsion subgroups E(K)tors can only be obtained by base extending

an elliptic curve E(Q) or E(F ), where F ⊆ K is a cubic subfield, to K. This is part of a
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general phenomenon, which we will prove. The proof will make use of the Galois represen-

tation attached to an elliptic curve. Following [Cho16, Prop. 2.8], we prove the following:

Proposition 5.23. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois

field. Suppose P ∈ E(K)tors is a point of order p. Then

(i) if p ∈ {3, 5}, then P is defined over Q, i.e. P ∈ E(Q)[p].

(ii) if p = 13, then there is a cubic field F ⊆ K with P ∈ E(F )[p].

(iii) if p ∈ {2, 7}, then P is defined over Q, i.e. P ∈ E(Q)[p], or there is a cubic field

F ⊆ K with P ∈ E(F )[p].

Proof. First, consider the case where p = 2. Choosing a model y2 = x3 + Ax+B for E, the

points of order two correspond to roots of x3 + Ax + B. But any root of x3 + Ax + B is

defined either over Q or some cubic (Galois) field.

Now suppose that p > 2. By Lemma 5.9, E cannot contain full p-torsion over K. But

then we can choose a basis {P,Q} for E[p] such that P ∈ E(K) and Q /∈ E(K). Let

ρE,p : Gal(Q/Q) → Aut(E(K)) ∼= GL2(Fp) be the associated Galois representation with

respect to the basis {P,Q}. Because P ∈ E(K) and E(K) does not contain full p-torsion,

we know P σ ∈ E(K)[p] for all σ ∈ Gal(K/Q). But as Gal(K/Q) ∼= Gal(Q/Q)/Gal(Q/K),

P σ ∈ 〈P 〉 for all σ ∈ Gal(Q/Q). Therefore, im ρE,p is contained in a Borel subgroup of

GL2(Fp). Suppose then that

ρ(σ) =

Ö
φ(σ) τ(σ)

0 ψ(σ)

è
,

where φ, ψ are both Fp-valued characters of Gal(Q/Q) and τ : Gal(Q/Q)→ Fp. Using the

Galois representation and the Galois correspondence, the field of definition of P , Q(P ), is
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given by kerφ = Gal(Q/Q(P )).

Denote by S the subgroup of Gal(K/Q) fixing Q(P ). We know that

| imϕ| = |{P σ : σ ∈ Gal(K/Q)}| = |Gal(K/Q)|
|S| = [Q(P ) : Q].

Now because Q(P ) ⊆ K, [Q(P ) : Q] divides [K : Q] = 9. But we know also that imϕ ≤ F×p ,

so that | imϕ| = [Q(P ) : Q] divides p− 1.

If p is 3 or 5, then [Q(P ) : Q] divides 9 and divides either 2 or 4, respectively. In either

case, this implies [Q(P ) : Q] = 1 so that P is defined over Q(P ) = Q. If p = 7, then

[Q(P ) : Q] divides 9 and 6 so that [Q(P ) : Q] is either 1, in which case P is defined over Q,

or 3, in which case P is defined over a cubic field. Now if p is 13, then [Q(P ) : Q] divides

9 and 12. But it is not possible that [Q(P ) : Q] = 1 because there are no rational points

of order 13 for torsion subgroups E(Q)tors by Mazur’s classification of Φ(1). Therefore,

[Q(P ) : Q] = 3 so that P is defined over a cubic field F ⊆ K.

We can now begin putting Proposition 5.23 to good use.

Lemma 5.24. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

Then E(K)tors is not isomorphic to Z/15Z, Z/2Z⊕ Z/26Z, or Z/2Z⊕ Z/42Z.

Proof. If P ∈ E(K)tors is a point of order 15, then E(K) contains points of order 3 and

5. By Proposition 5.23, these points are necessarily defined over Q. But then E(K)tors ⊇

E(Q)tors
∼= Z/15Z, which is impossible by Mazur’s classification of Φ(1), c.f. Theorem 4.2.

Now if E(K)tors were isomorphic to Z/2Z ⊕ Z/26Z or Z/2Z ⊕ Z/42Z, E would obviously
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contain full 2-torsion. Choosing a model y2 = x3 + Ax + B for E and applying the same

argument as in Lemma 5.20, K contains a splitting field for x3 + Ax+B, say F . Again by

the argument in Lemma 5.20, either F = Q or F is a cubic Galois field.

Suppose that F = Q. By Proposition 5.23, a point of order 13 is defined over a cubic

field. The point of order 7 cannot be defined over Q because then E(Q)tors ⊇ Z/2Z ⊕

Z/14Z, contradicting Mazur’s classification of Φ(1), c.f. Theorem 4.2. By Proposition 5.23,

the point of order 7 is then also defined over a cubic field. If E(K)tors were isomorphic

to Z/2Z ⊕ Z/26Z. There is a cubic field F ′ containing the point of order 13. But then

E(F ′)tors ⊇ Z/2Z⊕Z/26Z, contradicting Najman’s classification of ΦQ(3), c.f. Theorem 4.30.

If E(K)tors were isomorphic to Z/2Z ⊕ Z/42Z, there would be a cubic field F ′ such that

E(F ′) ⊇ Z/2Z⊕ Z/14Z and E(Q)tors ⊇ Z/2Z⊕ Z/2Z. But this contradicts Theorem 4.55.

Then it must be that F is a cubic Galois field. Because the point of order 13 is defined

strictly over a cubic field, we cannot have E(K)tors
∼= Z/2Z⊕Z/26Z because Theorem 1.4 in

[GJNT16], c.f. Theorem 4.55, shows that there is no elliptic curve that has torsion growth

from E(Q)tors
∼= {O} to Z/2Z ⊕ Z/2Z or Z/13Z over either one, two, or three distinct

cubic fields (and there are at most three cubic fields F̃ such that E(F̃ )tors 6= E(Q)tors), a

contradiction. Similarly, suppose that E(K)tors
∼= Z/2Z ⊕ Z/42Z. By Proposition 5.23,

the point of order 3 is defined over Q. Then the point of order 7 cannot be defined over Q

because then E(Q)tors ⊇ Z/21Z, contradicting the classification of Φ(1), c.f. Theorem 4.2.

Then the point of order 7 is defined over a cubic field. We know that E(Q)tors
∼= Z/3Z.

But by Theorem 1.4 in [GJNT16], c.f. Theorem 4.55, there exists no elliptic curve with

such torsion growth over cubic fields, a contradiction.

We can apply isogeny restrictions to eliminate three more remaining possibilities. Note

that this result does not assume that K is nonic, merely that it is an odd degree Galois
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number field.

Lemma 5.25. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

field. Then E(K)tors does not contain a subgroup isomorphic to Z/2Z⊕ Z/18Z.

Proof. Suppose that E(K)tors ⊇ Z/2Z ⊕ Z/18Z. Clearly, Z/9Z ⊆ E(K)tors so that by

Lemma 5.10, E has a rational 9-isogeny. In particular, using [LR13, Table 3], c.f. Ta-

ble 7.3, we know that E is a twist of an elliptic curve with j-invariant given by

j =
h3(h3 − 24)3

h3 − 27

for h ∈ Q \ {3}. By [Kub76, Table 2,Prop. III.2.3], there are no rational elliptic curves with

a rational 9-isogeny and full 2-torsion or two independent 3-isogenies and full 2-torsion.

Therefore, it must be that E(Q)tors = {O}. Choose a model y2 = x3 + Ax + B. As E

has full 2-torsion over K and K is odd, there is a cubic field Q ⊆ F ⊆ K such that F

is a splitting field for x3 + Ax + B. But then F/Q is Galois. In particular, we know that

disc(x3 + Ax+B) is a square. Because twisting changes the discriminant by a square, this

implies that there is a M ∈ Q such that

M2 =
28 · 312 · (h3 − 27)(h3 − 24)6

(h6 − 36h3 + 216)6

Absorbing squares into the left hand side, a solution to the equation above implies the

existence of a rational point (m,n) on the curve m2 = n3 − 27. This is an elliptic curve

E, and using SAGE, we find E(Q) = {O, (3, 0)}. The point (3, 0) corresponds to a cusp.

Therefore, E(K)tors 6⊇ Z/2Z⊕ Z/18Z.

We can use another result of Najman to eliminate yet another two remaining possibilities.
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Lemma 5.26 ([Naj16, Cor. 12]). Let E/Q be a rational elliptic curve, and let K/Q be a

cubic Galois field. If E(Q) has no points of order 4, then E(K) has no 4-torsion.

Proof. This is simply Corollary 12 in [Naj16] applied to the case where K/Q is a Galois

cubic field.

Lemma 5.27. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

Then E(K)tors does not contain Z/2Z⊕ Z/12Z.

Proof. Suppose that E(K)tors contained Z/2Z ⊕ Z/12Z. If E(Q)tors 6∼= {O}, then by

Lemma 4.44 E(Q)[2∞] ⊇ Z/2Z ⊕ Z/4Z. By Proposition 5.23, the point of order 3 is

defined over Q. But then E(Q)tors ⊇ Z/2Z ⊕ Z/12Z, contradicting Mazur’s classification

of Φ(1), Theorem 4.2. Therefore, it must be that E(Q)tors = {O}. Let F be a cubic Galois

subfield of K. By Lemma 5.26, we know that E(F ) has no 4-torsion.

Suppose that P = (x(P ), y(P )) is a point of order 4 on E. It must be then that [Q(P ) : Q] >

3. Because y(P ) is defined at most over a quadratic extension of Q(x(P )), noting that K

is odd and x(P ) is not defined over Q or a cubic field, it must be that K = Q(x(P )).

Choose a model y2 = x3 + Ax+B for E. We know that x(P ) is a root for

ψ4(x) = 4(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3),

where ψ4 is the 4-division polynomial for E. In particular, x(P ) is a root of a polynomial

of at most degree 6, contradicting the fact that K = Q(x(P )).

This leaves only the possibilities of Z/2Z ⊕ Z/28Z and Z/2Z ⊕ Z/38Z for E(K)tors to

eliminate.



150

Lemma 5.28. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

Then E(K)tors does not contain Z/2Z⊕ Z/28Z or Z/2Z⊕ Z/38Z.

Proof. If E(K)tors contained Z/2Z ⊕ Z/38Z, then by Lemma 5.11, E has a rational 19-

isogeny. In particular by [LR13, Table 4], c.f. Table 7.4, E is a twist of an elliptic curve

with j-invariant j = −215 · 33, e.g. 361a1. Now E is a twist of 361a1 and this elliptic curve

has no rational 2-torsion. By Lemma 5.5, E(Q)[2] = {O}. Then E gains full 2-torsion over

some cubic field K. Choosing a model y2 = x3+Ax+B for E, making the same argument as

in Lemma 5.20, K contains a splitting field for x3 +Ax+B. In particular, disc(x3 +Ax+B)

is a square. However, the noting that any twist of E has discriminant differing from E

by a rational square and that the discriminant of 361a1 is −1048576/6859, we have a

contradiction.

Mutatis mutandis, if E(K)tors contained Z/2Z⊕ Z/28Z, then E has a rational 14-isogeny.

In particular by [LR13, Table 4], c.f. Table 7.4, E is a twist of an elliptic curve with j-

invariant j = −33 · 53 or j = 33 · 53 · 173. It is routine to verify that in either case

E(Q)[2] ∼= Z/2Z. But then in either case, E[2] is defined over a quadratic extension of

Q, which clearly is not contained in K.

This eliminated the remaining two possibilities for E(K)tors. We are finally in a position to

give the classification.

5.7 The General Nonic Result

We can now combine all our previous results to classify the possible torsion subgroups for

rational elliptic curves base extended to nonic Galois fields.

https://www.lmfdb.org/EllipticCurve/Q/361a1/
https://www.lmfdb.org/EllipticCurve/Q/361a1/
https://www.lmfdb.org/EllipticCurve/Q/361a1/
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Theorem 5.29. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.

Then E(K)tors is isomorphic to precisely one of the following:


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 14, 18, 19, 21, 27 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7.

Moreover, each such possibility occurs for some rational elliptic curve and some nonic

Galois field.

Proof. By Proposition 5.16, the only possibilities for E(K)tors are the following:


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 14, 15, 18, 19, 21, 25, 27 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, . . . , 7, 9, 10, 12, 13, 14, 15, 18, 19, 21, 25, 27.

Eliminating possibilities for E(K)tors excluded by Lemmas 5.20, 5.21, 5.24, 5.25, 5.27, and

5.28, the only remaining possibilities for E(K)tors are those given in the statement of the

theorem. Finally, Table 5.3 shows that each of these possibilities actually occurs.

Of course, Theorem 5.29 only classifies the possibilities for E(K)tors over a general nonic

Galois field K. We would like a classification for E(K)tors when Gal(K/Q) ∼= Z/3Z⊕ Z/3Z

and Gal(K/Q) ∼= Z/9Z; that is, we would like to know the possibilities for E(K)tors based

on the isomorphism type of Gal(K/Q), which will be our next goal. However, we first will

classify the classify the possible torsion growth when base extending from E(Q)tors to a

nonic Galois field.
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Table 5.3: Examples of each possible E(K)tors in ΦGal
Q (9)

E(K)tors Cremona Label E(Q)tors K
{O} 11a2 {O} Q(ζ19)+

Z/2Z 14a5 Z/2Z Q(ζ19)+

Z/3Z 19a1 Z/3Z Q(ζ19)+

Z/4Z 15a7 Z/4Z Q(ζ19)+

Z/5Z 11a1 Z/5Z Q(ζ19)+

Z/6Z 14a2 Z/6Z Q(ζ19)+

Z/7Z 26b1 Z/7Z Q(ζ19)+

Z/8Z 15a4 Z/8Z Q(ζ19)+

Z/9Z 54b3 Z/9Z Q(ζ19)+

Z/10Z 66c1 Z/10Z Q(ζ19)+

Z/12Z 90c3 Z/12Z Q(ζ19)+

Z/13Z 147b1 {O} Q(ζ19)+

Z/14Z 49a4 Z/2Z Q(ζ19)+

Z/18Z 260610o2 Z/6Z 9.9.806460091894081.1

Z/19Z 361a1 {O} Q(ζ19)+

Z/21Z 162b1 Z/3Z 9.9.62523502209.1

Z/27Z 27a4 Z/3Z Q(ζ27)+

Z/2Z⊕ Z/2Z 15a2 Z/2Z⊕ Z/2Z Q(ζ19)+

Z/2Z⊕ Z/4Z 15a1 Z/2Z⊕ Z/4Z Q(ζ19)+

Z/2Z⊕ Z/6Z 30a2 Z/2Z⊕ Z/6Z Q(ζ19)+

Z/2Z⊕ Z/8Z 210e2 Z/2Z⊕ Z/8Z Q(ζ19)+

Z/2Z⊕ Z/14Z 1922c1 {O} 9.9.104413920565969.1

5.8 Torsion Growth

We will determine how the torsion subgroup E(Q)tors grows when base extending to a

nonic Galois field; that is, given E(Q)tors ∈ Φ(1), what are the possibilities for E(K)tors ∈

ΦGal
Q (9). Note we denote by Cn the finite abelian group Z/nZ.

Theorem 5.30. Let E/Q be a rational elliptic curve. Fixing E(Q)tors ∈ Φ(1), the possibil-

ities for E(K)tors are given in Table 5.4, indicated by ‘3’ in the table. These are the only

possibilities for E(K)tors and each such possibility indicated occurs.

Proof. Let G ∈ Φ(1) and H ∈ ΦGal
Q (9). Clearly, if G 6≤ H, then there is no rational elliptic

curve E/Q such that there is a nonic Galois field with E(Q)tors
∼= G and E(K)tors

∼= H.

https://www.lmfdb.org/EllipticCurve/Q/11a2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/14a5/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/19a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/15a7/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/11a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/14a2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/26b1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/15a4/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/54b3/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/66c1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/90c3/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/147b1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/49a4/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/260610o2/
https://www.lmfdb.org/NumberField/9.9.806460091894081.1
https://www.lmfdb.org/EllipticCurve/Q/361a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/162b1/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/27a4/
http://www.lmfdb.org/NumberField/9.9.31381059609.1
https://www.lmfdb.org/EllipticCurve/Q/15a2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/15a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/30a2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/210e2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/1922c1/
https://www.lmfdb.org/NumberField/9.9.104413920565969.1
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Table 5.4: The possibilities for E(K)tors given E(Q)tors

E(K)tors

E(Q)tors C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C12 C2 × C2 C2 × C4 C2 × C6 C2 × C8

C1 3

C2 3

C3 3

C4 3

C5 3

C6 3

C7 3 3

C8 3

C9 3 3

C10 3

C12 3

C13 3

C14 3

C18 3

C19 3

C21 3

C27 3

C2 × C2 3 3

C2 × C4 3

C2 × C6 3 3

C2 × C8 3

C2 × C14 3

By Corollary 5.18, given G ∈ Φ(1), we know that it is always possible to find a nonic

Galois field K such that E(K)tors = E(Q)tors
∼= G. This gives the checkmarks ‘along the

diagonals’ in Table 5.4. It remains to consider the cases where E(K)tors ) E(Q)tors. We

work case-by-case given G ∈ Φ(1).

G = {O}: By Proposition 5.23, the points of order 3 and 5 are defined over Q. If E(K)tors

had a point of order 2, then it cannot be defined over Q. But then it must be defined over

a cubic Galois subfield of K. In particular, choosing a model y2 = x3 + Ax + B for E, K

contains a splitting field for x3 + Ax + B. But then E(K)tors must contain full 2-torsion.

Therefore, the only possibilities for E(K)tors not found in Table 5.5 are Z/2Z ⊕ Z/4Z or

Z/2Z ⊕ Z/8Z. Suppose E(K)tors
∼= Z/2Z ⊕ Z/4Z. By Proposition 5.23, the point of

order 7 is defined over Q or a cubic field. But in either case is not a possibility for torsion
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growth when base extending E(Q)tors to a cubic field by the work in [GJNT16]. Now if

E(K)tors
∼= Z/2Z⊕ Z/8Z, we know by Lemma 6.3 that there is a cubic Galois field F with

E(K)tors = E(F )tors
∼= Z/2Z ⊕ Z/8Z. But again, that contradicts the possible torsion

growths in [GJNT16].

G = Z/2Z: By Proposition 5.23, the points of order 3 and 5 are defined over Q. As

E(Q)[2] 6= {O}, we know by Lemma 4.44 that E(Q)[2∞] = E(K)[2∞]. But then there

are no remaining possibilities for E(K)tors that are not already found in Table 5.5.

G = Z/3Z: By Proposition 5.23, the points of order 3 and 5 are defined over Q. Then the

only possibilities for E(K)tors not found in Table 5.5 are Z/6Z, Z/12Z, and Z/18Z. But in

each case, E(K)tors would gain a point of order 2 and by the arguments above, we know

that E(K)tors must then necessarily contain full 2-torsion.

G = Z/4Z: By Proposition 5.23, the points of order 3 and 5 are defined over Q. As

E(Q)[2] 6= {O}, we know by Lemma 4.44 that E(Q)[2∞] = E(K)[2∞]. But then there

are no remaining possibilities for E(K)tors that are not already found in Table 5.5.

G = Z/5Z: The only possibility for E(K)tors is Z/10Z. However, again by the arguments

above, if E(K)tors were Z/10Z, E(K)tors would gain a point of order 2 and hence then

necessarily contain full 2-torsion.

G = Z/6Z: By Proposition 5.23, the points of order 3 and 5 are defined over Q. As

E(Q)[2] 6= {O}, we know by Lemma 4.44 that E(Q)[2∞] = E(K)[2∞]. But then there

are no remaining possibilities for E(K)tors that are not already found in Table 5.5.

G = Z/7Z: By Proposition 5.23, the points of order 3 and 5 are defined over Q. The only
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possibilities for E(K)tors are Z/14Z or Z/2Z⊕ Z/14Z. By the same arguments above about

having full 2-torsion, we know that Z/14Z is not possible. Suppose then that E(K)tors

were Z/2Z⊕ Z/14Z. We know that the points of order 2 will be defined over a cubic Galois

subfield of K. But there is no such torsion growth by the work in [GJNT16].

G = Z/8Z: The only possibility for E(K)tors is Z/2Z ⊕ Z/8Z. However, we know that

because E(Q)[2] 6= {O}, by Lemma 4.44, E(Q)[2∞] = E(K)[2∞]. But then E(K)tors 6∼=

Z/2Z⊕ Z/8Z.

G = Z/9Z: The only possibilities for E(K)tors are Z/18Z or Z/27Z. Again by the full

2-torsion arguments we have made above, we know that Z/18Z is not possible. By The-

orem 5.32, we cannot have Gal(K/Q) ∼= Z/3Z ⊕ Z/3Z and have E(K)tors
∼= Z/27Z.

Therefore, if this growth occurs, we must have Gal(K/Q) ∼= Z/9Z. Let σ ∈ Gal(K/Q) be

a generator for Gal(K/Q), and let P be the point of order 27. We know that P σ = aP for

some a ∈ (Z/27Z)×. But as E(Q)tors
∼= Z/9Z, the action of Gal(K/Q) must fix 3P . Then

we know 3P = (3P )σ = 3aP so that a = 1, which is impossible because then there would

be a point of order 27 defined over Q, contradicting the classification of Φ(1).

G = Z/10Z or G = Z/12Z: The fact that the only possibility is E(Q)tors = E(K)tors is

immediate in both cases.

G = Z/2Z ⊕ Z/2Z: Because E(Q)[2] 6= {O}, we know by Lemma 4.44 that E(Q)[2∞] =

E(K)[2∞]. By Proposition 5.23, the points of order 3 and 5 are defined over Q. But then

the only possibility that remains is that E(K)tors
∼= Z/2Z⊕Z/14Z. But the point of order 7

occurs over a cubic field by the structure of E(Q)tors and Proposition 5.23. But there is no

such torsion growth over cubic fields by the work in Theorem 4.55.
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G = Z/2Z ⊕ Z/4Z: The only possibility for E(K)tors is Z/2Z ⊕ Z/8Z. But as E(Q)[2] 6=

{O}, we know by Lemma 4.44 that E(Q)[2∞] = E(K)[2∞]. But then E(K)tors cannot be

Z/2Z⊕ Z/8Z.

G = Z/2Z ⊕ Z/6Z or G = Z/2Z ⊕ Z/8Z: The fact that the only possibility is E(Q)tors =

E(K)tors is immediate in both cases.

Finally, Table 5.5 shows that the remaining cases of torsion growth do occur for some

rational elliptic curve over some nonic Galois field.

Table 5.5: Examples of torsion growth E(K)tors ) E(Q)tors

Cremona Label E(Q)tors E(K)tors

1369b1 {O} Z/7Z
147b1 {O} Z/13Z
361a1 {O} Z/19Z
784i1 {O} Z/2Z⊕ Z/2Z
1922c1 {O} Z/2Z⊕ Z/14Z
49a4 Z/2Z Z/14Z
19a3 Z/3Z Z/9Z
162b1 Z/3Z Z/21Z
27a4 Z/3Z Z/27Z
196b1 Z/3Z Z/2Z⊕ Z/6Z

260610o2 Z/6Z Z/18Z

5.9 The Bicyclic Nonic Galois Case

First, we will classify the possibilities for E(K)tors, where K/Q is a nonic Galois field with

Gal(K/Q) ∼= Z/3Z⊕Z/3Z, i.e. a ‘bicyclic’ nonic Galois field. Recall from Theorem 4.59 that

in [DLRNS18], Daniels, Lozano-Robledo, Najman, and Sutherland classify the possible

torsion subgroups of rational elliptic curves over the composition of all cubic fields. In

https://www.lmfdb.org/EllipticCurve/Q/1369b1/
https://www.lmfdb.org/EllipticCurve/Q/147b1/
https://www.lmfdb.org/EllipticCurve/Q/361a1/
https://www.lmfdb.org/EllipticCurve/Q/784i1/
https://www.lmfdb.org/EllipticCurve/Q/1922c1/
https://www.lmfdb.org/EllipticCurve/Q/49a4/
https://www.lmfdb.org/EllipticCurve/Q/19a3/
https://www.lmfdb.org/EllipticCurve/Q/162b1/
https://www.lmfdb.org/EllipticCurve/Q/27a4/
https://www.lmfdb.org/EllipticCurve/Q/196b1/
https://www.lmfdb.org/EllipticCurve/Q/260610o2/
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particular, they showed

E(Q(3∞))tors '



Z/2Z⊕ Z/2nZ, with n = 1, 2, 4, 5, 7, 8, 13 or

Z/4Z⊕ Z/2nZ, with n = 1, 2, 4, 7 or

Z/6Z⊕ Z/6nZ, with n = 1, 2, 3, 5, 7 or

Z/2nZ⊕ Z/2nZ, with n = 4, 6, 7, 9.

Let K be a nonic Galois field with Gal(K/Q) ∼= Z/3Z⊕ Z/3Z, i.e. a nonic bicyclic Galois

field. Because K is the compositum of its Galois intermediate subfields, it must be that

E(K)tors is a subgroup of the list of possible torsion subgroups above. This will allow us to

eliminate two possible torsion subgroups for ΦC3×C3Q (9).1

Lemma 5.31. Let E/Q be a rational elliptic curve, and let K/Q be a nonic bicyclic Galois

field, i.e. a nonic field with Gal(K/Q) ∼= Z/3Z⊕ Z/3Z. Then E(K)tors is not isomorphic to

Z/19Z or Z/27Z.

Proof. Let F1, F2 be distinct cubic subfields of K. Because F1 ∩ F2 = Q, K is the composi-

tum of F1 and F2, and Gal(K/Q) ∼= Gal(F1/Q)×Gal(F2/Q), see [DF04, Ch. 14,Prop. 21]

or [Lan02, VI,§1,Thm. 1.14]. Fixing an algebraic closure Q of Q, we have E(K)tors ⊆

E(Q(3∞))tors. But then E(K)tors is a subgroup of some E(Q(3∞))tors appearing on the list

from Theorem 4.59 and is also one of the possibilities from Theorem 5.29. However, Z/19Z

and Z/27Z are not subgroups of the possible torsion subgroups for E(Q(3∞))tors.

We now prove that each of the torsion subgroups in ΦQ(3) occur over a nonic bicyclic field.

Fix a torsion subgroup G ∈ ΦGal
Q (3), i.e. there is a cubic Galois field K with E(K)tors

∼= G.

We merely need to find a cubic Galois fields L such that K∩L = Q. Taking the compositum

1Note for typographical reasons, we shall use Cn to denote Z/nZ so that we can typeset ΦC3×C3Q (9) rather than

the much uglier Φ
Z/3Z×Z/3Z
Q (9).
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KL will result in a nonic bicyclic Galois field over which there is no torsion growth, i.e.

Gal(KL) ∼= Gal(K/Q) × Gal(L/Q) ∼= Z/3Z × Z/3Z and E(KL)tors
∼= E(K)tors

∼= G. But

this is precisely what we proved in Theorem 5.19.

In fact, the proof of Theorem 5.19 was computationally explicit in the sense that given

G ∈ ΦGal
Q (3) and E(K)tors

∼= G, a method was given to find a cubic Galois field L with

E(KL)tors
∼= G. What was not mentioned was how many fields one would need to exam-

ine before finding such an L. In practice, such a cubic Galois field is found immediately.

But in fact, González-Jiménez, Najman, and Tornero have studied the growth of torsion

subgroups of rational elliptic curves over cubic number fields in [GJNT16]. Then by Theo-

rem 4.55, one need examine at most 4 possible fields L before finding a suitable candidate.

We can use all of the previous discussion to find examples of a rational elliptic curve E/Q

and a nonic bicyclic Galois field K such that E(K)tors
∼= G for all G ∈ ΦGal

Q (9). This

combined with Lemma 5.31 will complete the classification of ΦC3×C3Q (9).

Theorem 5.32. Let E/Q be a rational elliptic curve, and let K/Q be a nonic bicyclic

Galois field, i.e. a nonic field with Gal(K/Q) ∼= Z/3Z⊕ Z/3Z. Then E(K)tors is precisely

one of the following:


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 14, 18, 21 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7.

Moreover, each such possibility occurs for some rational elliptic curve and some nonic

bicyclic field.

Proof. We know that E(K)tors ∈ ΦGal
Q (9). Eliminating the cases of Z/19Z and Z/27Z

from the list given in Theorem 5.29, we are left only with the possibilities given in the

statement of the theorem. Table 5.6 shows that each such possibility occurs.
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Table 5.6: Examples of torsion subgroups E(K)tors in ΦC3×C3Q (9)

E(K)tors Cremona Label E(Q)tors K
{O} 11a2 {O} 9.9.62523502209.1

Z/2Z 14a5 Z/2Z 9.9.62523502209.1

Z/3Z 19a1 Z/3Z 9.9.62523502209.1

Z/4Z 15a7 Z/4Z 9.9.62523502209.1

Z/5Z 11a1 Z/5Z 9.9.62523502209.1

Z/6Z 14a2 Z/6Z 9.9.62523502209.1

Z/7Z 26b1 Z/7Z 9.9.62523502209.1

Z/8Z 15a4 Z/8Z 9.9.62523502209.1

Z/9Z 54b3 Z/9Z 9.9.62523502209.1

Z/10Z 66c1 Z/10Z 9.9.62523502209.1

Z/12Z 90c3 Z/12Z 9.9.62523502209.1

Z/13Z 147b1 {O} 9.9.62523502209.1

Z/14Z 49a4 Z/2Z 9.9.62523502209.1

Z/18Z 14a4 Z/6Z 9.9.62523502209.1

Z/21Z 162b1 Z/3Z Q(ζ27)+

Z/2Z⊕ Z/2Z 15a2 Z/2Z⊕ Z/2Z 9.9.62523502209.1

Z/2Z⊕ Z/4Z 15a1 Z/2Z⊕ Z/4Z 9.9.62523502209.1

Z/2Z⊕ Z/6Z 30a2 Z/2Z⊕ Z/6Z 9.9.62523502209.1

Z/2Z⊕ Z/8Z 210e2 Z/2Z⊕ Z/8Z 9.9.62523502209.1

Z/2Z⊕ Z/14Z 1922c1 {O} 9.9.104413920565969.1

5.10 The Cyclic Nonic Galois Case

Finally, we will classify the possibilities for E(K)tors, where K/Q is a nonic cyclic Galois

field, i.e. Gal(K/Q) ∼= Z/9Z and E(K)tors ∈ ΦC9Q (9). This classification will rely on the

action of Gal(K/Q) and the structure of E(K)tors when base extended to Qab. Before

classifying ΦC9Q (9), we will observe that if E/Q is a rational elliptic curve and K/Q is a

nonic cyclic Galois field, there is a simpler proof that E(K)tors /∈ {Z/15Z,Z/16Z,Z/25Z}

than we saw in Lemmas 5.4, 5.7, 5.21, and 5.24.

Lemma 5.33. Let E/Q be a rational elliptic curve, and let K/Q be a nonic cyclic Galois

field, i.e. Gal(K/Q) ∼= Z/9Z. Then E(K)tors is not isomorphic to Z/15Z, Z/16Z, or

Z/25Z.

https://www.lmfdb.org/EllipticCurve/Q/11a2/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/14a5/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/19a1/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/15a7/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/11a1/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/14a2/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/26b1/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/15a4/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/54b3/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/66c1/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/90c3/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/147b1/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/49a4/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/14a4/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/162b1/
http://www.lmfdb.org/NumberField/9.9.31381059609.1
https://www.lmfdb.org/EllipticCurve/Q/15a2/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/15a1/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/30a2/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/210e2/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/1922c1/
https://www.lmfdb.org/NumberField/9.9.104413920565969.1
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Proof. Suppose that E(K)tors
∼= Z/nZ, where n ∈ {15, 16, 25}, and let P be a point

of order n. Let σ ∈ Gal(K/Q) be a generator for Gal(K/Q). Because E(K)[n] = 〈P 〉,

we know that P σ = aP for some a ∈ (Z/nZ)×. But for n ∈ {15, 16, 25}, (Z/nZ)× has

order 8, 8, and 20, respectively. Then the orbit of P under Gal(K/Q) has size dividing 8

or 20, which implies that [Q(P ) : Q] divides either 8 or 20. However, Q(P ) ⊆ K so that

[Q(P ) : Q] divides 9. This shows that [Q(P ) : Q] = 1, implying E(Q)tors has a point of

order n ∈ {15, 16, 25}. However by Mazur’s classification of Φ(1), no such elliptic curve

exists, c.f. Theorem 4.2.

We will show that the set ΦC9Q (9) is ΦGal
Q (9) \ {Z/14Z,Z/2Z⊕ Z/14Z}. So to “complete” the

classification, we need only show that these possibilities do not occur over a nonic cyclic

Galois field.

Lemma 5.34. Let E/Q be a rational elliptic curve, and let K/Q be a nonic cyclic Galois

field, i.e. Gal(K/Q) ∼= Z/9Z. Then E(K)tors is not isomorphic to Z/14Z or Z/2Z⊕ Z/14Z

Proof. Fix an algebraic closure of Q. Suppose that E(K)tors contained a subgroup isomor-

phic to Z/14Z. Because [K : Q] = 9 is the square of a prime, Gal(K/Q) is abelian. Then

we have E(K)tors ⊆ E(Qab). By Chou’s classification of the possibilities for the possible

groups E(Qab)tors in [Cho19], c.f. Theorem 4.63, it must be that E(Qab)tors
∼= Z/2Z⊕Z/14Z.

In particular, there are finitely many possibilities j-invariant for E. Examining the possi-

ble structures for Gal(Q(E(Qab)tors)/Q), in each case, we see that there can be no nonic

cyclic Galois field K and rational elliptic curve E with E(K)tors ⊇ Z/14Z.

Lemma 5.34 highlights something interesting. There are no elliptic curves with torsion

subgroup Z/14Z or Z/2Z⊕ Z/14Z over nonic cyclic Galois fields. In particular, if E/Q is

a rational elliptic curve, and F/Q is a Galois cubic extension with E(F )tors isomorphic to
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either of these groups, then there is no tower of number fields K/F/Q with K/Q a nonic

cyclic Galois field. Something about the structures of torsion subgroups for elliptic curves

is giving us arithmetic data about number fields. Of course, it is really only giving us data

about one specific Galois field in this case. In fact, we could have proven this directly,

which we show in Lemma 5.35 explicitly. For simplicity, we show this only for the Z/14Z,

as the other case reduces to the proof for Z/14Z anyway. But this observation does leave

open the question whether one can find classes of torsion subgroups of rational elliptic

curves over number fields that give information about the arithmetic of the number fields

to which they have been base extended.

Lemma 5.35. Let E/Q be a rational elliptic curve, and let K/Q be a nonic cyclic Galois

field, i.e. Gal(K/Q) ∼= Z/9Z. Then E(K)tors 6∼= Z/14Z.

Proof. We know by Lemma 5.10 that E has a rational 14-isogeny. From [LR13, Table 4],

Table 7.4, the only possible j-invariants for a rational elliptic curves with a rational 14-

isogeny are j = −33 · 53 or j = 33 · 53 · 173. If j = 33 · 53 · 173, then E is isomorphic to a

twist of the the elliptic curve given by y2 = x3 − 613997
22743

x + 1227994
22743

. We know by Proposi-

tion 5.23 that the points of order 2 occurs either over Q or a cubic field. The polynomial

x3 − 613997
22743

x + 1227994
22743

is irreducible over Q so that the point of order 2 is defined over the

cubic field F := Q
(
x3 − 613997

22743
x+ 1227994

22743

)
(note that twisting does not change this, nor

the discriminant except by a rational square). But as K/Q is an abelian Galois extension,

F/Q is Galois. Then the discriminant of F is a square over Q. But the discriminant of F

is −28·432·1092·1312

36·53·73·196
, which is impossible.

Then it must be that E is a twist of the elliptic curve with j-invariant j = −33 · 53. Thus,

E is isomorphic to a twist of the elliptic curve given by y2 = x3 − 125
7
x + 250

7
. Again

by Proposition 5.23, the point of order 7, say P , is defined either over Q or a cubic field.
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Using division polynomials, we find that the x-coordinate of P satisfies an equation 7(x3 +

x2 − 2x− 1)g(x) = 0, where g(x) is a degree 21 polynomial that is irreducible over Q. Then

the x-coordinate of P is a root of x3+x2−2x−1. But Q(x3+x2−2x−1) = Q(ζ7)+. So Q(ζ7)+

is the unique cubic subfield of K/Q. We show there is no field K with Q ⊆ Q(ζ7)
+ ⊆ K

with Gal(K/Q) ∼= Z/9Z.

Suppose such a field K existed. Because Gal(K/Q) ∼= Z/9Z is abelian, by the Kronecker-

Weber Theorem, there exists an N with F ⊆ K ⊆ Q(ζN). We know that N = 7sm for

some s ≥ 0, m ≥ 1 with gcd(m, 7) = 1. Now |(Z/7sZ)×| = 7s−1(7 − 1) = 2 · 3 · 7s−1.

Using the Chinese Remainder Theorem, we choose an integer n with n ≡ 2 mod 7 and

n ≡ 1 mod m. Let φ : Q(ζN)→ Q(ζN) be the automorphism given by ζN 7→ ζnN . We know

φ(K) = K, and that φ has order 3 in Gal(Q(ζN)/Q). By construction, the restriction of

φ to F is nontrivial. But Gal(K/Q) ∼= Z/9Z so that the restriction of φ to K is equal

to ψ3 for some ψ ∈ Gal(K/Q). As Gal(F/Q) ∼= Z/3Z, it must be that ψ3 fixes F , a

contradiction.

In any case, we can now give the classification of ΦC9Q (9).

Theorem 5.36. Let E/Q be a rational elliptic curve, and let K/Q be a nonic cyclic Galois

field, i.e. a nonic field with Gal(K/Q) ∼= Z/9Z. Then E(K)tors is precisely one of the

following: 
Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 18, 21 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4.

Moreover, each such possibility occurs for some rational elliptic curve and some nonic

cyclic Galois field.

Proof. We know that E(K)tors must be one of the torsion subgroups from Theorem 5.29.
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Eliminating the torsion subgroups excluded by Lemma 5.34, we are left with the possi-

bilities given in the statement of the theorem. Table 5.7 shows that each such possibility

occurs.

Table 5.7: Examples of torsion subgroups E(K)tors in ΦC9Q (9)

E(K)tors Cremona Label E(Q)tors K
{O} 11a2 {O} Q(ζ19)+

Z/2Z 14a5 Z/2Z Q(ζ19)+

Z/3Z 19a1 Z/3Z Q(ζ19)+

Z/4Z 15a7 Z/4Z Q(ζ19)+

Z/5Z 11a1 Z/5Z Q(ζ19)+

Z/6Z 14a2 Z/6Z Q(ζ19)+

Z/7Z 26b1 Z/7Z Q(ζ19)+

Z/8Z 15a4 Z/8Z Q(ζ19)+

Z/9Z 54b3 Z/9Z Q(ζ19)+

Z/10Z 66c1 Z/10Z Q(ζ19)+

Z/12Z 90c3 Z/12Z Q(ζ19)+

Z/13Z 147b1 {O} Q(ζ19)+

Z/18Z 260610o2 Z/6Z 9.9.806460091894081.1

Z/21Z 162b1 Z/3Z 9.9.62523502209.1

Z/2Z⊕ Z/2Z 15a2 Z/2Z⊕ Z/2Z Q(ζ19)+

Z/2Z⊕ Z/4Z 15a1 Z/2Z⊕ Z/4Z Q(ζ19)+

Z/2Z⊕ Z/6Z 30a2 Z/2Z⊕ Z/6Z Q(ζ19)+

Z/2Z⊕ Z/8Z 210e2 Z/2Z⊕ Z/8Z Q(ζ19)+

As a final remark, it is worth noting that Z/18Z is ‘rare’ as a torsion subgroup over nonic

cyclic Galois fields in the following sense: suppose that E(K)tors
∼= Z/18Z. We know by

Proposition 5.23 that the point of order 3 is defined over Q. Then E(Q)tors ⊇ Z/3Z. We

cannot have E(Q)tors
∼= Z/9Z. If this were the case, then letting σ ∈ Gal(K/Q) be a

generator for Gal(K/Q), we know that P σ = aP for some a ∈ (Z/9Z)×, where P is the

point of order 18. But if E(Q)tors
∼= Z/9Z, then we must have 2P = (2P )σ = 2aP , which

implies that a = 1. But then we would have a point of order 18 defined over Q, which is

impossible. Because K/Q is Galois and E(K)tors contains a point of order 2 but not full

2-torsion, the point of order 2 is defined over Q. But then we know that E(Q)tors
∼= Z/6Z.

By the work in [GJNT16], there is at most one cubic field over which this torsion subgroup

grows. Searching across all 6759 torsion subgroups in the LMFDB across all nonic cyclic

https://www.lmfdb.org/EllipticCurve/Q/11a2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/14a5/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/19a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/15a7/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/11a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/14a2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/26b1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/15a4/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/54b3/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/66c1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/90c3/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/147b1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/260610o2/
https://www.lmfdb.org/NumberField/9.9.806460091894081.1
https://www.lmfdb.org/EllipticCurve/Q/162b1/
https://www.lmfdb.org/NumberField/9.9.62523502209.1
https://www.lmfdb.org/EllipticCurve/Q/15a2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/15a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/30a2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/210e2/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
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Galois fields in the database (of which there are 284), the first such example we found was

the one given—the 4699th such curve.
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Chapter 6

General Odd Degree Galois Fields

In this chapter, we classify the possibilities for torsion subgroups of rational elliptic curves

base extended to an odd degree Galois field, i.e. we determine the set
⋃∞
k=0 ΦGal

Q (2k+ 1). We

give examples of each possibility that occurs. We then determine the sets ΦGal
Q (d), where d

is an odd integer, based solely on the prime factorization of d.

6.1 Overview for the Classification

Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois field of fixed

degree d. Recall that the set ΦGal
Q (d) is the set of possible isomorphism classes of torsion

subgroups E(K)tors as E varies over all rational elliptic curves and K varies over all possi-

ble Galois fields of degree d. To find the sets ΦGal
Q (d), we apply the same approach that

we used in the nonic classification. First, we find the possible prime orders for points

P ∈ E(K)tors. We then bound the size of the Sylow p-subgroups. We can then create a

finite list of possibilities for E(K)tors. We will then the eliminate torsion subgroups which

do not occur for any rational elliptic curve over any odd degree Galois field. This will
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leave us with a list of torsion subgroups that occur for some rational elliptic curve over

some odd degree Galois field, i.e. torsion subgroups E(K)tors ∈
⋃∞
k=0 ΦGal

Q (2k + 1). We give

examples of torsion subgroups E(K)tors ∈ ΦGal
Q (d) for a few critically important d. Then

we prove that these torsion subgroups can be base extended to any Galois field of degree

D, where d | D without adding additional torsion. After working to restrict the fields of

definitions for certain torsion subgroups to select critical degrees d, we are then able to

classify the possible torsion subgroups E(K)tors ∈ ΦGal
Q (d) in the case of odd d based on

the factorization of d.

6.2 Points of Prime Order

We must first find the possible prime orders for points on rational elliptic curves over odd

degree Galois number fields. Unlike our result in the nonic case, we do not have a com-

plete classification of the possible prime orders for points on rational elliptic curves over

arbitrary (Galois) number fields of degree d. However, we can make use of the restrictions

on points of prime order that isogeny conditions force upon the elliptic curve. This allows

us to prove the following:

Lemma 6.1. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

field. If P ∈ E(K)tors is a point of prime order p, then

p ∈ {2, 3, 5, 7, 11, 13, 19, 43, 67, 163}.

Proof. Because Φ(1) ⊆ Φ(d) for all d and observing that points of prime order 2 occur for

elliptic curves E(Q), points of order p = 2 are possible. In fact, this shows points of order

2, 3, 5, and 7 are possible. Now let p be an odd prime. By Lemma 5.9, E(K)tors cannot

contain full p-torsion so that E(K)[p] ∼= Z/pZ. But by Lemma 5.10, this implies that

E(K)tors has a rational p-isogeny. From Theorem 3.24, we know this is only possible for
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p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}. Finally by Corollary 4.54, we note that points

of prime order 17 and 37 occur if and only if 8 | d and 12 | d, respectively, which obviously

cannot occur if d is odd.

In fact in [GJN20b], González-Jiménez and Najman prove that if P is a point of order p

for an elliptic curve E/Q, the possible degrees for the field of definition of P are the ones

in Table 6.1 with the starred degrees occurring only for elliptic curves E/Q with CM. In

the case of p = 37, these degrees are the only ones possible. In fact, we are able to say

more about the fields of definition for these possible prime orders. For ease of reference, we

restate the results of González-Jiménez and Najman.

Table 6.1: Orders for the field of definition for points of order p = 17, 37

p [Q(P ) : Q]
17 8, 16, 32∗, 136, 256∗, 272, 288
37 12, 36, 72∗, 444, 1296∗, 1332, 1368

Theorem 4.53 ([GJN20b, Thm. 5.8]). Let E/Q be an elliptic curve, p a prime and P a

point of order p in E. Then all of the cases in table 4.1 occur for p ≤ 13 or p = 37, and

they are the only ones possible. The degrees in Table 4.1 with an asterisk occur only when

E has CM. For all other p, the possibilities for [Q(P ) : Q] are as is given below. The de-

grees in equations 4.3–4.5 occur only for CM elliptic curves E/Q. Furthermore, the degrees

in equation 4.5 occur only for elliptic curves with j-invariant 0. If a given conjecture is

true, c.f. [GJN20b, Conj. 3.5], then the degrees in equations 4.6 also occur only for elliptic
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curves with j-invariant 0.

p2 − 1 for all p, (4.1)

8, 16, 32∗, 136, 256∗, 272, 288 for p = 17, (4.2)

(p− 1)/2, p− 1, p(p− 1)/2, p(p− 1) if p ∈ {19, 43, 67, 163} (4.3)

2(p− 1), (p− 1)2
if p≡1 mod 3 or

Ç
−D
p

å
=1 for any D∈CM (4.4)

(p− 1)2/3, 2(p− 1)2/3 p ≡ 4, 7 mod 9 (4.5)

(p2 − 1)/3, 2(p2 − 1)/3 p ≡ 2, 5 mod 9 (4.6)

where CM = {1, 2, 7, 11, 19, 43, 67, 163}. Apart from the cases above that have been proven

to appear, the only other options that might be possible are:

(p2 − 1)/3, 2(p2 − 1)/3 if p ≡ 8 mod 9. (4.7)

p [Q(P ) : Q]
2 1, 2, 3
3 1, 2, 3, 4, 6, 8
5 1, 2, 4, 5, 8, 10, 16, 20, 24
7 1, 2, 3, 6, 7, 9, 12, 14, 18, 21, 24∗, 36, 42, 48
11 5, 10, 20∗, 40∗, 55, 80∗, 100∗, 110, 120
13 3, 4, 6, 12, 24∗, 39, 48∗, 52, 72, 78, 96, 144∗, 156, 168
37 12, 36, 72∗, 444, 1296∗, 1332, 1368

Theorem 4.51 ([GJN20b, Prop. 4.6]). Let E/F be an elliptic curve over a number field F ,

n a positive integer, P ∈ E(F ) be a point of order pn+1. Then [F (P ) : F (pP )] divides p2 or

(p− 1)p.
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6.3 Bounding the p-Sylow Subgroups

We now know the possible prime orders for points P ∈ E(K)tors, where E/Q is a rational

elliptic curve, and K/Q is an odd degree Galois field. Now we need to bound the pos-

sible Sylow p-subgroups. However at this stage, this is almost trivial. We have already

bounded the 2-Sylow subgroup in classifying ΦGal
Q (9). The others follow immediately from

Lemma 5.9 and Lemma 5.10 along with Theorem 3.24.

Lemma 6.2. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

field. Then E(K)[2∞] ⊆ Z/2Z⊕ Z/8Z.

Proof. By Lemma 5.9, E(K)tors cannot contain full n-torsion for any n > 2. Then we

know that E(K)[2∞] ∼= Z/2Z ⊕ Z/2nZ for some nonnegative integer n. If E has CM

and contains full 2-torsion, then by Theorem 4.19, we know E(K)[2∞] ⊆ Z/2Z ⊕ Z/8Z.

If E does not have CM, using s = 1 in Theorem 5.3 shows that if N ≥ 4, then [K : Q]

is divisible by 2, which is impossible. Then if E(K)tors contains full 2-torsion, we know

E(K)tors ⊆ Z/2Z ⊕ Z/8Z. We need now only consider the case where E(K)tors does not

contain full 2-torsion, i.e. the case where E(K)[2∞] ∼= Z/2nZ for some n.

We show that E(K)tors cannot contain Z/16Z. We know that points of order 2 in E(K)tors

can only occur over fields of degree 1, 2, or 3. Because K/Q has odd degree, points of or-

der 2 cannot be defined over a quadratic field. Now if E(Q)[2] 6∼= {O}, then by Lemma 4.44,

we know that E(Q)[2∞] ⊇ Z/16Z, which contradicts Mazur’s classification of Φ(1), c.f.

Theorem 4.2. Then it must be that the points of order 2 are defined over a cubic field, say

F . But as K/Q is an odd degree Galois field, and 3 = [F : Q] = |Gal(K/Q) : Gal(K/F )| is

the smallest prime dividing |Gal(K/Q)|, Gal(K/F ) is a normal subgroup of Gal(K/Q) so

that by the Galois correspondence, F/Q is a cubic Galois extension. But then choosing a

model E : y2 = x3 + Ax+B, it must be that x3 + Ax+B splits over F , so that E has full
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2-torsion over F ⊆ K, a contradiction. Then in this case E(K)[2∞] ⊆ Z/8Z. Putting the

cases together, we have E(K)[2∞] ⊆ Z/2Z⊕ Z/8Z.

We can also prove a stronger result that the Sylow 2-subgroup is either defined over Q or a

cubic Galois field. A similar result holds for any odd degree number field, but we shall not

prove this here.

Lemma 6.3. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

field. Then E(K)tors[2
∞] = E(Q)[2∞] or there is a cubic Galois field, F , Q ⊆ F ⊆ K such

that E(K)[2∞] = E(F )[2∞]. In particular, E(K)tors ⊆ Z/2Z⊕ Z/8Z.

Proof. If E(K)[2∞] = {O}, the result is trivial, so assume there is a point of order 2. If

E(Q)[2] 6= {O}, then by Lemma 4.44, we know that E(K)[2∞] = E(Q)[2∞]. So assume

that E(Q)[2] = {O}. Then there is a point of order 2 defined over a cubic field, say F .

Because K/Q is Galois, we know that F̂ ⊆ K, where F̂ is the Galois closure of F . But

as F/Q is a cubic extension and K/Q has odd degree, it must be that |Gal(F̂ /Q)| = 3.

But then F̂ = F , and hence F is Galois. Note that choosing a model y2 = x3 + Ax + B,

because E has a point of order 2, E(Q)tors = {O}, and F/Q is Galois, it must be that

E(K)[2] = E(F )[2] ∼= Z/2Z⊕ Z/2Z. If E(K)[2∞] ∼= Z/2Z⊕ Z/2Z ∼= E(F )[2], we are done.

Otherwise, assume that there is a point of order 2n+1, say P , where n is a positive integer.

By Theorem 4.51, the only possible degrees of [Q(P ) : Q(2P )] are 1, 2, or 4. As K/Q has

odd degree and Q(P ) ⊆ K, it must then be that [Q(P ) : Q(2P )] = 1 for all n ≥ 1. As the

2-torsion is defined over F , we then have E(K)[2∞] = E(F )[2∞]. By Mazur’s classification

of Φ(1) and Najman’s classification of ΦQ(3), we see that then E(K)tors ⊆ Z/2Z⊕ Z/8Z, c.f.

Theorem 4.2 and Theorem 4.30.

If one knows Knapp’s criterion [Kna92, Thm. 4.2] for halving a point on an elliptic curve,
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Lemma 6.3 is not all that surprising. Furthermore, there is a more general result of Guz̆vić

in [Guz̆19] that if K is an odd degree number field and E/K is an elliptic curve with ra-

tional j-invariant, then E(K)tors cannot contain Z/16Z, c.f. Lemma 4.74. We now easily

bound the Sylow p-subgroups for odd p.

Lemma 6.4. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

field. Then for p ∈ {3, 5, 7, 11, 13, 19, 43, 67, 163}, the Sylow p-subgroup, E(K)[p∞], is

bounded as follows:

E(K)[3∞] ⊆ Z/27Z E(K)[11∞] ⊆ Z/11Z E(K)[43∞] ⊆ Z/43Z

E(K)[5∞] ⊆ Z/25Z E(K)[13∞] ⊆ Z/13Z E(K)[67∞] ⊆ Z/67Z

E(K)[7∞] ⊆ Z/7Z E(K)[19∞] ⊆ Z/19Z E(K)[163∞] ⊆ Z/163Z.

Proof. By Lemma 5.9, E(K)tors cannot contain full p-torsion so that E(K)[p∞] ⊆ Z/pnZ

for some nonnegative integer n. But then by Lemma 5.10, E(K)tors has a rational pn-

isogeny. For each prime p, we can use Theorem 3.24 to determine the maximal possible

n in each case. This yields the bounds given in the statement of the lemma.

6.4 The List of Possible Torsion Subgroups

We can combine all of the data from Lemma 6.2 and Lemma 6.4 to create a list of possible

torsion structures for rational elliptic curves over odd degree Galois fields.

Lemma 6.5. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

number field. Then E(K)tors is isomorphic to one of the following (although not all cases
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need occur):


Z/nZ, with n = 1, 2, . . . , 15, 18, 19, 21, 25, 27, 43, 67, 163 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, . . . , 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 21, 25, 27, 43, 67, 163.

Proof. Let I = {2, 7, 8, 11, 13, 19, 25, 27, 43, 67, 163}. By Lemma 6.2 and Lemma 6.4, we

know that

E(K)tors ⊆
⊕
n∈I

Z/nZ.

One then simply enumerates all possible subgroups of the group above, up to isomorphism.

This gives a list of over 10,000 such subgroups. Of course, not all such possibilities are

possible for E(K)tors. We only need examine the subgroups of the form Z/mZ ⊕ Z/mnZ.

We know by Lemma 5.10 that if E(K)tors
∼= Z/nZ, then E has an n-isogeny. We know

also by Lemma 5.11 that if E(K)tors
∼= Z/mZ ⊕ Z/mnZ, then E has an n-isogeny. Using

Theorem 3.24, eliminate any subgroup from this list of the form Z/nZ and Z/mZ⊕ Z/mnZ

where n is not a possible degree of an isogeny for a rational elliptic curve. This leaves the

45 remaining possibilities given in the statement of the lemma.1

6.5 Eliminating Torsion Subgroups

As stated in Lemma 6.5, not all these subgroups need actually occur for some rational el-

liptic curve E/Q and some odd degree Galois field K/Q. We need then eliminate torsion

subgroups which do not occur. It will turn out that each of the possibilities of the form

Z/nZ given in the statement of Lemma 6.5 do occur. So we need only focus on the ‘bi-

cyclic’ torsion subgroups. We first eliminate the torsion subgroups for the ‘bicyclic’ torsion

1Note one can do this quickly using a coding language of one’s choice. Simply enumerate a list of the form
(2i, 2j3k5l7m11n13p19q43r67s163t), where i,m, n, p, q, r, s, t ∈ {0, 1}, j ∈ {0, 1, 2, 3}, k ∈ {0, 1, 2, 3}, l ∈ {0, 1, 2},
and i ≤ j, representing the possible torsion subgroups. If i = 0, then E has a (2j3k5l7m11n13p19q43r67s163t)-
isogeny. Otherwise, E has a (2j−13k5l7m11n13p19q43r67s163t)-isogeny. Simply have the algorithm run through
all the possibilities and check against the list of possible rational isogenies, printing only those which are possible.
This results in the list given in the statement of the lemma.
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subgroups corresponding to elliptic curves with an n-isogeny occurring for finitely many

j-invariants. We will make use of the following theorem.

Theorem 6.6 (Dedekind, c.f. [DF04, Ch. 14.8]). Let f(x) ∈ Z[x] be a monic irreducible

polynomial of degree n, and let Gf be its Galois group. Let p be a prime that does not di-

vide ∆f , the discriminant of f . Let f(x)p denote the reduction of f(x) modulo p. If f(x)p

is a product of distinct monic irreducible polynomials in Fp[x] of degree n1, . . . , nr, with

deg f(x) =
∑

i ni, then Gf contains a permutation of the roots with cycle type (n1, . . . , nr).

Lemma 6.7. Let E/Q be a rational elliptic curve. Then there does not exist an odd degree

Galois field K/Q such that E(K)tors ∼= Z/2Z⊕ Z/2nZ for n ∈ {11, 14, 15, 19, 21, 27, 43,

67, 163} or E(K)tors ∼= Z/15Z.

Proof. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois field.

Suppose that n ∈ {11, 14, 15, 19, 21, 27, 43, 67, 163}. By Lemma 5.11, if E(K)tors
∼=

Z/2Z ⊕ Z/2nZ, then E(K)tors has a rational n-isogeny. However by Theorem 3.24, for

n ∈ {11, 14, 15, 17, 19, 21, 27, 37, 43, 67, 163}, there are only finitely many j-invariants

for rational elliptic curves such that E has a rational n-isogeny. Therefore, E must be a

twist of an elliptic curve with j-invariant given in [LR13, Table 4], c.f. Table 7.4. Using

the method of division polynomials, we check each of the primitive factors fi for fE,n. If

fi is of even degree, we can move on because Q(fi) 6⊆ K because K is odd. So suppose

that fi is odd. If Q(fi) ⊆ K, then because K/Q is Galois, we know that ’Q(fi) ⊆ K, where’Q(fi) denotes the Galois closure of Q(fi). In each case, we can compute the Galois group

of Q(fi). If the order of the Galois group is even, then clearly we cannot have Q(fi) ⊆ K.

However in some of these cases, the degrees are restrictively large. For instance in the case

of n = 163, we see this would involve computing the Galois group of a field with degree

13,203. In the cases where the Galois group is obstructively large, we instead apply The-
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orem 6.6. We reduce fi modulo primes p - ∆fi . This gives us orders of elements in the

Galois group. In each case, we see that the Galois group contains an element of even order

so that the Galois group must have even order. But then we cannot have Q(fi) ⊆ K. For

each n ∈ {11, 14, 15, 19, 21, 27, 43, 67, 163}, one of contradictions above arises. There-

fore, E(K)tors 6∼= Z/2Z ⊕ Z/2nZ for n ∈ {11, 14, 15, 19, 21, 27, 43, 67, 163}. Applying

these techniques in the case of E(K)tors
∼= Z/15Z, i.e. E is a twist of an elliptic curve with

j ∈ {−52/2,−52 · 2413/23,−5 · 293/25, 5 · 2113/215}, show that the case of E(K)tors
∼= Z/15Z

occurs over no odd degree Galois field.

Eliminating the torsion subgroups precluded by Lemma 6.7, we are left with these remain-

ing torsion subgroups:


Z/nZ, with n = 1, 2, . . . , 14, 18, 19, 21, 25, 27, 43, 67, 163 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, . . . , 7, 9, 10, 12, 13, 18, 25.

Lemma 6.8. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

field. Then E(K)tors does not contain a subgroup isomorphic to Z/2Z⊕ Z/12Z.

Proof. If E(Q)[2] 6= {O}, then by Lemma 4.44, we know that E(Q)[2∞] ⊇ Z/2Z ⊕ Z/4Z.

By Theorem 4.53, the only possible odd degrees for the field of definition for a point of

order three is 1 or 3. In either case, this implies that there is a rational elliptic curve E

and a cubic field F such that E(F )tors ⊇ Z/2Z⊕ Z/12Z, contradicting the classification of

ΦQ(3), c.f. Theorem 4.30.

So it must be that E(Q)[2] = {O}. Choose a model y2 = x3 + Ax+ B for E. As E(K)tors

contains full 2-torsion and K/Q has odd degree, it must be that there is a cubic subfield
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Q ⊆ F ⊆ K that is a splitting field for x3 + Ax + B. In particular, we know that F/Q is

Galois. Now let P ∈ E(K)tors be a point of order 4. By Proposition 4.51, we know that

[Q(P ) : Q(2P )] divides 4 or 2. As Q(P ) ⊆ K, it must be that [Q(P ) : Q(2P )] = 1. But

then the field of definition for the point P must be the same as the field of definition for

the point 2P , which must be F . But then the point P is defined over F . Then E(F )tors ⊇

Z/2Z⊕ Z/4Z. But in [GJNT16], if F is a cubic field with E(F )tors ⊇ Z/2Z⊕ Z/4Z, it must

be that E(Q)tors is nontrivial, a contradiction.

We could have also used a more general result of Guz̆vić which proves that no elliptic

curve with rational j-invariant defined over an odd degree number field can contain a

subgroup isomorphic to Z/2Z ⊕ Z/12Z, see [Guz̆19, Lem. 3.10]. Eliminating the torsion

subgroups precluded by Lemma 6.8, we are left with these remaining torsion subgroups:


Z/nZ, with n = 1, 2, . . . , 14, 18, 19, 21, 25, 27, 43, 67, 163 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 5, 7, 9, 10, 13, 25.

Lemma 6.9. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

field. Then E(K)tors does not contain a subgroup isomorphic to Z/2Z⊕ Z/10Z.

Proof. If E(Q)[2] 6= {O}, then by Lemma 4.44, we know that E(Q)tors ⊇ Z/2Z⊕ Z/2Z. By

Theorem 4.53, the only possible odd degrees for the field of definition for a point of order

five is 1 or 5. In either case, this implies there is a rational elliptic curve and a quintic

field F such that E(F )tors ⊇ Z/2Z ⊕ Z/10Z, contradicting the classification of ΦQ(5), c.f.

Theorem 4.37.

Then we must have E(Q)[2] = {O}. By Lemma 5.10, we know that E has a 5-isogeny. In
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particular, by [LR13, Table 3], c.f. Table 7.3, we know that E is a twist of an elliptic curve

with j-invariant given by

j =
(h2 + 10h+ 5)3

h

for some h ∈ Q×. Choose a model y2 = x3 + Ax + B for E. As E has full 2-torsion, we

know that there is a cubic subfield, say F , with Q ⊆ F ⊆ K that is a splitting field for

x3 + Ax+B. But then F/Q is Galois. In particular, we know that disc(x3 + Ax+B) is a

square. This implies that there is a q ∈ Q with

q2 =
136048896h(h2 + 10h+ 5)6

(h2 + 4h− 1)6(h2 + 22h+ 125)3
.

Absorbing squares into the left side, we see that this implies there is a rational point

(n,m) on the curve n2 = m3 + 22h2 + 125h. This is the elliptic curve E with Cremona

label 20a3. Using SAGE, we find that E is isomorphic to Z/2Z. We see that the only

solution corresponds to a cusp for j.

We have already eliminated the case that E(K)tors ⊇ Z/2Z ⊕ Z/18Z in Lemma 5.25.

Eliminating the torsion subgroups precluded by this observation and Lemma 6.9, we are

left with these remaining torsion subgroups:


Z/nZ, with n = 1, 2, . . . , 14, 18, 19, 21, 25, 27, 43, 67, 163 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7, 13.

Lemma 6.10. Let E/Q be a rational elliptic curve, and let K/Q be an odd degree Galois

field. Then E(K)tors does not contain a subgroup isomorphic to Z/2Z⊕ Z/26Z.

Proof. If E(K)tors ⊇ Z/2Z⊕ Z/26Z, then by Lemma 5.11, we know that E has a rational

https://www.lmfdb.org/EllipticCurve/Q/20a3
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13-isogeny. In particular, by [LR13, Table 3], c.f. Table 7.3, we know that E is a twist of

an elliptic curve with j-invariant given by

j =
(h2 + 5h+ 13)(h4 + 7h3 + 20h2 + 19h+ 1)3

h

for some h ∈ Q×. By Theorem 4.88, we know that E cannot have any 2-isogenies. But

then E(Q)[2] = {O}. Choose a model y2 = x3 + Ax + B for E. Then there is a cubic

subfield Q ⊆ F ⊆ K that is a splitting field for x3 +Ax+B. But then F/Q is Galois so that

discE is a square. Again by absorbing squares, this implies there is a rational point on the

curve M2 = h(h2 + 6h + 13). This is an elliptic curve with Cremona label 52a2. Using

SAGE, we find that this elliptic curve is isomorphic to Z/2Z and all the rational solutions

correspond to cusps.

Then by Lemma 6.10, we are left with these remaining torsion subgroups:


Z/nZ, with n = 1, 2, . . . , 14, 18, 19, 21, 25, 27, 43, 67, 163 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7.

Each one of these possibilities will occur for some rational elliptic curve over some odd

degree Galois field.

6.6 Base Extension

We will now prove that if E(K)tors ∈ ΦGal
Q (d′), then E(K)tors ∈ ΦGal

Q (d) for all d with d′ | d.

Suppose that d = nd′. We will show that we can construct a Galois number field of degree

n, say L, such that L ∩K = Q. Then the compositum LK will be a Galois number field

of degree nd′ = d and E(LK)tors
∼= E(K)tors. We begin with a theorem of Minkowski, see

[Neu99, Thm. 2.17].

https://www.lmfdb.org/EllipticCurve/Q/52a2
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Theorem 6.11 (Minkowski). For any number field K 6= Q, discK 6= ±1. In particular,

there is a prime that ramifies in K, so that there are no unramified extensions of Q.

Corollary 6.12. If K,L are number fields with gcd(discK, discL) = 1, then K ∩ L = Q.

Proof. Let p be a prime and suppose that p ramifies in K ∩ L. Then p ramifies in both K

and L. If p is a prime of K ∩ L lying over p, then the degree of p over p must be greater

than 1. Then if P is a prime of K lying over p, then

e(P | p) = e(P | p) e(p | p) > 1.

Now P ramifies in K so that p divides discK. Mutatis mutandis, p divides discL. This

contradicts the fact that gcd(discK, discL) = 1. Therefore by Theorem 6.11, it must be

that K ∩ L = Q.

We now state the well-known and amazing result of Dirichlet on primes in arithmetic

progression.

Theorem 6.13 (Dirichlet,[Dir37]). For every natural number n, there are infinitely many

primes with p ≡ a mod n, where gcd(a, n) = 1. In particular, there are infinitely many

primes p with p ≡ 1 mod n.

As groundbreaking as it was, now it has sadly been reduced to an exercise, c.f. [DF04,

Ch. 13.6, Ex. 8], which only uses cyclotomic polynomials to prove the theorem, or [Neu99,

Ch. 1,§10, Ex. 1] for the case of a = 1.

Lemma 6.14. Let d > 1 be a positive integer. Then there are infinitely many non-
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isomorphic Galois fields of degree d.

Proof. Suppose that d = pa11 p
a2
2 · · · parr is the prime factorization for d. For each i, we use

Theorem 6.13 to choose distinct primes qi so that qi ≡ 1 mod paii . The field Ki = Q(ζqi) is

Galois with Gal(K/Q) ∼= (Z/qiZ)×. Observe that Gal(K/Q) is abelian and paii divides qi − 1

so that there is a subgroup of Gal(K/Q) with index paii . By the Fundamental Theorem of

Galois Theory, there is an abelian Galois subfield of Ki, say Fi, of degree paii .

We know that discKi = (−1)
qi−1

2 qqi−2
i and discFi necessarily divides discKi. Therefore,

the only prime factor of discFi is qi. But then gcd(Fi, Fj) = 1 for i 6= j. By Corollary 6.12,

Fi ∩ Fj = Q for i 6= j. Let K = F1F2 · · ·Fr. Because K is a compositum of Galois fields,

K(q1, . . . , qr) is necessarily Galois with

Gal(K/Q) ∼= Gal(F1/Q)× · · ·Gal(Fr/Q) = Z/pa11 × · · · × Z/parr Z.

Furthermore as Fi ∩ Fj = Q for i 6= j, K has degree |F1||F2| · · · |Fr| = pa11 p
a2
2 · · · parr = d.

There are infinitely many choices for q1, . . . , qr, each corresponding to a unique field K.

Therefore, there are infinitely many non-isomorphic Galois fields of degree d.

We now prove the claim we stated at the beginning of this section.

Proposition 6.15. Let d′, d be positive integers with d′ | d. If E(K)tors ∈ ΦGal
Q (d′), then

E(K)tors ∈ ΦGal
Q (d).

Proof. By Theorem 4.1, a fortiori, we know that for all d, the sets ΦQ(d) ⊇ ΦGal
Q (d) are

uniformly bounded. Let N be the least common multiple of all possible orders for torsion

subgroups E(F )tors ∈ ΦGal
Q (d′). We know that M := Q(E[N ]) is a finite Galois extension of
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Q. In particular, it has finitely many subfields. Suppose that d = nd′. By Lemma 6.14, we

know that we can choose a Galois number field, say L, of degree n with L ∩M = Q. The

compositum LK is a Galois number field of degree nd′ = n. Moreover because L ∩K = Q,

E(K)tors does not gain any torsion when base extending to the compositum. But then

E(K)tors ∈ ΦGal
Q (d).

Note that we did not need to invoke Theorem 4.1 if we restricted ourselves to odd degree

Galois number fields because our previous work (even using the non-sharp bounds given

in Lemma 6.5) has already shown that the possibilities for ΦGal
Q (d) are uniformly bounded

for all odd d ≥ 1. Furthermore, if E(K)tors ∈ ΦQ(d′) (not necessarily in ΦGal
Q (d)), we can

use the same construction in Proposition 6.15 to show that E(K)tors ∈ ΦQ(d) (the field we

construct has degree nd′ = d, c.f. [DF04, Ch. 14.4, Cor. 20], but is not necessarily Galois).

This recovers the following well-known result.

Corollary 6.16. Let d′, d be positive integers with d′ | d. If E(K)tors ∈ ΦQ(d′), then

E(K)tors ∈ ΦQ(d).

6.7 Fields of Definition

We will now give some results on what are the possible degrees for number fields over

which these various torsion subgroups can occur. Because Φ(1) ⊆ ΦGal
Q (d) ⊆ ΦQ(d) for all

d, we need only focus our attention on torsion subgroups not already in Φ(1). We break

the cases by their method of proof.

Lemma 6.17. Suppose that p ∈ {11, 13, 19, 43, 67, 163}. Then Z/pZ ∈ ΦQ(d) if and only

if dn | d, where dn is given in the table below. Furthermore, we can find an elliptic curve

E/Q and Galois field K such that E(K)tors ∼= Z/pZ for each such dn. Hence, Z/pZ ∈
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ΦGal
Q (d) if and only if dn | d.

n 11 13 19 43 67 163
dn 5 3 9 21 33 81

Proof. We know that Z/pZ ∈ ΦQ(d) if and only if there is a number field of degree d such

that the p-torsion for E/Q is defined. Theorem 4.53 gives the possible degrees for the field

of definition for each p ∈ {11, 13, 19, 43, 67, 163}. For each p, we see that the possible

degrees are all divisible by the dn given in the table. Using base extension, it suffices to

prove that each torsion subgroup occurs over a (Galois) number field of degree dn.2 From

Table 6.2, we see that each such possibility occurs for a rational elliptic curve defined over

a number field of degree dn. In fact, each field in Table 6.2 is Galois. By Proposition 6.15

and Corollary 6.16, we see that E(K)tors ∈ ΦGal
Q (d) ⊆ ΦQ(d).

Table 6.2: Examples such that Z/pZ ∈ ΦGal
Q (dn) ⊆ ΦQ(dn) for p ∈ {11, 13, 19, 43, 67, 163}

E(K)tors Cremona Label Field
Z/11Z 121c1 Q(ζ11)+

Z/13Z 147b1 Q(ζ7)+

Z/19Z 361a1 Q(ζ19)+

Z/43Z 1849a1 N/A
Z/67Z 4489a1 N/A
Z/163Z 26569a1 N/A

Lemma 6.18. Suppose that d > 1 is an odd integer, and n ∈ {14, 18, 21, 25, 27}. Then

Z/nZ ∈ ΦQ(d) if and only if dn | d, where dn is given in the table below. Furthermore,

we can find an elliptic curve E/Q and Galois field K such that E(K)tors ∼= Z/nZ for each

such dn. Hence, Z/nZ ∈ ΦGal
Q (d) if and only if dn | d.

Proof. Suppose that E(K)tors
∼= Z/14Z. By the proof of Lemma 6.3, we know that the

2For the ‘larger’ p, these are defined over number fields not currently contained in the LMFDB and are formed
by adjoining a root of a tediously long polynomial, which we shall not give. Instead, we write “N/A.” To find the
field, simply compute and factor the division polynomial. Search through the factors for the irreducible factor with
the given degree dn—there will only be one such factor in each case. One can verify that E has the specified tor-
sion over that field, as well as check that the field is indeed Galois.

https://www.lmfdb.org/EllipticCurve/Q/121c1
https://www.lmfdb.org/NumberField/5.5.14641.1
https://www.lmfdb.org/EllipticCurve/Q/147b1/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/361a1/
http://www.lmfdb.org/NumberField/9.9.16983563041.1
https://www.lmfdb.org/EllipticCurve/Q/1849a1/
https://www.lmfdb.org/EllipticCurve/Q/4489a1/
https://www.lmfdb.org/EllipticCurve/Q/26569a1/
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n 14 18 21 25 27
dn 3 3 3 5 9

point of order 2 must be defined over Q. From Theorem 4.53, the point of order 7 is de-

fined either defined over Q, a septic field, or a field of degree divisible by 3. If the 7-torsion

is defined over Q or a septic field, in either case, this implies that Z/14Z ∈ ΦQ(7), contra-

dicting Theorem 4.40. Then the field of definition of the 7-torsion has degree divisible by

3. Table 6.3 shows that we do have E(F )tors
∼= Z/14Z for some rational elliptic curve E

and some cubic (Galois) field F . Then by Proposition 6.15 and Corollary 6.16, we see that

there is a field F ′ such that E(F ′)tors
∼= Z/14Z ∈ ΦGal

Q (d) ⊆ ΦQ(d).

Suppose that E(K)tors
∼= Z/18Z. By the proof of Lemma 6.3, we know that the point

of order 2 must be defined over Q. Because K/Q has odd degree, by Theorem 4.53, the

point of order 3 is defined over Q or a cubic field. In the latter case, we are done because

this implies that [K : Q] is divisible by 3. Assume then that the point of order 3 is de-

fined over Q. Let P be the point of order 9. By Theorem 4.51 and using the fact that

Q(3P ) = Q, we know that [Q(P ) : Q] is in the set {1, 2, 3, 6, 9}. By Mazur’s classification

of Φ(1), we know there are no points of order 18 on elliptic curves E(Q), c.f. Theorem 4.2.

Then we know [Q(P ) : Q] 6= 1. Because K/Q has odd degree, this means that we must

have [Q(P ) : Q] ∈ {3, 9}. But then in either case, [Q(P ) : Q] must then be divisible by 3.

Table 6.3 shows that we do have E(F )tors
∼= Z/18Z for some rational elliptic curve E and

cubic (Galois) field F . Then by Proposition 6.15 and Corollary 6.16, we see that there is a

field F ′ such that E(F ′)tors
∼= Z/18Z ∈ ΦGal

Q (d) ⊆ ΦQ(d).

Suppose that E(K)tors
∼= Z/21Z. Because K/Q has odd degree, by Theorem 4.53, we

know that the point of order of order 3 is defined over Q or a cubic field, and the point

of order 7 is defined over Q, a septic field, or a field of degree divisible by 3. Then the

only way [K : Q] is not divisible by 3 is if the 3-torsion is defined over Q and the 7-torsion
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is defined over a septic field. But this would imply that Z/21Z ∈ ΦQ(7), contradicting

Theorem 4.40. Therefore, 3 | [K : Q]. Table 6.3 shows that we do have E(F )tors
∼= Z/21Z

for some rational elliptic curve E and cubic (Galois) field F . Then by Proposition 6.15

and Corollary 6.16, we see that there is a field F ′ such that E(F ′)tors
∼= Z/21Z ∈ ΦGal

Q (d) ⊆

ΦQ(d).

Suppose that E(K)tors
∼= Z/25Z. Let P be a point of order 5n for n > 1 on a rational

elliptic curve E ′/Q. By Theorem 4.51, we know that [Q(P ) : Q(5P )] is in the set {1, 2, 4,

5, 10, 20, 25} for all n ≥ 1. For the case where n = 1, because K/Q has odd degree, The-

orem 4.53 says that the point of order 5 is defined over Q or a quintic field. Because K/Q

has odd degree, if P is a point of order 5n for n ≥ 1, the only way for [K : Q] to not be di-

visible by 5 is for [Q(P ) : Q(5P )] = 1 for all n. But this implies there is a point P of order

25 defined over Q on E, contradicting Mazur’s classification of Φ(1). Therefore, [K : Q] is

divisible by 5. Table 6.3 shows that we do have E(F )tors
∼= Z/25Z for some rational elliptic

curve E and quintic (Galois) field F . Then by Proposition 6.15 and Corollary 6.16, we see

that there is a field F ′ such that E(F ′)tors
∼= Z/25Z ∈ ΦGal

Q (d) ⊆ ΦQ(d).

Finally, suppose that E(K)tors
∼= Z/27Z. By Theorem 4.53 and the fact that K/Q has

odd degree, we know that the point of order 3 is defined over Q or a cubic field. By Theo-

rem 4.53, we know also that for a point of order 3n+1, say P , where n is a positive integer,

that [Q(P ) : Q(3P )] ∈ {1, 2, 3, 6, 9}. If Q(P ) is contained in an odd degree field, then

[Q(P ) : Q(3P )] ∈ {1, 3, 9}. Let P ∈ E(K)tors be the point of order 27. We know then that

[Q(P ) : Q] = 3m for some m ≥ 0. But if m ∈ {0, 1}, then Z/27Z ∈ ΦQ(3), contradicting

Theorem 4.30. Then m ≥ 2 so that [Q(P ) : Q], and hence [K : Q], is divisible by 9. Ta-

ble 6.3 shows that we do have E(F )tors
∼= Z/27Z for some rational elliptic curve E and

nonic (Galois) field F . Then by Proposition 6.15 and Corollary 6.16, we see that there is a

field F ′ such that E(F ′)tors
∼= Z/27Z ∈ ΦGal

Q (d) ⊆ ΦQ(d).
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Table 6.3: Examples such that Z/nZ ∈ ΦGal
Q (dn) ⊆ ΦQ(dn) for n ∈ {14, 18, 21, 25, 27}

E(K)tors Cremona Label Field
Z/14Z 49a4 Q(ζ7)+

Z/18Z 14a6 Q(ζ7)+

Z/21Z 162b1 Q(ζ9)+

Z/25Z 11a3 Q(ζ11)+

Z/27Z 27a4 Q(ζ27)+

For the case of Z/27Z in Lemma 6.18, if we restricted ourselves to the case of Galois

fields, observe we could have instead used the fact that E would have a rational 21-isogeny

(which occurs for finitely many j-invariants), and then used the method of division polyno-

mials.

Lemma 6.19. If d is odd, Z/2Z⊕ Z/14Z ∈ ΦQ(d) if and only if 3 | d. Furthermore, we can

find an elliptic curve E/Q and Galois field K such that E(K)tors ∼= Z/2Z⊕ Z/14Z for each

such d. Hence, Z/2Z⊕ Z/14Z ∈ ΦGal
Q (d) if and only if 3 | d.

Proof. By Theorem 4.53, the only odd field degrees over which a point of order 2 is de-

fined is 1 or 3, and the only odd field degrees over which a point of order 7 is defined is 1,

7, or an odd integer divisible by 3. The only way that 3 does not divide d is if the points

of order 2 are defined over Q, and the point of order 7 is defined over either Q or a field of

degree 7. In either case, this implies that Z/2Z⊕Z/14Z ∈ Φ(7), contradicting Theorem 4.40.

Therefore, 3 divides d. The elliptic curve with Cremona label 1922e2 has torsion subgroup

Z/2Z⊕ Z/14Z over the field Q(x3 − x2 − 10x+ 8). By Proposition 6.15 and Corollary 6.16,

we see that E(K)tors ∈ ΦGal
Q (d) ⊆ ΦQ(d).

Table 6.4: An elliptic curve E/Q with E(K)tors
∼= Z/2Z⊕Z/14Z for some odd degree Galois

field K

E(K)tors Cremona Label Field
Z/2Z⊕ Z/14Z 1922e2 Q(x3 − x2 − 10x+ 8)

https://www.lmfdb.org/EllipticCurve/Q/49a4/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/14a6/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/162b1/
https://www.lmfdb.org/NumberField/3.3.81.1
https://www.lmfdb.org/EllipticCurve/Q/11a3/
https://www.lmfdb.org/NumberField/5.5.14641.1
https://www.lmfdb.org/EllipticCurve/Q/27a4/
http://www.lmfdb.org/NumberField/9.9.31381059609.1
https://www.lmfdb.org/EllipticCurve/Q/1922e2/
https://www.lmfdb.org/NumberField/3.3.961.1
https://www.lmfdb.org/EllipticCurve/Q/1922e2/
https://www.lmfdb.org/NumberField/3.3.961.1
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6.8 Odd Order Galois Fields with Small Degree

6.8.1 The Case of Cubic Galois Fields

Recall that Najman classified the torsion subgroups for rational elliptic curves over cubic

fields in [Naj16], c.f. Theorem 4.30, which we shall restate here:

Theorem 4.30 ([Naj16, Thm. 2]). Let E/Q be a rational elliptic curve, and let K/Q be a

cubic number field. Then E(K)tors is isomorphic to precisely one of the following groups:


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 14, 18, 21 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7.

Moreover, each of these groups, except for Z/21Z, occurs over some cubic field for in-

finitely many Q-isomorphism classes. The elliptic curve 162b1 over Q(ζ9)
+ is the unique

rational elliptic curve with torsion Z/21Z.

By Proposition 6.15 for every torsion subgroup in G ∈ Φ(1), we can find a cubic Galois

field so that G ∈ ΦGal
Q (3). It remains to show that every torsion subgroup in ΦQ(3) \ Φ(1)

occurs for some rational elliptic curve over some cubic Galois field. Table 6.5 completes

the demonstration that every torsion subgroup in ΦQ(3) occurs for some elliptic curve over

some cubic Galois field. That is, we have ΦGal
Q (3) = ΦQ(3).

Table 6.5: Torsion subgroups in ΦQ(3) \ Φ(1) occurring over cubic Galois fields

Torsion Subgroup Elliptic Curve Cubic Galois Field
Z/13Z 147b1 Q(ζ7)+

Z/14Z 49a3 Q(ζ7)+

Z/18Z 14a4 Q(ζ7)+

Z/21Z 162b1 Q(ζ9)+

Z/2Z× Z/14Z 1922c1 Q(x3 − x2 − 10x+ 8)

Corollary 6.20. ΦGal
Q (3) = ΦQ(3)

https://www.lmfdb.org/EllipticCurve/Q/162b1/
https://www.lmfdb.org/EllipticCurve/Q/147b1/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/49a3/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/14a4/
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/EllipticCurve/Q/162b1/
https://www.lmfdb.org/NumberField/3.3.81.1
https://www.lmfdb.org/EllipticCurve/Q/1922c1/
https://www.lmfdb.org/NumberField/3.3.961.1
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6.8.2 The Case of Quintic Galois Fields

Recall that González-Jiménez classified the torsion subgroups of rational elliptic curves

over quintic number fields in [GJ17], c.f. Theorem 4.37, which we restate here.

Theorem 4.37 ([GJ17, Thm. 1, Thm. 2]). Let E/Q be a rational elliptic curve, and let

K/Q be a quintic number field. Then E(K)tors is isomorphic to precisely one of the follow-

ing: 
Z/nZ, with n = 1, 2, . . . , 12, 25 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4

Moreover, each of these groups, except for Z/11Z, occurs over some quintic field for in-

finitely many Q-isomorphism classes. The only elliptic curves E/Q with E(K)tors ∼=

Z/11Z over some quintic field K have Cremona label 121a2, 121c2, 121b1. For elliptic

curves E/Q with CM, ΦCM
Q (5) = {O,Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/11Z,Z/2Z⊕ Z/2Z}.

By Proposition 6.15 for every torsion subgroup in G ∈ Φ(1), we can find a quintic Galois

field so that G ∈ ΦGal
Q (5). It remains to show that every torsion subgroup in ΦQ(5) \ Φ(1)

occurs for some rational elliptic curve over some quintic Galois field. Table 6.6 completes

the demonstration that every torsion subgroup in ΦQ(5) occurs for some elliptic curve over

some quintic Galois field. That is, we have ΦGal
Q (5) = ΦQ(5).

Corollary 6.21. ΦGal
Q (5) = ΦQ(5)

Table 6.6: Torsion subgroups in ΦQ(5) \ Φ(1) occurring over quintic Galois fields

Torsion Subgroup Elliptic Curve Quintic Galois Field
Z/11Z 121c2 Q(ζ11)+

Z/25Z 11a3 Q(ζ11)+

https://www.lmfdb.org/EllipticCurve/Q/121a2/
https://www.lmfdb.org/EllipticCurve/Q/121c2/
https://www.lmfdb.org/EllipticCurve/Q/121b1/
https://www.lmfdb.org/EllipticCurve/Q/121c2/
https://www.lmfdb.org/NumberField/5.5.14641.1
https://www.lmfdb.org/EllipticCurve/Q/11a3/
https://www.lmfdb.org/NumberField/5.5.14641.1
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6.8.3 The Case of Septic Galois Fields

Recall that González-Jiménez and Najman classified the torsion subgroups of rational

elliptic curves over septic number fields in [GJN20b], c.f. Theorem 4.40, which we restate

here.

Theorem 4.40 ([[GJN20b, Prop7.7]). Let E/Q be an elliptic curve, and K a number field

of degree 7.

(i) If E(Q)tors 6' {O}, then E(Q)tors = E(K)tors.

(ii) If E(Q)tors ' {O}, then E(K)tors ' {O} or Z/7Z. Furthermore, if E(Q)tors ' {O}

and E(K)tors ' Z/7Z, then K is the unique degree 7 number field with this property

and E is isomorphic to the elliptic curve

Et : y
2 = x3 + 27(t2 − t+ 1)(t6 + 229t5 + 270t4 − 1695t3 + 1430t2 − 235t+ 1)x

+ 54(t12 − 522t11 − 8955t10 + 37950t9 − 70998t8131562t7

− 253239t6 + 316290t5 − 218058t4 + 80090t3 − 14631t2 + 510t+ 1)

for some t ∈ Q.

We trivially have ΦGal
Q (7) = ΦQ(7).

Corollary 6.22. ΦGal
Q (7) = ΦQ(7)

6.8.4 The Case of Nonic Galois Fields

For ease of reference, we restate our main result from Chapter 5.

Theorem 5.29. Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois field.
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Then E(K)tors is isomorphic to precisely one of the following:


Z/nZ, with n = 1, 2, . . . , 10, 12, 13, 14, 18, 19, 21, 27 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7.

Moreover, each such possibility occurs for some rational elliptic curve and some nonic

Galois field.

6.9 The Case of Prime Degree Galois Fields, p > 5

González-Jiménez and Najman show in [GJN20b] that what occurs, i.e. E(K)tors =

E(Q)tors, for torsion subgroups of rational elliptic over septic fields is actually fairly com-

mon in that this is the case for rational elliptic curves over number fields of degree d,

where d is free of ‘small’ divisors. We repeat these results here.

Theorem 4.41 ([GJN20b, Thm. 7.2]). Let d be a positive integer. Let E/Q be an elliptic

curve, and let K/Q be a number field of degree N , where the smallest prime divisor of N is

≥ d. Then

(i) If d ≥ 11, then E(K)[p∞] = E(Q)[p∞] for all primes p. In particular, E(K)tors =

E(Q)tors.

(ii) If d ≥ 7, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 7.

(iii) If d ≥ 5, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 5, 7, 11.

(iv) If d > 2, then E(K)[p∞] = E(Q)[p∞] for all primes p 6= 2, 3, 5, 7, 11, 13, 19, 43, 67, 163.

In particular, this proves the following



189

Corollary 4.42 ([GJN20b, Cor 7.3]). Let d be a positive integer such that the smallest

prime factor of d is ≥ 11. Then ΦQ(d) = Φ(1).

In particular, this proves that for integers (not necessarily odd) d whose smallest prime

divisor is at least 11, ΦGal
Q (d) = Φ(1). Furthermore, Theorem 4.41 says that over number

fields of degree d without “small” prime divisors, K, the only torsion for rational elliptic

curves E(K)tors arises as the result of base changing from an elliptic curve E(Q)tors. This

is a remarkable result in terms of the sheer number of fields for which this result is appli-

cable. Suppose that K is a number field of degree d with the smallest prime divisor of d

being ≥ 11. Noting that 2 · 3 · 5 · 7 = 210, we can write d = 210k + r, where k ∈ Z≥0 and

(r, 210) = 1. In particular, we now know the possible torsion subgroups for Galois number

fields of degree d with smallest prime divisor ≥ 7 because the torsion subgroups in Φ(1)

occur over every Galois number field (infinitely often). Ordering number fields by their

degree, González-Jiménez and Najman’s result applies to φ(210)
210

= 8
35
≈ 22.9% of number

fields. Finally, as remarked by González-Jiménez and Najman, Corollary 4.42 is perhaps

the best possible result in this direction in the following sense: for primes p ∈ {2, 3, 5, 7},

the set
∞⋃
n=1

ΦQ(pn)

will contain Z/pkZ for each positive integer k.

6.10 The Classification over Odd Degree Galois Fields

We have enough to classify the possible torsion subgroups for rational elliptic curves over

odd degree number fields. By abuse of notation, we define the following set:

ΦGal,odd
Q (d∞) :=

⋃
d∈N
d odd

ΦGal
Q (d).
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Of course, a priori, there is no need for this set to be finite. But all of our previous work

not only proves that this set is finite, but identifies the set explicitly.

Theorem 6.23. The set ΦGal,odd
Q (d∞) is finite, and if E(K)tors ∈ ΦGal,odd

Q (d∞), then

E(K)tors is precisely one of the following:


Z/nZ, with n = 1, 2, . . . , 14, 18, 19, 21, 25, 27, 43, 67, 163 or

Z/2Z⊕ Z/2nZ, with n = 1, 2, 3, 4, 7.

Moreover, each such possibility occurs for some rational elliptic cure and some odd degree

Galois field.

Proof. If K is an odd degree Galois number field and E/Q is a rational elliptic curve, we

know that E(K)tors is one of the torsion subgroups given in Lemma 6.5. As this is true

for any odd degree Galois number field of degree d and any rational elliptic curve E, we

know that ΦGal,odd
Q (d∞) is a subset of the list given in Lemma 6.5. This proves the set

ΦGal,odd
Q (d∞) is finite.

Eliminating from the list of possible torsion subgroups given in Lemma 6.5 precluded by

Lemma 6.7, Lemma 6.8, Lemma 6.9, and Lemma 6.10, we are left with the list of tor-

sion subgroups given in the statement of the theorem. By Proposition 6.15, we know that

Φ(1) ⊆ ΦGal
Q (d) for all d. Table 6.2, Table 6.3, and Table 6.4 show that all remaining cases

occur for some rational elliptic curve over some odd degree Galois field.

Theorem 6.23 proves, a fortiori, that the sets ΦGal
Q (d) are uniformly bounded independently

of the work of Merel and Parent. Furthermore, the largest possible order for a point P ∈

E(K)tors, where E is a rational elliptic curve and K is an odd degree Galois field is 163
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and this bound is sharp, as Table 6.2, Table 6.3, and Table 6.4 show. Note this is also

the largest possible size for the torsion subgroup E(K)tors. Of course, we are primarily

interested in the sets ΦGal
Q (d) for some fixed odd integer d. So our next goal will be to

classify these sets for all odd d. To state this theorem, we make the following definition:

Definition. Let d be a positive odd integer. Write d as d = 3n3 · 5n5 · 7n7 · 11n11N , where

ni is a nonnegative integer and N is an integer not divisible by 3, 5, 7, or 11. Using this

notation, define F (d) := (n3, n5, n7, n11). We say that d has has type F (d). If an odd

degree number field K has degree d, we say also that K has type F (d).

If F (d) = (n3, n5, n7, n11), by abuse of notation, we shall write F (d)+ = (a+, b, c, d)

if F (d) = (n3, n5, n7, n11) with n3 ≥ a, n5 = b, n7 = c, and n11 = d. We define

F+(d) = (a, b+, c, d), . . . , F+(d) = (a+, b+, c, d), F+(d) = (a+, b, c+, d), . . . , and F+(d) =

(a+, b+, c+, d+) mutatis mutandis. We take F (d)+ = (a, b, c, d) to mean F (d) = (a, b, c, d).3

Finally, we also denote by d(a,b,c,d) the set of integers such that d has type F (d) = (a, b, c, d).

Example 6.1. A sample of values for F (d) is given in Table 6.7. Some examples of d(a,b,c,d)

can be found below.

d(0,1,0,0) = {5N : N ∈ N, gcd(3, 5, 7, 11, N) = 1}

d(2,0,0,0) = {9N : N ∈ N, gcd(3, 5, 7, 11, N) = 1}

d(1,0,1,0) = {21N : N ∈ N, gcd(3, 5, 7, 11, N) = 1}

Observe that F (3)+ = (1, 0, 0, 0), F (3)+ = (1+, 0, 0, 0), and F (3)+ = (1, 0, 0, 0+) but

F (3)+ 6= (2, 0, 0, 0), F (3)+ 6= (1+, 1, 0, 0), and F (3)+ 6= (1, 0, 1+, 0). Similarly, F (55)+ =

3We are trying to specify at least (or exactly) how many factors of 3, 5, 7, and 11 an integer d has. Saying
F (d) = (a, b, c, d) says that d has exactly a factors of 3, b factors of 5, c factors of 7, and d factors of 11. We create
the F+(d) notation to indicate when d has at least a specified number of factors for one or more of the primes 3,
5, 7, or 11. Writing F+(d) = (a, b, c, d) with no ‘+’ on any factor simply means we want d to have exactly the
specified number of factors for each of the primes 3, 5, 7, and 11. Hence, F+(d) = (a, b, c, d) simply means F (d) =
(a, b, c, d).
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Table 6.7: A table of F (d) for select d values

d F (d)
1 (0, 0, 0, 0)
3 (1, 0, 0, 0)
5 (0, 1, 0, 0)
21 (1, 0, 1, 0)
26 (0, 0, 0, 0)
45 (2, 1, 0, 0)
55 (0, 1, 0, 1)

(0, 1, 0, 1), F (55)+ = (0, 1+, 0, 1), and F (3)+ = (0+, 1, 0, 1) but F (55)+ 6= (1, 1, 0, 1),

F (55)+ 6= (0, 2, 0, 1), and F (3)+ 6= (1+, 1, 0, 1). /

We can now state our main theorem.

Theorem 6.24. Let d be a positive odd integer. The set of possible isomorphism classes of

torsion subgroups E(K)tors, where E is a rational elliptic curve and K/Q is an odd degree

number field of degree d, i.e. ΦGal
Q (d), is given in Table 6.8.

Proof. We know that any torsion subgroup in ΦGal
Q (d) must be one among the list in Theo-

rem 6.23. By Corollary 6.16 for all d (not necessarily odd), we know that Φ(1) ⊆ ΦGal
Q (d).

If d has no prime factors p with p ≤ 11, then by Corollary 4.42, we know that ΦGal
Q (d) =

Φ(1). Otherwise, by Lemma 6.17, Lemma 6.18, and Lemma 6.19, the torsion subgroups

in ΦGal,odd
Q (d∞) \ Φ(1) depend only on the factorization of d, i.e. how many factors of 3, 5,

7, and 11 d has. Applying these divisibility conditions and the examples from Table 6.2,

Table 6.3, and Table 6.4 combined with Proposition 6.15 gives the exact list of possibilities

for ΦGal
Q (d) that appear in Table 6.8, and these are the only torsion subgroups which can

appear.

As a final remark, the largest possible size for #ΦGal
Q (d), where d is an odd integer, is 42
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and occurs whenever d has type (4+, 1+, 1+, 1+).

Table 6.8: The set of possible isomorphism classes of torsion subgroups ΦGal
Q (d), where d is

odd, determined by F (d)+

F (d)+ ΦGal
Q (d) F (d)+ ΦGal

Q (d)

(0, 0, 0+, 0+) Φ(1) (2, 0, 1+, 1+) ΦQ(3) ∪ {Z/19Z,Z/27Z,
Z/43Z,Z/67Z}

(0, 1, 0+, 0+) ΦQ(5) (2, 1+, 0, 0) ΦQ(3) ∪ ΦQ(5) ∪
{Z/19Z,Z/27Z}

(1, 0, 0, 0) ΦQ(3) (2, 1+, 0, 1+) ΦQ(3) ∪ ΦQ(5) ∪
{Z/19Z,Z/27Z,Z/67Z}

(1, 0, 0, 1+) ΦQ(3) ∪ {Z/11Z} (2, 1+, 1+, 0) ΦQ(3) ∪ ΦQ(5) ∪
{Z/19Z,Z/27Z,Z/43Z}

(1, 0, 1+, 0) ΦQ(3) ∪ {Z/43Z} (2, 1+, 1+, 1+) ΦQ(3) ∪ ΦQ(5) ∪
{Z/19Z,Z/27Z,Z/43Z,

Z/67Z}

(1, 0, 1+, 1+) ΦQ(3) ∪ {Z/11Z,Z/43Z} (4+, 0, 0, 0) ΦQ(3) ∪ {Z/19Z,Z/27Z,
Z/163Z}

(1, 1+, 0, 0) ΦQ(3) ∪ ΦQ(5) (4, 0, 0, 1+) ΦQ(3) ∪ {Z/19Z,Z/27Z,
Z/67Z,Z/163Z}

(1, 1+, 0, 1+) ΦQ(3) ∪ ΦQ(5) ∪ {Z/67Z} (4, 0, 1+, 0) ΦQ(3) ∪ {Z/19Z,Z/27Z,
Z/47Z,Z/163Z}

(1, 1+, 1+, 0) ΦQ(3) ∪ ΦQ(5) ∪ {Z/43Z} (4, 0, 1+, 1+) ΦQ(3) ∪ {Z/19Z,Z/27Z,
Z/43Z,Z/67Z,Z/163Z}

(1, 1+, 1+, 1+) ΦQ(3) ∪ ΦQ(5) ∪ {Z/43Z,
Z/67Z}

(4, 1+, 0, 0) ΦQ(3) ∪ ΦQ(5) ∪
{Z/19Z,Z/27Z,Z/163Z}

(2, 0, 0, 0) ΦQ(3) ∪ {Z/19Z,Z/27Z} (4, 1+, 0, 1+) ΦQ(3) ∪ ΦQ(5) ∪ {Z/19Z,
Z/27Z,Z/67Z,Z/163Z}

(2, 0, 0, 1+) ΦQ(3) ∪ {Z/19Z,Z/27Z,
Z/67Z}

(4, 1+, 1+, 0) ΦQ(3) ∪ ΦQ(5) ∪ {Z/19Z,
Z/27Z,Z/43Z,Z/163Z}

(2, 0, 1+, 0) ΦQ(3) ∪ {Z/19Z,Z/27Z,
Z/43Z}

(4+, 1+, 1+, 1+) ΦQ(3) ∪ ΦQ(5) ∪ {Z/19Z,
Z/27Z,Z/43Z,Z/67Z,Z/163Z}
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Chapter 7

Future Directions

After the classification of torsion subgroups of rational elliptic curves over odd degree

Galois number fields, there are a great number of directions one could take. One obvious

question would be could one replicate the work for rational elliptic curves over even degree

Galois number fields. However at present, this would be appear to be a futile direction.

Such a classification would necessarily entail classifying the torsion subgroups E(Q(ζn)),

where ζn is a primitive nth root of unity. For each n, the field Q(E[n]) contains Q(ζn), c.f.

Corollary 3.15, this would very nearly amount to the complete classification of ΦQ(d) for

all d, which is not currently likely. Recall that González-Jiménez and Lozano-Robledo’s

work in [GJLR18], and González-Jiménez and Najman’s work in [GJN20b] extending

Chou’s classification of ΦGal
Q (4) in [Cho16] completely determined the set ΦQ(4). A future

problem could then be to then use the classification of ΦGal
Q (9) to assist in determining the

set ΦQ(9).

If one instead wanted to focus on the set ΦGal
Q (9), another direction would be to determine
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the possible torsion growth of torsion subgroups when base extending from Q or a cubic

Galois field, similar to the work of González-Jiménez, Najman, and Tornero in [GJNT16].

In fact, some of the work towards this has been done in this paper as we have classified

the growth from E(Q)tors to E(K)tors, where K/Q is a general nonic Galois field. How-

ever, we did not classify the possible torsion growth based on the isomorphism type of

Gal(K/Q). Nor did we classify the possible growth from an intermediate cubic Galois

subfield to a general nonic Galois field. However, all the results needed for such a classi-

fication should already be contained within this paper. One could also try to determine

the possible torsion growths from E(Q)tors to E(K)tors, where K is a general odd degree

Galois number field. Again, all of the results required for such a classification should be

contained herein. Furthermore, one could try to classify the possibilities for E(K)tors as E

varies over all rational elliptic curves base extended to a fixed nonic Galois field K.

One could also try to classify the possible torsion structures ΦGal
Q (d) if one restricts to

number fields K/Q having Galois groups with a specified structure, such as abelian groups.

This could then make use of Chou’s result [Cho19]. Furthermore, one could look at the

interesting interplay between torsion subgroups and the arithmetic of number fields hinted

at in Lemma 5.34. This is similar to work of Hanson Smith, who has interesting results

connecting elliptic curves and monogenic number fields, c.f. [Smi18], [GSS19], [Smi20a],

[Smi20b], and [SvH21]. Finally, following [Guz̆19] and [CN21], one could try to extend the

classification of ΦGal
Q (d) instead to ΦGal

j∈Q(d).

Another possible future research direction would be to try to ‘count’ torsion subgroups oc-

curring ΦGal
Q (9). For instance in [HS17], Harron and Snowden asked the following question:

“Mazur established that there are only 15 possibilities for the torsion sub-

group. . . With this classification in hand, it is natural to ask a more refined
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question: how often does each of these groups occur?”

Of course, one must define what one means by ‘count.’ For each elliptic curve E, choose a

model EA,B : y2 = x3 + Ax + B, where A,B ∈ Z are chosen ‘minimally’, i.e. gcd(A3, B2)

is not divisibly by p12 for any prime p. Equivalently, for all primes p, if p4 | A, then p6 - B.

Otherwise, EA,B ∼= EA/p4,B/p6 using the map (x, y) 7→ (p2x′, p3y′). All elliptic curves E/Q

are isomorphic to an elliptic curve of this form. One then defines the (näıve) height of

E to be H(EA,B) := max(|A|33, |B|2).1 There are then only finitely many elliptic curves

up to fixed height X ∈ R. Then if G ∈ Φ(1), Harron and Snowden define NG(X) to be

the number of (isomorphism classes of) elliptic curves E/Q of height at most X for which

E(Q)tors is isomorphic to G. They then prove the following:

Theorem 7.1 ([HS17, Thm. 1.1]). For any group G ∈ Φ(1), the limit

1

d(G)
= lim

X→∞

logNG(X)

logX

exists. The value of d(G) is as indicated in Table 7.1.

Table 7.1: The values of d(G) for G ∈ Φ(1)

G d G d G d

0 6/5 Z/6Z 6 Z/12Z 24
Z/2Z 2 Z/7Z 12 Z/2Z× Z/2Z 3
Z/3Z 3 Z/8Z 12 Z/2Z× Z/4Z 6
Z/4Z 4 Z/9Z 18 Z/2Z× Z/6Z 12
Z/5Z 6 Z/10Z 18 Z/2Z× Z/8Z 24

Because d(0) < d(G) for all G ∈ Φ(1) with #G > 1, this recovers a result of Duke [Duk97]

that ‘almost all’ rational elliptic curves have trivial torsion. Harron and Snowden prove a

1Some would define this to be max(4|A|33, 27|B|2) to more closely match the discriminant. But for counting
purposes, this gives the same count as H(EA,B) in the limit as H →∞ in that the difference tends to 0.
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stronger result: for G ∈ Φ(1) there exist positive constants K1 and K2 such that

K1X
1/d(G) ≤ NG(X) ≤ K2X

1/d(G)

holds for all X ≥ 1, suggesting that the following limit exists:

c(G) = lim
X→∞

NG(X)

X1/d(G)

They prove this is the case for #G ≤ 3.

Theorem 7.2 ([HS17, Thm. 1.6]). Let f, g ∈ Q[t] be non-zero coprime polynomials of

degrees r and s, with at least one of r or s positive, and write

max
(r

4
,
s

6

)
=

n

m
,

with n and m coprime. Assume n = 1 or m = 1. Let E be the family of elliptic curves

defined by

y2 = x3 + f(t)x+ g(t).

Let N(X) be the number of (isomorphism classes of) elliptic curves E/Q of height at most

X for which E ∼= Et for some t ∈ Q. Then there exist positive constants K1 and K2 such

that

K1X
(m+1)/12n ≤ N(X) ≤ K2X

(m+1)/12n

for all X ≥ 1.

Harron and Snowden also discuss several interesting possible future directions for their

work in their paper, the most general being the following:
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“Let X and Y be proper smooth Deligne-Mumford stacks over Q with course

space P1, and let f : Y → X be a map. Suppose that there is a good notion of

height hX on the set |X (Q)|, where | · | denotes isomorphism classes. Then one

would like a formula for

lim
T→∞

#{x ∈ f(|Y(Q)|) | hX (x) ≤ T}
log T

in terms of invariants of X ,Y, and f . More generally, one may ask these ques-

tions over general global fields. What kind of dependence is there on the base

field?”

Pizzo, Pomerance, and Voight perform similar analyses when counting elliptic curves with

a 3-isogeny in [PPV20]. Bruin and Najman extend Harron and Snowden’s work by ex-

tending their result to number fields and level structure G such that the corresponding

modular curve XG is a weighted projective line P(w0, w1) and the morphism XG → X(1)

some specified conditions, e.g. modular curves X1(m,n) with a course moduli space of

genus 0.

Theorem 7.3 ([BN20, Thm. 1.1]). Let n be a positive integer, and let G be a subgroup of

GL2(Z/nZ). Let KG be the fixed field of the action of G on Q(ζn) given by (g, ζn) 7→ ζdet g
n .

Assume that the stack XG over KG is isomorphic to P(w)KG
, where w = (w0, w1) is a pair

of positive integers, and let e be as in [BN20, Lem 4.1]. Furthermore, assume e = 1 or

w = (1, 1) holds. Then for every finite extension K of KG, we have

NG,K(X) � X1/d(G,K) as X →∞,

where d(G,K) =
12e

w0 + w1

.
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Because ‘most’ of the torsion in ΦGal
Q (d) occurs over Q for any odd d, and one should be

able to track the number of fields over which the torsion can grow, one should be able to

apply the results from Theorem 7.2 to count the density of elliptic curves over these fields.

One could also try to do this in a simpler case, such as for ΦQ(2).
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Appendix

Because we made fair use of Tables 2–4 in [LR13] in this work, we reproduce these tables

here. See [LR13] for detailed references for these tables.

Table 7.2: Hauptmoduln for the function field of X0(N), genus 0 case [LR13, Table 2]

N Hauptmodul N Hauptmodul

2 h = 212 ·
Å
η(2τ)

η(τ)

ã24

9 h = 3 + 33 ·
Å
η(9τ)

η(τ)

ã3

3 h = 36 ·
Å
η(3τ)

η(τ)

ã12

10 h = 4 + 225 · η(2τ)η(10τ)3

η(τ)3η(5τ)

4 h = 28 ·
Å
η(4τ)

η(τ)

ã8

12 h = 3 + 233 · η(2τ)2η(3τ)η(12τ)3

η(τ)3η(4τ)η(6τ)2

5 h = 53 ·
Å
η(5τ)

η(τ)

ã6

13 h = 13 ·
Å
η(13τ)

η(τ)

ã2

6 h = 2332 · η(2τ)η(6τ)5

η(τ)5η(3τ)
16 h = 2 + 23 · η(2τ)η(16τ)2

η(τ)2η(8τ)

7 h = 72 ·
Å
η(7τ)

η(τ)

ã4

18 h = 2 + 2 · 3 · η(2τ)η(3τ)η(18τ)2

η(τ)2η(6τ)η(9τ)

8 h = 4 + 25 · η(2τ)2η(8τ)4

η(τ)4η(4τ)2
25 h = 1 + 5 · η(25τ)

η(τ)

Notation: η(τ) = q1/24

∞∏
n=1

(1− qn), and q = e2πiτ
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Table 7.3: All non-cuspidal rational points on X0(N), genus 0 case [LR13, Table 3]

N j and j′-invariants such that E and E ′ are N -isogenous

2 j = (h+16)3

h
j′ = (h+256)3

h2

3 j = (h+27)(h+3)3

h
j′ = (h+27)(h+243)3

h3

4 j = (h2+16h+16)3

h(h+16)
j′ = (h2+256h+4096)3

h4(h+16)

5 j = (h2+10h+5)3

h
j′ = (h2+250h+55)3

h5

6 j = (h+6)3(h3+18h2+84h+24)3

h(h+8)3(h+9)2
j′ = (h+12)3(h3+252h2+3888h+15552)3

h6(h+8)2(h+9)3

7 j = (h2+13h+49)(h2+5h+1)3

h
j′ = (h2+13h+49)(h2+245h+2401)3

h7

8 j = (h4−16h2+16)3

(h2−16)h2
j′ = (h4+240h3+2144h2+3840h+256)3

(h−4)8h(h+4)2

9 j = h3(h3−24)3

h3−27
j′ = (h+6)3(h3+234h2+756h+2160)3

(h−3)8(h3−27)

10 j = (h6−4h5+16h+16)3

(h+1)2(h−4)h5
j′ = (h6+236h5+1440h4+1920h3+3840h2+256h+256)3

(h−4)10h2(h+1)5

12 j = (h2−3)3(h6−9h4+3h2−3)3

h4(h2−9)(h2−1)3
j′ = (h2+6h−3)3(h6+234h5+747h4+540h3−729h2−486h−243)3

(h−3)12(h−1)h3(h+1)4(h+3)3

13 j = (h2+5h+13)(h4+7h3+20h2+19h+1)3

h
j′ = (h2+5h+13)(h4+247h3+3380h2+15379h+28561)3

h13

16
j = (h8−16h4+16)3

h4(h4−16)

j′ = (h8+240h7+2160h6+6720h5+17504h4+26880h3+34560h2+15360h+256)3

(h−2)16h(h+2)4(h2+4)

18
j = (h3−2)3(h9−6h6−12h3−8)3

h9(h3−8)(h3+1)2

j′ = (h3+6h2+4)3(h9+234h8+756h7+2172h6+1872h5+3024h4+48h3+3744h2+64)3

(h−2)18h2(h+1)9(h2−h+1)(h2+2h+4)2

25
j = (h10+10h8+35h6−12h5+50h4−60h3+25h2−60h+16)3

h5+5h3+5h−11

j′ = (h10+240h9+2170h8+8880h7+34835h6+83748h5+206210h4+313380h3+503545h2+424740h+375376)3

(h−1)25(h4+h3+6h2+6h+11)
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Table 7.4: All non-cuspidal rational points on X0(N), genus > 0 case [LR13, Table 3]

N , genus(X0(N)) j-invariants Cremona Labels Conductors CM

11, g = 1

j = −11 · 1313 121a1, 121c2 112 No

j = −215 121b1, 121b2 112 −11

j = −112 121c1, 121a2 112 No

14, g = 1
j = −33 · 53 49a1, 49a3 72 −7

j = 33 · 53 · 173 49a2, 49a4 72 −28

15, g = 1

j = −52/2 50a1, 50b3 2 · 52 No

j = −52 · 2413/23 50a2, 50b4 2 · 52 No

j = −5 · 293/25 50a3, 50b1 2 · 52 No

j = 5 · 2113/215 50a4, 50b2 2 · 52 No

17, g = 1
j = −172 · 1013/2 14450p1 2 · 52 · 172 No
j = −17 · 3733/217 14450p2 2 · 52 · 172 No

19, g = 1 j = −215 · 33 361a1, 361a2 192 −19

21, g = 1

j = −32 · 56/23 162b1, 162c2 2 · 34 No

j = 33 · 53/2 162b2, 162c1 2 · 34 No

j = −32 · 53 · 1013/221 162b3, 162c4 2 · 34 No

j = −33 · 53 · 3833/27 162b4, 162c3 2 · 34 No

27, g = 1 j = −215 · 3 · 53 27a2, 27a4 33 −27

37, g = 2
j = −7 · 113 1225h1 52 · 72 No
j = −7 · 1373 · 20833 1225h2 52 · 72 No

43, g = 3 j = −218 · 33 · 53 1849a1, 1849a2 432 −43

67, g = 5 j = −215 · 33 · 53 · 113 4489a1, 4489a2 672 −67

163, g = 13 j = −218 · 33 · 53 · 233 · 293 26569a1, 26569a2 1632 −163

Remark: The Cremona labels are the representatives in this class of least conductor.

https://www.lmfdb.org/EllipticCurve/Q/121a1/
https://www.lmfdb.org/EllipticCurve/Q/121c2/
https://www.lmfdb.org/EllipticCurve/Q/121b1/
https://www.lmfdb.org/EllipticCurve/Q/121b2/
https://www.lmfdb.org/EllipticCurve/Q/121c1
https://www.lmfdb.org/EllipticCurve/Q/121a2/
https://www.lmfdb.org/EllipticCurve/Q/49a1
https://www.lmfdb.org/EllipticCurve/Q/49a3/
https://www.lmfdb.org/EllipticCurve/Q/49a2/
https://www.lmfdb.org/EllipticCurve/Q/49a4/
https://www.lmfdb.org/EllipticCurve/Q/50a1/
https://www.lmfdb.org/EllipticCurve/Q/50b3/
https://www.lmfdb.org/EllipticCurve/Q/50a2/
https://www.lmfdb.org/EllipticCurve/Q/50b4/
https://www.lmfdb.org/EllipticCurve/Q/50a3/
https://www.lmfdb.org/EllipticCurve/Q/50b1/
https://www.lmfdb.org/EllipticCurve/Q/50a4/
https://www.lmfdb.org/EllipticCurve/Q/50b2/
https://www.lmfdb.org/EllipticCurve/Q/14450p1/
https://www.lmfdb.org/EllipticCurve/Q/14450p2/
https://www.lmfdb.org/EllipticCurve/Q/361a1/
https://www.lmfdb.org/EllipticCurve/Q/361a2/
https://www.lmfdb.org/EllipticCurve/Q/162b1/
https://www.lmfdb.org/EllipticCurve/Q/162c2/
https://www.lmfdb.org/EllipticCurve/Q/162b2/
https://www.lmfdb.org/EllipticCurve/Q/162c1/
https://www.lmfdb.org/EllipticCurve/Q/162b3/
https://www.lmfdb.org/EllipticCurve/Q/162c4/
https://www.lmfdb.org/EllipticCurve/Q/162b4/
https://www.lmfdb.org/EllipticCurve/Q/162c3/
https://www.lmfdb.org/EllipticCurve/Q/27a2/
https://www.lmfdb.org/EllipticCurve/Q/27a4/
https://www.lmfdb.org/EllipticCurve/Q/1225h1/
https://www.lmfdb.org/EllipticCurve/Q/1225h2/
https://www.lmfdb.org/EllipticCurve/Q/1849a1/
https://www.lmfdb.org/EllipticCurve/Q/1849a2/
https://www.lmfdb.org/EllipticCurve/Q/4489a1/
https://www.lmfdb.org/EllipticCurve/Q/4489a2/
https://www.lmfdb.org/EllipticCurve/Q/26569a1/
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supérieur à l’unité, Comptes rendus de l’Académie des Sciences Paris 212

(1941), 882–885. ↑12

[Cho16] M. Chou, Torsion of rational elliptic curves over quartic Galois number fields,

Journal of Number Theory 160 (2016), 603–628. ↑87, 88, 89, 91, 132, 133,

145, 195

[Cho19] M. Chou, Torsion of rational elliptic curves over the maximal abelian exten-

sion of Q, Pacific Journal of Mathematics 302 (2019), no. 2, 481–509. ↑110,

132, 133, 134, 160, 196



209
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number field, Journal de Théorie des Nombres de Bordeaux 26 (2014), no. 3,

655–672. MR3320497 ↑104
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[Hus04] D. Husemöller, Elliptic Curves, Second Edition, Springer-Verlag New York,

2004. ↑23, 26

[Jeo16] D. Jeon, Families of Elliptic Curves over Cyclic Cubic Number Fields with

Prescribed Torsion, Mathematics of Computation 85 (2016), no. 299, 1485–

1502. ↑72



217

[JKL11a] D. Jeon, C. H. Kim, and Y. Lee, Families of elliptic curves over cubic num-

ber fields with prescribed torsion subgroups, Mathematics of Computation 80

(2011), no. 273, 579–591. ↑72

[JKL11b] D. Jeon, C. H. Kim, and Y. Lee, Families of elliptic curves over quartic num-

ber fields with prescribed torsion subgroups, Mathematics of Computation 80

(2011), 2395–2410. ↑76

[JKL13] D. Jeon, C. H. Kim, and Y. Lee, Infinite families of elliptic curves over Di-

hedral quartic number fields, Journal of Number Theory 133 (2013), no. 1,

115–122. ↑76

[JKL15] D. Jeon, C. H. Kim, and Y. Lee, Families of elliptic curves with prescribed

torsion subgroups over dihedral quartic fields, Journal of Number Theory 147

(2015), 342–363. ↑76

[JKP16] D. Jeon, C. H. Kim, and E. Park, On the Torsion of Elliptic Curves over

Quartic Number Fields, Journal of the London Mathematical Society 74

(2016), 1–12. ↑76

[JKS04] D. Jeon, C. H. Kim, and A. Schweizer, On the torsion of elliptic curves over

cubic number fields, Acta Arithmetica 113 (2004), no. 3, 291–301. ↑72

[JS20] D. Jeon and A. Schweizer, Torsion of rational elliptic curves over different

types of cubic fields, International Journal of Number Theory 16 (2020), no. 6,

1307–1323. ↑74



218

[Kam92a] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular

forms, Inventiones Mathematicae 109 (1992), no. 1, 221–229. ↑70

[Kam92b] S. Kamienny, Torsion points on elliptic curves over fields of higher degree,

International Mathematics Research Notices 6 (1992), 129–133. ↑70

[Kat09] V. J. Katz, A History of Mathematics: An Introduction, second edition,

Boston: Addison-Wesley, 2009. ↑4

[Ken82] M. A. Kenku, On the number of Q-isomorphism classes of elliptic curves in

each Q-isogeny class, Journal of Number Theory 15 (1982), no. 2, 199–202.

↑122, 123

[Kis97] T. Kishi, On Torsion Subgroups of Elliptic Curves with Integral j-Invariant

over Imaginary Cyclic Quartic Fields, Tokyo Journal of Mathematics 20

(1997), no. 2, 315–329. ↑117

[KM88] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over

quadratic fields, Nagoya Mathematics Journal 109 (1988), 125–149. ↑70

[KN11] S. Kamienny and F. Najman, Torsion groups of elliptic curves over quadratic

fields, Acta Arithmetica 152 (2011), no. 3, 291–305. ↑71, 87

[Kna92] A. W. Knapp, Elliptic Curves. (MN-40), Volume 40, Princeton University

Press, 1992. ↑23, 26, 60, 170

[Kob93] N. Koblitz, Introduction to elliptic curves and modular forms 97 (1993). ↑17



219

[KSW19] Z. Klagsbrun, T. Sherman, and J. Weigandt, The Elkies curve has rank 28

subject only to GRH, Mathematics of Computation 88 (2019), 837–846. ↑38

[Kub76] D. S. Kubert, Universal Bounds on the Torsion of Elliptic Curves, Proceed-

ings of the London Mathematical Society s3-33 (1976), no. 2, 193–237. ↑148

[KW09a] C. Khare and J.-P. Wintenberger, JP. Serre’s modularity conjecture (I), In-

ventiones mathematicae 178 (2009), 485–504. ↑114

[KW09b] C. Khare and J.-P. Wintenberger, JP. Serre’s modularity conjecture (II), In-

ventiones mathematicae 178 (2009), 505–586. ↑114

[Lan02] S. Lang, Algebra, reviewed 3rd edition, Springer-Verlag New York, 2002. ↑138,

139, 157

[Lan90] S. Lang, Cyclotomic Fields I and II, 2nd ed., Springer-Verlag New York, 1990.

↑111

[Lev68] M. Levin, On the group of rational points on elliptic curves over function

fields, American Journal of Mathematics 90 (1968), no. 2, 456–462. ↑118

[LFN20] S. Le Fourn and F. Najman, Torsion of Q-curves over quadratic fields, Mathe-

matical Research Letters 27 (2020), no. 1, 209–225. ↑114, 115

[LL85] M. Laska and M. Lorenz, Rational points on elliptic curves over Q in ele-

mentary abelian 2-extensions of Q, Journal für die reine und angewandte

Mathematik 355 (1985), 163–172. ↑104



220

[LN59] S. Lang and A. Neron, Rational Points of Abelian Varieties Over Function

Fields, American Journal of Mathematics 81 (1959), no. 1, 95–118. ↑37
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(1929), 281–315. ↑37

[Wil95] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of

Mathematics 141 (1995), no. 3, 443–551. ↑15

[Zag90] D. Zagier, Elliptische Kurven: Fortschritte und Anwendungen, Jahresbericht

der Deutschen Mathematiker-Vereinigung (DMV) 92 (1990), no. 2, 58–76. ↑16
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