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Abstract

We begin the thesis by giving an intuitive introduction to calculus on mani-

folds for the non-mathematician. We then give a semi-intuitive description on

Ricci curvature for the non-geometer. We give a description of the N-Bakry-

Émery Ricci curvature and the N-quasi Einstein metric. The main results in

this thesis are related to the N-Bakry-Émery Ricci curvature and the N-quasi

Einstein metric.

Our first set of main results are as follows. We generalize topological results

known for noncompact manifolds with nonnegative Ricci curvature to spaces

with nonnegative N-Bakry Émery Ricci curvature. We study the Splitting The-

orem and a property called the geodesic loops to infinity property in relation

to spaces with nonnegative N-Bakry Émery Ricci Curvature. In addition, we

show that if Mn is a complete, noncompact Riemannian manifold with non-

negative N-Bakry Émery Ricci curvature where N > n, then Hn−1(M, Z) is

0.

For our second set of main results, we classify the compact locally homo-

geneous non-gradient N-quasi Einstein 3-manifolds. Along the way, we also

prove that given a compact quotient of a Lie group of any dimension that is



N-quasi Einstein, the potential vector field X must be left invariant and Killing.

We also classify the nontrivial N-quasi Einstein metrics that are a compact

quotient of be the product of two Einstein metrics. We also show that S1 is

the only compact manifold of any dimension which admits a metric which is

nontrivially N-quasi Einstein and Einstein.
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1 Calculus on manifolds

This chapter is meant to be an intuitive explanation of objects like manifolds

and Euclidean space. There are few definitions and many figures and im-

ages. For mathematical definitions of such objects, the author recommends

Do Carmo’s Riemannian Geometry [8] and Lawson’s Topology: A Geometric Ap-

proach [21].

1.1 What is Euclidean space?

While the name “Euclidean space" sounds like a difficult mathematical term,

the space itself is easy to understand as it is modeled after our world.

The world we live in is an example of 3-dimensional Euclidean space. In

our world, we can move forward, backward, left, and right. If we get in an

airplane, we can also move up and down.

Figure 1.1: If we are in an
airplane in our world, we can
move upward, downward,
forward, backward, left and
right.

The forward and backward motion corresponds to one of the dimensions

in 3-dimensional Euclidean space. The other two dimensions are the left and

right movements and the up and down movements, respectively.

Two-dimensional Euclidean space is similar to the world that lies on a chalk

1
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board or a white board. If we are a stick figure on the chalk board with the

ability to move around on the chalk board, we can move up and down, as

well as left and right. The up and down movement corresponds to one dimen-

sion and the left and right movement corresponds to the second dimension.

We lose the ability to move forward and backward when we switch from 3-

dimensions to 2-dimensions.

Figure 1.2: We can only move
left, right, up, down, and
a combination of the four
directions in two-dimensional
Euclidean space.

For an example of 1-dimensional Euclidean space, imagine a piece of string

laid flat on a table with the left end of the string toward the left side of the

table and the right end of the string toward the right side of the table. Some

segments of the string are colored in with pink marker. In this scenario, we

are the pink segments in the string. Imagine that we are able to move along

the string. The only movements we can make are left and right. This is the

one-dimension in one-dimensional Euclidean space. Figure 1.3: The string is an
example of Euclidean space.
The pink segment can only
move left and right on the
string.Euclidean space in 0-dimensions is the least exciting of the ones we can

picture. This space looks like a point. If we are living on a point, then we

must be the entire point, and we are unable to move. This inability to move

corresponds to the 0-dimensions.

Figure 1.4: Zero-dimensional
Euclidean space

While 0, 1, 2, and 3 dimensional Euclidean spaces are the only spaces we

can easily picture, the concepts of n-dimensional Euclidean space for n > 3 ex-

ist and can be interpreted in a similar way to the lower dimensional Euclidean

spaces. Note that in each of our examples of Euclidean space, the spaces them-

selves are “flat" in some sense. Our chalkboard is a flat surface and our string
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is laid out flat from left to right. This is a defining characteristic of Euclidean

space. But what about objects that aren’t flat, like a rubber ball or an unfilled

donut? Can we talk about living on objects which aren’t flat in a meaningful

way?

1.2 What is a manifold?

In Section 1.1, we explored the concept of the Euclidean space and how the

dimensions of the Euclidean space affect the available movements to an object

that lives in such a space. In this section, we give some intuition for an object

called a manifold.

A manifold is an object which locally looks like Euclidean space. In other

words, if we zoom in closely enough to a manifold of dimension n, the mani-

fold will start to look like Euclidean space of dimension n. We often call mani-

folds of dimension n Mn.

As a first example, we will look at the sphere. When we say a “sphere", we

mean a hollow object: one which resembles a beach ball or a basketball, rather

than a baseball.

Figure 1.5: The patch outlined
in purple on the sphere resem-
bles 2-dimensional Euclidean
space.

While we often think of a sphere as a 3-dimensional object since they exist

in our world, we classify the sphere as a 2-dimensional manifold. If we zoom

in closely to a sphere, we see that the sphere resembles two-dimensional Eu-

clidean space.

It is important to note that when picturing ourselves living on a 2-dimensional
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manifold such as a sphere, we should not imagine the sphere in the context of

a sphere living in 3-dimensional Euclidean space. If we are living on the 2-

dimensional sphere, we are not sitting on the sphere the way we are currently

sitting on the earth. Rather, we are a 2-dimensional object living on the sphere,

in the same way we were in the chalk board example.

Figure 1.6: This beach ball is an
example of a 2-manifold. Since
we are living on the beach ball,
we are also a 2-D figure and we
can move left and right as well
as up and down.

An object like the interior of a baseball is a 3-manifold since if we zoom

in closely enough to the baseball, the baseball resembles three-dimensional

Euclidean space. Again, we shouldn’t imagine this baseball in our world;

rather, the baseball is the entire world. If we were to live in the baseball, we

would be a 3-dimensional object within the baseball, rather than sitting on top

of the baseball.

An example of a 1-dimensional manifold is a circle. If we were to be living

in the circle, we would be segments of the circle.

Figure 1.7: The line segment
within the purple brackets
on this circle resembles 1-
dimensional Euclidean space.

An example of a 0-dimensional manifold is a set of disjoint points. If we

were to be living in the 0-manifold, we would be a subset of the disjoint

points.

Figure 1.8: The three points
in this graphic represent a 0-
dimensional manifold. If we are
living on this 0-manifold, then
we must be one of the points.
In this graphic, we are the pink
point.

1.3 Differentiable manifold: an intuitive summary

Now that we have some intuition for the concept of an n-dimensional man-

ifold, we can talk about the objects that we will work with in this thesis: the

differentiable manifold. Although the definition of a differentiable manifold is

quite abstract, we’d like to give intuition for the question, “How can we take

derivatives on a manifold?"
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The theme of single variable calculus is as follows: if we have functions with

one independent variable, x, and one dependent variable, y = f (x), what can

we say about the slope, or derivative, of such a function? What can we say

about the area under the curve, or the integral of such a function? How are the

function, derivative, and integral related?

Figure 1.9: In this image,
domain is R, with coordinates
x, which is depicted in black.
The range is also R, depicted
in purple and with coordinates
y. The function is depicted in
pink.

In multivariable (specifically two variable) calculus classes, we have two

independendent variables, x and y, and one dependent variable, z = f (x, y).

The main theme in two variable calculus is to generalize the concept of the

derivative and the integral to the two independent variable and one dependent

variable case.

Figure 1.10: In two-variable
calculus, the domain is R2,
with coordinates (x, y). This is
depicted in black. The range
is R with coordinates z, which
is depicted in purple. The
function is depicted in pink.

In differential geometry, we want to find derivatives and integrals for func-

tions on differentiable manifolds. To do this, we first need to understand some

nuances of the single variable calculus case and the multivariable calculus

case. In single variable calculus, when we draw the functions, we draw our

functions in 2-dimensions out of convenience. However, the domain actually

R, or 1-dimensional Euclidean space, and the range is also R. In two-variable

calculus, the domain is R2, or 2-dimensional Euclidean space, and the range

is R. Thus, we draw the functions in R3, or 3-dimensional Euclidean space for

convenience.

In differential geometry, rather than considering functions from n-dimensional

Euclidean space to 1-dimensional Euclidean space, we’d like to consider func-

tions from n-dimensional manifolds to 1-dimensional Euclidean space. How-
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ever, the n-dimensional manifolds in Section 1.2 do not have enough structure

to allow us to do calculus. The differentiable manifold essentially puts the cor-

rect type of coordinates which allows us to find derivatives of the functions

from our manifolds Mn to R.

In single variable calculus, since Euclidean space is flat, when we draw the

x-axis and the y-axis, both are straight lines. Manifolds are not necessarily

flat, so we have to piece together the coordinates in a way that allows us to

still do calculus. Essentially, manifolds look like pieces of Euclidean space

glued together. In order to do calculus, we put coordinates (ie the x-axis and

y-axis in the two variable case) on each of the pieces of Euclidean space, and

we piece them together in a way that the coordinates line up nicely. What

could go wrong? If we have coordinates that line up in a way which is not

differentiable, such as a vertical tangent or a cusp, this would be a problem if

we try to do calculus on such a manifold with coordinates.

Finally, what does a function on a differentiable manifold look like? In the

following figure, we consider the manifold M2 = S2.

Figure 1.11: This figure a
function (in pink) with domain
S2 (in black) and range R (in
purple).

Rather than attempt to draw R through every point on S2, we split up the

sphere into six pieces which look like 2-dimensional Euclidean space. The

coordinates on S2 are (x, y) and the coordinates on R, depicted in purple, are

z. The function is depicted in pink. We can then piece the function together

in the same way we’d piece the sphere together. As long as the coordinates

on each piece meet in a way so that the function is differentiable, we can take

derivatives and integrals of this function.



2 Ricci curvature

2.1 What is Ricci curvature?

We are already familiar with the distinction between curved and flat objects

in everyday terminology. For example, we know that a flat basketball is less

desirable than a round basketball. We know that a piece of paper is flat, while

a computer mouse is not flat. We have a children’s ride called the merry-go-

round and a useful tool called a straight-edge. In each of our real-world exam-

ples, we have words like “flat" and “straight" which oppose words like “round"

and “curve". In this chapter, we will discuss how mathematical curvature is

defined in such a way that the smaller, or closer to zero, the curvature is, the

closer the manifold is to flat, or Euclidean space. In some sense, the larger, or

further from zero, the curvature is, the further the manifold is from Euclidean

space.

Now we will define the Riemannian curvature and the Ricci curvature, the

latter of which is the main curvature we will be studying in this thesis. This

definition requires knowledge of the Riemannian metric, which we will denote

g, orthonormal bases, and covariant derivatives, which we will denote ∇. See

7
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Do Carmo’s Riemannian Geometry [8] for detailed descriptions of these objects.

Definition 2.1.1. Let Mn be a Riemannian manifold. Let X and Y be vectors in

T(Mn). Then the Riemannian curvature is defined as follows:

R(X, Y)Z = ∇Y∇XZ−∇X∇YZ +∇[X,Y]Z

for any Z ∈ T(Mn).

Definition 2.1.2. Let Mn be a Riemannian manifold. Let X be a vector in Tp M,

where p is a point on the manifold, and let {Xi}n−1
i=1 be an orthonormal basis such that

each Xi is orthogonal to X. Then

Ricp(X, Y) =
n−1

∑
i=1

g(R(X, Xi)Y, Xi).

Figure 2.1: The top left image
is a given manifold M2. The
top right image shows Tp M,
the tangent space at a point
p. The bottom left image
depicts a vector X in Tp M. The
bottom right image shows X1
orthogonal to X.

To parse this definition, we will consider a Riemannian n-manifold, Mn.

In order to get a good sense of the Ricci curvature of Mn at a point p, we will

consider {Xi}n
i=1 to be an orthonormal basis in Tp(Mn). If we calculate the

following:

Ric(X1, X1) Ric(X1, X2) · · · Ric(X1, Xn)

Ric(X2, X1) Ric(X2, X2) · · · Ric(X2, Xn)
...

. . .
...

Ric(Xn, X1) Ric(X3, X2) · · · Ric(Xn, Xn)

Table 2.1: If we calculate Ricci
of each pair of orthonormal
vectors in Tp(M3), then we
have a good sense of what the
curvature of the manifold looks
like at the point p.

then we have a good sense of what the curvature of the manifold looks like

at the point p.

The author was relieved to read the following line in Besse’s Einstein Mani-

folds, “Throughout our long life we have found the Ricci curvature quite hard
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to FEEL." As such, we will illustrate the main idea of Ricci curvature by in-

stead looking at a similar concept, sectional curvature. Consider a complete,

simply connected manifold of dimension n with constant sectional curva-

ture. If the manifold has positive sectional curvature, then the space must be

a sphere. If the manifold has negative sectional curvature, then this manifold

must be hyperbolic space. If the manifold has sectional curvature zero, then

the manifold must be Euclidean space.
Figure 2.2: If Mn is a manifold
with constant sectional cur-
vature, then if sec > 0, then
Mn = Sn (leftmost figure), if
sec = 0, then Mn = R (center
figure), and if sec < 0, then
Mn = Hn (rightmost figure).

While Ricci curvature and sectional curvature are not the same, their intu-

ition is similar.

2.2 How do we calculate Ricci curvature given a specific manifold

with a specific metric?

We will work through an example to illustrate the calculation of the Ricci

curvature.

Example 2.2.1. Consider the rotationally symmetric metric of S2. In other words, let

M2 = S2 and let dr2 + ϕ2(r)dx2 where
{

∂
∂r , 1

ϕ(r)
∂

∂x

}
is an orthonormal basis. We

want to calculate the following:

Ric
(

∂
∂r , ∂

∂r

)
Ric
(

∂
∂r , ∂

∂x

)
Ric
(

∂
∂x , ∂

∂r

)
Ric
(

∂
∂x , ∂

∂x

)

First, we will calculate the covariant derivatives, ∇ ∂
∂r

∂
∂x , ∇ ∂

∂x

∂
∂x and ∇ ∂

∂r

∂
∂r .

To find ∇ ∂
∂r

∂
∂x , we first calculate the inner product of ∇ ∂

∂r

∂
∂x and ∂

∂x :

g(∇ ∂
∂r

∂
∂x , ∂

∂r ) = g(∇ ∂
∂x

∂
∂r , ∂

∂r ) =
1
2

∂
∂x g( ∂

∂r , ∂
∂r ) = 0.
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This tells us that ∇ ∂
∂r

∂
∂x is zero in the ∂

∂r direction. Thus, ∇ ∂
∂r

∂
∂x = A ∂

∂x where A

is some function with respect to r and x.

Next, we calculate the inner product of ∇ ∂
∂r

∂
∂x and ∂

∂x :

g(∇ ∂
∂r

∂
∂x , ∂

∂x ) =
1
2

∂
∂r g( ∂

∂x , ∂
∂x ) =

1
2

∂
∂r (ϕ2) = ϕϕ′, so then:

ϕϕ′ = g(A ∂
∂x , ∂

∂x ) = Aϕ2.

We finally get that A =
ϕ′

ϕ
.

Thus, ∇ ∂
∂r

∂
∂x = ϕ′

ϕ
∂

∂x

We do a similar set of calculations to find ∇ ∂
∂x

∂
∂r , ∇ ∂

∂x

∂
∂x , and ∇ ∂

∂r

∂
∂r .

g(∇ ∂
∂x

∂
∂r , ∂

∂x ) =
1
2

∂
∂r g( ∂

∂x , ∂
∂x )− g([ ∂

∂r , ∂
∂x ],

∂
∂x ) = ϕϕ′

⇒ g(∇ ∂
∂x

∂
∂r , ∂

∂r ) =
1
2

∂
∂x g( ∂

∂r , ∂
∂r ) = 0

⇒ ϕϕ′ = g(A ∂
∂x , ∂

∂x ) = Aϕ2

⇒ A = ϕ′
ϕ

= ∇ ∂
∂x

∂
∂r = ϕ′

ϕ
∂

∂x

g(∇ ∂
∂x

∂
∂x , ∂

∂r ) = − 1
2

∂
∂r g( ∂

∂x , ∂
∂x )− g(

[
∂

∂x , ∂
∂r

]
, ∂

∂x ) = − 1
2

∂
∂r ϕ2 = −ϕϕ′

g(∇ ∂
∂x

∂
∂x , ∂

∂x ) =
1
2

∂
∂x g( ∂

∂x , ∂
∂x ) =

1
2

∂
∂x ϕ2 = 0

∇ ∂
∂x

∂
∂x = A ∂

∂r

⇒ g(A ∂
∂r , ∂

∂r ) = A

⇒ A = −ϕϕ′
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⇒ ∇ ∂
∂x

∂
∂x = −ϕϕ′ ∂

∂r

g(∇ ∂
∂r

∂
∂r , ∂

∂r ) =
1
2

∂
∂r g( ∂

∂r , ∂
∂r ) =

1
2

∂
∂r (1) = 0

g(∇ ∂
∂r

∂
∂r , ∂

∂x ) = − 1
2

∂
∂x g( ∂

∂r , ∂
∂r )− g(

[
∂
∂r , ∂

∂x

]
, ∂

∂r ) = − 1
2

∂
∂x (1) = 0

⇒ ∇ ∂
∂r

∂
∂r = 0

Now that we’ve calculated the covariant derivatives of each pair of orthogonal basis

vectors, we can calculate the Ricci curvatures of each pair of orthogonal basis vecotrs.

Ric( ∂
∂r , ∂

∂r ) = g
(

R( ∂
∂r , ∂

∂r )
∂
∂r , ∂

∂r )
)
+ g
(

R( ∂
∂r , 1

ϕ
∂

∂x )
∂
∂r , 1

ϕ
∂

∂x )
)

= g
(
∇ ∂

∂r
∇ 1

ϕ
∂

∂x

∂
∂r −∇ 1

ϕ
∂

∂x
∇ ∂

∂r

∂
∂r , 1

ϕ
∂

∂x

)
− g
(
∇[ ∂

∂r , 1
ϕ

∂
∂x ]
( ∂

∂r ),
1
ϕ

∂
∂x

)
= g

(
∇ ∂

∂r

( ϕ′

ϕ2
∂

∂x

)
, 1

ϕ
∂

∂x

)
− 1

ϕ g
(
−∇ ϕ′

ϕ2
∂

∂x
( ∂

∂r ),
∂

∂x

)
= g

( ϕ′′

ϕ2
∂

∂x −
2(ϕ′)2

ϕ3
∂

∂x +
ϕ′
ϕ

ϕ′
ϕ

∂
∂x , 1

ϕ
∂

∂x

)
+ 1

ϕ g
(
− [ ∂

∂r , ϕ′

ϕ2
∂

∂x ] +∇ ∂
∂r
( ϕ′

ϕ2
∂

∂x ),
∂

∂x

)
= ϕ′′

ϕ −
2(ϕ′)2

ϕ2 + (ϕ′)2

ϕ + 1
ϕ g
( (ϕ′)2

ϕ3
∂

∂x , ∂
∂x

)
= ϕ′′

ϕ −
(ϕ′)2

ϕ2 + (ϕ′)2

ϕ

Ric( ∂
∂r , ∂

∂x ) = g
(

R( ∂
∂r , ∂

∂r )
∂

∂x , ∂
∂r )
)
+ g
(

R( ∂
∂r , 1

ϕ
∂

∂x )
∂

∂x , 1
ϕ

∂
∂x )
)

= g
(
∇ ∂

∂r
∇ 1

ϕ
∂

∂x

∂
∂x −∇ 1

ϕ
∂

∂x
∇ ∂

∂r

∂
∂x , 1

ϕ
∂

∂x

)
− 1

ϕ g
(
∇[ ∂

∂r , ∂
∂x ]

∂
∂x , ∂

∂x

)
= 1

ϕ g
(
∇ ∂

∂r
(−ϕ′ ∂

∂r )−∇ 1
ϕ

∂
∂x
( ϕ′

ϕ
∂

∂x ),
∂

∂x

)
− 1

ϕ g
(
∇ ∂

∂r (
1
ϕ )

∂
∂x + 1

ϕ [
∂
∂r , ∂

∂x ]
∂

∂x , ∂
∂x

)
= 1

ϕ g
((
− ∂

∂r (ϕ′) ∂
∂r −ϕ′∇ ∂

∂r

∂
∂r

)
−
(
( 1

ϕ
∂

∂x )(
ϕ′
ϕ ) ∂

∂x +
ϕ′
ϕ ∇ 1

ϕ
∂

∂x
( ∂

∂x )

)
, ∂

∂x

)
−

1
ϕ g
(
∇[ ∂

∂r , 1
ϕ

∂
∂x ]

∂
∂x , ∂

∂x

)
= 1

ϕ g
(
− ϕ′′ ∂

∂r −
(

ϕ′
ϕ (−ϕ′ ∂

∂r )

)
, ∂

∂x

)
− 1

ϕ g
( (ϕ′)2

ϕ
∂
∂r , ∂

∂x

)
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= 0

Ric( ∂
∂x , ∂

∂x ) = g
(

R( ∂
∂x , ∂

∂r )
∂

∂x , ∂
∂r )
)
+ g
(

R( ∂
∂x , 1

ϕ
∂

∂x )
∂

∂x , 1
ϕ

∂
∂x )
)

= g
(
∇ ∂

∂x
∇ ∂

∂r

∂
∂x −∇ ∂

∂r
∇ ∂

∂x

∂
∂x , ∂

∂r

)
+ g
(
∇ ∂

∂x
∇ 1

ϕ
∂

∂x

∂
∂x −∇ 1

ϕ
∂

∂x
∇ ∂

∂x

∂
∂x −∇[ ∂

∂x , 1
ϕ

∂
∂x ]

∂
∂x , 1

ϕ
∂

∂x

)

= g
(
∇ ∂

∂x
( ϕ′

ϕ
∂

∂x )−∇ ∂
∂r
(−ϕϕ′ ∂

∂r ),
∂
∂r

)
+ g
(
∇ ∂

∂x
(−ϕ′ ∂

∂r )−∇ 1
ϕ

∂
∂x
(−ϕϕ′ ∂

∂r ),
1
ϕ

∂
∂x

)

= g
( ϕ′

ϕ ∇ ∂
∂x

∂
∂x +

∂
∂r (ϕϕ′) ∂

∂r +ϕϕ′∇ ∂
∂r

∂
∂r , ∂

∂r

)
+ g
(
− ϕ′∇ ∂

∂x

∂
∂r +ϕϕ′∇ 1

ϕ
∂

∂x

∂
∂r , 1

ϕ
∂

∂x

)

= g
( ϕ′

ϕ (−ϕϕ′ ∂
∂r ) + (ϕ′ϕ′ + ϕϕ′′) ∂

∂r , ∂
∂r

)
+ 1

ϕ g
(
− ϕ′ ϕ′

ϕ
∂

∂x +
ϕ′ϕ′ϕ

ϕ2
∂

∂x , ∂
∂x

)
= ϕϕ′′

2.3 Why do we study manifolds with nonnegative Ricci curvature?

In general, it’s interesting in math to apply bounds on functions to see how

that restricts the types of objects we can get. In our case, we apply a lower

bound on the Ricci tensor to see if this restricts the topology of a given mani-

fold.1 1 Although we say we are
studying spaces which satisfy
Ric ≥ 0, it is more accurate
to say we are studying spaces
with Ric(X, X) ≥ 0 · g(X, X)
for all X ∈ TM where M is the
manifold.

There are many examples of topological results with the nonnegative Ricci

curvature restriction on the manifold. The following examples and theorems

can be found in Petersen’s Riemannian Geometry. [33, page 288]. Many of these

theorems follow from the Cheeger-Gromoll Splitting Theorem which we will
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go over in detail in Chapter 3. The first theorem we review is named Myers

Theorem. We will reference this theorem throughout the thesis.

Theorem 2.3.1. [33, Theorem 25] Suppose (M, g) is a complete Riemannian mani-

fold with Ric ≥ (n − 1)k > 0. Then diam(M, g) ≤ π√
k
. Furthermore, (M, g) has

finite fundamental group.

Theorem 2.3.2. [33, Corollary 26] Sp × S1 does not admit any metrics such that

Ric = 0 everywhere.

Theorem 2.3.3. [33, Corollary 27] Suppose (M, g) is a complete, compact Rieman-

nian manifold with Ric ≥ 0. If the universal cover is contractible, then (M, g) is a flat

manifold.

Theorem 2.3.4. [33, Corollary 28] If (M, g) is compact with Ric ≥ 0 and has

Ric > 0 on some tangent space Tp M, then π1(M) is finite.

2.4 What is an Einstein manifold?

In this section, we will discuss the notion of Einstein manifolds. For a great

reference, see Besse’s Einstein Manifolds [3].

Einstein manifolds satisfy the following condition on the Ricci curvature:

Ric = λg

where λ is a constant and g is the metric. Manifolds which satisfy the Einstein

equation are constant in the sense that the Ricci quadratic form is constantly λ

if and only if Ric = λg.
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The main question posed in the beginning of Besse’s Einstein Manifolds is as

follows, “Are there any best (or nicest, or distinguished) Riemannian structures

on M?" For surfaces, or manifolds of dimension two, the best Riemannian

structures on a compact manifold are those with constant Gauss curvature.

It makes sense to think that a good generalization of the best Riemannian

structures on manifolds of dimension n ≥ 3 would be a manifold of constant

Ricci or sectional curvature.

There are only three complete, simply connected n-manifolds of constant

sectional curvature up to diffeomorphism: namely, the sphere when sec > 0,

Euclidean space when sec = 0, and hyperbolic space when sec < 0, each with

the standard metric. On the other hand, any compact Riemannian manifold

of any dimension admits a metric of constant scalar curvature. Therefore, it

makes sense that we would like to study manifolds with constant Ricci curva-

ture.

For some interesting examples of Einstein manifolds, see Besse’s [3, Chapter

0 Section D].



3 Topology and Geometry of Rieman-

nian manifolds

This chapter contains the main topological and geometric definitions needed in

chapters 5, 6, 7, 8, and 9.

3.1 What are some topological definitions that we’ll use?

In this section, we’ll go over the main topological definitions that we’ll go over

in the remaining chapters in this thesis.

First, we introduce the term homotopy in order to define the notion of a

loop being homotopic to another loop along a ray.

Definition 3.1.1. Consider two continuous functions f : X → Y and g : X → Y.

A homotopy between f and g is defined as a continuous function H such that H :

X × [0, 1] → Y, H(x, 0) = f (x), and H(x, 1) = g(x) for all x ∈ X. If such an H

exists, we say that f is homotopic to g.

Next, we introduce the notion of a loop being homotopic to another loop

along a ray. We use this topological definition in order to define the notion of

15
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the geodesic loops to infinity property which we will also define.

Definition 3.1.2. Given a ray γ and a loop C : [0, L] → M based at γ(0), we say

that a loop C̃ : [0, L] → M is homotopic to C along γ if there exists r > 0 with

C̃(0) = C̃(L) = γ(r) and the loop, constructed by joining γ from 0 to r with C from 0

to L and then with γ from r to 0 is homotopic to C, in π1(M, γ(0)).
Figure 3.1: In the figure on the
left, the two black loops are
homotopic to each other. In the
figure on the right, the black
loop is not homotopic to the
gray loop.Next, we introduce the geodesic loops to infinity property, which we will

use to prove our main results in Chapter 6.

Definition 3.1.3. An element h ∈ π1(M, γ(0)) has the geodesic loops to infinity

property along γ if for any A ⊂ M compact, there exists a loop C̃ ⊂ M \ A which is

homotopic to a representative loop, C of h along γ.

Figure 3.2: In the figure above,
we have a punctured torus,
which does not have the
geodesic loops to infinity
property. The geodesic loop in
black on the left gets “stuck"
and cannot reach the geodesic
loop in black on the right. In
the figure below, we have a
cylinder, which does have the
geodesic loops to infinity prop-
erty. We see that the black loop
is able to homotope to any of
the gray loops.

Next, we define locally homogeneous and locally homogeneous manifolds,

which we will reference in chapters 6 and 7.

Definition 3.1.4. Let (M, g) be a Riemannian manifold. Then (M, g) is locally

homogeneous if for every pair of points x, y ∈ M, there exists neighborhoods Ux of x

and Vy of y such that there is an isometry ψ mapping (Ux, g|Ux ) to (Vy, g|Vy), with

ψ(x) = y.

Figure 3.3: This shows a locally
homogeneous manifold as in
Definition 3.1.4.
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Definition 3.1.5. Let (M, g) be a Riemannian manifold. Then (M, g) is homogeneous

if for every pair of points x, y ∈ M, there exists an isometry ψ : M→ M, ψ(x) = y.

Figure 3.4: This shows a ho-
mogeneous manifold as in
Definition 3.1.5.

The next definition is that of a one-ended manifold. We use this definition

in chapter 6.

Definition 3.1.6. A manifold is k-ended with k ≤ K if given any compact set A ⊂ M,

M \ A has at most K unbounded components
Figure 3.5: This shows a two-
ended manifold on the left, and
a one-ended manifold on the
right, as in Definition 3.1.6.

3.2 What are some geometric definitions that we’ll need?

In this section, we give the main geometric definitions which we will use

throughout the rest of this thesis. We start with the definition of a line, which

we will reference in chapter 6.

Definition 3.2.1. A line is a geodesic γ : (−∞, ∞) → M, which is minimizing

between any two points.
Figure 3.6: The figure on the left
depicts a line on a cylinder as
in Definition 3.2.1. The figure
on the right does not depict a
line on a cylinder because the
geodesic is not minimizing.

Next, we give definitions for the following related terms, a product splitting,

a warped product splitting and a ray lying in the split direction.

Definition 3.2.2. (M, g) has a product splitting if M is isometric to R× L where L

is an (n− 1)-dimensional manifold and g = dr2 + gL.

Definition 3.2.3. (M, g) has a warped product splitting if M is diffeomorphic to

R× L where L is an (n− 1)-dimensional manifold and there exists u : R→ R+ such
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that g = dr2 + u2(r)g0 for a fixed metric g0. We call g a warped product over R and

we call u(r) the warping function.

Figure 3.7: The figure on the 
left depicts a function, u(r) as 
in Definition 3 .2.1. The figure 
on the right depicts a manifold 
which has a warped product 
splitting with warping function

u(r).

Definition 3.2.4. In a warped product splitting, Mn = N ×R with g = e
φ(r)
n−1 gN +

dr2, we say that γ, a ray, lies in the split direction if γ(r) = (x0, r), where x0 ∈ N.

Figure 3.8: The figure on the 
left depicts two rays in the split 
direction on a cylinder. The 
figure on the right depicts two 
rays not in the split direction.



4 Bakry Émery Ricci Curvature

In this chapter, we will give an overview of the N-Bakry-Émery Ricci curva-

ture. The results given in chapters 5, 6, 7, 8, and 9 involve various forms of the

N-Bakry-Émery Ricci curvature.

4.1 What is N-Bakry Émery Ricci curvature?

We define the N-Bakry-Émery Ricci tensors as follows:

Definition 4.1.1. Let X be a vector field on (Mn, g), a Riemannian manifold. The

N-Bakry-Émery tensor is

RicN
X := Ric+

1
2
LX g− 1

N − n
X∗ ⊗ X∗

where LX g is the Lie derivative of g with respect to X, defined as follows:

LX g : Tp M× Tp M→ R (4.1)

(Y, Z) 7→ 〈∇Y X, Z〉+ 〈∇Z X, Y〉 (4.2)

19
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and

X∗ : Tp M→ R

Y 7→ g(X, Y).

If X = ∇φ where φ : M → R is a smooth function, the N-Bakry-Émery Ricci

tensor is

RicN
φ := Ric+Hess φ− 1

N − n
dφ⊗ dφ.

If X = ∇φ and N = ∞, then we denote Ricφ := Ric∞
φ = Ric+Hess φ.

Remark 4.1.2. Note that RicN
X is a generalization of RicN

φ because if X = ∇ φ, then

RicN
X = RicN

φ . Similarly, we call RicN
φ a generalization of Ric because if φ is constant,

then RicN
φ = Ric. 1 1

RicN
XyX = ∇φ

RicN
φyφ=constant

Ric

The constant N is also called the synthetic dimension.

4.2 Why do we study manifolds with nonnegative N-Bakry Émery

Ricci curvature?

Riemannian manifolds with smooth positive density function e−φ were first

studied by Lichnerowicz in 1971 [22]. Bakry and Émery studied this further

in order to study diffusion processes [2]. More recently, Bakry-Émery Ricci

tensors have been studied in optimal transport, Ricci flow, and general rela-

tivity. Qian proved in [36] that Myers’ Theorem2 holds for gradient N-Bakry 2 See Theorem 2.3.1

Émery Ricci curvature. In [26], Lott gives topological consequences to nonneg-

ative and positive Bakry-Émery Ricci curvature, as well as relations between
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the Bakry-Émery Ricci curvature bounded below and measured Gromov-

Hausdorff limits. In [40], Wei-Wylie proved Bakry-Émery Ricci curvature

versions of the comparison theorems and the volume comparison theorem.

Fang-Li-Zhang in [9], Khuri-Woolgar-Wylie in [16], Munteanu-Wang in [30],

and Wylie in [43] also prove different versions of the Splitting Theorem for

nonnegative Bakry-Émery Ricci curvature.

According to Lott in [26], if M is compact and satisfies RicN
φ > 0, then the

warped product metric3 on M × Sn−N satisfies Ric > 0. When N = ∞, the 3 See Definition 3.2.3

∞-quasi Einstein equation is the Ricci soliton equation. When N < n, Wylie-

Woolgar study RicN
φ in the context of Lorentzian scalar-tensor gravitational

theories in cosomology in [41]. Milman [27], Ohta [12], and Wylie [43] also

give descriptions of the condition RicN
X bounded above with N < n.

4.3 What is an N-quasi Einstein manifold?

We are ready to define the N-quasi Einstein equation.

Definition 4.3.1. A manifold (M, g) satisfies the N-quasi Einstein equation if

RicN
X = Ag for some constants A.

Remark 4.3.2. Many authors only consider the gradient case and/or the manifolds

with boundary case of the N-quasi Einstein equation. We will assume neither condi-

tion in this thesis.

4If (M, g) is N-quasi Einstein and if X = ∇φ, then we call the space gradi-

4

Ricm
X = AgyX = ∇φ

Ricm
φ = Agyφ=constant

Ric = Ag

ent N-quasi Einstein. If X = 0, then we call the space trivial.
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4.4 Why do we study N-quasi Einstein manifolds?

Non-gradient N-quasi Einstein manifolds are of particular interest in the study

of near-horizon geometries (See [15], [17], and [19]). in this thesis, we study

non-gradient N-quasi Einstein manifolds as a generalization of Einstein mani-

folds, gradient N-quasi Einstein manifolds, and Ricci solitons.

The m = ∞ case of the N-quasi Einstein equation corresponds to the Ricci

soliton equation, Ric+ 1
2LX g = Ag. Ivey showed in [14] that compact Ricci

solitons must be shrinking, i.e. A must be positive. Perelman showed in [32]

that compact shrinking Ricci solitons must be gradient. Then Petersen-Wylie

showed in [34] that any compact locally homogeneous5 gradient Ricci soliton 5 See Definition 3.1.4

is Einstein. Therefore, by Ivey, Perelman, and Petersen-Wylie, here are no non-

Einstein non-trivial locally homogeneous compact Ricci solitons.



5 The splitting theorem for spaces with

nonnegative Bakry Émery Ricci cur-

vature

5.1 What question are we trying to answer?

First, we will review an important result in Riemannian geometry by Cheeger

and Gromoll, called the Cheeger-Gromoll Splitting Theorem:

Theorem 5.1.1. [6] Let M be a complete manifold of nonnegative Ricci curvature.

Then M is the isometric product N ×Rk where N contains no lines and Rk has its

standard flat metric.
Figure 5.1: The figure above
contains lines and is an ex-
ample of the k = 0 case of
the Cheeger-Gromoll Splitting
Theorem. The figure below
does split off R, so the mani-
fold could possibly satisfy Ric
nonnegative everywhere.

This leads us to the main question in this chapter:

Question 5.1.2. What assumptions do we need to generalize the Cheeger-Gromoll

Splitting Theorem to the nonnegative N-Bakry-Émery Ricci curvature case?

23
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5.2 Why is this question interesting?

The RicN
X ≥ 0 assumption becomes a weaker hypothesis as N increases. N > n

is our strongest premise and the Splitting Theorem holds with no further as-

sumptions, as shown by Khuri-Woolgar-Wylie in [16, Theorem 2] and Fang-

Li-Zhang in [9, Theorem 1.3]. N < 1 or N = ∞ is a weaker premise and the

Splitting Theorem does not hold in general; however, Wylie showed that in-

cluding the additional assumptions X = ∇φ and φ < K for K constant gives a

splitting [43, Corollary 1.3]. Munteanu-Wang also showed in [30, Theorem 1.6]

that if N = ∞ and X = ∇φ where φ has linear growth with a weighted entropy

condition, then the Splitting Theorem holds or M is connected at infinity. If

N = 1 the Splitting Theorem does not hold, even when φ is bounded. How-

ever, if X = ∇φ with φ < K, then Wylie showed in [43, Theorem 1.2] that there

is a more general warped product splitting1. 1 See Definition 3.2.3

5.3 What are the main results in this section?

We had two main results in this chapter. First, we contributed to the splitting

theorem results for various N-Bakry-Émery Ricci curvature constraints by

proving the following proposition:

Proposition 5.3.1. [24] If Ricφ ≥ 0 and ∇φ → 0 at ∞, then the Splitting Theorem

holds.

Table 5.1 summarizes the known versions of the Splitting Theorem for

RicN
X ≥ 0.
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If RicN
X ≥ 0, then:

N > n ⇒ Splitting Theorem, [16], [9]
N < 1, X = ∇φ, φ < K ⇒ Splitting Theorem, [43]
N = ∞, X = ∇φ, φ < K ⇒ Splitting Theorem, [9]
N = 1, X = ∇φ, φ < K ⇒ Warped Product Splitting, [43]
N = ∞, X = ∇φ, ∇φ→ 0 at ∞ ⇒ Splitting Theorem, [9]

Table 5.1: Splitting Theorem
results for RicN

X ≥ 0

Our second main result in this chapter was the construction of an example

where Ricφ > 0, ∇φ is bounded, lim
ρ→∞

1
ρ2 φ(γ(s))ds is nonzero and finite, and

the Splitting Theorem doesn’t hold.

5.4 How do we prove the main results?

Our first main results is as follows:

Proposition 5.3.1 [24] If Ricφ ≥ 0 and ∇φ → 0 at ∞, then the Splitting

Theorem holds.

Proof of Proposition 5.3.1. Suppose ∇φ → 0 at ∞. Then, for each ε > 0, there

exists R > 0 such that for all x ∈ M \ B(γ(0), R), |∇φ|(x) < ε.

Let γ(t) be a unit speed ray. Then,

(φ ◦ γ)′(t)) = 〈∇φ, γ̇〉 ≤ |∇φ| ≤ ε.

After integrating, for the same ε > 0 and R > 0, we get φ(γ(t)) < εt + C,

where C is a constant. Then,
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lim
ρ→∞

1
ρ2

∫ ρ

0
φ(γ(s))ds = lim

ρ→∞

1
ρ2

(∫ R

0
φ(γ(s))ds +

∫ ρ

R
φ(γ(s))ds

)

< lim
ρ→∞

(
1
ρ2

(∫ R

0
φ(γ(s))ds

)
+

ε

2
+

C
ρ
− εR2

2ρ2 −
CR
ρ2

)

=
ε

2
.

Letting ε→ 0, we get

lim
ρ→∞

1
ρ2

∫ ρ

0
φ(γ(s))ds ≤ 0.

Thus, by [9, Remark 3.1], the Splitting Theorem holds.

Now, we will give an example where Ricφ > 0, ∇φ is bounded, lim
ρ→∞

1
ρ2 φ(γ(s))ds

is nonzero and finite, and the Splitting Theorem doesn’t hold. This shows that

this version of the splitting theorem is optimal. We will use this example again

in chapter 6 to show that our main homology theorem is optimal.

Example 5.4.1. [24] Let M = R× Sn−1, where our metric is g = dr2 + ρ2(r)gN .

We wish to construct ρ(r) and φ(r) such that Ricφ > 0 everywhere and φ(r) and ρ(r)

are smooth.

Let ρ be a function such that



ρ > 0 everywhere

|ρ̇| < 1 everywhere

−C < ρ̈ < 0 |r| > A
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where A and C are constants. Figure 5.2 is an example of what ρ might look like:

Figure 5.2: ρ(r)Later in the example, we will consider ερ where ε > 0, so the space will look like a

cylinder with a small dip around 0. We proceed with our calculations:

Let V be a vector TSn−1. Given our metric, Ricφ(
∂
∂r , ∂

∂r ) = −(n− 1) ρ̈
ρ + φ̈ and

Ricφ(V, V) = (n− 2)(1− ρ̇2)− ρρ̈ + φ̇ρ̇ (See [33], page 69).

On |r| < A, there exists a smooth function, α(r), larger than (n− 1)
ρ̈

ρ
on |r| < A

such that α(A) = α(−A) = 0, because −(n− 1)
ρ̈

ρ
(±A) < 0.

Let φ be a function such that φ′′(r) = α(r).Then, Ricφ(
∂
∂r , ∂

∂r ) > 0 everywhere.

Now, consider ερ in place of ρ where ε > 0.

Then we still get Ricφ(
∂
∂r , ∂

∂r ) = −(n− 1) ρ̈
ρ > 0.

Ricφ(V, V) = (n− 2)(1− ε2ρ̇2)− ε3ρρ̈ + φ̇ε2ρ̇ρ. Letting ε → 0, Ricφ(V, V) →

n− 2 > 0 since φ̇ is bounded.

Finally, we have Ricφ > 0 everywhere.

On |r| > A, φ′′(r) = 0, which means φ(r) = Br + E on |r| > A.

Thus, lim
t→∞

1
t2

∫ t

0
φ ◦ γdr = lim

t→∞

1
t2

∫ A

0
φ ◦ γ(r)dr +

1
t2

∫ t

A
(Br + E)dr =

B
2

.

Note that in the previous example, there is a splitting of the manifold, but

there is not an isometric splitting of the metric as in the Cheeger-Gromoll

Splitting Theorem. Rather, there is a warped product splitting.

The next example, which Wei-Wylie constructed in [40, Example 2.2], satis-

fies Ric∞
φ > 0 and lim

ρ→∞

1
ρ2

∫ ρ

0
φ(γ(s))ds = ∞, yet the Splitting Theorem does

not hold.
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Example 5.4.2. Consider Mn = Hn. Fix p ∈ M. Let φ(x) = (n− 1)d(x, p)2, where

d(x, p) is the distance to p. Then, Ricφ ≥ 0 and the Splitting Theorem does not hold,

as in [40, Example 2.2]. Also, if γ(0) = p, then

lim
ρ→∞

1
ρ2

∫ ρ

0
φ(γ(s))ds

= lim
ρ→∞

1
ρ2

∫ ρ

0
(n− 1)d(γ(s), γ(0))2ds

= lim
ρ→∞

(n− 1)
ρ

3
= ∞.



6 Homology of manifolds with nonneg-

ative N-Bakry-Émery Ricci curva-

ture

6.1 What question are we trying to answer?

In this chapter, we will use various topological techniques to answer the fol-

lowing question:

Question 6.1.1. Given a manifold with nonnegative N-Bakry-Émery Ricci curvature,

can we say something about the homology of such a manifold?

6.2 Why is this question interesting?

One of the themes of Riemannian geometry is analyzing the topological impli-

cations of a manifold admitting a metric with a curvature constraint. In 1976,

Yau proved that if Mn is a complete, noncompact manifold with Ric > 0, then

Hn−1(M, R) = 0 [44]. In 2000, Shen-Sormani generalized this to show that

such a space has Hn−1(M, Z) = 0 by studying topological properties like the

29
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loops to infinity property1 [37]. An important result by Shen-Sormani is as 1 See Definition 3.1.3

follows:

Theorem 6.2.1. [37, Theorem 1.2] Let Mn be a complete noncompact unorientable

manifold with nonnegative Ricci curvature and G = Z2 or Z. Then one of the follow-

ing holds:

1. Hn−1(M, G) = 0

2. Hn−1(M, G) = G

In this thesis, we will generalize these results to that of Riemannian mani-

folds with non-negative and positive Bakry-Émery Ricci curvature. Our results

for positive curvature are optimal in the sense that none of the assumptions

can be removed (See Examples 5.4.1, 6.4.3 and 5.4.2).

6.3 What are the main results in this chapter?

Our next theorem answers the question, “What can we say about the (n− 1)st

integral homology of manifolds with stictly positive N-Bakry-Émery Ricci

curvature?"

Theorem 6.3.1. [24] Let Mn be complete and noncompact.

1. If RicN
X > 0 for N > n, then Hn−1(M, Z) = 0.

2. If RicN
φ > 0 with φ < K for some K ∈ R and N ≤ 1 , then Hn−1(M, Z) = 0.

3. If Ric∞
φ > 0 with ∇φ→ 0 at ∞, then Hn−1(M, Z) = 0.

We also revisit Example 5.4.1 to see that Theorem 6.3.1 (3) is optimal.
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The next theorem, Theorem 6.4.2, gives a more general statement than Theo-

rem 6.3.1.

Theorem 6.4.2 [24]: Let Mn be complete and noncompact.

1. If RicN
X ≥ 0 for N > n, then Hn−1(M, Z) = 0 or Z.

2. If RicN
φ ≥ 0 with φ < K for some K ∈ R and N < 1 , then Hn−1(M, Z) =

0 or Z.

3. If RicN
φ ≥ 0 with |φ| < K for some K ∈ R and N = 1 , then Hn−1(M, Z) =

0 or Z.

4. If Ric∞
φ ≥ 0 with ∇φ→ 0 at ∞, then Hn−1(M, Z) = 0 or Z. 2 2 The assumption here matches

the assumption in Proposition
5.3.1.

The main lemma in this chapter, Lemma 6.4.12, is as follows:

Lemma 6.4.12 [24]: Let (M, g, φ) be a Riemannian manifold with Ric1
φ ≥ 0

and |φ| ≤ K for K > 0. Suppose there exists h ∈ π1(M) which does not satisfy

the geodesic loops to infinity property3 along a given ray γ. Then the lift γ̃ of 3 See Definition 3.1.3

γ is in the split direction,

γ̃(t) = (x(0), y(t))

and

h∗(γ̃′(t)) = −γ̃′(t).
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6.4 What results and proofs do we need to answer our main ques-

tion?

First, we prove our homology result for positive N-Bakry-Émery Ricci curva-

ture which we restate below.

Theorem 6.3.1 [24] Let Mn be complete and noncompact.

1. If RicN
X > 0 for N > n, then Hn−1(M, Z) = 0.

2. If RicN
φ > 0 with φ < K for some K ∈ R and N ≤ 1 , then Hn−1(M, Z) = 0.

3. If Ric∞
φ > 0 with ∇φ→ 0 at ∞, then Hn−1(M, Z) = 0.

Since Theorem 6.3.1(3) follows directly from the version of the splitting

theorem which we proved in Chapter 5, we revisit Example 5.4.1. In Example

5.4.1, we let M = R× Sn−1, and we constructed a metric and potential function

which had Ricφ > 0, ∇φ is bounded, lim
ρ→∞

1
ρ2 φ(γ(s))ds nonzero and finite, and

the Splitting Theorem didn’t hold. Computing the (n− 1)st homology, we get

that Hn−1(M, Z) is Z, rather than 0. Therefore, Theorem 6.3.1 is optimal.

Next, we review a proposition by Carron and Pedon, which we will use

to prove one of our main theorems in this section (Theorem 6.4.2) in the ori-

entable case.

Proposition 6.4.1. [4, Proposition 5.2] If Mn is an orientable open manifold hav-

ing one end, and if every twofold normal covering of M also has one end4, then 4 See Definition 3.1.6

Hn−1(M, Z) = 0.
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We are now ready to state and prove one of our main theorems in this sec-

tion.

Theorem 6.4.2. [24] Let Mn be complete and noncompact.

1. If RicN
X ≥ 0 for N > n, then Hn−1(M, Z) = 0 or Z.

2. If RicN
φ ≥ 0 with φ < K for some K ∈ R and N < 1 , then Hn−1(M, Z) =

0 or Z.

3. If RicN
φ ≥ 0 with |φ| < K for some K ∈ R and N = 1 , then Hn−1(M, Z) =

0 or Z.

4. If Ric∞
φ ≥ 0 with ∇φ→ 0 at ∞, then Hn−1(M, Z) = 0 or Z. 5 5 The assumption here matches

the assumption in Proposition
5.3.1.

We will now prove Theorem 6.4.2 for Mn orientable. To do this, we will

follow [4, Proposition 5.3] in using Proposition 6.4.1. Later, we will prove

Theorem 6.4.2 in the Mn non-orientable case by using the loops to infinity

property6. 6 See Definition 3.1.3

Proof of Theorem 6.4.2 (orientable case). Suppose M is one-ended7 and suppose 7 See Definition 3.1.6

every double cover of M is one-ended. By Proposition 6.4.1, Hn−1(M, Z) = 0.

Suppose M is one-ended and there exists a double cover, M̃, which is two-

ended. Then M̃ splits isometrically as L̃ × R, where L̃ is compact by the

Splitting Theorem. Let h be the nontrivial deck transformation acting on M̃.

Then Hn−1(M, Z) = Hn−1(M, Z) = Hn−1

(
L̃×R

〈h〉 , Z

)
. Since M is one-

ended, M is orientable if and only if L̃ is non-orientable. Thus, Hn−1(M, Z) =

Hn−1

(
L̃×R

〈h〉 , Z

)
= 0.
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Suppose M is two ended. By the Splitting Theorem, M is isometric to L×R

where L is compact and has the same orientability as M. Then, since M is

orientable, Hn−1(M, Z) = Hn−1(N, Z) = Z.

In the following example, we will give a space and metric where RicN
φ > 0

for N = ∞ and N ≤ 1, φ is unbounded, and Hn−1(M, Z) = Z.

Example 6.4.3. [24] Consider M = Sn−1 ×R.

Let φ : Mn → R, φ(r) = r2.

In the Sn−1 direction, Ric > 0 and Hess φ = 0. In the R direction, Ric = 0 and

Hess > 0.

If N = ∞ or N ≤ 1, then − 1
N − n

∇φ∗ ⊗∇φ∗ ≥ 0.

Therefore, RicN
φ > 0 for N = ∞ and N ≤ 1. However, Hn−1(Sn−1 ×R, Z) =

Hn−1(Sn−1, Z) = Z. Notice that φ is unbounded.
Observe that in Example 6.4.3,

the Splitting Theorem does
hold.

We will present the proof of Sormani’s Line Theorem, which, along with the

Splitting Theorem for RicN
X ≥ 0, allows us to prove our main lemma, Lemma

6.4.12. We then prove Theorem 6.4.2 in the non-orientable case. We are ready

to present Sormani’s Line Theorem.

Theorem 6.4.4. [39, Theorem 1.7] If Mn is a complete non-compact manifold which

does not satisfy the geodesic loops to infinity property, then there is a line in its univer-

sal cover.

Proof. Since Mn is a complete, non-compact manifold, there exists a ray, γ :

[0, ∞) → Mn. Let h ∈ π1(M, γ(0)) which does satisfy the loops to infinity
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property, and let C be a representative of h based at γ(0). Because h doesn’t

satisfy the loops to infinity property, there exists a compact set A ⊂ M such

that any loop homotopic to C along γ intersects A. Let R > 0 such that A ⊂

Bγ(0)(R). Let {ri} be a sequence such that lim
i→∞

ri = ∞ and ri > R for all i.

Now, let M̃ be the universal cover of M, and let π : M̃ → M be the covering

map. Identifying loops in π1(M, γ(0)) with deck transformations, let γ̃ and

h ◦ γ̃ be lifts of γ starting at γ̃(0) and h ◦ γ̃(0) respectively, and let C̃ be the lift

of C, starting at γ̃(0) and ending at h ◦ γ̃(0). If C̃i are minimal geodesics from

γ̃(ri) to h ◦ γ̃(ri), then, Ci := π(C̃i) is a loop based at γ(ri) which is homotopic

to C along γ.

Let Li = L(C̃i) = L(Ci) = dM̃(γ̃(ri), h ◦ γ̃(ri)). For each Ci, there exists some

ti ∈ [0, Li] such that Ci(ti) ⊂ A.

Let Ã be the lift of A to the fundamental domain in M̃. For all i ∈ N, there

exists hi ∈ π1(M, γ(0)), so that hi ◦ C̃i(ti) ∈ Ã.

Through some computational details which we will omit, (See [39, Theo-

rem 1.7] for more details), hi ◦ C̃i are minimal geodesics from (ti − (ri − R))

to (ti + (ri − R)) such that hi ◦ C̃i(ti) ∈ Ã. Letting ri → ∞, a subsequence

of hi∗ ◦ C̃′i(ti) converges to a vector γ′∞(0), based at γ∞(0) in the closure of

Ã. Let γ∞ be the geodesic with these initial conditions. Then γ∞ runs from

lim
i→∞

ti − (ri − R) = −∞ to lim
i→∞

ti + (ri − R) = ∞. Thus, we have constructed a

line, namely γ∞, in M̃.
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The following corollary follows from [37] and the generalizations of the

Splitting Theorem.

Corollary 6.4.5. [24] Let Mn be a complete, noncompact Riemannian manifold, and

suppose one of the following holds:

1. RicN
X ≥ 0 with N > n.

2. RicN
φ ≥ 0 with N = ∞, φ bounded above.

3. RicN
φ ≥ 0 with N ≤ 1 and φ bounded above.

4. RicN
φ ≥ 0 with N = ∞, ∇φ→ 0 at ∞.

Then,

(i) If D be a precompact subset of M and ∂D is simply connected, then π1(D) can

only contain elements of order 2.

(ii) If D be a precompact subset of M with smooth boundary, where γ is a ray such that

γ(0) ∈ D and if S be any connected component of ∂D containing a point γ(a),

then the image of the inclusion map

i∗ : π1(S, γ(a))→ π1(Cl(D), γ(a))

is N ⊂ π1(Cl(D), γ(a)) such that π1(Cl(D), γ(a))/N contains at most two

elements.

Corollary 6.4.6. [24] Let Mn be a complete, noncompact Riemannian manifold, and

suppose one of the following holds:
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1. RicN
X ≥ 0 with N > n, and there exists a point p ∈ M such that (RicN

X )p > 0.

2. RicN
φ ≥ 0 with N = ∞, φ bounded above, and there exists a point p ∈ M such that

(RicN
φ )p > 0.

3. RicN
φ ≥ 0 with N ≤ 1 and φ bounded above, and there exists a point p ∈ M such

that (RicN
X )p > 0.

4. RicN
φ ≥ 0 with N = ∞, ∇φ → 0 at ∞, and there exists a point p ∈ M such that

(RicN
φ )p > 0.

Then, Mn has the geodesic loops to infinity property8. 8 See Definition 3.1.3

Proof. First, we will show that M and its universal cover, M̃, have no lines.

Suppose for the sake of contradiction that M contains a line. We saw earlier in

the paper that each of the four premises gives us a version of the Splitting The-

orem. Hence, M = R× N. However, RicN
φ ( ∂

∂r , ∂
∂r ) = 0, which is a contradiction,

thus proving our claim.

Ergo, by Sormani’s Line Theorem, M has the loops to infinity property.

Before we prove the next proposition, we will first show that there exist

examples of Riemannian manifolds with Ric1
φ ≥ 0 not satisfying loops to

infinity property along a given ray γ and universal cover which has a warped

product splitting9. 9 See Definition 3.2.3

Example 6.4.7. [24] Let φ ∈ C2 be bounded with bounded first and second deriva-

tives. By [43, Corollary 2.4], there exists λ large enough so that Ric1
φ ≥ 0 and
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g = dt2 + e
2φ

n−1 Sn
λ. Now consider M = (R× Sn) /G , where G is the group generated

by h(t, x) = (a− t,−x) for any constant a > 0. If we also assume φ(a− t) = φ(t),

then h is an isometry and (M, g, φ) satisfies Ric1
φ ≥ 0. h does not have the loops to in-

finity property10 along (t, 0) = (−t, a), so (R× Sn) /G satisfies all of the necessary 10 See Definition 3.1.3

properties.

Theorem 6.4.8. [43, Proposition 4.2] Consider a warped product metric11 of the form 11 See Definition 3.2.3

g = dr2 + v2(r)gN where v > 0 is bounded from above. Let γ : (a, b) → M be a unit

speed minimizing geodesic in M and write γ(s) = (γ1(s), γ2(s)), where γ1 and γ2

are projections in the factors R and N. Then:

(1) γ2 is either constant or its image is a minimizing geodesic in (N, gN).

(2) If γ2 is not a constant and γ is a line12 in M, then the image of γ2 is a line in N. 12 See Definition 3.2.1

Next, we state remarks from [43, Lemma 4.4] and [31, page 208, Remark 8]

which we will use in the proof of Lemma 6.4.12.

Remark 6.4.9. [43, Lemma 4.4] In the context of Theorem 6.4.11, when g =

e
2 f (r)
n−1 gN + dr2 and N does not admit a line, it follows from Theorem 6.4.8 that if

h : M → M is an isometry, then h = h1 × h2 where h1 ∈ Isom(N) and

h2 ∈ Isom(R).

Remark 6.4.10. [31, page 208, Remark 8] Let γ = (x(t), y(t)) be a geodesic in the

warped product13, M = N ×R, where the metric tensor is g = e
2 f (r)
n−1 gN + dr2. Then, 13 See Definition 3.2.3

the function e
4 f (y(t))

n−1 |x′(t)|2 is a constant C.
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The following theorem, which can be found in [43], is the Splitting Theorem

for Ric1
φ. We will use this to prove our main lemma, Lemma 6.4.12.

Theorem 6.4.11. [43, Lemma 4.4] Suppose that (M, g, φ) satisfies Ric1
φ ≥ 0 with

φ bounded (above and below) and contains a line. Then either the Cheeger Gromoll

Splitting Theorem holds or M is diffeomorphic to N × R and g = e
2 f (r)
n−1 gN + dr2

where φ = f + fN and (N, gN) does not admit a line.

We are prepared to state our main result.

Lemma 6.4.12. [24] Let (M, g, φ) be a Riemannian manifold with Ric1
φ ≥ 0 and

|φ| ≤ K for K > 0. Suppose there exists h ∈ π1(M) which does not satisfy the

geodesic loops to infinity property14 along a given ray γ. Then the lift γ̃ of γ is in the 14 See Definition 3.1.3

split direction,

γ̃(t) = (x(0), y(t))

and

h∗(γ̃′(t)) = −γ̃′(t).

See Figure 6.4 for an image representation of Lemma 6.4.12.

Proof. Let (M̃, g̃) be the universal cover of M. By Theorem 6.4.4, there exists a

line in M̃. By Theorem 6.4.11, we have the following cases: either M̃ = N ×Rk

and g̃ = gN + gRk , or M̃ = N ×R with g̃ = e
2 f (r)
n−1 gN + dr2, where N contains no

lines.

If g̃ = gN + gRk , then we have a product metric, so we can follow the proof
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of [39, Proposition 1.9] to obtain the desired conclusion.

Suppose g̃ = e
2 f (r)
n−1 gN + dr2, where N contains no lines. Recall the setup

of Theorem 6.4.4. We know that there are minimal geodesics C̃i running from

γ̃(ri) to h ◦ γ̃(ri). [39, Theorem 1.7]

Let pN : M̃ → N and pR : M̃ → R be the projections onto the N component

and the R component, respectively. Let C̃i(t) = (xi(t), yi(t)), where xi(t) :=

pN(C̃i(t)) and yi(t) := pR(C̃i(t)). We have h∗(C̃′i(ti)) = h∗(x′i(ti), y′i(ti)) =

(h1∗ ◦ x′i(ti), h2∗ ◦ y′i(ti)) for ti ∈ (0, Li) as in Theorem 6.4.4. The last equality

follows from Remark 6.4.9.

We have that h∗(C̃′i(ti))→ γ′∞(0), where we can define γ′∞(0) = (x′∞(0), y′∞(0))

with x∞(t) = pN(γ∞(t)) and y∞(t) = pR(γ∞(t)). Now, h∗(x′i(ti))→ x′∞(0) and

h∗(y′i(ti))→ y′∞(0). Thus, lim
i→∞
|x′i(ti)| = lim

i→∞
|h∗(x′i(ti))| = |x′∞(0)|.

By Theorem 6.4.8, since γ∞(t) is a line, x∞(t) is either the image of a line or

constant. However, N doesn’t contain any lines, so |x′∞(0)| = 0. Now, using

Remark 6.4.10, e
4 f (y(ti))

n−1 |x′i(ti)|2 = e
4 f (y(0))

n−1 |x′i(0)|2. Since | f | ≤ K for some K > 0,

for all t ∈ R,

|x′i(t)|2 = e
4 f (y(ti))−4 f (y(t))

n−1 |x′i(ti)|2 ≤ B|x′i(ti)|2, where B = e
8K

n−1 .



homology of manifolds with nonnegative n-bakry-émery ricci curvature 41

Then,

lim
i→∞
|x′i(0)|2 ≤ B lim

i→∞
|x′i(ti)|2 = B lim

i→∞
|h∗(x′i(ti))| = B|x′∞(0)| = 0.

So, we know that

lim
i→∞
|x′i(0)|2 = 0.

We want to show that for any t, there exists i0 ∈ N such that for all i ≥ i0,

|y′i(t)| is strictly positive. Suppose for the sake of contradiction that there exists

some t1 such that for all i ≥ i0, y′i(t1) = 0. Then, since C̃i(t) is unit speed, we

have

|y′i(t1)|2 + e
2 f (t1)
n−1 |x′i(t1)|2 = 1, so for all i ≥ i0,

|x′i(t1)|2 = e
−2 f (t1)

n−1 (1− |y′i(t1)|2) = e
−2 f (t1)

n−1 .

As i→ ∞, |x′i(t1)| → 0, however,

0 < e
−2K
n−1 < e

−2 f (t1)
n−1 < e

2K
n−1 ,

which is a contradiction. Thus, for all t, there exists i large enough so that

|y′i(t)| is strictly positive.

In particular, since |y′i(t)| is never 0 in R, |yi(t)| never changes direction,

and so

dR(y(ri), h(y(ri)) = L(yi(t)) =
∫ Li

0
|y′i(t)|dt.
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Now,
dR(y(ri), h(y(ri)))

Li
=

L(yi(t))
Li

=

∫ Li
0 |y′i(t)|dt∫ Li

0

√
e

2 f (t)
n−1 |x′i(t)|2 + |y′i(t)|2dt

.

Since e
2 f (t)
n−1 |x′i(t)|2 ≤ e

2K
n−1 |x′i(t)|2 → 0, and |y′i(t)|2 = 1− e

2 f (t)
n−1 |x′i(t)|2, we get

that

∫ Li
0 |y′i(t)|dt∫ Li

0

√
e

2 f (t)
n−1 |x′i(t)|2 + |y′i(t)|2dt

≥
∫ Li

0 (1− εi)dt∫ Li
0

√
e

2K
n−1 |x′i(t)|2 + 1dt

=
(1− εi)Li∫ Li

0

√
e

2K
n−1 |x′i(t)|2 + 1dt

,

where |x′i(t)|2 → 0 uniformly by the above as i→ ∞, and εi → 0.

Thus,

lim
i→∞

dR(y(ri), h(y(ri)))

Li
≥ 1. (6.1)

Since y(t) and h(y(t)) are in R, we can write y(t) =
∫ t

0 y′(s)ds − y(0) and

h(y(t)) =
∫ t

0 h∗(y′(s))ds− h(y(0)). Also, the only possible isometries in R are

reflections, translations, and a combination of the two. We want to show that

h∗ cannot be a translation.

Suppose for the sake of contradiction that h∗(y′(s)) = y′(s).

|h(y(ri))− y(ri)|
Li

=
|
∫ ri

0 y′(s)−
∫ ri

0 y′(s)− h(y(0)) + y(0)|
Li

=
|h(y(0))− y(0)|

Li
.

Taking the limit of both sides, we get lim
i→∞

|h(y(ri))− y(ri)|
Li

= 0, which is a

contradiction. Thus, h∗ must be a reflection, and

h∗(γ̃′(0)) = −γ̃′(0). (6.2)



homology of manifolds with nonnegative n-bakry-émery ricci curvature 43

In order to show that γ̃ is in the split direction, along with showing (6.2), we

must also show that |x′(s)| = 0 for all s. We proceed by using (6.2) to show

that lim
i→∞

2
∫ ri

0 |y′(s)|ds
Li

= 1.

By (6.2), we have the following equality:

2|
∫ ri

0 y′(s)ds|
Li

=
|
∫ ri

0 y′(s)ds−
∫ ri

0 h∗(y′(s))ds|
Li

.

By the Fundamental Theorem of Calculus and the Triangle Inequality,

=
|y(ri)− y(0)− h(y(ri)) + h(y(0))|

Li
≥ |h(y(ri))− y(ri)|

Li
− |h(y(0))− y(0)|

Li
.

Taking the limit of both sides, and by (6.1),

lim
i→∞

2|
∫ ri

0 y′(s)ds|
Li

≥ 1.

On the other hand, since |y′(s)| = 1− e
2 f (s)
n−1 |x′(s)| ≤ 1,

lim
i→∞

2
∫ ri

0 |y′(s)|ds
Li

≤ lim
i→∞

2ri
Li

= 1. This equality comes from [39, Note 2.1].

Hence, |y′(s)| = 1, so |x′(s)| = 0, γ̃(t) = (x(0), y(t)), and γ̃ is in the split

direction.
Figure 6.1: C(t) is a represen-
tation of h based at γ(0). If M
satisfies the assumptions in
Lemma 6.4.12, then γ̃ is in the
split direction and h(γ̃) is also
in the split direction but facing
the opposite direction of γ̃.

Corollary 6.4.13. [24] If Mn is a complete noncompact manifold with Ric1
φ ≥ 0,

|φ| bounded, and there exists an element h ∈ π1(M) which doesn’t satisfy the loops

to infinity property15 along a given ray γ, then Mn is a flat normal bundle over a 15 See Definition 3.1.3

compact totally geodesic soul.

We are now ready to prove Theorem 6.4.2 in the non-orientable case.

Corollary 6.4.14. [24] Let Mn be a complete non-orientable Riemannian manifold

and suppose one of the following holds:

1. RicN
X ≥ 0 with N > n.

2. RicN
φ ≥ 0 with N = ∞, φ bounded above.



44

3. RicN
φ ≥ 0 with N ≤ 1 and φ bounded above.

4. RicN
φ ≥ 0 with N = ∞, ∇φ→ 0 at ∞.

Then Hn−1(M, Z) = 0 or Z.

Proof. We will only prove the RicN
φ ≥ 0 with N ≤ 1 and φ bounded above case

because the other cases follow similarly to [37].

Suppose M is a two-ended manifold. Then by the Cheeger-Gromoll Split-

ting Theorem, M splits isometrically as L × R where L is compact and has

the same orientability as M. Then, since M is non-orientable, Hn−1(M, Z) =

Hn−1(N, Z) = 0.

Suppose M is a one-ended manifold. Suppose Mn satisfies loops to infinity

property. M has a double cover π : M̃ → M such that M̃ is orientable. We first

claim that M̃ has only one end.

Assume for the sake of contradiction that M̃ has two or more ends. By

[43, Lemma 4.4], either M̃ splits isometrically as M̃ = Nn−1 ×R where N is

compact, in which case we follow the proof of [37, Propostion 3.2], or M̃ =

N ×R with g = e
2φ

n−1 gN + dr2 where N contains no lines. Since M̃ is orientable,

so is the totally geodesic submanifold, Nn−1.

Noting that G(M̃) = Z /2Z , let h be the nontrivial deck transformation

acting on M̃ (i.e. hR(r) 6= r). By Theorem 6.4.11, h = hR × hN , where hR : R→

R and hN : N → N. Since hR is an isometry, hR(r) = ±r + r0. If hR(r) = r + r0,

then h2
R(r) = r + 2r0. Since h2

R(r) = r, this implies that r0 = 0, so hR(r) = r,
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which is a contradiction. Hence, hR(r) = −r + r0.

Now, we can use the topology of M to show that M̃ is one-ended and has

the loops to infinity property. The interested reader can look at [37, Proposi-

tion 3.2] for more details. By [37, Proposition 2.1] , Hn−1(M̃, G) is trivial. Using

the Universal Coefficient Theorem [29, Theorem 55.1], Hn−1(M, Z) = 0.

Suppose Mn be a one-ended and doesn’t have a ray with the loops to infin-

ity property. Since Mn doesn’t have a ray with loops to infinity property, by

Corollary 6.4.13, Mn is a flat normal bundle over a compact totally geodesic

soul. Since Mn is one-ended, N is orientable if and only if M is non-orientable,

so Hn−1(M, G) = Hn−1(N, G) = Z.

Next, we prove Theorem 6.4.15, which generalizes Theorem 6.4.2 to clas-

sify the n − 1 homologies with coefficients in Abelian groups of spaces with

nonnegative N-Bakry Émery Ricci curvature. This is the N-Bakry Émery Ricci

curvature analog of Shen-Sormani’s [37, Theorem 1.1] and can be proved in the

same way as their theorem except with Theorem 6.4.11 instead of the Cheeger-

Gromoll Splitting Theorem. We give a sketch of the proof below.

Theorem 6.4.15. [24]

Let Mn be a complete noncompact manifold with either of the following:

1. RicN
X ≥ 0 with N > n.

2. RicN
φ ≥ 0 with φ bounded above and N ≤ 1 or N = ∞.

3. RicN
φ ≥ 0 with N = ∞ and ∇φ→ 0 at ∞.
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Then we have the following cases:

(i) If Mn has two or more ends16 and G is an Abelian group, then 16 See Definition 3.1.6

Hn−1(M, G) =


G if M is orientable

ker(G ×2→ G) if M is not orientable.

(ii) If Mn is one-ended with the loops to infinity property17, then 17 See Definition 3.1.3

Hn−1(M, G) = 0.

(iii) If Mn is one-ended and doesn’t have a ray with the loops to infinity property, and G

is an Abelian group, then

Hn−1(M, G) =


G if M is not orientable

ker(G ×2→ G) if M is orientable.

Proof of Theorem 6.4.15. Consider M with two or more ends. If RicN
φ ≥ 0 with

N = 1 and φ bounded above, then M splits as N ×R as in Theorem 6.4.11.

If N is orientable, then Hn−1(M, G) is G, and if Nn−1 is not orientable, then

Hn−1(M, G) is ker(G ×2→ G). In all other cases when M has two or more ends,

we use the Cheeger-Gromoll Splitting Theorem instead of Theorem 6.4.11, as

in [37, Proposition 3.1] to get the same conclusion.

If M is one-ended with the loops to infinity property, then using Poincare

Duality, Universal Coefficient Theorem, and other topological arguments, we

get the desired result. Since this proof only uses topology, the proof is the
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same as [37, Proposition 2.1].

Suppose M is one-ended and doesn’t have a ray with the loops to infinity

property. If RicN
φ ≥ 0 with φ bounded above, then by Corollary 6.4.13, Mn is

a flat normal bundle over a compact totally geodesic soul, Nn−1. In all other

cases where RicN
X ≥ 0 and N is not 1, we use [39, Theorem 1.2] to get that Mn

is a flat normal bundle over a compact totally geodesic soul, Nn−1. Then, using

that M is one-ended, we get the desired conclusion. This proof is the same

as [37, Proposition 3.3], except we use Corollary 6.4.13 in the N = 1 case.



7 N-quasi Einstein metrics on Lie groups

7.1 What question are we trying to answer?

Question 7.1.1. What can we say about vector fields on Lie groups which are N-quasi

Einstein?

7.2 Why is this question interesting?

Gradient N-quasi Einstein metrics with N > n where first systematically con-

sidered by Case-Shu-Wei in [5] and Kim-Kim in [18]. They show that gradient

N-quasi Einstein metrics correspond to warped product1 Einstein metrics. 1 See Definition 3.2.3

In [7, Theorem 1.1], Chen-Liang-Zhu proved that if M is a compact Lie

group with a left-invariant metric g, and if X is a vector field on M such that

RicN
X = Ag for N 6= n, then X is a left-invariant. Furthermore, X is a Killing

vector field [7, Theorem 2.3].

Chen-Liang-Zhu prove [7, Theorem 1.1] by first proving that X is left-

invariant, and then proving that X is Killing using properties of the Ricci

tensor. We will consider 1
2LX g− 1

N−n X∗ ⊗ X∗ = q where q is a left-invariant

tensor, which is more general than Ric+ 1
2LX g − 1

N−n X∗ ⊗ X∗ = Ag. Rather

48
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than considering G a compact Lie group, we assume G admits a discrete group

of isometries, Γ, which acts cocompactly on G. Next, we give the definition for

adX in order to state a linear algebra fact to prove that X is Killing given that X

is a left-invariant vector field which satisfies RicN
X = Ag.

Definition 7.2.1. If G is a Lie group and if g is the Lie algebra of G, then we define

adX : g→ g by adX(Y) = [X, Y], where X, Y are vector fields in g.

If G is a Lie group which admits a discrete subgroup Γ with compact quo-

tient, then G must be unimodular. It is a linear algebra fact that if G is a uni-

modular Lie group, then there exists a basis {Xi}n
i=1 of g, the Lie Algebra of

G, such that g(adX(Xi), Xi) = 0 for all i. We will use these facts about Lie

groups to prove our main lemmas, which are generalizations of Chen-Liang-

Zhu’s [7, Theorem 1.1] and [7, Theorem 2.3].

7.3 What results and proofs do we need along the way to answer-

ing our main result?

We begin by stating our main lemma.

Lemma 7.3.1. [23] Let G be a connected Lie group and let Γ be a discrete group of

isometries which acts cocompactly on G. Let X be a vector field which is invariant

under Γ. If (G, g, X) satisfies
1
2
LX g− 1

N − n
X∗ ⊗ X∗ = q, where q and g are left

invariant, then X is a left-invariant vector field.

Proof. Because G is a Lie group which admits a discrete subgroup with com-

pact quotient, G must be unimodular. Let M = G /Γ and let π : G →

M. By our discussion above, we can choose a basis, {Xi} ∈ G, such that
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g(adX(Xi), Xi) = 0 for all i. Then let X =
n

∑
k=1

fkXk, where fk : G → R.

Using the technique from [7, Theorem 1.1], for all i, we get the following:

1
2
LX g(Xi, Xi)−

1
N − n

X∗ ⊗ X∗(Xi, Xi) = Xi fi +
n

∑
k=1

fkg(∇Xi Xk, Xi)−
1

N − n
f 2
i

= Xi fi +
n

∑
k=1

fkg([Xi, Xk], Xi)−
1

N − n
f 2
i

= Xi fi + g(−adX(Xi), Xi)−
1

N − n
f 2
i

= Xi fi −
1

N − n
f 2
i .

Then, since M is compact, there exists a maximum and a minimum of the

function fi on M. Let r be a point in M such that fi(r) is maximal and let s be

a point in M such that fi(s) is minimal and let q(π(Xi), π(Xi)) = λi. Then

λi = Xi fi(r)−
1

N − n
f 2
i (r)

= − 1
N − n

f 2
i (r)

and

λi = Xi fi(s)−
1

N − n
f 2
i (s)

= − 1
N − n

f 2
i (s)

Then, f 2
i (r) = f 2

i (s) = −(N − n)λi. We will now rule out the case fi(r) =

− fi(s) in order to show that fi must be constant.
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Let c(t) be an integral curve of Xi. Then along π ◦ c(t), f ′i (t)− 1
N−n f 2

i (t) =

λi. Solving this equation (see Lemma 8.4.1), we have that fi(t) =
√
−λi(N − n),

−
√
−λi(N − n), 0, or −

√
−λi(N − n) tanh(

√
−λi(N−n)
(N−n) (t + C)).

Assume for the sake of contradiction that fi(t) is not constant, ie fi(t) =

−
√
−λi(N − n) tanh(

√
−λi(N−n)
(N−n) (t + C)), where C is a constant. Let π ◦ c(ti)

be a sequence of points such that ti → ∞. Since M is compact, there exists a

subsequence of {π ◦ c(ti)} which converges to a point on M.

Now consider the set {π ◦ c(t) : t ∈ R}. Since this set is closed, fi has a

maximal point, tmax on this set. Because the supremum of the tanh function is

1, we know that the maximum of fi(t) on {π ◦ c(t) : t ∈ R} is
√
−λi(N − n).

Let b(t) be an integral curve of Xi such that b(0) = c(tmax) =
√
−λi(N − n).

Now consider the set {π ◦ b(t) : t ∈ R}. Along b(t), fi(t) is either
√
−λi(N − n)

or −
√
−λi(N − n) tanh(

√
−λi(N−n)
(N−n) (t + C)). Since the supremum of fi(t) on

{π ◦ b(t) : t ∈ R} is
√
−λi(N − n) and tanh never achieves its maximum on its

domain, fi(t) must be constantly
√
−λi(N − n) on the set {π ◦ b(t) : t ∈ R}.

Finally, since {π ◦ b(t) : t ∈ R} = {π ◦ c(t) : t ∈ R}, fi(t) is constant on

{π ◦ c(t) : t ∈ R}. Then, since fi(t) is constant along every integral curve and

since G is connected, fi(t) is constant.

Lemma 7.3.2. [23] Let G be a unimodular Lie group with left-invariant metric, g. If

X is left-invariant, tr(q ◦ adX) = 0, and
1
2
LX g− 1

N − n
X∗ ⊗ X∗ = q, where q is

left-invariant, then X is Killing.

Proof of Lemma 7.3.2. Let {Xi} be an orthonormal basis relative to g and let
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X = a1X1 + a2X2 + ... + anXn. Then, plugging in (Xi, Xj) into q =
1
2
LX g −

1
N − n

X∗ ⊗ X∗, we get

q(Xi, Xj) =
1
2
(

g([Xi, X], Xj) + g([Xj, X], Xi)−
1

N − n
g(X, Xi)g(X, Xj).

We denote the projection of Xi onto X, as projX Xi. Since projX Xi =
g(X, Xi)X
|X|2

and adX(Xi) = [X, Xi], we have the following:

q(Xi, Xj) =
1
2
(

g(adX(Xi), Xj) + g(adX(Xj), Xi)
)
− |X|2

(N − n)
g(projX Xi, Xj).

Thus, we have the following equation, where we view q, adX , and projX as

matrices:

q =
1
2
(
adX + adT

X
)
− |X|2

(N − n)
projX .

We denote “·" as the matrix multiplication symbol. Multiplying both sides

by the matrix, adX , we get:

q · adX =
1
2
(
adX + adT

X
)
· adX −

|X|2
(N − n)

projX ·adX

=
1
2
(
ad2

X + adT
X · adX

)
− |X|2

(N − n)
projX ·adX .

Taking the trace of both sides, we get

tr(q · adX) =
1
2

tr
(
ad2

X + adT
X · adX

)
− |X|2

(N − n)
tr(projX ·adX).
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Then, since tr(q · adX) = 0 and using that for any n× n matrix A, tr(A2) =

tr((AT)2), we get

0 =
1
4

tr
(
(adX + adT

X)
2)− |X|2

(N − n)
tr(projX ·adX).

Now, plugging in Xi, one of the orthonormal basis vectors into adX · projX

and using that tr(AB) = tr(BA) for any two matrices A and B, we get:

adX · projX(Xi) =
ai
|X|2 [X, X]

= 0.

Thus, we have 0 =
1
4

tr
(
(adX + adT

X)
2).

Now, since adX + adT
X is symmetric, we can diagonalize adX + adT

X , and

call the diagonalized matrix D. Then, tr((adX + adT
X)

2) = tr(D2). Since the

eigenvalues in D2 are nonnegative and tr(D2) is the sum of the eigenenvalues

of D2,
1
2
(adX + adT

X) = 0. Thus, X is Killing.

Next, we will apply Lemma 7.3.1 to metrics which satisfy RicN
X = Ag.

Theorem 7.3.3. [23] Let G be a Lie group and let Γ be a discrete group of isometries

which acts cocompactly on G, where π : G → G /Γ is a covering map. If (G /Γ , g, X)

satisfies RicN
X = Ag, then X̃ = π∗(X) is left invariant and Killing.

Proof. First, we let g̃ = π∗(g), be the pullback metric of g. Since π is a local

isometry, Ricm
X̃
= Ag̃

Since Ag̃ − Ricg̃ is left-invariant, by Lemmas 7.3.1 and 7.3.2, X̃ is left-

invariant and Killing.
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We immediately get the following corollary, which we will use throughout

Section 9.5.

Corollary 7.3.4. [23] If Mn is a unimodular Lie Group and if RicN
X = Ag with X a

left-invariant vector field and g a left-invariant metric, then X is a Killing field.

Lemma 7.3.5. [23] Suppose (Mn, g) is a Lie group which satisfies RicN
X = Ag where

X is nonzero, left-invariant, and Killing. If {X1, X2, ...Xn} is an eigenbasis of the

Ricci tensor of left invariant fields, then X is a multiple of one of the eigenbasis vectors

(ie there exists 1 ≤ m ≤ n such that X = amXm).

Proof. Since X is left-invariant and Killing, we have for all 1 ≤ i, j ≤ n where

i 6= j,

RicN
X (Xi, Xj) = −

1
N − n

aiaj.

Now RicN
X (Xi, Xj) = Ag(Xi, Xj) = 0 for all sets of i, j if and only if at least

n− 1 sets of ak are 0. Thus, X = amXm for some 1 ≤ m ≤ n.

7.4 What are the main results in this section?

Lemma 7.3.2 and Theorem 7.3.3, and Corollary 7.3.4 give an us important

properties of Lie groups which satisfy the N-quasi Einstein equation. We sum-

marize the main results in this section below.

Lemma 7.3.2 [23]: Let G be a connected Lie group and let Γ be a discrete

group of isometries which acts cocompactly on G. Let X be a vector field



quasi-einstein metrics on lie groups 55

which is invariant under Γ. If (G, g, X) satisfies
1
2
LX g− 1

N − n
X∗ ⊗ X∗ = q,

where q and g are left invariant, then X is a left-invariant vector field.

Theorem 7.3.3 [23]: Let G be a Lie group and let Γ be a discrete group of

isometries which acts cocompactly on G, where π : G → G /Γ is a covering

map. If (G /Γ , g, X) satisfies RicN
X = Ag, then X̃ = π∗(X) is left invariant and

Killing.

Corollary 7.3.4 [23]: If Mn is a unimodular Lie Group and if RicN
X = Ag

with X a left-invariant vector field and g a left-invariant metric, then X is a

Killing field.



8 Geodesics on manifolds which are N-

quasi Einstein and Einstein

8.1 What question are we trying to answer?

Question 8.1.1. Given a manifold which is Einstein and N-quasi Einstein, what can

we say about the geodesics on such manifolds? Does this help us give a characteriza-

tion of manifolds which are Einstein and N-quasi Einstein?

8.2 Why is this question interesting?

The results in this chapter were originally meant to be a way to prove the

results in Chapter 9. However, it has become clear that the local behavior of

manifolds which are N-quasi Einstein and Einstein tells us a lot about the

global behavior of such manifolds, which leads us to two of our main results

in this chapter, Proposition 8.4.10 and Theorem 8.4.12.

56



geodesics on manifolds which are quasi einstein and einstein 57

8.3 What are the main results in this chapter?

The following proposition gives us a characterization of geodesics on a man-

ifold which is both N-quasi Einstein and Einstein. For the rest of the chapter,

let m = N − n. The main theorems of this chapter are as follows. They will be

proven in the next section.

Proposition 8.4.3 [23] Let (M, g) be a complete Riemannian manifold and

let γ : (−∞, ∞)→ M be a unit speed geodesic. Suppose the equation

1
2
LX g(γ̇, γ̇)− 1

N − n
g(X, γ̇)g(X, γ̇) = λg(γ̇, γ̇)

is satisfied at every point on γ.

1. If λ = 0 for N 6= n at every point along γ, then ϕ(t) = 0.

2. If λm > 0 at every point along γ, then there are no complete solutions to

1
2LX g− 1

N−n X∗ ⊗ X∗ = λg.

3. If λm < 0 along a geodesic, then

ϕ(t) =
√
−λ(N − n) tanh

(√
−λ(N−n)
(N−n) (t + C)

)
or

ϕ(t) = ±
√
−λ(N − n).

The next three results follow from Proposition 8.4.3 and give global results

about manifolds which are both N-quasi Einstein and Einstein.

Proposition 8.4.8 [23] If M is a compact manifold which satisfies
1
2
LX g −

1
N − n

X∗ ⊗ X∗ = λg with X 6= 0 and λm < 0 along every geodesic, then

M = S1.
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Proposition 8.4.10 [23] Consider Sj ×R with the product metric and j ≥ 2,

Sj with a constant curvature metric of Ricci curvature ρ, and R with the flat

metric. Then there exists a nontrivial N-quasi Einstein metric, RicN
X = Ag if

and only if A = ρ and N > n.

Theorem 8.4.12 [23] Consider the compact quotient of M× N with the prod-

uct metric, where M and N are simply-connected complete Einstein manifolds.

Then the only nontrivial solutions to Ricm
X = Ag occurs when either M is R or

N is R.

8.4 What results and proofs do we need along the way to answer-

ing our main result?

Our first lemma gives a characterization for functions which satisfy the dif-

ferential equation, f ′(t) − 1
N−n f 2(t) = λ. Later in the section, we see that

manifolds which are both Einstein and N-quasi Einstein satisfy the same equa-

tion.

Lemma 8.4.1. [23] Let f ′(t)− 1
N−n f 2(t) = λ, where f : R → R is defined for all t

in R and λ and m are constants. Then:

1. If λ = 0, then f (t) = 0.

2. If λm > 0, then there are no solutions.

3. If λm < 0, then f (t) = ±
√
−λ(N − n) or

√
−λ(N − n) tanh

(√
−λ(N−n)
(N−n) (t +

C)
)

.

Proof. Suppose λ = 0. Then it is clear that f (t) = 0 is a solution. If f (0) is not
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0, then

f ′(t) =
f (t)2

(N − n)

⇒ f (t) =
1

C− t
(N−n)

where C is any real number. However, at t = mC, t blows up, which is a

contradiction since f has to exist for all time.

If λm > 0, then

f ′(t) =
f (t)2

(N − n)
+ λ.

Here, we see that
f (t)2

(N − n)
+ λ is never zero since λm > 0. Integrating and

rearranging, we get

∫ f ′(t)
f 2(t)

(N−n) + λ
dt =

∫
1dt

⇒ (N − n)
λ

∫ f ′(t)

1 +
( f (t)√

λ(N−n)

)2 dt = t + C

⇒
√

(N − n)
λ

tan−1
(

f (t)√
λ(N − n)

)
= t + C,

so then,

f (t) =
√

λ(N − n) tan
(√

λ

(N − n)
(t + C)

)
.
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Since the tan function does not exist everywhere, f (t) also does not exist ev-

erywhere. Thus, if λm > 0, there are no solutions.

If λm < 0, then clearly f (t) = ±
√
−λ(N − n) is a solution to the equa-

tion. Assume f (0) is not ±
√
−λ(N − n). Then we integrate and rearrange as

follows:

∫ f ′(t)
f 2(t)

(N−n) + λ
dt =

∫
1dt

(N − n)
2
√
−λ(N − n)

ln
∣∣∣∣1−

f (t)√
−λ(N−n)

1 + f (t)√
−λ(N−n)

∣∣∣∣ = t + C

⇒
∣∣∣∣1−

f (t)√
−λ(N−n)

1 + f (t)√
−λ(N−n)

∣∣∣∣ = e2
√
−λ(N−n)
(N−n) (t+C).

If
1− f (t)√

−λ(N−n)

1 + f (t)√
−λ(N−n)

= e2
√
−λ(N−n)
(N−n) (t+C), then

f (t) =
√
−λ(N − n)

(
1− e2

√
−λ(N−n)
(N−n) (t+C)

1 + e2
√
−λ(N−n)
(N−n) (t+C)

)
=
√
−λ(N − n) tanh

(√−λ(N − n)
(N − n)

(t+C)
)

.

If
1− f (t)√

−λ(N−n)

1 + f (t)√
−λ(N−n)

= −e2
√
−λ(N−n)
(N−n) (t+C), then f (t) =

√
−λ(N − n)

(
1 + e2

√
−λ(N−n)
(N−n) (t+C)

1− e2
√
−λ(N−n)
(N−n) (t+C)

)
.

In this case, at t = −C, f (t) does not exist, which is a contradiction.

Our next definition and proposition deal with analyzing the equation

1
2
LX g − 1

N − n
X∗ ⊗ X∗ = Ag, which we will use to find N-quasi Einstein

solutions to S2 × R and H3. We will also prove theorems for more general

spaces using this analysis.



geodesics on manifolds which are quasi einstein and einstein 61

Definition 8.4.2. Let γ(t) be a unit speed geodesic. We define ϕγ(t) as g(Xγ(t), γ̇(t)).

Note that ϕγ(t) is well defined for all t that γ(t) is defined. If it is clear which γ(t) we

are defining ϕγ(t) along, then we will call our function ϕ(t) rather than ϕγ(t).

Proposition 8.4.3. [23] Let (M, g) be a complete Riemannian manifold and let

γ : (−∞, ∞)→ M be a unit speed geodesic. Suppose the equation

1
2
LX g(γ̇, γ̇)− 1

N − n
g(X, γ̇)g(X, γ̇) = λg(γ̇, γ̇)

is satisfied at every point on γ.

1. If λ = 0 for N 6= n at every point along γ, then ϕ(t) = 0.

2. If λm > 0 at every point along γ, then there are no complete solutions to 1
2LX g−

1
N−n X∗ ⊗ X∗ = λg.

3. If λm < 0 along a geodesic, then

ϕ(t) =
√
−λ(N − n) tanh

(√
−λ(N−n)
(N−n) (t + C)

)
or

ϕ(t) = ±
√
−λ(N − n).

Proof. We have the following set of equations:

d
dt
(ϕ(t)) =

1
2
LX g(γ̇, γ̇)

=
1

N − n
(X∗ ⊗ X∗)(γ̇, γ̇)) + λg(γ̇, γ̇)

=
1

N − n
g(X, γ̇)2 + λ

=
1

N − n
ϕ2(t) + λ.
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The proposition follows from Lemma 8.4.1.

Remark 8.4.4. [23] If Mn is a compact manifold, then we can prove Proposition

8.4.3(2) by using the Divergence Theorem. Taking the trace of both sides of
1
2
LX g−

1
N − n

X∗ ⊗ X∗ = λg, we get div(X)− 1
N − n

|X|2 = λn. Integrating both sides

over M, we get

∫
M
|X|2 = −

∫
M

λmn

= −λmn vol(M)

Either X = 0 and λ = 0 or the left hand side is positive which implies λm must be

negative.

In the following example, we provide an example of a manifold which

satisfies RicN
X = λg with λm < 0.

Example 8.4.5. [23] Let M = S1 with the usual metric with { ∂
∂θ } the basis vector.

Let X =
√
−λ(N − n) ∂

∂θ with λm < 0. Since X is Killing and S1 is Ricci flat, we

get RicN
X = λg.

Next, we give a global analysis of 1
2LX g− 1

N−n X∗ ⊗ X∗ = λg when λm < 0.

In order to do this, we will first state a definition of critical point originally

defined by Grove-Shiohama (Also see [33]).

Definition 8.4.6. [33] Fix p ∈ M. A point q is a critical point of the distance

function to p (is critical point to p) if, for every vector V ∈ Tq M, there is a minimal

geodesic γ with γ(0) = p, γ(d(p, q)) = q such that g(γ̇(d(p, q)), V) ≤ 0.

Lemma 8.4.7. [33, Corollary 43] Suppose that there are no critical points of the
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distance function to p in the annulus {q : a ≤ d(p, q) ≤ b}. Then B(p, a) is

homeomorphic to B(p, b) and B(p, b) deformation retracts onto B(p, a). Moreover, if

there are no critical points of p in M, then M is diffeomorphic to Rn.

Using similar techniques to those of Wylie in the proof of [42, Proposi-

tion 1], we will look for spaces which admit
1
2
LX g− 1

N − n
X∗ ⊗ X∗ = λg with

λm < 0 everywhere. We will find that the only possibility is S1 if the space is

compact.

Proposition 8.4.8. [23] If M is a compact manifold which satisfies
1
2
LX g− 1

N − n
X∗⊗

X∗ = λg with X 6= 0 and λm < 0 along every geodesic, then M = S1.

Proof. Since M is compact, the function f (p) = |X(p)|2 achieves a maxi-

mum and a minimum value. At the minimum, 0 = DX f = DX g(X, X) =

2LX g(X, X). Then,

1
2
LX g(X, X)− 1

N − n
(X∗ ⊗ X∗)(X, X) = λg(X, X)

⇒ − 1
N − n

|X|4 = λ|X|2.

Then, either |X|2 = −λm or |X|2 = 0 at the minimum point. By a similar

argument, |X|2 = −λm or |X|2 = 0 at the maximum point as well. Thus,

either |X|2 = −λm for every point on M, or there exists a point p ∈ M where

X(p) = 0.

If |X|2 = −λm for every point in M, then taking the trace of
1
2
LX g −
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1
N − n

X∗ ⊗ X∗ = λg, we get

div(X)− |X|2
(N − n)

= λn.

Plugging in |X|2 = −λm, we get that

div(X) = λ(n− 1).

Taking the integral of both sides over M and using the Divergence Theorem,

we get that λ(n− 1) vol(M) = 0. If λ = 0 then X = 0 by Proposition 8.4.3(1), so

n must be 1. Since M is compact, this means that M = S1.

In the case when there exists a point p ∈ M such that X(p) = 0, we will

prove that there are no critical points to p in M and we will use Lemma 8.4.7

to show that M must be Rn.

By Definition 8.4.6, we want to show that there exists a vector V such that

every geodesic γ with γ(0) = p, γ(d(p, q)) = q such that g(γ̇(d(p, q), V) > 0.

Consider the case when N > n. Let γ(t) be a geodesic with γ(0) = p and let

V = X. If ϕ(t) = g(Xγ(t), γ̇(t)), then since X(p) = 0, ϕ(0) must be 0, so ϕ(t)

cannot be constantly nonzero.

Then by Proposition 8.4.3,

ϕ(t) =
√
−λ(N − n) tanh

(√−λ(N − n)
(N − n)

t
)

.

If ϕ(t) =
√
−λ(N − n) tanh

(√−λ(N − n)
(N − n)

t
)

, then ϕ(t) > 0 when t > 0, so
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by Lemma 8.4.7, M = Rn. This is a contradiction because M is compact.

If N > n, then we again let γ(t) be a geodesic with γ(0) = p. We will

let V = −X so that the differential equation we have to solve is − d
dt

ϕ(t) =

1
N − n

ϕ2(t) + λ. Then we get that the solutions are

ϕ(t) =
√
−λ(N − n) tanh

(−√−λ(N − n)
(N − n)

t
)

or ϕ(t) = ±
√
−λ(N − n).

ϕ(t) cannot be ±
√
−λ(N − n) as in the N > n case. If ϕ(t) =

√
−λ(N − n) tanh

(−√−λ(N − n)
(N − n)

t
)

,

then ϕ(t) is positive for t > 0, giving us a contradiction by Lemma 8.4.7.

Next, we give an example of a space (M, g) which is non Euclidean, N-quasi

Einstein and Einstein, and X is not trivial.

Example 8.4.9. [23] Consider H2 with the metric g = dr2 + e2rdx2 and let X =

−m ∂
∂r . Then we have the following:

∇ ∂
∂r

∂
∂x = ∂

∂x

∇ ∂
∂x

∂
∂x = −e2r ∂

∂r

∇ ∂
∂r

∂
∂r = 0.

Then, we have the following computations for the Ricci curvature:

Ric( ∂
∂r , ∂

∂x ) = 0

Ric( ∂
∂r , ∂

∂r ) = −1

Ric( ∂
∂x , ∂

∂x ) = −e2r,

so we see that our metric satisfies Ric = −1g. We have the following computations

for RicN
X :
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RicN
X ( ∂

∂r , ∂
∂x ) = 0

RicN
X ( ∂

∂r , ∂
∂r ) = −1− 1

N−n (−m)2 = −1−m

RicN
X ( ∂

∂x , ∂
∂x ) = e2r(−1−m),

so we see that RicN
X = (−1−m)g.

We are now ready to solve for the solutions of the N-quasi Einstein equation

for Sj ×R when j ≥ 2.

Proposition 8.4.10. [23] Consider Sj ×R with the product metric and j ≥ 2, Sj

with a constant curvature metric of Ricci curvature ρ, and R with the flat metric.

Then there exists a nontrivial N-quasi Einstein metric, RicN
X = Ag if and only if

A = ρ and N > n.

Proof. Let {X1, X2, ∂
∂r} be an orthonormal basis where {X1, X2} is in TS2 and

{ ∂
∂r} is in TR.

First, consider the case A− ρ = 0. Let γS2 be a great circle on S2 since the

geodesics on S2 are the great circles. We apply Proposition 8.4.3 (1). This says

that X restricted to S2 must be 0. Letting γR be a unit speed geodesic in R, we

have

1
2
LX g(γ̇R, γ̇R)−

1
N − n

X∗ ⊗ X∗(γ̇R, γ̇R) = A = ρ.

If A− ρ = 0 and N > n, then by Proposition 8.4.3(3), ϕγR
(t) is either

√
−ρ(N − n) or

√
−ρ(N − n) tanh

(√−ρ(N − n)
(N − n)

(t + C)
)
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which implies

X =
√
−ρ(N − n)

∂

∂r
or
√
−ρ(N − n) tanh

(√−ρ(N − n)
(N − n)

(t + C)
) ∂

∂r
.

If A− ρ = 0 and N > n, then by Proposition 8.4.3(2), there are no solutions.

If (A − ρ)m > 0, then applying Proposition 8.4.3(2) to γS2 in a similar

fashion, we get that there are no solutions.

Consider the case (A − ρ)m < 0. Since S2 has dimension greater than 1,

we can choose γS2 perpendicular to X at 0 so that ϕγS2 (0) = 0. and we apply

Proposition 8.4.3(3) to γS2 ∈ S2. Then ϕS2(t) is either

±
√
−(A− ρ)(N − n) or

√
−(A− ρ)(N − n) tanh

(√
(A− ρ)(N − n)

(N − n)
(t + C)

)
.

ϕS2(t) cannot be
√
−(A− ρ)(N − n) tanh

(√
(A− ρ)(N − n)

(N − n)
(t + C)

)
since

γS2 must be periodic and ϕS2(t) cannot be
√
−(A− ρ)(N − n) since ϕγS2 (0) =

0. This is a contradiction, so there are no solutions in this case as well.

Now, we will generalize Proposition 8.4.10 to compact quotients of mani-

folds of the form M × N, where M and N are Einstein manifolds. We prove

this in a different way from Proposition 8.4.10 because we cannot use the argu-

ment that ϕ(t) must be periodic on Sj.

Lemma 8.4.11. [23] Consider a compact quotient of M× N with the product metric

where M is an Einstein manifold. If there is a nontrivial N-quasi Einstein solution on

such a space, then either X|M = 0 or M is one-dimensional.
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Proof. Without loss of generality, assume that M and N are simply connected

because if either space is not simply connected, we can lift them to the univer-

sal cover. Let π : M× N → (M× N) /Γ be the universal covering map and let

RicM = ρMgM. Let γM(t) be a unit speed geodesic in M. Then we have

1
2
LX g(γ̇M, γ̇M)− 1

N − n
X∗ ⊗ X∗(γ̇M, γ̇M) = A− ρM.

We aim to show that either A − ρM = 0 or M = R. If M is not R then

M is not one-dimensional, so we can choose γM to be perpendicular to X

at 0. In this case, ϕγM (0) is zero, so ϕγM (t) cannot be constantly nonzero. If

(A− ρM)m > 0, then by Proposition 8.4.3(2), there are no complete solutions.

If (A− ρM)m < 0, then by Proposition 8.4.3(3), and since ϕγM (t) ϕγM (t) is

√
−(A− ρM)(N − n) tanh

(√
(A− ρM)(N − n)

(N − n)
(t + C)

)
.

To show that ϕγM (t) cannot be
√
−(A− ρM)(N − n) tanh

(√
(A− ρM)(N − n)

(N − n)
(t+

C)
)

, we will use an argument similar to the proof of Lemma 7.3.1.

Consider the set {π ◦ γM(t) : t ∈ R}. Since this set is closed, ϕγM (t) has

a maximal point, tmax on this set. Because the supremum of the tanh func-

tion is 1, we know that the maximum of ϕγM (t) on {π ◦ γM(t) : t ∈ R} is

√
−(A− ρM)(N − n).

Let β(t) be a geodesic of X such that β(0) = γM(tmax) =
√
−(A− ρM)(N − n).

Now consider the set {π ◦ β(t) : t ∈ R}. Along β(t), ϕβ(t) is either
√
−(A− ρM)(N − n)

or −
√
−(A− ρM)(N − n) tanh(

√
−(A−ρM)(N−n)

(N−n) (t + C)). Since the supre-
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mum of ϕβ(t) on {β(t) : t ∈ R} is
√
−(A− ρM)(N − n) and the tanh func-

tion never achieves its maximum on its domain, ϕβ(t) must be constantly

√
−(A− ρM)(N − n) on the set {π ◦ β(t) : t ∈ R}.

Finally, since {π ◦ β(t) : t ∈ R} = {π ◦ γM(t) : t ∈ R}, ϕγM (t) is constant on

{π ◦ γM(t) : t ∈ R}. Thus, ϕγM (t) is constant.

Since ϕγM (0) = 0, ϕγM (t) cannot be ±
√
−(A− ρM)(N − n), and so we have

arrived at a contradiction.

Thus, either M = R or A − ρM = 0. If A − ρM = 0, then by Proposition

8.4.3(1), ϕγM = 0, which implies X|M = 0.

Now we can prove the following theorem.

Theorem 8.4.12. [23] Consider the compact quotient of M × N with the product

metric, where M and N are simply-connected complete Einstein manifolds. Then the

only nontrivial solutions to Ricm
X = Ag occurs when either M is R or N is R.

Proof. Let π : M × N → (M× N) /Γ be the universal covering map and let

RicM = ρMgM and RicN = ρN gN . Let γM(t) be a unit speed geodesic in M

and let γN(t) be a unit speed geodesic in N. By Lemma 8.4.11, M is either one-

dimensional or X|M = 0 and A− ρM = 0. By symmetry, either A− ρN = 0 and

X|N is zero, or N = R.

Suppose without loss of generality that N = R. Then

1
2
LX g(γ̇N , γ̇N)−

1
N − n

X∗(γ̇N)X∗(γ̇N) = Ag.
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By Proposition 8.4.3, A = 0, then

X = 0,

If Am > 0, then there are no solutions, and if Am < 0, then

X =
√
−λ(N − n) tanh

(√−λ(N − n)
(N − n)

(t + C)
)

∂

∂r
or X = ±

√
−λ(N − n)

∂

∂r
.

If we consider the set {π ◦ γN(t) : t ∈ R} and use the same argument as

above, we see that X =
√
−λ(N − n) tanh

(√
−λ(N−n)
(N−n) (t + C)

)
∂
∂r is not a

solution.

Thus, the only solutions are X = 0 when A = ρM = ρN 6= 0, and X =

±
√
−A(N − n) ∂

∂r when either N = R or M = R.



9 Classification of locally homogeneous

3-Manifolds with N-quasi Einstein

metrics

9.1 What question are we trying to answer?

Question 9.1.1. Which locally homogeneous 3-manifolds satisfy N-quasi Einstein

metrics?

9.2 Why is this question interesting?

In [5, Theorem 2.1], Case-Shu-Wei prove that a compact gradient N-quasi

Einstein with constant curvature must be trivial if N > n. Since locally homo-

geneous manifolds1 have constant scalar curvature, this shows that compact 1 See Definition 3.1.4

locally homogeneous manifolds which satisfy RicN
φ = Ag with N > n must be

trivial. The N > n case follows from [35, Theorem 1.9]. In [11, Theorem 1.3],

He-Petersen-Wylie prove that if (M3, g) has no boundary, satisfies RicN
φ = Ag

with N − n > 1, and has constant scalar curvature, then M3 is a quotient of

71
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S3, S2 ×R, R3, H2 ×R, or H3 with the standard metric. In [10, Theorem 1.4],

He-Petersen-Wylie show that if (Mn, g) is a non-compact Ricci soliton with

N > n and A < 0, under certain conditions, M admits a non-trivial homo-

geneous gradient N-quasi Einstein (RicN
φ = Ag) one-dimensional extension.

In [20, Theorem 1.1], Lafuente proves a converse to this result.

On the other hand, Chen-Liang-Zhu construct some examples of non-

gradient N-quasi Einstein manifolds in [7]. In [19, Corollary 4.1,4.2], Kunduri-

Lucietti study the non-gradient N-quasi Einstein metrics with m = 2 in the

context of vacuum, homogeneous near-horizon geometries, which gives us

motivation to study non-gradient N-quasi Einstein metrics.

If Mn is a homogeneous Einstein manifold, where Ric = Ag, then if

A > 0, then M is compact by Myers’ Theorem, if A = 0, then M is flat

by Alekseevskii-Kimel’fel’d in [1], and if A < 0, then M is not compact by

Bochner’s Theorem, which can be found in Section 9.6. If we compare this to

our results in Table 9.1, we see that this structure does not hold for N-quasi

Einstein metrics. When A = 0, there exist solutions on (compact quotients of)

SU(2), which are not flat. Similarly, in the A < 0 case, there exist solutions on

compact quotients of SU(2).

In [43, Lemma 4.4], we see that if Mn is a compact manifold with infinite

fundamental group satisfying RicN
φ = Ag where A = 0, with m = 1− n < 0,

then the universal cover has a warped product splitting2. By Table 9.1, there 2 See Definition 3.2.3

exist solutions for the compact quotient of S̃L2(R) if Mn satisfies RicN
X = Ag

when N > n and A = 0. This is interesting because S̃L2(R) clearly does not
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split.

9.3 What are the main results in this chapter?

In the following table which can be found in [23], we summarize the solutions

of locally homogeneous3 compact three-manifolds, M3 which have quasi- 3 See Definition 3.1.4

Einstein metrics.

Manifold
N > n
A > 0

N > n
A = 0

N > n
A < 0

N < n
A > 0

N < n
A = 0

N < n
A < 0

R3 ∅ Trivial ∅ ∅ Trivial ∅

SU(2) Exists Exists Exists Exists ∅ ∅

S̃L2(R) ∅ ∅ ∅ ∅ Exists ∅

Nil ∅ ∅ Exists ∅ ∅ ∅

E(1, 1) ∅ ∅ ∅ ∅ ∅ ∅

E(2) ∅ ∅ ∅ ∅ ∅ ∅

H2 ×R ∅ ∅ Exists ∅ ∅ ∅

S2 ×R ∅ ∅ ∅ Exists ∅ ∅

H3 ∅ ∅ Trivial ∅ ∅ Trivial

Table 9.1:
Exists: Nontrivial solutions
exist to RicN

X = Ag

Trivial: The only compact
solution to RicN

X = Ag is when
X = 0

∅: No compact solutions to

RicN
X = Ag on M3 = M̃3 /Γ

9.4 What results and proofs do we need along the way to answer-

ing our main result?

According to Singer in [38], for every locally homogeneous4 geometry (M3, g), 4 See Definition 3.1.4

the universal cover, (M̃3, g̃), is homogeneous. If (M̃3, g̃) is a homogeneous,
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simply connected manifold that admits a compact quotient, then it is one of

the following: R3, SU(2), S̃L2(R), Nil, E(1, 1), E(2), H3, S2 ×R, or H2 ×R [13,

Table 1].

Since X̃ is a left-invariant solution to Ricm
X̃

= Ag̃ if and only if dπ(X̃) is a

solution to RicN
X = Ag, where π : M̃ → M is the universal covering map,

we study these nine geometries in order to classify N-quasi Einstein metrics

on locally homogeneous three manifolds. Of the nine geometries, R3, SU(2),

S̃L2(R), Nil, E(1, 1), and E(2) are Lie groups. We can also use that H2 is a

Lie group to study H2 ×R. We will explicitly calculate the metrics on the Lie

groups which satisfy RicN
X = Ag using the methods of Section . We will study

the equation 1
2LX g − 1

N−n X∗ ⊗ X∗ = λg in order to calculate the N-quasi

Einstein metrics on S2 ×R and H3.

Throughout this paper, we will use the following computations by Milnor:

Lemma 9.4.1. [28, pages 305, 307] Let G be a 3-dimensional unimodular Lie group

with left invariant metric. If L is self-adjoint, then there exists an orthonormal basis

{X1, X2, X3} consisting of eigenvectors LXi = λ∗i Xi. We obtain the following:

[X2, X3] = λ∗1 X1

[X3, X1] = λ∗2 X2

[X1, X2] = λ∗3 X3.

The following chart gives us the signs of λ∗i for SU(2), S̃L2(R), E(2), E(1, 1),
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Nil, and R3.

Lie Group λ∗1 λ∗2 λ∗3

Nil λ∗1 > 0 λ∗2 = 0 λ∗3 = 0

S̃L2(R) λ∗1 > 0 λ∗2 > 0 λ∗3 < 0

E(1, 1) λ∗1 > 0 λ∗2 < 0 λ∗3 = 0

E(2) λ∗1 > 0 λ∗2 > 0 λ∗3 = 0

R3 λ∗1 = 0 λ∗2 = 0 λ∗3 = 0

SU(2) λ∗1 > 0 λ∗2 > 0 λ∗3 > 0

Table 9.2: 3-dimensional Lie
groups with the signs of their
eigenvalues

From now on, let λi = |λ∗i |.

Because we will be using that X is Killing for unimodular Lie groups with

RicN
X = Ag, it will be useful to calculate LX g.

Proposition 9.4.2. [23] Let X = a1X1 + a2X2 + a3X3 be left-invariant vector field

on a 3-dimensional unimodular Lie group with left invariant metric. Then using the

same notation as in Lemma 9.4.1, we have the following:

LX g(Xi, Xi) = 0 for all i

LX g(X1, X2) = −a3λ∗2 + a3λ∗1

LX g(X1, X3) = −a2λ∗1 + a2λ∗3

LX g(X2, X3) = −a1λ∗3 + a1λ∗2

Proof. We have the following computation for LX g:
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LX g(Xi, Xj)

= g(∇Xi (a1X1 + a2X2 + a3X3), Xj) + g(∇Xj(a1X1 + a2X2 + a3X3), Xi)

= ∑
k

akg(∇Xi Xk, Xj) + akg(∇Xj Xk, Xi)

= ∑
k

g(∇Xk Xi + [Xi, Xk], Xj) + g(∇Xk Xj + [Xj, Xk], Xi)

= ∑
k

akg([Xi, Xk], Xj) + akg([Xj, Xk], Xi) + DXkg(Xi, Xj)

= ∑
k

akg([Xi, Xk], Xj) + akg([Xj, Xk], Xi).

Then, using Lemma 9.4.1, we get:

LX g(Xi, Xi) = 0 for all i

LX g(X1, X2) = −a3λ∗2 + a3λ∗1

LX g(X1, X3) = −a2λ∗1 + a2λ∗3

LX g(X2, X3) = −a1λ∗3 + a1λ∗2

Finally, we recall the definition of the Ricci quadratic form, r(x), as intro-

duced by Milnor in [28], and the signatures of the Ricci forms of Nil, E(1, 1),

S̃L2(R), E(2), R3, and SU(2) when the metric is left invariant.

Definition 9.4.3. The Ricci quadratic form, r(X) takes vectors X ∈ TM to R and is

defined as follows:

g(r(X), Y) = Ric(X, Y)
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for all Y ∈ TM.

The collection of signs of r(ei), namely, {sign(r(ei))}n
i=1, is called the signature of

the quadratic form r, where {ei}n
i=1 is any orthonormal basis for the tangent space.

Lie Group r(e1) r(e2) r(e3) Reference

Nil r(e1) > 0 r(e2) < 0 r(e3) < 0 [28, Corollary 4.6]

E(1, 1), S̃L2(R) r(e1) > 0 r(e2) < 0 r(e3) < 0

r(e1) = 0 r(e2) = 0 r(e3) < 0 [28, Corollary 4.7]

E(2) r(e1) > 0 r(e2) < 0 r(e3) < 0 [28, Corollary 4.8]

R3 r(e1) = 0 r(e2) = 0 r(e3) < 0

SU(2) r(e1) > 0 r(e2) > 0 r(e3) > 0

r(e1) > 0 r(e2) = 0 r(e3) = 0

r(e1) > 0 r(e2) < 0 r(e3) < 0 [28, Corollary 4.5]

9.5 N-quasi Einstein Solutions for Nil, S̃L2R, E(1, 1), E(2) and

H2 ×R

In this section, we will compute solutions to the N-quasi Einstein equation for

the Lie groups Nil, S̃L2(R), E(1, 1), and E(2). We will also compute solutions

to H2 ×R, using the Lie group structure of H2.

We will use Tables 9.2 and 9.4 as well as the next remark to find examples of

X which gives us RicN
X = Ag for N > n and A < 0 for the space Nil.

Remark 9.5.1. By [28, Corollary 4.5], for any left invariant metric on Nil, the princi-

pal Ricci curvatures satisfy |r(e1)| = |r(e2)| = |r(e3)| = |ρ|.

Proposition 9.5.2. [23] Consider Nil with RicN
X = Ag. If g is a left-invariant
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metric and if X is a left-invariant vector field, then there exist examples of X such that

RicN
X = Ag if and only if A < 0 and N > n.

Proof. Let {X1, X2, X3} be an orthonormal basis where Ric(X1, X1) = ρ,

Ric(X2, X2) = −ρ, and Ric(X3, X3) = −ρ as in Table 9.4 and Remark 9.5.1.

Let X = a1X1 + a2X2 + a3X3 where a1, a2, and a3 are all constants. By Corol-

lary 7.3.4, X is a Killing field so we set LX g(Xi, Xj) = 0 for all i, j = 1, 2, 3 as

follows:

LX g(X1, X2) = a3λ1 = 0

LX g(X1, X3) = −a2λ1 = 0

where every other combination of LX g(Xi, Xj) is zero by definition of Nil.

Thus, a2 = a3 = 0. We compute RicN
X as follows:

RicN
X (X1, X1) = ρ− 1

N − n
a2

1

RicN
X (X2, X2) = −ρ− 1

N − n
a2

2 = −ρ

RicN
X (X3, X3) = −ρ− 1

N − n
a2

3 = −ρ

Thus, RicN
X = Ag if and only if X = ±

√
2mρX1. In this case, N > n and

A = −ρ < 0.

Now, we will find examples of X which satisfy RicN
X = Ag for the spaces
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E(1, 1) and S̃L2(R).

Proposition 9.5.3. [23] Consider S̃L2(R). If g is a left-invariant metric and if X

is a left-invariant vector field, then there exist examples of RicN
X = Ag if and only if

N > n and A = 0.

Proof. Let g is a left-invariant metric and let X be a left-invariant vector field,

where X = a1X1 + a2X2 + a3X3 with {X1, X2, X3} an orthonormal ba-

sis. By Corollary 7.3.4, X must be a Killing field if RicN
X = Ag, so we set

LX g(Xi, Xj) = 0 for all i, j = 1, 2, 3 as follows:

LX g(X1, X2) = a3(λ1 − λ2) = 0

LX g(X1, X3) = a2(−λ1 − λ3) = 0

LX g(X2, X3) = a1(λ2 + λ3) = 0

where all other pairs of LX g(Xi, Xj) = 0 by properties of S̃L2(R). By the

above, we must have a1 = a2 = 0 and either a3 = 0 or λ1 = λ2.

By Table 9.4, the signature for the Ricci form is (+,−,−) or (0, 0,−).

If the Ricci form is (+,−,−), let |Ric(Xi, Xi)| = ρi. Then, plugging in

(Xi, Xj), where i, j = 1, 2, 3 into RicN
X = Ag, we get the following set of equa-

tions:
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RicN
X (X1, X1) = ρ1 −

1
N − n

a2
1 = ρ1

RicN
X (X2, X2) = −ρ2 −

1
N − n

a2
2 = −ρ2

RicN
X (X3, X3) = −ρ3 −

1
N − n

a2
3

In this case, we cannot have RicN
X = Ag since RicN

X (X1, X1) > 0 and

RicN
X (X2, X2) < 0.

If the Ricci form is (0, 0,−), then we get the following set of equations:

RicN
X (X1, X1) = −

1
N − n

a2
1 = 0

RicN
X (X2, X2) = −

1
N − n

a2
2 = 0

RicN
X (X3, X3) = −ρ3 −

1
N − n

a2
3

Then, RicN
X = Ag if and only if a3 =

√−mρ3, A = 0, and N > n.

Proposition 9.5.4. [23] Consider E(1, 1). If g is a left-invariant metric and if X is a

left-invariant vector field, then there are no solutions to RicN
X = Ag.

Proof. Let g is a left-invariant metric and let X be a left-invariant vector field,

where X = a1X1 + a2X2 + a3X3 with {X1, X2, X3} an orthonormal ba-

sis. By Corollary 7.3.4, X must be a Killing field if RicN
X = Ag, so we set

LX g(Xi, Xj) = 0 for all i, j = 1, 2, 3 as follows:
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LX g(X1, X2) = a3(λ2 + λ1) = 0

LX g(X1, X3) = −a1λ2 = 0

LX g(X2, X3) = −a2λ1 = 0

All other LX g(Xi, Xj) = 0 by properties of E(1, 1). By the three equations

above, a1 = a2 = a3 = 0. By Table 9.4 , the signature for the Ricci form is

(+,−,−) or (0, 0,−). If the Ricci form is (+,−,−), let |Ric(Xi, Xi)| = ρi. Then,

plugging in all iterations of (Xi, Xj), i, j = 1, 2, 3, we get the following:

RicN
X (X1, X1) = ρ1 −

1
N − n

a2
1 = ρ1

RicN
X (X2, X2) = −ρ2 −

1
N − n

a2
2 = −ρ2

RicN
X (X3, X3) = −ρ3 −

1
N − n

a2
3 = −ρ3

RicN
X cannot equal Ag since RicN

X (X1, X1) > 0 and RicN
X (X2, X2) < 0.

If the Ricci form is (0, 0,−), then we get the following set of equations:

RicN
X (X1, X1) = −

1
N − n

a2
1 = 0

RicN
X (X2, X2) = −

1
N − n

a2
2 = 0

RicN
X (X3, X3) = −ρ3 −

1
N − n

a2
3
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In this case, we cannot have RicN
X = Ag since RicN

X (X1, X1) = RicN
X (X2, X2) =

0 and RicN
X (X3, X3) < 0.

Finally, we will find that there are no examples of X on E(2) which give us

RicN
X = Ag.

Proposition 9.5.5. [23] Consider E(2). If g is a left-invariant metric and if X is a

left-invariant vector field, then there are no solutions to RicN
X = Ag.

Proof. Let g is a left-invariant metric and let X be a left-invariant vector field,

where X = a1X1 + a2X2 + a3X3 with {X1, X2, X3} an orthonormal ba-

sis. By Corollary 7.3.4, X must be a Killing field if RicN
X = Ag, so we set

LX g(Xi, Xj) = 0 for all i, j = 1, 2, 3 as follows:

LX g(X1, X2) = a3(λ1 − λ2) = 0

LX g(X1, X3) = −a2λ1 = 0

LX g(X2, X3) = a1λ2 = 0

All other LX g(Xi, Xj) = 0 by properties of E(2). By the three equations

above, a1 = a2 = 0 and either λ1 = λ2 or a3 = 0. By Table 9.4 , the signature for

the Ricci form is (+,−,−). Letting |Ric(Xi, Xi)| = ρi, we plug in all iterations

of (Xi, Xj), i, j = 1, 2, 3 as follows:
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RicN
X (X1, X1) = ρ1 −

1
N − n

a2
1 = ρ1

RicN
X (X2, X2) = −ρ2 −

1
N − n

a2
2

RicN
X (X3, X3) = −ρ3 −

1
N − n

a2
3

RicN
X cannot equal Ag since RicN

X (X1, X1) > 0 and RicN
X (X2, X2) < 0.

Proposition 9.5.6. [23] Consider R3. If g is a left-invariant metric and if X is a

left-invariant vector field, then the only solutions of RicN
X = Ag occur when N 6= n,

A = 0, and X = 0.

Proof. Let g is a left-invariant metric and let X be a left-invariant vector field,

where X = a1X1 + a2X2 + a3X3 with {X1, X2, X3} an orthonormal basis of left-

invariant vector fields. By Corollary 7.3.4, X must be a Killing field if RicN
X =

Ag. By [28, page 307], LX g(Xi, Xj) = 0 for all i, j = 1, 2, 3 and Ric(Xi, Xj) = 0

for all i, j = 1, 2, 3, so we have the following sets of equations for RicN
X (Xi, Xj).

RicN
X (X1, X1) = −

1
N − n

a2
1

RicN
X (X2, X2) = −

1
N − n

a2
2

RicN
X (X3, X3) = −

1
N − n

a2
3

Setting RicN
X = Ag, the only solutions are when N 6= n, A = 0, and

X = 0.
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Remark 9.5.7. Since R3 is Ricci flat, Proposition 9.5.6 also follows from Proposition

8.4.8.

Proposition 9.5.8. [23] If g is a left-invariant metric on H2 ×R and if X is a left-

invariant vector field then there exist solutions to RicN
X = Ag if and only if A < 0 and

N > n.

Proof. Let {X1, X2, ∂
∂r} be an orthonormal basis where {X1, X2} are in TH2 and

∂
∂r is in TR. Let X = a1X1 + a2X2 + a3

∂
∂r . We compute the Lie derivatives as

follows:

LX g(X1, X1) = 2g(∇X1 X, X1) = 2g(−a2X2, X1) = 0

LX g(X2, X2) = 2g(∇X2 X, X2) = 2g(−a1X2 + a2X1, X2) = −2a1

LX g( ∂
∂r , ∂

∂r ) = 0

LX g(X1, X2) = g(∇X1 X, X1) + g(∇X1 X, X1) = g(−a1X2 + a2X1, X1) = a2

LX g(X2, ∂
∂r ) = g(∇X2 X, ∂

∂r ) + g(∇ ∂
∂r

X, X2) = 0

By Corollary 7.3.4, X must be a Killing field, so we set LX g = 0 to get that

a1 = a2 = 0. We have that Ric(X1, X1) = Ric(X2, X2) = −ρg where ρ > 0, and

Ric( ∂
∂r , ∂

∂r ) = 0, so we can compute RicN
X as follows:
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RicN
X (X1, X1) = −ρ

RicN
X (X2, X2) = −ρ

RicN
X (

∂

∂r
,

∂

∂r
) = − 1

N − n
a2

3

Thus, RicN
X = Ag if and only if X = ±

√
ρ(N − n) ∂

∂r , where A = −ρ < 0 and

N > n.

We will show that we can find examples of X such that RicN
X = 0 on SU(2)

with left-invariant metric.

Proposition 9.5.9. [23] Consider SU(2). If g is a left-invariant metric and if X is a

left-invariant vector field, then there exist solutions to RicN
X = Ag if and only if either

N > n with A any real number or N > n with A > 0.

Proof. Let X = a1X1 + a2X2 + a3X3. By Lemma 7.3.5, at least two ai’s must

be zero. By Corollary 7.3.4, X is a Killing field, so we compute LX g using

Proposition 9.4.2 as follows:

LX g(X1, X2) = a3(λ1 − λ2)

LX g(X2, X3) = a1(λ2 − λ3)

LX g(X1, X3) = a2(λ3 − λ1).

(9.1)

By Table 9.4, the Ricci form is either (+,+,+), (+, 0, 0), or (+,−,−). Let
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|Ric(Xi, Xi)) = ρi for i = 1, 2, 3. If the Ricci form is (+,+,+), then we have the

following computations for RicN
X :

RicN
X (X1, X1) = ρ1 −

1
N − n

a2
1

RicN
X (X2, X2) = ρ2 −

1
N − n

a2
2

RicN
X (X3, X3) = ρ3 −

1
N − n

a2
3

Setting RicN
X = Ag, if all three ai’s are zero, then X = 0 and RicN

X = ρg

where ρ = ρ1 = ρ2 = ρ3.

If a1 = a2 = 0 and a3 6= 0, and ρ = ρ1 = ρ2, then

X = ±
√

m(ρ3 − ρ)X3.

Similarly, if a1 = a3 = 0, and ρ = ρ1 = ρ3, then

X = ±
√

m(ρ2 − ρ)X2.

If a2 = a3 = 0, and ρ = ρ2 = ρ3, then

X = ±
√

m(ρ1 − ρ)X1.

In these cases, RicN
X = ρg, where ρ > 0, and m can be positive or negative,

depending on the sign of ρ3 − ρ, ρ2 − ρ, and ρ1 − ρ, respectively.

If the Ricci form is (+, 0, 0), then:
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RicN
X (X1, X1) = ρ1 −

1
N − n

a2
1

RicN
X (X2, X2) = −

1
N − n

a2
2

RicN
X (X3, X3) = −

1
N − n

a2
3

The solutions to the above equations are X = ±
√

ρ(N − n)X1 and RicN
X = 0.

In this case, m must be positive.

If the Ricci form is (+,−,−), then

RicN
X (X1, X1) = ρ1 −

1
N − n

a2
1

RicN
X (X2, X2) = −ρ2 −

1
N − n

a2
2

RicN
X (X3, X3) = −ρ3 −

1
N − n

a2
3

Setting RicN
X = Ag, the solutions are X = ±

√
m(ρ + ρ1)X1, where ρ = ρ2 =

ρ3. In this case, RicN
X = −ρg and m must be positive.

9.6 How does our result relate to the Splitting Theorem, Myers’ The-

orem and Bochner’s Theorem?

According to Khuri-Woolgar-Wylie, the Splitting Theorem holds for RicN
X if

N > n [17, Theorem 2]. We also recall that if (M, g) is a noncompact homoge-
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nous space, then it contains a line. Using the RicN
X version of the Splitting

Theorem and the fact about noncompact homogeneous spaces, we will show

that of the 9 geometries which are 3-dimensional and homogeneous, the ones

which don’t split don’t have solutions if N > n and A ≥ 0.

Proposition 9.6.1. [23] H3, S̃L2R, Nil,E(2), H2 ×R, and E(1, 1) do not admit

metrics such that RicN
X = Ag for N > n and A ≥ 0.

Proof. H3, S̃L2R, Nil,E(2), and E(1, 1) all admit lines and don’t split as N ×R.

Thus, the proposition follows by the Bakry Émery Ricci version of the Splitting

Theorem by Khuri-Woolgar-Wylie.

In the case of H2 ×R, by the Splitting Theorem, RicN
X ≥ 0 with N > n if

and only if RicN
X ≥ 0 with N > n on H2. H2 admits lines and doesn’t split as

N ×R, so the proposition follows.

In [36, Theorem 5], Qian proves that Myers’ Theorem holds for gradient

m-Bakry-Émery Ricci curvature when N > n. Limoncu showed in [25, The-

orem 1.2] that Myers’ Theorem holds for non-gradient m-Bakry-Émery Ricci

curvature when N > n. In [15] Khuri-Woolgar use Limoncu’s version of My-

ers’ Theorem to study Near Horizon Geometries. Using this version of Myers’

Theorem, we see that since S2 ×R and R3 are both noncompact, S2 ×R and

R3 do not admit metrics such that RicN
X = Ag for N > n and A > 0. In fact,

since SU(2) is the only compact simply-connected three-dimensional geome-

try, it is the only one that can admit a metric such that RicN
X = Ag for N > n

and A > 0.
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Next, we will discuss the N > n, A < 0 case of the N-quasi Einstein metric.

Bochner proved that if (M, g) is compact, oriented and if Ric < 0, then there

are no nontrivial Killing fields (See [33, Theorem 36]). This leads us to the next

proposition.

Proposition 9.6.2. [23] If Mn is a compact locally homogeneous5 Riemannian, and if 5 See Definition 3.1.4

Mn is a compact quotient of a Lie group, G, then there are no solutions to RicN
X = Ag

if N > n and A < 0.

Proof. By Lemma 7.3.3, X̃ is Killing on G. Then, Ric = Ag̃ + 1
N−n X̃∗ ⊗ X̃∗

which is negative, giving us a contradiction by Bochner’s Theorem.

Corollary 9.6.3. [23] If M3 is a compact locally homogeneous6 Riemannian manifold 6 See Definition 3.1.4

which satisfies RicN
X = Ag with N > n and A < 0, then M3 cannot be a compact

quotient of R3, SU(2), S̃L2(R), Nil, E(1, 1), H2 ×R, or E(2).

Proposition 9.6.4. [23] On H3, Ric = −ρg where ρ > 0. RicN
X = Ag if and only if

A + ρ = 0 and X = 0.

Proof. If (A + ρ)m > 0, then by Proposition 8.4.3, there are no solutions. If

(A + ρ)m < 0, then by Proposition 8.4.8, there are no solutions. If A + ρ = 0,

then by Proposition 8.4.3, X = 0.

Corollary 9.6.5. [23] There are no solutions to RicN
X = Ag with A > 0 on a compact

hyperbolic manifold.
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Quasi-Einstein Metrics and How They Relate to Black Holes November 2018
Graduate Seminar in Geometry and Topology at Syracuse University

Other Graduate Math Activities
Volunteer Remote Tutor (in Response to COVID-19) Fall 2020 to present

• Tutored multiple 4th and 5th grade students in math

• Tutored high school student in statistics with Syracuse University and Salvation Army

• Mentored student in scholarship applications

Committee Member for Career Panel, Association for Women in Mathematics, SU
student chapter Fall 2020

• Helped the 2020-2021 Association for Women in Mathematics SU student chapter board
members plan and execute a career panel consisting of: a postdoctoral researcher in industry,
two postdoctoral researchers in academia, a senior program manager in outreach, an assistant
professor, and a research mathematician in government.

Research Assistant Summer 2020, Summer 2019, Summer 2018

• Research Assistant under William Wylie’s NSF grant DMS-1654034

President of Association for Women in Mathematics, SU student chapter Spring 2019
to Spring 2020

• Organized events related to women and minorities in math, including:

– lunches with female seminar speakers

– career panel with female panelists postdocs, government researcher, outreach, etc (post-
poned)

– monthly social events

Vice President of Association for Women in Mathematics, SU student chapter Spring
2018 to Spring 2019

• Co-founded the Association for Women in Mathematics, Syracuse University student chapter

• Helped the President plan and execute social events 2-3 times a semester

Directed Reading Program Mentor, Mathematics Department Fall 2018

• Read “Elementary Differential Geometry” by Pressley and “The Four Vertex Theorem and
its Converse” by DeTurck, Gluck, Pomerleano, and Vick with undergraduate student.

• Worked together with student to find applications to the four vertex theorem in classical
differential geometry and some basics in general relativity

• Helped student write an abstract and a 20-minute talk which they gave at the Math Graduate
Organization (MGO) Colloquium

• Mentored undergraduate student regarding graduate applications

Women in Science and Engineering Future Professionals Program Fall 2018 to present



• Member of Women in Science and Engineering

• Attended seminars related to women and minorities in science and engineering

Future Professoriate Program Fall 2018 to Spring 2020

• The Future Professoriate Program is a structured professional development experience for
aspiring faculty

Teaching, Syracuse University
Instructor of Record Fall 2016 to present

• Taught 2-3 lectures per week and up to one recitation per week

• Assigned homework, classwork, and created and graded 3 to 4 exams per semester

Math 286 Calculus II for Life Sciences Spring 2020 (Partially online)
Math 285 Calculus I for Life Sciences Spring 2019, Fall 2019, Fall 2020 (Online, 2 courses)
Math 295 Calculus I Spring 2017, Spring 2018, Fall 2018
Math 194 Precalculus Fall 2016, Fall 2017

Teaching Assistant Fall 2015 to Spring 2016

• Led four recitations a week

• Wrote quizzes, graded half of exams and quizzes

Math 295 Calculus I Spring 2016
Math 194 Precalculus Fall 2015

Math Clinic Fall 2016 to Spring 2017

• Helped undergraduate students in courses including Calculus, Linear Algebra, Differential
Equations up to two hours a week

Conferences Attended
Virtual Seminar on Geometry with Symmetries April 2020 to present
Online

Union College Mathematics Conference 2019 September 14, 2019
Union College

2019 Lehigh University Geometry and Topology Conference June 20, 2019
Lehigh University

Master Class in Differential Geometry:
The Structure of Limit Spaces May 27, 2019
Henri Poincaré Institute

2019 Program for Women and Mathematics:
Topics in Geometric Analysis May 27, 2019
IAS and Princeton


	N-bakry Emery Ricci Curvature & N-quasi Einstein Metrics
	Recommended Citation

	Calculus on manifolds
	What is Euclidean space?
	What is a manifold?
	Differentiable manifold: an intuitive summary

	Ricci curvature
	What is Ricci curvature?
	How do we calculate Ricci curvature given a specific manifold with a specific metric?
	Why do we study manifolds with nonnegative Ricci curvature?
	What is an Einstein manifold?

	Topology and Geometry of Riemannian manifolds
	What are some topological definitions that we'll use?
	What are some geometric definitions that we'll need?

	Bakry Émery Ricci Curvature
	What is Bakry Émery Ricci Curvature?
	Why do we study manifolds with nonnegative Bakry Émery Ricci curvature?
	What is an N-quasi Einstein manifold?
	Why do we study quasi Einstein manifolds?

	The splitting theorem for spaces with nonnegative Bakry Émery Ricci curvature
	What question are we trying to answer?
	Why is this question interesting?
	What are the main results in this section?
	How do we prove the main results?

	Homology of manifolds with nonnegative N-Bakry-Émery Ricci curvature
	What question are we trying to answer?
	Why is this question interesting?
	What are the main results in this chapter?
	What results and proofs do we need to answer our main question?

	Quasi-Einstein metrics on Lie groups
	What question are we trying to answer?
	Why is this question interesting?
	What results and proofs do we need along the way to answering our main result?
	What are the main results in this section?

	Geodesics on manifolds which are quasi Einstein and Einstein
	What question are we trying to answer?
	Why is this question interesting?
	What are the main results in this chapter?
	What results and proofs do we need along the way to answering our main result?

	Classification of locally homogeneous 3-Manifolds with quasi Einstein metrics
	What question are we trying to answer?
	Why is this question interesting?
	What are the main results in this chapter?
	What results and proofs do we need along the way to answering our main result?
	
	


