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Abstract
Detection and control are two essential components in an intelligent system. This

thesis investigates novel techniques in both areas with a focus on the applications of

handwritten text recognition and UAV flight control. Recognizing handwritten texts

is a challenging task due to many different writing styles and lack of clear bound-

ary between adjacent characters. The difficulty is greatly increased if the detection

algorithms is solely based on pattern matching without information of dynamics of

handwriting trajectories. Motivated by the aforementioned challenges, this thesis first

investigates the pattern recognition problem. We use offline handwritten texts recog-

nition as a case study to explore the performance of a recurrent belief propagation

model. We first develop a probabilistic inference network to post process the recog-

nition results of deep Convolutional Neural Network (CNN) (e.g. LeNet) and collect

individual characters to form words. The output of the inference network is a set of

words and their probability. A series of post processing and improvement techniques

are then introduced to further increase the recognition accuracy. We study the per-

formance of proposed model through various comparisons. The results show that it

significantly improves the accuracy by correcting deletion, insertion and replacement

errors, which are the main sources of invalid candidate words.

Deep Reinforcement Learning (DRL) has widely been applied to control the au-

tonomous systems because it provides solutions for various complex decision-making

tasks that previously could not be solved solely with deep learning. To enable au-

tonomous Unmanned Aerial Vehicles (UAV), this thesis presents a two-level trajectory

planning framework for UAVs in an indoor environment. A sequence of waypoints is



selected at the higher-level, which leads the UAV from its current position to the des-

tination. At the lower-level, an optimal trajectory is generated analytically between

each pair of adjacent waypoints. The goal of trajectory generation is to maintain the

stability of the UAV, and the goal of the waypoints planning is to select waypoints

with the lowest control thrust throughout the entire trip while avoiding collisions

with obstacles. The entire framework is implemented using DRL, which learns the

highly complicated and nonlinear interaction between those two levels, and the impact

from the environment. Given the pre-planned trajectory, this thesis further presents

an actor-critic reinforcement learning framework that realizes continuous trajectory

control of the UAV through a set of desired waypoints. We construct a deep neu-

ral network and develop reinforcement learning for better trajectory tracking. In

addition, Field Programmable Gate Arrays (FPGA) based hardware acceleration is

designed for energy efficient real-time control.

If we are to integrate the trajectory planning model onto a UAV system for real-

time on-board planning, a key challenge is how to deliver required performance under

strict memory and computational constraints. Techniques that compress Deep Neural

Network (DNN) models attract our attention because they allow optimized neural

network models to be efficiently deployed on platforms with limited energy and storage

capacity. However, conventional model compression techniques prune the DNN after

it is fully trained, which is very time-consuming especially when the model is trained

using DRL. To overcome the limitation, we present an early phase integrated neural

network weight compression system for DRL based waypoints planning. By applying

pruning at an early phase, the compression of the DRL model can be realized without

significant overhead in training. By tightly integrating pruning and retraining at the

early phase, we achieve a higher model compression rate, reduce more memory and

computing complexity, and improve the success rate compared to the original work.
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Chapter 1

Introduction

Neuromorphic systems refer to emerging neural network-based models and computing

systems. This evolving field offers exciting possibilities, including many emerging

cognitive applications. Two major applications of neuromorphic systems are detection

and control. The former refers to the recognition of familiar patterns from noisy input

and the later refers to the selection of system actions based on the environment status

to maximize the total reward. Both tasks are corner stones of an intelligent system.

How to improve their accuracy and reduce the cost have been the focus of many

research works. In this thesis, we will study two neuromorphic systems, handwriting

text recognition and UAV flight control. Techniques for accuracy enhancement and

complexity reduction will be discussed and evaluated.

In this chapter, we first discuss the motivation of the study. Then we introduce

background of some learning models and complexity reduction techniques that will

be used in this work. Finally, the contributions of the thesis are summarized.

1.1 Motivation

There has been a significant amount of work on neuromorphic systems for different

tasks. Recognizing handwritten text is one of them. It is surprisingly challenging

1



because of many reasons. Firstly, handwritten words are largely variable because

everyone has their own unique writing style. In the past, many techniques, such

as Hidden Markov Models (HMM) and deep learning networks, have been applied

to this problem. Unfortunately, the performance of these previous approaches was

restricted due to the lack of the ability to automatically extract high-level features

and also because of the expensive training cost. Furthermore, adjacent characters

sometimes connect or overlap. If there is no clear boundary, two characters close to

each other may be recognized as one character, or one character may be split into

two characters. This greatly increases the difficulty for algorithms that detect only

based on pattern matching. In the first part of this thesis, we focus on investigating

the learning model that improves the accuracy of handwritten text recognition and

overcomes the shortcomings of previous works. This is achieved by using a recurrent

belief propagation network that is introduced in Chapter 2.

The autonomous systems have attracted much attention recently. Among them,

the UAV technology is one of the rapidly growing fields with tremendous opportunities

for research and applications. The biggest challenge to safely integrating UAV into

the national airspace – with the ability to fly beyond the line of sight of the operator

– is developing a system that enables UAV to “sense and avoid” other stationary

or moving objects. The system requires the UAV to achieve real autonomy in real

time without remote controls, external navigation aids (such as Global Navigation

Satellite Systems (GNSS)) and radar systems. In the second part of this thesis, we

focus on the autonomous flight control of UAVs. Small UAVs are considered in our

work not only because of their wide availability and the most civilian usage, but also

because they impose more stringent constraints on the size and energy dissipation of

the onboard computing platform. We present two neuromorphic systems for energy

efficient UAV trajectory planning and control respectively. The construction, training

and evaluation of those systems are described in Chapter 3 and Chapter 4.

2



Conventional high-performance computing systems are too bulky for small sized

UAVs and their power consumption is too high for an on-board computing. There is a

gap between the computing capabilities of on-board embedded systems and the com-

putation demand for real-time planning and control of the autonomous UAV. There

have been efforts in closing this gap from both sides. On one hand, faster embedded

processors with small footage and low energy consumption, such as NVIDIA Jetson

TX2 and NX, have been used for cyber physical applications on UAVs [3][4]. On

the other hand, more efficient computing models have been investigated by eliminat-

ing unnecessary weights to compress the model size and to reduce inference energy

consumption of the over-parametrized networks without or with negligible accuracy

loss [5][6]. Small networks with good performance reduce energy costs, computa-

tion complexity, storage requirements, and inference latency, all of which facilitates

the deployment on small UAVs. Furthermore, network compression improves model

generalization by regularizing over-parametrized functions. Therefore, compressing

over-parameterized neural networks is an important step towards successful training

and real time on-board processing [7]. However, almost all of previous works on DNN

weight pruning solely focused on supervised image classification, leaving it unclear if

the compression techniques are applicable to DRL. Furthermore, most of them apply

pruning on fully trained model and require iterative retrain of the pruned model. Due

to the error and trial nature of Reinforcement Learning (RL), the training of a DRL

model converges slower than conventional DNN. And the three-step process of model

compression, i.e. training, pruning, and re-training, exacerbates such disadvantage.

In Chapter 5 of this thesis, we address this problem by presenting an early phase

integrated neural network compression system for DRL models.

3



1.2 Cogent Confabulation

Our handwriting text recognition system is built on top of the cogent confabulation

model. The cogent confabulation theory [8] mimics the Hebbian learning, the infor-

mation storage and inter-relation of symbolic concepts, and the recall operations of

the brain. Based on the theory, the cognitive information process consists of two

steps: learning and recall. During the learning, the knowledge links are established

and strengthened as symbols are co-activated. During recall, a neuron receives exci-

tations from other activated neurons. A “winner-takes-all” strategy takes place within

each lexicon. Only the neurons (in a lexicon) that represent the winning symbol will

be activated and the winner neurons will activate other neurons through knowledge

links. At the same time, those neurons that did not win in this procedure will be

suppressed.

A computational model for cogent confabulation is proposed in [8]. Based on this

model, a lexicon is a collection of symbols. A knowledge link (KL) from lexicon A to

B is a matrix with the row representing a source symbol in A and the column rep-

resenting a target symbol in B. The ijth entry of the matrix represents the strength

of the synapse between the source symbol si and the target symbol tj. It is quan-

tified as the conditional probability p(si|tj). The collection of all knowledge links is

called a knowledge base (KB). The knowledge bases are obtained during the learning

procedure. During recall, the excitation level of all symbols in each lexicon is evalu-

ated. Let l denote a lexicon, Fl denote the set of lexicons that have knowledge links

going into lexicon l, and Sl denote the set of symbols that belong to lexicon l. The

excitation level of a symbol t in lexicon l can be calculated as:

I(t) =
∑
k∈Fl

∑
s∈Sk

I(s)[ln(
p(s|t)
p0

) +B], t ∈ Sl. (1.1)

The function I(s) is the excitation level of the source symbol s. Due to the “winner-
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takes-all” policy, the value of I(s) is either “1” or “0”. The parameter p0 is the smallest

meaningful value of P (si|tj). The parameter B is a positive global constant called

the bandgap. The purpose of introducing B in the function is to ensure that a symbol

receiving N active knowledge links will always have a higher excitation level than a

symbol receiving (N − 1) active knowledge links, regardless of the strength of the

knowledge links.

1.3 Deep Reinforcement Learning

Reinforcement learning is a goal-oriented algorithm, which is well-suited for decision-

making where supervised learning or unsupervised learning alone can’t do the job. It

solves the difficult problem of correlating immediate actions with the delayed returns

they produce. In RL, an agent interacts with its environment and receives reward

based on its behavior. This enables the agent to adapt its policy so as to increase

the potential of reward in the future. Reinforcement learning can be empowered by

DNN directly, and have been applied to applications with high dimensional states

like Atari video games, Dota-2, as well as the Go game [9]. In DRL, DNNs are used

to approximate the value function V (s;θ) or Q(s, a;θ) [10]. θ represents parameters

of the DNN model. A state value V (s;θ) is the expected return by following policy

π with initial state s, where the policy π is a mapping from states to actions. The

action value Q(s, a;θ) is the expected return for selecting an action a in a state s and

then following policy π. The value function is used to measure the selection quality

of each state or state-action pair. Policy optimization is to find the best mapping

that maximizes the accumulated discounted rewards.

Deep Q-learning is the first DRL method proposed by DeepMind [9] and it adopts

a DNN to derive the relationship between each state-action pair (s, a) of the system

under control and its value function Q(s, a). The Q-value is the expected cumulative
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(with discounts) reward when system starts at state s and follows action a (and

certain policy thereafter). To be more specific, the DRL agent performs inference

using the DNN to predict the Q value of all possible actions under the current state

and select the action ak with the highest Q value at each decision epoch. To train a

DRL model, at the next decision epoch tk+1, the DRL agent updates the Q value of

state action pair Q(sk, ak) based on the received reward rk(sk, ak) using the Bellman

equation in (1.2) and stores it in the replay buffer.

Q(sk, ak) = rk + max
ak+1

γQ(sk+1, ak+1) (1.2)

where rk is the reward achieved in time slot k, and γ < 1 is the future reward discount

factor. At the end of the execution sequence, the DRL agent performs mini-batch

updating [11][12] that updates the DNN samples from the replay buffer. To deal

with continuous action space, actor-critic models have been proposed as effective

means of combining the policy search with learned value estimation. The actor-critic

based reinforcement learning framework [10] learns policy and state-value function

by training two interacting models, i.e. actor and critic, and is usually used to solve

problems with continuous action space.

1.4 Neural Network Pruning in Deep Learning

Weight pruning have been explored extensively by previous works for DNN compres-

sion. Most of past approaches use magnitude pruning, in which the weights with the

smallest magnitude are pruned first [13][14][15][16]. [17] greedily prunes weights by

approximating change in the loss function and [6] uses variational methods to prune

models. [18] proposes an ADAM-ADMM framework for structured weight compres-

sion for DNNs. The framework is incorporated with the stochastic gradient decent

training process and can be understood as a dynamic regularization method in which

the regularization target is analytically updated in each iteration. It can prune the
6
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Figure 1.1: Structured weight pruning strategies defined on filter and channel levels
respectively on a convolution layer

weights to create different types of structured sparsity such as filter-wise, channel-

wise, column-wise sparsity as well as non-structured sparsity. Figure 1.1 illustrates

structured sparsity defined on filter and channel levels respectively on a convolution

(conv) layer. The specific structure sparsity and prune ratio are enforced during the

training as constraints, and solved using the Alternating Direction Method of Multi-

pliers (ADMM) method. ADMM is a powerful mathematical optimization technique,

which decomposes an original constrained optimization problem into two subproblems

that can be solved separately and efficiently [19]. It can effectively deal with a subset

of combinatorial constraints and yield optimal (or at least high quality) solutions.

When applied to DNN weight pruning, the first subproblem is to minimize the loss of

DNN training with dynamic regularization that minimizes the distance between the

weight coefficients and a set of auxiliary variables. The first subproblem can be solved

using gradient descent [20]. The second subproblem can be formulated as a Euclidean

projection onto a set with special structure and it can be solved analytically.

Structured weight pruning, such as filter pruning, channel pruning, and column

pruning, are believed to be more effective than unstructured weight pruning. This

is because structured weight compression maintains certain regularity. Furthermore,
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the main advantage of structured weight compression is that a full matrix will be

maintained in general matrix multiplication with dimensionality reduction, without

the need of indices, thereby facilitating hardware implementations. It is also worth

mentioning that filter compression and channel compression are correlated [18] as

pruning a filter in layer i (after batch norm) results in the removal of corresponding

channel in i + 1. In general, conv operations are commonly transformed to matrix

multiplications by converting weight tensors and feature map tensors to matrices,

named general matrix multiplication (GEMM). Therefore, the complete matrix can be

retained in GEMM without indexing when the dimension is reduced by the reduction

function, which promotes the hardware implementation.

1.5 Contributions

In this thesis, we investigate different computing paradigms to explore efficient deep

learning models for different applications. To be specific, recurrent belief propagation

is applied as the model for the intelligent handwritten text recognition. Deep Q-

network is applied for energy efficient trajectory generation. Actor-critic based deep

reinforcement learning is used to learn fast and accurate trajectory control policy.

An early phase integrated weight compression scheme is developed to achieve real

time on-board trajectory planning of UAVs. The organization and contributions are

concluded as the following.

In Chapter 2, we present the belief propagation network which is incorporated with

dictionary information to recognize handwritten text images. A layered approach is

adopted. The bottom layer is a CNN for pattern recognition and the upper layer is a

recurrent belief propagation network that searches for the possible words, which can

be formed using the detected characters. Our recurrent belief propagation model does

not rely on accurate separation of the characters. With the proposed post-pruning
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techniques, the size of the output set of word candidates is reduced and the ranking

of the correct word within the output set increases.

In Chapter 3, we deploy a two-level optimization framework to ensure the safe

and effective operation of the drone, by generating obstacle free trajectories that al-

low the drone to maintain stability and energy efficiency. At the higher level, a series

of waypoints are selected, which lead the UAV from its current location to its des-

tination. The energy efficient trajectory is analytically generated between each pair

of adjacent waypoints at the lower level. The entire framework is implemented using

deep reinforcement learning that learns the highly complex and non-linear interaction

between these two levels. In addition, a progressive learning strategy is investigated,

which does not only reduce the convergence time, but also improves the quality of the

results. We also provide results to show the effectiveness of using genetic algorithms

to adjust the gain in the optimal trajectory scheme.

In Chapter 4, we present an actor-critic reinforcement learning framework that

controls UAV trajectory through a sequence of desired waypoints. A deep neural

network is constructed to learn the best tracking strategy, and reinforcement learn-

ing is developed to optimize the resulting tracking scheme. The proposed trajectory

tracking framework improves UAV’s response time and robustness. Compared to

tradition PID controller, it achieves lower position error and less system power con-

sumption with faster attainment. With the consideration of only linear operations in

actor network, FPGA based hardware acceleration is also designed for energy efficient

real-time control.

In Chapter 5, an early phase integrated structured weight compression scheme for

DRL based waypoints planning is presented. By applying pruning at the early phase,

the system improves computational performance of training and inference without

decreasing success rate. The integrated training and pruning framework achieves a

significant performance improvement by having high compression ratio, better success
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rate and less memory and computation requirements. The convergence speed of

the new framework is 34.14% faster with two refactoring techniques. With closely

integrated pruning and retraining at the early phase, the framework does not only

achieve higher compression ratio, but also gives better success rate. This converts

into more reduction of the floating point operations for the inference as well as a

measured run time reduction.

In Chapter 6, we summarize the work in this thesis and provide some future

research directions.
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Chapter 2

Assisting Fuzzy Offline Handwriting

Recognition Using Recurrent Belief

Propagation

2.1 Introduction

In recent years, many studies focus on recognizing handwritten words. Handwrit-

ten words demonstrate high variabilities because each person possesses his/her own

unique writing style. Furthermore, clear boundaries cannot always be found between

characters in handwritten text. Adjacent characters sometimes are connected or over-

lapped. This significantly increases difficulty for detection algorithms solely based on

pattern matching. Without clear boundary, two characters that are close to each

other may be recognized as one character or one character may be split into two char-

acters. These errors are usually referred as insertion or deletion errors. Recognition of

handwritten characters in offline situation are more challenging, because it does not

have dynamic representations of hand writing trajectories, which is a useful feature

for classification.
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Some of recent approaches apply Histograms of Oriented Gradients (HoGs) [21],

discrete HMM [22][23] or deep neural networks [24][25] to recognize handwritten

words. In general, these works investigate two directions to improve the recogni-

tion accuracy: 1) Searching for the set of more robust features that are orientation,

distortion insensitive; 2) Incorporate language and dictionary information with the

pattern recognition. S. Yao [26] used a method based on sequences of HoG feature

vectors. This method normalizes and divides the input image into equal-sized cells,

and then organizes HoG descriptors into horizontal and vertical directional features

vectors. Discrete HMM has been successfully used for handwritten Arabic word recog-

nition by M. Dehghan et al. [27]. They use the histogram of 4-directional chain code

as feature vectors, by using a moving window scanning the input image from left to

right. However, directional features of handwritten words are variable and they are

hard to recognize with rotation and distortion. A. Gupta [28] improved this by using

Fourier descriptors. However, exactly segmenting words into individual characters is

essential, which is less likely to achieve when the input is noisy. Y. Lecun [29] [30]

proposed an efficient multilayer CNN for recognizing both handwritten digits and

characters.

To integrate dictionary information with character recognition, [29] applies stan-

dard grammar graph to select the output from the CNN based character recognizer

and form the selected characters into words. Although effective, only if both recog-

nition graph and standard grammar graph reach the end nodes will an acceptable

sequence of input symbols be selected and the standard grammar graph is not re-

current, therefore, it is not capable of correcting the deletion errors, which is very

likely to occur when no well-defined character boundaries are found. This is improved

by the multidimensional Recurrent Neural Network (RNN) proposed by Alex Graves

[31]. Trained with the image of whole words, the RNN is able to recall the spatial

pattern of adjacent characters, which improves recognition accuracy. Esam Qaralleh
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et al. [32] tuned the recurrent neural network to a deep neural network with three

hidden layers and two subsampling layers. Their approach segments the input word

into sub-words first and then recognized sub-words using RNN. In this way, the com-

plexity is greatly reduced. The RNN provides a comprehensive solution for spatial

temporal pattern recall, however, its training is quite expensive. In [33] [34][35], a

layered framework is developed that utilizes cogent confabulation model in the up-

per layer to form correct words and sentences based on the characters detected by

the bottom layer using pattern matching. However, similar to [29], the confabula-

tion model assumes that the images and characters in the real word has one to one

correspondence, it cannot correct the insertion and deletion error.

In this work, we aim at incorporating dictionary information to assist recognition

of handwritten text images. We generalize the definition of handwritten text to any

text image with irregular fonts and possible overlapped characters. To avoid expensive

training of an RNN, we adopted similar layered approach as [29] and [33]. The

bottom layer is a CNN for pattern recognition and the upper layer is a recurrent belief

propagation network that searches for the possible words that can be formed using the

detected characters. The belief propagation network generates fuzzy outputs. The

belief propagation network generates fuzzy outputs. The output is a set of possible

words recognized from the given image and their scores. The fuzzy output can further

be refined if sentence level information is provided. The belief propagation network

is a neural network constructed based on a given dictionary and the construction

complexity is linear to the size of the dictionary. Unlike the models in [28] and [33],

our network does not rely on accurate separation of the characters. Each neuron

maintains a memory. The state of a neuron is not only determined by its input, but

also its historical value. These improvements not only enable the model to correct

insertion and deletion errors, but also replacement errors. If a wrong spelled word

that is not in the dictionary, our system will give several most likely word candidates
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with the correct spelling. Some examples are given in Section 2.3.4.

The goal of our research is to reduce the size of the output set of word candidates

and to increase the ranking of the correct word within the output set. This is achieved

by a carefully designed inference network and certain pruning techniques such as

post Gaussian Mixture Estimation. Compared to the standard grammar graph based

word detection, we have more than 5% improvement in word accuracy. Compared to

the result without post Gaussian estimation, 46.57% unrelated word candidates are

pruned with additional 7.2% ranking increase.

The rest of this chapter is organized as the follows. Section 2.2 provides the details

about system architecture and algorithm. Experimental results are given in Section

2.3 and Section 2.4 summarizes the current work.

2.2 System Architecture and Algorithm

2.2.1 Network Overview

The overall framework has three layers: (1) Segmentation layer using Local Peak

Finder Algorithm [36]; (2) Recognition layer using LeNet-Structured CNN; and (3)

Inference layer using recurrent belief propagation network. Figure 2.1 shows the

flowchart of the overall framework. Its input is handwriting word images. The out-

put is a fuzzy recognition. It consists of a set of possible word candidates and their

ranking and scores. Using Local-peak finder algorithm, we divide a word image into

a sequence of segments. Then the LeNet-based recognizer gives possible class labels

with probabilities. The segmentation step is a best effort approach to separate char-

acters. Since there is not always clear boundary between characters in handwritten

texts, the separation is not perfect. It is possible that a segment consists of multiple

characters. Those segments are detected and processed using Space Displacement

Neural Network (SDNN) [37]. The details will be introduced in Section 2.2.2. Lastly,
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Figure 2.1: Overall framework

the belief propagation network recalls words with the highest likelihood based on the

predictions from the CNN and report their ranking and scores.

2.2.2 Segmentation Based on Local Peak Finder Algorithm

SDNN has been proposed in [37] to apply CNN on text images with connected digits.

The neural network is used to process each sub-image selected by a series of sliding

widows, and the output is connected using a Viterbi alignment module. Naively ap-

plying SDNN to the original word image will unnecessarily increase the computation

complexity. In the first step, we segment the image into separate characters or char-

acter groups and then apply SDNN on each segment. In this work, we improved the

local peak finder algorithm in [36] to search for segmentation point. The algorithm

is shown in Algorithm 1.

In this work we consider black-white images with white background and black

foreground. The white pixel value is 255 and black pixel value is 0. Firstly, we

calculate the summation of the pixel values for each column and record the positions

and values of peak (column with local maximum pixel value) and valley (column with

local minimum pixel value). The maximum difference between the peak and valley

are calculated and denoted as ∆. If a column’s pixel value is less than 0.6∆, it will

be removed from consideration. Therefore, only those columns with large number of

white pixels will be considered as potential point for segmentation. Starting from the
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Algorithm 1 Local peak finder algorithm: pseudo code
True pixel peak set = ∅;
Obtain column pixel value summation vector C;
Record positions and values of every valley Vi and peak Pt in C;
Calculate maximum different ∆ between peak and valley;
if column pixel value < 0.6∆ then

Remove the column from consideration;
end
while position Vi in valley set not the end do

Find peak position Pt prior previous to Vi;
Mark position Vimin of min valley between Pt and Vi;
if Vimin 6= Vi then

Set frame between Vimin between Vi as decision region D;
Mark position P of max peak in decision region D;
if pixel value of P ≥ threshold T then

Add P to true peak set Tp;
end

end
end
Separate input image at position value in set Tp;

first valley position Vi, we look for the first peak Pt to the right of Vi and the region

between these two is set as decision region. When the pixel values in this region are

all greater than the value of Vi, Vi is move to the next valley position. If there exists

a point Vimin with smaller pixel value than Vi and the peak between [Vimin, Vi] is

greater than a particular threshold T , we will segment the image at the location of

the peak, and continue processing the remaining image using the same algorithm.

The segmentation algorithm is only a best effort approach. It is possible that

multiple connected characters will be included in the same segment. Those segments

whose width is less than the average character width Tw will be processed directly by

the CNN for pattern matching. Tw is obtained from the training set. For segments

whose width is greater than Tw, a moving window that is Tw wide is used to scan

through the segment from left to right with one pixel step size. Each image selected

by the window will be processed by the CNN.

Figure 2.2 shows an example of the segmentation step. The input word image is
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Figure 2.2: Example for segmentation layer

shown at the bottom. The column pixel value is plotted and three segmentation point

are identified and highlighted. The middle segment is wider than average. Applying a

moving window to this segment, we got four images for this area. Overall six images

will be sent to CNN for pattern recognition.

2.2.3 LeNet-Structured CNN Recognizer

We use the CNN structure defined by Berkeley Vision and Learning Center [38] for

pattern recognition. It is trained to recognize 26 English alphabets. The structure

is the same as LeNet. The input is a 28 × 28 image and output is a set of possible

characters and their probabilities. Please note that the image generated from the

segmentation layer has with Tw, which is less than 28. They are padded with white

space to make the size 28× 28. The base learning rate of the training is set to 0.001

and number of iterations is set to 5000.

Each recognizer predicts a vector of N most likely labels for every segment. There-

fore the input of belief network in next layer is a sequence of N dimensional vectors.

Each vector represents a set of possible candidates perceived at specific location in

the input image. Using the segmentation results from Figure 2.2 as an example, we

show how the recognition layer works in Figure 2.3. Here N is set to 2.
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Figure 2.3: Example for recognition layer

2.2.4 Recurrent Belief Propagation Network

The inference layer of belief propagation is a neural network that consists of three

types of neurons: input neurons (I), interpretation neurons (P), and dictionary neu-

rons (D).

Every substring of characters in a dictionary word starting from the first character

corresponds to a dictionary neuron. We denote a dictionary neuron as Dα, where α is

the substring associated to the neuron. For example, the word “admin” is associated

to five dictionary neurons, Da, Dad, Dadm, Dadmi, and Dadmin. We can further divide

the dictionary neurons into two categories: neurons that represent real dictionary

words or neurons that represent substring of real words.

All dictionary neurons are connected in a Trie [39] structure, and all connections

are bi-directional. That means, neurons i and j are connected, if i is the prefix of

j or vice versa. Furthermore, if i is the prefix of j, then we call the link from i to

j as prediction link, and the link from j to i as feedback link. For example, there

is a prediction link from neuron Da to neuron Dad, and a feedback link from Dad to

Da. However, there is no connection between Da and Dadm or any other neurons in

previous example. The bidirectional connections form a recurrent network.

In this work, the dictionary neurons are generated using Mieliestronk’s list [40].
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Figure 2.4: Example for neuron pool

This dictionary has 58027 English words with average length of 8 characters. It gen-

erates approximate 470000 dictionary neurons. We refer to the overall dictionary

neurons as the neuron pool. Figure 2.4 shows all dictionary neurons and their con-

nections generated from a small dictionary with only 15 words. All neurons that

correspond to real word are highlighted in orange. As we can see, the network has a

tree structure.

As shown in Figure 2.5, each directional link between two neurons is associated

with a weight, which is set to be the log conditional probability log[p(s|t)/p0] between

the source and target neurons of the link. The p(s|t) for prediction links is collected

statistically from the dictionary. For feedback links, this value is always 1. There

are 26 input neurons, each represents a possible character candidate detected by

the CNN recognizer. An input neuron is denoted as Iβ, where β is one of the 26

English alphabet. Considering the possible errors in recognition, we add a set of 26

Figure 2.5: Knowledge link
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interpretation neurons, denoted as Pγ, where each γ is an English character. Links

are established from Iβ to Pγ, the weight of the link is the probability that γ is

recognized as β. This information is collected from the training process. There is

also knowledge links from the interpretation neuron to the dictionary neuron. If γ is

the last character in the substring α, then there is a link from interpretation neuron

Pγ to dictionary neuron Dα.

An example of all 3 types of neurons and their connections is shown in Figure

2.6 for the 15-words dictionary. The interpretation and dictionary neurons are rep-

resented by rhombus and circles respectively. To make the figure readable, we do

not show the connections between interpretation neurons and dictionary neurons,

but they are reflected by neuron colors, i.e. there is a link between interpretation

neuron and dictionary neuron with the same color. In this example, there is a 0.076

probability that a letter “d” will be recognized as “a”, therefore, the link from Ia to

Pd has weight 0.076. The interpretation neuron Pd will excite all dictionary neurons

that end with letter “d”, therefore, it has a connection to two dictionary neurons, Dd

and Dad.

Each neuron maintains its excitation level. The excitation level of each input

neuron is directly set to the corresponding class probability reported by the CNN.

Figure 2.6: Example for inference layer
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The excitation levels of all the other neurons are calculated as:

I(t) =
∑
k∈Fl

[
∑
s∈Sk

I(s)ln
(p(t|s)

p0

)
− ln

(p(s|t)
p0

)
+B] + (1− α)I(t), t ∈ Sl, (2.1)

where Variable I(s) is the normalized excitation level of neuron s, and is referred as

activation level. The normalization is carried out across all neurons of the same type.

As we can see from the equation, the excitation level of a neuron t is determined

by both the input excitation and the neuron’s current activation. In other words,

a neuron has memory. Even if it is not being excited externally, it will still remain

active. However, its activation level will diminish a specific percentage α if it does

not receive input excitation. During the normalization procedure, the activation of

this neuron will be inhibited as other neurons that have been excited externally keeps

on increasing their excitation level. For a dictionary neuron (D)α, its input comes

the prediction link, the feedback link and the link from the interpretation neuron.

The predictive signal predicts the next character that may be perceived, the feedback

signal confirms the previous perception based on current inputs and the interpretation

signal simply represents the sensory input from the recognizers. The proposed model

is to certain degree similar to the HTM model [41]. However, the HTM model uses a

one-bit flag to indicate prediction status, while the prediction in our model is lumped

in the neuron excitation level.

During recall, the excitation level of all neurons will be updated each time a new

input is received from the pattern matching layer. Please note that the normalization

is performed after each update, therefore, the neurons with higher excitation will

suppress those with lower excitation in a soft winner-takes-all manner. At the end of

recall, a sequence of neurons will be highly activated, which form a path (or multiple

paths) that lead to the predicted word(s). Please note that if we unroll the recurrent

network over time, it is actually similar to a confabulation network [42][43][44]. Using
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the network for word “admi” as an example. The belief network is shown in Figure

2.7b. It consists of seven dictionary neurons. Assume six images are separated (either

by segmentation or sliding window) for pattern recognition as shown in Figure 2.2,

then the belief network will be evaluated six times. If we unroll the recurrent network

over time and create a copy of all dictionary neurons for each evaluation interval, then

we obtain a confabulation network with six lexicons as shown in Figure 2.7a, each

lexicon has seven symbols corresponding to all dictionary neurons. Each symbol only

connects to symbols in its adjacent lexicons and there is no connection between sym-

bols in the same lexicon. The connections corresponding to predictive and feedback

links are illustrated in Green and Blue. There is also a Red connection that links

the same neuron in adjacent lexicons. This models the memory of the neurons, i.e.

the neuron’s previous excitation level affects its current excitation level. To make the

figure simple, we only show links between Lexicon 1 and Lexicon 2, however, these

links should repeat between all other adjacent lexicons. The path shown by solid

arrows leads to the correct word.

Assume that the recognizer recalls only one matching pattern for each image,

i.e. the output from the recognition layer is a sequence of six 1-D vectors, and the

output of the recognition layer is the sequence “a, d, d, m, i, n”. Also assume that the

same set of characters are triggered in the interpretation layer. These input signal

will dynamically changes the excitation level of neurons. Figure 2.7c plots how the

neuron activation level changes over the time. For example, neurons “a” and “adma”

first get excited when the first input “a” is received. Neurons “ad” and “adman” are

being predicted then, and they further predict downstream neurons. In the next, the

input “d” is received, and neuron “ad” is further excited. It sends feedback signal to

neuron “a” to confirm the previous observation and continue predicting neuron “adm”.

The excitation level of “adma” diminishes gradually even though it got excited at

the beginning, because there is no feedback or input to confirm the observation (or
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Figure 2.7: (a) Confabulation network (b) Recurrent belief propagation network (c)
Example for neuron excitation level evaluation

prediction). At the end, the word “admin” accumulates the highest excitation. Also

the set of neurons “a”, “ad”, “adm”, “admi”, and “admin” has the highest activation

and they identify a path that leads to the correct word.

2.2.5 Further Improvements

Sometime, certain common combination of characters or high-frequency words will

reach high excitation simply from prediction, even though some of their characters

are not reported by the recognizer. The last step of our work is to lower the ranking

of these words or eliminate them from the candidate list. This is achieved by adding

pre-processing and post-processing.

We denote estimation of the word length and start-end position constraint as pre-
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processing constraints. We firstly estimate the probable number Nc of characters in

the word, which equals the quotient of input image pixel width divided by average

character width Tw. If the word candidate has more than Nc characters, it will

be eliminated. Furthermore, start-end position constraint is used to strengthened

the excitation process of neurons. In the first evaluation interval, excited neurons

containing only one character will get more excitation than others. Similarly, excited

neurons representing a real word will get more excitation if the input from the pattern

matching layer is the last. For example, adding start-end position constraint will help

to differentiate the first excitation levels of “a” and “adma” in Figure 2.7c, as “a” will

get more excitation increase than “adma”.

The post-processing is achieved by considering the location distribution of each

character. For any English character x, we consider its location in a word is a random

variable. The probability that α will be the lth letter in the word is denoted as prx(l).

We assume that this distribution follows a Gaussian Mixture Model (GMM), and the

information reported by the recognizer is a sample of the distribution, based on which

the whole distribution is constructed [45].

Using the GMM, a variable Prob(w) =
∏N

i=1wprxi(i) is calculated for each word

w, where xi is the ith character in w. This variable indicates the possibility that

w is the correct word by considering where each character in w is located. The

excitation level of word w is then adjusted based on the probability by calculating:

el′(w) = el(w) + lnprob(w)
p0

. Please note that the excitation level el(w) is actually the

log probability of w estimated using the inference network, therefore, the adjustment

is actually calculating the product of the two probabilities to combine the prediction

results from different approaches. Our experimental results show that combining with

GMM will improve the ranking of the correct word by 7.2%.
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Figure 2.8: Word examples

2.3 Evaluations

2.3.1 Environment Setup

The dataset that we use for training and testing are generated based on images from

Chars74k [46]. Our dictionary is the Mieliestronk’s list [40]. In this list, the British

spelling was preferred and American versions are deleted. Only lower words are tested

in our experiments. The word images are generated using the method as mentioned in

[29]. We first randomly select a word from the Mieliestronk’s list. For every character

in the word, we then randomly select a character image from different writing styles

in the Chars74k dataset and put them close together. We allow adjacent characters

to connect to each other. We keep the height of the word image to be 28 pixels by

scaling without changing its aspect ratio. Some sample input word images are shown

in Figure 2.8.

2.3.2 Tranining of CNN-based Recognizer Component

We train the CNN-based recognizer with a subset of Chars74K [46]. Chars74K con-

tains 26 classes and 55 samples for each class. All the 3410 hand drawn characters

in the dataset are lower-case English characters, from a to z. We use 32 samples per

class for training and the rest 13 samples per class for testing. We choose 28× 28 as

the size of input images, which is the same as defined in [38] LeNet caffemodel.

During testing, the CNN report a set of class labels and their matching probabili-

ties. The test accuracy of various training learning rates and iterations is reported in
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Figure 2.9: Test accuracy of CNN-based recognizer

Figure 2.9. “ith” means that the correct labels score is within the ith highest predicted

score. According to these results, we choose 0.001 as base learning rate and 5000 it-

erations to train the CNN model. To limit the complexity of probabilistic inference,

we only send six highest possible class labels to the next layer.

2.3.3 Word Recognition Accuracy

We test the whole system under an environment using GeForce GTX/750/PCIe/SSE2.

In the experiments, 187200 input images containing 6240 different words which are

randomly selected in [40] are generated. Word candidates are selected from the high-

est excitation level to the lowest. We report the results from three aspects: (1) the

chances that the correct word is within top 5, 10 and 20 predictions; (2) the number

of word candidates; (3) expected ranking of the correct word.

Firstly, Figure 2.10 shows the chances that the correct word is within top 5, top

10 and top 20 predictions respectively after adding improvement techniques. As we

can see from the figure, we got 46.07% average accuracy increase if the correct word

is predicted within Top 5. 36.84% accuracy improvement is got when the word is cor-

rectly predicted within Top 10. The accuracy will increase 18.75% if the correct word

is predicted within Top 20. As the end of belief propagation, the dictionary neurons
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Figure 2.10: Accuracy improvement
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Figure 2.11: Average number of word candidates improvement

corresponding to real words and whose excitation level is non-zero are reported as

candidates. Large amount of word candidates means high complexity and ambiguity.

Therefore, we show how the pre- and post-processing techniques can help improve

the validity of our network.

Figure 2.11 shows the decrease of average number of word candidates after ap-

plying different improvement techniques. Adding preprocessing constraints can help

prune 58.06% irrelevant word candidates. Applying Local Peak Finder based seg-

mentation will further reduce 53.21% word candidates. Combining these with post
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Figure 2.12: Expectation ranking improvement of correct word

Gaussian estimation gives another 46.57% reduction. Overall, the number of word

candidates can be reduced to 39 on average.

Figure 2.12 shows the expectation ranking improvement of the correct word if it

is reported within Top 20 predictions. The lower ranking means better recognition

quality. The figure indicates that the expected ranking of the correct word is 8.3 when

only preprocessing constraints are applied. With segmentation, this value drops to

6.37. Finally, after using post Gaussian estimation, the expected ranking of correct

word reduces to 5.91.

As a base line reference, we also implement the standard Grammar Graph, which

is a type of finite-state transducers [47], mentioned in [29], and use it to replace

the belief network. Figure 2.13a compares the accuracy of the two approaches after

applying preprocessing constraints, local peak finder algorithm and post-processing.

Again, the accuracy is measured by the chances that the correct word is within the

Top 5, 10 and 20 predictions. The results show that our approach is 5 8% better than

the standard Grammar Graph. Figure 2.13b reports that our approach has 15.2%

less word candidates than that of standard grammar graph.
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Figure 2.13: Results comparisons with standard grammar graph

2.3.4 Recognition Results of Recurrent Belief Propagation Net-

work

In this section, we list recognition examples generated by our recurrent belief prop-

agation network. Table 2.1 lists the top predicted word candidates for some input

images. The columns labeled as “Output Word Candidates” and “Excitation Level”

give word candidates in the output set with their corresponding excitation level (i.e.

score) in descending order. The correct word is highlighted in bold.
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Table 2.1: Word candidates of sample words

Input Images Output Word Candidates Excitation Level
best
test
beet
stet

10.3500
10.1219
9.9260
8.5189

admin
adman

7.8904
5.1902

initial
fantail
lenient

5.4023
-1.0919
-3.4354

strict
script
spirit

9..4421
8.5002
8.4568

junction
function
fraction
friction

9.9152
9.8459
-30.9105
-71.5689

segment
tensest
tempest

9.5512
8.7067
-23.0852

Table 2.2 lists the recognition for some word images with wrong spellings. These

wrong spelled words are randomly selected from [48]. Again, the highest predicted

words are reported with their excitation levels listed in descending order. The words

in bold font are the actual correct ones.

Table 2.2: Word candidates of sample wrong spell words

Input Images Output Word Candidates Excitation Level
describe
disperse
perspire

12.3928
11.9450
11.8388

effete
effect
defect

12.6600
11.9770
10.5627

colour
column

11.8852
9.2361
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2.4 Conclusion

In this chapter, we introduce a recurrent belief propagation system for handwriting

recognition. The system construction, processing algorithm and recall process are

presented. In our self-structured system, allowing multiple neurons got excited helps

improve quality of knowledge link information and maintain a relatively high accuracy

at the same time. Because neurons can retain the knowledge information and reduce

the chance of wrong recognition caused by CNN. The proposed preprocessing and

post processing techniques effectively reduces the size of predicted word candidates

and improves the expected ranking of correct words. The presented belief propagation

network is general enough to be applied in other applications for sequence prediction

and recall. One of our future work is to extend it for speech recognition. The similar

segmentation and deep neural network can be used for pattern matching. We will

also consider other promising methods, such as incorporating higher level context, to

improve the accuracy and generality of the framework.
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Chapter 3

Autonomous Waypoints Planning and

Trajectory Generation for Multi-rotor

UAVs

3.1 Introduction

Onboard real-time trajectory planning is particularly important in Beyond Visual

Line-of-Sight (BVLOS) operations, and applications that require unmanned vehicles

to move in cluttered and dynamic environments [49]. Such applications include in-

door operations [50], package delivery in urban and suburban areas, monitoring of

civilian infrastructures like bridges and highways, autonomous landing on moving

platforms [51], and tracking wildlife in forested areas. Autonomous trajectory gen-

eration has received increased attention in the past decade [52][53][54], especially for

autonomous systems such as UAV. Safe and effective operations of these UAVs de-

This work is partially supported by the National Science Foundation under Grant CNS-1739748
and SRC task 2893.001.
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mand that we consider trajectory generation as a constrained optimization problem.

While there are many different ways to formulate the objectives and constraints, the

basic requirement is to consume minimum flight energy while avoiding obstacles and

maintaining the UAV stability during the journey. To solve such problem analytically

is extremely difficult if impossible when the UAV needs to fly large distance in a com-

plex environment. Some of the classical approaches apply rapidly-exploring random

trees [55] and voronoi graph [56]. In general, these approaches generate the feasible

path by traversing the graph made by all possible paths and searching for possible

links between path nodes. The convergence to the energy efficient path takes much

time, and hence it cannot be applied during the real flight time. Furthermore, they

either uses a large margin for obstacle avoidance, or adopt a trial-and-error based

iterative approach, which will further increase the complexity. [57] implements a

gradient decent approach which converges more quickly without loss of robustness.

However, non-smooth trajectory are produced that are difficult for UAVs to precisely

follow. Neither does it consider other objective functions such as minimum control

thrust.

Recently deep learning has drawn extensive attention in areas of robotics appli-

cations for its outstanding abilities to learn representations of complex environment.

Such representation is essential for environment awareness for applications such as

UAV trajectory generation. Among others, deep reinforcement learning is extremely

suitable to solve goal-oriented robotics tasks that has close interaction with environ-

ment dynamics [58]. Such interaction provides feedback, which is useful to improve

the performance of the task being learned. Reinforcement learning has been used for

robot path planning in some previous works. Real-time model-based reinforcement

learning framework [59] as well as Q-learning [60] are adopted to find path in 2D

surface. These models consider only the robot (or UAV) status as the system state.

The environment information (e.g. the location of the obstacles) is not part of the

33



system state. In other words, these models learn the environment instead of learning

the relationship between optimal control and the surrounding environment. When

the environment changes, the model needs to be trained again. Such blindness to

the surrounding environment is not realistic in today’s UAVs. With the availability

of 3D map and sensors such as the image and depth camera, the UAVs will have

partial information about the environment. Environment information is used as an

input in [61] and [62], where Deep Q Network (DQN) and deep deterministic policy

gradient network, are deployed. However, without a lower level optimization, they

are not capable to maintain the stability of UAVs or minimize the flight energy. At

lower-level, [63][64] have decoupled time and geometry, constructed a geometric tra-

jectory and then parameterized it in time. Utilizing differential flatness of dynamics

to generate a trajectory is also adopted in [65]. Furthermore, [66] develops a high level

trajectory generator in conjunction with a motion primitive generator to choose an

optimized trajectory among different motion primitives. However, planning scheme

with consideration only of the actuation model of UAVs is not enough, especially

when maneuvers that go beyond hovering or level flight are required. In situations

where large maneuvers are required, fast online trajectory planning schemes like the

one proposed in this work become necessary.

In this work, we tackle the problem of UAV trajectory generation in a known 3D

environment by solving it as a two-level optimization. Figure 3.1 shows the overall

framework. At the upper-level, a sequence of waypoints is selected that lead the

UAV from its current position to the destination, and at the lower-level, the efficient

trajectory between each pair of adjacent waypoints is generated analytically. While

the goal of trajectory generation is to maintain the UAV stability with minimum

flight energy, the goal of the waypoints planning is obstacle avoidance with minimum

control thrust in a (partially) known environment over the entire trip.

The two level approach is optimized together and it effectively reduces complexity
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Figure 3.1: Overall framework of proposed autonomous waypoints planning and tra-
jectory generation scheme

of lower level optimization, where detailed aerodynamic model of UAVs is applied to

generate a short trajectory in a localized free space without worrying about obsta-

cles. The upper-level optimizer (i.e. the waypoints planner) ensures that a global

efficient solution can be obtained by connecting the sequence of locally optimized

short trajectories. This is a combinatorial optimization problem with exponential

search space, and its results are heavily affected by the lower level optimization. In

this work, we use DRL for waypoints planning. The DRL framework not only learns

the highly complicated and nonlinear interaction between the upper and lower level

optimizers, but also learns and generalizes the impact from the environment (e.g. the

location of obstacles) to the waypoints selection. While the DRL model also relies

on trial-and-error approach and detailed aerodynamic model for training, this is done

offline. During the mission, the waypoints are selected only based on the surrounding

environment, the target location, and the flight status of the UAV.

We formulate the DRL as a DQN, which approximates the efficient selection of

actions in time based on the instantaneous configuration of the environment. With

awareness of this configuration and the feedback at every time step, the UAV modifies

its behavior, i.e. the selection of the next waypoint. The learning of the DRL is
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carried out in a controlled environment in a progressive manner so that the UAV

can first discover its own dynamics and then learn how to cope with the external

environment. After the generation of waypoints, an optimal trajectory is calculated,

where the control inputs actuate the three degrees of rotational motion and one degree

of translational motion in a body-fixed coordinate frame. The translational motion

is controlled by a single thrust along a body-fixed direction vector, which can be

controlled by the attitude of the vehicle. This actuation model covers a wide range

of unmanned vehicles like fixed-wing and quadcopter UAVs, unmanned underwater

vehicles, and spacecraft.

3.2 DRL-based Waypoints Generation

3.2.1 Problem Formulation

In this work, we focus on trajectory generation for multi-rotor UAVs. These UAVs

have fixed plane of rotors that actuate the vehicle in three-dimensional transnational

and rotational motion, hence they have the property of under-actuation. Given a

closed environment, the UAV takes off from an arbitrary position and reaches a target

position which is preassigned, without colliding with obstacles. As stated before, the

first step is to select waypoints based on the environment. The entire 3D environment

is divided into N × N × N grids. The environment is described by a function M()

maps a grid (x, y, z) to a real value M : (x, y, z) → R. A grid, g, that contains

obstacle will be mapped to -10, M(g) = −10. The destination grid that the agent

needs to reach is mapped to 10, and the grid where the UAV is currently located

is mapped to 1. All other grids are mapped to zeros in the discretized environment

block. Let W0,W1, · · · ,WN−1 be the sequence of generated waypoints, where each

one is a 3D vector corresponding to a grid in the environment. Let f(Wi,Wj) denote

the control thrust for the UAV to follow the trajectory between waypointsWi andWj
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generated by the lower level optimizer. Also, let G(Wi,Wj) denote the set of grids

that the generated trajectory between Wi and Wj will pass through. The total thrust

cost along the trajectory is denoted as F. The problem of waypoints generation can

be formulated as the following:

Problem 1 (Efficient obstacle avoidance waypoints planning) Minimize

F =ΣN−2
i=0 f(Wi,Wi+1), (3.1)

subject to

1. reaching the target position from current position,

M(W0) = 1, M(WN−1) = 10, (3.2)

2. reaching the target position without colliding with obstacle,

M(g) 6= −10, g ∈ G(Wi,Wi+1), 0 ≤ i ≤ N − 2, (3.3)

To find the set of Wi, 0 ≤ i ≤ N − 1 is a combinatorial problem. The goal is to

achieve minimum control thrust without obstacle collision if the UAV flies along the

waypoints and trajectory. A large reward will be received at the end of the flight if

the UAV reaches the destination. While this is the problem formulation of the upper

level optimizer, the functions f(Wi,Wj) and G(Wi,Wj) are determined by the lower

level optimizer. Reinforcement learning provides a way to solve such constrained

optimization problem with delayed reward. Incorporating with deep neural network,

an efficient policy is learned to guide the UAV to the next selected actions (i.e.

waypoints) that can lead to maximum future rewards.
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Figure 3.2: Network structure of proposed deep Q network

3.2.2 Network Structure

The detailed structure of the DQN is shown in Figure 3.2. The input of DQN is the

state, which represents current known knowledge of the surroundings and the status

of the UAV. The state is a 3D matrix with size N × N × N . Each entry (x, y, z)

of the matrix is the mapped value M(x, y, z) of the corresponding grid in the 3D

environment previously discussed. The state has the information about the relative

position between agent and obstacles. A UAV can choose any of the 3× 3× 3 grids

around its current location as the waypoint. Therefore, there are 26 possible actions.

This input state is fed into two 3D convolutional layers and each is followed by a

pooling layer. The intermediate output of the second pooling layer is fed into two

fully-connected layers with the size 1024 and 256 respectively. The output is a fully-

connected layer with the size 26. Each output neuron estimates the Q(state, action)

values for one of the 26 actions at the given state.

Our goal is to generate trajectory for the UAV with minimum control thrust under

the premise of reaching target position without hitting any obstacle. Therefore, our

reward function is defined as the combination of position reward and control reward
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as following:

R(state, action) = αRp(state, action) + βRc(state, action), (3.4)

where α and β are the coefficients of position reward and control reward respectively,

α = β = 0.5 in our experiment. Rp(state, action) is the position reward of taking

action in current state. It is defined as following:

Rp(state, action) =


10, reach target position

−10, collide with obstacles

0. others

And Rc(state, action) indicates the control reward. It is calculated as the negative

L1 norm of thrust cost, which is calculated by (3.21) in efficient trajectory generation

scheme proposed in Section 3.4.

3.2.3 Learning of DQN

Since the problem complexity, i.e. the total number of state action pairs, is O(26×N3)

which is relatively larger than many other existing problems [67][68][69], it is crucial to

maximize exploration at the beginning of learning. Therefore ε−greedy [11] is applied

during the learning. Based on ε−greedy, more random actions (i.e. exploration) are

taken at the beginning of learning and more actions with maximum Q(state, action)

values (i.e. exploitation) are chosen as learning progresses.

To improve the learning, we also decrease the learning rate lr gradually because

it becomes harder to improve performance with large learning rate as the gradient

reaches plateau. In our approach, there are 30, 000 learning episodes in total. Instead

of using a fixed learning rate, the learning rate starts from 1e− 4 and decreases every

5, 000 episodes based on lrnew = (lr− lr

epoch
)epoch=i, i ∈ {5e+ 3, 1e+ 4, 1.5e+ 4, 2e+
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4, 2.5e+ 4} and i is the ith learning episode. This helps to prevent the learning from

over correct after 5,000 iterations, which allows to maximize the exploitation.

Instead of randomly initializing model weights based on a uniform distribution, we

initialize the weights of model based on a normal distribution. It initializes weights

with relatively small values, and prevents outputs of the model from being either

too large or too small. Batch normalization is used before the second convolutional

layer and the first fully-connected layer to reshape the input of those hidden layers.

In order to bound the training time, for every single training episode, the maximum

steps Wmax that the UAV can take is fixed. If the UAV has taken Wmax steps but has

not reached the target position, it will be forced to start a new learning episode. The

start and target positions are randomly selected. So do the locations of obstacles. In

this way the environment configuration of every episode is different, therefore each

learning episode is independent. During learning, an experience replay is used to save

last thousand times of performance and a randomly sampled mini-batch of size 32 is

used to train the network. At each time step within an episode, the UAV takes an

action and receives a +10 position reward if it reaches the target position and -10

if colliding with obstacles. Otherwise the position reward is 0. The control reward

is determined based on the current and next position, velocity and acceleration of

the UAV. The weighted sum of these two rewards and corresponding UAV state and

action is saved in experience replay buffer.

3.2.4 Progressive Learning in a Controlled Environment

The waypoints planner is trained from scratch together with lower-level trajectory

generation scheme. At the beginning of the training, the optimizer does not only have

no idea about the efficient route to the target, it also does not know how the trajectory

generation layer (i.e. the lower layer) will react to different waypoints selection, and

if the UAV can keep its stability. It even does not know that the goal is to reach the
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target while avoiding obstacles. All of these must be taught globally using reward and

trial. Before a baby learns walking, we put her in a small area free of obstacles, where

she can roll and crawl and discover how to coordinate muscle movements. Then

she can learn how to reach target and avoid obstacles. We believe that the same

should be applied to teach a UAV fly and we refer this as progressive learning in

a controlled environment . It consists of two measures, “progressive learning” and

“controlled environment”. The progressive learning requires us to start learning with

very low UAV mobility and gradually increase it as the learning progresses. By only

allow the UAV to travel short distance, it can get quick feedback. Although it won’t

be able to travel long enough to reach the target and get the large position reward,

based on the received control reward it learns how to coordinate with the lower level

controller. Based on this learned knowledge, it will then learn how to reach target

when the mobility increases. The controlled environment means to start the learning

with a free space and gradually increase the number of obstacles. In this way, it can

reach the target sooner with less failure. The received position reward helps the UAV

to gain the knowledge of its goal.

In our original learning approach, the maximum number of steps Wmax that the

UAV can take is set to 1000. Using the progressive learning technique, the Wmax

is initialized to be 100 at the beginning of learning, and every 5,000 iterations, its

value increases 50%. The new value is calculated as (Wmax)new = round(1.5Wmax).

With such short travel distance, if the UAV is able to reach the target, it will gain

the knowledge and increase the value of locations close to the target. If the UAV

is not able to reach the target, it will still gain the knowledge about the control

cost. Using the controlled environment technique, the number of obstacles is set to

0 at the beginning of the learning. The number increases by 5 every 5000 iterations.

With the help of controlled environment, the UAV can reach target much quicker

at the beginning of learning. Again, this helps it to learn the inherent relation and
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Figure 3.3: Learning results using progressive learning in a controlled environment

interaction between the upper and lower layer optimizer faster and better. Later in

the learning process, when the UAV has more knowledge of its capability, it will learn

how to avoid obstacles more quickly. Figure 3.3a gives the average reward the agent

received in each learning episode during the entire learning process. And Figure 3.3b

gives the average predicted Q(state, action) values of those selected actions during the

learning process. These figures indicate that as the learning goes on, the UAV receives

more and more rewards and selects better and better actions. The learning converges

at around 7,500 iterations. Experimental results also show that using progressive
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learning in controlled environment not only reduces learning time but also improves

learning quality. Details can be found in Section 3.5.

3.3 Dynamics Model of Multi-rotor UAV

3.3.1 Continuous Time Dynamics

The rigid body model considered in this work has four control inputs for the six

degrees of freedom. These control inputs include a torque for the three degrees of

freedom of rotational motion and one thrust along a body-fixed thrust vector. It can

be applied to several unmanned vehicles, and the particular case of a quadrotor UAV

is considered in Section 3.5 for numerical results.

In this work, b ∈ R3 denotes the rigid body’s position vector expressed in an

inertial coordinate frame and R ∈ SO(3) is the rigid body’s attitude expressed as the

rotation matrix from inertial frame to body-fixed frame. Without loss of generality,

it is assumed that the thrust vector is along the third body-fixed coordinate frame

axis. The translational dynamics motion equation is:

mv̇ = mge3 − fr3, (3.5)

where g is gravitational acceleration, v ∈ R3 is the translational velocity in inertial

frame, e3 = [0, 0, 1]T , u = fr3 ∈ R3 is the control thrust vector of magnitude f acting

on the body, and r3 is the unit vector along the third axis of the body-fixed coordinate

frame, expressed in the inertial frame. Note that r3 is also the third column of the

rotation matrix R. ((3.5)) can be rewritten as:

v̇ = ge3 −
1

m
fr3. (3.6)

The velocity kinematics for the translational motion expressed in inertial coordinate
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frame is simply ḃ = v. Consider a “triple integrator” dynamics model for position

trajectory generation, given by

ḃ(t) = v(t), (3.7)

v̇(t) = a(t), (3.8)

ȧ(t) = u(t), (3.9)

where the vectors b, v, a, u ∈ R3 represent position, velocity, acceleration, and jerk

respectively. Let x ∈ R9 denote the state vector, i.e., x =

[
bT vT aT

]T
. The

resulting system can be compactly expressed as follows:

dx

dt
= Ax+Bu, (3.10)

y = Cx. (3.11)

where

A =


03×3 I3×3 03×3

03×3 03×3 I3×3

03×3 03×3 03×3

 , B =


03×3

03×3

I3×3

 ,
C =

[
I3×3 03×3 03×3

]
,

where I3×3 is the 3×3 identity matrix. A trajectory is to be generated for this system

to pass through a given set of k waypoints in position, where k ≥ 1. The set of way-

points consisting of positions in R3 with respect to an inertial frame, are generated by

the method described in previous section. To facilitate numerical computation of the

system, the dynamics expressed in (3.10)-(3.11) is discretized in the next subsection.
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3.3.2 Discretization of Dynamics

Consider a fixed step size in time, h, and a fixed time interval [0, T ] over which the

trajectory is to be generated in discrete time. Without loss of generality for the

system, the initial time is assumed to be 0. Thus time is discretized as tn = nh

with T = mkh, so that mk is a positive integer that corresponds to the final time at

which the generated trajectory passes through the final waypoint. Let the discrete-

time state variable be given by xn = x(nh), where n ∈ N and N = {0, 1, . . . ,mk}.

Denote the discrete time instants at which the trajectory passes through the given

position waypoints by mi, i = {1, . . . , k}, with {m1, . . . ,mk} ⊂ N . The discrete

system representation of (3.10)-(3.11) can be obtained as:

xn+1 = Adxn +Bdun, (3.12)

yn = Cdxn, (3.13)

where

Ad = eAh, Bd =
∫ h
0
eAσBdσ, Cd = C,

Due to the nilpotent nature of A, only the first three terms of the exponential

series are needed to calculate eAh exactly. Therefore, the above discretization leads

to an exact discretization of the continuous time system (3.10)-(3.11). The optimal

control problem is formulated and its solution is presented in the next section.
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3.4 Optimal Trajectory Generation and Gain Selec-

tion

3.4.1 Position Trajectory Through Waypoints

The problem of trajectory generation amounts to constructing a feasible discrete-time

desired trajectory through the given set of k waypoints generated by DRL-based algo-

rithm. Let the set of k waypoints be given by tuples (ywm1
,m1), (y

w
m2
,m2), · · · (ywmk

,mk),

where the time instants corresponding to these waypoints are denoted by the sub-

script mi ∈ N , with i = 1, · · · k. We construct a discrete optimal control problem

such that the output yn passes through the given waypoints in specified time instants,

i.e. ymi
= ywmi

, for i = 1, · · · k. Let the initial state be given by x(0) = xinit. The

boundary condition at the end point is determined by the last waypoint, ywmk
. The

optimal control problem can be formulated as follows:

Problem 2 (Discrete-time Optimal Trajectory Generation) Minimize

J d =h

mk∑
i=0

1

2
(xTi Qxi + uTi Rui)

+
1

2

k∑
j=1

(
Cdxmj

− ywmj

)T
S
(
Cdxmj

− ywmj

)
, (3.14)

subject to

1. satisfying the dynamical model,

xi+1 = Adxi +Bdui, (3.15)
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2. and the boundary conditions given by,

x0 = xinit, (3.16)

Cdxmk
= ywmk

. (3.17)

Here Q ∈ R9×9 > 0, R ∈ R3×3 > 0 and S ∈ R3×3 > 0 are square, symmetric matrices.

In problem 2, high values of the position, velocity, acceleration and the deriva-

tive of acceleration (also known as “jerk”), are penalized. Additionally, at the time

instances corresponding to the waypoints, the error between actual position and the

desired position waypoint is penalized. The problem 2 can be approached from the

first principles of optimal control. Let the augmented performance index be written

as,

J d
a = J d +

mk−1∑
i=0

λTi+1(Adxi +Bdui − xi+1), (3.18)

here λi ∈ IR9 is a vector of co-states. The optimal control input is found to be (details

are removed for brevity):

ui = −[R + (Bd)
TPi+1Bd]

−1(Bd)
T(Pi+1Adxi + ηi+1). (3.19)

This control input generates an optimal, smooth trajectory between waypoints.

Remark 1 Let Ki = [R + (Bd)
TPi+1Bd]

−1(Bd)
T, then the optimal control can be

written as

ui = −Ki

(
(Pi+1Adxi + ηi+1)

)
After applying the optimal control, the dynamics of the discrete system given in (3.12)
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becomes,

xi+1 = Adxi −BdKi(Pi+1Adxi + ηi+1),

=
(
Ad −BdKiPi+1Ad

)
xi −BdKiηi+1. (3.20)

Remark 2 Throughout all steps, thrust force can be calculated by:

fi = m‖ai − ge3‖. (3.21)

3.4.2 Gain Selection of Optimal Trajectory Generation

During the trajectory generation, the system gives the acceleration of the UAV while

solving Problem 2. Based on (3.9) and (3.6), we derived (3.21) to calculate the control

thrust, which is the feedback reward for higher level waypoints planner during learn-

ing. It is necessary to mention that in the lower level of our module, optimal trajectory

generation scheme, Q, R and S are three positive definite gain matrices. Each of these

gain matrices penalize different aspects while generating the trajectory as indicated

in (3.14). Q is a matrix penalizing high values of position, velocity and acceleration.

The higher the values in Q, the harder these parameters are penalized. The input jerk

is penalized when R matrix has large eigenvalues and how much the waypoints will

affect the trajectory is weighted by S matrix. From (3.14) we can see that these three

gain matrices have significant impact on the performance index J d of the trajectory.

Their values need to be tuned in order to minimize the control thrust f . In our

experiment, f is calculated from the lower level scheme, while it will be measured by

sensors in real field learning. We apply Genetic Algorithm (GA) [70] to optimize the

gain matrices. The best set of (R, Q, S) satisfies arg min
R,Q,S

σf(Wi,Wend, vi, ai) where

Wi, vi, ai are initial position, velocity and acceleration of the UAV and Wend are the

destination for UAV.
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Figure 3.4: Genetic algorithm utilization analysis

Without loss of generality, we let the gain matrices be identity matrices scaled by

different factors. Therefore, each chromosome (i.e. solution) in the population has 3

genes, one for each gain matrix. For our problem, we randomly select 10 chromosomes

based on a uniform distribution at the beginning. The negated L1 norm of thrust

cost is used as the fitness of each solution. Based on the fitness value, we select

the best set of (R,Q, S) within the current population as parents for mating. Next

step is to apply GA variants (i.e. crossover and mutation) to produce the offspring,

creating new population by appending parents and offspring. In our approach, one

point crossover and uniform mutation are adopted. Repeating these steps for several
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iterations, the returned efficient set of (R,Q, S) results in minimum control thrust

when UAV flying from the Wi to Wend. As a stochastic optimization algorithm, the

more generations and larger population evaluated by the GA, the better solution can

be found. Figure 3.4a shows how the cost (i.e. inverse of fitness) reduces as the

generation (blue labels) and population size (orange labels) increases. As we can see

that the quality of the solution saturated when the size of population and the number

of generations are both beyond 10. Figure 3.4b shows that the runtime of the GA is

almost a linear function of the number of generations. Based on the above analysis

we set the population size to 10 and maximum generations also to 10 indicated as

yellow triangle in Figure 3.4.

3.5 Evaluations

In this section, we demonstrate the performance of our proposed model. The training

and testing were done on NVIDIA TitanX (Pascal). In the experiments, the envi-

ronment is divided into 10 × 10 × 10 and the unit distance δd is 10 meters. Within

each testing scenario, the number of obstacles is randomly generated and obstacles

are placed randomly within the environment boundary. Besides, the start and target

positions are also randomly selected. We report the results of two aspects: (1) the

improvements achieved by using progressive learning in a controlled environment; (2)

the results compared with some existing approaches.

3.5.1 Impacts of Progressive Learning in a Controlled Envi-

ronment

Figure 3.5a and 3.5b compare the change of reward and Q values of learning with

and without gradually increased UAV mobility (i.e. progressive learning) and envi-

ronment complexity (i.e. controlled environment). The results of traditional learning,
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Figure 3.5: Learning results of first 10,000 episodes comparisons before and after
using improved learning

which adopts none of those two improvements, are represented by blue curves and the

results after adopting only the progressive learning are represented by green curves in

the figure. The orange curves show the results of applying both progressive learning

and controlled environment techniques. To make it clear to see, we show the result

of first 10,000 episodes with average of every 500 learning episodes. With the help

of progressive learning, the learning converges after 7,500 episodes. It is 16.67% less

compared to the traditional learning that converges after 9,000 episodes. Because

of the reduced mobility, an episode at the beginning of progressive learning is much
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Table 3.1: Average selected waypoints number comparison over different distances

Normalized distance
from start to destination (0,4] (4,8] (8,12] (12,16]

traditional learning 3.43 6.49 12.11 13.52
improved learning 3.40 6.43 11.88 13.42

Table 3.2: Average control thrust cost comparison over different distances.

Normalized distance
from start to destination (0,4] (4,8] (8,12] (12,16]

traditional learning 1.4321 3.5951 6.2375 6.2459
improved learning 1.3479 3.4859 6.0139 6.1138

shorter than an episode in the traditional learning. Therefore, the reduction in com-

puting time is even more. It uses around 10 hours total learning time with both

improvement techniques which has 47.4% reduction in learning time. From Figure

3.5b we can see that the progressive learning and controlled environment not only

speed up the convergence, the quality of learning is also better because the Q values

are more stable than that of traditional learning.

To evaluate the quality of learned model, we generated thousands different testing

scenarios and divide the flight of the UAV into four groups: (1) the UAV collides into

obstacles without reaching target; (2) the UAV collides into obstacles but eventually

reaches the target; (3) the agent does not collide into obstacles neither does it reach

the target; (4) the UAV does not collide into obstacles and it successfully reaches the

target. If the UAV travels 100 steps without reaching the target, it is regarded as a

failure. Only type (4) flights are considered as successes. We refer both type (4) and

type (2) as achieved as they both achieved the goal, i.e. reaching the target. Figure

3.6 shows how the success rate and achieve rate improved after using the progressive

learning and controlled environment. As indicated in the figure, the success rate

increases from 93.8% to 95.8% and the achieve rate increases from 94.0% to 96.0%

after optimization.

With respect to the number of steps taken and control thrust consumption during
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Figure 3.6: Success rate and achieve rate improvements using progressive learning
in a controlled environment techniques. Situation (4): the agent reaches the target
position and does not collide into obstacles

the flight, progressive learning in a controlled environment can also lead to improve-

ment. Table 3.1 compares the number of waypoints generated by the traditional

learning and the improved learning over different distances. The less number of way-

points means the fewer steps for the UAV to fly to the target. In general the UAVs

learned using the improved learning need less number of steps. The reduction of

waypoints usage becomes larger as the distance between start and target increases.

Table 3.2 compares the average thrust cost if the UAV follows the trajectory, To il-

lustrate it clearer, an example of a scenario in an obstacle-free environment is shown

in Figure 3.7, which compares results of model trained in traditional way and one

trained with controlled environment technique. In the example, the environment has

the same configuration, i.e. same start (i.e. red triangle) and target position (i.e. blue

triangle). The green curve indicates the trajectory along waypoints generated by tra-

ditional learning, and the blue curve shows the trajectory along waypoints generated

by improved learning.
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Figure 3.8: Learning results of proposed DQN waypoints selection together with pro-
posed energy efficient trajectory generation scheme and PID-based trajectory gener-
ation baseline respectively
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3.5.2 Results Comparison

As a baseline of reference, we also implement a control scheme based on PID theory

[71] to estimate the control thrust consumption along waypoints, and use it to re-

place energy efficient trajectory generation of Section 3.4 scheme as the lower level

optimizer. We define position as measurable variables and velocities when reaching

each waypoints are regarded as controllable variables. Every time the position of the

agent is updated by the feedback of the environment, and the feedback is calculated

by the environment simulation based on Kinematic theory [72]. Figure 3.8 shows the

learning results of DQN when our proposed trajectory generation scheme or PID are

used in the lower level. As indicated in the figure, the learning of our scheme con-

verges 44% faster than using PID, because the proposed energy efficient trajectory

generation scheme will not over correct the trajectory and there is no control latency,

hence its performance is more stable and predictable. Also the DQN with efficient

trajectory control achieves higher reward, i.e. it consumes less control thrust, be-

cause of higher fidelity of the proposed energy efficient trajectory generation scheme

in Section 3.4. Figure 3.9 (a)∼(c) reports the comparisons of success rate, the average

number of selected waypoints to reach the target and the average control thrust cost

to go through these waypoints. The comparisons are divided into four groups based

on the Euclidean distance between start and target position.

Since the critical roles of gain matrix in proposed energy efficient trajectory gen-

eration scheme in Section 3.4, it is crucial to improve the performance by tuning gain

matrices. The control thrust of UAVs with and without optimized grain matrices

is compared in Figure 3.10. The average thrust cost of using genetic algorithm is

indicated as blue labels, while orange indicates the result of manually selecting gain

matrices. As shown in the figure, the average control thrust consumption decreases

from 11.0531 to 10.9740 in a 30×30×30 discretized environment block. Figure 3.11a

gives an example of trajectories without gain optimization (blue), with medium op-
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timization (green) and with heavy optimization (orange). The corresponding control

thrust and optimization time is given in Figure 3.11b. In the example, four waypoints

(blue dots) are selected to reach the target. The start and target points are shown

in red and blue triangles respectively and the cylinder represents obstacles. The blue

curve shows the trajectory generated with fixed R, Q and S, which has large overshoot

and some sharp curves. The control thrust for the blue trajectory is 6.1286 force cost

as indicated in Figure 3.11b. If we apply GA between current waypoints Wi and next

waypoint Wi+1 to select the efficient set of R, Q and S just for each segment, the

(a) Example trajectories
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Figure 3.11: Example of trajectory generation without and with gain matrices tuning
by genetic algorithm. Blue: trajectory without gain optimization; Green: trajectory
with medium gain optimization; Orange: trajectory with heavy gain optimization
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Figure 3.12: Results comparison between proposed DQN scheme, routing, shortest
path, DLite and Voronoi

control thrust cost reduces to 4.0868 (i.e. green curve), after 7 generations of GA

search. The control thrust cost further reduces to 3.4302 after 10 generations of GA

search (i.e. orange curve). And the orange line in Figure 3.11b gives time cost for

the GA optimization.

Finally, we compare the DRL based waypoints selection with four traditional

waypoints selection approaches in aspects of average number of steps needed to reach

target, and the average control thrust cost along the trajectory. These four approaches

include maze routing [73], shortest path [74], DLite algorithm [75] and voronoi path
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Figure 3.13: An example of autonomous waypoints planning and trajectory generation
using proposed framework

[76]. To make it more convincing, the size of discretized environment is set as 30 ×

30 × 30. We generated 1000 different test scenarios by randomly select different

start positions, destination positions, types and locations of obstacles. Figure 3.12

compares the average number of selected waypoints to reach destination and the

average control thrust cost for the UAV to go through these waypoints. For all

waypoints selection approaches,efficient trajectory generation scheme in Section 3.4

is used for trajectory generation. In Figure 3.12a, the results show that our approach

only needs an average 21.91 waypoints which is 6.6% less than other approaches.

In Figure 3.12b, the comparison of average control thrust consumption is reported.

As indicated in the figure, our approach use least control thrust which has 13.33%

reduction than other approaches. According to these results, our proposed scheme

with fewer selected waypoints is less possible to be over constrained and less times of

lower level scheme invocation is needed.

A more realistic scenario is given in Figure 3.13. In this scenario, a door is set as

the start position which is indicated by a red triangle in the figure. The UAV takes off
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from the door, and then land on the center of the table near the door first. After that,

it takes off again to reach the final destination which is indicated by blue triangle in

the figure. As shown in the figure, blue dots are selected waypoints provided by our

proposed DQN scheme. And the smooth orange curve shows the trajectory generated

by efficient trajectory generation scheme proposed in Section 3.4. The UAV does not

collide into obstacles during the flight. In order to display the trajectory clearly, we

show four different views of the 3D trajectory plot.

3.6 Conclusion

A two-level framework to generate navigation trajectory for UAVs to follow in a

complex environment is introduced. The framework’s construction, processing and

analysis are presented. The proposed waypoints planning and trajectory generation

framework effectively avoids obstacles in complex indoor environment and reduces

the control thrust consumption during flight. Also, it is general enough to be applied

in other robotics tasks such as parcel delivery and conflicting routing of high-density

UAVs [77].
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Chapter 4

Fast and Accurate Trajectory

Tracking for Unmanned Aerial

Vehicles based on Deep

Reinforcement Learning

4.1 Introduction

Recently the applications of UAVs have been widely used in numerous real world ap-

plications where human operations are limited. With the increasing of data volume

and accuracy requirements for practical applications, the reliable operations of UAV,

i.e. the stable autonomous guidance and control, have been considered as one of the

most critical. Efficient tracking algorithms enable a smooth trajectory and hence a

lower system power/energy dissipation during the flight. Traditionally, the PID con-

trol mechanism is the state-of-the-art choice for industrial UAV trajectory tracking

system. PID controllers are easy to be implemented on FPGA and sufficient for many

This work is partially supported by the National Science Foundation under Grant CNS-1739748.
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control problems. They work well when process dynamics are benign and the perfor-

mance requirements are modest [78][79]. However, the PID controller cannot treat

processes with large time delay efficiently and it shows poor performance for tracking

problems requiring aggressive dynamic configurations, including uncertain internal

disturbance compensation and imbalances retrieval [80][81]. For some applications,

modified PID models implemented have been explored to improve the performance

[82][83].

Meanwhile, it is a big challenge to control UAVs stability in general using low

power cost platforms, especially under uncertain disturbance from environments. The

main reason is that it is hard to obtain a high fidelity mathematical model of a UAV

which has an under-actuated system with nonlinear dynamics [84]. To improve the

stability and real-time control, DNN embedded on different hardware platforms are

introduced [85][86]. Through large data training, the DNN-based control system

achieves adaptability and robustness that guarantee the stability of the flight [87].

Additionally, the controllers are able to follow the desired trajectory with the toler-

ance of unexpected disturbance. Similar to PID controllers, the DNN based controller

estimates the control actions based on past flight experience to reduce the instanta-

neous tracking imperfections. None of them considers how the chosen action will affect

the subsequent rewards. Hence, they are likely to generate suboptimal solutions.

RL provides a mathematical framework for learning or deriving policies that map

situations (i.e. states) into actions with the goal of maximizing an accumulative

reward [88]. Unlike supervised learning, in RL the agent (i.e. learner) learns the pol-

icy for decision making through interactions with the environment. The aim of the

agent is to maximize the cumulative long-term reward by taking the proper action at

each time step according to the current state of the environment while considering

the trade-off between explorations and exploitations. Q-learning is one of model-

free RL strategies storing finite state-action pairs and corresponding Q-values in a
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look-up table and it has been applied for thermal and energy management in au-

tonomous computing systems [89][90]. The combination of conventional Q-learning

and deep neural network, i.e. Deep Q-network [9], provides a breakthrough in DRL.

The neural network in DQN needs to accumulate enough samples of values and the

data needed for its training can either come from a model-based simulation or from

actual measurement [12]. Originally developed by DeepMind, the DRL provides a

promising data-drive, adaptive technique in handling large state space of complicated

control problems [11]. The actor-critic deep reinforcement learning [62] has overcome

difficulties in learning control policies of systems with continuous state and action

space, which provides a potential solution for effective real-time mission control of

autonomous UAVs.

In this work, we propose an actor-critic DRL model to track trajectories of UAVs

through sets of desired waypoints, and its implementation using FPGA. The detailed

framework is discussed in Section 4.2. Based on the model provided by [1], we aim

at actuating one degree of translation motion and three degrees of rotation motion

for quadrotor body-fixed UAVs. We construct a fully-connected neural network to

learn the optimal tracking policy based on DRL. We choose different sets of desired

waypoints as test benchmarks. The experimental results in Section 4.3 show that

compared to the baseline, our proposed approach can achieve 58.14% less position

tracking error and 9.23% faster attainment. The efficient tracking leads to 21.77%

power saving during the flight time. In addition, our actor network can easily be

mapped to FPGAs for hardware acceleration and the input/output size of network is

constrained because of limited dimensions of state/action that an agent/environment

can physically process. With a low-cost FPGA, one single decision can be made

within 0.0002 second at only 0.03mW power consumption in a decision epoch. The

speed and power consumption allows the proposed actor-critic framework to be used

for real-time on-board control of autonomous systems.

63



4.2 System Architecture and Hardware Design

4.2.1 Problem Formulation

In this work, we consider the trajectory tracking for under-actuated aerial vehicles

through a set of given desired waypoints. To state the problem without losing gen-

erality, we aim at quadrotor fixed-wing UAVs with four control inputs, one degree of

translation motion and three degrees of rotation motion (i.e. pitch, roll and yaw.)

The directions of four motions are illustrated in Figure 4.1 using different colors

(yellow: translational freedom; green: rotation freedom). It is extremely difficult to

integrate detailed mechanistic model of complicated dynamics with classic control

theory, a model-free solution for the control problem is preferred. Because actions of

the tracking problem are continuous variables (e.g. turning force, thrust etc.), the

actor-critic reinforcement learning is adopted, which learns to find the optimal set of

actuations that move the UAV towards desired trajectory. The technique presented

in [1] is used to generate C2 trajectory based on a given set of predefined waypoints

Td where each waypoint gives the desired position of the UAV at time t. Meanwhile,

desired velocity vdt, desired acceleration dvdt and desired attitude Rdt are extracted

from Td based on kinematics. The positions and attitudes together form the pose of

the UAV. The goal of our model is to minimize the differences between desired poses

and actual poses during tracking. We define sdt = {pdt, vdt, dvdt, Rdt} as desired

state and st = {pt, vt, dvt, Rt} as actual state of UAV at time step t. Each of first

three variables in the sdt and st are 3-dimensional vectors and the last one in the sdt

and st is 3 × 3-dimension, hence the desired state and the actual state are variables

in 18-dimensional space. All variables used at time t are summarized in Table 4.1.

The concatenation of sdt and st forms the agent state St. Furthermore, we define

action at time t as At = {fmt, τt}, where the translational force fmt and torques

τt are applied to UAV. The translational force fmt is a force perpendicular to the
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Table 4.1: Variables summary

pdt : desired position pt : achieved position
vdt : desired velocity vt : achieved velocity

dvdt : desired acceleration dvt : achieved acceleration
Rdt : desired attitude Rt : achieved attitude
sdt : desired state st : achieved state
fmt : applied force τt : applied torques
At : applied action St = {sdt, st} : agent state

E : environment simulation

Figure 4.1: Illustration of UAV control inputs

top surface of UAV and the three components in τt are applied to roll, pitch and

yaw directions respectively. The reward Reward(∆t) at time t is defined as the

Manhattan distance between the desired pose and the actual pose, i.e. Reward(∆t) =

f(|pt − pdt|+ |vt − vdt|+ |Rt −Rdt|).

4.2.2 Network Structure

Since the control variables (i.e. fmt, τt) of UAV are in a continuous space which

are infinitely large, we build an actor-critic reinforcement learning model instead of

discretizing the action space. The actor model is a feed-forward deep neural network

of three fully-connected hidden layers with Rectified Linear Units (ReLU) as the

activation function. It is used to predict the optimal action based on current state

St. The number of neurons in fully-connected hidden layers are 64, 128 and 128

respectively. The size of output layer is 4 and LeakyReLU activation function is used
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(a) (b)

(c)

Figure 4.2: Architecture details (a) actor model, (b) critic model and (c) overall
framework

in the output layer. The critic model is another feed-forward neural network that

computes an evaluation of the action and that evaluation is used by actor model to

update its control policy in particular gradient direction. The critic model has two

hidden layers, where the first layer contains two separate fully-connected structures

and the number of hidden neurons in each is 32. The addition of outputs from the

first hidden layer is fed into the second layer which has 64 hidden neurons. The inputs

of critic model are St and At and the output is a single value Q(St,At). The size of

the critic and actor is optimized as hyper-parameters through cross-validation. The

detailed networks of actor model and critic model are shown in Figure 4.2a and Figure

4.2b. The overall framework is shown in Figure 4.2c. During training, the actor

model is pre-trained using labeled pair data (St,At) generated from simulation [1]

to predict the optimal action At based on current agent state St. Next agent state
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St+1 is calculated through environment simulation based on At and is used to predict

optimal At+1 by actor model. The critic model evaluates the resulting {St+1,At+1}

pair by predicting a Q-value to fine-tune action prediction. Therefore, the weights

in actor model are updated by the gradient between actor and critic model, using

chain rule dQ/dWactor = dQ/dWcritic × dWcritic/dWactor. Wactor and Wcritic indicate

the weights of actor and critic models respectively.

4.2.3 Reward Definition

Our goal is to actuate the UAV to be closer to desired pose Td along the desired

trajectory, i.e. minimizing the value of ∆Pt = |pt − pdt|. Besides position error, the

stability of the UAV should also be taken into consideration. Therefore the values of

velocity errors (i.e. ∆Vt = |vt−vdt|) and attitude errors (∆Rt = |Rt−Rdt|) must also

be minimized. However, our experiments show that simply using a linear combination

of ∆Pt, ∆Vt, and ∆Rt as the reward function will make convergence difficult in learn-

ing process. According to [91], using geometrically discounted reward will prevent the

accumulated reward to become infinite and make the model more tractable. There-

fore, we define the reward at each time step following a standard normal distribution,

guaranteeing the largest reward is accepted when the total differences between de-

sired trajectory and actual trajectory at time t (i.e. ∆t = ∆Pt + ∆Vt + ∆Rt) reaches

zero and closing to zero reward is obtained when ∆t increases. The total discounted

reward is denoted as R.

Reward( ∆t) =
1√
2π
exp(−∆2

t

2
),

R =
∞∑
t=0

γtReward( ∆t) ,

(4.1)

where ∆t = ∆Pt + ∆Vt + ∆Rt.
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4.2.4 Proposed Hardware Configuration

Figure 4.3 shows an overview of hardware design of the proposed UAV controller and

its connections. Intel (Altera) Cyclone V 5CGX FPGA is selected as our processing

platform and all massive parallel computations are implemented on it. We select

this FPGA because of its light weight as the UAV payload, relatively high compute

capability, and its low energy cost.

Although there are only linear computations (i.e. multiplications and additions)

are need in actor model and the mapping to FPGA is straightforward, two issues need

to be addressed. Firstly, all computations cannot be done at once due to resource

limitation of FPGA, time-multiplexing is essentially required. Secondly, computa-

tion latency introduced by time-multiplexing conflicts with the real-time response

requirement for UAV control. Our proposed design aims at exploiting the hardware

resource to improve parallelism and to minimize latency, taking two issues mentioned

above into consideration. In our design, DSP blocks are used as multiplier. Layer-

wise computation is done by computation array, which consists of multiple parallel

computation units for multiplication and accumulation performance. Results of in-

termediate layers are buffered in register array and will feed back to the input of

computation array for the computation of next layer. DNN controller builds the

communication between FPGA and ARM processor. Resource allocator schedules

the time-multiplexed computation. The FPGA is connected to the on-board ARM

Cortex-A9 processor. ARM Cortex-A9 takes control commands from FPGA as input,

calculates actuations in each freedom, and then sends actuations to UAV controller.

In addition, UART handles the communication between ARM Cortex-A9 and UAV.

It accepts flight state and sensor data from UAV and sends data to FPGA after

preprocessing.
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Figure 4.3: Hardware configuration of the UAV controller

4.3 Evaluations

4.3.1 Environment Setup

We trained the actor-critic network and implemented the simulation on Nvidia GeForce

GTX1070 using Keras [92]. The data that we use to train and test our model is gen-

erated using simulator described in [1]. Our dataset consists one thousand different

3D trajectories of four different shapes, including straight lines, z-shape curves, spiral

curves and circles. Each desired trajectory has one thousand desired waypoints, giving

enough time for UAV to track it. All desired waypoints are defined by mathematical

equations parameterized by time. Eight hundred different trajectories of four differ-

ent shapes are evaluated in total. The mass of UAV used is 4.34kg, and its inertial

properties J is a 3×3 diagonal matrix (i.e. diag[0.820 0.0845 0.1377]kgm2) which

determines the required magnitude of force to accelerate the UAV in each rotation

direction respectively. The goal is to minimize the power consumption and time used

from trajectory deviated to tracked.
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Figure 4.4: Structure of PID-based baseline controller

4.3.2 PID Implementation

As a baseline approach, we also implement control scheme based on PID theory

because it has been widely used in industrial applications and real-time control situ-

ations. We define desired position pdt as observable variables (OV ) and actual posi-

tion pt as measurable variables (MV ). Velocities are regarded as controllable variable

(CA). The data of pdt is gathered from simulator in [1] and is used to derivate desired

velocity vdt of UAV at time t. Three PID controllers are used for each component

of velocity respectively, which are indicated by green blocks in Figure 4.4. The inner

structure of each PID is the same as conventional structure. PID controllers calculate

errors of each component between desired velocity and achieved velocity by the UAV,

i.e. errors between vdx and vx, vdy and vy and vdz and vz, continuously as refer-

ences to give velocity corrections. Furthermore, the achieved position pt is calculated

through Environment simulation (i.e. orange block) and used as feedback based on

current velocity vt. As a consequence, the difference between desired position pdt and

actual position pt is used to update the velocity of UAV through Kinematics block

(i.e. purple block). The overall structure of PID-based controller forms a feedback

loop and is shown in Figure 4.4
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(a) Line trajectory (b) Z–shape trajectory

(c) Spiral trajectory (d) Circle trajectory

Figure 4.5: Examples of achieved trajectories and desired trajectories in terms of four
different shapes. (red : desired trajectories. blue: achieved trajectories using proposed
DRL-based learning approach.)

4.3.3 Results Comparison

All test samples of desired trajectories are generated the same way as mentioned in

Section 4.3.1. Figure 4.5 shows sample testing achieved trajectories (blue curves)

using proposed DRL learning approach and corresponding desired trajectories (red

curves). We report the results from four aspects: (1) L1-norm of position tracking

error; (2) L1-norm of velocity tracking error; (3) Time used to complete tracking; (4)

Power consumption.

Figure 4.6 shows the L1-norm of position tracking error, where the first four
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Figure 4.6: Tracking result comparison between proposed DRL-based framework and
PID-based baseline in terms of L1-norm of position error

columns are comparison results of trajectories with different shapes respectively and

the fifth column is average L1-norm of position error of all testing trajectories. Ac-

cording to the figure, our approach has lower average position error especially when

the trajectory is more complicated. Compared to PID based baseline control, 22.94%

less position error is achieved for straight line trajectory tracking and 25.07% less

position error is achieved for circular trajectory tracking. The position tracking error

reduction increases to 85.32% for spiral shape tracking and 87.81% for z-shape tra-

jectories tracking respectively. On average, our approach outperforms 58.14% better

than PID based control in position tracking of different shapes of trajectories.

Figure 4.7 shows the average of L1-norm of velocity tracking error. Similar to

Figure 4.6, the first four columns are comparison results of each type of trajectory

with different shapes, and the last column shows overall L1-norm of velocity tracking

error averaged over all testing trajectories. It shows 29.79% error reduction is achieved

for line trajectory and 67.22% error reduction is achieved for circle trajectory. Up to

91.64% and 93.17% error reductions are achieved for z-shape and spiral trajectories.

On average, our approach outperforms 80.60% than PID control with respect to

velocity tracking error. Again our learning based approach performs better for the
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Figure 4.7: Tracking result comparison between proposed DRL-based framework and
PID-based baseline in terms of L1-norm of velocity error

more complicated trajectories.

Figure 4.8 compares the total time steps used for UAV to follow each shape of de-

sired trajectory and the average time steps used in total to reach stability. We report

the number of time steps used for UAV to completely track the desired trajectory.

The total time steps for each testing trajectory is one thousand. The time step when

trajectory is tracked is regarded as the time tc after which the L1-norm of position

error between pdt and pt is less than 0.0001. The average tracking time for different

types of trajectories, and the average tracking time over all testing trajectories are

reported. Our approach is 9.23% faster than PID-based control to achieve stable pose

on average. It is especially 13.86% faster for line trajectory and up to 15.58% faster

for z-shape trajectory. Moreover, PID has lags in responding current dynamics in all

three directions of velocity. Therefore, PID-based controller is not optimally adapted

for non-linearity situations, especially not robust in fast dynamic control. It trades

off the control performance and time.

Figure 4.9 reports average total power consumption after one trajectory is com-

pletely tracked using our approach and baseline PID controller. As indicated in the

figure, our approach achieves 11.04% less power consumption when tracking z-shape
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Figure 4.8: Tracking result comparison between proposed DRL-based framework and
PID-based baseline in terms of used tracking time steps

trajectory and consumes 18.64% less power for line trajectory tracking. Furthermore,

up to 21.63% and 29.11% power consumption improvements have been achieved for

circle and spiral trajectories tracking respectively. An average of 21.77% less power

is consumed using our approach for tracking all different trajectories. The notice-

able result explains that PID control consumes more power because of oscillations of

controllable variables during tracking process.

4.3.4 Tracking in a Noisy Environment

To test the robustness of the learning based trajectory tracking, we also add different

levels of random Gaussian noise and see if the tracking algorithm can adapt to the

changing environment. Our model free DRL approach is compared to the Matlab

model based trajectory tracking approach, which calculates the force and torque of

the UAV using a 3-dimensional Euclidean space mechanics model in the form of Lie

Group Variational Integrator (LGVI) given in [1]. The random noise is a deviation

added on the UAV position at same random time step with a duration of 5 time steps.

Such noise could be used to model the effect of wind gust, which may deviate the
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Figure 4.9: Tracking result comparison between proposed DRL-based framework and
PID-based baseline in terms of power consumption

UAV away from its current position. Figure 4.10 compares the tracking results in an

environment with random noises.

In the first experiment, a relatively small noise is added to the environment. The

left figure in Figure 4.10a shows the desired and actual trajectories generated by

Matlab simulator for the UAV using model based tracking in [1], while the right one

shows the similar information for the UAV using our proposed DRL-based tracking

model. As we can see, the UAV using the DRL based tracking follows the desired tra-

jectory more closely. After adding small random Gaussian noise, DRL based system

is more stable and achieves smaller position tracking error under considerable error

precision. The left figure in Figure 4.10b shows the L1-norm of position tracking

error for model based tracking (Dmatlab) and DRL based tracking (DDRL). The right

figure in Figure 4.10b shows the difference between these two (i.e. Dmatlab −DDRL).

It shows that after deviating from the original trajectory due to random noise, the

model based approach will not correct itself right away. Only after the deviation

becomes large, it will gradually track back the original trajectory. While the DRL

has a relatively more stable position error during all the time. In the second experi-

ment, we add relatively larger noise to the environment. The left and right figures in
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Table 4.2: FPGA performance analysis for actor model

Frequency 373.02MHz
Throughput 204.96 Action/s
Total Power 33.57mW

Logic Utilization in ALM 10.03%
RAM Utilization 20.94%

Figure 4.10c give the original and actual trajectories of the model based and DRL

based tracking. As indicated, the model based approach is not able to keep the given

trajectory, while the learning based approach can.

4.3.5 Hardware Performance on FPGA

A truly autonomous UAV has three components, sensing, detection and control. One

of the benefits of adopting DRL based trajectory tracking is that it solves the control

problem using a deep neural network, which is known to be efficient for detection

and sensor signal processing. Using a unified computation model (i.e. DNN) for

different tasks allows us to design highly optimized application specific hardware for

that computation model, instead of relying on flexible general purpose processor,

which is either too bulky or cannot provide enough computation power.

While the training of the DRL framework requires both the actor and critic net-

works, only the actor network needs to be implemented on the UAV during the

runtime and run in real-time. To evaluate the cost, payload and energy impact that

the actor network may bring to the UAV, we implement our actor model on the

FPGA platform to validate our method on the real-world devices. We choose Intel

(Altera) Cyclone V 5CGX FPGA as our evaluation platform. The platform’s System-

on-Chip (SoC) has the maximum CPU clock frequency of 925MHz and embedded

DDR3 SDRAM with the memory bandwidth pf around 4, 500MB/s. The actor net-

work has 25, 196 connections, which correspond to 25, 196 multiplication/addition

operations. We have to time multiplex the hardware resource in FPGA in order to
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(a) Comparison of achieved trajectories with a relatively small noise (red :
desired trajectory, blue: achieved trajectory)

(b) Comparison of tracking position error

(c) Comparison of achieved trajectories with larger noise (red : desired
trajectory, blue: achieved trajectory)

Figure 4.10: Experimental results of trajectories tracking in noisy environment com-
parisons between using model-based tracking [1] and using proposed DRL-based
tracking scheme
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evaluate the whole network. The amount of computations that can offload to the

FPGA is constrained by the size of the on-chip RAM, which will be used to store the

weight parameters and intermediate results. With up to 21% utilization of the RAM

resources, we use 10% utilization of the programmable logic resource to achieve 200

actions/s throughput. We present the performance and energy consumption of our

FPGA implementation in Table 4.2. In this implementation 16-bit wide fixed-point

data precision is used. The results show that, the power consumption of the actor

network is very low, hence enables the model to run on the UAV devices, which usu-

ally have stringent energy resources. Please note we include the static power in the

total power. The real computation power should be much lower.

4.4 Conclusion

In this chapter, we have introduced a framework for UAV trajectory tracking based on

deep reinforcement learning using FPGA. The system structure, processing algorithm

and software/hardware performance are presented. In our approach, the UAV tracks

a desired trajectory through a set of given waypoints, tolerating random Gaussian

noise within considerable range. The hardware consumption of the implementation

of this scheme is also provided. The proposed scheme is general and applicable to be

applied in real UAVs for fast and accurate trajectory tracking system.
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Chapter 5

Early Phase Integrated Neural

Network Compression for DRL-based

UAV Trajectory Planning Framework

5.1 Introduction

Driven by the opportunities and challenges of Internet of Things (IoT), the demand

for autonomous UAV increases for research and industrial applications. Although the

term “UAV” refers to wide range of systems, from airplane-sized combat drones to

insect-sized micro-drones, in this work, we focus on small UAVs with take-off weights

2-20 lbs. This is not only because such small UAVs are commercially available and

have the most civilian usage, but also because they impose more stringent constraints

on the size and energy dissipation of the onboard system. The safety and efficient

control of autonomous UAVs require obstacle-free trajectory planning particularly

for BVLOS operations, and applications that require unmanned vehicles to move in

cluttered environments [49]. Such applications include indoor operations [50], pack-

This work is partially supported by the National Science Foundation under Grant CNS-1739748
and SRC task 2893.001.
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Figure 5.1: Two levels in an autonomy of UAV

age delivery in urban and suburban areas, monitoring of civilian infrastructures like

bridges and highways, autonomous landing on moving platforms and tracking wildlife

in forested areas.

In this work, we divide the autonomy of UAV into multiple levels shown in Figure

5.1 from autonomous obstacle avoidance to strategic mission planning. The first level

autonomy is Trajectory Planning (TP), where the drone dynamically calculates a

sequence of waypoints and the trajectory that leads to a (changing) destination with

the consideration of its current speed, acceleration, flight condition and potential

obstacles. In the lower level, Reactive Control (RC) monitors the gyroscope and ac-

celerometer data, and dynamically adjusts the motor to react to the changing airflow

to stabilize the drone in a changing environment.

The trajectory planning is difficult because the UAV needs to maintain it stability,

and also ensure safety and energy efficiency in real time. In [2] a two-level framework

is proposed for trajectory planning. The upper level framework uses a deep rein-

forcement learning model to generate a set of optimal waypoints while the low-level

framework uses non-optimization to find energy trajectory to connect adjacent way-

points. Based on the sensor information from reactive controller, optimal decisions

on flight and sensor control needs to be regenerated by the TP layer. These two

layers work at the lower abstraction level (i.e. altitude, speed, etc.) of UAV physical
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status requiring the fastest response. Therefore, enabling nonlinear guidance running

on onboard hardware in real-time is the key to ensure flight safety and assurance.

However, UAVs are not equipped with sufficient computing power due to the

limited energy and payload capacity. Conventional high-performance computing sys-

tems, mostly GPUs, are either significantly power intensive or too bulky to be placed

on small UAVs. The existing gap between the computing capabilities of on-board

embedded systems and the real-time computation requirements of the autonomous

UAV becomes even wider if we consider the need to process multiple channels of

sensor inputs, to search for the optimal decision in DRL framework, not to mention

the potential mini-batch updating requirement for DRL. There have been efforts in

closing this gap from both sides. On one hand, faster embedded processors with

small footage and low energy consumption, such as such as NVIDIA Jetson TX2 and

NX, have been used for cyber physical applications on UAVs [3][4]. On the other

hand, more efficient computing models have been investigated. A widely used tech-

nique is to compress over-parametrized neural networks. Eliminating unnecessary

weights from neural networks can decrease the model size and reduce inference en-

ergy consumption [5][6] of the trained networks without or with very little accuracy

loss. Most commonly it is achieved by setting a particular set of weights to 0 and

freezing them for the course of subsequent training. There are multiple motivations

for performing compression. Firstly, it supports generalization by regularizing over-

parametrized functions. Secondly, by small networks with good performance reduces

energy costs, computation complexity, storage requirements, and inference latency,

all of which can support the deployment on small UAVs. In summary, compressing

over-parameterization is an important step towards successful training and real time

on-board processing [7]. However, most of the existing works apply pruning on fully

trained model and many of them only focused on later phase of pruning influence.

The three-step process, i.e. training, pruning, and re-training, has high computation
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and memory complexity. The complexity is even higher when it is applied to a model

trained using deep reinforcement learning, as the interaction with the environment

and model adaptation take place sequentially.

In this work, we investigate pruning deep neural networks when training DRL

network to plan energy efficient UAV trajectories. We present an early phase in-

tegrated model compression framework for UAV trajectory planning, incurring less

computation overhead and achieving performance improvement. In our system, the

drone dynamically calculates a sequence of waypoints and the trajectory that leads to

a destination with the consideration of its current speed, acceleration, flight condition

and potential obstacles in the trajectory planning scheme. Meanwhile, the planning

model is pruned during the training process. Here, we employ Adaptive Moment

Estimation (ADAM) – ADMM [18] based compression combined with the trajectory

planning scheme. Notably, we verify that ADAM-ADMM based compression gener-

alizes to other research domains, and it can help save DRL training effort moreover

and improve inference performance.

This work has the following three main contributions. The first is the improved

initialization and loss function. We discovered that a truncated navigation gain and

stochastic action reinitialization are two techniques that work effectively with the

DRL training of the trajectory planning problem. More than 34.14% improvement of

convergence can be achieved using this technique. The second is an optimized layer-

wise distribution of compression ratio and general guideline for structured weight

pruning for the deep Q-network. Our study shows that weight compression of inter-

mediate layer will perform better compared with weight compression of input or out-

put layer due to the high redundancy in intermediate layers. Results indicates 3.045x

prune ratio plus 1.7% success rate improvement by using targeted compression. The

third is the integrated structured weight pruning framework on DRL problems at an

early phase of training. We factorized the ADAM-ADMM weight pruning algorithm
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Figure 5.2: Trajectory planning network structure

Table 5.1: Parameters number and FLOPs of each layer in trajectory planning net-
work

Layer# conv1 conv2 conv3 fc1 fc2
Param# 3584 884992 524544 131584 5120
FLOPs# 1957888 7081984 524800 132096 5632

to take advantages of the special characteristics after ADMM regularization. Results

of different sparsity combinations with DRL based trajectory planning problems are

reported in Section 5.3.2. We observed that weight compression together with training

from an early phase will uncover necessary weights, and it learns faster than original

DRL while reaching better performance.

The rest of this chapter is organized as follows: In Section 5.2, we describe details

about our proposed integrated model compression system. Section 5.3 describes our

experiments setup and evaluation results. Finally, Section 5.4 gives the conclusions.

5.2 The Improved DRL Framework

In this section, we present the deep reinforcement learning framework with early phase

integrated weight compression for the UAV trajectory planning.
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5.2.1 Overall System Flow

The goal of our work is to plan the optimal trajectory of UAV with the smallest

memory size and the fastest processing speed. Firstly, we formulate the optimal

trajectory planning as a two-level optimization problem. The upper level is DRL

based optimization to learn how to plan waypoints in a known environment. The

waypoints are selected so that if we apply a non-linear optimization to find each

trajectory between two adjacent waypoints in the lower level, we do not need to worry

about obstacles. During training, the upper level tries to learn the dynamics of the

lower level optimization and how lower level dynamics impact the interaction between

the UAV and environment. Waypoints will be generated to cope with such dynamics.

As a result, the lower level can assume an obstacle free environment and focus only

on connecting two adjacent waypoints. Finally all waypoints will be connected to

generate a smooth trajectory with optimized energy efficiency. The prior work shows

that the model generates obstacle free smooth trajectory that consumes less thrust

energy compared to other heuristic waypoint generation methods.

The original network architecture without weight compression in this work is

shown in Figure 5.2. The input of the network is the 10 × 10 × 10 array of the

environment information and a 1 × 9 vector of the UAV status. The output is a

1×26 vector of the Q-values for 26 actions corresponding to 26 possible next waypoint

locations. All convolutional layers in the network are conv3D layers. Parameters

number and FLOPs of each layer are shown in Table 5.1. In this work we integrate

weight compression with the DRL training of the trajectory planning framework. The

goal is to plan optimal trajectory in real time with less memory, lower computation

complexity and computing time, at the same time with manageable training cost.

To avoid the cost of training the model twice, it is desirable to prune the model

as early as possible. However, training sparse architectures produced by pruning

from scratch is known to be very difficult [14]. Instead of pruning from scratch,
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we start to apply structured weight compression at early iterations of DRL training

of the original model, allowing the weights to settle at some prior knowledge of the

problem. Therefore, the partially trained original model behaves as a teacher to distill

the network. The overall flow is shown in Figure 5.3.

5.2.2 Trajectory Planning Refactoring

To reduce the training cost, we further refactorize the prior work [2] using truncated

navigation gain and stochastic action reinitialization.

Truncated navigation gain We define the truncated navigation gain as reward

in trajectory planning and it contains two parts. One is navigation reward Nr and

the other is navigation effort Ne. First of all, taking obstacle uncertainty into con-

sideration, we assume optimal navigation direction θ follows a truncated Gaussian

distribution. Here θ is a two-dimensional vector indicating polar angle (θ1) and az-

imuthal angle (θ2) respectively. The mean value is denoted as θ̂, and it is the direction

of the destination location. We define the variance of the navigation direction as Σ,

it is the deviation of the optimal direction distribution of the UAV. The navigation
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reward Nr is the distribution of θ as:

Nr = f(θ;µ,Σ,a, b)

=
φ((θ − µ),Σ)

Φ((b− µ),Σ)− Φ((a− µ),Σ)
,

subject to a 6 θ 6 b

(5.1)

where

φ(θ) =
1

2π |Σ|
1
2

e−
1
2
(θ−µ)T Σ−1(θ−µ), (5.2)

is normal distribution of θ, and is the cumulative distribution of φ(θ),

Φ(θ) =
1

2
(1− erf(

√
2

2
θ)), (5.3)

where erf is the Gaussian error function of θ. Due to symmetry of the UAV scenario,

we set

µ = θ̂ = (θ̂1, θ̂2), (5.4)

Σ =
(
θ̃1 0

0 θ̃2

)
, (5.5)

a = θ̂ − π

2
, (5.6)

b = θ̂ +
π

2
, (5.7)

where θ̂1 and θ̂2 are destination directions, θ̃1, θ̃2 are standard deviation given from

UAV intrinsic property. θ̂1 and θ̃1 are in polar angle, θ̂2 and θ̃2 are in azimuthal angle

respectively. And a and b are low and above bounding ranges of random variables

respectively. Therefore, Equation 5.1 can be written as:

Nr(θ; θ̂, θ̃) =
φ(θ − θ̂,Σ)

2Φ(πI
2
,Σ)− 1

, (5.8)
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It can be shown that Nr(θ) reaches the maximum value when θ equals to θ̂. Secondly,

the navigation effort Ne is calculated using method proposed in [2]. In order to

combine these two, we formulate these two parts as composite gain using fusion

combination. We denote g as the gain of fusion. Then the truncated navigation gain

G is denoted as a combined optimization problem below.

G(θ) =

[
1− g g

]Nr(θ)

Ne(θ)

 ,
s.t. g ∈ [0, 1]

(5.9)

The variance of G(θ) can be obtained as

V ar(G(θ)) = (1− g2)V ar(Ne(θ)) + g2(Nr(θ)), (5.10)

To minimize the variance of the gain, we take the derivative of Equation 5.10 with

respect to g, and set it to zero. Then we can get

g =
tr[Cov(Ne(θ))]

tr[Cov(Ne(θ))] + tr[Cov(Nr(θ))]
, (5.11)

where tr represents trace of the matrix and covariance learned for navigation reward

and navigation effort are denoted as

Cov(Nr(θ)) = Σ[1 +
aφ(a)− bφ(b)

Φ(b)− Φ(a)
− (

φ(a)− φ(b)

Φ(b)− Φ(a)
)2]ΣT , (5.12)

Cov(Ne(θ)) = ΣΣT . (5.13)

Stochastic action reinitialization Even with techniques such as epsilon-greedy

exploration, Conventional deep Q-learning exploits actions with the highest Q-value

during the training more often than exploration new actions. The predicted Q-values
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of actions are just rough estimations especially during the early phase of training.

Relying on the actions with maximum Q values for making decision during the train-

ing time will hardly generate satisfactory decisions. The inadequacy of relying only

on the highest Q-value actions becomes prominent especially with pruning. It is the

source of the slow convergence, as the confidence of Q-value prediction has higher

uncertainty under higher compression rates. Therefore, we introduced a stochastic

action re-initialization step during training. Every time the UAV fails its mission,

it will randomly select an action instead of predicting once again. Also, the agent

will always randomly choose the action of the top M actions with the highest values.

With this technique, the model converges faster than prior work. Detailed comparison

results are included in Section 5.3.1.

5.2.3 Early Phase Integrated Weight Compression System for

UAV Trajectory Planning

We start the pruning process in early iterations of the DRL training. This allows

the model to gain some prior knowledge of the problem without spending too much

time in refining itself. After pruning, retrain or fine-tune the model is an important

step, as it allows the model to have a chance to re-adjust to prevent performance

degradation. Therefore, in our system the training goes on while pruning and we do

not need a fully trained network to start with.

In this work, we adopt structured pruning for two reasons. Firstly, structured

pruning has been found to significantly improve pruning performance than other

sparsity types [15]. Secondly, structured pruning can speed up computation on stan-

dard hardware by removing whole groups of weights such as filters or channels of

convolutional layers in neural network. The remaining weight connections maintain

the convolution structure and hence the computations can easily be mapped to par-

allel GEMM operations, while the unstructured pruning will generate sparse weight
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matrix that cannot easily be parallelized. In addition, we focus on local pruning in-

stead of global pruning. In other words, we specify compression ratio for each layer

separately.

Consider an agent with an action space of A possible actions and a network with

L layers and each layer i as parameters pi, including weights wi and bias bi, we

minimize the objective function subject to specific structured sparsity constraint on

base of parameters in each layer, i.e.

min
(W,b)

f(W,b)

s.t. W =

{
wi

}L−1
i=0

,b =

{
bi

}L−1
i=0

,

wi ∈ si, i = 0, ..., L− 1

(5.14)

where si is the set of wi with a specific structure and the objective function is defined

as
f(W,b) =

1

|batch| · A
∑

j∈batch

max(
A−1∑
a=0

|qaj − q̂aj| ,
A−1∑
a=0

(qaj − q̂aj)2)

+
L−1∑
i=0

‖wi‖2F ,

(5.15)

In this case, batch is the set of past experiences sampled from the replay buffer, j

is one the experiences (i.e. a possible environment state), q is the Q value of action

a under state j, and q̂ is its corresponding target value. Unlike supervised learning,

where labels are provided, the target Q value is updated based on the following

equation

q̂aj = G(θ) + γmaxq̂aj′ · I(j), (5.16)

where G(θ) is the reward defined in Equation (5.9), γ is the discounted factor, j′ is
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the next state of state action pair (a, j), and

I(j) =

0, if sequence terminates at episode j+1

1, others
(5.17)

The second term in Equation 5.15 is L2 weight regularization. The constraint of

Equation 5.14 is nonconvex and combinatorial. Using ADMM it can be equivalently

rewritten in a form with restriction wi = zi

min
W,b

f(W,b) +
L−1∑
i=0

fi(zi), (5.18)

where fi is the indicator function of the specific structure si. According to [18], the

optimization problem can be decomposed into two subproblems.

min
W,b

f(W,b) +
L−1∑
i=0

ρi
2

(
‖wi − zi + ui‖2F + λ ‖bi‖2F

)
, (5.19)

min
zi

L−1∑
i=0

fi(zi) +
L−1∑
i=0

ρi
2

(
‖wi − zi + ui‖2F + λ ‖bi‖2F

)
, (5.20)

where 0 < ρi < 1 is penalty parameter for layer i. This problem is solved by iterating

K steps and the optimal solution is the Euclidean projection of ws
i +u

s−1
i onto specific

sparsity si. Since the weight magnitude is usually just a noisy representation of the

importance of weight, one-shot pruning directly to the desired compression ratio

is likely to remove connections that is important. In this work, we apply ADMM

multiple times, each time a fraction of the weight coefficients are pruned until we

reach the desired prune ratio.

Unlike the supervised learning where training set is provided, the training set of

the deep Q-learning (i.e. the state action pairs and the corresponding target Q values)
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Algorithm 2 Early phase integrated weight pruning for DRL based trajectory plan-
ning
Input : Initially trained DRL based trajecotry planning network with parameters

(W, b)
Output: pruned network with specified percentage of zero parameters for each net-

work layer
Load network with initially trained parameters W and b;
Initialize penalty parameter to ρ0;
set admm pruning episode k = 0;
foreach network layer i in pruning configuration do

set wik = wi, uik = 0, zik = wi
k;

for penalty episode t← 1 to T do
set ρt = 10t · ρ0;
Restore replay buffer B to capacity C with converged model from episode t− 1;
for pruning episode k ← 1 to Kp do

Sample random mini batch of past transitions from B;
Calculate corresponding target value q̂ of each state and action pair;
foreach layer i in pruning configuration do

set ρki = ρt;
if wk+1

i < prune_percentile ·
∥∥wk+1

i

∥∥2
F
then

set wk+1
i = 0;

set zk+1
i = wi

k+1 + ui
k;

set uik+1 = wi
k+1 − zk+1

i + ui
k;

Calculate total loss L =
f(W , b) +

∑L−1
i=0

ρki
2

(∥∥wik+1 − zik+1 + ui
k
∥∥2
F

+ λ ‖bi‖2F
)
;

Perform a gradient descent ∂L with respect to the network parameters W
and b;

Restore replay buffer B to capacity C with ADMM converged model;
foreach layer i in pruning configuration do
if wi < prune_percentile · ‖wi‖2F then

set wi = 0;

for retraining episode m← 0 toMr do
Sample random mini batch of past transitions from B;
Calculate corresponding target value q̂ of each (state, action) pair;
foreach layer i in pruning configuration do
if wi = 0 then

set gradient mask Mi = 0;
else

Mi = 1;

Perform a gradient descent ∂f((wi, bi) ·Mi) with respect to the masked network
W and b;

return sparse network;
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Figure 5.4: Iterative prune-restore flow diagram

is sampled from the replay buffer which is updated through simulation or deploying

the learned model. We adopted an iterative prune-restore procedure. Each time after

the ADMM prune converges, a pruned model will be simulated and the replay buffer

will be updated. The detailed flow diagram is shown in Figure 5.4.

The replay buffer B is firstly updated to capacity C using partial training model.

The ADMM pruning will be applied K times. Every time ADMM is applied, the

model is pruned by iteratively solving the subproblems 1 and 2 over sampled mini-

batch from B. Before each application of ADMM, B is restored using the converged

model obtained from the previous pruning. After ADMM pruning completes, the

remaining non-zero weights are retrained [18]. This helps achieve higher compression

rate without success rate degradation. It is shown as the last step in the flow dia-

gram. The algorithm 2 shows the overall process of our early-phase integrated weight

pruning with DRL based trajectory planning.
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5.3 Experimental Results

The proposed system is implemented and evaluated on Linux with two GeForce RTX

2080 Ti. Again, we focus on the pruning of a DRL based optimal trajectory planning

model within a closed environment. The evaluation environment is randomly gen-

erated, including random placement of obstacles and random selection of the start

and target waypoints. The overall environment is discretized to 10 × 10 × 10. Each

waypoint is encoded as the center of each environment grid. We use the algorithm

proposed in [2] to generate the optimal trajectory with minimal control effort ana-

lytically between each pair of adjacent waypoints. In this section, we demonstrate

performance of our proposed approach from four aspects.

5.3.1 Performance Improvement of Trajectory Planning Refac-

toring

To measure the impact of two refactoring techniques for optimal trajectory planning,

we first compare with prior work [2] in terms of convergence behavior. We use FLOPs

to indicate the computation effort [93][94]. As shown in Table 5.2, the training effort

needed of a fully trained model reduces from 2.123e+14 to 1.399e+14, resulting in

34.14% reduction. Besides, Figure 5.5 shows a comparison of convergence in terms of

cumulative success rate during training. From the figure, we can see that our model

converges faster and become more stable than the prior work with the help of our

refactoring techniques. Previously, the model converged at around 30K episodes,

while our model converges 20% faster than before. Also our model can learn the

Table 5.2: Training convergence behavior comparison in terms of FLOPs between
proposed refactoring planning and prior work [2]

training effort (FLOPs) to convergence
prior work[2] 2.125e+14

refactoring planning 1.399e+14
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Figure 5.5: Training convergence behavior comparison in terms of cumulative success
rate between proposed refactoring planning and prior work [2]

interaction between upper and lower level in trajectory planning 2X faster at the

early phase of the training. More specifically, our model can achieve around 50%

success rate with only 5k episodes while 10k episodes are required at least.

5.3.2 Pruning Level Influence for Each Layer of the Neural

Network

Next, we investigate how much compression can be tolerated in each layer. We find

that the performance of structured pruning varied substantially for each layer. Figure

5.6 shows the relationship between the compression rate and the evaluation success

rate for each layer. Dashed lines and solid lines are performance of the network with

channel pruning and filter pruning respectively at specific layer. It is worth men-

tioning that in order to keep all information of input and out layers i.e. conv1, fc2

and fcout, we only apply filter pruning at the two input layers and no pruning at

the output layer. We note that the layer closer to the input or output is extremely

sensitive to the pruning. Any pruning at those layers will immediately cause signifi-

cant performance dropping while the intermediate layers are more robust to pruning.
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Figure 5.6: Relationship between compression rate and evaluation success rate for
each layer of trajectory planning network

For example, pruning of conv3 causes less success rate drop than pruning of conv2

for both filter and channel pruning. And filter pruning of conv1 is less stable than

other two conv layers. Therefore, the first layer is not the focus of pruning. We also

found that filter pruning can achieve higher compression ratio without success rate

drop than channel pruning. For example, the success rate of conv2 layer with channel

pruning drops notably as increasing the compression ratio. It indicates that the level

of overparameterization varies dramatically across different layers and “one ratio fits

all” compression models may have adverse impacts on performance. In this work, we

set different prune ratios for different layers.

Figure 5.7 shows the maximum prune ratio that keeps success rate above 90.70%

for each layer per sparsity type. As shown in the figure, conv3 can have a maximum

5x compression of filter pruning. Moreover, fc1 layer can achieve 80% sparsity both

after filter pruning and channel pruning.

Through systematically removing the group of weights which are zero or close to

zero in different layers together and retraining the remaining non-zero weights, we can

prune more aggressively with a tolerable loss of the success rate [18][5]. Experiments

are carried out to validate the effectiveness and efficiency of different combinations

of filter and channel structured pruning for the model. We measure the quality of
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Table 5.3: Details of structured pruning results with different configuration of layer-
wise compression ratio

Structured
pruning

Pruned layers Total
sparsity

Prune
rate

Success
rateconv1 conv2 conv3 fc2 fc1

filter prune - - - - - 0% - 96.8%pruning ratio - - - - -
filter prune - - 50% - -

25.17% 1.336x 94.00%channel prune - - 50% - -
pruning ratio - - 4x - -
filter prune - - 50% 50% -

29.40% 1.416x 96.00%channel prune - - 50% - -
pruning ratio - - 4x 2x -
filter prune - - 50% 50% -

31.49% 1.460x 95.60%channel prune - - 50% 50% -
pruning ratio - - 4x 4x -
filter prune - 50% 50% 50% -

59.81% 2.488x 94.50%channel prune - - 50% 50% -
pruning ratio - 2x 4x 4x -
filter prune 50% 50% 50% 50% 50%

60.11% 2.507x 95.00%channel prune - - 50% 50% -
pruning ratio 2x 2x 4x 4x 2x
filter prune - 70% 82% - - 67.16% 3.045x 97.30%pruning ratio - 3.33x 5.56x - -
filter prune 10% 70% 82% - - 67.19% 3.047x 97.20%pruning ratio 1.11x 3.33x 5.56x - -
filter prune 10% 75% 82% - - 70.02% 3.335x 94.30%pruning ratio 1.11x 4x 5.56x - -
filter prune - 70% 80% 79% 50% 73.32% 3.748x 94.30%pruning ratio - 3.33x 5x 4.76x 2x
filter prune 10% 70% 80% 80% 50% 73.44% 3.764x 95.00%pruning ratio 1.11x 3.33x 5x 5x 2x
filter prune - 70% 85% 85% 50% 75.50% 4.082x 93.60%pruning ratio - 3.33x 6.67x 6.67x 2x

Table 5.4: Training effort(FLOPs) with/without our pruning method for the model
with the best performance

Success rate of
initial training

Success rate
after pruning

pretrain FLOPs Weight pruning
FLOPS

Total training
FLOPSconv layers FC layers

96.8% - 1.377e+14 2.182e+12 - 1.399e+14
96.8% 97.1% 1.377e+14 2.182e+12 9.401e+11 1.409e+14
87.5% 97.3% 9.182e+13 1.455e+12 9.401e+11 9.422e+13
65.4% 96.7% 4.591e+13 7.275e+11 9.401e+11 4.758e+13
49.7% 95.2% 2.870e+13 4.5487e+11 9.401e+11 3.009e+13
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Figure 5.7: Comparison of per-layer maximum portion of pruned weights on trajectory
planning network per sparsity types

Table 5.5: Comparison between un-pruned fully trained model and best pruned model
with our method

Prune
rate

Model
sparsity

Success
rate

Achieve
rate

Average
waypoints

Inference
FLOPs

Average measured
inference time(s)

prior work[2] - 0% 95.6% 96% 9.0 1.844e+7 0.002454
un-pruned of our work - 0% 96.8% 98.0% 6.7 9.716e+6 0.002412

Our work 3.045x 67.16% 97.3% 98.6% 6.92 4.160e+6 0.001427

model using success rate for 1000 randomly generated test cases of UAV navigation.

Table 5.3 shows the details of several structured pruning experiments with different

configuration of layer-wise compression ratio along with evaluation success rate. All

of the experiments are built on top of the same partially trained initial model with

success rate of 87.5%. After compression and retrain we not only decreased the model

size and computation cost, but also improved the success rate. Success rate can be

increased to 97.3% with 3.33x weight pruning of conv2 layer and 5.56x weight pruning

of conv3 layer, resulting in 3.047x weight pruning in total. With a moderate success

rate loss within 2.3% compared with the model without best pruned, a total sparsity

of 73.44% is achieved, translating into 3.764x weight pruning.
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Table 5.6: Average inference time comparison between fully trained model without
pruning and model pruned with our method

Average inference time
Fully trained model without pruning 0.002412s

Model pruned with our method 0.001427s
Inference speedup 40.84%

5.3.3 Training Effort Evaluation of Presented System

To evaluate the efficiency of our presented pruning system, we compare the training

and pruning cost in Table 5.4. Again, we use FLOPs to indicate computation cost.

The total pruning FLOPs of this configuration is 9.401e+11. Table 5.4 compares

the training effort with and without presented weight pruning. The success rate of a

fully trained model is 96.8% without pruning, and it requires 2.4e+3 training episodes

and totally 1.399e+14 FLOPs. The success rate increases to 97.3% after pruning a

pretrained model with success rate 87.5% and the FLOPs is reduced by 33.33%. If

we allow a 2.1% success rate degradation, the total FLOPs drop to 3.009e+13 which

is 79.17% reduction.

We also show how the evaluation success rate change during the pruning with

different initial models in Figure 5.8a. These different initial models indicated by

different colors in the figure correspond to different initial training efforts. The same

prune configuration is adopted by all four initial trained models, i.e, 3.33x pruning

of conv2 and 5.56x pruning of conv3. With an initial success rate of 49.7%, the

model will converge in around 250 epochs as indicated in blue line. And with a

better trained initial model, the pruning process can improve the performance faster

while pruning. Figure 5.8b shows the total sparsity change of these four pruning

processes. We can observe that our presented work can speed up the convergence of

DRL training significantly, with only 500 epochs in total. This is because pruning can

effectively mitigate exploration effort required by the model and reduce the possibility

of overfitting.
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For this pruning configuration, the average inference time with and without prun-

ing is reported in Table 5.6. Both models run on one GeForce RTX 2080 Ti. It shows

that with a pruning ratio of 3.045x, the inference time can have 40.8% reduction.

This indicates that the pruning result is suitable for GPU acceleration and the model

reduction can be transformed into runtime reduction at almost the same scale.

99



5.3.4 Performance Comparison Between the Best Pruned Model

and Prior Work

In the last experiment, we compare a pruned model (pruned), a fully trained unpruned

model with truncated navigation gain and stochastic action initialization (unpruned),

a model from prior work in [2]. First, we found that the un-pruned model has a success

rate of 96.8% and achieve rate of 98%, and both are higher than the prior model.

In addition, the average number of selected waypoints is reduced to 6.7 if applying

refactoring techniques, which is 25.56% less than prior work plus a 47.3% FLOPs

decrease. This improvement is attributed to the refactoring techniques introduced

in Section 5.2.2. We also found that the success rate increases from 96.8% to 97.3%

with the pruned model, which is trained and compressed by our early phase integrated

compression framework. Also, in terms of number of waypoints, our pruned model

selects less number of waypoints. With the best pruning configuration, the average

waypoints number is 6.92, which is 23.11% less than prior work. Thirdly, compared to

the unpruned model, the inference FLOPs is further reduced by 57.18% with efficient

pruning. The prune ratio of the overall model with the best pruning configuration

achieves 3.045x in total. As we can observe from the results in Table 5.5, our presented

work has achieved significant improvement in saving training workload and success

rate and give a moderate improvement in energy efficiency of planed trajectory.

5.4 Conclusion

In this work, we present an early phase integrated neural network compression for

DRL based trajectory planning system. It motivates a practical success of applying

structured weight pruning from the early phase of DRL training process. Experimen-

tal results show that our presented system can save at most 78.49% training effort

and achieve 40.84% inference speedup. It also has high pruning rates, retaining high
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accuracy as well as FLOPs reduction that cannot be achieved before. We also ob-

serve that layers far from the input have more redundancy of weights. The results

have significant implications for deep reinforcement learning training process. This

observation suggests that the pruning starting from the early phase is vital for the

success of the training. We think that it is able to represent a broader phenomenon

in DNNs.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we investigated different neuromorphic paradigms to solve different

real-life deep learning problems, including pattern recognition, autonomous planning

and control for UAV. Different framework structures were investigated to achieve

higher accuracy, more precise planning and higher computational efficiency.

In Chapter 2, we discussed a recurrent belief propagation based offline handwrit-

ing recognition framework. A probabilistic inference network that performs recurrent

belief propagation was developed to process the recognition results of deep convolu-

tional neural network and formed individual characters to words. The post processing

has the capability of correcting deletion, insertion and replacement errors in a noisy

input. The output of the inference network was a set of words with their probability

of being the correct one. With the purpose of limiting the number of candidate words,

a series of improvements have been made to the probabilistic inference network, in-

cluding using a post Gaussian Mixture Estimation model to prune insignificant words.

With incremental comparison experiments, we proved the proposed framework was

efficient to achieve the desired performance.
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In Chapter 3, we proposed a two-level framework to generate the navigation tra-

jectory that the UAV follows in a complex environment. The construction of the

framework, the processing and analysis of experimental results were introduced. The

proposed trajectory planning framework can avoid obstacles in complex indoor en-

vironments and use minimal control thrust consumption during flight. It can not

only maintain the stability of the UAV, but also ensure its safety and energy effi-

ciency in real time. The experimental results indicated that it was versatile enough

to be applied to other robotic tasks, such as package delivery and routing conflicts

for high-density UAVs.

In Chapter 4, we applied a deep reinforcement learning framework based on actor

critic algorithm to track under-actuated aerial vehicles through a given set of required

waypoints. The system structure, processing algorithm and software/hardware per-

formance were introduced. In our approach, the UAV can track the desired trajectory

through a set of predefined waypoints and can tolerate random Gaussian noise in a

considerable range. In addition, the hardware consumption to implement this scheme

was provided. The same as before, our proposed scheme was universal and suitable

for applications in real UAVs for fast and accurate trajectory tracking systems.

In order to optimize performance and computational efficiency, an early integrated

neural network compression for DRL based trajectory planning system was presented

in Chapter 5. We found that from the early phase of the DRL training process, struc-

tured weight pruning can be applied to achieve an actual success. The experimental

results proved that this system can not only save more training effort and achieve

faster inference speed, but also retain high success rate on the basis of greatly reduc-

ing the number of FLOPs, which cannot be achieved before. We also observed that

layers that far from the input have more weight redundancy. Our results indicated

that pruning from the early phase is of great significance for the successful training

of DRL. We have reason to believe that it can represent a broader phenomenon in
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deep neural networks.

6.2 Future Direction

In this thesis, we studied the autonomous waypoints planning and trajectory genera-

tion scheme in known environment. However, more often we cannot obtain complete

external environmental information. Driven by extensive robotics technology, there is

an increasing demand for real-time on-board autonomy of UAVs without external nav-

igation equipment. Therefore, one unified real-time autonomous system is urgently

needed. In future research, firstly, our goal is to expand the generality by combin-

ing unknown 3D environments exploration and localization and mapping of the UAV.

The action space will be considered continuously without ignoring information of time

and space. In such unified system, the UAV not only needs to consider position and

control thrust consumption, but also considers the exploration efficiency when taking

each action. In addition, the environment placement will be dynamic while planning

and exploring. This means that the destination, location of obstacles will not be fixed.

The UAV will only have knowledge of areas that have been explored and detected

before. As a result, the unpredictability of the environment is taken into considera-

tion during planning and exploration. These reconstruction aspects can be used to

further improve the versatility and reality of the system. Secondly, the exploration

and localization combined problem will be more time consuming when implementing

with DRL. Thus, we will further apply the early phase integrated weight compression

system to the unified autonomous system. As it is discussed in this thesis, the early

phase integrated weight compression is a vital for success training of DRL problem.

Therefore, a real-time and comprehensive unified autonomous system can be realized

on the real UAV.
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